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Behavioral/Cognitive

A Comparison of Rapid Rule-Learning Strategies in
Humans and Monkeys

Vishwa Goudar,1* Jeong-Woo Kim,1* Yue Liu,1 Adam J. O. Dede,2 Michael J. Jutras,2 Ivan Skelin,3,4

Michael Ruvalcaba,5 William Chang,5 Bhargavi Ram,3,4 Adrienne L. Fairhall,2 Jack J. Lin,3,4 Robert T. Knight,5,6

Elizabeth A. Buffalo,2,7 and Xiao-Jing Wang1
1Center for Neural Science, New York University, New York 10003, 2Department of Physiology and Biophysics, University of Washington, Seattle,
Washington 98195, 3Department of Neurology, University of California, Davis, California 95616, 4The Center for Mind and Brain, University of
California, Davis, California 95616, 5Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, 6Department of Psychology,
University of California, Berkeley, California 94720, and 7Washington Primate Research Center, University of Washington, Seattle, Washington 98195

Interspecies comparisons are key to deriving an understanding of the behavioral and neural correlates of human cognition from
animal models. We perform a detailed comparison of the strategies of female macaque monkeys to male and female humans on
a variant of the Wisconsin Card Sorting Test (WCST), a widely studied and applied task that provides a multiattribute measure
of cognitive function and depends on the frontal lobe. WCST performance requires the inference of a rule change given ambiguous
feedback. We found that well-trained monkeys infer new rules three times more slowly than minimally instructed humans. Input-
dependent hidden Markov model–generalized linear models were fit to their choices, revealing hidden states akin to feature-based
attention in both species. Decision processes resembled a win–stay, lose–shift strategy with interspecies similarities as well as key
differences. Monkeys and humans both test multiple rule hypotheses over a series of rule-search trials and perform inference-like
computations to exclude candidate choice options. We quantitatively show that perseveration, random exploration, and poor
sensitivity to negative feedback account for the slower task-switching performance in monkeys.

Significance Statement

Advances in training and recording from animal models support the study of increasingly complex behaviors in nonhumans.
Before interpreting their neural computations as human-like, we must first ascertain whether their computational algorithms
are human-like. We compared rapid rule-learning strategies of macaque monkeys and humans on a Wisconsin Card Sorting
Test variant and found that monkeys are 3–4 times slower than humans at learning new rules. Model fits to choice behavior
revealed that both species use qualitatively similar exploration strategies with different decision criteria. These differences
produced distinct errors in monkeys that are similar to those observed in humans with prefrontal deficits. Our results
generate detailed neural hypotheses and highlight the need for systematic interspecies behavioral and neural comparisons.

Introduction
Animal models are essential for mechanistic investigations of the
circuit underpinnings of complex computation. However, any
extrapolation of the findings to an understanding of human cog-
nition relies on an interspecies overlap of the computational and
neurocognitive means used to carry out complex tasks (Melloni
et al., 2019; Birch et al., 2020). The prefrontal cortex, which plays
an essential role in higher cognitive functions (Fuster, 2015), has

more neurons in humans compared with nonhuman primates in
absolute terms (Gabi et al., 2016). Therefore, it has been sug-
gested that this evolutionary increase may underlie superior
human cognitive abilities (Deacon, 1997; Herculano-Houzel,
2009; Gabi et al., 2016). However, anatomical studies disagree
on cross-primate differences in the relative size of the prefrontal
cortex, with some finding that it is disproportionately enlarged in
humans compared with that in macaque monkeys (Passingham
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and Smaers, 2014; Donahue et al., 2018) and others showing that
it is not (Semendeferi et al., 2002; Barton and Venditti, 2013).
This is further confounded by differences in primate prefrontal
cell density (Semendeferi et al., 2011; Gabi et al., 2016).
However, this debate can benefit from a clear characterization
of interprimate differences in prefrontal-dependent cognitive
functions. For these reasons, an interpretation of findings from
animals demands rigorous comparisons between cognitive com-
putations in humans and nonhuman animals.

Toward this end, we compared the behavioral strategies of
macaque monkey and humans on the same task: a rule-switching
task inspired by the Wisconsin Card Sorting Test (WCST) which
is widely used to evaluate the cognitive functions involved in
abstract thinking, rule search, cognitive set shifting, and the effec-
tive use of feedback (Grant and Berg, 1948; Kopp et al., 2021).
The WCST has long been employed in the study of prefrontal
function and dysfunction (Milner, 1963; Passingham, 1972;
Drewe, 1974; Nelson, 1976; Gold et al., 1997), lending support
to the presence of abstract thinking and computation in the mon-
key brain (Mansouri et al., 2020). In this task, subjects must
match a test object to reference objects, each composed of mul-
tiple visual features, based on a hidden rule. Feedback indicates
whether the match was correct, but does not unambiguously
reveal the rule identity. The rule identity must be inferred from
the collective outcome of multiple trials. Additionally, the rule
undergoes uncued changes across trial blocks, requiring detec-
tion of and adaptation to such changes based solely on positive
or negative feedback.

In our version of the task, subjects must select an object and
receive feedback contingent on whether it contains a specific fea-
ture (the hidden rule). Each object has three feature dimensions
(color, pattern, and shape), with one of four feature values per
dimension, defining 12 possible rules (Fig. 1a). Simply learning
the value of each of the 64 individual object–reward associations
is inefficient; each object is a conjunction of multiple features,
and learning the value of one object does not generalize to the
others. Instead, identifying object features and learning their
value facilitate generalization and consequently are more
efficient. The problem of attributing binary feedback when there
are many features (high-dimensional environments), referred to
as the “curse-of-dimensionality,” is effectively resolved through
such abstract reasoning (Gershman and Niv, 2010; Wilson and
Niv, 2012; Niv et al., 2015). Yet, tracking and updating the value
of the 12 features impose prohibitive working-memory demands
and is computationally daunting. Conversely, selectively attend-
ing to and evaluating one feature at a time are inefficient as they
discard relevant feedback regarding other features. The strategy
that individuals use to address this trade-off between computa-
tional complexity and information efficiency remains to be
elucidated.

We found that monkeys were 3–4 times slower than humans
at identifying new rules. To understand how the two species han-
dle the task’s complexity and to explain this performance differ-
ence, we fit a hypothesis-free behavioral model that predicts
upcoming choices based on choices and their outcomes on pre-
vious trials. The best-fit models developed hidden states that
aligned with a feature-based attention strategy wherein some
visual features are selectively examined over others while making
a choice and attributing feedback. The decision process recovered
by the model revealed each species’ rule-learning strategy. While
similar to the win–stay, lose–shift (WSLS) strategy, these strate-
gies deviated from it in important ways. First, both species
explore more than one feature at a time. Second, they perform

inference-like computations—their attentional state toward one
feature can change based on the outcome of choosing another.
We further identified distinct stages of rule learning, which
revealed three key reasons for the lower performance in mon-
keys: (1) following a rule switch, monkeys perseverate on the pre-
vious rule more than humans; (2) monkeys occasionally make
random choices that do not involve any of the features under
exploration, even after finding the rule, which delays expression
of the learnt rule; and (3) poorer attention to negative feedback in
monkeys particularly when they simultaneously explore the rule
and nonrule features poses a credit assignment challenge which
delays learning.

Materials and Methods
Task description
Human and monkey subjects were tested on a rule-switching task whose
design was inspired by the WCST. On each trial, they were simulta-
neously presented with an array of four objects on a computer screen.
Each object was comprised of a stimulus feature from each of three sti-
mulus dimensions: color, pattern, and shape (Fig. 1a), e.g., a blue polka-
dotted triangle. For each trial, these 4 objects were chosen from a pool of
64 unique objects, each containing a possible combination of individual
features from each of the three dimensions, such that there was no fea-
ture overlap between them. Accordingly, for each possible array, all
four features of each dimension appeared on the screen, but the combi-
nation of features represented by each individual object varied across tri-
als. Within a single rule-learning block of trials, one color, pattern, or
shape was designated as the target, resulting in 12 possible rules. The
identity of this rule was not cued, but had to be learned by trial and error,
based on the feedback received at the end of each trial. Upon meeting a
rule-learning criterion for the current rule, the rule feature changed on
the next trial in an uncued manner, initiating a new rule-learning block.
This rule shift could be either intradimensional, where the dimension of
the new rule feature matched that of the previous rule feature (e.g.,
changing from triangle to square), or extradimensional, where the
dimensions of the old and new rule features did not match (e.g., changing
from triangle to yellow).

Experimental design
Monkeys. All procedures were carried out in accordance with

the National Institutes of Health guidelines and were approved by
the University of Washington Institutional Animal Care and Use
Committee. Subjects were four adult female rhesus monkeys (Macaca
mulatta) with mean age of 12.5 ± 2.5 years and mean weight of 7.5 ±
0.6 kg at the start of the experiment. All subjects were experimentally
naive when acquired. Prior to training on the rule-switching task, three
subjects had been trained on two working-memory tasks (delayed
match-to-sample task and oculomotor delayed response task), and the
fourth subject had been trained on only one of these tasks (delayed
match-to-sample task).

The structure of the task was as follows. A monkey initiated each trial
by fixating on a white cross (0.5°) at the center of a computer screen.
Following 500 ms of successful fixation, the cross disappeared and was
replaced by an array of four objects. During the self-paced decision epoch
that followed, the monkey was free to explore the array of objects; her
choice was signaled by maintaining her gaze within a 9 × 9° window cen-
tered on the object for 800 ms. Themonkey received a food slurry reward
over a 1.4 s duration for selecting the object that contained the rule
feature. A timeout period (either 1 or 5 s) occurred on trials when the
monkey did not choose the object containing the rule feature or when
she did not make a choice within 4 s. The timeout period was reduced
in two monkeys to increase the number of trials they completed per
session, after it was confirmed that this reduction did not alter their
trial-to-criterion performance. The feedback period was immediately fol-
lowed by a 400 ms or 1 s intertrial interval (ITI). The larger ITI was used
for one of the four monkeys to permit an examination of neural activity
for the development and maintenance of neural representations of the
rule during this interval. We classified a rule as learned either when

2 • J. Neurosci., July 10, 2024 • 44(28):e0231232024 Goudar, Kim, et al. • Interspecies Rule-Learning Strategy Comparison



the monkey made 8 consecutive correct responses or when she made 16
correct responses in 20 trials or fewer.

