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Abstract

We report on a radiopharmaceutical imaging platform designed to capture the kinetics of cellular

responses to drugs.

Methods—A portable in vitro molecular imaging system, comprised of a microchip and a beta-

particle imaging camera, permits routine cell-based radioassays on small number of either

suspension or adherent cells. We investigate the response kinetics of model lymphoma and

glioblastoma cancer cell lines to [18F]fluorodeoxyglucose ([18F]FDG) uptake following drug

exposure. Those responses are correlated with kinetic changes in the cell cycle, or with changes in

receptor-tyrosine kinase signaling.

Results—The platform enables radioassays directly on multiple cell types, and yields results

comparable to conventional approaches, but uses smaller sample sizes, permits a higher level of

quantitation, and doesn’t require cell lysis.

Conclusion—The kinetic analysis enabled by the platform provides a rapid (~1 hour) drug

screening assay.
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INTRODUCTION

In vivo molecular imaging assays, employing a variety of probes of specific biological

processes, have been developed for Positron Emission Tomography (PET). The most

common probe in patients care and research is the glucose analog, 2-deoxy-2-[18F]fluoro-

deoxy-D-glucose ([18F]FDG) for imaging and measuring rates of glycolysis. In cancer

patients, [18F]FDG assays are used for diagnosis and assessing therapeutic responses (1).

Around 3,000 molecular imaging probes for PET have been reported for various metabolic

and other processes associated with disease states (1).

In vitro metabolic assays using radiolabeled probes have been adapted to 96-well plates and

microchip formats(2). We explore here the use of such assays for quantitating the kinetics of

cellular responses to targeted drugs. We first introduce a microfluidic chip design (the

RIMChip) that couples to a beta particle imaging camera (2–4) to form the betabox. The

betabox is designed for the quantitative analysis of the metabolic response of small numbers

of cells to pharmaceuticals. Most assay steps are similar to those of standard 96-well plate

radioassays, but require far fewer cells, permit quantitation of signal per cell, and utilize live

cells. The platform is validated on various adherent and suspension cancer cells. We

characterize the influence of the monocarboxylate transporter (MCT1) protein, as well as a

glycolytic inhibitor, on [18F]FDG uptake in isogenic liposarcoma cells. Using different

liposarcoma cells, we investigate the influence of deoxycytidine kinase (dCK)(5) on the

uptake of the deoxycytidine analog molecular imaging probe [18F]-FAC(6).

We then explore how certain cancer cell lines respond to two mechanistically distinct

targeted inhibitors. We quantitate the response kinetics of liposarcoma cells to gemcitabine

(7) by correlating cell-cycle arrest with [18F]FDG uptake. We then quantitate the kinetic

response of model glioblastoma multiforme (GBM) cancer cells to an epidermal growth

factor receptor (EGFR) inhibitor, by correlating changes in [18F]FDG uptake with the levels

of phosphoproteins associated with EGFR signaling. Glucose consumption consistently

provides a rapid (~30 min.) indicator of positive therapeutic response, and the betabox

platform provides a simple tool for quantitating those kinetics.

MATERIALS AND METHODS

Betabox platform

The RIMChip design and fabrication process requires standard photolithography and

elastomer molding methods, as described in the SI Text, Supporting Materials and Methods.

The beta particle imaging camera has been reported(3). For this work, the camera was

miniaturized to be portable and simple to operate. The betabox is assembled by mounting

the RIMChip directly onto the camera face.

Cell sample preparation, viability, and cell cycle assays

Liposarcoma cell lines LPS1 and LPS2 with dCK- and MCT1-knockdown, respectively,

were derived from patient samples. Lentiviral-based, shRNA-mediated knockdown of

MCT1 and dCK were described in (8) The murine leukemic lines (L1210 wt and

L1210-10K)(9) were a kind gift from Charles Dumontet (Université Claude Bernard Lyon I,
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Lyon, France) (10). The human lymphoma line CEM was purchased from ATCC

(#CCL-119) and the sub-line, CEM-dCK negative, was generated via selection with ara-C

(11) and was a gift of Margaret Black (Washington State University). A human leukemia T

cell line (Jurkat T) was purchased from ATCC. The human glioblastoma cell line U87

EGFRvIII/PTEN were prepared as described(12). The LIVE/DEAD® Viability/Cytotoxicity

Kit (Invitrogen) was used to distinguish live cells from dead cells. For the cell cycle assay,

2×106 cells were collected and washed with PBS. DNA content was determined through

staining with 50 μg/mL Propidium Iodide (Sigma) for L1210 cells or BrdU kit (R&D

Systems) for U87 EGFRvIII/PTEN cells. Data were acquired on 4 and 5-laser LSRII

cytometers (BD Biosciences) and analyzed as previously described (13).

