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Abstract: The role of gut microbe-derived metabolites in the development of metabolic syndrome
(MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabo-
lites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample
included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of
35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression.
Significant associations were observed between multiple MetS traits and 32 metabolites, three of
which exhibited particularly robust associations. N-acetyltryptophan was positively associated with
Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (β = 0.02, p = 0.033), body mass
index (BMI) (β = 0.025, p = 1.3 × 10−16), low-density lipoprotein cholesterol (LDL-C) (β = 0.034,
p = 5.8 × 10−10), triglyceride (0.087, p = 1.3 × 10−16), systolic (β = 0.012, p = 2.5 × 10−6) and dias-
tolic blood pressure (β = 0.011, p = 3.4 × 10−6). In addition, 3-(4-hydroxyphenyl) lactate yielded
the strongest positive associations among all metabolites, for example, with HOMA-IR (β = 0.23,
p = 4.4 × 10−33), and BMI (β = 0.097, p = 5.1 × 10−52). By comparison, 3-aminoisobutyrate was
inversely associated with HOMA-IR (β = −0.19, p = 3.8 × 10−51) and triglycerides (β = −0.12,
p = 5.9 × 10−36). Mendelian randomization analyses did not provide evidence that the observed
associations with these three metabolites represented causal relationships. We identified significant
associations between several gut microbiota-derived metabolites and MetS traits, consistent with the
notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.

Keywords: metabolic syndrome; gut microbes; gut metabolites; insulin resistance; Mendelian
randomization; GWAS
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1. Introduction

Metabolic syndrome (MetS) is a heterogenous disorder defined by the presence of
three or more of the following traits: abdominal obesity, elevated triglycerides, reduced
high-density lipoprotein cholesterol (HDL-C), prehypertension or hypertension, and in-
sulin resistance or diabetes mellitus [1]. It is strongly associated with an increased risk for
atherosclerosis and other cardiovascular diseases (CVDs) [2,3] contributing to cardiovas-
cular morbidity and mortality in the general population. Having MetS doubles the risk
of adverse outcomes and increases by 1.5 fold the risk of mortality from all causes [4]. In
addition to CVD and type 2 diabetes (T2D), MetS is associated with the development of
non-alcoholic fatty liver disease, cancer, and autoimmune disorders [2,5]. The prevalence
of MetS increases with age, from approximately one in five in young adults 20–39, to
nearly half of all people over 60 [6,7]. Intestinal flora have been proposed as one of the
factors influencing the development of certain MetS traits [8]. The human intestine contains
approximately 100 trillion microorganisms and up to 1000 different species of symbiotic
bacteria, viruses, archaea, and fungi, collectively termed the gut microbiome [9]. It is
influenced by complex interactions involving diet, lifestyle, and host genetics, including
crosstalk between intestinal microbes and the host’s immune system [10–12].

Although causal relationships between gut microbial profiles and MetS traits have
been established in animal studies, the association between the gut microbiota and MetS in
humans is still not clearly understood [13]. Gut microbes have a key role in the biosynthesis
of numerous metabolites, including amino acid metabolites, which are derived from micro-
bial degradation, and they exhibit extensive effects on the onset of diabetes and metabolic
disorders [14]. We found novel associations between amino acid-derived metabolites,
including N-acetyltryptophan, 3-(4-hydroxyphenyl) lactate, and 3-aminoisobutyrate, and
metabolic syndrome traits; these are metabolites that have been less well studied.

Approximately 10% of all circulating metabolites in humans are derived from bacteria
and participate in various human metabolic or inflammatory pathways [15], contributing
to diseases such as atherosclerosis, insulin resistance, and obesity [16]. Although some
of the gut microbe-derived metabolites, such as trimethylamine N-oxide (TMAO), have
been investigated in depth in the context of CVDs, the relationship between MetS traits and
gut microbe-derived metabolites, such as 4-hydroxyphenylacetate, or secondary bile acids,
such as glycocholenate sulfate, have rarely been studied. The aim of the present study was
to investigate the association between gut microbe-derived metabolites and MetS traits,
and to explore the potential causality of the associations in order to identify novel microbial
biomarkers for targeted interventions.

2. Materials and Methods
2.1. The Study Design and Sample Population

This was a secondary analysis of data from a population-based cohort of the Metabolic
Syndrome In Men (METSIM) study. The National Cholesterol Education Program Adult
Treatment Panel III defined metabolic syndrome criteria for men as follows: waist circum-
ference ≥ 102 cm, blood pressure ≥ 130/85 mmHg, fasting triglyceride levels ≥ 150 mg/dL,
fasting HDL-C < 40 mg/dL, and fasting blood sugar ≥ 100 mg/dL [1].

