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Abstract 12 
 13 
Optimization of metabolically engineered organisms requires good understanding of producing 14 
balanced level of pathway proteins. Targeted proteomics via selected-reaction monitoring (SRM) 15 
has been increasingly used in metabolic engineering research to detect and quantify sets of 16 
proteins with high selectivity, multiplexity, and reproducibility. In combination with metabolomics 17 
and other omics tools, targeted proteomics has helped optimize the production of many bio-based 18 
chemicals in various metabolic engineering cell factories. In this review, we present recent 19 
applications of targeted proteomics in metabolic engineering research and highlight several 20 
successful studies of targeted proteomics in boosting production of commodity and high value 21 
chemicals. Additionally, we also discuss challenges and limitations of current targeted proteomics 22 
and map opportunities for future research.      23 
 24 
Highlights: 25 

• Targeted proteomics is now a routine tool to verify protein expression levels 26 
• Targeted proteomics enables multiplex quantification of selected proteins expression 27 
• Targeted proteomics can be used to identify metabolic pathway bottleneck 28 
• Altered native protein levels in metabolic engineering can be measured by proteomics 29 
• Targeted proteomics supports genome-scale metabolic model and flux balance analysis 30 

 31 

Introduction 32 
 33 
Metabolic engineering plays an important role in our quest for building a future bioeconomy, 34 
including generating renewable fuels [1,2] and biomanufacturing a large variety of chemicals [3–35 
5] from sustainable resources. However, transforming organisms into efficient cell factories that 36 
produce industrially-relevant titers for the large-scale production of these compounds has been 37 
challenging [6]. Maximizing gene expression in the biosynthetic pathway, though may be 38 
important, is not a universal solution to achieving high titers as excessive heterologous gene 39 
expression can cause significant burden to the cell, thereby affecting cell fitness and lowering 40 
product titers. In multi-gene biosynthetic pathways, it is also typically necessary to tune protein 41 
expression level to maximize metabolic flux towards product of interest and minimize 42 
accumulation of by-products that might be toxic to the cells [7]. Careful monitoring and 43 
quantification of protein expression levels are important keys to optimize product titers. 44 
 45 
For more than 40 years, the nitrocellulose-based Western blot (immunoblot) analysis has been a 46 
principal method for detection and quantification of specific proteins in complex biological 47 
samples. Although this method can be conveniently used to quantify the same protein in various 48 
biological samples, assaying many different proteins simultaneously can increase development 49 
time and experimental costs. Alternatively, in the advent of significant advancements in mass-50 
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 2 

spectrometry technology, discovery/shotgun proteomics has also been applied to characterize 51 
proteome samples. However, MS-MS acquisition in shotgun proteomics favors abundant 52 
peptides, restraining detection of low-abundance peptides. This bias towards mass analysis of 53 
the more highly abundant peptides limits the depth to which a proteome can be analyzed. To 54 
overcome the limitations of shotgun proteomics, the mass spectrometric approach of selected-55 
reaction monitoring (SRM) can be implemented. In the last decade, targeted proteomics via SRM 56 
has emerged as the preferred technique to quantify multiple different proteins simultaneously in 57 
a sample [8]. For its importance and potential applications in various pharmaceutical and 58 
biotechnology industries, Nature Methods declared SRM as the “Method of the year” in 2012 [9]. 59 
Indeed, since its development, targeted proteomics via SRM has been used in various 60 
applications, some of which have been reviewed elsewhere, including applications in systems 61 
biology and translational medicine [10,11], biomedical research [12], drug efficacy biomarkers 62 
[13], identification of human pathogenic bacteria [14], and as tools for detection of foodborne 63 
pathogens [15]. In this review, we will focus specifically on the applications of targeted proteomics 64 
in metabolic engineering studies, including: (1) quantification of native/heterologous pathway 65 
proteins, (2) characterization of synthetic biology tools for metabolic engineering, (3) identification 66 
of pathway bottlenecks and optimization of biosynthetic pathways, (4) supporting analytical tools 67 
in genome-scale metabolic model (GEM) and flux balance analysis (FBA), and (5) other related 68 
applications to metabolic engineering. 69 
 70 

