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ABSTRACT 

)) ()' 

This paper describes an explanation-based learning (EBL) system based on a version of 
Newell, Shaw and Simon's LOGIC-THEORlST (LT). Results of applying this system 
to propositional calculus problems from Principia Mathematica are compared with 
results of applying several other versions of the same performance element to these 
problems. The primary goal of this study is to characterize and analyze differences 
between not learning, rote learning (LT's original learning method), and EBL. Another 
aim is to provide base-line characterizations of the performance of a simple problem 
solver in the context of the Principia problems, in the hope that these problems can be 
used as a benchmark for testing improved learning methods, just as problems like chess 
and the eight puzzle have been used as benchmarks in research on search methods. 
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1. Introduction 
There is widespread agreement that explanations can form the basis for powerful 

learning strategies. A new subfield of machine learning called explanation-based 
learning (EBL for short) has begun to exploit this idea. To date, however, there have 

been few experiments on EBL involving more than a few examples. 1 Experiments 
involving the application of complete EBL systems to large sets of problems from 
challenging domains are needed in order to demonstrate claims about the advantages of 
EBL and to discover the limitations of proposed EBL methods. 

This paper reports on an EBL experiment in a logical domain. The experiment 
involves complete machine learning systems built around one of the earliest, simplest 
AI problem-solvers: Newell, Shaw, and Simon's LOGIC-THEORIST (LT). Results of a 
comparison of the performances of three versions of LT (corresponding to non-learning, 
rote learning, and explanation-base·d learning) on a large number of problems are 
given. 

2. The Domain: Principia lVJathematica 
The domain of this experiment is the propositional calculus of Alfred North 

Whitehead and Bertrand Russell's Principia Mathematica (26]. The calculus deals 
with a set of expressions or well-formed propositional formulae built upon. a set of 
variables that are supposed to stand for arbitrary propositions such as "Agrippina 
killed Claudius." Complex propositions are built up by using connectives such as NOT 
( -) , AND (!\), OR(\/), and IMPLIES (:J). 

Valid propositions are called theorems. It turns out that the theorems of the 
propositional calculus can be built up from an initial set of theorems called axioms, 

such as (P\/P)-:JP. 2 Other theorems are derived from the axioms by applying rules ·~f 
inference. Detachment, or modus ponens, is a rule of inference that allows one to infer 
B if one has A and A-:JB. Another rule allows substitution of any expression for a 
variable in any theorem. Other rules allow replacement of definitions for defined 
connectives (e.g., P\IQ for P-:JQ). 

A derivation of a theorem is called a proof. A proof of a desired theorem can be 
written as a sequence ending in that theorem where each step in the sequence is either 
an axiom or else follows from previous steps by a rule of inference. Alternatively, the 
proof can be depicted as a tree whose root is the desired theorem where each node in 
the tree is either an axiom or follows from its predecessors by an inference rule. 

The particular theorems of interest in this chapter are listed in Appendix 2. They 
are from the second and third chapters of part one of Principia (26]. 

1 Minton's work on MORRIS (10] and on PRODIGY (11, 12] are noteworthy exceptions. 
2 Complete lists of the axioms and of the problems from Principia used in the experiments are pro

vided in an appendix. 
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One of the advantages of propositional logic is an advantage of mathematics in 
general, namely high levels of abstraction and generality. When one learns arithmetic 
one is learning something that will apply to an extremely wide range of tasks from the 
mundane (e.g., choosing best buys at the grocery store) to the esoteric (e.g., performing 
basic calculations in the astrophysics of black holes). Similarly, propositional logic is an 
abstract, general theory of deduction. One can apply logic in infinitely many definite, 
specific domains by specifying propositions that provide details about particular 
subjects. Any learning that takes place at the logical level can thus be applied in many 
domains. 

Another advantage of logic is that the number of schemata required for complete 
coverage is small. This feature facilitates the execution of large scale experiments 
because it isn't necessary to hand code large amounts of knowledge in new schemata in 
order to introduce new examples. 

The particular logical system of Principia Mathematica has the added advantage 
that a very simple and natural theorem prover exists, which can be used as the 
problem-solving performance element in learning experiments. 

