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Abstract

Replicable signals from different yet conceptually related studies provide stronger scientific

evidence and more powerful inference. We introduce STAREG, a statistical method for rep-

licability analysis of high throughput experiments, and apply it to analyze spatial transcrip-

tomic studies. STAREG uses summary statistics from multiple studies of high throughput

experiments and models the the joint distribution of p-values accounting for the heterogene-

ity of different studies. It effectively controls the false discovery rate (FDR) and has higher

power by information borrowing. Moreover, it provides different rankings of important genes.

With the EM algorithm in combination with pool-adjacent-violator-algorithm (PAVA),

STAREG is scalable to datasets with millions of genes without any tuning parameters. Ana-

lyzing two pairs of spatially resolved transcriptomic datasets, we are able to make biological

discoveries that otherwise cannot be obtained by using existing methods.

Author summary

Irreplicable research wastes time, money, and/or resources. Approximately $28 billion is

estimated to be spent on preclinical research that cannot be replicated every year in the

United States alone. Possible causes of irreplicable research may include experimental

design, laboratory practices, and data analysis. We focus on data analysis. The past two

decades have witnessed the expansion and increased availability of genomic data from

high-throughput experiments. Due to privacy concerns or logistic reasons, raw data can

be difficult to access but summary data such as p-values are readily available. We intro-

duce STAREG, which jointly analyzes p-values from multiple genomic datasets that target

the same scientific question with different populations or different technologies. This

allows us to have more convincing and robust findings. STAREG is computationally scal-

able with solid statistical analysis. Moreover, it is versatile, platform-independent, and

only requires p-values as input. By analyzing data sets from spatially resolved
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transcriptomic studies, we make biological discoveries that otherwise cannot be obtained

with existing methods.

Introduction

Replicability is a cornerstone of modern scientific research. Consistent results from different

studies with different data provide more robust scientific evidence. In addition, pooling infer-

ences made under different yet conceptually related conditions enables researchers to gain sta-

tistical power. Replicability has attracted considerable attention, scrutiny, and debate in the

popular press and scientific community. An analysis of past studies indicates that the cumula-

tive prevalence of irreplaceable pre-clinical research exceeds 50% [1]. Approximately $28 bil-

lion is spent annually on preclinical research that is not replicable in the United States alone

[2]. Possible causes of irreplicability may range from study design, biological reagents and ref-

erence materials, laboratory protocols, and data analysis, among others. We focus on data

analysis and study conceptual replicability where consistent results are obtained using different

processes and populations that target the same scientific question with genomic data from

high throughput experiments.

With hundreds of thousands of genes from high throughput experiments of multiple stud-

ies, an acute problem is multiple comparisons. To identify statistically replicable significant

associations, an ad hoc approach is first to compute p-values from each study, then apply a

multiple comparison procedure, such as the [3] (BH) false discovery rate (FDR) control proce-

dure, separately for each study, and finally declare replicable genes as the intersection of signif-

icant genes from different studies. This approach does not control the FDR and has low

power, as it does not borrow information from different studies. As a conservative alternative,

researchers may use the maximum of p-values from different studies for each gene and imple-

ment a multiple testing procedure to claim replicability [4]. This can lose substantial power, as

demonstrated in our simulation studies and data analysis. An improvement in using the maxi-

mum of p-values was recently developed in [5] and [6]. For high-throughput experiments, [7]

developed the irreproducible discovery rate to measure replicability, and [8] proposed a non-

parametric approach for replicability assessment. Both methods impose the strong modeling

assumption that genes from two studies are either both significant or non-significant. A Bayes-

ian method incorporating heterogeneity of different studies was proposed in [9], where a tun-

ing parameter has to be selected. In addition, [10] used a cross-fitting idea to reduce the

number of multiple comparisons and borrow information from two studies. [11] proposed an

empirical Bayesian method where the density function of p-values under non-null was mod-

eled parameterically. Recently, [12] proposed criteria for replicability assessment, and a survey

on this topic can be found in [13].

In this paper, we propose a robust and powerful approach for replicability analysis of geno-

mic data from high throughput experiments. We apply it to the spatial transcriptomic analysis

of replicable expressed genes (STAREG) from two spatially resolved transcriptomic studies.

Spatially resolved transcriptomic (SRT) studies profile high throughput gene expression while

preserving spatial location information of cells in tissues or cell cultures [14–17]. This addi-

tional dimension of spatial information brings new perspectives on the cellular transcriptome,

allowing researchers to uncover complex cellular and sub-cellular architecture in heteroge-

neous tissues, which provides crucial insights into complex biological processes [16]. In SRT

studies, genes that show spatial expression variations across spatial locations on a tissue section

are known as spatially variable genes (SVGs). Detecting SVGs is an important first step in
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characterizing the spatial transcriptomic landscapes of complex tissues [18]. Various methods

have been developed to detect SVGs such as SpatialDE [19], SPARK [20], Giotto [21], and

SPARK-X [22], among others. A comprehensive evaluation of different SVG detection meth-

ods can be found in [23]. We use spatial transcriptomic data from two independent yet con-

ceptually highly related samples to illustrate STAREG and remark that STAREG is general and

not limited to spatial transcriptomic studies. For instance, when analyzing olfactory bulb data

from two mice, a true SVG should exhibit spatial patterns in both mice though the spatial pat-

terns and tissue sections can be different.