Current methods and quantification techniques in targeted 71 

proteomics 72 
 73 
The SRM, also called multiple reaction monitoring (MRM), was first used to detect and quantify 74 
small organic molecules in the late 1970s [16]. It was later implemented in targeted proteomics to 75 
complement discovery/shotgun proteomics for fast quantification of low abundant S. cerevisiae 76 
central carbon metabolism proteins with high quantitative accuracy [17]. Compared to 77 
discovery/shotgun proteomics, SRM technique provides higher sensitivity and selectivity as mass 78 
analyzers only focus on specific peptide and product ion pair, rather than scanning wide mass 79 
range window. A typical workflow of targeted proteomics via SRM is shown in Fig. 1. Among 80 
different protein quantification methods listed in Table 1, label-free relative quantification method 81 
and absolute quantification method using standard labelled synthetic peptides (e.g., QconCAT 82 
and AQUA) are two commonly used methods in metabolic engineering studies.  83 
 84 

 85 
Fig 1. A typical workflow of targeted proteomics via SRM starts with cell lysis and protein extraction of biological samples followed by 86 
digestion of the proteins into peptides by a protease (e.g., trypsin). Peptides generated by trypsin cleavage are then run on a liquid 87 
chromatography column coupled to a triple quadrupole (QQQ) mass spectrometer. SRM uses the unique capability of triple quadrupole 88 
mass spectrometers to specifically filter selected peptide within a mass range centered around the selected peptide in the first mass 89 
analyzer (Q1), which is fragmented by collision-induced dissociation (CID) in the second quadrupole (Q2) to generate fragment ions. 90 
The generated fragment ions are then transferred to the third quadrupole (Q3), where only a selected m/z ion can pass, resulting in a 91 
chromatographic trace with retention time and signal intensity as coordinates [8,18]. The peptide-fragment ion pair is known as 92 
transition and the area under the chromatographic peaks for each transition is a measure of the amount/concentration of the 93 
representative protein in the sample. 94 
 95 
 96 
 97 
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 98 
Table 1. Quantification methods used in targeted proteomics 99 
 100 

Quantification Method Example Ref 

Relative Label-free strategies Endogenous reference proteins [19] 

R
e
la

ti
v
e
/a

b
s
o

lu
te

 

Metabolic stable-isotope labeling 13C labeling [20] 

 15N labeling [21] 

 SILAC [22] 

 SILAM [23] 

Enzymatic stable-isotope labeling H2O/H2 
18O labeling [24] 

Chemical stable-isotope labeling Dimethyl labeling [25] 

 iTRAQ [26]  

 mTRAQ 

[27] 

 TMT 

 ICAT 

 Photocleavable ICAT 

 ICPL 

Standard labeled synthetic peptides AQUA [28–30] 

 PSAQ [31] 

 QconCAT [32–35] 

 101 
SILAC, stable-isotope labeling by amino acids in cell culture; SILAM, stable-isotope labeling by amino acids in mammals; iTRAQ, 102 
isobaric tags for relative and absolute quantification; mTRAQ, mass differential tags for relative and absolute quantification; TMT, 103 
tandem mass tags; ICAT, isotope-coded affinity tags; ICPL, isotope-coded protein labels; AQUA, standard labelled synthetic peptides 104 
for Absolute QUAntification, QconCAT, recombinant expression of a quantification concatemer 105 
 106 
Label-free relative quantification method 107 
 108 
Label-free relative quantification method usually uses normalization strategy of proteotypic 109 
peptides of the targeted proteins against endogenous reference proteins/housekeeping proteins 110 
(i.e., proteins whose expressions are assumed unaffected by experimental conditions) [19]. Due 111 
to its ease of use without requiring expensive isotope-labeling, this method has been used in 112 
many metabolic engineering studies (Table 2). This normalization strategy also allows 113 
compensation for analyte loss during sample preparation or variability during LC-MS 114 
measurement. Although this method in many cases is sufficient to obtain relative quantification of 115 
overexpressed proteins in biosynthetic pathways between samples, recent studies indicate that 116 
stable expression of housekeeping proteins should not always be taken for granted [36]. If 117 
housekeeping proteins are used for normalization, one should validate their expression profiles 118 
are stable across the tested experimental conditions. 119 
 120 
Stable-isotope synthetic peptides for absolute quantification method 121 
 122 
To have a more precise quantification, several absolute quantitative proteomics approaches have 123 
been developed, utilizing different stable-isotope-labeled internal standards (IS), such as 124 
synthetic peptides (AQUA) [28–30], quantification concatemers (QconCATs) [32–35], and full-125 
length protein standards (PSAQ) [31]. To perform AQUA, isotope-labeled synthetic peptides are 126 
added to digested protein samples as the IS, followed by peptide extraction and MS analysis. 127 
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Protein quantity is determined according to the ratio of peak intensities of unlabeled natural 128 
peptides to their heavy isotope-labeled counterparts. Another commonly used absolute protein 129 
quantification method is QconCATs which are obtained via the expression of artificial QconCATs 130 
genes in E. coli grown in a heavy isotope enriched medium. QconCATs are added to protein 131 
samples before digestion, and the digested concatenated peptides serve as IS for different 132 
proteins. An alternative approach to AQUA and QconCAT is PSAQ, where full-length isotope 133 
labeled proteins were used as internal standard for absolute quantification. When added to protein 134 
samples before digestion, PSAQ corrects for protein losses that could occur during sample 135 
preparation and LC-MS analysis. Although PSAQ is an ideal choice for absolute quantification of 136 
proteins, this method is seldom used in quantification of a large number of proteins in metabolic 137 
engineering studies due to the expensive nature of PSAQ proteins as full-length of isotope labeled 138 
proteins must be synthesized. 139 
 140 