The randomly selected METSIM cohort consists of 10,194 men, aged 45–74, from the
population register of Kuopio town, Eastern Finland. Data were collected from 2005 to 2010.
Individuals with previously diagnosed diabetes were excluded. Only men were included
in the sample because of the influence of sex hormones and the host genetic profile which
influence health and disease susceptibility via gut microbial composition. Sex hormones
directly modulate the metabolism of bacteria through steroid receptors [17] and their levels
are correlated with diversity and gut microbial composition [18]. Host genetics have been
linked to differences in microbial composition, suggesting that host genetics can shape
the gut microbiome [19]. Finally, the prevalence and incidence of T2D and coronary heart
disease are higher in Finnish men than in Finnish women. The cohort underwent detailed
phenotyping, particularly for cardiovascular and diabetes-related traits, and had a long
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follow-up period of 16.6 years. This study extends the impact of the parent study, which
aimed to investigate nongenetic and genetic factors associated with MetS and CVD in
both cross-sectional and longitudinal analyses. The relatively homogenous nature of the
cohort makes it particularly useful for understanding host-microbiome relationships. The
METSIM study has been previously described in detail [20].

2.2. Setting, Data Collection, and Metabolite Analysis

All patients had a one-day outpatient visit at the University of Kuopio, which included
collection of clinical data, health status, and medical treatments. All study participants
gave written informed consent. Measures of height, weight, waist, hip, blood pressure
(BP), and fat percentages were taken. Fasting blood samples were drawn in the clinic
and stored at −80 ◦C. The following were obtained after 12 h of fasting: glucose, insulin,
lipids, lipoproteins, apolipoproteins, adiponectin, bile acids, high sensitivity C-reactive
protein, hemoglobin A1c (HbA1c), mass spectrometry metabolomics (Metabolon, Durham,
NC, USA), and proton nuclear magnetic resonance (NMR) measurements (lipids and
lipoproteins, amino acids, fatty acids of different lengths, and other low-molecular-weight
metabolites). Metabolites were measured using Metabolon’s untargeted Discovery HD4
platform using ultra-high-performance liquid chromatography–tandem mass spectroscopy,
which has been previously described in detail [21,22]. We selected 35 gut microbe-derived
metabolites based on their availability in the METSIM cohort. We excluded metabolites
with more than 20% missing values. In addition, based on our literature review, very few
studies were available for several metabolites. For example, there was limited literature
on the association of 4-hydroxyphenylacetate and methyl indole-3-acetate with metabolic
disorders. There are some contradictory findings between studies’ results for some metabo-
lites, suggesting the need for more investigations. For instance, the evidence supporting
succinate as a harmful or a beneficial metabolite is inconclusive [23].

2.3. Statistical Analysis

Statistical analyses were conducted using R Studio with R version (4.0.5). We exam-
ined the association of 35 gut microbe-derived metabolites with 13 traits including glucose,
insulin, Homeostatic Model Assessment for Insulin Resistant (HOMA-IR), hemoglobin
A1c (HbA1c), fat mass, body mass index (BMI), waist-to-hip ratio (WHR), low-density
lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total choles-
terol, triglycerides, systolic blood pressure (SBP), and diastolic blood pressure (DBP). All
metabolites and skewed traits were natural logarithmic transformed. For values under
the detectable limit (reported as zeros), we replaced zeros with half of the minimum de-
tectable value of the corresponding metabolite prior to transformation. The relationships
between metabolites and traits were assessed using machine learning-based least absolute
shrinkage and selection operator (Lasso) regression analysis with a lambda that gave a
minimum mean error from a 10-fold cross validation in order to control for overfitting. This
provides a conservative estimate of model performance. It has been demonstrated that
Lasso is consistent in terms of prediction [24] and variable selection [25], and reduces mul-
ticollinearity of metabolic features and retains metabolites with nonzero coefficients [26].
Lasso regression of metabolites allowed us to predict a binary clinical diagnosis when the
number of metabolites was very large. It provided a first step in our analysis, as were
primarily interested in identifying the individual relative predictive strengths of the salient
metabolites, as identified using significant nonzero coefficients in the Lasso regression.
Stepwise regression then allowed us to refine our Lasso analysis and identify the most
significant predictive metabolites for further evaluation. Metabolites selected using Lasso
were included in the stepwise regression models to further evaluate significance of Lasso-
selected metabolites, while adjusting for age, BMI, smoking status (yes, no, ex-smoker),
exercise (1—a little or none, 2—physical exercise in context of other hobbies or physical
exercise, occasionally 3—physical exercise regularly ≤2 times a week at least 30 min at a
time, 4—physical exercise regularly ≥3 times a week at least 30 min at a time), daily alcohol
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consumption (grams per week), and technical covariates including batch effect, regular
medication use (yes/no), and the number of medications.

