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Longitudinal linked-read sequencing reveals ecological
and evolutionary responses of a human gut
microbiome during antibiotic treatment

Morteza Roodgar,1,2,9 Benjamin H. Good,3,9 Nandita R. Garud,4 Stephen Martis,5

Mohan Avula,1 Wenyu Zhou,1 Samuel M. Lancaster,1 Hayan Lee,1 Afshin Babveyh,1

Sophia Nesamoney,1 Katherine S. Pollard,6,7,8 and Michael P. Snyder1
1Department of Genetics, Stanford University, Stanford, California 94305, USA; 2Institute for Stem Cell Biology and Regenerative
Medicine, Stanford University School of Medicine, Stanford, California 94305, USA; 3Department of Applied Physics, Stanford
University, Stanford, California 94305, USA; 4Department of Ecology and Evolutionary Biology, University of California Los Angeles,
Los Angeles, California 90095, USA; 5Department of Physics, University of California, Berkeley, California 94720, USA; 6Gladstone
Institutes, San Francisco, California 94158, USA; 7Department of Epidemiology and Biostatistics, University of California,
San Francisco, California 94158, USA; 8Chan Zuckerberg Biohub, San Francisco, California 94158, USA

Gutmicrobial communities can respond to antibiotic perturbations by rapidly altering their taxonomic and functional com-

position. However, little is known about the strain-level processes that drive this collective response. Here, we characterize

the gut microbiome of a single individual at high temporal and genetic resolution through a period of health, disease, an-

tibiotic treatment, and recovery. We used deep, linked-read metagenomic sequencing to track the longitudinal trajectories

of thousands of single nucleotide variants within 36 species, which allowed us to contrast these genetic dynamics with the

ecological fluctuations at the species level. We found that antibiotics can drive rapid shifts in the genetic composition of

individual species, often involving incomplete genome-wide sweeps of pre-existing variants. These genetic changes were

frequently observed in species without obvious changes in species abundance, emphasizing the importance of monitoring

diversity below the species level. We also found that many sweeping variants quickly reverted to their baseline levels

once antibiotic treatment had concluded, demonstrating that the ecological resilience of the microbiota can sometimes

extend all the way down to the genetic level. Our results provide new insights into the population genetic forces that shape

individual microbiomes on therapeutically relevant timescales, with potential implications for personalized health

and disease.

[Supplemental material is available for this article.]

The composition of the gut microbiome varies among human
populations and individuals, and it is thought to play a key role
in maintaining health and reducing susceptibility to different
diseases (Gill et al. 2006; Feng et al. 2015; Sharon et al. 2016;
Halfvarson et al. 2017). Understanding how this microbial eco-
system changes from week to week—through periods of health,
disease, and treatment—is important for personalized healthman-
agement and design of microbiome-aware therapies (Spanogian-
nopoulos et al. 2016).

Many studies have investigated intra-host dynamics at the
species or pathway level (Jernberg et al. 2010; Dethlefsen and
Relman 2011; Keeney et al. 2014; Buffie et al. 2015; Yin et al.
2015; Zaura et al. 2015; Raymond et al. 2016; Yassour et al. 2016;
Lloyd-Price et al. 2017; Palleja et al. 2018; Ng et al. 2019).
Among other findings, these studies have shown that oral antibi-
otics can strongly influence the composition of the gut micro-
biome over a period of days, whereas the community often
regains much of its initial composition in the weeks or months af-

ter antibiotics are removed (Dethlefsen and Relman 2011; Buffie
et al. 2015; Ng et al. 2019). This suggests an intriguing hypothesis,
in which the long-term composition of a healthy gut community
is buffered against brief environmental perturbations.

However, the mechanisms that enable this ecological resil-
ience are still poorly understood.Does species composition recover
because external strains are able to recolonize the host? Or do res-
ident strains persist in refugia and expand again once antibiotics
are removed? In the latter case, do resident populations also ac-
quire genetic differences during this time, either due to population
bottlenecks or to new selection pressures that are revealed during
treatment? These questions can be addressed by quantifying
fine-scale microbiome genetic variation below the species or path-
way level and tracking how it changes during periods of health,
disease, and treatment.

Recent advances in strain-resolved metagenomics and isolate
sequencing (Scholz et al. 2016; Ward et al. 2016; Truong et al.
2017) havemade it possible to detect DNA sequence variants with-
in species and to track how they changewithin and between hosts.
These studies have shown that gut bacteria can acquire genetic dif-
ferences over time even in healthy human hosts and that these9These authors contributed equally to this work.
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differences arise from a mixture of external replacement events
(Schloissnig et al. 2013; Truong et al. 2017; Garud et al. 2019)
and the evolution of resident strains (Ghalayini et al. 2018;
Garud et al. 2019; Zhao et al. 2019). However, because these previ-
ous studies have included relatively few timepoints per host, or rel-
atively shallow sampling of their microbiota, the population
genetic processes that drive these strain-level dynamics remain
poorly characterized. Understanding how the forces of mutation,
recombination, selection, and genetic drift operate within hosts
is critical for efforts to forecast personalized responses to drugs or
other therapies.

To bridge this gap, we used deepmetagenomic sequencing to
follow the genetic diversity within a single host microbiome at ap-
proximately weekly intervals over a period of 5 mo, which includ-
ed periods of infectious disease and the oral administration of
broad-spectrum antibiotics. We used a linked-read sequencing
technique to generate each of our metagenomic samples: large
molecules of bacterial DNA were isolated in millions of emulsified
droplets, digested into shorter fragments, and labeled with a corre-
sponding DNA barcode to follow linked reads from the same drop-
let. Previous work has shown that the linkage information
encoded in these barcoded “read clouds” can improve genome as-
sembly (Bishara et al. 2018) and taxonomic assignment (Danko
et al. 2019) in human gut metagenomes. Here, we took a different
approach and developed new statisticalmethods that leverage lon-
gitudinal linked-read sequencing to detect and interpret fine-scale
genetic changes that take place within the resident populations of
individual bacterial species over time. This reference-based strat-
egy simultaneously captures the ecological and evolutionary dy-
namics of multiple strains in many resident species, without
requiring assembly of complete genomes.

Here, we sought to use this approach to characterize the pop-
ulation genetic forces that shape native gut microbiota through
periods of health, disease, antibiotic treatment, and recovery. By
analyzing the temporal dynamics of thousands of single nucleo-
tide polymorphisms in 36 abundant species, we obtain new
insights into the strain-level mechanisms that govern the ecologi-
cal resiliency of this community, which have important potential
implications for personalized health and disease.