Based on the hidden state of whether a gene is an SVG or not, we extend the two-group

model to a four-group model [24–26] to account for the heterogeneity of different studies. A

gene is a replicable SVG if it is significant in both studies and the null hypothesis is composite,

consisting of three different states. We do not need the two SRT studies to have the same align-

ment, as rotations or normalizations may distort crucial biological information. In addition,

we estimate the p-value density functions under the non-null non-parametrically and differ-

ently for different studies to account for the heterogeneity of signal strengths and/or sample

sizes of different studies. We use the local false discovery rate (Lfdr), the posterior probability

of being null given the data, as the test statistic [24]. Lfdr combines the information in null and

non-null hypotheses and thus provides different rankings of importance compared to p-value-

based methods, such as the BH procedure, which is obtained only under the null hypothesis.

Moreover, our method enumerates different states in the composite null and has good power.

A step-up procedure is used to obtain an asymptotic FDR control [27]. By borrowing informa-

tion across genes and different studies, STAREG is more powerful at detecting replicable

SVGs while controlling the FDR. By combining EM algorithm and pool-adjacent-violator-

algorithm (PAVA), STAREG is scalable to datasets with tens of thousands of genes measured

on tens of thousands of spatial spots without any tuning parameters [28–30]. We use STAREG

to analyze two pairs of SRT datasets to detect replicable SVGs. The first pair are data from the

mouse olfactory bulb (MOB) measured in two mice with ST technology [14]. The second pair

are mouse cerebellum (MC) data measured with Slide-seq technology [15] and Slide-seqV2

technology [17]. We show that STAREG uncovers important replicable biological discoveries

that cannot be made otherwise by existing methods.

Results

Method overview

Suppose we have two datasets obtained by measuring the spatial expression patterns of m
genes under distinct cellular environments with different technologies. We describe the work-

flow of STAREG for replicability analysis of SVG detection from two SRT studies. A schematic

of STAREG is shown in Fig 1. For each SRT dataset, we test m hypotheses simultaneously,

where the null hypothesis for ith gene states that it is not a spatially variable gene, and the non-

null hypothesis states that it is a spatially variable gene. We require p-values to follow standard

uniform distribution under the null for both studies. Any statistical methods that produce

well-calibrated p-values can be used in this step.

STAREG uses paired p-values (p1i, p2i), i = 1, . . ., m as input to the replicability analysis. Let

θji denote the hidden state of ith hypothesis in study j (j = 1, 2), where θji = 1 indicates ith gene

is significant in study j, and θji = 0 otherwise. Write the joint hidden states across two studies

as si 2 {(0, 0), (0, 1), (1, 0), (1, 1)} with prior probabilities P(si = (k, l)) = ξkl, where k, l = 0, 1

and ∑k,l ξkl = 1. Our ith null hypothesis for replicability of SVG in two studies is Hi0 : si 2 {(0,

0), (0, 1), (1, 0)}, i = 1, . . ., m. We use a four-group model for the joint distribution of (pi1, pi2),

i = 1, . . ., m, where the distribution of p-values under the null is assumed to be standard
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uniform for both studies and p-value distributions under the non-null are estimated non-para-

metrically and can be different in two SRT studies to accommodate heterogeneity. For ith
gene, we use Lfdr as our test statistic, which is defined as the posterior probability of Hi0 given

(pi1, pi2), i = 1, . . ., m. We use the EM algorithm in combination with PAVA to estimate

unknown parameters (ξ00, ξ01, ξ10, ξ11) and p-value distributions under the non-null for study

1 and study 2 non-parametrically. Denote estimated Lfdr as dLfdri; i ¼ 1; . . . ;m: Small Lfdr

indicates strong evidence against the null. The rejection region can be written as

di ¼ f
dLfdri � lg. We implement a step-up procedure based on dLfdri; i ¼ 1; . . . ;m to identify

replicable SVGs from the two SRT studies [27]. More details of STAREG can be found in the

Methods Section and Section A in S1 Appendix.

Simulation studies

We performed simulation studies to evaluate FDR control and power of STAREG. FDR is

defined as the expectation of the number of false rejections over the total number of rejections.

Power refers to the true positive rate, which is the expectation of the number of replicable find-

ings over the total number of non-null hypotheses. In each simulation, we used pre-specified

ξ00, ξ01, ξ10 and ξ11 to generate hidden states (θ1i, θ2i), i = 1, . . ., m, where P(θ1 = k, θ2 = l) = ξkl,
k, l = 0, 1, for m genes from multinomial distribution.

Simulations based on normal distributions. First, we performed numerical studies

based on normal distributions and z-statistics to evaluate FDR control and power of STAREG.

Denote N(μ, σ2) a normal distribution with mean μ and variance σ2. For study j, we indepen-

dently generated summary statistics from Xji � Nð0; s2
j Þ if θji = 0, and from Xji � Nðmj; s

2
j Þ if

θji = 1, where μj> 0. One-sided p-value for each gene was calculated by pji = 1 −F(Zji), j = 1, 2;

i = 1, . . ., m, where Zji = Xji/σj denotes the Z-statistic for the ith gene in study j and F(�) is the

cumulative distribution function of standard normal distribution N(0, 1).

Set m = 10, 000, ξ11 = 0.05 and let ξ01 = ξ10 take values from 0.05 to 0.2. Corresponding ξ00

can be calculated by ξ00 = 1 − ξ01 − ξ10 − ξ11. At a target FDR level of 0.05, FDR and power of

different methods were calculated from 100 runs in each setting. Fig 2A and 2B show the

empirical FDR and power over a range of values for ξ01 under different non-null settings,

Fig 1. Schematic of STAREG for identifying replicable SVGs from two SRT studies.

https://doi.org/10.1371/journal.pgen.1011423.g001
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respectively. We see that ad hoc BH failed to control FDR when the inconsistency between two

studies is relatively large (e.g., ξ01 = ξ10 > 0.15). MaxP was overly conservative in all settings.