2.4. Mendelian Randomization (MR) Analysis

MR analysis was used to determine whether associations of gut microbe-derived
metabolites and metabolic traits represented causal relationships. To maximize the sam-
ple size and to use independent datasets, we performed two-sample MR using inverse-
variance weighting (IVW), weighted median (WM), and MR-Egger regression methods,
as implemented in the two-sample MR package [27,28] in R v4.2.2. The results of a large
metabolomics genome-wide association study (GWAS) meta-analysis with the INTERVAL
and EPIC-Norfolk cohorts [29] were used to select genetic instrumental variables for gut
microbiome metabolites. Variants associated with each metabolite at the genome-wide sig-
nificance threshold of p = 5.0 × 10−8 were selected and pruned using clumping (r2 = 0.001)
to exclude single nucleotide polymorphisms (SNPs) that were in linkage disequilibrium
(LD) with each other. This filtering strategy identified eight variants at four loci that could
be used as instrumental variables for 3-aminoisobutyrate, four variants at 3 loci for 3-(4-
hydroxyphenyl)lactate, and three variants in three loci for N-acetyltryptophan. Further
QC steps during data harmonization were performed to remove palindromic SNPs, which
led to the exclusion of one instrumental variable for N-acetyltryptophan. This approach
led to the identification of valid instrumental variables that met three key assumptions in
MR studies [30], such as being associated with risk factor of interest (relevance assump-
tion), sharing no common cause with the outcome (independence assumption), and not
affecting the outcome except through the risk factor (exclusion restriction assumption).
Effect estimates for MetS traits as outcomes were taken from published GWAS for BMI,
WHR [31], blood lipid levels [32], glycemic traits [33,34], and systolic and diastolic blood
pressure [35]. Sensitivity analyses were also performed to detect potential horizontal
pleiotropy and directionality of the causal associations using MR Egger intercept and MR
Steiger tests, respectively.

3. Results

The participants in the present study consisted of 10,194 men with a mean age of
57.65 years. The clinical and laboratory characteristics of the participants are shown
in Table 1. We investigated 35 gut microbe-derived metabolites for associations with
13 MetS traits in METSIM and identified several novel associations. Figure 1 shows the
correlation heatmap between microbe-derived metabolites and MetS traits. The pairwise
correlation heatmap of plasma microbe-derived metabolites is shown in Figure S1. An
additional statistical evaluation using Lasso and stepwise regression revealed significant
associations between multiple MetS traits and 32 of the 35 metabolites (Figure 2). Of
these, N-acetyltryptophan, 3-(4-hydroxyphenyl) lactate, and 3-aminoisobutyrate exhibited
particularly robust associations. With the exception of HDL-C, N-acetyltryptophan was
positively associated with all MetS traits, including plasma levels of total cholesterol
(β = 0.03, p = 2.3 × 10−14), LDL-C (β = 0.034, p = 5.8 × 10−10), triglycerides (β = 0.087,
p = 1.3 × 10−16), BMI (β = 0.025, p = 1.3 × 10−16), WHR (β = 0.005, p = 3.0 × 10−7), fat mass
(β = 0.01, p = 0.007), insulin levels (β = 0.032, p = 0.005), HOMA-IR (β = 0.02, p = 0.033),
and systolic (β = 0.012, p = 2.5 × 10−6) and diastolic blood pressure (DBP) (β = 0.011,
p = 3.4 × 10−6).
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Table 1. Characteristics of participants (n = 10,194).

Clinical Traits Mean (SD) Total Cohort

Age (Years) 57.65 (7.1)
BMI (Kg/m2) 27.30 (4.1)

Waist-to-hip ratio 0.97 (0.07)
Fat mass (%) 24.08 (6.5)

Fasting plasma glucose (mmol/L) 5.98 (1.12)
Fasting plasma insulin (mu/L) 9.94 (12.9)

Hemoglobin A1C (%) 5.80 (0.62)
HOMA-IR 2.88 (5.4)

Serum total cholesterol (mmol/L) 5.30 (1.0)
LDL-C (mmol/L) 3.31 (0.9)
HDL-C (mmol/L) 1.44 (0.4)

Serum total triglyceride (mmol/L) 1.47 (1.0)
Systolic blood pressure (mmHg) 138.29 (16.7)
Diastolic blood pressure (mmHg) 87.31 (9.4)

GFR 0.09 (0.02)
CRP (mg/L) 2.21 (4.5)

Total alcohol/week (gr) 99.9 (135.08)
CHD (family members /relative) n (%)

No 5919 (58)
Yes, parents’ siblings or cousins but not own parents, siblings, or children 893 (8.8)

Yes, own parents, siblings, or children 3384 (33.2)
Smoke n (%)

No 4148 (40.7)
Yes 1841 (18.1)

ex-smoker 4205 (41.2)

Data are presented as mean ± SD or n (%). BMI, body mass index; HOMA-IR, homeostatic model assessment of
insulin resistance; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; GFR,
glomerular filtration rate; CRP, C-reactive protein; CHD, coronary heart disease.