Applications of targeted proteomics in metabolic engineering 141 

 142 
One of the earliest studies to demonstrate the implementation of targeted proteomics in microbial 143 
metabolic engineering was published in 2011. The study described the use of targeted proteomics 144 
to identify the bottleneck enzymes in the biosynthetic pathway of amorphadiene, an antimalarial 145 
drug precursor, in E. coli [37]. Since then, targeted proteomics has been implemented to assist 146 
production of various compounds, including L-tyrosine [38], isoprenol [39,40], bisabolene [40,41], 147 
limonene [40,41], isoprene [42••], farnesene [43], lycopene [44], alkane and alkene [45], n-butanol 148 
[46], ethanol [47•,48••], free fatty acids and fatty alcohols [49], fatty acid methyl esters [50•], 149 
spinosyn [51], ent-kaurene [52•], benzyl glucosinolate [53••], and many other compounds (Table 150 
2). The production host is also not only limited to E. coli. Other organisms, such as Streptomyces 151 
[51], Clostridium cellulolyticum [54•], Corynebacterium glutamicum [55••], Rhodosporidium 152 
toruloides [52•], Chlamydomonas reinhardtii [56,57], a cyanobacterium Synechocystis sp. PCC 153 
6803 [47–50], and many others have been used as production hosts. This section will describe 154 
the applications of targeted proteomics in metabolic engineering studies in more details (Fig. 2). 155 
 156 
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Table 2. Applications of targeted proteomics in metabolic engineering 157 
 158 

Application Pathway Organism host Protein Quantification method Target compound (titer) Ref 
M
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Central carbon metabolism C. glutamicum 10 QconCAT None [58] 

Central carbon metabolism S. cerevisiae 137 SPPS None [17] 

Central carbon, amino acid metabolism S. cerevisiae 137 13C labeling None [59] 

Central carbon metabolism Synechocystis sp. PCC 6803 112 15N labeling None [60] 

Glycolytic pathway S. cerevisiae 27 QconCAT None [63] 

Calvin cycle, photosynthetic apparatus, starch synthesis, 
glycolysis, TCA cycle, carbon concentrating mechanisms (CCM) 

Chlamydomonas reinhardtii 88 SPPS None [57] 

Terpene pathway Picea abies (bark) 16 SPPS None [64] 

Carbon and nitrogen metabolism pathway Medicago truncatula 3 SPPS None [65] 

Fruit ripening pathway Fragaria x ananassa 101 Label-free None [66] 

Polyketide pathway Streptomyces 23 Label-free Spinosyn (1.46 mg/L) [51] 

Sucrose metabolism Arabidopsis thaliana 1 SPPS None [65] 

Central carbon, amino acid metabolism S. cerevisiae 135 13C labeling None [20] 

Ribosome, glycolytic pathway S. cerevisiae 78 QconCAT None [71] 

Central carbon metabolism P. putida KT2440 132 13C/15N labeling None [73•] 

Central carbon metabolism E. coli 22 PSAQ NADPH [76] 

Fatty acid synthesis pathway E. coli 12 PSAQ Free fatty acids (4000 mg/L) [77] 

Isoprenoid pathway C. cellulolyticum 1 Label-free Isoprene (20 µM) [54•] 