Each monkey was trained on this task in four steps. Monkeys were
advanced from one training step to the next after consistently being
able to acquire a new rule (meeting criteria for consecutive correct
responses) within 3 min or after consistently acquiring a certain number
of rule shifts across an entire session (typically at least 20 shifts in a
90 min session). Once monkeys completed the final step, they were pre-
pared for testing. The steps were as follows:

Step 1: Monkeys received training on the eye-tracker calibration task,
which entailed fixating on a small (0.3°) square in various locations on
the computer screen and releasing a touch-sensitive bar in response to a
change in the square’s color for reward. Next, they were trained to fixate
on an image equivalent to those used in the final version of the task, for
reward. Monkeys progressed through this step in one or two sessions.

Step 2: Monkeys were introduced to all four stimuli, where they were
rewarded for fixating on the stimulus with the correct feature (e.g., red).
In a given session, the dimension of the correct feature was constant
(i.e., all rule shifts were intradimensional), and the four stimuli varied in
only this target dimension (e.g., all targets were the same shape and pattern
and varied only in their color). The dimension of the target features was
varied across sessions (e.g., the target features were colors on one session
and patterns on the next). Monkeys spent ∼20–25 sessions on this step.

Step 3: Monkeys were introduced to extradimensional shifts. Target fea-
tures varied across rule blocks within a session by only two dimensions
(e.g., in color and shape). In keeping with the previous step, the four
stimuli did not vary along the nontarget dimension. The two target
dimensions changed from one session to the next (e.g., the target dimen-
sions were color and pattern in one session and pattern and shape in the
next). Monkeys typically spent ∼25 sessions on this step.

Step 4: The target feature and stimuli varied in all three dimensions—this
was the final version of the task.

Themonkeys learned and solidified their rule-learning and set-shifting
strategies for solving the task over the course of these training steps. Since
each training phase involved a distinct, relatively notable advancement in
complexity over the previous training step (e.g., the requirement to iden-
tify the correct rule among several possible rules or the introduction of
extradimensional shifts), we observed progressive learning over the course
of these training phases—monkey performance generally improved
between the beginning and end of each phase (Extended Data Fig. 1-2).
However, we did not see such a learning effect during the transition to
the final version of the task (Step 3–Step 4), which we believe is due to
the relatively smaller difference in complexity between these steps com-
pared with earlier steps. The monkeys had already been introduced to
extradimensional shifts between two dimensions per session in Step 3
and were easily able to generalize this to three extradimensional shifts
in a single session when they were transitioned to Step 4.

Prior to testing, a titanium post was surgically affixed to each monkey
to hold its head for eye-gaze tracking and a separate electrophysiological
investigation. During testing, each monkey was head-fixed in a dimly
illuminated room and positioned 60 cm away from a 19 in CRT monitor
with a screen refresh rate of 120 Hz noninterlaced. The monitor had a
resolution of 800 × 600 pixels, subtending 33° by 25° of the visual angle.
Eye movements were recorded using a noninvasive infrared eye-tracking
system (EyeLink 1000 Plus, SR Research). Stimuli were presented using
an experimental control software (NIMHCortex orNIMHMonkeyLogic).
Calibration of the infrared eye-tracking system was accomplished using a
nine-point manual calibration task. Following the calibration task, the
monkey was tested on the rule-switching task.

Themajority of caloric intake during testing was provided in the form
of the food slurry reward. Monkeys were supplemented after testing each
day with fruits and vegetables as well as monkey chow. Daily pretesting
weights were taken to monitor weight, and the caloric intake was
adjusted to maintain a vet-approved weight range based on sex and
age. All animals had ad libitum access to drinking water.

The type of rule shift (intradimensional or extradimensional) was
determined pseudorandomly and occurred with equal probability.
Earlier studies in monkeys and humans performing the WCST suggest
differential contributions of brain regions to rule learning following intra-
dimensional versus extradimensional shifts (Rogers et al., 2000; Watson et
al., 2006). The probability of these two conditions was set to be equal to
facilitate a balanced comparison between them during electrophysiological
investigation. A block consisted of all the trials from the initial rule shift to
the final trial of criterion performance.We analyzed a total of 1,305 blocks
in 81 recording sessions from Monkey B, 872 blocks in 29 recording ses-
sions fromMonkey C, 805 blocks in 29 recording sessions fromMonkey S,
and 224 blocks in 13 recording sessions from Monkey T.

Cross-sessional (Extended Data Fig. 1-3) and intersession (Extended
Data Fig. 1-4) performance comparisons show no discernible trend dur-
ing behavioral recordings at the testing stage, indicating that monkey
rule-learning performance had plateaued. Therefore, an interspecies
comparison based on data collected at this stage is fair, and we used every
session of usable data recorded during testing in our analysis. We
excluded trials when monkeys did not make a decision within the
required 4 s duration (Extended Data Table 1-1) and trials from incom-
plete rule blocks (e.g., at the end of a session).

Humans. The studies involving human participants were reviewed
and approved by the Institutional Review Board of University of
California. All participants provided their written informed consent to
participate in this study and received a small monetary compensation
not linked to performance. We collected two datasets that differed in the
task parameters. Subjects in Dataset 1 were four adult males and one adult
female with mean age of 26.4± 4.1 years. Subjects in Dataset 2 were two
adult males and three adult females with mean age of 20.2 ± 1.6 years.
Subjects were brought into a room where they sat and completed a
computer-adapted version of the rule-switching task on a recording lap-
top. Subjects in Dataset 1 received the following instructions: “In this
experiment, you will see 4 cards on each trial. Each card has 3 unique fea-
tures (color, pattern and shape). No feature is shown on more than one
card, so you will see 12 different features on each trial (4 colors, 4 patterns,
4 shapes). The card containing the correct feature (1 out of 12 possible) will
be correct choice. The correct feature might change during the task. The
answer is given by pressing one of the four arrow keys that corresponds
with the selected card position on the screen (up, down, left or right).
You have 4 s to provide the answer, or the trial times out. The task goes
on for 200 trials or about 15 min.” Subjects in Dataset 2 received a more
limited set of instructions, so that they would learn the task and trial struc-
tures from experience similar to themonkeys: “In this experiment, you will
use one of the four arrow keys on each trial as a response. The ‘correct’ or
‘incorrect’ feedback will be provided following each choice. Your task is to
maximize the number of correct responses.”

Individual trials consisted of the following epochs: cross fixation (black
cross displayed in the center of the screen on a gray background for 300 ms
inDataset 1 and 500 ms inDataset 2); choice (four objects displayed on the
screen at locations corresponding to up, down, left, or right positions for
up to 4,000 ms); feedback (feedback message “correct” or “incorrect”
displayed for 1,500 ms for subjects in Dataset 1 and feedback message
“correct” displayed for 1,500 ms or “incorrect” displayed for 5,000 ms
for subjects in Dataset 2); and ITI (gray screen for 1,000 ms). Subjects indi-
cated their choice by pressing the arrow key on the laptop keyboard, cor-
responding to the chosen object’s position on the screen. If the choice was
not indicated within the 4,000 ms, the trial was considered timed-out. The
learning criterion was defined as 5 consecutive correct trials or 8 correct
out of the last 10 trials for Dataset 1. Dataset 2 paralleled the monkey cri-
terion of 8 consecutive correct trials or 16 correct out of the last 20 trials.
After reaching a learning criterion, the rule switched and a new rule-
learning block began. The new rule was randomly determined, with the
probability of intradimensional versus extradimensional rule shifts set to
be consistent with the monkey experiments. Each participant completed
five task sessions (300 trials/sessions for a total of 1,500 trials in Dataset
1 and 200 trials/session for a total of 1,000 trials in Dataset 2). This
spanned between 107 and 138 blocks across the five subjects in Dataset
1 and between 98 and 110 blocks across the five subjects in Dataset 2.
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WSLS agent. We simulated behavior using aWSLS strategy. The task
structure (rule selection, learning criterion) for theWSLS agent was iden-
tical to that of the humans in Dataset 1, except for the trial structure—the
agent’s algorithm determined its choice immediately upon stimulus pre-
sentation. The WSLS algorithm (Extended Data Fig. 2-2d, left) holds a
single feature as its target (the “persist” state) and deterministically
chooses the object with that feature at each trial. All other features are
in the “avoid” state. Positive feedback maintains the current feature in
the persist state. Negative feedback demotes it to the avoid state and pro-
motes a randomly selected feature from among the 11 others that were in
the avoid state to the persist state. The agent completed 500 rule blocks.

Input–output hidden Markov model–generalized linear model
(IOHMM-GLM) for the prediction of feature choices

Model design. The four objects presented during a trial consist of 12
visual features, f [ {1, . . . , 12}. Assuming a feature-based mental repre-
sentation, themodel predicts the choice of each feature f at the next trial t.
This choice is represented by cft [ {0, 1}, where cft = 1 indicates the fwas
part of the chosen object and cft = 0 indicates it was not. Either choice
can result in a reward or timeout for the trial, given by rt [ {0, 1}. The
choice–outcome history of f given the past l trials is denoted
hf [ {1, . . . , 22ℓ}. We refer to l as the lag, and it is a hyperparameter
of the model. The value of hf at trial t is given by the binary vector
(rt−1, ct−1, . . . , rt−ℓ, ct−ℓ) of size 2l. Therefore, it can take on 22l possible
values. In all our analyses, we choose a lag 1 (l= 1)model for further anal-
ysis. Such a model depends on a choice–outcome history that takes on
one of four possible values at trial t, (rt−1 = 0, ct−1 = 0),
(rt−1 = 1, ct−1 = 0), (rt−1 = 0, ct−1 = 1) or (rt−1 = 1, ct−1 = 1), which
we refer to as NC−, NC+, C−, and C+, respectively.