3. The Performance Element: LT (The Logic Theorist) 
According to Donald Loveland's Automatf,d Theorem-Proving: A Quarter-Century 

Review [9], Newell, Shaw, and Simon's The Logic Theory Machine [17) was the first 
publication reporting results of a computer program that proved theorems. The 
program (hereafter referred to as LT) proved some theorems in the propositional 
calculus of Principia Mathematica [26). This section is a brief description of how a 
simple version of LT works, in the terminology of schema-based problem solving. 

3.1. Schemata 
In this context, a schema is merely a collection of related descriptions. Each LT 

schema has three descriptions (well-formed formulae of propositional calculus) related 
by a logical dependency. The dependency states that one description, (the consequence 

y x:)Z 

X:JY x X:JY Y:JZ 

Figure 1. The Detachrrent and Chaining Scherrata 
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of the schema) is true if both of the others (the antecedents) are true. LT only uses 
two schemata: a detachment schema and a chaining schema (see Figure 1). The 
detachment schema captures modus ponens and is comprised of X, Y, and X:JY where 
Y depends on X:JY and X. The chaining schema captures the transitivity of 
implication, and is comprised of X:JY, Y:JZ, and X:JZ where X:JZ is true if both X:JY, 
and Y:JZ are true. 

3.2. Problem Solving 
LT's mission is to construct a proof of a given conjecture: building it out of 

detachment and chaining schemata, axioms, and previously proven theorems. LT's 
proofs are always linear trees similar to the one shown in Figure 2. The leaves (labelled 
T 0 ... T 1) are all taken from the set of known theorems. Each schema (labelled S.) 
correspo~ds to a step in the proof and can be considered to reduce a problem (P.) to 

1
a 

simpler one (Pi+l) as in Figure 3. 
1 

.. 
··· ........ .. 

Figure 2. The Structure of LT's Proofs 
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New Problem Pi+l is Bi B, 

where B is the MGU of c. with p. and of A. with T. 
' 1 1 1 1 

A.: T. 
l l 

C.: p. 
1 l 

Figure 3. One Step in the C-Onstruction of a Proof 

Figure 3 shows what happens, in general, during one step in the construction of a 
proof. Given a-problem P., LT chooses a schema S. and a known theorem T., such that 

. 1 1 1 
the problem is an instance of the schema's conclusion C. and the theorem T ... is 
compatible with one of the schema's antecedents A.. The other antecedent B. ( viev~ed 
in the context of identifications between C. and P~, and betwee~ A. and T. )\ecomes 
the new problem Pi+l· 

1 1 1 1 . 

In other words, the problem P is matched against the conclusion C. of a schema. 
If the match succeeds, the resulting substitution is applied to the conclusion ~nd to 
both antecedents. The result of applying the substitution to one of the antecedents A. 
is then matched against known theorems until ~ match succeeds. The resulting 
substitution is applied to the other antecedent, and it becomes a new subproblem. 

It should be noted that the matcher used in this study is "smart" in the sense 
that it can decode defined symbols such as IMPLIES; but the matcher is "dumb" in 
the sense that it does not recognize other logical relationships (such as the fact that 
NOT NOT P is equivalent to P and so double negations could be stripped away). The 
logic itself deals with most logical relationships, not the matcher. 

LT only extends a proof by means of a detachment schema in one way: given a 
problem, LT looks for a known implication whose conclusion subsumes the problem. If 
such a theorem is found, its antecedent becomes the new problem (see Figure 4). This 
amounts to applying a detachment operator corresponding to modus ponens, run 
backward. 
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New Problem Pi+l is X () 

where () is the MGU of Y with p. and of X::JY with T. 
1 l 

Y· p . i 

Figure 4. A Detachrrent Step 

New Problem Pi+l is Y::JZ 8, 
where e is the MGU of X:JY with T. and of X:JZ with P. 

X:JY: T. 
1 

X:JZ: P. 
l 

1 l 

Figure 5. A Chaining Forward Step 

The chaining schema can be used in two ways to extend the proof, so in effect LT 
has two chaining operators corresponding to transitivity of implication inference rules. 
Both operators attempt to prove an implication of the form X:JZ. Chaining forward, 
(Figure 5), involves trying to show that an immediate consequence of X implies Z. In 
contrast, chaining backward (Figure 6) tries to show that X implies an immediate 



antecedent of Z. 
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New Problem Pi+ l is X:JY B, 
where Bis the MGU of Y:JZ with T. and of X:JZ with p. 

l l 

Y:JZ: T. 
l 

X:JZ: p. 
l 

Figure 6. A Chaining Backward Step 

For a concrete example, consider the operation of LT on Principia-2.17: 
(Q':JP):J(P:JQ). This is the only if part of an important tautology called contraposition 
[4), which states that the contrapositive (J'::JP holds if and only if the implication P"SJQ 
holds. 