MaRR, radjust and JUMP showed decent power while maintaining FDR control. STAREG

properly controlled FDR in all settings and had the highest power at the same nominal FDR

level. At target FDR levels from 0 to 1, we plot the power of different methods with the corre-

sponding empirical FDR under the setting of ξ00 = 0.9, ξ01 = ξ10 = 0.025 and ξ11 = 0.05 (Fig

3A). Moreover, Fig 3B presents the receiver operator characteristic (ROC) curves (with false

positive rate as the horizontal axis and true positive rate as the vertical axis) and corresponding

area under curve (AUC) values of different methods from one run. The false positive rate is

calculated as the number of false discoveries divided by the total number of true nulls and the

true positive rate is equivalent to the power. We observe that STAREG showed higher power

than competing methods across all settings.

We evaluated the computational time of STAREG in simulation studies with ξ00 = 0.9, ξ01 =

ξ10 = 0.025, ξ11 = 0.05, μ1 = μ2 = 2 and σ1 = σ2 = 1. Table 1 summarizes the computational time

of different methods for different numbers of genes. All methods are implemented in R, in

which we use Rcpp to speed up the computation. Computations were carried out in an i7-

9750H 2.6GHz CPU with 64.0 GB RAM laptop. We observe that all methods are quick to com-

pute. STAREG takes less time than MaRR and longer time than the other methods, though

such differences can be ignored in practical data analysis.

Realistic simulations based on SRTsim. We next performed realistic simulations by gen-

erating spatial transcriptomic data from SRTsim [31]. SRTsim maintains various expression

characteristics of SRT data and preserves spatial patterns. We separately generated gene

expression count data for two studies using SRTsim based on simulated (θ1i, θ2i), i = 1, . . ., m.

We generated 384 and 486 spatial location coordinates based on circular tissue shapes by ran-

dom sampling for the two studies, respectively. Gene count data were generated by the zero-

inflated Poisson model embedded in SRTsim. The dispersion, zero-proportion, and mean

parameters were set to 0.2, 0.01, and 2, respectively. The spatial spots for each study were

divided into two spatial domains. For non-SVGs, the fold change is set to 1 across all spots; for

Fig 2. Performance comparisons of different methods in simulation studies based on normal distributions with

different ξ01. Left: μ1 = μ2 = 2, σ1 = σ2 = 1. Middle: μ1 = 2, μ2 = 2.5, σ1 = σ2 = 1. Right: μ1 = μ2 = 2, σ1 = 1, σ2 = 0.5. All

simulations were conducted under the setting of m = 10, 000, ξ11 = 0.05 and ξ01 = ξ10. The target FDR level is 0.05

represented by horizontal dashed lines in (A), and the results were calculated over 100 runs. We do not present the

power of ad hoc BH in (B) as it fails to control FDR.

https://doi.org/10.1371/journal.pgen.1011423.g002
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SVGs, the fold change is set to 1 in the red domain and 3 in the blue domain as in Fig 4. After

obtaining the gene expression count matrices for two studies, we applied SPARK-X [22] to

produce paired p-values as inputs of the replicability analysis.

We set m = 10, 000, ξ11 = 0.05 and ξ01 = ξ10 across all simulations, such that with a specified

ξ00, we have ξ01 = ξ10 = (1 − ξ00 − ξ11)/2. We varied ξ00 2 {0.65, 0.75, 0.85} to evaluate the per-

formance of different methods. For each setting, the empirical FDR and power of different

methods are calculated based on 100 simulated datasets. Fig 4 shows the empirical FDR and

power with nominal FDR levels ranging from 0.01 to 0.2. We observe that ad hoc BH fails to

control the FDR when the two studies are relatively heterogeneous (e.g., ξ00 = 0.65), whereas

MaRR was overly conservative. MaxP was conservative across all settings. JUMP and radjust

showed decent power while maintaining FDR control. STAREG properly controlled FDR

across all settings and had the highest power at the same nominal FDR levels.

Simulation studies evaluating the robustness of our method to dependence among genes

and one additional realistic simulation based on parameters inferred from MOB data [14] can

be found in the Section C in S1 Appendix.

Fig 3. Performance comparisons of different methods in simulation studies based on normal distributions with

different levels of nominal FDR. Left: μ1 = μ2 = 2, σ1 = σ2 = 1. Middle: μ1 = 2, μ2 = 2.5, σ1 = σ2 = 1. Right: μ1 = μ2 = 2,

σ1 = 1, σ2 = 0.5. All simulations were performed under the setting of m = 10, 000, ξ00 = 0.9, ξ01 = ξ10 = 0.025 and ξ11 =

0.05. The Receiver Operating Characteristic (ROC) curves and corresponding Area Under Curve (AUC) values in (B)

were obtained from one replication. The diagonal dashed line with slope 1 is used as a reference.

https://doi.org/10.1371/journal.pgen.1011423.g003

Table 1. Computational time (in seconds) for replicability analysis in simulation studies based on normal distributions with different numbers of genes.