The transformation of the choice–outcome history into a choice at
trial t is mediated by discrete hidden states sf [ {1, . . . , K} that deter-
mine the parameters of the transformation. The maximum number of
states K is a second model hyperparameter. The transformation is mod-
eled as a Bernoulli GLM as follows:

p(ct = 1|st = k, ht) = 1

1+ exp(−wT
k ht)

, (1)

where the parameters wk [ R1×22ℓ are determined by the state st = k.

We denote the set of parameters across all K states as w [ RK×22ℓ .
Transitions between states also depend on the choice–outcome his-

tory and are modeled by multinomial logistic regression as follows:

p(st+1 = k|st = j, ht+1) =
exp(log(P jk)+ uTjkht+1)∑K

k′=1 exp(log(P jk′ )+ uTjk′ht+1)
, (2)

where the parameters P [ RK×K
+ and u [ RK×K×22ℓ represent the bias or

baseline transition probability and history weights. This model design is
schematized in Figure 2a.

Finally, the probability distribution of initial states π is a model
parameter that specifies the state at the first trial of a session.

Model fitting. We fit the parameter values for the choice GLMweights
w, the baseline transition probability P, the transition GLM weights u, and
the initial state distribution π to the choices of each subject. To avoid overfi-
tting, the parameter values were shared across all features. In other words,
all parameter values were the same for all 12 features. The likelihood of the
data under a model is its probability subject to the model’s parameters and
inputs p(c1..T |w, P, u, p, h1..T ), where T is the number of trials in the ses-
sion. It is expressed in terms of these parameters as follows:

p(c1..T |w, P, u, p, h1..T ) =
∑
s1..T

p(c1..T , s1..T |w, P, u, p, h1..T )

=
∑
s1..T

p(s1|p)
∏T
t=2

p(st |P, u, ht)
[ ] ∏T

t=1

p(ct |w, st , ht)
[ ]

,

where the last two terms are given by Equations 1 and 2, respectively.

The model parameters were fit by minimizing −log[ p(c1..T |
w, P, u, p, h1..T )], i.e., the negative log-likelihood of the data, via gradient
descent with the ADAM optimizer. The choice GLM weights for each of
the k states were initialized to a single 22ℓ-dimensional vector drawn
from a standard normal distribution. The baseline transition probability
was initialized to the sum of a diagonal matrix with value 0.9I where I is
the identity matrix and a random matrix with elements drawn from a
uniform distribution in the interval (0, 0.05). The larger diagonal values
enforce “stickiness” that bias transitions back into a state. The transition
GLM weights were initialized to zero, and the initial state distribution
was initialized to 1/K for each state k. For each subject and each pair
of hyperparameters (l, K), the parameters were optimized over 10,000
iterations with fivefold cross-validation (Fig. 2b).

The best-fit model was sought for each subject and hyperparameter
setting across 10 independent parameter initializations for the humans
and across five initializations for the monkeys. Figure 2b shows
the mean negative log-likelihood taken over all initializations and cross-
validation folds. The best-fit model for each subject was selected for
further analysis from the resulting 50 models for each human and
25 models for each monkey at hyperparameter values l= 1 and K= 4.
We found that a majority of these models produced very similar choice
and transition probabilities. However, fits to the WSLS agent
varied much more. Since negative feedback immediately demoted fea-
tures from the persist to avoid state, exploration of nonrule features
typically lasted 1–2 trials. This likely makes it harder for the model fitting
procedure to identify exploration and introduces more variability
across fits.

Once the best-fit model is identified, the most-likely sequence of
states, s*, for each subject, session, and feature determined by the
Viterbi algorithm (Viterbi, 1967; Fig. 2d). For each trial t and feature
f, the algorithm performs a forward pass across all past trials and a back-
ward pass across all future trials to determine the most-likely state of f at
trial t that best explains past, present, and future history-dependent choices
under the constraints of the model’s parameters and the choice and tran-
sition probabilities they yield. ExtendedData Figure 2-1b shows the cumu-
lative distribution of the posterior probabilities ( p(st = s∗t |c1..T , h1..T )) of
these state estimates calculated for the Viterbi algorithm.

All model fits and the most-likely state determination were performed
with the state space model Python package (Linderman et al., 2020).

Model extension for the prediction of object choices
We extended the feature choice prediction model described in the previ-
ous section to predict object choices at each trial t. Given the predicted
choice probability ( p(c

fi,j
t |w, P, u, p, h fi,j

1..t)) for each feature fi,j, i [
{1, . . . , 3} in an object oj, j [ {1, . . . , 4} presented at trial t, the model
predicts which object is chosen at t. This transformation of predicted fea-
ture choice probabilities p( fi,j) into object choice probabilities p(oj|p(f ))
is modeled by multinomial logistic regression as follows:

p(oj|p(f )) =
exp

∑3
i=1 vijlog( p( fi,j))+ bj

[ ]
∑4

j′=1 exp
∑3

i=1 vi j′ log( p( fi, j′ ))+ b j′
[ ] , (3)

where the parameters v [ R3×4 and b [ R1×4 represent the feature
choice probability weights and biases in selecting each object, respec-
tively. These values were fit to the choices of each subject by minimizing
the cross-entropy loss −∑T

t=1

∑4
j=1 y j,t log( p(o j,t |p(f )t)) where y j,t [

{0, 1} indicates whether object o j,t was chosen on trial t. Model fitting
was performed via stochastic gradient descent with the ADAM optimizer
implemented by the PyTorch Python package (Paszke et al., 2019). The
parameter values for v and b were initialized from a uniform distribution
in the interval

[− 1		
12

√ , 1		
12

√
]
and optimized until convergence with a max-

imum of 100,000 iterations. Cross-validation was performed with the
same training and test sets used while training the feature choice predic-
tion models (Extended Data Fig. 2-1a).

The accuracy of the object choice prediction model based on the
best-fit feature choice prediction model with four states and lag 1 is
shown in Figure 2c, left. We also fit a model to determine the chosen
object in a similar fashion using the feature choice probabilities based
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on their most-likely state estimates ( p(c
fi,j
t |s fi,jt = s

∗,fi,j
t , h

fi,j
t )) instead. The

accuracy of this model is shown in Figure 2c, right.

Model analysis
The probability distribution of histories in each state (Extended Data
Fig. 3-1b) is as follows:

p(h = i|s∗ = j) =
∑

f ,t 1(h
f
t = i, s∗,ft = j)∑

f ,t 1(s
∗,f
t = j)

, (4)

where 1 is the indicator function and
∑

f ,t is a sum over features and
trials. The state and history-dependent choice probability (Extended
Data Fig. 3-1a) can be directly calculated from the model’s parameters
(Eq. 1) or empirically as follows:

p(c = 1|s∗ = j, h = i) =
∑

f ,t 1(c
f
t = 1, s∗,ft = j, h f

t = i)∑
f ,t 1(s

∗,f
t = j, h f

t = i)
. (5)

The choice probability of a feature in each state (Fig. 3a) can be com-
puted by utilizing Equations 4 and 5 or Equation 1 as follows:

p(c = 1|s∗ = j) =
∑

i[{1,...,4}
p(c = 1|s∗ = j, h = i) · p(h = i|s∗ = j).

(6)

Similarly, the state transition probabilities (Extended Data Fig. 3-2) can
be directly calculated from the model’s parameters (Eq. 2) or empirically
as follows:

p(s∗t+1 = k|s∗t = j, ht+1 = i) =
∑

f ,t 1(s
∗,f
t+1 = k, s∗,ft = j, hft+1 = i)∑
f ,t 1(s

∗,f
t = j, hft+1 = i)

. (7)

We approximated the decision process in each species (Extended
Data Fig. 2-2b) from the state transition probability and the “reverse”
state transition probability ( p(s∗t = j|s∗t+1 = k, ht+1 = i)). The latter
helps in conditions where transitions into a state are typically
rare. This quantity (Extended Data Fig. 3-3) is calculated empirically
as follows:

p(s∗t = j|s∗t+1 = k, ht+1 = i) =
∑

f ,t 1(s
∗,f
t = j, s∗,ft+1 = k, hft+1 = i)∑

f ,t 1(s
∗,f
t+1 = k, hft+1 = i)

. (8)

Trial categorization
Trials were categorized based on the identity of the rule feature and the
most-likely state estimates for all 12 features as in Figure 5a. Since each
trial is always designated to belong to one and only one category, the trial
categories are mutually exclusive and exhaustive. For each rule block, this
allows us to determine the number of trials spent in each category
(Fig. 5c). Moreover, since the categories are mutually exclusive, we can
explain summary statistics (mean and variance) of the block length for
each subject in terms of statistics of their category lengths (Extended
Data Fig. 5-1a) as follows:

E[block length] =
∑

category c

E[no. trials in category c]

Var[block length] =
∑

category c

cov[no. trials in category c, block length].

Interspecies comparison of category lengths
In Figure 7, the higher probability of continued exploration of nonrule
features by monkeys during the rule-favored exploration category is
attributed to poor (direct and indirect) negative feedback sensitivity
(Fig. 7c,d). In addition, we attribute the higher probability of continued
exploration in monkeys during rule-favored exploration trials compared
with nonrule exploration trials to a higher prevalence of direct positive
feedback during rule-favored exploration trials (Fig. 7f).

These determinations were made based on the following decomposition:

p(s∗t+1 [ explore|s∗t [ explore, (t, t + 1) # category c)

=
∑

i[{1,...,4}

p(s∗t+1 [ explore, h = i|s∗t [ explore, (t, t + 1) # category c)

=
∑

i[{1,...,4}

[ p(s∗t+1 [ explore|h = i, s∗t [ explore, (t, t + 1) # category c)

×p(h = i|s∗t [ explore, (t, t + 1) # category c)].

The joint probability above is shown in Figure 7f, left, and in Extended Data
Figure 7-1, and quantities resulting from its decomposition below are shown
in Figure 7f, middle-right.

Statistical analyses
Between-species statistical comparisons of learning performance,
inferred state occupancy, and state transition statistics were carried out
using bootstrap tests with a t statistic.

Code accessibility. All training and analysis codes will be available at
publication on GitHub (https://github.com/xjwanglab).