Results

Longitudinal linked-read sequencing of a human gut microbiome

during disease and treatment

Generation of linked reads requires the preparation of long DNA
fragments. We therefore developed an optimized protocol for ex-
tracting high-molecular weight (HMW) DNA from human stool
samples (Methods). We used this approach to perform linked-
read sequencing (10x Genomics) on 19 stool samples collected
from a single human subject over a period of 5 mo (Fig. 1A;
Supplemental Table S1). During this time, the individual was diag-
nosed with human rhinovirus (HRV) and Lyme disease and
received a 2-wk course of broad-spectrum oral antibiotics (doxycy-
cline). We generated deep sequencing data for each sample (rang-
ing from ∼8–160 Gbp), so that a typical read was present in a “read
cloud” containing∼4–30 other read pairs (Fig. 1D,E; Supplemental
Fig. S1). Taxonomic profiling showed that the subject’s gut
microbial community contained 66 bacterial species with median
relative abundance >10−5, all but one of which exceeded 0.1% fre-
quency in at least one time point (Fig. 1B; Methods). Consistent
with previous studies (Danko et al. 2019), we found that the exten-

sive taxonomic diversity of this community was accompanied by
high levels of read cloud “impurity,” in which individual read
clouds were frequently observed to contain fragments from ∼5–
10 different species (Fig. 1E). The presence of such impurities
makes it difficult to directly infer genetic linkage from individual
read clouds in complex metagenomic samples. Here, we sought
to overcome this issue by employing a two-stage approach, which
leverages the hybrid nature of the linked-read sequencing proto-
col. We first ignored long-range linkage and used short-read, refer-
ence-based methods to track species and subspecies diversity over
time (Methods) (Nayfach et al. 2016; Garud et al. 2019). We then
developed a statistical model for linking genomic regions with
higher-than-expected read cloud sharing given the observed levels
of read cloud impurity (Methods). Using this hybrid approach, we
documented the ecological and evolutionary responses of the gut
microbial community before, during, and after antibiotic
treatment.

We first examined the ecological responses at the species lev-
el. Consistent with previous work (Schloissnig et al. 2013; Lewis
et al. 2015; Luo et al. 2015; Kuleshov et al. 2016; Nayfach et al.
2016; Relman and Lipsitch 2018), we observed a substantial per-
turbation in species-level composition during and immediately af-
ter antibiotic treatment, followed by a return to near baseline
values by the end of the study (Fig. 1C). However, we found that
only a few species underwent large declines in abundance during
the treatment period, and even fewer showed signs of going ex-
tinct during this interval. We used microbial DNA quantification
(microbial DNA permass of sample) (Contijoch et al. 2019) to con-
vert our relative abundancemeasurements into absolutemicrobial
densities for a subset of the study time points (Supplemental Fig.
S2). Of the 50 species with baseline abundance >0.1%, we found
that only 12 declined by more than 10-fold at the end of the
2-wk treatment window, and all but four of these recovered to
near baseline values by the end of the study (Supplemental Fig.
S3). Alistipes finegoldii and Butyrivibrio crossotus provide two proto-
typical examples of this effect: both experienced large declines in
abundance during antibiotic treatment but eventually recovered
to their initial levels over the next ∼3–5 wk (Fig. 2A). The small
number of such examples, combined with the relatively steady fe-
cal DNA content, suggests that a large fraction of the initial com-
munity was able to maintain high absolute abundance during
antibiotic treatment, for example, due to reduced sensitivity to
doxycycline. Consistent with this hypothesis, we observed a
high baseline proportion of doxycycline-related resistance genes
among our metagenomic reads (∼200 reads per million mapped),
which increased ∼twofold during treatment (Supplemental Fig.
S4). This finding is also consistent with previous observations of
tetracycline resistance in isolates of several Bacteroides species
(Rasmussen et al. 1993).

Deep longitudinal sequencing reveals shifts in the genetic

composition of 36 species in the same host

The general pattern of persistence and recovery at the species level
is shared bymany other classes of antibiotics (Relman and Lipsitch
2018). However, the strain-level dynamics that give rise to this
long-term stability remain poorly understood. Do the species
that persist through disease and treatment remain stable genetical-
ly? Or does this general pattern of robustness mask a larger flux of
genetic changes occurring within individual species? Our deep se-
quencing approach allows us to address these questions by track-
ing genetic variation within species over time.
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We tracked the genetic composition of each species by align-
ing our short sequencing reads to a panel of reference genomes and
estimating the population frequency of single nucleotide variants
(SNVs) that we detected at each time point (Methods). Our high se-
quencing coverage enabled at least ∼10-fold coverage per time
point for species with relative abundance >0.3% and coverages
as high as ∼500-fold in some of the most abundant species
(Supplemental Fig. S5). This allowed us to simultaneouslymonitor
SNV trajectories within 36 different species that passed our mini-
mum coverage thresholds (Methods) and to explore how these
“evolutionary” dynamics either mirrored or contrasted with the

dynamics of their species abundance trajectories above (Figs.
2, 3; Supplemental Figs. S6–S8; Supplemental Data S1–S3).

This strain-level analysis revealed large differences in the ge-
netic composition of different species. Consistent with previous
work (Schloissnig et al. 2013; Kuleshov et al. 2016; Truong et al.
2017; Garud et al. 2019), we found that the initial levels of genetic
diversity varied widely between species. Some common species,
such as Bacteroides vulgatus and Bacteroides uniformis, harbored
more than ∼10,000 SNVs at intermediate frequencies, whereas
other species, for example, Bacteroides coprocola or Alistipes sp,
had fewer than ∼100 detectable SNVs (Fig. 2B). Of particular

E
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C

D

Figure 1. Read cloud sequencing of the gut microbiome of a single individual during disease, antibiotic treatment, and recovery. (A) Study design.
Linked-read metagenomic sequencing was performed on 19 fecal samples collected from a single individual over a period of 5 mo. During this time,
the individual was diagnosed with human rhinovirus (HRV) and Lyme disease and received an oral course of doxycycline. Samples are colored according
to the epochs defined in Supplemental Table S1. (B) Rank relative abundance distribution at the species level, estimated from shotgun metagenomic reads
(Methods). Colored lines show distributions obtained from individual time points, using the same color scheme as panel A. Solid and dashed black lines
denote median andmaximum relative abundances across all time points, respectively. (C) Species-level composition over time. Top panel illustrates Jensen-
Shannon distance to each of four baseline samples as a function of time. Bottom panel shows relative abundance trajectories for a subset of the most abun-
dant species; others are grouped together into the “other” category. (D) Schematic of linked-read sequencing with the 10x Genomics platform. High mo-
lecular weight metagenomic DNA is partitioned into millions of microfluidic droplets. Amplification and ligation reactions are performed within each
droplet, yielding millions of short-read libraries that are tagged with droplet-specific DNA barcodes. The resulting “read clouds” are then pooled together
and sequenced on an Illumina instrument. (E) Observed statistics of read clouds from the first three time points. The top panel shows total number of read
pairs contributed by read clouds as a function of the number of read pairs they contain. The bottom panel shows a measure of the effective number of
species that are detected in each read cloud as a function of the number of read pairs it contains (Methods). Many read clouds contain fragments from
several different DNA molecules.
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interest are those SNVs that underwent large changes in frequency
between the initial and later time points (e.g., from<20% to >70%,
with FDR<0.1) (see Methods); these “SNV differences” indicate a
nearly complete “sweep” within the species of interest. We ob-
served a similarly wide range in the number of SNV differences
during and immediately after antibiotic treatment, from more
than ∼10,000 in some species (e.g., Eubacterium eligens) to ∼10
(or even 0) in others (Fig. 2C). Of the 36 populations in Figure

2C,more than half accumulated at least one SNVdifference during
this period, andmore than 80% accumulated SNV differences in at
least one portion of the study.