Method

# of genes 5, 000 10, 000 20, 000 5, 0000 100, 000

Ad hoc BH 0.0040 0.0052 0.0056 0.0100 0.0160

MaxP 0.0104 0.0181 0.0367 0.0921 0.1577

JUMP 0.0183 0.0474 0.0515 0.1332 0.3089

MaRR 0.6931 3.3189 8.5864 47.077 173.56

radjust 0.0103 0.0098 0.0107 0.0154 0.0258

STAREG 0.0402 0.0584 0.0705 0.2569 0.4209

https://doi.org/10.1371/journal.pgen.1011423.t001
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Data analysis

Analyzing mouse olfactory bulb data. The datasets contain two replicates of mouse

olfactory bulb data [14] published on the Spatial Research Website (https://www.

spatialresearch.org/). The Replicate 1 data (file “MOB Replicate 1”) consist of 16, 573 genes on

265 spots, and the Replicate 8 data (file “MOB Replicate 8”) contain 15, 288 genes on 234

spots. For each dataset, we filtered out genes that are expressed in less than 10% of the spatial

locations and selected spatial locations with at least ten total read counts, resulting in 10, 373

genes on 265 spots in Replicate 1 dataset and 9, 671 genes on 232 spots in Replicate 8 dataset.

We applied SPARK [20] separately on the two datasets to get two sequences of p-values. We

next took 9, 329 pairs of p-values of common genes in both studies as input for replicability

analysis. We also conducted analysis of the MOB data based on p-values from SPARK-X [22]

in Section D.1 in S1 Appendix as a comparison.

Fig 4. Empirical FDR and power of different methods in realistic simulations based on SRTsim [31]. Each column corresponds to a different value of

ξ00 (A: ξ00 = 0.65; B: ξ00 = 0.75; C: ξ00 = 0.85.) Simulations were conducted under the setting of m = 10, 000, ξ11 = 0.05 and ξ01 = ξ10. The nominal FDR

level ranges from 0.01 to 0.2, and the results were calculated over 100 replications.

https://doi.org/10.1371/journal.pgen.1011423.g004
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The results of different methods at FDR level 0.05 are summarized in Fig 5B. STAREG

detected 1, 156 replicable SVGs, including 163 replicable SVGs that were not identified by any

other methods. MaxP identified 559 replicable SVGs, which were also detected by all other

methods. The ad hoc BH identified 618 replicable SVGs, radjust identified 792 replicable SVGs

(1 of which was not identified by STAREG), JUMP identified 855 replicable SVGs, and MaRR

identified 959 replicable SVGs (14 of which were not identified by STAREG). We plot the

non-parametric estimates of p-value density functions under non-null for two studies in S1A

Fig. To assess the quality of the 1, 156 replicable SVGs identified by STAREG, we clustered

these genes into three groups with distinct spatial expression patterns using R package amap
v0.8–18. As shown in Fig 5A, the three distinct spatial patterns in the two studies (top: Repli-

cate 1 study; bottom: Replicate 8 study) are consistent and can be matched to three main layers

in MOB: Pattern I corresponds to the glomerular cell layer, Pattern II corresponds to the mitral

cell layer and Pattern III corresponds to the granular cell layer. Hematoxylin and eosin (HE)

staining images representing the mouse olfactory bulb sections are presented in Fig 5C (top:

Replicate 1 study; bottom: Replicate 8 study). Spatial expression patterns of Sox5, Vsnl1 and

Smarcd1, three representative genes only detected by STAREG, are presented in Fig 5D. We

calculated Moran’s I statistic [32] to quantify spatial autocorrelations of the replicable SVGs

only identified by STAREG. As in Fig 6A, the 163 SVGs only identified by STAREG have

larger Moran’s I than that of the 8, 173 genes not detected by STAREG. S2A Fig presents three

spatial patterns summarized based on the 163 replicable SVGs only identified by STAREG.

The three distinct spatial patterns can be matched to three main layers in MOB. Spatial expres-

sion patterns of 16 randomly selected SVGs only identified by STAREG are listed in S2B and

S2C Fig as additional evidence.

We summarized two lists of reference genes related to MOB from previously published lit-

erature to validate replicable SVGs identified by different methods. The validation rate is

Fig 5. MOB data analysis results at FDR level 0.05. (A) Three spatial patterns summarized based on 1, 156 replicable

SVGs identified by STAREG (left: ST Replicate 1 study; right: ST Replicate 8 study). (B) The number of replicable

SVGs identified by different methods. (C) HE images of the MOB Replicate 1 section (top) and MOB Replicate 8

section (bottom). (D) Spatial patterns of three representative replicable SVGs only identified by STAREG based on the

Replicate 1 study (top) and the Replicate 8 study (bottom).

https://doi.org/10.1371/journal.pgen.1011423.g005
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calculated as the number of validated genes within each detected replicable SVG set divided by

the total number of genes in corresponding reference gene list. The first reference gene set

from the Allen Brain Atlas [33] (https://maayanlab.cloud/Harmonizome/) contains 3, 485

genes differentially expressed in three main layers in MOB relative to other tissues. As can be

seen in the left part of Fig 6B, STAREG has the highest validation rate (10%), followed by

MaRR (8%), JUMP (7%), radjust (7%), ad hoc BH (6%) and MaxP (5%). Second, we obtained a

list of 2030 cell-type marker genes identified in a recent single-cell RNA sequencing study in

MOB [34]. As in the right part of Fig 6B, STAREG has the highest validation rate of 30% in the

Single-cell marker gene list, followed by MaRR (26%), JUMP (24%), radjust (23%), ad hoc BH

(19%) and MaxP (18%). Furthermore, we examined the top-2, 000 gene set based on the maxi-

mum of p-values and the Lfdr estimated by STAREG. We observe that the top-2, 000 gene set

based on Lfdr has higher validation rate in both reference gene lists (S3A Fig).