LT proves Principia-2.17 by chaining forward (see Figure 7): it proves that the 
contrapositive (J'::JP implies an intermediate result that eventually leads to the orig1nal 
implication P::JQ. The first link of the chain is supplied by an instance of the axiom 

Principia-1.4: (A \IB)::J(B\IA). With A bound to rJ, and B bound to P this yields 
(fi\IP)::J(P\IQ). By the definition of the implication connective, P\lr:J is the same as 
P::JfJ; this serves as the intermediate step in the chain from (J::JP to P::JQ. Chaining 
forward transforms the initial problem into the problem of proving (P:Jlj):J(P:JQ). 

Next, the detachment operator is used. The detachment operation amounts to 
performing modus ponens backwards, so a theorem is needed whose conclusion 
subsumes the current subproblem. The conclusion of axiom Principia-1.6: 

(A::JB)::J((C\IA)::J(C\IB)) meets this requirement. With C bound to P, A bound to q, and 
B bound to Q, the axiom becomes (Q':JQ):J((P:JQ):J(P:JQ)). Detachment on Principia-
1.6 transforms the problem of proving (P:JQ):J(P:JQ) into the problem of proving {J:JQ. 

Assuming . Principia-2.14 is known, fj:JQ is the final subproblem because it is an 
instance of Principia-2.14. 
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( Q':JP) :J( P:JQ) 

Principia-1.4: ( Q':JP) :J( P:Jtj) ( P:JQ) :J( P:JQ) 

Principia-1.6: (/J:JQ):J((P:JQ):J(P:JQ)) Principia-2.14: (j":JQ 

Figure 7. The Proof of Principia-2.17 

The example just discussed may leave the impression that no search is involved in 
finding proofs. Of course this is not correct. Theorem provers are notorious for 
searches involving high branching factors and LT is no exception. LT performs 
breadth first search: when it uses its operators and known theorems to expand the 
unsolved subproblem in a partial proof it generates a number of new partial proofs each 
with one new subproblem. These are checked to see whether they are instances of 
known solutions and if not, they are added to the end of a queue of incomplete proofs 
to be worked on later. 

4. LT Plus Rote Learning 
In Human Problem Solving, Newell and Simon describe experiments on LT 

augmented with simple forms of learning. They mention that perhaps the simplest 
learning method is to make LT's list of known theorems variable, modifying LT so as to 
add any new theorem it proves onto the list, so that "... in proving a sequence of 
theorems, LT would gradually become more capable" [16]. This form of learning is well 
suited for relatively uncontrolled situations such as learning by discovery, where 
conjectures are made that may turn out to be false, and problems are posed that may 
not be solvable. In more controlled learning situations such as learning from a teacher, 
sequences of problems are often carefully selected so that all of the problems are 
solvable. In fact, they are usually sequenced in order of increasing difficulty. The 
problems from Principia form just such a carefully constructed sequence. LT was 
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allowed (in both the original and the present studies) to use all prior theorems in its 
attempts on each new theorem, whether it had succeeded in proving them or not. 

When solved problems are stored, each new problem is reduced to one that has 
been solved before. When all problems are stored, each new problem is reduced to one 
that has been seen before. In both cases, problems encountered are simply added to 
memory and one is left with the distinct impression that no "understanding" or 
"thinking" is taking place. For this reason, one can consider these strategies to be 

forms of rote learning. 3 

5. LT Plus Explanation-Based. Learning 
One problem with rote learning systems is that they tend to be very sensitive to 

the particular form of the examples they observe. Extraneous details of specific 
examples tend to be retained as well as essential facts. This can cause failure to 
recognize that a solution to one problem can also be used fqr another problem because 
the problems differ in trivial ways. One would prefer to forget. about the extraneous 
details and to remember only the essentials of an example. The basic idea of 
explanation-based learning is that one can do this by constructing and using 
explanations. When one conducts an analysis and constructs an explanation of how 
and why a solution solves one particular problem, one is better prepared to see the 
general class of problems that the method can be successfully applied to. 