Similar within-host changes have recently been observed in
metagenomic and isolate-based analyses from healthy hosts
(Ghalayini et al. 2018; Garud et al. 2019; Zhao et al. 2019), though
at a significantly lower rate (Fisher’s exact test, P<0.001). A major
challenge in these earlier metagenomic studies has been to

E
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Figure 2. Varied ecological and genetic responses across 36 abundant species in the same host. (A) Relative abundances of species through time, par-
titioned according to the epochs defined in Figure 1A. Each time point is indicated by a point, and the time points from the same epoch are connected by a
vertical line to aid in visualization. For comparison, the gray distribution shows the corresponding values across a larger human cohort (Methods). Species
whose relative abundance drops by more than 10-fold between baseline and antibiotic time points are indicated with a single star. Only a minority of the
most abundant species experience such reductions in relative abundance during treatment. (B) Within-species nucleotide diversity for each time point, as
measured by the fraction of core genome sites with intermediate allele frequencies (0.2 < f<0.8) (Methods). Points are plotted using the same color scheme
as panel A. (C ) The total number of single nucleotide (SNV) differences between a baseline time point and each of the later epochs (Methods). The height of
the white area indicates the total number of polymorphic SNVs that were tested for temporal variation. Different species display a range of different be-
haviors, which can be partitioned into putative cases of competition between distantly related strains (left of vertical divider line) and evolution within a
dominant resident strain (right). (D) Initial frequencies of alleles identified in panel C. For species with more than 10 SNV differences, the data are summa-
rized by the median initial frequency (square symbol) and the interquartile range (line). Many alleles have nonzero frequency before the sweep occurs. (E)
Fraction of SNV differences in panel C that are retained at the final time point ( f>0.7). In many species, only a minority of SNV differences gained during
disease or treatment are retained.
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demonstrate that the temporally variable SNVs are truly linked to
their inferred genomic background, as opposed to read mapping
artifacts (e.g., from another temporally fluctuating species that
happens to share some part of the genome). Linked-read sequenc-
ing provides an opportunity to address this question. For each SNV
difference reported in Figure 2C, we examined the patterns of bar-
code sharingwith genes in the “core” genomes of our reference ge-
nome panel, which provides a proxy for the true genomic
background (Methods). This analysis yielded positive confirma-
tion for ∼80% of the SNV differences in Figure 2C (where both al-
leles share read clouds with a core gene in the target species) and
negative confirmation for <1% (Supplemental Fig. S7). We con-
clude that themajority of these SNVs represent true genetic chang-
es within their respective species populations.

The variable genetic responses in different species are not eas-
ily explained by their phylogenetic relatedness or their relative
abundance trajectories. As an example, Figure 3 shows the full spe-
cies abundance and SNV frequency trajectories for six example
species, which were chosen to illustrate the range of observed be-
haviors. This set includes three different members of the Alistipes
genus that coexisted within this particular host (Fig. 3A–C). The
first two species, A. sp and A. finegoldii, experienced large reduc-
tions in relative abundance during treatment, but we observed ge-
netic differences in onlyone of the populations (A. finegoldii) when
they recovered to their initial relative abundance levels. InA. onder-
donkii, in contrast, the relative abundance remained high at the
end of the treatment phase, but we observed rapid changes in
the frequencies of several SNVs within this species during the

same time period (P<0.001) (Methods). These examples show
that species abundances alone are not sufficient to predict genetic
responsewithin species: relatively constant species abundance tra-
jectories can mask larger genetic shifts within a species, and vice
versa.

Quantifying genetic linkage between SNVs using

barcoded read clouds

We next sought to quantify the population genetic processes that
could give rise to the SNV changes observed in Figures 2 and 3. A
key question is the extent of genetic linkage within species: is re-
combination sufficiently frequent that genetic drift and natural se-
lection act independently on different SNVs? Or are SNV
trajectories tightly correlated because they are linked together on
a small number of clonal backgrounds? This question is particular-
ly relevant for species with high levels of SNV diversity like B. vul-
gatus (Supplemental Fig. S10), where it can mean the difference
between ∼10,000 evolutionary trajectories (if SNVs are indepen-
dent) or possibly only one (if SNVs derive from a mixture of two
clonal strains).

Previous analyses of gut bacteria suggest that recombination
can efficiently decouple SNVs over long timescales (i.e., millions
of bacterial generations) (Vos and Didelot 2009; Garud et al.
2019), but the extent of genetic linkage within hosts remains un-
clear. The additional information provided by linked-read se-
quencing now allows us to investigate this question. We
developed a statistical approach for detecting linkage between

E
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Figure 3. Ecological and genetic dynamics in six example species. (A–F) A subset of the species in Figure 2 were chosen to illustrate a range of charac-
teristic behaviors. For each of the six species, the top panel shows the relative abundance of that species over time, whereas the bottom panel shows the
frequencies of single nucleotide variants (SNVs) within that species. Colored lines indicate SNVs that underwent a significant shift in frequency over time
(Methods), whereas a subset of nonsignificant SNVs are shown in light gray for comparison. The colors of temporally varying SNVs are assigned by a hi-
erarchical clustering scheme, which is also used to determine their polarization (Methods). The shaded region denotes the antibiotic treatment period
depicted in Figure 1A.
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pairs of SNVs (Fig. 4A), which accounts for the substantial coverage
variation across different species and read clouds (Methods). Figure
4B shows how the overall levels of read cloud sharing depend on
the coordinate distance between the two SNVs on the reference ge-
nome. Consistent with the fragment length estimates from our
HMW DNA extraction protocol (Supplemental Fig. S11), we ob-
served an enrichment of shared read clouds barcodes for SNVs
within ∼10 kb of each other, though the overall fraction of long-
range read clouds remains modest (∼10%). For the subset of
SNVs pairs with significant read cloud sharing, we further quanti-
fied genetic linkage by examining the combinations of major and
minor alleles that are observed in the same read clouds. In partic-
ular, we estimated the number of allelic combinations (or haplo-
types) that were observed for each pair of SNVs as a function of
their coordinate distance along the reference genome (Fig. 4A).
According to the four-gamete test (Hudson and Kaplan 1985),
three or fewer haplotypes are consistent with clonal evolution,
but the presence of all four haplotypes indicates a possible recom-
bination event between the two SNVs (Methods). Figure 4C shows
that the vast majority of the SNV pairs we observed across species
were consistent with clonal evolution: of the ∼4million SNV pairs
we examined that were separated by more than 2 kb, only ∼600
showed significant evidence for all four haplotypes (q< 0.05)
(Methods). Most of these four-haplotype pairs were concentrated
in just a few species, with high values of linkage disequilibrium be-

tween the two SNVs (Supplemental Fig. S12). This suggests that, to
a first approximation, the SNV dynamics within species in this
time course reflect a competition between a few clonal haplotypes,
rather than independent alleles. This is consistent with previous
indirect evidence from the clustering of allele frequencies within
hosts (Luo et al. 2015; Smillie et al. 2018; Garud et al. 2019).