Wood–Ljungdahl pathway Clostridium ljungdahlii 7 Label-free Acetone, isopropanol [79•] 

Methylerythritol 4-phosphate (MEP) pathway E. coli 1 Label-free Isoprene (1.2 nM/OD600.min) [42••] 

Mevalonate pathway R. toruloides 2 Label-free ent-kaurene (1400 mg/L) [52•] 

Fatty acid synthesis pathway Synechocystis sp. PCC 6803 4 Label-free Fatty acid methyl esters (120 mg/L) [50•] 

Ethanol Synechocystis sp. PCC 6803 5 Label-free Ethanol (200 mg/L/OD730) [47•] 

Polyketide pathway E. coli 2 Label-free Alkane and alkene (140 mg/L) [45] 

Mevalonate pathway E. coli 1 Label-free Isoprenol (2230 mg/L) [80] 

Mevalonate pathway E. coli 10 Label-free Amorphadiene (3500 mg/L) [81] 

Mevalonate pathway E. coli 5 Label-free Amorphadiene (700 mg/L) [82] 
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Mevalonate pathway E. coli 9 Label-free Amorphadiene (1600 mg/L) [7] 

Characterization of 
synthetic biology 

tools 

Red fluorescent protein E. coli 1 Label-free None [37] 

Ethanol pathway Synechocystis sp. PCC 6803 5 Label-free Ethanol (200/mg/L/OD730) [47•] 

Identification of 
pathway 

bottlenecks 

Mevalonate, tyrosine pathways E. coli 24 Label-free Tyrosine (250 mg/L) [38] 

Terpene pathway E. coli 9 Label-free amorpha-4,11-diene (500 mg/L) [37] 

Tyr metabolic pathway E. coli 11 Label-free L-tyrosine (>2000 mg/L) [78] 

Clostridial n-butanol pathway C. cellulolyticum 5 Q-Tag fusions n-butanol (120 mg/L) [46] 

Mevalonate pathway E. coli 7 Label-free Isoprenol (1500 mg/L) [39•] 

Fatty acid synthesis pathway Synechocystis sp. PCC 6803 1 Label-free Fatty alcohols (100 mg/L) [49] 

Mevalonate pathway C. glutamicum 5 Label-free Isoprenol (1250 mg/L) [55••] 

Glucosinolate pathway E. coli 10 15N labeling Benzyl glucosinolate (8.3 mg/L) [53••] 

Mevalonate pathway E. coli 9 Label-free Farnesene (1100 mg/L) [43] 

Mevalonate pathway E. coli 10 Label-free Lycopene (1440 mg/L) [44] 

Understanding of 
pathway 

regulations 

Fatty acid synthesis pathway E. coli 23 Label-free Free fatty acids (5200 mg/L) [83] 

Flavonoid/anthocyanin pathway Fragaria x ananassa 21 Label-free None [72] 

Supporting 
analytical tools in 
computational/ 
mathematical 

model 

Central carbon, amino acid metabolism S. cerevisiae 228 15N labeling None [21] 

Glycolytic pathway S. cerevisiae 27 QconCAT None [74] 

Mevalonate pathway E. coli 17 QconCAT Amorphadiene [75] 

Mevalonate pathway E. coli 9 Label-free 
Bisabolene (1150 mg/L) and limonene (600 

mg/L) 
[41•] 

Supporting 
analytical tools in 

multiomics analysis 

Ethanol Synechocystis sp. PCC 6803 99 Label-free Ethanol (118 mg/L) [48••] 

Mevalonate pathway E. coli >20 Label-free Isoprenol (300 mg/L/OD600) [40] 

Strain 
characterization 

upon environmental 
perturbation 

Central metabolic pathways Synechocystis sp. PCC 6803 106 Label-free None [61] 

Photosynthetic apparatus Synechocystis sp. PCC 6803 244 15N labeling None [62•] 

Central metabolic pathways E. coli >400 QconCAT None [67•] 

Central carbon metabolism B. subtilis 41 QconCAT None [68] 

Central carbon metabolism C. glutamicum 19 15N labeling None [69] 

Organohalide respiration Dehalococcoides mccartyi 10 SPPS None [70] 

159 
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 160 
Figure 2. Application of targeted proteomics in metabolic engineering. PCAP, principal component 161 
analysis of proteomics; RFP, red fluorescent protein 162 
 163 