Finally, we performed gene set enrichment analysis (GSEA) for the gene ontology (GO)

gene sets [35] with the R package fgsea [36] to gain additional biological insights. STAREG

ranked genes based on the average of the order statistics of Lfdr. Specifically, let dLfdrð1Þ �

. . . � dLfdrðmÞ be the order statistics of fdLfdr ig
m
i¼1

, then genes were ranked based on

1

i

Pi
j¼1
dLfdrðjÞ; i ¼ 1; . . . ;m. In comparison, a common strategy for ranking genes is using p-

values. Specifically, suppose pi is the maximum of p-values from the two studies for the ith
gene, and p(1)� . . .� p(m) denote the order statistics. Genes were ranked based on mp(i)/i,
i = 1, . . ., m. Using Lfdr based ranking, 781 GO terms were enriched at FDR cutoff 0.05 (Fig

6C and 6D), including 4 of the 5 GO terms identified by p-value based ranking. Many of the

Fig 6. Validation results of the MOB data analysis. (A) Moran’s I statistic of the 163 replicable SVGs only identified

by STAREG compared to genes not identified by STAREG based on ST Replicate 1 study (left) and ST Replicate 8

study (right). (B) The percentage of validated genes in the corresponding reference gene list based on replicable SVGs

identified by different methods. (C)The ridge plot shows the distribution of genes in the top-20 gene sets enriched by

STAREG. (D) The running enrichment scores of five representative gene sets only enriched by STAREG at FDR cutoff

0.05.

https://doi.org/10.1371/journal.pgen.1011423.g006
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additional identified GO terms are related to synapse assembly, dendrite morphogenesis, neu-

ron differentiation, and regulation of G-protein, which play critical roles in olfactory bulb

organization and olfactory signal transduction [37]. These additional enrichments in GO

terms demonstrate the biological significance of findings only detected by STAREG. We pres-

ent GO enrichment analysis of the 163 replicable SVGs only identified by STAREG in S3B Fig.

Analyzing mouse cerebellum data. Slide-seq is a technology that provides scalable meth-

ods for obtaining spatially resolved transcrimptotic data at resolutions comparable to single

cells [15]. Slide-seqV2 is built on Slide-seq, combining improvements in library generation,

bead synthesis, and array indexing to achieve a ten-fold higher RNA capture efficiency than

Slide-seq [17]. We obtained two datasets of mouse cerebellum measured with Slide-seq and

Slide-seqV2 from Broad Institute’s single-cell repository (https://singlecell.broadinstitute.org/

single_cell), with IDs SCP354 and SCP948, respectively. For the Slide-seq data, we used the

dataset summarized in the file “Puck_180819_12”, which contains 19, 782 genes measured on

32, 701 beads. The Slide-seqV2 data contains 23, 096 genes on 39, 496 beads. For the Slide-seq

dataset, we first filtered out beads that were not assigned clusters in the original study [15]. For

the Slide-seqV2 dataset, we cropped regions of interest by filtering out beads with UMIs less

than 100 following [38]. Mitochondrial genes and genes that were not expressed on any loca-

tion were filtered out from the two datasets, and beads with zero total expression counts were

removed, resulting in 18, 082 genes on 28, 352 beads in the Slide-seq dataset and 20, 117 genes

on 11, 626 beads in the Slide-seqV2 dataset. Due to the computational complexity of these

datasets, we applied SPARK-X [22] to analyze them separately, resulting in two sequences of p-

values from corresponding studies. By intersecting genes in these two studies, we performed

replicability analysis of SVG detection on 16, 873 pairs of p-values.

As shown in Fig 7B, at FDR cutoff of 0.05, MaxP identified 286 replicable SVGs, all of

which were identified by all other methods. STAREG identified 875 replicable SVGs, 341 of

which otherwise cannot be detected by any other competing methods. The ad hoc BH

Fig 7. MC data analysis results at FDR level 0.05. (A) Three spatial patterns summarized based on 875 replicable

SVGs identified by STAREG (left: Slide-seq study; right: Slide-seqV2 study). (B) The number of replicable SVGs

identified by different methods. (C) Spatial expression patterns of two representative replicable SVGs only identified

by STAREG based on the Slide-seq study (left) and the Slide-seqV2 study (right). The in situ hybridization images of

corresponding genes obtained from the Allen Brain Atlas are displayed on the right as references.

https://doi.org/10.1371/journal.pgen.1011423.g007

PLOS GENETICS Replicability analysis of high throughput experiments

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011423 October 3, 2024 10 / 19

https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
https://doi.org/10.1371/journal.pgen.1011423.g007
https://doi.org/10.1371/journal.pgen.1011423


identified 476 replicable SVGs, radjust identified 473 replicable SVGs, JUMP identified 454

replicable SVGs, and MaRR identified 379 replicable SVGs. We plot the non-parametric esti-

mates of p-value density functions under non-null for two studies in S1B Fig. Based on these

two datasets, we clustered the 875 replicable SVGs identified by STAREG into three groups

and summarized distinct spatial expression patterns (Fig 7A). We observe consistent spatial

patterns in the two studies, with Pattern I corresponding to the spatial distribution of the

granular cell layer, Pattern III corresponding to the purkinje cell layer, and Pattern II corre-

sponding to other cell layers. STAREG uniquely identified several well-known cell type

marker genes in MC, such as Ppp1r17 [39], Gabra1 [40], Edil3 [41], Gdf10 [42], Ptprk and

Nxph1 (Allen brain atlas). We list the spatial expression pattern and corresponding in situ
hybridization images of two replicable SVGs only identified by STAREG, Slc4a4 and

Ppp1r17, based on the Slide-seq data and Slide-seqV2 data as examples of the granular layer

and purkinje layer in mouse cerebellum (Fig 7C). S4A Fig presents three spatial patterns

summarized based on the 341 replicable SVGs only identified by STAREG. The spatial

expression patterns of 10 randomly selected SVGs only identified by STAREG are listed in

S4B Fig as additional evidence. Spatial autocorrelations of the 341 replicable SVGs only

detected by STAREG compared to the 15, 998 genes not identified by STAREG were further

demonstrated by Moran’s I statistics [32] in Fig 8A).