For populations with sufficiently high SNV densities (>1 per
kb), the patterns of read cloud sharing can inform efforts to cluster
SNVs into smaller numbers of competing haplotypes (Supplemen-
tal Fig. S10; Supplemental Data S7). However, we found thatmany
temporal changes occurred in populations with much lower SNV
densities (<1 per 10 kb) (Fig. 2). In these populations, Figure 4B sug-
gests that SNVs will not typically share read clouds, except in rare
cases where they happen to be located in nearby regions of the ge-
nome. We therefore used a heuristic approach to infer clusters of
perfectly linked SNVs (a form of multi-SNV haplotype) based on
similarities in their allele frequency trajectories (Methods). The in-
ferred haplotypes are indicated by the coloring scheme in Figure 3.

Temporal dynamics of haplotypes reveal cryptic phenotypic

differences and time-varying selection within species

We next investigated the role that natural selection plays in
driving the genetic changes we observed within species.
Although adaptive evolution is ubiquitous in microbial evolution

BA

C

Figure 4. High levels of linkage disequilibrium (LD) in many resident populations. (A) Schematic of read cloud sharing between two SNVs separated by
coordinate distance ℓ on the same reference contig. Three or fewer haplotypes are consistent with clonal evolution, whereas four haplotypes indicate a
possible recombination event. (B) Observed fraction of shared read clouds as a function of ℓ for SNVs in the six example species in Figure 3. (C )
Linkage disequilibrium between pairs of SNVs across a range of different species. The top panel shows the total number of linked SNV pairs (i.e., those
with significantly elevated levels of read cloud sharing) for species in Figure 2 with sufficient coverage (Methods). For each species, the three bars denote
SNV pairs with ℓ<200 bp, 200 bp<ℓ<2 kb, and ℓ>2 kb, respectively. SNVs are included only if the minor allele has frequency f>0.1. The bottom panel
shows the observed proportion of SNV pairs in the top panel that fall in each of the LD categories illustrated in panel A. Across species, only a small fraction of
SNV pairs provide evidence for recombination.
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experiments (Cvijovic ́ et al. 2018) and many pathogens (Didelot
et al. 2016; Lauring 2020), its influence on natural genetic varia-
tion in the human gut microbiota is less well understood. One
common model assumes that within-host dynamics are dominat-
ed by selection at higher levels of taxonomic organization (e.g.,
species, families, or functional guilds), whereas closely related
variants that survive this environmental filter are largely inter-
changeable. In this “conditionally neutral” scenario, short-term
changes in the genetic composition of a resident population pri-
marily occur through stochastic demographic processes like genet-
ic drift (Kimura 1983; Hubbell 2001) or genetic draft (Neher 2013).
Empirical support for this model is currently mixed: one recent
study in Bacteroides fragilis found signatures of nonneutral evolu-
tion (Zhao et al. 2019), whereas a second study in Escherichia coli
came to the opposite conclusion, potentially due to a smaller effec-
tive population size in E. coli (Ghalayini et al. 2018). At present, it is
not clear which of these scenarios will apply to the other species in
Figures 2 and 3, or how they generalize the stronger environmental
perturbations associated with antibiotic treatment. These sudden
environmental shifts could uncover cryptic phenotypic differenc-
es between previously coexisting strains, driving rapid shifts in the
frequencies of segregating genetic variants (Paaby and Rockman
2014).

High levels of genetic linkage make it difficult to distinguish
these scenarios using traditional population genetic approaches,
because selection and drift will typically act on extended haplo-
types rather than individual alleles. For example, the sweeping
SNV clusters we identified in Figure 3 contain many synonymous
variants (Fig. 5A–F), which are most likely hitchhiking alongside
causative “driver” mutations that are located in other linked re-
gions of the genome. These driver mutations may not even be vis-
ible in Figure 3 if they happen to arise from structural variants,
mobile elements, or other accessory genes that are difficult to

detect in our metagenomic pipeline (Jiang et al. 2019; Zhao et al.
2019; Yaffe and Relman 2020; Zlitni et al. 2020).

To overcome these limitations, we sought to develop a meth-
odology for distinguishing natural selection and demographic sto-
chasticity using the residual information encoded in the shapes of
the SNV trajectories in Figure 3.We first developed a statistical test
to determine whether the SNV clusters in Figure 3 were consistent
with the simplest neutral null model, with a constant but un-
known strength of genetic drift (Methods). This test leverages
the fact that the frequency changes produced by a constant rate
of genetic driftmust be statistically similar over time, so that a large
fluctuation in one time-window is unlikely to be followed by a
small change in another. Our observed trajectories often violate
this prediction, allowing us to reject the constant genetic drift mod-
el for four of the five species in Figure 3 (Supplemental Table S3).

A second possibility is that genetic drift is significantly elevat-
ed during antibiotic treatment, for example, due to a transient
population bottleneck. This could be a particularly plausible hy-
pothesis for the Alistipes finegoldii population in Figure 3A, where
the genetic shift coincided with a large reduction in the relative
abundance of that species. Although it is difficult to rule out sim-
ilar bottlenecks at unobserved time points for the other species in
Figure 3, we still observe significant departures from the constant
genetic drift model for these species even when the antibiotic
time points are excluded (Supplemental Table S3). Closer inspec-
tion of the frequency trajectories reveals the likely source of this
signal: many of the SNV clusters continue to change in frequency
but in the opposite direction, even after antibiotic treatment has
concluded. This behavior, which is recapitulated across the larger
set of species in Figure 2E, cannot be explained by a simple bottle-
neck during treatment. Instead, these data suggest the initial in-
creases and later reversals are most likely caused by time-varying
selection pressures that act on different haplotypes within these

populations, reflecting the complex en-
vironmental conditions experienced by
these species in vivo.

The high temporal resolution of the
SNV clusters allows us to estimate the
magnitudes of these temporally varying
selection pressures in different time win-
dows. For example, the frequency rever-
sals that occurred after treatment in
Figure 3 took place over∼30–40 d, imply-
ing a fitness difference about S∼10% per
day (Methods). The increases in frequen-
cy during and immediately after antibiot-
ics were even more rapid. In Eubacterium
eligens, the minority haplotype increased
from 7% to 90% in just 2 d, implying a
corresponding fitness difference of at
least S∼250% per day. The presence of
these large fitness differences is poten-
tially not surprising, given the strong en-
vironmental perturbations that are
presumably imposed by antibiotic treat-
ment. In this case, however, we found
that the large frequency shift in E. eligens
did not take place during the 2-wk course
of doxycycline but rather 3–5 d after
treatment had concluded. (For compari-
son, we note that serum concentrations
of doxycycline usually reach their peak

E F

BA C

D

Figure 5. Signatures of strain replacement and evolutionarymodification. (A–F ) Statistical properties of
temporally varying SNVs from the six example species in Figure 3. For each species, the bars on the left
show the relative proportion of SNVs with different protein-coding effects and allele prevalence across
other hosts in a larger cohort (Methods). Protein-coding effects are estimated from the codon degener-
acy at each site (4D= fourfold degenerate/synonymous, 1D=onefold degenerate/nonsynonymous).
Allele prevalences for SNVs not observed in other hosts are indicated by light red or blue shading. Pie
charts indicate the relative proportion of private marker SNVs for each species that are preserved or dis-
rupted throughout the sampling interval (Methods). Large fractions of disrupted marker SNVs indicate a
strain replacement event.
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value after ∼4 h, with a half-life of 12–24 h [Agwuh and
MacGowan2006]).We also found that the E. eligens population ex-
hibited a ∼20% increase in its replication origin peak-to-trough ra-
tio (PTR), a proxy for bacterial growth rate, during this same time
interval (Supplemental Fig. S13). This indicates that the large fit-
ness differences within this species were likely driven by a higher
growth rate of the sweeping haplotype, rather than an increased
death rate of the declining strain.