LT can be augmented with EBL by focusing on explanations instead of focusing on 
problems. The explanations are LT's proofs, considered as structures built out of 
schemata. The EBL version of LT ignores the specific theorem that gave rise to a 
proof. Each proof is considered in its full generality in order to compute the most 
general theorem that can be concluded on the basis of the proof. The generalized 
conclusion of an LT proof can be defined recursively as follows. The generalized 
conclusion of an elementary proof (a proof that states that the desired conclusion is an 
instance of a known theorem) is simply the known theorem itself. The generalized 
conclusion of a complex proof is the result of viewing the conclusion of the topmost 
sc • ::na in the context of identifications (unifications) between one antecedent and a 
known theorem, and between the other antecedent and the generalized conclusion of 
the subproof (see Figure 8). 

In particular, the generalized conclusion of a proof by detachment is the result of 
viewing the conclusion Y of the detachment schema in the context of the unification of 
one of its antecedents X::JY) with some known theorem (T.) and of the other 

1 
antecedent X with the generalized conclusion ( Gi_ 1) of the subproof. (See Figure 9.) In 
forward chaining, X::JY is unified with a known tneorem while Y::JZ is unified with the 
generalized subconclusion to obtain a substitution that is applied to X::JZ. In backward 
chaining, the roles of X::JY and Y::JZ are reversed. 

3 The learning versions of LT add new theorems to the end of the list of known theorems. This will 
be seen to have important consequences in both rote and explanation-based learning. 



9 

Generalized Conclusion G. is c. (), 
l l 

where () is the MG U of A. with T. and of B. with G. 
1 l l 1 1-

A.: T. 
1 l 

B.: G. l 
1 1-

~gure 8. The Generalized Conclusion of One Step of a Proof 

Generalized Conclusion G. is Y (), 
l 

where () is the MGU of X:JY with T. and of X with G. 1 l 1-

(X:JY}: T. 
l 

Y: G. 
l 

X: G: ·L 

Figure 9. The Generalized Conclusion of a I>etachn"Ent Proof 

For a concrete example, reconsider the proof of Principia-2.17, (i'J:JP):J(P:JQ). 

Recall that the proof involved two steps: chaining forward on Principia-1.4 reduced the 
original problem to a subproblem that was solved by detachment on Principia-1.6 and 
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Principia-2.14. Computing the generalized conclusion also involves two steps: first the 
generalized conclusion of the detachment subproof must be computed, then the 
generalized conclusion of the overall chaining forward proof can be determined. 

The generalized conclusion of the detachment step is computed by identifying 
Principia-2.14 rr-::;iJ with the antecedent A-::JB of Principia-1.6, (A-::JB)-::J((C\IA):J(C\/B)). 

This identification binds A to rr, and B to D. The conclusion of Principia-1.6 in this 
context becomes the generalized conclusion of the detachment step, namely 

(C\/ff)-::J(C\/D). The generalized conclusion of the entire proof is computed by chaining 
forward on Principia-1.4 (E\/F)'":J(F\IE) and the generalized conclusion of the subproof 
( C\lff)-::J( C\/ D). 

The conclusion of Principia-1.4 plays the role of the middleman, and is identified 
with the antecedent of the generalized conclusion of the detachment. That is, F\IE is 
unified with C\/rr: F is bound to C while E is bound to rr. The generalized conclusion 
of the chaining forward step kicks out the middleman and goes directly from E\/F, the 
antecedent of Principia-1.4, to C\/D, the conclusion of the generalized conclusion of the 
detachment step, in light of this identification. Substituting C for F and IJ for E in 

(F\IE)-::J(C\/D), the generalized overall conclusion is (IJ\IC)-::J(C\ID). By the definition of 
implication, this can also be seen as (IJ-::JC)-::J(C\/D) as shown in Figure 10. 