Targeted proteomics for multiplexing protein quantification 164 

 165 
One of the key advantages of MS-based approach as opposed to traditional western blotting is 166 
the capacity of MS-based proteomics to provide high throughput and multiplex protein 167 
quantification. Traditionally, western blotting is used as a simple yet powerful method to provide 168 
a yes or no answer about the presence of recombinant protein expression in a complex protein 169 
sample. However, western blotting can only be carried out if a primary antibody against the protein 170 
of interest is available. Alternatively, in the advance of fluorescence-activated cell sorting (FACS) 171 
technology, a protein of interest can be fused to a fluorescent protein (e.g., green fluorescence 172 
protein (GFP)) and the measurement of fluorescence level is used as a proxy to determine the 173 
expression level of the recombinant protein [84]. Both methods are, however, constrained by the 174 
limited number of available affinity tags and fluorescent proteins. Additionally, they require an 175 
addition of a protein tag incorporated to either the N- or C-terminus of a protein, which is not only 176 
complex to perform but can also influence the protein folding, expression, and activity. In 177 
metabolic engineering studies, especially those involving multi-gene pathways, measurement of 178 
protein expression levels using targeted proteomics is the preferred solution. Targeted proteomics 179 
has been used to confirm the expression of approximately 23 genes in the spinosyn biosynthetic 180 
gene cluster in three different Streptomyces species [51]. Gaida et al., introduced n-butanol 181 
biosynthesis pathway comprising five genes from C. acetobutylicum to C. cellulolyticum and 182 
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measured the expression of functional enzymes using targeted proteomics [46]. More recently, 183 
Phillips et al. performed conjugal transfer of heterologous acetone biosynthesis pathway to an 184 
industrial promising syngas-fermenting organism, C. ljungdahlii, and confirmed the protein 185 
expression level by targeted proteomics [79•]. Targeted proteomics can also be used to monitor 186 
the presence of specific proteins in a cell-free system [85•]. By using microflow liquid 187 
chromatography-selected reaction monitoring (LC-SRM), Gao et al. accelerated the time needed 188 
to quantify more than 100 proteins from P. putida KT2440 by 3-fold [73•]. Data from targeted 189 
proteomics can provide useful insights on cellular metabolism and for further metabolic 190 
engineering steps to improve the product titer.                              191 

 192 

Targeted proteomics for characterization of synthetic biology tools  193 

 194 
Several synthetic biology tools, such as promoters, ribosome-binding sites (RBS), reporter 195 
proteins, and modular assembly of genetic parts have been developed to accelerate the genetic 196 
engineering of microbial hosts. One of the simplest strategies to tune protein expression level is 197 
to alter regulatory elements such as promoters or to express genes in different copy number 198 
plasmids. Redding-Johanson et al. used targeted proteomics via SRM to characterize several 199 
promoters for heterologous protein expression in E. coli in different plasmid backbones by 200 
measuring the red fluorescent protein expression levels [37]. The same strategy was later used 201 
to monitor relative expression levels of multiple proteins in amorphadiene biosynthesis pathway 202 
(Fig. 2B). By comparing the protein expression level with the mRNA transcription data, they found 203 
striking differences between the transcript and protein data. The codon-optimized version of the 204 
phosphomevalonate kinase gene results in no change in the level of transcript in comparison to 205 
the non-codon-optimized gene whereas the protein level increased by nearly 3-fold, highlighting 206 
the importance of complementing transcript data with protein expression level. By codon-207 
optimizing both mevalonate kinase and phosphomevalonate kinase genes and expressing them 208 
under a stronger promoter, the final amorphadiene titer is improved from 75 to 500 mg/L. Similar 209 
strategy was used by Singh et al. [38] to characterize several inducible and constitutive promoters 210 
for bioproduction of L-tyrosine in E. coli. By fine-tuning the expression system, they successfully 211 
improved the L-tyrosine production titer from 1 to 250 mg/L. In addition, they also used targeted 212 
proteomics to quantify native protein levels involved in L-tyrosine biosynthetic pathway and found 213 
altered expression levels of native proteins that would otherwise be difficult to detect without 214 
targeted proteomics. In a more recent study, Bartasun et al. used targeted proteomics to 215 
systematically characterize a set of ribosome binding site sequences in a multigene one-operon 216 
system in a cyanobacterium Synechocystis sp. PCC 6803 for ethanol production [47•]. They found 217 
that the expression level of the first gene in an operon influences the expression level of 218 
subsequent genes, which is also observed elsewhere [43].    219 