Results
Monkeys are slower rule learners than humans
We compared the ability of monkeys and humans to rapidly
adapt to changes in task contingencies in a rule-switching task
inspired by the WCST. On each trial, subjects were presented
with four objects and received feedback upon selecting one of
them (Fig. 1a, middle). Each object was composed of one unique
feature from each of three dimensions—visual pattern, shape,
and color (Fig. 1a, top). Each of the 12 possible features appeared
in one of the objects on each trial, but object compositions chan-
ged across trials. On a given block of trials, subjects received pos-
itive feedback (monkeys, food reward; humans, the word
“CORRECT” displayed on the screen) for selecting the object
which contained the feature defined by the current hidden rule
(e.g., red) and negative feedback (monkeys, timeout; humans,
the word “INCORRECT” displayed on the screen) otherwise.
After subjects demonstrated that they had learned the current
rule by reaching criterion performance on the current block, a
new block was initiated through an uncued switch to a randomly
chosen new rule (Fig. 1a, bottom). Similarities and differences in
task parameters and learning criteria across the monkey and two
human datasets are outlined in Extended Data Tables 1-1 and
1-2. The second human dataset was collected to match the task
parameters in the monkey dataset, enabling a better comparison
between species (see Materials and Methods).

Remarkably, well-trained monkeys learned new rules within
only tens of trials. Yet, they were over three times slower than
humans (Fig. 1b; monkeys, 27.84 ± 2.92 trials (mean ± SEM);
Human Dataset 1, 5.98 ± 0.52 trials; Human Dataset 2, 6.47 ±
0.19 trials). This learning deficit in monkeys was significant in
comparison with that in subjects in Human Dataset 2 (bootstrap
test with t statistic, p < 0.01), as well as in comparison with sub-
jects in HumanDataset 1 following a correction for the difference
in the learning criterion between the two datasets (Extended Data
Fig. 1-1; monkeys, 20.61 ± 1.52 trials; Human Dataset 1, 5.98 ±
0.52 trials; bootstrap test with t statistic; p < 0.005). We then
sought to explain the interspecies computational differences
that produce this rule learning slowing in monkeys.
Specifically, we focused on inferring individuals’ rule-learning
strategies from behavior and identifying the species differences
that contribute to the learning speed difference. One possible
strategy, WSLS, is widely reported during rule learning in

Goudar, Kim, et al. • Interspecies Rule-Learning Strategy Comparison J. Neurosci., July 10, 2024 • 44(28):e0231232024 • 5

https://doi.org/10.1523/JNEUROSCI.0231-23.2024.f3-1b
https://doi.org/10.1523/JNEUROSCI.0231-23.2024.f3-1a
https://doi.org/10.1523/JNEUROSCI.0231-23.2024.f3-2
https://doi.org/10.1523/JNEUROSCI.0231-23.2024.f2-2b
https://doi.org/10.1523/JNEUROSCI.0231-23.2024.f3-3
https://doi.org/10.1523/JNEUROSCI.0231-23.2024.f5-1a
https://doi.org/10.1523/JNEUROSCI.0231-23.2024.f7-1
https://github.com/xjwanglab
https://github.com/xjwanglab
https://doi.org/10.1523/JNEUROSCI.0231-23.2024.t1-1
https://doi.org/10.1523/JNEUROSCI.0231-23.2024.t1-2
https://doi.org/10.1523/JNEUROSCI.0231-23.2024.f1-1


many species, particularly in the two-armed bandit problem
where the identity of the more rewarding arm must be learned
and can change over trials. Here, one of the arms is repeatedly
chosen as long as this produces positive feedback (win–stay).
When negative feedback is received, the other arm is chosen
on the next trial (lose–shift). This strategy can be cast as a deci-
sion process comprised of two behavioral states—persist and
avoid—where the choice of the currently rewarded arm is in
the persist state and transitions to the persist or avoid states sub-
ject to positive or negative feedback, respectively, while the choice
of the other arm is in the avoid state and transitions to the persist
state when that armwas not chosen on the previous trial and neg-
ative feedback was received (Fig. 1c).

The WSLS strategy is computationally efficient and requires
that the subject attend to and maintain only a single arm’s iden-
tity in working memory. By replacing arm identity with feature
identity, the approach is readily adapted to solve problems in
our rule-switching task and always finds the rule. However, feed-
back is equally informative about all three features in the chosen
object, not just the attended one. Due to this neglect of informa-
tion about unattended features, a simulated WSLS agent learns
rules much slower than optimal: indeed humans learn more rap-
idly (Extended Data Fig. 1-1; WSLS agent mean, 13.31 trials; SD,
12.85 trials; Human Dataset 1, 5.98 ± 0.52 trials). This under-
scores a trade-off between computational and information
efficiency in multidimensional environments. Simultaneously
maintaining and updating beliefs about multiple features is
more information efficient but increases computational com-
plexity and working-memory demands. In contrast, attending
to a single feature at a time is computationally simpler but ineffi-
cient in its integration of trial outcomes. In the following sections,
we address how the two species solve this trade-off.

Dynamic model uncovers hidden states during rule learning
Prior cognitive model comparisons of human behavior in
rule-switching tasks provide evidence for rule-learning strategies

wherein subjects selectively attend to and learn about individual
features or dimensions, rather than feature configurations (i.e.,
objects; Bishara et al., 2010; Wilson and Niv, 2012; Niv et al.,
2015). It is argued that such a mental representation of stimuli
in terms of features resolves the curse-of-dimensionality which
impairs learning efficiency in high-dimensional environments.
For example, it is more efficient to learn the value of 12 features
than the dozens of objects they can be combined into. Drawing
on these findings, we developed a behavioral model to predict
the probability of a subject choosing individual features given
their choices and outcomes on previous trials. However, in con-
trast to earlier work, our model does not postulate a specific
internal belief structure and update rule, thus making fewer
assumptions regarding the learning algorithm underlying a sub-
ject’s behavior. Instead, it aims to discover in an unbiased man-
ner how the decision-making process evolves as a function of
feedback. Recently, this approach has been successful at revealing
previously unobserved behavioral states underlying human,
monkey, rodent, and fruit fly decision-making (Ebitz et al.,
2018; Calhoun et al., 2019; Roy et al., 2021; Bolkan et al., 2022).

For each feature, we model whether the feature is chosen or
not (denoted as c) as a function of past choices and their out-
comes (h) via a Bernoulli GLM (Fig. 2a; see Materials and
Methods). The choice outcome on an earlier trial is represented
by a four-dimensional binary vector where the dimensions rep-
resent whether positive feedback was received after choosing
the feature on the trial (C+), negative feedback was received after
choosing the feature (C−), positive feedback was received after
not choosing the feature on the trial (NC+), or negative feedback
was received after not choosing the feature (NC−). This allows us
to assess separately how the present choice depends on past
choice outcomes both when that feature was chosen (direct feed-
back) and when it was not (indirect feedback). Furthermore, the
model permits dynamic changes in how past choices and out-
comes are transformed into a present choice via hidden states
(s). A feature’s associated hidden state also undergoes a transition

Figure 1. Monkeys rapidly learn rules in a rule-switching task but are slower than humans. a, Rule-switching task structure. Each trial is composed of fixation, decision, response, feedback,
and ITI epochs. After fixation, the subject is presented with four objects that are pseudorandomly composed of three features—a pattern, shape, and color. The features composing each object
are mutually exclusive with respect to other objects. Each block of continuous trials is governed by a rule (1 of the 12 features). The subject receives positive feedback only for choosing the object
with that feature. The identity of the rule is hidden and must be discovered. An uncued rule switch to a random new feature occurs when the subject demonstrates they have learned the current
rule. b, Distribution of trials-to-learning criteria in four monkey subjects (brown) and 10 human subjects (5 subjects, Dataset 1, green; 5 subjects, Dataset 2, blue). All subjects rapidly learn the
rule, but on average, monkeys are over four times slower than humans. c, Decision process for the WSLS learning strategy in two-armed bandit problems. The decision to choose an arm can be in
one of two states: persist when it is chosen and avoid when it is not. The decision to choose an arm stays in the persist state as long as positive feedback is received (win–stay) and switches to the
avoid state otherwise. It then stays in the avoid state as long as positive feedback is received and switches to the persist state when negative feedback is received (lose–shift). See Extended Data
Figure 1-1 for more details.
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at the end of each trial depending on past choices and outcomes,
which may reflect updates to the feature’s value based on past
choice outcomes, or a change in the level of attention to the fea-
ture or even a shift in strategy (i.e., how a feature’s history is
weighted in determining its choice). Note that while the model
permits these possibilities and others, it does not prescribe the
nature and function of the states. Rather, the states and their
dynamics emerge upon fitting the model to behavioral data.
These hidden state dynamics are modeled as an input-dependent
or IOHMM (Bengio and Frasconi, 1994).