We validated the quality of replicable SVGs identified by different methods using two lists

of genes related to MC that were published in previous literature. The first validation set con-

sists of 2, 431 genes related to MC from the BioGPS mouse cell type and tissue gene expression

profiles dataset [43]. As in the left part of Fig 8B, 10% of genes detected by STAREG were vali-

dated. The validation rates of the other methods, in descending order, were 6% (ad hoc BH

Fig 8. Validation results of the MC data. (A) Moran’s I statistic of the 341 replicable SVGs only identified by

STAREG compared to genes not identified by STAREG based on Slide-seq study (left) and Slide-seqV2 study (right).

(B) The percentage of validated genes in the corresponding reference gene lists [43, 44] based on replicable SVGs

identified by different methods. (C) The ridge plot shows the distribution of genes in the top-20 gene sets enriched by

STAREG. (D) The running enrichment scores of five representative gene sets only enriched by STAREG at FDR cutoff

0.05.

https://doi.org/10.1371/journal.pgen.1011423.g008
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and radjust), 5% (JUMP), and 4% (MaxP and MaRR). Second, we obtained a list of differen-

tially expressed genes across all cell clusters in mouse cerebellar cortex from [44]. Let log FC

denote logarithmic fold changes. By filtering out genes with |log FC|< 1.5, we used a final set

of 995 marker genes that are differentially expressed genes across all cell clusters in mouse cer-

ebellar cortex for the validation. Fig 8B (right) shows the validation results. STAREG has the

highest validation rate of 20%, followed by ad hoc BH (12%), radjust (12%), JUMP (11%),

MaRR (11%) and MaxP (11%). We also checked the top-2, 000 gene set based on the maxi-

mum of p-values and the Lfdr estimated by STAREG. As in S5A Fig, the top-2, 000 gene set

based on Lfdr has higher validation rate in both reference gene lists.

Finally, we performed GSEA for the GO gene sets with the R package fgsea to examine the

additional biological findings. At FDR cutoff 0.05, 448 GO terms were enriched by using Lfdr

based ranking (Fig 8C and 8D), while 6 GO terms were identified by p-value based ranking.

The GO terms enriched by adjusted Lfdr reveal critical roles of synaptic signaling, axon devel-

opment, neuron projection, and cerebellar cortex development for the cerebellum structure

and functions. These additional biologically relevant findings make STAREG desirable for rep-

licability analysis of SVG detection. This can be further illustrated by the GO enrichment anal-

ysis of 341 replicable SVGs only identified by STAREG (S5B Fig).

Discussion

In this paper, we present a powerful new method for the detection of replicable signals across

two studies, and illustrate its application to replicable SVG detection. By borrowing informa-

tion across genes and different studies, STAREG has higher statistical power while maintain-

ing asymptotic FDR control. We conducted extensive simulation studies to demonstrate

FDR control and power gain of STAREG over competing methods. Analysis results of data

from different species, regions, and tissues generated by different spatially resolved tran-

scriptomic technologies demonstrate the favorable performance of STAREG. Important bio-

logical findings are revealed by STAREG, which otherwise cannot be obtained by using

existing methods.

STAREG is versatile, platform-independent, and only needs p-values as input. We require

p-values to be uniformly distributed under the null. Such a requirement is needed in other

methods. In the analysis of spatially resolved transcriptomic data, we do not require two tissue

sections to have the same spatial expression patterns, making STAREG applicable for data

with different sizes, resolutions, and alignments obtained from different spatially resolved

transcriptomic technologies. In practice, using alignments, rotations, and normalizations may

distort important biological information contained in the data. Moreover, although we focus

on the replicability analysis of SVG detection from two studies, STAREG can be easily

extended to other modalities, such as scRNA-seq, ATAC-seq, and CITE-seq, among others.

We provide one scRNA-seq data analysis in the Section D.2 in S1 Appendix.

A limitation is that the current version of STAREG only considers the replicability analysis

of two SRT studies. In theory, it is straightforward to extend the current method to more than

two studies since we only need to add additional components to the mixture model. The deri-

vation can be found in Section E.1 and E.2 in S1 Appendix. In practice, this can be computa-

tionally expensive if the number of studies is large, as the computational time scales

exponentially. We present the simulation results of three studies and the computation time of

more than three studies in Section E.3 and E.4 in S1 Appendix, respectively. We observe that

STAREG is feasible for 10 studies or so. We leave more computationally efficient extensions

for future research.
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Materials and methods

Model and algorithm

Suppose we have two datasets obtained by measuring the spatial expression patterns of m
genes under distinct cellular environments with different technologies. For each dataset, we

have m p-values, where the null hypothesis for the ith gene states that it is not a spatially vari-

able gene, and the non-null hypothesis states that it is a spatially variable gene. We assume p-

values from the null follow the standard uniform distribution and p-values from the non-null

are stochastically smaller than the standard uniform distribution as smaller p-values indicate

stronger evidence against the null [45]. Denote paired p-values as (p1i, p2i), i = 1, . . ., m. For ith
gene, let θji be its hidden state in study j (j = 1, 2), where θji = 1 indicates ith gene is significant

in study j and θji = 0 otherwise. We assume a two-group model for the two p-value sequences,

respectively, where

p1i j y1i � ð1 � y1iÞf0 þ y1if1;

p2i j y2i � ð1 � y2iÞf0 þ y2if2; i ¼ 1; . . . ;m;

where f0 is the density function of p-values under the null, and f1 and f2 denote the non-null

density functions for study 1 and study 2, respectively. The two studies share the same p-value

distribution under the null. The heterogeneity across the two studies is accommodated

through modeling density functions under the non-null separately by f1 and f2. Let τi = (θ1i,