Betabox radioassay

Cells were prepared at 3×106 cells per ml and injected into the RIMChip. For adherent cells,

the microchannels were coated with fibronectin. For the kinetics studies, 5mM 2-

deoxyglucose (2DG), 10 μM gemcitabine, or 5μM erlotinib, in RPMI 1640 or DMEM

medium supplemented with 10% FBS, was added to the cells for a designated period. After

a 4 hour incubation period in a CO2 incubator at 37°C, PBS was flushed through the

RIMChip to remove unattached cells. The radiolabeled imaging probe ([18F]FAC or

[18F]FDG) was then pipetted into the RIMChip microchannels, and the RIMChip was

incubated for 30 min and flushed with PBS twice followed by incubation with 1 μg/ml

Hoechst 33342 in DMEM medium supplemented with 10% FBS and 1% Pen/Strep. Finally,

the betabox was assembled for the imaging measurement. Cell numbers were determined on

a Nikon Eclipse Ti microscope using the DAPI channel.

Off-chip Radioassay

About 105 Cells were seeded into a 12 well plate and the radiopharmaceutical (10 μCi/ml

[18F]FAC or 10 μCi/ml [18F]FDG) was added to cells. The radioactivity of the lysed cells

was measured using a γ-counter. Detailed procedures are described in the SI Text,

Supporting Materials and Methods.

Phosphoprotein assay

Confluent petri dishes containing 5×106 cells were prepared. Lysis buffer (Cell Signaling)

with protease inhibitor (Roche) and phosphatase inhibitor (Sigma), was prepared according

to the manufacturer’s instructions. Following cell lysis, protein concentrations of cell lysates

were quantified with a BCA kit (Pierce). A panel of phosphoproteins from the lysates were

assayed using a multiplex antibody array (14) and sandwich-type enzyme-linked

immunoassays (ELISAs). All proteins in the panel were measured simultaneously from each

sample. The biomolecular reagents used are listed in SI table 1.

Data processing

The counts of emitted beta particles from each cell capture chamber were normalized to the

counted cell numbers to reflect the uptake of the radiolabeled imaging probe per cell. See

Supplemental Materials and Methods.
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RESULTS

Each RIMChip (Fig. 1) permits 4 repeats of 5 independent assays. Each assay microchannel

inlet contains a bubble depletion chamber and a debris-trapping filter (Fig. 1A, B and

Supplemental Fig. 1). These permit the use of standard micropipetting for cell and reagent

introduction. The 50 μm separation between the cell capture chamber floors and the camera

yields an 11-fold increase in signal level relative to previous designs (2), which used a

microscope cover slip as the chamber floor. Fibronectin coating of the microchannel

surfaces promoted attachment and spreading of the adherent cells (Supplemental Fig. 2), but

did not influence the uniformity of cell loading or the [18F]FDG uptake (Supplemental Fig.

3,4). Suspension cells were found to attach to the untreated hydrophobic PDMS surface.

(Supplemental Fig. 4)

Cells were counted within each cell capture chamber (Fig. 1C), before and after the

radioassay, to permit per cell quantitation of the radioassay results. Cell loading and

[18F]FDG uptake exhibited ~8% variations across the different cell capture chambers

associated with a single microchannel. For T cell assays (Fig. 1E), chambers with ~70–110

cells exhibited a ~30-fold higher signal than control chambers with zero cells.

We executed proof-of-principle betabox radioassays in which the glycolytic or nucleoside

salvage pathways were genetically or molecularly manipulated in isogenic adherent

liposarcoma cell lines (Fig. 2). We altered monocarboxylate transporter 1 (MCT-1) levels

via stable expression of shRNA, and examined the resulting changes in [18F]FDG uptake

(Fig. 2A). In these cells, MCT-1 enhances glycolytic flux, so knockdown of MCT1 should

result in reduction of [18F]FDG uptake. The RIMChip assays detected a 35% relative

decrease in [18F]FDG uptake between Scr and DMCT-1 cells. The conventional assays

revealed a 12.5% reduction (Fig. 2A). Introduction of the glycolytic inhibitor 2-deoxy-

glucose (2DG) resulted in a stronger (3–10 fold) repression of [18F]FDG uptake, as recorded

in the RIMChip assay and bulk assays, respectively (Fig. 2B).