The IOHMM-GLM’s goodness of fit to behavior depends both
on the number of previous trials determining a subject’s choice
(lag) and on the number of possible hidden states. Accordingly,
we fit IOHMM-GLMs to each subject’s behavior while systemati-
cally varying these two parameters (Fig. 2b). Across subjects in
both species, model accuracy showed a stronger dependence on
the number of states than on the lag. Crucially, accuracy plateaued
as the number of states increased and exhibited overfitting at
higher lags. In this task, subjects choose objects rather than indi-
vidual features. Therefore, we extended our model to compute

Figure 2. IOHMM-GLM model fits uncover dynamic changes in choice behavior during rule learning. a, IOHMM-GLM model architecture fit to data. The model predicts the choice of a feature c
at each trial t from the choice–outcome trial history h via a GLM. Hidden states s determine the GLM’s parameters. These states can transition at each trial also based on the choice–outcome trial
history via a separate state transition GLM. b, Model fit log-likelihoods on training and test datasets for each human (Dataset 1, green; Dataset 2, blue) and monkey (brown) subject in models
with varying numbers of states and that use choice outcomes from varying numbers of previous trials (lag) to determine the feature choice and state transition probabilities. Each point represents
a single subject’s mean over a fivefold cross-validation and over 5 (monkey) or 10 (human) different model initializations. Each subject’s best-fit model with four states and lag 1 (dashed red box)
was chosen for further analysis. c, Probability of selecting the chosen object produced by a model extension based on feature choice probabilities predicted only from choice outcomes on earlier
trials (left) and on feature choice probabilities computed from most-likely state estimates derived from past, present, and future choice outcomes (right). The probability on each trial was binned
according to the trial’s relative position in the rule block and averaged across blocks. Line and shading represent the mean and SD across subjects for each species. Dots represent block percentiles
at which the average object selection probability is significantly above chance (bootstrap test with t statistic, p< 0.05). d, Most-likely states estimated by the model for 300 trials in an example
human (top) and monkey (bottom) subject. The rule on each block is outlined in black. See Extended Data Figures 2-1 and 2-2 for more details.
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the probability of choosing each object in a trial, based on themod-
el’s predicted probability of choosing individual features on that
trial (see Materials and Methods). Fits of this model extension to
each subject’s behavior based on each of the IOHMM-GLMs in
Figure 2b revealed a qualitatively similar relationship between
model accuracy and the underlying parameters (Extended Data
Fig. 2-1a). For each subject, the best-fit model comprised of four
states and with lag 1 (history from the previous trial only) does
not overfit the data while producing prediction accuracies at or
very close to the performance plateau. Therefore, we selected these
models (Fig. 2b, dashed red box; Extended Data Fig. 2-1a) for fur-
ther analysis.

Figure 2c (left) shows the choice probability predicted by these
four-state lag 1 models for the chosen object at each trial after a
rule switch, averaged over rule blocks; averaging across blocks is
achieved by normalizing the trial number by the block length.
The results show that the model’s prediction of the chosen object
is significantly above chance (0.25) in both species (monkeys,
0.47 ± 0.02; Human Dataset 1, 0.63 ± 0.02). Also, prediction accu-
racy improves as the rule is learned over the block’s time course.
Our primary goal, however, is to find the most accurate explana-
tion for each subject’s rule-learning behavior rather than predict
their future choices based on past choice outcomes. For this, we
consider the most-likely sequence of states across trials inferred
by the model for each feature. This is given by the maximum a
posteriori probability (MAP) estimate of the sequence of states
across all trials in an experimental session. In this formulation,
each estimated or inferred state best explains not only the present
choice but also past and future choices subject to the model’s
choice probabilities in the inferred past/future states and its state
transition probabilities between the inferred present and past/
future states (see Materials and Methods; Fig. 2d). The model
is generally quite confident in its MAP estimates of the most-likely
sequence of states, as measured by the cumulative density of their
posterior probabilities (Extended Data Fig. 2-1b). Moreover, since
the inferred states for each feature are estimated frompast, present,
and future choices, they yieldmore accurate estimates of the choice
probabilities for chosen objects (Fig. 2c, right). For this reason, we
rely on the inferred states to identify the rule-learning strategy in
each species and to interpret the interspecies differences therein.

To gain insight into the interpretation of ourmodelfits, we sim-
ilarly analyzed the choices of a simulated WSLS agent (Extended
Data Fig. 1-1). By construction, we know that the model’s choices
only rely on the previous trial. As expected, higher lag models tend
to overfit the agent’s choices (Extended Data Fig. 2-2a). While the
agent’s true behavior has only two states (Fig. 1c), we find that a
three-state model provides a better fit. Our model splits the
WSLS algorithm’s “avoid” state into two states—a random state
in which a feature is selected with chance probability and an avoid
state in which a feature is selected below chance. This is due to a
combination of the task’s structure and our model setup. By pick-
ing one feature consistently across trials, the agent necessarily
avoids other features in the same dimension. However, the agent’s
choices of features in other dimensions appear random to the
model, since an object is composed of one feature from each
dimension and objects compositions are generated randomly on
each trial. Thus, the appearance of this additional state results
from our model’s treatment of each feature independent of its rela-
tionship to other intradimensional features, a simplifying assump-
tion that allows for tractable fitting. Nevertheless, themodel largely
recovers the hidden states and state transitions that drive the
agent’s behavior—it correctly identifies when a feature is associated
with the persist state 57.6% of the time and accurately determines

the underlying decision process (Extended Data Fig. 2-2c,d).
Collectively, these results show the reliability of this modeling
approach to explain rule learning in both species.

Hidden states reflect feature-based attention and reveal
qualitatively similar strategies in the two species
Learning is often conceptualized as updates to a decision-making
schema based on past decisions and their outcomes (Behrens et
al., 2007; Niv et al., 2015). We sought to identify hidden states
that capture this decision-making process and to explore what
they reveal about the dynamics of human andmonkey rule learn-
ing in our task. We compute the choice probability of features
associated with each state by marginalizing the model’s predicted
choice probability under each state and history (Extended Data
Fig. 3-1a) over the choice–outcome histories (Extended Data
Fig. 3-1b). In both humans and monkeys, a comparison of these
choice probabilities revealed that the model determines states
based on distinct probabilities of choosing the associated feature,
ranging from below chance (avoid) to chance (random) to above
chance (preferred) to very high (persist; Fig. 3a). That is, the
model states correspond to levels of attention paid to each fea-
ture. Moreover, this result was consistently observed in the
majority of the models fit to the behavior in both species, as
well as in a simulated WSLS agent (Extended Data Fig. 2-2).
Since features associated with the preferred or persist state are
favored during rule learning, we refer to them as being under
exploration. We will show that the estimation of the attentional
state toward each feature at each trial permits a systematic anal-
ysis of when features are selected for or withdrawn from explora-
tion and how the choice–outcome history informs these
decisions. This exercise fosters an exposition of the decision-
making process that describes the rule-learning strategy in both
species, the resulting learning dynamics between rule switch
and rule learning, and the identification of the differences in
the decision-making process that most prominently explain the
learning performance difference between the two species.

Since these analyses rely heavily on the most-likely state esti-
mates, we validated the consistency of these estimates with the
model’s parameters. First, we compared the feature choice prob-
ability per history and state computed directly from the fit
parameters (model) and measured based on the state estimate
for each feature on each trial (empirical). The two measurements
yield consistent results, demonstrating that the estimated
most-likely states not only best explain the sequence of choices
but also conform with the model’s parameters. Next, we similarly
compared state transition probabilities per history computed
directly from the fit parameters (model) and measured based
on the state estimate for each feature on each trial (empirical;
Extended Data Fig. 3-2). Here again, we find that the transition
probabilities computed from the fit parameters (model) are con-
sistent with empirical measurements of the transition statistics
based on the most-likely state estimates. Extended Data
Figure 2-2b schematizes the decision process in the two species
derived from their state transition probabilities. The thickness
of an arrow indicates the probability of the respective transition;
extremely rare transitions have been pruned. Similar to theWSLS
agent, we find that a feature is most often associated with the
avoid state, while an intradimensional feature is simultaneously
under exploration (Extended Data Fig. 3-1c). Since the avoid
state likely emerges due to this interdependence between the
choices of interdimensional features, which our model forgoes
for tractability, we do not treat it as distinct from the random
state.
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We compared the observed behavior in our task with a WSLS
strategy taking into account task structure differences between
our task and the two-armed bandit task (Fig. 1c). The composi-
tion of a chosen object by three features forces the choice of fea-
tures in the avoid state of the WSLS strategy. Thus, a WSLS
decision process for our task must define transitions for such fea-
tures when they are chosen. Moreover, the multidimensional
environment of the task offers multiple alternatives for a subject
to shift attention to during lose–shift, compared with the
two-armed bandit task. An updated WSLS strategy that accounts
for these differences is depicted in Extended Data Figure 2-2b
(right). We can now compare the decision process inferred by
the model for the two species (Extended Data Fig. 2-2b, left-
middle) to this WSLS decision process, revealing salient differ-
ences that are delineated by dashed lines. Key among these is
the existence of a preferred state where items are not chosen
with certainty (or near-certainty) as in the persist state but above
chance. The effect of direct feedback (as a result of choosing the
feature) on these states and the random/avoid states is similar to
those in the WSLS decision process. For example, both species

select a feature in the random/avoid state for exploration (by pro-
moting it to the preferred state) seemingly at random after receiv-
ing negative feedback for choosing other features. However, an
interesting exception is that humans sometimes choose to
explore such a feature upon receiving positive feedback for
choosing it.

Larger differences emerge with regard to indirect effects of
feedback. A feature may not be chosen on a trial when it is asso-
ciated with the preferred state (feature choice probability in pre-
ferred state <1, Fig. 3a). However, its state may still transition
subject to the feedback received at the end of the trial—an indi-
rect effect. For example, humans and, to a lesser extent, monkeys
demote features from the preferred to the random/avoid state
upon receiving positive feedback for choosing a different feature.
Consequently, their probability of subsequently choosing an
unchosen feature that was associated with the preferred state
decreases (Fig. 3d, right). They also promote features from the
preferred to the persist state upon receiving negative feedback
for choosing a different feature. Consequently, their probability
of subsequently choosing an unchosen feature that was

Figure 3. Model describes rule-learning dynamics in terms of changes in feature-attentional states. a, Choice probability of features associated with each state in human (Dataset 1, green;
Dataset 2, blue) and monkey (brown) subjects computed directly from model parameters and measured empirically based on most-likely state estimates. Choice probabilities order feature states
akin to levels of attention. b, Decision process describing how humans, monkeys, and the WSLS agent start, continue, and stop exploring a feature, derived from their history-dependent state
transition probabilities. Process is decomposed based on outcome-dependent transitions when the feature is chosen (direct effect) or not chosen (indirect effect). Arrow thickness indicates
probability of the transition. Dashed lines highlight deviations from the WSLS strategy. c, Probability of demoting the state of a chosen feature to a lower probability state when an unchosen
intradimensional feature is promoted from the preferred to persist state (left). Probability of promoting a chosen feature to a higher probability state when an unchosen intradimensional feature
is demoted from the preferred to the random/avoid state (right). Measurements test to what extent indirect effects of promoting or demoting features in the preferred state result from changing
the state, and therefore the choice probability, of a chosen intradimensional feature. Perfect causality would coincide with a probability of 1.0. d, Change in the choice probability of a feature in
the preferred state after receiving negative (left) or positive (right) feedback for choosing a different feature. The indirect effect significantly increases the feature choice probability in the former
situation and decreases it in the latter. See Extended Data Figures 3-1–3-3 for more details.
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associated with the preferred state increases (Fig. 3d, left). This is
striking because it is the only way a feature can transition into the
persist state, which appears to be reserved mainly for a feature
that the subject determines to be the rule (Fig. 2d). Receiving pos-
itive feedback for choosing a feature in the preferred state does
not definitively confirm that it is the rule, since the rule may be
among the other two features in the chosen object. Confidence
in the rule’s identity may be increased based on the consistency
of receiving such direct positive feedback across many trials.
Alternatively, it may be done by ruling out other candidates,
that is, after receiving negative feedback for choosing an object
with a different candidate feature. Consistent with this interpre-
tation, measurements show that when a feature under explora-
tion is not chosen, the object that is chosen often contains a
different feature that is also under exploration (Fig. 4d).