Statistics of sweeping SNVs reveal strain replacement,

evolutionary modification, and selection

on standing variation

After demonstrating that genetic changes occurwithin species and
that these changes are likely driven by selection on linked haplo-
types and not necessarily associated with changes in species abun-
dance, we next sought to investigate the origin of these within-
host sweeps. A key question is whether the temporally variable
SNVs arose within the host or its local environment (evolutionary
modification) or whether they reflect the invasion of pre-existing
strains that diverged for many generations before colonizing the
host (strain replacement). Following previous work (Garud et al.
2019), we distinguished between these two scenarios by examin-
ing three additional features of the SNV trajectories in Figure 3:
(1) the protein-coding impact of these mutations; (2) their preva-
lence across other hosts in a large reference panel; and (3) the re-
tention of private marker SNVs (i.e., high-frequency alleles that
are unique to the present host) (Supplemental Fig. S14; Methods).
Figure 5, A–F, illustrates these quantities for the six example species
in Figure 3, which were chosen to cover the range of different be-
haviors that we observed.

The Eubacterium eligenspopulation provides a prototypical ex-
ample of a strain replacement event. The sweeping haplotype in
this species contained more than 10,000 SNVs that were widely
distributed across the genome (Supplemental Data S1), consistent
with the typical genetic differences between E. eligens strains in dif-
ferent hosts (Schloissnig et al. 2013; Truong et al. 2017;Garud et al.
2019). Few privatemarker SNVswere retained from the initial time
point (Fig. 5D), which is again consistent with replacement by a
distantly related strain (Supplemental Fig. S14). Similar examples
of strain replacement have been observed in previous studies
(Yassour et al. 2016; Lloyd-Price et al. 2017; Truong et al. 2017;
Garud et al. 2019; Yaffe and Relman 2020), but our densely sam-
pled time course now provides additional information about the
dynamics of this process. In particular, the SNV trajectories in
Figure 3D show that the distantly related strainwas already present
at substantial frequencies (∼5%) long before its large fitness benefit
started to take effect. Figure 2D shows that this is also the case for
the four other putative replacement events in Figure 2. This indi-
cates that the replacement events we observed here were caused
by the sudden increase of previously colonizing strains, rather
than the contemporary invasion of new strains from outside the
host.

At the opposite extreme, the Phascolarctobacterium popula-
tion in Figure 3E provides a prototypical illustration of an evolu-
tionary modification event. In this case, a cluster of just six SNVs
(including five amino acid changes, all in noncontiguous genes
in the reference genome that are unlinked in our read clouds)
(Supplemental Data S1, S4) nearly swept to fixation during antibi-
otic treatment (f > 99.8%, S >30% per day), only to decline in fre-
quency later in the study. Unlike the replacement event above,
this sweep shared all 34 of the private marker SNVs from the dom-

inant strain at the initial time point (Figure 5E), suggesting that the
two strains recently descended from a common ancestor.
However, similar to this previous example, we again observe evi-
dence that the minority haplotype was already segregating at sub-
stantial frequencies (∼1%–10%) before treatment, a finding which
is recapitulated for several other nonreplacement examples in
Figure 2D. This suggests that frequency-dependent selection may
have initially driven these mutant lineages to intermediate fre-
quencies—and maintained them there—before antibiotics or oth-
er environmental changes (or subsequentmutations) caused them
to sweep through the rest of the population.

In addition to these extreme cases, we also observed a third
category of events that seem to bridge the divide between strain re-
placement and evolutionary modification. For example, in the
Alistipes finegoldii population in Figures 3A and 5A, a cluster of
∼80 SNVs swept to high frequency when the species recovered
from antibiotic treatment, potentially consistent with a popula-
tion bottleneck. Whereas the high rates of private marker SNVs
sharing (49/51) suggest that the sweeping haplotype is a modifica-
tion of the dominant strain from the initial time point, the large
fraction of synonymous mutations (dN/dS = 0.16), many of which
are shared across other hosts, is more consistent with a strain re-
placement event. Moreover, in contrast to the two examples
above, we found that the A. finegoldii SNVs fell into a smaller num-
ber of contiguous genes in the reference genome and were often
linked together in the same read clouds (Supplemental Data S1,
S4). These same SNVs are also frequently co-inherited in “haplo-
type blocks” among the other hosts in our larger reference panel
(Supplemental Fig. S15). Taken together, these independent lines
of evidence suggest that the A. finegoldii SNVs in Figure 3A were
most likely transferred onto their current genetic background
through recombination. Similar to the E. eligens and Phascolarcto-
bacterium examples above, the sweeping haplotype in A. finegoldii
was already segregating as aminor variant (f∼20%) before antibiot-
ic treatment, suggesting that the original recombination event
(and its initial rise to observable frequencies) predated the current
sampling period. In fact, the same cluster of SNVs can be observed
in a previously sequenced sample from the same subject that was
collected roughly 2 yr earlier (Supplemental Fig. S6; Kuleshov
et al. 2016), suggesting that the recombinant haplotype is at least
several years old.

The Bacteroides coprocola population provides another exam-
ple of this intermediate behavior (Figs. 3F, 5F). In this case, a cluster
of 37 SNVs (including reversions of 11 of the 161 private marker
SNVs) was already in the process of sweeping through the popula-
tion before antibiotic treatment began. However, the sweeping
mutations in this example are scattered across many noncontigu-
ous genes in the B. coprocola reference genome and are seldom ob-
served in other hosts (Supplemental Data S1), so recombinationno
longer provides a parsimonious explanation. The fraction of syn-
onymous mutations (dN/dS = 0.7) also lies somewhere between
the typical between-host values (dN/dS∼0.1) and within-host
hitchhiking (dN/dS≥1). This suggests that the lineages may have
coexisted with each other for a much longer period of time.

Discussion

The response of gut microbial communities to antibiotics plays a
crucial role in their susceptibility to pathogens (Buffie et al.
2015; Cameron and Sperandio 2015; Sassone-Corsi and Raffatellu
2015), the spread of antibiotic resistance genes (Hu et al. 2013;
Kintses et al. 2019), and their long-term stability (Dethlefsen and
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Relman 2011; Kamada et al. 2012; Faith et al. 2013). Numerous
studies have documented the resilience of these communities at
the taxonomic or pathway level (Jernberg et al. 2010; Dethlefsen
and Relman 2011; Keeney et al. 2014; Buffie et al. 2015; Yin
et al. 2015; Zaura et al. 2015; Raymond et al. 2016; Yassour et al.
2016; Palleja et al. 2018; Ng et al. 2019). Yet, the strain-level dy-
namics that give rise to this ecological robustness remain poorly
characterized.