 220 

Targeted proteomics for pathway bottleneck identification and pathway 221 

optimization 222 

 223 
Low bioproduct titers can rise from inefficient translation of pathway genes, accumulation of toxic 224 
intermediates, pathway enzyme inhibition, substrate competition, pathway imbalance, and many 225 
other factors. A previous study by Redding-Johanson et al. [37••] had identified that mevalonate 226 
kinase and phosphomevalonate kinase were the potential bottlenecks in production of 227 
amorphadiene, an antimalarial drug precursor. These data provide useful information for follow-228 
up work, reducing time-consuming engineering steps. To relieve the pathway bottleneck, 229 
Nowroozi et al. [81] used combinatorial expression of amorphadiene biosynthesis pathway using 230 
different RBS and carefully monitored the relative pathway protein expression levels by targeted 231 
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proteomics. After selecting the most appropriate RBS combination, they successfully relieved the 232 
pathway bottleneck, reduced accumulation of toxic metabolite intermediates ((3-hydroxy-3-233 
methylglutaryl-CoA (HMG-CoA) and farnesyl pyrophosphate (FPP)), and improved the growth, 234 
leading to production of more than 3,500 mg/L amorphadiene. In two other studies, Zhu et al. 235 
measured the expression levels of proteins involved in mevalonate pathway using targeted 236 
proteomics and identified isopentenyl diphosphate isomerase (Idi) as one of the key enzymes for 237 
improved farnesene and lycopene bioproduction [43,44]. Pathway bottleneck can also be pinned 238 
down by plotting the metabolite/product titer against increasing enzyme expression levels. A high 239 
level correlation from linear regression may indicate the protein being monitored as a rate-limiting 240 
enzyme [49,55••]. This strategy, however, might be a challenge when the intermediate 241 
metabolites are unstable, converted into other forms, and/or difficult to monitor. Another 242 
alternative is to measure the absolute pathway protein concentration. The data can be 243 
incorporated into enzyme kinetic-based ordinary differential equation models to predict product 244 
titers. Weaver et al. [75] specifically built targeted proteomics assay to measure the absolute 245 
amorphadiene pathway protein concentration and predict the amorphadiene formation. They 246 
found good amorphadiene titer data agreement between model and experiment. In a more recent 247 
study, Petersen et al. identified and addressed metabolic bottlenecks in production of benzyl 248 
glucosinolate, a plant secondary metabolite with diverse health benefits, by changing genetic 249 
regulatory elements and monitoring pathway protein expression levels [53••].     250 
 251 
Targeted proteomics as supporting analytical tools in multi-omics analysis and 252 