This approach of promoting a feature to the persist state as an
inferred consequence of ruling out an alternative candidate,
rather than integrating direct positive feedback across trials in
favor of the feature, may be favored by both species due to its
computational simplicity—it relies on the outcome of just the
previous trial rather than multiple trials and thereby reduces
working-memory demands. However, it is possible that these
inference-like computations are not deliberate but an inadvertent
consequence of demoting or promoting an intradimensional
chosen feature. For example, given that the probability of choos-
ing all shapes must sum to 1, when one shape is demoted after its
choice produces negative feedback, the probability of choosing
another shape that was associated with the preferred state may
automatically increase, forcibly promoting it to the persist state.
Measurements of the probability of demoting or promoting the
chosen feature while promoting or demoting, respectively, an
unchosen intradimensional feature in the preferred state are
mixed: monkeys do so at chance levels; humans always demote
the chosen feature while promoting the unchosen feature but

seldom promote the chosen feature while demoting the unchosen
feature (Fig. 3c). Nevertheless, these indirect-effect transitions
directly and significantly alter the subsequent choice probability
of the unchosen feature (Fig. 3d). In summary, the best-fit models
discover feature-based attentional states whose dynamics show
marked deviations from a WSLS strategy.

Both species simultaneously evaluate multiple features over
several trials during rule learning
The explore–exploit dilemma pits the benefit of continuing to
select a recently rewarded option (exploit) against the benefit of
selecting a different and potentially more rewarding (but possibly
less rewarding) option (explore). While much work has been done
to determine how humans and other animals navigate this
dilemma (Hills et al., 2015; Gershman, 2018; Wilson et al.,
2021), how they deal with it in a multidimensional environment
with transiently overlapping options remains unclear. Which of
the three features of a chosen and rewarded object should be
exploited on the next trial, given that they are unlikely to appear
colocated in the same object on the following trial? How should
the trade-off between the computational complexity and informa-
tion efficiency of exploring several features at once be resolved?

Themodel finds that both species continuously explore one or
more features (Fig. 4a). In the process, they explore multiple fea-
tures over the course of a block before ultimately identifying the
rule (Fig. 4b). Moreover, each feature is often explored for a series
of several trials in both species (Fig. 4c). But the number of these
trials is substantially larger in monkeys, a finding we analyze
more closely in the following sections. The model also indicates
that both species often explore multiple, but not all, features at a
time (Fig. 4e). This is consistent with the theory of selective atten-
tion (Driver, 2001; Corbetta and Shulman, 2002) wherein objects
are selectively attended to (or filtered for higher processing) sub-
ject to an internally maintained set of relevant perceptual features

Figure 4. Monkeys and humans explore multiple features for several trials in a row to evaluate them. a, The percentage of all trials where at least one feature is under exploration by humans
(Dataset 1, green; Dataset 2, blue) and monkeys (brown). b, Distribution of the number of features explored by each monkey and human subject in a block. c, Distribution of number of
continuous trials with a feature in an exploration state. d, Probability of choosing an object with all features in the random or avoid state, while at least one other feature is in the preferred
or persist state. e, Distribution of number of features simultaneously explored by each monkey and human subject in trials where at least one feature is under exploration.
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(or attentional filters). This also underscores how both species
solve the computational complexity–information efficiency
trade-off. Since it is computationally challenging to simulta-
neously attend to and evaluate all 12 features over several trials
but inefficient to attend to one feature at a time, both species eval-
uate a small subset of all features at a time. Indeed, during explo-
ration, it is uncommon for either species to select an object where
none of the features is in the preferred or persist states (Fig. 4d).
However, monkeys do engage in such random exploration much
more frequently than humans.

From these results, we conclude that both species exhibit a
deliberate form of exploration to address the challenges inherent
in the task environment. Features, often more than one at a time,
are selected for exploration via promotion to the preferred state
after choices of other features produce negative feedback
(Fig. 3b). They are then continuously explored so long as they pro-
duce positive feedback, until alternatives are ruled out. At this
point, they are then promoted to the persist state or are ruled out
after choosing them produces negative feedback (or, in the case
of humans, choosing other features produces positive feedback).

Categorization of feature-attentional states characterizes
learning dynamics
Rule learning proceeds through a sequential process that pro-
gressively reduces ambiguity regarding the rule’s identity until
it is ultimately determined. Our model reveals elementary
feature-specific computations that individuals in each species
apply to maintain and update a small subset of candidate fea-
tures, of which onemay be the rule. To elucidate the over-arching
learning dynamics that governs the inferred sequential rule-
learning process, we developed a simple approach to categorize
individual trials based on the features under exploration and
the true rule (Fig. 5a). The categories are mutually exclusive
and exhaustive—each trial falls into one and only one category.
These are as follows:

1. “Perseveration”: a continuous series of trials following a rule
switch when the feature governing the previous rule is asso-
ciated with the persist state

2. “Random search”: trials when none of the features are under
exploration (i.e., associated with the preferred or persist
states)

3. “Nonrule exploration”: trials when one or more features are
under exploration not including the rule feature

4. “Rule-favored exploration”: trials when one or more features
including the rule are under exploration

5. “Rule preferred”: trials when only the rule is associated with
the preferred state

6. “Rule exploitation”: trials when only the rule is associated
with the persist state

We compare the distribution of categories for trials across the
course of a rule block between species (Fig. 5b). Humans show a
progression from perseveration to nonrule exploration, where
nonrule features are explored and ruled out, to rule-favored
exploration, where the rule feature is simultaneously explored
with nonrule features, to rule exploitation, once other candidates
are ruled out and the rule is identified. Monkey rule learning is
described by similar dynamics except for a much higher inci-
dence of the rule preferred category for most of the block.
Also, while nearly all blocks in Human Dataset 1 end in the
rule exploitation category, a large proportion of the blocks
in the monkey and the second human datasets end in the

rule-favored exploration category. A closer analysis of the
learning criterion trials, which occur at the end of the block,
revealed different reasons for this result in the latter two
datasets. The stronger learning criterion (i.e., larger number of
trials-to-criterion) in these datasets makes it more likely that
the rule and a nonrule feature colocate in the same object on
two or more trials in close temporal proximity. Consequently,
even though the human subject is exploiting the rule feature in
these trials, the model concludes that the nonrule feature is
simultaneously under exploration. In contrast, monkeys con-
tinue exploring nonrule features even when they do not colocate
with the rule feature. This distinction is evidenced by the reward
probability, which approaches 1 much sooner in Human Dataset
2 than in the monkey dataset (Extended Data Fig. 5-1b). These
results show that our categorization approach expresses human
and monkey rule-learning dynamics in terms of behaviorally
interpretable learning stages, for example, an increase in the
reward rate following a rule switch in both species is marked
by the onset of rule exploration with the rule-favored exploration
category (Fig. 5c, bottom).

Examining the number of trials spent in each category deter-
mined bottleneck categories that produce the rule-learning per-
formance deficit in monkeys (Fig. 5c). Specifically, monkeys
spend much longer perseverating on the previous rule, in disam-
biguating the rule feature from nonrule features (rule-favored
exploration) and demonstrating that they have learned the rule
(rule preferred or exploitation). The latter two sources of the
learning performance deficit in monkeys also explain a majority
of the variance in their performance across blocks (Extended
Data Fig. 5-1a, bottom). In contrast, the number of trials humans
spend exploring nonrule features before selecting the rule feature
for exploration (nonrule exploration) largely determines the var-
iance in their rule-learning performance.

Random exploration prolongs the expression of learning in
monkeys
A key difference between the two species identified via this trial
categorization is that monkeys spend many more trials than
humans in the rule preferred or exploitation categories. These
extra trials spent demonstrating or expressing that the rule has
been learned significantly increase both the block length mean
and variance (Fig. 5c; Extended Data Fig. 5-1a). A comparison
of monkey learning performance and human performance in
Dataset 2 shows that this interspecies difference is not caused
by a difference in task parameters or learning criteria. Instead,
we hypothesized that the larger mean and variance of the dura-
tion of time spent in the rule exploitation category by monkeys
compared with that by humans (Fig. 6a) may result from their
random exploration of other features when a feature is already
associated with the persist state (Fig. 3a). This behavior is unique
to monkeys and is prevalent even during rule exploitation trials
(Fig. 6b)—after they have identified the rule, monkeys occasion-
ally choose objects that do not include the rule feature.

To test our hypothesis, we simulated agents that select the rule
feature with the same probability as monkeys and humans do
during the rule exploitation category and asked how many trials
it would take these agents to reach a learning criterion. The
results revealed that the trial count distributions of the simulated
agents were nearly identical to the corresponding subjects
(Fig. 6c), thus confirming our hypothesis. Similar “random
errors” have been observed in humans with focal lateral prefron-
tal lesions on the WCST (Barcelo and Knight, 2002), where they
were attributed to distraction or a failure to maintain the rule in
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workingmemory. However, it remains unclear whether the mon-
keys in our experiments were more distractable than their
healthy human counterparts or deliberately adopted occasional
random exploration as part of their strategy—for example, to
prolong a highly rewarded state.