In this study, we sought to characterize these within-species
dynamics by following the gut microbiome of a single individual
through a period of health, disease, and the oral administration
of doxycycline. We used linked read metagenomic sequencing to
track the dynamics of single nucleotide variants within 36 differ-
ent species and to compare these dynamics with the broader eco-
logical shifts at the species level. In contrast to previous
applications of linked-read sequencing, which have mostly fo-
cused on genome assembly (Bishara et al. 2018) or taxonomic as-
signment (Danko et al. 2019), we developed population genetic
approaches to quantify the fine-scale genetic changes that occur
in these populations over time.

Consistent with our expectations, we found that antibiotic
perturbations can lead to widespread shifts in the genetic compo-
sition of individual species, with a higher overall rate than ob-
served in healthy hosts (Ghalayini et al. 2018; Garud et al. 2019;
Zhao et al. 2019). However, these within-species changes were
rarely consistent with the traditional picture of extinction and
subsequent recolonization after treatment. Instead, we found
that the genetic responses varied widely across species, with
some resident populations acquiring thousands of consensus se-
quence differences and others acquiring only a handful. These ge-
netic changes were frequently observed in species without large
changes in relative abundance in the sampled time points, and
conversely, large abundance fluctuations were not always accom-
panied by widespread genetic changes. Furthermore, we found
that some of the largest fluctuations at both the species and
SNV levels occurred in the weeks after treatment had concluded.
Together, these findings suggest that the response to doxycycline
is not driven by discrete recolonization events but rather by the
subtler processes of strain-level competition and evolution within
the host.

At this population genetic level, our observations revealed
qualitative departures from the simplest models of neutral evolu-
tion or the spread of antibiotic resistance phenotypes via classic
selective sweeps. Instead, the observed genetic responses were
much more dynamic: we often observed partial genome-wide
sweeps containing multiple linked genetic variants, many of
which were previously segregating at substantial frequencies
(>1%) before the onset of treatment. While they rapidly increased
in frequency over daily or weekly timescales, few of these variants
ever fixed in their respective populations. Instead, we observed fre-
quent reversion of sweeps at the single base pair level, consistent
with temporally varying selection pressures and strong pleiotropic
tradeoffs. However, these reversions rarely ended in extinction and
more commonly stabilized close to their initial pretreatment fre-
quency. These dynamics suggest that the sweeping haplotypes
may have been stably maintained in their respective populations
over time, for example, due to metabolic or spatial niches. This
provides a potential explanation for the “oligo-colonization”
structure observed in a variety of within-host microbial popula-
tions (Truong et al. 2017; Yassour et al. 2018; Garud et al. 2019).
Our data show that similar dynamics can occur for mixtures of dis-
tantly related strains, as well as for haplotypes that likely evolved

within the host. This suggests that ongoing ecological diversifica-
tion could play an important role in shaping the genetic structure
of resident populations, echoing a previous finding in Bacteroides
fragilis (Zhao et al. 2019).

There are several important limitations to our study. First,
because we have focused primarily on single nucleotide variants
in well-behaved regions of reference genomes, we are likely miss-
ing many of the true targets of selection, particularly in the case
of antibiotic resistance where mobile elements (Partridge and
Tsafnat 2018; Zlitni et al. 2020) and other structural rearrange-
ments (Jiang et al. 2019) are known to play an important role.
This makes it difficult to know what fraction of genetic changes
are a direct response to antibiotics, as opposed to indirect respons-
es produced by fluctuations in the abundances of other species. It
is even possible that nearly all of the mutations that we observed
are simply passenger mutations that are hitchhiking alongside
the true causative variants. The situation could potentially be im-
provedby combining our readmapping approachwith de novo ge-
nome assembly, similar to previous studies (Quince et al. 2017;
Crits-Christoph et al. 2020; Yaffe and Relman 2020), particularly
if linked reads are used during the assembly step (Bishara et al.
2018). However, given the high levels of genetic linkage we in-
ferred, it would be difficult to pinpoint individual selection pres-
sures even with an exhaustive list of mutations, because one can
only observe the net effects of selection across entire haplotypes.
Our current reference-based approach is effectively using this lim-
itation to our advantage, by relying on the dynamics of linked pas-
sengers to provide information about the net selection pressures
on their corresponding haplotypes.

Our analysis also revealed potential limitations of linked-read
sequencing for studying strain-level dynamics in the gut micro-
biota. Although the longer effective read lengths allowed us to re-
solve genetic linkage in species or genomic regionswithhigh levels
of intra-host diversity, we also found that temporal dynamics fre-
quently occurred among closely related haplotypes (≪1 SNV per
10 kb) that are difficult to capture with typical ∼10-kb frag-
ments. This length scale also poses challenges for linking shared
or accessory regions with their corresponding species “backbone,”
because transferred DNA segments and other structural variants
are expected to have similar length scales. This suggests that alter-
native approaches like chromatin conformation capture (Hi-C)
(Kent et al. 2020) or linked-read sequencing of single cells (Lan
et al. 2017) might offer advantages over traditional long-read se-
quencing for resolving the dynamics of longer range forms of ge-
netic linkage.

In addition to thesemethodological constraints, a second key
limitation is our focus on a single host microbiome. Although the
concentrated resources allowed us to observe a variety of different
responses across individual species in the same community, fur-
ther work will be required to establish the prevalence of these dif-
ferent patterns across larger cohorts and among different classes of
antibiotics. Our high-resolution time course provides a valuable
set of templates that can inform future classification efforts in larg-
er but lower resolution studies.

In summary, by tracking a host microbiome through periods
of disease, antibiotic treatment, and recovery, we uncovered
new evidence that the ecological resilience of microbial communi-
ties might extend all the way down to the genetic level.
Understanding how this resilience arises from the complex inter-
play between host genetic, epigenetic, and lifestyle factors, as
well its implications for broader evolution of the microbiome, re-
mains an exciting avenue for future work.
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Methods

Sample collection and sequencing

Stool samples were collected from a 62-yr-old male over a 5-mo
period and stored on dry ice immediately after collection (Supple-
mental Table S1; Supplemental Materials, Section 1). Approxi-
mately ∼200 mg of stool were aliquoted from each sample for
HMW DNA extraction. HMW DNA was extracted using QIAamp
DNA Stool mini kit (Qiagen) and quantified using a Qubit assay
(Thermo Fisher Scientific) (Supplemental Materials, Section 2;
Supplemental Data S5, S6; Supplemental Table S2). Barcoded se-
quencing libraries were prepared using the 10xGenomics Chromi-
um platform (10x Genomics) and were sequenced using an
Illumina HiSeq 4000 machine (Illumina) with a read length of
2 ×151 bp and a depth of 30–500 million reads per sample. After
sequencing, barcode strings were extracted from each read, and
reads were subsequently trimmed to remove low-quality sequence
in the first 20–25 bp (Supplemental Materials, Section 3). Reads
were assigned to read clouds using a lightweight error correction
algorithm, which merges barcode strings that are a single edit
away from the inferred read cloud (Supplemental Materials, Sec-
tion 4).