In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations
among all metabolites, including BMI (β = 0.097, p = 5.1 × 10−52), insulin levels (β = 0.27,
p = 1.8 × 10−41), HOMA-IR (β = 0.23, p = 4.4 × 10−33), and DBP (β = 0.034, p = 2.8 × 10−12).
The metabolite 3-aminoisobutyrate was inversely associated with plasma insulin (β = −0.17,
p = 3.6 × 10−51), HOMA-IR (β = −0.19, p = 3.8 × 10−51), serum triglycerides (β = −0.12,
p = 5.9 × 10−36), and total cholesterol (β = −0.022, p = 1.3 × 10−8).

Among the eight secondary bile acids, only glycolithocholate sulfate was inversely
associated with MetS traits including the LDL-C (β = −0.018, p = 1.8 × 10−13), triglycerides
(β = −0.011, p = 0.017), and insulin level (β = −0.032, p = 3.8 × 10−8), BMI (β = −0.008,
p = 9.9 × 10−8). Glycolithocholate sulfate was positively associated with the HDL-C level
(β = 0.009, p = 3.2 × 10−4) (Table S1).

Venn diagrams (Figure 3) show the metabolites common to MetS traits. The tryptophan-
derived metabolites N-acetyltryptophan and methyl-indole-3-acetate were positively asso-
ciated with three variables associated with weight including BMI (β = 0.025, p = 1.3 × 10−16;
β = 0.004, p = 5.7 × 10−5), WHR (β = 0.005, p = 3.0 × 10−7; β = 0.001, p = 4.7 × 10−4), and
fat mass (β = 0.01, p = 0.007; β = 0.003, p = 0.011). Spermidine was significantly associated
with higher levels of plasma glucose (β = 0.013, p = 2.9 × 10−19), plasma insulin (β = 0.019,
p = 1.5 × 10−4), and HOMA-IR (β = 0.033, p = 4.9 × 10−9).



Metabolites 2024, 14, 174 6 of 18Metabolites 2024, 14, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 1. Pearson’s correlation heatmap showing correlations of gut microbe-derived metabolites 
and metabolic syndrome traits (n = 10,194). Metabolic syndrome traits are shown on x-axis whereas 
metabolites are displayed on y-axis. Purple color stands for inverse correlations. Red color denotes 
positive correlations. HOMA-IR, homeostatic model assessment of insulin resistance; HbA1C, he-
moglobin A1c; BMI, body mass index; WHR, waist-to-hip ratio; LDL, low-density lipoprotein cho-
lesterol; HDL, high-density lipoprotein cholesterol; * p.val < 0.05, ** p.val < 0.01, *** p.val < 0.001. 

Figure 1. Pearson’s correlation heatmap showing correlations of gut microbe-derived metabolites
and metabolic syndrome traits (n = 10,194). Metabolic syndrome traits are shown on x-axis whereas
metabolites are displayed on y-axis. Purple color stands for inverse correlations. Red color de-
notes positive correlations. HOMA-IR, homeostatic model assessment of insulin resistance; HbA1C,
hemoglobin A1c; BMI, body mass index; WHR, waist-to-hip ratio; LDL, low-density lipoprotein
cholesterol; HDL, high-density lipoprotein cholesterol; * p.val < 0.05, ** p.val < 0.01, *** p.val < 0.001.
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Figure 2. Heatmap showing association between gut microbe-derived metabolites and metabolic 
symptom traits after adjustments for age, BMI (body mass index), physical activity, medication use, 
batch effect, alcohol consumption, and smoking. Metabolic syndrome traits are shown on x-axis 
whereas metabolites are displayed on y-axis. Purple color stands for inverse association. Red color 
denotes positive associations. HOMA-IR, homeostatic model assessment of insulin resistance; BMI, 
body mass index; WHR, waist-to-hip ratio; LDL, low-density lipoprotein cholesterol; HDL, high-
density lipoprotein cholesterol; data were analyzed using Lasso and stepwise regression. * p.val < 
0.05, ** p.val < 0.01, *** p.val < 0.001. 

Among the eight secondary bile acids, only glycolithocholate sulfate was inversely 
associated with MetS traits including the LDL-C (β = −0.018, p = 1.8 × 10−13), triglycerides 

Figure 2. Heatmap showing association between gut microbe-derived metabolites and metabolic
symptom traits after adjustments for age, BMI (body mass index), physical activity, medication
use, batch effect, alcohol consumption, and smoking. Metabolic syndrome traits are shown on
x-axis whereas metabolites are displayed on y-axis. Purple color stands for inverse association.
Red color denotes positive associations. HOMA-IR, homeostatic model assessment of insulin resis-
tance; BMI, body mass index; WHR, waist-to-hip ratio; LDL, low-density lipoprotein cholesterol;
HDL, high-density lipoprotein cholesterol; data were analyzed using Lasso and stepwise regression.
* p.val < 0.05, ** p.val < 0.01, *** p.val < 0.001.
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Figure 3. The Venn diagrams are representations of metabolites common to metabolic syndrome 
traits based on stepwise regression models. Each circle indicates the total number of metabolites 

Figure 3. The Venn diagrams are representations of metabolites common to metabolic syndrome
traits based on stepwise regression models. Each circle indicates the total number of metabolites
associated with the specific trait. The overlapping regions represent the number of metabolites shared
between those traits. HOMA-IR, homeostatic model assessment of insulin resistance; BMI, body
mass index; WHR, waist-to-hip ratio; LDL, low-density lipoprotein cholesterol; HDL, high-density
lipoprotein cholesterol.