( IJ-::JC)-::J( C\I D) 

Principia-1.4: ( IJ-::JC)-::J( C\IIJ) ( C\f IJ)-::J( C\I D) 

Principia-1.6: ( IJ::JD )-::J( C\/IJ)-::J( C\I D) Principia-2.14: I5-::JD 

Figure 10. The Generalized Conclusion of the Proof of Principia-2.17 

• I 
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Comparing the generalized conclusion of the proof of Principia-2.17 to the 
particular problem: 

Principia-2.17: ((J:JP):J(P:JQ) 
Generalized Conclusion: (IJ:JC):J(C\/D) 

one can see that the proof is strictly more general than the problem because the 
problem contains an extraneous negation. The NOT in Pis not really necessary. 

6. Methodology 
The experiments reported here involve the application of three different versions of 

LT to propositional logic problems from Principia Mathematica. All three versions of 
LT start with the same axioms (the .same initial set of known theorems). However, the 
first (non-learning) version of LT is not allowed to learn from its successes or failures. 
No new theorems are added to the list of known theorems. The non-learning LT 
attempts to solve each new problem by reducing it to one of the original axioms. The 
second version is allowed a form of rote-learning: problems are added to the list of 
known theorems whether they are solved or not. The rote-learning LT attempts to 
solve new problems by reducing them to problems it has seen before. The third version 
augments the basic LT by the simple form of explanation-based learning described 
earlier. Of course EBL is useless when the search for a proof fails, so rote-learning is 
resorted to in this case. However, when a novel theorem is proved, the generalized 

conclusion of the proof is added to the list of known theorems. 4 

The main questions asked on each Principia problem are: 

• What is the nature of the search for a solution? 
• What is the quality of the solution found? 
• What is the quality of the learning? 

6.1. Characterizing the Search for a Solution 
For each problem in Principia, a record is made concerning whether each version 

of LT solves or fails to solve the problem in a limited search. LT does breadth first 
search maintaining a queue of untried problems. Before a problem is added to the 
queue, it is checked to see whether it is an instance of a known theorem. Problems are 
dequeued and attempted by applying LT's operators: first the detachment operator is 
applied, followed by chaining forward and then chaining backward. Each of these 
operators may produce new subproblems which may be added to the queue of untried 
problems. The search is restricted by limiting the number of problems attempted. 

4 It is important to note that the same basic problem solving machinery (LT) is being used in each 
version. LT is admittedly primitive by modern standards of theorem proving but our main interest is in 
differences in performance between no-learning, rote-learning and EBL systems, not in the particular per
formance element. All the learning and non-learning systems are handicapped by LT's lack of sophistica
tion. 
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Whether the problem is solved or not, the total number of subproblems generated 
and the number of problems attempted in each search for a solution is recorded and 
used to compute the average branching factor (the number of sub-problems generated 
divided by the number of problems attempted) for each problem. 

The numbers of subproblems generated and attempted can be thought of as 
"absolute" measures of the amount of search done by LT in solving a particular 
problem. The average branching factor can be thought of as a "relative" measure of 
the amount of search. Since it is a ratio, one must take care to realize that one search 
method can easily generate and attempt many more subproblems than another search 
method applied to the same problem, while still getting the same average branch. In 
reporting on results of experiments in this paper, we take care that when average 
branch is used as a measure of "amount of search", the absolute measures reflect the 
same relationships between the search methods being compared as does their ratio. 

6.2. Evaluating the Results of Problem Solving and Learning 
If a proof of a theorem is found, a measure of the size of the proof is recorded. In 

order to facilitate comparison of rote versus explanation-based learning, the theorems 
learned by the EBL version of LT are recorded. These degenerate to the input 
theorem in cases when no proof is found. When a non-trivial proof is found, the 
generalized conclusion is computed and the generality of the result is compared to the 
generality of the corresponding result of rote-learning. 

7. Limited Search5 

The ma:in ·goal of all our experiments is to find and explain differences in problem 
solving performance between non-learning, rote-learning, and EBL versions of LT ... It 
was known from the work of Newell, Shaw, and Simon that rote l~arning improves LT's 
performance dramatically over not learning. Before these experiments were conducted, 
one researcher (a well-known partisan of empirical approaches to learning) conjectured 
that generalization and performance would not improve in going from rote to 
explanation-based learning versions of LT on the Principia problems because these 
problems are so general to begin with. EBL advocates expected some improvement in 
performance, the only question for them was: how m'Uch would performance improve? 