Estimating species abundances

Species abundances were estimated using the MIDAS software
package (Nayfach et al. 2016), which maps short sequencing
reads against a database of universal single-copy marker genes
from ∼6000 bacterial species (Supplemental Materials, Section
5.1). The relative abundance of each species is estimated from
the relative coverage of its associated marker genes. The reference
distributions in Figure 2 were obtained by applying this same ap-
proach to a panel of ∼900 healthy human fecal metagenomes
collated in our previous study (Garud et al. 2019). Absolute abun-
dances were estimated for a subset of the study time points using
microbial DNA quantification (total DNA per mass of sample)
(Contijoch et al. 2019). The absolute abundance of each species
was estimated by scaling its relative abundance by the total con-
centration of extracted DNA (Supplemental Fig. S2), which serves
as a proxy for the total microbiome density in that sample (Reyes
et al. 2013).

Empirical estimates of read cloud impurity

The read cloud impurity estimates in Figure 1Ewere obtained using
a custom version of the MIDAS software package (Nayfach et al.
2016), whichwas extended to track the read cloud labels associated
with each short sequencing read (Supplemental Materials, Section
5). Short sequencing reads weremapped against a curated database
of gene families (or “pan-genome”) constructed from the subset of
species that were detected above aminimumabundance threshold
in at least one time point (Supplemental Materials, Sections 5.1, 5.
2). For each read cloud μ, we calculated the total number of associ-
ated short reads (rμ,s) that mapped to each species s in the pan-ge-
nome database. The effective number of species (Sμ) was
approximated by the root mean squared estimator,
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where θ(z) is the Heaviside step function (Supplemental Materials,
Section 7.1). The curves in Figure 1Ewere obtainedby binning read
clouds by their total coverage and plotting the median value of Sμ
for each bin.

Identifying SNVs within species

Single nucleotide variants were identified using a custom version
of the pipeline developed in our previous study (Garud et al.
2019), which is based on the MIDAS software package (Nayfach
et al. 2016). Short sequencing reads were mapped against a curat-
ed panel of reference genomes constructed from the subset of spe-
cies that were detected above a minimum abundance threshold
in at least one time point (Supplemental Materials, Sections 5.1,
5.3). After applying a sequence of coverage filters, single nucleo-
tide variants were identified from the read pileups at all remain-
ing protein coding sites (Supplemental Materials, Sections 5.2,
5.3). The reference allele for each SNV was chosen to coincide
with the consensus allele observed within a larger human cohort
that we analyzed in our previous study (Garud et al. 2019). This
cohort was also used to estimate the prevalence of each allele
within the broader human population, which we defined as the
fraction of metagenomic samples in which the target allele was
present in a majority of the reads (Supplemental Materials,
Section 5.3.1). Following repolarization, SNVs were retained for
downstream analysis if the alternate allele was present with at
least 10% frequency in at least one time point. Note that this def-
inition also includes sites that are fixed within the focal host but
where the host-wide consensus is a minority allele within the
larger human cohort; these sites are important for the private
marker SNV analysis described below. The detected SNVs were
used to estimate the overall levels of genetic diversity in Figure
2A, defined as the fraction of sites in the “core genome”
(Supplemental Materials, Section 5.2) in which the alternate al-
lele was present at an intermediate frequency (0.2 < f < 0.8)
(Supplemental Materials, Section 5.3.1).

Allele frequency trajectories were estimated for each SNV
based on the number of unique read clouds that supported each al-
lele. We developed an extension of the MIDAS software package
(Nayfach et al. 2016) to track the read cloud labels associated
with a subset of the SNVs identified above, leveraging the addi-
tional degeneracy within a read cloud to automatically correct
for some sequencing and PCR errors (Supplemental Materials,
Section 5.4). After applying a second round of coverage filters,
we estimated the allele frequency at site i and time point t using
the plug-in estimator f̂i,t = Ai,t/Di,t , where Ai,t is the number of
unique read clouds supporting the alternate allele, and Di,t is the
total number of unique read clouds that mapped to that site
(Supplemental Materials, Section 5.5).

Identifying SNV differences over time

We used the allele frequency trajectories above to identify subsets
of SNVs that experienced large changes in frequency between
pairs of sequenced time points (Supplemental Materials, Section
5.5.1). We refer to these as “SNV differences,” because they indi-
cate a full or partial “sweep” of the allele through the resident pop-
ulation of interest. For each ordered pair of time points, we first
identified all SNVs whose minor allele frequency transitioned
from <20% frequency in the initial time point to >70% frequency
in the latter time point. We then compared the observed number
of SNVs that satisfied this criterion with the expected number un-
der a null model of binomial sampling noise, which yields an as-
sociated P-value and false discovery rate (FDR) for the ensemble of
putative SNV differences between that pair of time points. All
SNVs in the ensemble were declared to be SNV differences if the
P-values and false discovery rates exceeded a desired significance
threshold (P<0.05 and FDR<0.1). Additional details about the
detection algorithm are provided in Supplemental Materials,
Section 5.5.1.
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Linking SNV differences with their inferred species backbone

We verified that SNV differences were linked to their inferred spe-
cies backbone by examining patterns of read cloud sharing with
the other reference genomes in our curated panel above
(Supplemental Fig. S9). For each identified SNV difference in
Figure 2C, we created a list of the core genes in each species that
shared read clouds with either of the two alleles, and we calculated
the fraction of frequently shared genes that originated from the
correct species (Supplemental Materials, Section 7.5). We consid-
ered there to be a positive confirmation if, for both alleles, more
than two thirds of the frequently shared genes originated from
the correct species. Conversely, we considered there to be a nega-
tive confirmation if either of the alleles had more than a third of
their frequently shared genes originating from a different species.

Quantifying genetic linkage between pairs of SNVs

We quantified genetic linkage between pairs of SNVs based on the
distribution of shared read clouds among their four combinations
of alleles (or “haplotypes”). This task is complicated by the high
levels of read cloud impurity in Figure 1E: because a typical read
cloud contains several fragments, individual examples of read
cloud sharing do not provide conclusive evidence for genetic link-
age on their own. We therefore adopted a statistical approach,
which aims to quantify elevated rates of read cloud sharing above
those expected from read cloud impurities alone (Supplemental
Materials, Sections 7.3, 7.4). We first compiled a list of SNV pairs
within each species with at least 12 shared read clouds across all
study time points. We then compared the observed number of
shared read clouds for each pair with a nullmodel of read cloud im-
purity, inwhich the probability that SNVs i and j share read cloud μ
by chance is given by

Pi,j,m = pipjF(Dm) (2)

where pi and pj are related to the relative abundances of the SNVs at
that time point, and F(Dm) is a function that depends on the total
number of reads that were sequenced from that read cloud
(Supplemental Materials, Section 7.3). We estimated these param-
eters empirically using the observed rates of read cloud sharing be-
tween species, under the assumption that the vast majority of this
sharing was caused by read cloud impurities (Supplemental Fig.
S16). We then used this model to obtain an associated P-value
for each pair of SNVs above, which quantifies how their observed
levels of barcode sharing differ from those expected under read
cloud impurities alone (Supplemental Materials, Section 7.4.1).
The top panel in Figure 4C shows the total number of SNV pairs
in each species whose Bonferroni-corrected P-values were <0.1.
For each of these significantly linked SNV pairs, we then repeated
this calculation at the allelic level to quantify read cloud sharing
among the four possible combinations of alleles for each SNV
pair (Supplemental Materials, Section 7.4.2). Deviations from the
read cloud impurity null model were used to classify SNVs into
the three LD categories in Figure 4. Further details on the statistical
model and genetic linkage classifications are provided in
Supplemental Materials, Sections 7.3 and 7.4.