Reduced sensitivity to negative feedback increases
perseverative errors in monkeys
Perseverative errors occur when the rewarded feature on the pre-
vious block continues to be chosen following the rule switch
despite receiving negative feedback for the choice. Such errors

Figure 5. Exploration-based trial categories reveal learning dynamics and identify causes for monkey learning performance deficit. a, Definition of the six trial categories based on whether the
features under exploration during the trial include the rule feature. b, Distribution of trial categories at each percentile of rule block. Lines and shaded areas reflect mean values and SEM,
respectively, across subjects. c, Trial category summary statistics (top, mean number of trials; middle, variance of number of trials; bottom, reward probability) across rule blocks for human
(Dataset 1, green; Dataset 2, blue) and monkey (brown) subjects. Interspecies comparisons of the mean number of trials per category reveal significant differences in the perseveration, random
search, rule-favored exploration, rule preferred, and rule exploitation categories (bootstrap test with t statistic); n.s., not significant; *p< 0.1; **p< 0.01; ***p< 0.001. See Extended Data
Figure 5-1 for more details.

Figure 6. Random exploration and perseverative errors prolong monkey rule learning. a, Mean number of trials spent by human (Dataset 1, green; Dataset 2, blue) and monkey (brown)
subjects in the rule exploitation category per rule block. b, Probability of selecting an object with the rule feature across trials in the rule exploitation category. Monkeys occasionally explore other
objects compared with humans. c, Distribution of the number of trials spent by human and monkey subjects in the rule exploitation category per rule block (left) and by simulated agents that
select the rule feature with probabilities in b until they reach a learning criterion (right). d, Mean number of trials spent by human and monkey subjects in the perseveration category per rule
block. e, The probability of humans and monkeys choosing the previous rule feature at each trial after a rule switch (left) is commensurate with the probability of the previous rule feature being
associated with the persist state (right). f, The probability of the previous rule feature transitioning back into the persist state after its selection produces negative feedback is higher in monkeys
(bootstrap test with t statistic); n.s., not significant; *p< 0.1.
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are characteristic of frontal lobe damage and dysfunction in the
WCST (Milner, 1963; Gläscher et al., 2019), where they are
believed to reflect a cognitive deficit in adapting to changes in
task contingencies. Pronounced perseveration error rates in the
WCST are also observed in patients with neuropsychiatric
(Sullivan et al., 1993; Ozonoff and McEvoy, 1994; Everett et al.,
2001) and substance abuse disorders (Sullivan et al., 1993;
Bishara et al., 2010). Interestingly, our model’s association of
the persist state with the previous rule feature during consecutive
trials immediately following a rule switch suggests that monkeys
persevere on the previous rule for several more trials than
humans (Fig. 6d). Indeed, direct measurements showed that
the probability of choosing the previous rule after a rule switch
is consistent with such a state estimate in both species (Fig. 6e).

To determine the cause of the elevated perseveration in mon-
keys, we asked which choice outcome(s) best explained the differ-
ence in continued persistence with the previous rule between the
two species. Our analysis showed that humans were far more
likely to demote the chosen previous rule feature from the persist
state in response to negative feedback compared with monkeys
(Fig. 6f). Monkeys’ weaker sensitivity to negative feedback paral-
lels that of humans with substance abuse disorders and prefrontal
lesions performing the WCST, who also perseverate more than
healthy controls (Bishara et al., 2010; Gläscher et al., 2019).

Reduced negative feedback sensitivity compromises efficient
credit assignment and prolongs rule learning in monkeys
The largest contribution to the interspecies difference in rule-
learning performance is from trials in the rule-favored explora-
tion category where the rule feature is concurrently explored
with one or more nonrule features (Fig. 7a,b, left). While it is

reasonable to explore the rule for several consecutive trials as it
produces rewards, what must be explained is why nonrule fea-
tures are concurrently explored for many more trials by mon-
keys. Indeed, monkeys continuously explore individual nonrule
features for manymore consecutive trials during the rule-favored
exploration category (Fig. 7b, right). This explains the lengthier
duration of this category in monkeys, resulting from a higher
probability of a nonrule feature transitioning back into an explo-
ration state during rule-favored exploration trials (Fig. 7c).
Analysis further showed that this interspecies difference in tran-
sition probability is explained by a lower sensitivity of monkeys
to either form of negative feedback—direct, when the nonrule
feature is chosen and negative feedback is received, and indirect,
when it is not chosen and positive feedback is received (Fig. 7d).

While both species also explore nonrule features during non-
rule exploration trials, time spent in this category is relatively
short in both humans and monkeys (Fig. 5c). So what explains
the difference in duration between the two categories in mon-
keys? Since the nonrule exploration category is followed by rule-
favored exploration trials, one possibility is that it is cut short by
the onset of exploration of the rule feature as the nonrule feature
continues to be concurrently explored for many more trials.
However, measurements in monkeys showed that nonrule fea-
ture exploration only occasionally spans the two categories
(probability = 0.27 ± 0.04). Therefore, the number of trials during
which a nonrule feature is explored by monkeys is usually much
smaller when it happens in the nonrule exploration category than
in the rule-favored exploration category.

This difference in duration is reflected in a higher probability of
a nonrule feature transitioning back into an exploration
state during rule-favored exploration trials (Fig. 7e). Since the

Figure 7. Diminished negative feedback sensitivity prolongs concurrent exploration of rule and nonrule features. a, Mean number of trials spent by human (Dataset 1, green; Dataset 2, blue)
and monkey (brown) subjects in the rule-favored exploration category per rule block. b, Distribution across rule blocks of the number of trials spent in the rule-favored exploration category by
each subject (left) and of the number of consecutive trials spent by them exploring individual nonrule features during this category (right). c, Probability of a nonrule feature transitioning back
into an exploration state during rule-favored exploration trials. d, The probability of a nonrule feature transitioning back into an exploration state upon receiving negative feedback for choosing it
(direct negative feedback) or positive feedback for choosing a different feature (indirect negative feedback) during rule-favored exploration trials is higher in monkeys (bootstrap test with t
statistic). e, Probability of a nonrule feature transitioning back into an exploration state during rule-favored exploration trials and nonrule exploration trials in monkeys. f, Joint probability of a
nonrule feature transitioning back into an exploration state and each choice–outcome history occurring during rule-favored exploration trials and nonrule exploration trials in monkeys (left);
probability of each choice–outcome history occurring during either category (middle); probability of a nonrule feature transitioning back into an exploration state in response to each choice–
outcome history during either category (right). The higher probability of a nonrule feature transitioning back into an exploration state during rule-favored exploration trials compared with that
during nonrule exploration trials is explained by a higher incidence of direct positive feedback for choosing the nonrule feature in the former category (bootstrap test with t statistic); *p< 0.1;
**p< 0.01. See Extended Data Figure 7-1 for more details.
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probability of transitioning back into the explore state is a
marginalization of its joint probability with the choice outcome
it follows, we asked what choice–outcome history best explains
the transition probability difference between the two categories.
Measurements showed that receiving positive feedback for choos-
ing the nonrule feature (C+) is the key differentiator between the
joint probabilities for the two categories (Fig. 7f, left). This could
either be because the transition probability in response to this his-
tory is different under the two categories or because the frequency
of the history is different under them. We found that while the
transition probabilities are similar (Fig. 7f, left), monkeys are
more likely to have received positive feedback for choosing a non-
rule feature under exploration during the rule-favored, exploration
category (Fig. 7f, middle). When the rule feature is concurrently
explored with a nonrule feature (rule favored, exploration), the
probability of selecting them both when they colocate in an object
is higher. This increases the probability of receiving positive feed-
back for choosing the nonrule feature, which makes appropriately
assigning credit to the rule feature challenging. This underscores
the importance of negative feedback sensitivity in demoting non-
rule features from exploration states, in the absence of which the
duration of concurrent exploration of the rule and nonrule fea-
ture(s) is prolonged.

Discussion
Methodological and technological advances in training and
recording from animal models allow for the study of increasingly
complex behaviors in nonhumans. However, before interpreting
their brain activity as a human-like model of neural computation,
it is important to ascertain whether their computational algo-
rithms are human-like. Usually, macaque monkeys and humans
learn the structure of tasks in different ways, particularly when
monkeys must learn via impoverished reward-based feedback,
while humans learn via rich verbal instruction plus feedback.
This raises the possibility that while they both learn the same
tasks, they may enlist different abstractions, cognitive operations,
and neural mechanisms (Melloni et al., 2019). Indeed, this critical
issue has been considered in interspecies studies of the cognitive
processes involved in short-term memory (Wittig et al., 2016),
strategic behavior (Brosnan et al., 2011, 2017; Moeller et al.,
2023), and task-switching (Caselli and Chelazzi, 2011), with care-
fully matched experimental approaches. Our study aims to assess
whether macaques and humans employ similar mental represen-
tations and operations to perform a cognitively complex
rule-switching task that relies on several interdependent cogni-
tive processes. Our findings demonstrate that both species
employ similar overall strategies to perform the task (Fig. 3a,b).
However, key differences in the decision criteria of these strate-
gies explain monkey performance deficits on the task.

The task that motivated our study, the WCST, was originally
developed to test cognitive flexibility (Grant and Berg, 1948;
Heaton, 1981). Ensuing research has made it clear that rather
than engaging a single cognitive process for task set switching,
the WCST relies on a variety of cognitive functions including
working memory, attention, decision-making, inhibitory control,
and reasoning (Dehaene and Changeux, 1991; Barcelo, 2001;
Buchsbaum et al., 2005; Lie et al., 2006; Gläscher et al., 2019).
This has inspired systematic studies on WCST performance
with two related goals. First, research has focused on accurately
characterizing rule-learning strategies and/or the cognitive pro-
cesses that support their underlying computations (Bishara et
al., 2010; Wilson and Niv, 2012; Gläscher et al., 2019). We

developed an approach to identify the rule-learning strategy in
humans and monkeys based on hidden behavioral states. The
best-fit models for both species ascribe these hidden states to
varying levels of attention toward individual task-relevant visual
features (Fig. 3a). This is consistent with the conclusions of earlier
studies that humans contendwith the “curse-of-dimensionality” in
the WCST with selective attention toward individual features dur-
ing exploration (Bishara et al., 2010; Wilson and Niv, 2012;
Gläscher et al., 2019). Our findings clarify these results by showing
that in a high-dimensional variant of the task (12 instead of 3 pos-
sible rules), both humans and monkeys must further contend with
a trade-off between computational complexity and information
efficiency while exploring for the rule, and they do so by selectively
attending to a few, but not all, features at a time (Fig. 4e).