Our initial experiments involve severely limited search. To be exact, the number 
of subproblems LT is allowed to attempt in its effort to solve each Principia problem is 
limited to 15. Limited search experiments are interesting because people do not seem 
to search much; when they fail to find a solution fairly quickly in problem solving, they 
tend to give up and go on. In addition, advantages of one method over another tend to 
be magnified in limited search. For example, if one method requires more search than 
another to find a solution to a particular problem, it may not find a solution at all 
when the search is limited. 

5 As will be seen, this section describes the results of limited search experiments under some restric
tions to be explained later (the IMPLIES restrictions). 
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7.1. Results on Search Performance 
Figure 11 shows the search behavior of three versions of LT on the problems they 

fail to solve. Each point on the graph corresponds to an unsolved problem. The figure 
gives the "average branching factor", the number of problems generated in the search 
divided by the number of problems attempted. In the case of unsolved problems, the 
number of problems attempted is a constant, since this parameter is limited to 16 (15 
subproblems and the original problem) and search has to be abandoned at that point 
when LT fails to find solutions. Thus, the average branching factor is proportional to 
the number of problems generated in this case. 

The numbers of points on the curves indicate that LT solves far more problems 
with learning than without and that the learning versions are roughly comparable in 

35 
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0 
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Figure 11. Limited Search Performmce on Unsolved Problem; 
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this respect. The fact that the RL curve is generally above the EBL curve and both 
are always above the NL curve indicates that, in most cases, RL generates more 
subproblems than EBL, which generates more subproblems than NL. 

Turning to solved problems, consider the search behavior of no-learning as 
opposed to rote. The NL system solves 22 problems (22/92 = 24%), including one 
problem not solved by RL (problem 31, Principia 2.41). RL solves 69 problems (75%), 
including 48 problems not solved by NL. When both systems solve a problem, RL 
never attempts more subproblems than NL, and RL almost always generates fewer (or 
the same number of) subgoals before a solution is found. 

Figure 12 shows the search behavior of rote versus EBL on the solved problems. 
There are no isolated circles but three isolated boxes indicate that EBL solves 
everything that rote solves and more (72 problems in all, or 78%). (EBL picks up 
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problem 31 and thus also solves everything NL solves as well.) In general, EBL does 
less search than rote, as measured in terms of problems attempted, subproblems 
generated, and in terms of average branching factors. However, there are a significant 
number of exceptions to this rule, e.g., problems 86 and 87. 

7.2. Results on the Quality of the Solutions 
Figure 13 shows the quality of the solutions delivered under NL vs RL, while 

Figure 14 compares the quality of the RL solutions vs those provided by EBL. Rote 
provides solutions that are always at least as good as NL, often better. However, the 
differences in quality between RL and EBL are mixed. They often get the same proof, 
but sometimes RL finds a shorter one, sometimes vice versa. 
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Figure 14. Quality of Solutions of Rote vs EBL in Limited Search 

7.3. Discussion of Search Performance 
In general, problems solved by the non-learning LT are also solved by the rote 

learning version and problems solved by the rote learning LT are also solved by the 
EBL version. Some exceptions to this rule are explained by new theorems leading the 
learning systems astray, so that they use up their limited search resources before 
finding a solution. 

Looking at the number of subproblems generated and attempted by each version 
of LT, one sees increases in these "amounts of search" in going from non-learning to 
learning in some cases and drops in other cases. The drops indicate that some learned 
theorem is useful in solving a problem efficiently. The increases are due to the fact 
that learned theorems increase the number of possible next steps in proofs. The 
learning versions of LT generally have more ways of attempting to solve a problem. 
\iVhen one of the early attempts succeeds, the problem is solved immediately and less 
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search is done. Otherwise, more attempts are made before a solution is found or search 
is abandoned. 

Relationships between the average branching factors are especially clear in the 
unsolved problems: they are relatively low for the non-learning system, much higher in 
both learning systems, but significantly lower in EBL than in rote learning. The 
branching factors appear to be relatively constant in NL, but increase with learning, 
more quickly in RL than in EBL. 

It may seem odd that the ho-learning performance is poor (it solves far fewer 
problems) as compared to the learning systems when it seems to have a less difficult 
search space (lower branching factor) to contend with. There are several reasons for 
this. First, learned theorems enable the learning versions of LT to "see more deeply 
into the search space." Search is limited and there are problems that cannot be solved 
without learning just because the required search exceeds the limit. The learning 
versions of LT may be able to effectively exceed the limit because search done in 
constructing the proof of learned solutions is not counted against searches that apply 
these earlier solutions to solve later problems. 