θ2i), i = 1, . . ., m denote the joint hidden states across two studies with prior probabilities P(τi

= (k, l)) = ξkl, where k, l = 0, 1 and ∑k,l ξkl = 1, such that τi 2 {(0, 0), (0, 1), (1, 0), (1, 1)}. The rep-

licability null hypothesis is

Hi0 : ti 2 fð0; 0Þ; ð0; 1Þ; ð1; 0Þg; i ¼ 1; . . . ;m:

Lfdr is defined as the posterior probability of being null given data. Let f i = ξ00 f0(p1i)f0(p2i) +

ξ01 f0(p1i)f2(p2i) + ξ10f1(p1i)f0(p2i) + ξ11f1(p1i)f2(p2i), we have

Lfdriðp1i; p2iÞ≔ 1 � Pðy1i ¼ y2i ¼ 1 j p1i; p2iÞ

¼
x00f0ðp1iÞf0ðp2iÞ þ x01f0ðp1iÞf2ðp2iÞ þ x10f1ðp1iÞf0ðp2iÞ

f i
:

ð1Þ

We assume the monotone likelihood ratio condition [27, 45, 46]:

f1ðxÞ=f0ðxÞ and f2ðxÞ=f0ðxÞ are non-increasing in x: ð2Þ

Let� be the elementwise inequality in R2 (x� y if and only if xk� yk for k = 1, 2). A function

g : R2! R is monotone for this partial ordering if x� y implies g(x)� g(y). From (2), we have

that Lfdri(p1i, p2i) is monotonically non-decreasing in (p1i, p2i). In specific, we have

Lfdrðx1; x2Þ ¼ 1 �
x11f1ðx1Þf2ðx2Þ

f ðx1; x2Þ
;

where f(x1, x2) = ξ00f0(x1)f0(x2) + ξ01f0(x1)f2(x2) + ξ10f1(x1)f0(x2) + ξ11f1(x1)f2(x2). If x1� y1 and
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x2� y2, we aim to show that Lfdr(x1, x2)� Lfdr(y1, y2). To this end, we have

Lfdrðy1; y2Þ � Lfdrðx1; x2Þ

¼
x11ff1ðx1Þ=f0ðx1Þgff2ðx2Þ=f0ðx2Þg

x00 þ x01f2ðx2Þ=f0ðx2Þ þ x10f1ðx1Þ=f0ðx1Þ þ x11ff1ðx1Þ=f0ðx1Þgff2ðx2Þ=f0ðx0Þg

�
x11ff1ðy1Þ=f0ðy1Þgff2ðy2Þ=f0ðy2Þg

x00 þ x01f2ðy2Þ=f0ðy2Þ þ x10f1ðy1Þ=f0ðy1Þ þ x11ff1ðy1Þ=f0ðy1Þgff2ðy2Þ=f0ðy0Þg:

� 0

under assumption (2).

The rejection rule based on Lfdri to test replicability null Hi0 is

di ¼ IfLfdri � lg; ð3Þ

where λ is a threshold to be determined. We write the total number of rejections as

RðlÞ ¼
Pm

i¼1
IfLfdri � lg; and the number of false rejections as VðlÞ ¼

Pm
i¼1

IfLfdri �
lgð1 � y1iy2iÞ: We have

E

"
Xm

i¼1

IfLfdri � lgð1 � y1iy2iÞ

#

¼
Xm

i¼1

PðLfdri � l; y1iy2i ¼ 0Þ

¼
Xm

i¼1

(

x00PðLfdri � l j y1i ¼ 0; y2i ¼ 0Þ þ x01PðLfdri � l j y1i ¼ 0; y2i ¼ 1Þ

þx10PðLfdri � l j y1i ¼ 1; y2i ¼ 0Þ

)

¼
Xm

i¼1

(

x00E½IfLfdri � l j y1i ¼ 0; y2i ¼ 0g� þ x01E½IfLfdri � l j y1i ¼ 0; y2i ¼ 1g�

þx10E½IfLfdri � l j y1i ¼ 1; y2i ¼ 0g�

)

¼
Xm

i¼1

(Z

x00IfLfdri � lgf0ðp1iÞf0ðp2iÞdp1idp2i þ

Z

x01IfLfdri � lgf0ðp1iÞf2ðp2iÞdp1idp2i

þ

Z

x10IfLfdri � lgf1ðp1iÞf0ðp2iÞdp1idp2i

)

¼
Xm

i¼1

Z

½x00f0ðp1iÞf0ðp2iÞ þ x01f0ðp1iÞf2ðp2iÞ þ x10f1ðp1iÞf0ðp2iÞ�IfLfdri � lgdp1idp2i

¼
Xm

i¼1

Z

f ðp1i; p2iÞLfdriIfLfdri � lgdp1idp2i

¼ E

"
Xm

i¼1

LfdriIfLfdri � lg

#

:

Write a _ b = max{a, b}. To control FDR of the replicability analysis, we need to find the
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critical value λ in (3). We estimate FDR by

FDR∗ðlÞ ¼

Pm
i¼1

LfdriIfLfdri � lg
Pm

i¼1
IfLfdri � lg

;

and define λm = sup{λ 2 [0, 1] : FDR*(λ)� α}. Reject Hi0 if Lfdri� λm. This is the oracle case

that assumes we know ξ00, ξ01, ξ10, ξ11, f1 and f2. We provide estimates of them in next

section.