Phenylalanine-derived metabolites including phenylacetate and phenyllactate were
inversely associated with BMI (β = −0.004, p = 6.5 × 10−5; β = −0.35, p = 6.12 × 10−8),
WHR (β = −0.001, p = 3.7 × 10−4; β = −0.011, p = 8.9 × 10−14), and DBP (β = −0.003,
p = 2.4 × 10−6; β = −0.016, p = 0.001).

We next carried out several types of two-sample MR analyses to evaluate whether the
observed metabolite–MetS trait associations were causal in nature. We focused these analy-
ses on 3-(4-hydroxyphenyl) lactate, 3-aminoisobutyrate, and N-acetyltryptophan, since the
most significant clinical associations were observed with these three gut microbe-derived
metabolites. To maximize the power and the number of instrumental variables, we also
used publicly available GWAS results for 3-(4-hydroxyphenyl) lactate, 3-aminoisobutyrate,
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and N-acetyltryptophan derived from a large analysis of the INTERVAL and EPIC-Norfolk
cohorts (n = 14,296) [29].

At a Bonferroni-corrected threshold for the number of MR tests carried out, IVW and
WM MR analyses yielded significant evidence that 3-(4-hydroxyphenyl)lactate is causally
associated with triglyceride, total cholesterol, and LDL cholesterol levels, but not with
HDL levels or any other selected metabolic outcomes (Table S2). By comparison, MR Egger
regression tests did not yield significant results (Table S2). Therefore, we further assessed
the robustness of the findings through sensitivity analyses that evaluated the horizontal
pleiotropy and directionality with the MR Egger intercept and Steiger’s tests, respectively.
These data did not provide evidence for the presence of horizontal pleiotropy (Table S2) and
suggested that the direction of the causal association between 3-(4-hydroxyphenyl)lactate
and triglyceride, total cholesterol, and LDL cholesterol levels was correct. By comparison,
evidence from the MR analyses for N-acetyltryptophan and 3-aminoisobutyrate provided
only weak and nominally significant evidence for these metabolites being causally associ-
ated with metabolic outcomes (Table S2).

4. Discussion

A number of significant associations were identified between microbe-derived metabo-
lites and MetS traits. Aromatic amino acid metabolism by the gut microbiota produces
numerous metabolites that may affect the host’s physiology both locally and in other
organs [36]. N-acetyltryptophan was significantly associated with nearly all MetS traits
including lipid levels, insulin resistance, obesity, and blood pressure. Consistent with
our results, Wang et al., in the prospective cohort of China Cardiometabolic Disease and
Cancer Cohort (4C) study, found that N-acetyltryptophan was positively associated with
incident T2D. In addition, the N-acethltryptophan and T2D association was mediated
by triglycerides and the WHR at a proportion of 12% [37]. Bajaj et al. found that N-
acetyltryptophan was associated with nosocomial infections in patients with cirrhosis.
In addition, N-acetyltrytphan was associated with major negative outcomes including a
higher rate of admission, longer hospital length of stays, more frequent transfer to the
ICU, organ failure, and death [38]. Huang et al. analyzed longitudinal metabolites from
the Cancer Prevention Study, a cohort of 620 men free of CVD who were followed for
28 years. Of the 406 metabolites, a strong association of N-acetyltryptophan (HR = 1.24,
p = 1.38 × 10−4) with all-cause mortality was observed [39].

The gut microbe-derived metabolite 3-(4-hydroxyphenyl)lactate had the strongest posi-
tive association with insulin levels (β = 0.27, p = 1.8 × 10−41) and HOMA-IR
(β = 0.23, p = 4.4 × 10−33. Similarly, one study found that 3-(4-hydroxyphenyl)lactate was
significantly associated with diabetes incidence [40]. Another study explored a metabolic
profile with weight loss in metabolically healthy obese women after a lifestyle intervention.
The authors found that 3-(4-hydroxyphenyl)lactate was positively correlated with several
weight variables including weight, BMI, waist, hip, and fat mas in the high weight loss
group (>10%) compared to the low weight loss group (<10%) [41]. Our study is the first to
report the association between 3-(4-hydroxyphenyl)lactate, triglycerides, and blood pres-
sure. Caussy et al. showed that 3-(4-hydroxyphenyl)lactate is associated with advanced
fibrosis in nonalcoholic fatty liver disease (NAFLD) [42]. Hypertriglyceridemia and insulin
resistance are common findings in NAFLD patients [43]. Triglyceride levels may be affected
by 3-(4-hydroxyphenyl)lactate indirectly through its association with insulin resistance.
Chronic exposure to insulin drives very-low-density lipoprotein overproduction which
leads to hypertriglyceridemia [44].