Inferring clusters of linked SNVs from correlated allele frequency

trajectories

The SNV clusters in Figure 3 were inferred using a heuristic ap-
proach that leverages correlations in the underlying allele frequen-
cy trajectories (Supplemental Materials, Section 8). In contrast to
previous strain detection methods that aim to resolve the full set
of haplotypes within a population (O’Brien et al. 2014; Luo et al.
2015; Quince et al. 2017; Smillie et al. 2018), we employed a light-

weight approach that only identifies clusters of SNVs that are likely
to be perfectly linked to each other, while also accounting for un-
certainty in their relative polarization. For each pair of SNVs i and j,
we defined a pair of dissimilarity values,

d+ij ;
1
T

∑T
t=1

2(Di,t +D j,t )(f̂i,t − f̂+j,t )
2

(f̂i,t + f̂+j,t )(1− f̂i,t + 1− f̂+j,t )
, (3)

where f̂+j,t ; 0.5+ (f̂ j,t − 0.5) denotes the two possible polariza-

tions of SNV j. We performed UPGMA clustering on the dissimilar-
ity matrix dij = min {d+ij , d

−
ij }, and we used a maximum distance

criterion with an empirically derived threshold (d
∗
≈3.5)

(Supplemental Fig. S18) to identify flat SNV clusters from the re-
sulting UPGMA dendrogram. The relative values of d+ij and d−ij
were used to determine the relative polarizations of the SNVs in
each cluster, and an average frequency trajectory was estimated
for the cluster by summing the ancestral and derived read counts
for each of these repolarized SNVs. Further details of the clustering
algorithm, as well as comparisons to other strain detection meth-
ods, are described in Supplemental Materials, Section 8, and
Supplemental Figure S17.

Inferring natural selection and genetic drift from haplotype

frequency trajectories

We sought to quantify the relative contributions of natural selec-
tion and genetic drift on the SNV differences in Figure 3 by com-
paring the observed trajectories to a population genetic model
for the underlying haplotype frequencies,

∂f
∂t

= se(t) · f (1− f )+
����������
f (1− f )
Ne(t)

√
h(t) , (4)

where η(τ) is a Brownian noise term (Gardiner 1985), and se (τ) and
Ne (τ) are effective parameters that represent the aggregate effects of
natural selection and genetic drift, respectively (Supplemental
Materials, Section 9). The observed frequencies (f̂i,t = Ai,t/Di,t )
are generated from this underlying trajectory via an additional
sampling step,

Ai,t � Binomial(Di,t , f (tt )), (5)

which models the finite sampling noise that occurs during se-
quencing. Equations (4) and (5) constitute a standard hidden
Markov model (HMM) for modeling genetic time series (Bollback
et al. 2008; Feder et al. 2014; Steinrücken et al. 2014; Schraiber
et al. 2016). However, this model differs from previous approaches
in that we explicitly allow for time-varying selection coefficients,
which are necessary to account for potential environmental het-
erogeneity (e.g., due to antibiotics) or linkage with other selected
mutations.

In the absence of genetic drift [Ne (τ) · se (τ) · f(τ)(1− f (τ))≫1],
these time-varying selection pressures can be inferred from the
plug-in estimator,

se(tt ) = 1
tt − tt−1

log
f̂i,t

1− f̂i,t
· 1− f̂i,t−1

f̂i,t−1

( )
, (6)

which by definition perfectly reproduces the observed frequency
trajectory. We therefore asked whether this same trajectory could
have plausibly emerged fromgenetic drift and/or sequencingnoise
alone.

We first developed a statistical test to determine whether the
observed mutation trajectory was consistent with the simplest
neutral null model, with a constant but unknown strength of ge-
netic drift (Supplemental Materials, Section 9). Briefly, we first
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used dynamic programming to calculate the likelihood of the ob-
served trajectory, Λ(Ne), across a grid of Ne values to infer the max-
imum likelihood estimator, N̂e = argmaxL(Ne). We then used the
maximum likelihood L(N̂e) as a test statistic and performed para-
metric bootstrapping using simulated trajectories to calculate an
associated P-value for the observed trajectory under the null hy-
pothesis. This test was performed for each of the inferred SNV clus-
ters in Figure 3, using the average frequency trajectory inferred via
the clustering algorithm above (Supplemental Table S3). We also
performed a generalization of this test with a variable Ne (τ), in
whichwe inferred separateNe values for the segments of the trajec-
tory that occurred before, during, and after antibiotics. This al-
lowed us to simulate the effects of a simple bottleneck during
treatment. Additional details and mathematical definitions are
provided in Supplemental Materials, Section 9.

Quantifying retention of private marker SNVs over time

Following previous work (Nayfach et al. 2016; Asnicar et al. 2017;
Costea et al. 2017; Korpela et al. 2018; Garud et al. 2019), we
sought to distinguish instances of strain replacement and evolu-
tionary modification by examining the retention of so-called “pri-
vate marker SNVs” before, during, and after the sweep
(Supplemental Fig. S14; Supplemental Materials, Section 5.5.2).
We used a generalization of the approachwe developed in our pre-
vious study (Garud et al. 2019) for analyzing private marker SNV
sharing between pairs of sequenced time points. We considered
a SNV to be “private” if the prevalence of its alternate or reference
allele (as defined in Supplemental Materials, Section 5.3.3) was
equal to zero.We then defined the set of “disrupted privatemarker
SNVs” to be the subset of temporally variable SNVs whose refer-
ence alleles (as shown in Fig. 3) are private; the definition of a tem-
porally variable SNV implies that these private alleles must lose
their majority status at some point during the time course.
Conversely, we defined the set of “preserved private marker
SNVs” to be the subset of private SNVs in which the private allele
remained at high frequency in a large fraction of the time points
(specifically, >80% frequency in at least 80% of the time points,
and no lower than 50% frequency in any one time point). These
definitions were used to construct the pie charts in Figure 5.
Additional details and motivation for this approach are provided
in Supplemental Materials, Section 5.5.2.

Software availability

Source code for the sequencing pipeline, downstream analyses,
and figure generation are available at GitHub (https://github
.com/bgoodlab/highres_microbiome_timecourse) and as
Supplemental Code S1.

Data access

The raw sequencing data generated in this study have been submit-
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