genome-scale metabolic models  253 
 254 
Even though quantification of protein levels and target products alone can help identify pathway 255 
bottlenecks in many metabolic engineering studies, quantification of precursor/substrate, 256 
fermentation by-products, and intermediate metabolites through metabolomics and the following 257 
analysis with aid of mathematical models are often necessary to rationally identify pathway 258 
balance, bottlenecks, and potential engineering targets. For example, George et al. [39•] 259 
constructed a series of pathway variants for bioproduction of isoprenol in E. coli. Aided by targeted 260 
proteomics and metabolomics, they performed correlation analysis between enzyme vs 261 
metabolite levels from each pathway variant and constructed a conceptual model of isoprenol 262 
pathway behavior for further engineering steps. With a properly balanced pathway, 1.5 g/L of 263 
isoprenol was produced at 46% theoretical yield. In another example, Alonso-Gutierrez et al. [41] 264 
measured the correlation of limonene and bisabolene product titers vs enzyme levels and used 265 
principal component analysis of proteomics (PCAP) to pinpoint specific enzymes that need to 266 
have their expression level adjusted to maximize limonene and bisabolene production in E. coli. 267 
More recently, Volke et al., used information from metabolomics and targeted proteomics to 268 
pinpoint isopentenyl diphosphate isomerase (Idi) and 1-deoxyxululose 5-phosphate synthase 269 
(Dxs) as major flux controlling enzymes in the methylerythritol phosphate (MEP) pathway [42••]. 270 
Nishiguchi et al. established kinetic models combining metabolic flux, metabolite concentration, 271 
and protein abundance data and identified phosphoglycerate kinase as a promising engineering 272 
target to improve pyruvate supply for ethanol production [48••]. As currently only a few genome-273 
scale metabolic models have incorporated protein abundance data (e.g., S. cerevisiae [86], E. 274 
coli [87], C. ljungdahlii [88], B. subtilis [89]), MS-based proteomics will continue to play important 275 
roles in genome-scale metabolic model development. These examples demonstrate that in 276 
combination with mathematical model and computational biology tools, proteomic data can give 277 
meaningful information to reduce iterative trial-and-error steps in the design-build-test-learn 278 
(DBTL) cycle and bring biological engineering closer to more predictable and rational engineering 279 
processes.             280 
 281 
 282 
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Targeted proteomics for protein quantification in varying environmental conditions   283 
 284 
Optimization of production medium is required to maximize yield. The most suitable growth 285 
conditions (e.g., pH, temperature, agitation speed, aeration, etc) and medium composition (e.g., 286 
carbon and nitrogen source and ratio, phosphate, etc) must be optimized accordingly. Too often 287 
than not, the success of bioproduction of commodity chemicals largely depends on the feedstock 288 
used. However, most medium optimization studies only use product titer as a measure of success 289 
without pursuing deeper understanding at the cellular level. In the advent of omics tools, targeted 290 
proteomics can provide insight into changes in the proteome level upon environmental 291 
perturbations (e.g., variation in growth medium, environmental stress) [68,90]. P. putida KT2440, 292 
an emerging workhorse for bioproduction of various chemicals [91], is of interest for many 293 
metabolic engineers as this microbe can utilize various carbon sources. Kukurugya and co-294 
workers recently investigate the metabolic phenotype enabling P. putida KT2440 to utilize mixed 295 
substrates [92]. In combination with metabolomics and fluxomics, they unravel constitutive tuning 296 
of the metabolic architecture allowing co-utilization of carbohydrate and aromatic substrates in P. 297 
putida KT2440. Indeed, in a similar study by Gao and co-workers where they utilize high-298 
throughput large-scale targeted proteomics assay to quantify 132 proteins (339 peptides) in P. 299 
putida KT2440 grown in various carbon sources [73•], they find P. putida KT2440 dynamically 300 
changes their central carbon metabolism protein abundance in response to different growth 301 
media. In the future, a systematic study of the effect of growth medium on metabolite production 302 
might pinpoint metabolic engineers how to optimize the production medium to achieve high 303 
product yield. 304 
 305 
Targeted proteomics in pathway discovery 306 
 307 
Model organisms such as E. coli and S. cerevisiae are still the most widely used organisms for 308 
metabolic engineering purposes. Recently, extremophiles bacteria have gained interest as non-309 
model metabolic engineering platforms due to their fascinating lifestyle [93,94]. Although limited 310 
available metabolic engineering tools make them hard to engineer, extremophilic organisms may 311 
serve as object studies of non-model organisms to elucidate the molecular basis of survival or 312 
adaptive response. A proteomics analysis of the hydrocarbon degrading Oleispira antarctica RB-313 
8 revealed a n-alkane oxidation pathway consisting of several alkane monooxygenases, alcohol 314 
and aldehyde dehydrogenases, a fatty acid-CoA ligase, and a fatty acid desaturase. When grown 315 
on tetradecane, these proteins were upregulated by 3 to 21-fold, shedding some light on 316 
hydrocarbon degradation pathway in this organism [95]. Though obtained from shotgun 317 
proteomics, such information can further be used to identify enzymes produced by extremophiles 318 
that have biotechnological and commercial value (e.g., enzymes with thermal stability, higher 319 
activity, or pH and solvent tolerance) [96,97]. The identified enzymes then can be heterologously 320 
expressed in model hosts for industrial applications. 321 
 322 

Perspectives 323 

 324 
Targeted proteomics has been a useful tool in many metabolic engineering studies. Recent years 325 
have seen increasing efforts to synergistically combine targeted proteomics with other systems 326 
biology tools (omics, GEM, etc) to bring a more predictable and rational engineering of biology. 327 
Much, however, remains to be done in order to allow rapid development of cell factories with 328 
industrially relevant titers. Recently, machine learning [98] has emerged as an effective tool to 329 
predict pathway optimization [99], model RBS sequence – phenotype relationship [100], and 330 
generate Automated Recommendation Tool (ART) [101]. Integration of high quality and accuracy 331 
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protein expression data input from targeted proteomics and other omics tools to machine learning 332 
will become an avenue of interest.   333 
 334 
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