Our approach differs from earlier studies in that it does not pos-
tulate a specific learning algorithm (Bishara et al., 2010; Wilson
and Niv, 2012). Rather, it discovers the decision process that deter-
mines the rule-learning strategy. In doing so, it illustrates impor-
tant differences between human/monkey rule-learning strategies
and the commonly observedWSLS strategy (Fig. 3b). For example,
a key function of the preferred state, which is not part of theWSLS
strategy, is to support the simultaneous exploration ofmultiple fea-
tures at a time. This state is also associated with inference-like
computations that support a computationally efficient strategy of
narrowing down the rule by eliminating other candidates using
unambiguous negative feedback.

The second goal, with stronger clinical implications, is the
assessment and categorization of error types toward identifying
accurate behavioral markers for different types of neuropsychiat-
ric disorders and dysfunction or lesions of different brain regions
(Drewe, 1974; Owen et al., 1991; Robbins, 1996; Barcelo and
Knight, 2002; Buchsbaum et al., 2005; Nagahama et al., 2005;
Lie et al., 2006; Buckley et al., 2009; Bishara et al., 2010;
Gläscher et al., 2019). In support of this goal, we have developed
a learning-stage categorization method that delineates learning
stages by the features under exploration and their relationship
to the rule (Fig. 5a). Intuitively, this approach tracks how far
along a subject is from learning the rule and reflects this in the
reward rates across categories (Fig. 5c, bottom). Crucially, it
allows us to precisely ascribe differences in learning performance
between subjects to differences in individual categories (Fig. 5a;
Extended Data Fig. 5-1a).

Consequently, we identify various known error types, but also
newer ones that may prove useful in future investigations of
behavioral markers for neuropsychiatric disorder and cognitive
impairment. Our results distinguish perseverative errors (made
during the perseveration category) from nonperseverative ones.
Consistent with earlier work in humans with PFC lesions
(Barcelo and Knight, 2002), it also subcategorizes the latter
into random errors that occur when choices are inconsistent
with the hypotheses being tested by the subject and efficient
errors that occur when they are. It further identifies two forms
of random errors: one occurs during rule search (before the
rule preferred or exploitation categories) when subjects occasion-
ally choose none of the features they are currently exploring
(Fig. 4d); the other occurs after they have found the rule and
while they are demonstrating this (Fig. 6b). It remains unclear
if these random errors are a feature of cognitive flexibility and
result from random exploration or are caused by the failure to
maintain the attention set in working memory. Indirect evidence
in humans has been found in favor of the latter interpretation
(Figueroa and Youmans, 2013). If in fact it is a result of higher
distractability in monkeys, monkey performance may be
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improved by imposing stronger controls on potential environ-
mental distractors (Malmo, 1942). Most errors during rule-
favored exploration trials are repeated despite unambiguous
(direct or indirect) negative feedback (Fig. 7). These “disambi-
guation” errors are neither random nor efficient but arise from
a deficit in disambiguating the rule feature that is under explora-
tion from a simultaneously explored nonrule feature. This newly
identified error type is consistent with the observation that
macaque monkeys are more sensitive to negative feedback
when the average reward is low and more sensitive to positive
feedback when the average reward is high (Wittmann et al.,
2020) and bears further exploration in patient populations.

The higher incidence of these error types inmonkeys may have
more to do with how they learn rather than some fundamental
cognitive constraints. Since they cannot receive a rich verbal
description of the task’s structure as humans do and must learn
about it via trial and error, monkeys may misinterpret uncued
rule switches as stochasticity in the environment resulting in a
maladaptive strategy. To address this confound, we trained a sec-
ond set of human subjects (Dataset 2) withminimal verbal instruc-
tions that excluded details on the task’s structure, forcing them to
learn the task’s structure via trial and error. Yet, these subjects
learned the task’s structure within a couple of rule blocks, thereaf-
ter learning new rules as rapidly as the first human subject set
(Dataset 1). Model fits also revealed similar rule-learning strategies
in these subjects as in the first set. However, this does not necessar-
ily limit the cause of the interspecies learning differences to differ-
ences in cognitive capacity. Whereas the monkeys were motivated
by food reward, human motivation was driven by an internally
maintained goal of maximizing the total number of correct feed-
back responses. This may produce widely different motivational
states in the two species and thereby engage only partially overlap-
ping learning pathways in their brains. In addition, different
response modalities were employed by the two species: monkeys
used fixation and saccades to choose the target, whereas humans
use key presses. The eye movements during many repeated trials
are known to drive risk-seeking attitudes in macaques, while the
more effortful and deliberate key presses might promote more
conservative, attentive attitudes in humans. Therefore, caution is
warranted given the potential bias in cognitive states introduced
by these variations in task design for the two species.

Nevertheless, it is intriguing that many of the errors that con-
tribute to monkey rule-learning deficits have also been implicated
in the poor performance of humans with cognitive impairment. A
higher incidence of perseverative errors in patients with prefrontal
cortex pathology was first reported by Milner (1963). Random
errors are frequently observed in patients with frontal lobe dys-
function (Barcelo and Knight, 2002). Poor sensitivity to negative
feedback ismore pervasive in patients with schizophrenia and sub-
stance abuse (Bishara et al., 2010; Gläscher et al., 2019).
Interestingly, these observations weremade in subjects performing
the WCST that bears salient differences from our task, which
affects the kinds of ambiguities that a subject must contend with
and will likely alter their rule-learning strategy as a consequence.
First, the WCST relies on a different decision-making computa-
tion: rather than select one of four randomly generated objects,
WCST subjects must match a randomly generated target object
to one of the four fixed reference objects. Second, the matching
rule corresponds to a feature dimension rather than an individual
feature, for example, under the color rule, subjects are rewarded
when they match the target object to the reference object with
the same color. While this reduces the number of rules from12
to 3, WCST rules are more abstract.

Ultimately, the validity and generality of these similarities
between rule-learning monkeys and cognitively impaired WCST
human subjects will need to be resolved through more studies
that compare the two species on a wider range of cognitive func-
tions, with broader controls, and using a variety of different tasks.
In addition, the basis of these similarities can be resolved through
interspecies neural data comparisons. Our work produces several
testable neural hypotheses in both species. First, does the neural
representation of the current rule persist during and across rule
exploitation trials (i.e., after its identity has been learned; Wallis
et al., 2001; Mansouri et al., 2006; Bernardi et al., 2020; Minxha
et al., 2020)? Second, since the set of explored features must be
maintained across several trials, are they represented by neural
activity during and across trials? Our model indicates that this
attention set is typically small (Fig. 4e), and longer bouts of explor-
ingmultiple features simultaneously (Fig. 7b) require a choice alter-
nation between these features. This drives the need to maintain the
explored features in workingmemory, particularly to support recall
of one of them after it is not chosen on one or more previous trials.
Third, are the distinct error types (perseverative, random, efficient,
disambiguation) differentially represented in the brain? Error cod-
ing neurons have been reported in the prefrontal cortex ofmonkeys
performing aWCST analog (Mansouri et al., 2006; Kuwabara et al.,
2014). Moreover, perseverative, random, and disambiguation
errors signal the need to disengage from the previous rule, address
a working-memory error, and remove a nonrule feature from the
attention set, respectively. Due to this difference in their function,
they may be represented differently, either eliciting stronger
responses in different brain regions or eliciting differential
responses in the same region (Barcelo, 1999). Fourth, is the strength
of these error signals or their modulation of the attention set rep-
resentation (Mansouri et al., 2006) larger on trials when they serve
their function? For example, are perseverative error signals stronger
on trials after which perseveration halts compared with when it
does not? These analyses can reveal the reason for the interspecies
performance difference: What neurocognitive differences explain
the relative prevalence of perseverative, random, and disambigua-
tion errors in monkeys compared with those in humans, and are
they also observed in humans with cognitive impairment?

There exist several avenues to clarify and improve upon our
approach. A key difference between earlier models and ours is
our assumption that each feature is associated with discrete states,
which our model relates to feature-based attention. In contrast,
Bayesian and reinforcement learning approaches posit that sub-
jects reason about features by assigning continuous-valued func-
tions such as belief (Wilson and Niv, 2012) and value (Bishara
et al., 2010; Niv et al., 2015) to them, respectively. In future
work, we will test whether a model with continuous-valued states
provides a better fit to behavior. Our model has also been sim-
plified to keep analysis tractable—it does not explicitly account
for interactions between features. This had the unintended conse-
quence of discovering the “phantom” avoid state. Future model
improvements will incorporate such interactions explicitly.

In conclusion, we have applied a hypothesis-free state–charac-
terization method to identify and compare the strategies of
humans and monkeys on a rule-switching task. The hidden atten-
tional states and state transitions inferred by the model facilitated
the determination of the decision process underlying this strategy
as well as the various stages of rapid rule learning. The inferred
states substantively explain human and monkey choice behavior
(Fig. 2c). Our overall approach reveals differences in cognitive
strategy between the two species and isolates the identity and rel-
ative contribution of various error types to the performance
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difference between the two species. It shows that random explora-
tion or distraction and poorer sensitivity to negative feedback
underlies a higher incidence of these error types in monkeys, lead-
ing to their underperformance. The high fidelity demonstrated by
the model in inferring hidden attentional and decision states holds
promise in advancing the search for more accurate behavioral
markers of various types of cognitive dysfunction and in motivat-
ing targeted analyses to determine and compare the neural corre-
lates of the various cognitive processes involved in rule learning
and cognitive flexibility.
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