Estimates of unknowns and an adaptive procedure

Assume f0 follows a standard uniform distribution. Let p1 ¼ fp1ig
m
i¼1

and p2 ¼ fp2ig
m
i¼1

denote

p-values from study 1 and study 2, respectively. Denote hidden states θ1 ¼ fy1ig
m
i¼1

and θ2 ¼

fy2ig
m
i¼1
:Under conditional independence of two p-value sequences given hidden states, the

joint log likelihood function of (p1, p2, θ1, θ2) is

lðp
1
; p

2
; θ1; θ2Þ

¼
Xm

i¼1

½logfð1 � y1iÞf0ðp1iÞ þ y1if1ðp1iÞg

þlogfð1 � y2iÞf0ðp2iÞ þ y2if2ðp2iÞg þ y1ið1 � y2iÞ log x10

þð1 � y1iÞy2i log x01 þ ð1 � y1iÞð1 � y2iÞ log x00 þ y1iy2i log x11�;

where hidden states θ1 and θ2 are latent variables. For scalable computation, we utilize EM

algorithm [28] in combination of pool-adjacent-violator-algorithm (PAVA) to efficiently esti-

mate the unknowns (ξ00, ξ01, ξ10, ξ11, f1, f2) incorporating the monotone likelihood assumption

(2) for f1 and f2 (see Section A in S1 Appendix for details). f1 and f2 are estimated non-paramet-

rically, which provides more flexibility. With the estimates ðbx00;
bx01;

bx10;
bx11;

bf 1;
bf 2Þ, we obtain

Lfdr estimates by:

dLfdri ¼
bx00f0ðp1iÞf0ðp2iÞ þ

bx01f0ðp1iÞ
bf 2ðp2iÞ þ

bx10
bf 1ðp1iÞf0ðp2iÞ

bf
;

where bf ¼ bx00f0ðp1iÞf0ðp2iÞ þ
bx01f0ðp1iÞ

bf 2ðp2iÞ þ
bx10
bf 1ðp1iÞf0ðp2iÞ þ

bx11
bf 1ðp1iÞ

bf 2ðp2iÞ. An esti-

mate of λm can be obtained through

blm ¼ sup

(

l 2 ½0; 1� :

Pm
i¼1
dLfdriIfdLfdri � lg

Pm
i¼1

IfdLfdri � lg
� a

)

:

The replicability null hypothesis Hi0 is rejected if dLfdri �
blm. This is equivalent to the step-up

procedure [27]: let dLfdrð1Þ � . . . � dLfdrðmÞ be the ordered statistics of fdLfdrig
m
i¼1

and denote by

H(1), . . ., H(m) the corresponding ordered replicability null hypotheses, the procedure works as

follows.

Find bk≔max

(

1 � i � m :
1

i

Xi

j¼1

dLfdrðjÞ � a

)

;

reject HðiÞ for i ¼ 1; . . . ;bk:
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Supporting information

S1 Fig. Plots of non-null density functions estimated by STAREG for two pairs of SRT

data measured with different technologies. In each panel, the x-axis shows the log10 scale of

p-values, and the y-axis shows the 1012 scale of non-null densities.

(EPS)

S2 Fig. Additional validation results of the ST data from MOB. (A) Three spatial patterns

summarized based on the 163 replicable SVGs uniquely identified by STAREG (left: ST Repli-

cate 1 study; right: ST Replicate 8 study). (B) Spatial expression patterns of 16 genes randomly

selected from the 163 replicable SVGs uniquely identified by STAREG based on the ST Repli-

cate 1 data. Different color represents relative gene expression levels (antique white: low; navy

blue: high). (C) Spatial expression patterns of 16 genes randomly selected from the 163 replica-

ble SVGs uniquely identified by STAREG based on the ST Replicate 8 data. (D) The percentage

of validated genes based on top-2, 000 gene set calculated from the maximum of p-values and

Lfdr in the MOB data analysis. (E) GO terms enriched by the 163 replicable SVGs only identi-

fied by STAREG. The horizontal dashed line represents an FDR cutoff of 0.05.

(EPS)

S3 Fig. Additional validation results of the Slide-seq and Slide-seqV2 data from mouse cer-

ebellum. (A) Three spatial patterns summarized based on the 341 replicable SVGs uniquely

identified by STAREG (left: Slide-seq study; right: Slide-seqV2 study). (B) Spatial expression

patterns of 10 genes randomly selected from the 341 replicable SVGs uniquely identified by

STAREG based on the Slide-seq data. Different color represents relative gene expression levels

(antique white: low; navy blue: high). (C) Spatial expression patterns of 10 genes randomly

selected from the 341 replicable SVGs uniquely identified by STAREG based on the Slide-

seqV2 data. (D) The percentage of validated genes based on top-2, 000 gene set calculated

from the maximum of p-values and Lfdr in the MOB data analysis. The validations were based

on the reference gene lists from [43] and [44]. (E) GO terms enriched by the 341 replicable

SVGs only identified by STAREG. The horizontal dashed line represents an FDR cutoff of

0.05.

(EPS)

S1 Appendix. Supplementary materials. Including the detailed derivations of STAREG and

competing methods, additional simulation studies, and data analysis results.

(PDF)
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