Certain liposarcomas exhibit nucleoside salvage activity, which can be imaged using the

nucleoside analogue 1-(2′-deoxy-2′ [18F]fluoroarabinofuranosyl) cytosine ([18F]FAC)(8).

[18F]FAC is a substrate for enzyme dCK, and so dCK knockdown should exhibit decreased

[18F]FAC uptake. The third betabox validation study supported this hypothesis (Fig. 2C).

The betabox was also used for interrogating the kinetics of cellular responses to targeted

therapies. All time points in a given kinetics run are imaged simultaneously, for easy

comparisons. The influence of gemcitabine on L1210-wt leukemia cells was first studied.

Gemcitabine is an anti-cancer pro-drug nucleoside analogue that will impede the cell cycle

in dCK positive tumors(9). Since glucose metabolism can help fuel the cell cycle, we

reasoned that gemcitabine treatment could influence both [18F]FDG uptake and the cell

cycle. Indeed [18F]FDG uptake decreases upon cell exposure to gemcitabine, with first order

kinetics and a half-life (τ1/2) of ~30 minutes (Fig. 3A). Cell cycle arrest exhibits similar

kinetics (τ1/2 ~50 minutes), and lags about 25 minutes behind changes in [18F]FDG uptake

(Supplemental Fig.5 and 6).

Wang et al. Page 4

J Nucl Med. Author manuscript; available in PMC 2014 July 22.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



A second class of targeted drugs is aimed at blocking growth factor signaling of receptor

tyrosine kinases (RTKs). For example, the ATP-competitive EGFR tyrosine kinase inhibitor

Erlotinib inhibits wild type and mutant EGFR (EGFRvIII) signaling, inhibiting the

phosphorylation of kinases that represent downstream effectors of EGFR (15, 16), and thus

inhibiting the growth of PTEN expressing glioblastomas (12). An activated growth factor

signaling pathway implies energy flux through that pathway, so we reasoned that inhibiting

that pathway would likely reduce cellular glucose consumption. Thus, we treated EGFRvIII

and PTEN-expressing model glioblastoma multiforme (GBM) cell lines with erlotinib, and

measured [18F]FDG uptake kinetics, plus the levels of a panel of phosphoproteins that are

downstream effectors of EGFR (Fig. 3B and Supplemental Fig.7). The full panel of assayed

proteins is provided as Supplemental Table 1. Again, [18F]FDG uptake drops sharply within

30 min, but the kinetics yield behavior reminiscent of a damped oscillator. Interestingly, this

oscillatory behavior is reflected in the changing levels of the assayed phosphoproteins. The

protein phosphorylated-AMP activated protein kinase (p-Ampkα) functions as an energy

regulator within the cell(17). Its level appears to initially oscillate out of phase with

[18F]FDG uptake, implying a compensatory mechanism for loss of glucose consumption.

The levels of p-EGFR, pErk and p-mTOR oscillate mostly in phase with each other, and are

partially synchronized with changes in [18F]FDG uptake. The amplitude of the changing

levels of a given phosphoprotein may reflect its proximity to EGFR in the RTK signaling

pathway. For example, p-EGFR itself exhibits the largest amplitude response, with p-mTOR

exhibiting the weakest response. Over the course of the 4-hour drug treatment window, the

cell cycle was relatively unaffected (Supplemental Fig. 8).

DISCUSSION

The comparisons of Figure 2 between the betabox assays and the 12-well plate (bulk) assays

reveal qualitative, but not fully quantitative agreement between the two approaches. A

concern might be that since the RIMChip assays a relatively small number of cells, the

corresponding statistical spread of results would be significantly larger than for the bulk

assays. However, this spread, which should scale as the square root of the numbers of cells,

is not large. For the comparisons of Fig 2, 4 microchannels × 4 microchambers per channel

× 100 cells per microchamber yields a 2.5% error, relative to an expected ~0.5% error for a

(~50,000 cells) bulk assay. Cell counting errors for the RIMChip assays may add a few

additional percent, as will the experimental errors in manipulating the cells for the bulk

assay. Small variations in the 50 μm thick PDMS membrane separating the cells from the

camera can also contribute a few percent error. However, given that the two techniques have

independent sources of error, and that the RIMChip assays for ~50-fold fewer cell numbers,

the agreement between the two techniques is good. There is a flow cytometry-based assay

that utilizes a fluorophore-labeled [18F]FDG analogue, but recent literature(18) has called

into question the validity of that assay, and so we did not compare against it here.