Patients with T2D had higher levels of xanthurenate, which was associated with
insulin resistance and increased odds of having diabetes [45,46]. Xanthurenate levels have
previously been shown to be elevated in obesity [47] and CVD [48]. Similarly, Eussen
et al. observed that kynurenine levels, including xanthurenate, were generally higher
in participants who had hypertension, were overweight, and who had prediabetes or
diabetes [49]. 4-hydroxyphenylacetate and 3-indoxyl sulfate were significantly associated
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with insulin resistance, obesity, and dyslipidemia. There have been very few studies
examining the role of 4-hydroxyphenylacetate in metabolic disorders. Indoxyl sulfate was
elevated in a diabetic compared to a nondiabetic control [50]. It has been shown to be
associated with nephrotoxicity [51] and there is evidence that it may contribute to the
pathogenesis of CVD in chronic kidney disease [52]. In high fat- and high sugar-fed mice,
indoxyl sulfate was strongly correlated with all metabolic parameters including plasma
glucose, insulin, HOMA-IR, LDL-C, and total cholesterol [53].

Variations in polyamine levels have been associated with multiple diseases including
stroke, inflammation, and diabetes [54]. We found significant positive associations between
spermidine and insulin resistance and WHR, and an inverse association with HDL-C. A
spermidine supplementation resulted in enhanced diabetes incidence in nonobese dia-
betic mice with an increased proportion of proinflammatory T-cells in pancreatic lymph
nodes [55]. In a cross-sectional study with 4230 individuals, serum spermidine was posi-
tively associated with increased odds of obesity but reduced odds of an increase in BMI in a
follow-up study [56]. N-acetylputrescine was associated with higher levels of triglycerides
and HDL-C. Similarly, Hong et al. found that SNP rs35570672-T, which is associated with
hyperlipidemia, was also associated with elevated levels of N-acetylputrescine [57]. In-
creased levels of N-acetylputrescine have been associated with disease severity in patients
with liver and kidney disease [58]. Indoleacetylglutamine was significantly associated
with insulin resistance, dyslipidemia, major adverse cardiovascular events, and all-cause
mortality independent of traditional cardiovascular risk factors in two independent cohorts
of subjects undergoing elective diagnostic cardiac evaluation [59].

Indoleacetate, 3-Phenylpropionate, 3-(3-hydroxyphenyl)propionate, and indolepro-
pionate were inversely associated with serum lipids, while phenol sulfate was positively
associated with serum lipids. Derivatives of 3-phenylpropionate are known to have ag-
onistic effects on peroxisome proliferator-activated receptors with antidiabetic and lipid-
lowering activity [60]. Indole supplementation in mice led to an improvement of metabolic
parameters, maintaining the intestinal barrier function and promoting GLP-1 production
in one study [61]. Indolepropionate supplementation has been shown to protect against
atherosclerotic plaques in apolipoprotein E-deficient mice by promoting macrophage re-
verse cholesterol transport through the miR-142-5p/ABCA1 signaling pathway [62]. Feng
et al. suggest that 3-(3-hydroxyphenyl)propionate has an atheroprotective effect through
its inhibition of monocyte adhesion to endothelial cells by modulating the expression of
the adhesion molecule E-selectin. This effect is partially mediated by its inhibitory action
on the NF-κB activation induced by TNFα [63]. In the present study, phenyllactate was
inversely associated with obesity and DBP. It was shown to be an exercise-induced metabo-
lite regulating appetite in a study by Li and colleagues [64]. Phenyllactate has consistently
been shown to be higher in undernourished mice than in control mice [65].

The level of 4-Ethylphenyl sulfate was inversely associated with BMI, hypertension,
and HDL-C. High plasma levels of 4-ethylphenyl sulfate were associated with a neural
axon myelination reduction, impairing oligodendrocyte maturation and reducing the
oligodendrocyte–neuron interactions, leading to anxiety-like behavioral characteristics [66].
Elevated levels of 4-ethylphenyl sulfate have been reported in the serum of children with
autism spectrum disorders [67].

Phenylacetate was inversely associated with triglycerides, total cholesterol, obesity,
and DBP. Phenylacetate could promote the development of NAFLD by inducing triglyceride
accumulation in hepatocytes and promoting the expression of lipid metabolism genes. The
effect of phenylacetate is part of a multifactorial process informed by the gut microbiome
that warrants further studies [68].

Indolelactate was inversely associated with insulin levels and obesity, and positively
associated with dyslipidemia. Increased physical activity has been shown to be significantly
associated with elevated indolelactate and indolepropionate levels [69]. Qi and colleagues
reported that indolelactate was positively and indolepropionate was inversely associated
with T2D risk [70]. We observed a significant association between indolelactate and the high
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triglyceride levels and low HDL-C characteristics of diabetes dyslipidemia. Methyl indole-3-
acetate was positively associated with BMI, WHR, and fat mass. Very few studies on methyl
indole-3-acetate have been published. A recent study showed that an increase in methyl
indole-3-acetate level has a protective effect against ulcerative colitis [71]. Another study in
high-fat diet-fed mice reported that a potential prebiotic fiber could increase levels of indole
derivatives, including methyl indole-3-acetate, and alleviate cardiac dysfunction [72].

We found that 3-aminoisobutyrate was inversely associated with insulin resistance, obe-
sity, triglycerides, LDL-C, and total cholesterol. Jung et al. indicated that a 3-aminoisobutyrate
treatment in mice mitigates insulin resistance, inhibits inflammation, and promotes fatty
acid oxidation via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-
activated receptor (PPAR)-delta [73]. Moreover, 3-aminoisobutyrate reduces body fat
through an increase in fatty acid oxidation and a decrease in hepatic lipogenesis in ani-
mals [74,75]. We identified inverse associations between imidazole propionate and LDL-C,
HDL-C, and total cholesterol. Van Son et al. examined the association between plasma
imidazole propionate levels and HDL-C and LDL-C in non-diabetic overweight/obese
individuals. They did not find a correlation between imidazole propionate and LDL-C or
HDL-C, perhaps due to a small sample size [76].

Higher blood hippurate levels were associated with a lower BMI, WHR, and SBP,
and higher total cholesterol levels. Higher intakes of fruit and whole grains have been
shown to be associated with higher levels of hippurate, cross-sectionally and longitudi-
nally. An increase in hippurate was previously associated with reduced odds of having
MetS [77]. In the context of high-fat diet-induced obesity, hippurate contributes to metabolic
improvements [78].

We found an inverse association between succinate and both insulin resistance and
obesity, and a positive association with HDL-C. There is evidence supporting the beneficial
effects of intracellular succinate as a modulator of intestinal gluconeogenesis [79] and
thermogenesis, which could provide robust protection against diet-induced obesity and
improve glucose tolerance [80]. Succinate also acts as a pro-inflammatory stimulus [81] to
regulate local stress, the immune response, and tissue damage [82–84]. In our study, higher
plasma levels of isovalerate were significantly associated with a higher BMI. Studies have
shown high levels of isovalerate in obese children [85,86].

At relatively low concentrations, secondary bile acids demonstrate anti-inflammatory
actions [87]. However, at high concentrations, they can cause oxidative stress, DNA damage,
apoptosis, and mutations [88]. Very few studies on glycocholenate sulfate and taurochole-
nate sulfate have been published. We found that glycocholenate sulfate was significantly
associated with higher fat mass, lower HDL-C, and higher SBP. Glycocholenate sulfate
is possibly synthesized from glycine-amidation and the sulfation of 3-beta-hydroxy-5-
cholenoic acid. Elevated levels of 3-beta-hydroxy-5-cholenoic acid in patients with primary
biliary cirrhosis have been reported [89]. Glycocholenate sulfate has been associated with
an increased risk of new onset atrial fibrillation [90]. Increased plasma levels of tauroc-
holenate sulfate were significantly associated with insulin levels, BMI, WHR, LDL-C, and
total cholesterol. In one study, a 2–3-fold increase in levels of taurochlenate sulfate was
reported in patients with primary dilated cardiomyopathy compared to a control group [91].
Significant associations between ursodeoxycholate and insulin resistance, BMI, and hy-
percholesterolemia were observed. Ursodeoxycholate has been recognized as a ligand
of TGR5, a transmembrane G protein-coupled bile acid receptor that is a key regulator
of glucose homeostasis [92]. The administration of ursodeoxycholate decreased glucose
levels, increased serum glucagon-like peptide 1 (GLP-1) levels, alleviated hyperinsulinemia,
increased the islet areas, and improved islet function in a study by Bai et al. These changes
may be related to its roles in enhancing TGR5 gene expression in the intestine, inhibiting
the expression of genes in bile acid synthesis, and suppressing liver fibrosis [93]. It has also
been reported that ursodeoxycholate lowers glucose levels, LDL-C, and total cholesterol
in the context of liver disease. Balan et al. found that ursodeoxycholic acid significantly
decreased total cholesterol levels. However, the decrease in cholesterol levels was strongly
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correlated with serum bilirubin levels (r = 0.70; p < 0.001), suggesting the primary lipid-
lowering effect occurs via an improvement of the underlying primary biliary cirrhosis [94].
The lipid-lowering action of ursodeoxycholic acid was not the primary outcome in almost
all studies in a meta-analysis study [95].

Glycoursodeoxycholate levels were associated with lower BMI and higher HLD-C
levels. Interestingly, in a diet-induced obesity mouse model, Sun et al. reported that
glycoursodeoxycholate may act as an intestinal farnesoid X receptor (FXR) antagonist, and
substantially attenuated body weight gain, and restored glucose intolerance and insulin
resistance without disorders in bile acid metabolism and liver injury [96]. In addition,
increased serum levels of glycoursodeoxycholate were associated with a decrease in HbA1c
and waist circumference in patients with T2D [97]. Taken together, the above evidence
suggests a potential beneficial effect of glycoursodeoxycholate in metabolism.