The kinetic responses recorded in Figure 3 reveal that the [18F]FDG RIMChip assay

provides a rapid (<1 hour) tool for detecting the response of small cell numbers to a therapy.

However, the assays also reveal different response kinetics for the different cell lines and

drugs. An exact resolution of such responses can be accomplished by either capturing the

dynamic trajectories of individual cells(19), or the fluctuations of the functional proteins at
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the single cell level(20). Obviously, the RIMChip assay does not resolve such trajectories of

fluctuations, but the cited literature can provide some insight into the observed responses.

For example, the 1st order relaxation kinetics observed for the response of the L1210

leukemia cells to gemcitabine exposure is consistent with a transition between two distinct,

steady state descriptions of those cells. An alternative explanation, which we can rule out by

our observations, is that gemicitabine exposure killed a fraction of the cells. No dead cells

were detected during the course of the experiment. The oscillatory dynamics observed for

the erlotinib treated GBM cells imply that there are competing networks that influence the

kinetics. The overall result may be the same – i.e. the cells are switching between two states,

but that is not as clear from our data. Again, however, no dead cells were detected during the

course of the experiments.

CONCLUSION

The betabox platform, comprised of a microfluidic chip (the RIMChip) mated to a beta-

particle imaging camera, enables robust, user-friendly execution of sensitive and

quantitative cell-based radioassays. Each radioassay requires ~100 cells. Betabox

radioassays provide a useful and rapid screening platform for investigating the response of

various cell lines to mechanistically distinct, targeted drugs. The betabox platform provides

a rapid screening tool for a variety of drug/cell line combinations, as well as a powerful tool

for mechanistic investigations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The RIMChip design, operation, and betabox performance
(A) Each RIMChip microchannel represents a separate assay condition, and permits four

repeats per condition. A bubble depletion chamber and post filter is incorporated at each

microchannel inlet. (B) Drawings (not to scale) and (C) photos of a cell capture chamber. A

cell suspension is injected through the inlets. Adherent cells attach to the bottom of the

fibronectin-treated microwells. The waffle structured walls provide structural integrity, and

prevent the cells from being disturbed by flowing solutions. (D) Photograph of a RIMChip

and a sample betabox radioassay revealing signal from a 4 microchamber microchannel. (E)

Statistics of cell loading (shown at two stages of a betabox assay) and statistics of the

radioassay signal, averaged over the cells with chambers (S) and those without (N). The bar

heights and uncertainties are calculated using the 4 cell capture chambers associated with a

given microchannel.
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Figure 2.
Validations of the RIMChip via genetic and molecular manipulation of glycolytic flux and

nucleoside salvage activity in betabox assays, with comparisons against standard assays. (A)

[18F]FDG uptake betabox radioassays of wild type LPS2 cells (Scr) (grey bars) and MCT1

knockdown LPS2 cells (DMCT-1). The betabox data uncertainties reflect the statistics from

16 microchambers (8 microchambers from two RIMChips) of measurements for each cell

line. The β camera image is of one such assay; the middle row is a 0-cell control. (B)

[18F]FDG assay on the same cells showing the influence of the glycolytic inhibitor 2DG. (C)

[18F]FAC uptake betabox radioassays on wild-type and dCK-1 knockout LPS1 cells.

Microchambers containing the dCK-1 knockout cells are in rows 2 and 4 from the top, row 5

is a control. The error bars represent the standard error of the mean. P-values: * = .05; **= .

01; *** = .001.
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Figure 3.
Betabox assays, correlated with other functional assays, for gauging the response of cancer

cells to targeted drugs. For these plots, the y-axis is % of the initial level (defined at the time

=0 point) to allow for all data to be co-represented on the same plots. (A) The kinetics of

[18F]FDG uptake and cell cycle arrest (measured using flow cytometry) following

gemcitabine treatment of L1210-wt leukemia cells. The solid lines are first order kinetic fits.

(B) The kinetics of [18F]FDG uptake compared with the dynamics of phospho-protein levels

within the RTK signaling pathway of U87 EGFRvIII PTEN GBM cells upon erlotinib

treatment. The lines connecting the data points are to guide the reader. Error bars indicate

average values from three repeat assays.
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