We found that glycolithocholate sulfate was inversely associated with plasma insulin,
triglycerides, LDL-C, and BMI, and positively associated with HDL-C. Bagheri et al. eval-
uated diet quality, plasma metabolites, and the gut microbiome in 150 healthy, lean, and
overweight women and men aged 18–50 years. They found that the glycolithocholate
sulfate level was higher in participants with higher diet quality. Fatty acid derivatives and
amino acids, including branch-chain amino acids, were lower in this group [98]. Weight loss
in obese post-menopausal women induced by a commercial very-low-caloric diet (VLCD)
improved insulin sensitivity and crown-like structures’ density in subcutaneous adipose
tissue, with a decrease in the pro-inflammatory gene profiles. Bagheri et al. found that the
metabolite glycolithocholate sulfate increased after VLCD-induced weight loss, which was
consistent with altered intestinal bacterial metabolism. Insulin sensitivity, as shown by a
reduced HOMA-IR, was improved. A VLCD diet was associated with reduced triglycerides
and LDL-C levels [99]. Glycocholate, glycodeoxycholate, and taurochenodeoxycholate were
significantly associated with insulin resistance, obesity, and dyslipidemia. Impaired bile
acid signaling contributes to insulin resistance through multiple mechanisms, including the
FXR and the G protein-coupled bile acid receptor TGR5 [100]. In general, total plasma bile
acids levels are positively correlated with obesity, T2D, and NAFLD, as evidenced by higher
fasting or postprandial plasma bile acids levels [101]. We found an inverse association
between trimethylamine N-oxide (TMAO) and DBP. Higher circulating concentrations of
TMAO with aging have been linked to aortic stiffening and increases in systolic but not
DBP in 122 healthy adult humans [102].

We also used various forms of MR with instrumental variables derived from anal-
yses with large numbers of subjects to evaluate whether gut microbe-derived metabo-
lites were causally associated with MetS traits. While there was some evidence for 3-(4-
hydroxyphenyl)lactate being causally associated with lipids, these results were based on a
small number of instrument variables. More notably, the inverse direction of the causal
associations predicted using MR analyses between 3-(4-hydroxyphenyl)lactate and lipids
were opposite to the positive correlations observed in the clinical analyses. Thus, based on
our present MR analyses alone, the causal relationship between 3-(4-hydroxyphenyl)lactate
and lipid traits remains inconclusive and will require further evaluation in future studies.
The same limitations were also evident in the MR analyses for N-acetyltryptophan and
3-aminoisobutyrate, which would therefore argue for no causal relationship between these
metabolites and MetS traits as well. However, since the small number and weak effect
sizes of the genetic variants likely led to weak instrument bias, an analysis with larger
numbers of appropriate genetic variants will be needed to draw firm conclusions regarding
the causal relationship between clinically associated gut microbe-derived metabolites and
MetS traits.

The microbial metabolites described above, specifically N-acethyltryptophan, 3-(4-
hydroxyphenyl)lactate, and 3-aminoisobutyrate, are implicated in the pathogenesis of
metabolic disorders and represent potential biomarkers for the early diagnosis and prog-
nosis of these diseases. An altered gut microbiota results in changes in plasma levels of
metabolites prior to the development of clinical symptoms. An early identification of risk
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and early diagnosis is the most effective way to improve the clinical outcomes and reduce
mortality rates.

Future research should focus on the validation of potential metabolite biomarkers
identified in this study in a large heterogenous sample, at different time points, for the
prevention, diagnosis, and personalized therapeutic targeting of the gut microbiota. Finally,
our study identified novel relationships between gut metabolites and clinical traits that
can provide direction for future animal studies. Mice could be fed or treated with salient
metabolites to explore the development of metabolic disorders.

Lastly, our study had limitations including the cross-sectional nature of the analyses,
which limited the ability to make causal inferences regarding the relationship between
plasma metabolites with traits of MetS. It is difficult to determine whether MetS followed
exposure to metabolites or metabolites were expressed following the development of MetS.
For example, does N-acetyltryptophan contribute to hyperlipidemia or does hyperlipidemia
cause the expression of N-acetyltryptophan? In addition, only middle-aged and elderly
Finnish men were included in this study and whether our findings are generalizable to
women, younger persons, and other ethnic and racial groups remains to be determined.
Additional research should address the relationship between biological, sex, and other
factors that contribute to disparities in MetS and metabolite expression. Diverse samples
are needed to guide personalized medicine based on an individual’s genetic makeup.

5. Conclusions

In conclusion, we observed strong associations between the gut microbe-derived
metabolites and MetS traits. Further mechanistic studies are warranted to validate the
observed associations, particularly in more heterogeneous populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
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test causal relationships with three metabolites most strongly associated with clinical traits.
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