Another reason for the drastic improvement in performance in learning as 
compared to non-learning has to do with LT's limited control strategy. LT is restricted 
to producing linear proofs: each operator (detachment and chaining) uses a known 
theorem in order to reduce a problem to a new subproblem. However, the learning 
systems add to the initial axioms theorems that follow from the initial axioms by one or 
more operations. This has the effect of allowing the learning versions of LT to break 
out of this restriction so that the search for a solution is taking place in a radically 
different search space, one which contains solutions that cannot be generated by the 
non-learning version of LT. 

Figure 15 shows an example of a proof that is within the search space of the 
learning systems but denied to the NL LT. While NL does manage to construct- an 
equivalent proof, using chaining forward as a mirror image of chaining backward, this is 
done at the cost of extra search. 

An additional source of the improvement in performance in learning is that l·earned 
solutions can increase the set of probl~ms that can be solved. It is known that LT is an 
incomplete theorem prover, in other words there are theorems that it cannot prove in 
principle (even ignoring any limitations of the amount of search allowed). For example, 
Principia problem 2.13 cannot be solved by LT. Adding such problems to the list of 
known results covers for incompleteness in the theorem prover and leads to solutions of 
problems that otherwise could not be solved. 

Focusing on search performance differences between the learning systems, we note 
that sometimes problems are solved by the EBL version alone, (for example, in this 
experiment, 2.16 and 2.18). Also, it is often the case that EBL finds proofs with less 
search than RL, measuring the amount of search in terms of problems attempted, sub
problems generated, and in terms of average branch. One possible reason for 
improvement in performance in EBL as opposed to RL is the improved generality of 
the results of explanation-based learning. Another reason for this improvement is that 
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Figure 15. Rote-Learning and EBL Proof of Principia-2.36 

the rote learning LT adds instances of known theorems to the list of known theorems. 
This violates a general principle of explanation-based learning that might 'be 
paraphrased: only novel solutions to problems are worth remembering (2). Even 
without invoking EBL, however, there is no point in adding instances of known 
theorems to the list of known theorems because any instance of an instance X of Y is 
als0 an instance of Y. Or to put it another way, any "indirect" instance is also a 
';· ~ '2ct" instance. Adding instances hurts by increasing the branching factor of the 
search but provides no benefits, since the instances are added to the end of the list of 
known theorems, rather than· the beginning. 

Sometimes the search performance of EBL is inferior to RL. For example, if this 
experiment is run with a limit of 200 rather than 15, rote solves 2.37 but EBL misses it. 
Occasionally, one might expect a more general result learned by EBL to get in the way 
of finding the correct proof, but it turns out that this anomalous behaviour is actually 
due to the fact that LT is too restrictive in its use of problem solving operators. It 
requires subproblems to have IMPLIES as their top level connective before it will 
attempt to reduce them using forward or backward chaining. In addition, the known 

theorem used must also have IMPLIES as its top level connective. ((16], (25) page 24). 6 

EBL often learns theorems that are more general than their RL counterparts; some of 
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these are not explicit implications. The conclusion to be drawn here is that it is 
necessary to have a reasonably "smart" matcher in order to take full advantage of the 
improved generality of explanation-based learning, otherwise one may wind up with 
degradation in performance rather than improvement! In fact, the overall number of 
problems solved can be lower in EBL with a "dumb matcher" than in rote learning 
because of this effect. 

7.4. Discussion of the Quality of the Solutions 
Turning to the quality of the solutions found by LT, the proofs discovered by the 

rote-learning LT are always at least as short as the proofs discovered by the non
learning LT. This is a consequence of the fact that the rote-learning LT needs only to 
reduce a problem to a previously seen problem, whereas the non-learning LT has to 
reduce it to one of the original axioms. 

The rote and EBL proofs are of comparable quality, the same proofs being found 
in most cases. Sometimes (viz 2.49, 2.56, and 2.8) EBL produces shorter proofs. 

However, in other cases (namely 2.68, 3.24, and 3.41) the rote proofs are shorter. 7 

8. Limited Search Without the IMPUES Restrictions 
In this section, we examine some effects of lifting the IMPLIES restrictions. Lifting 

the IMPLIES restrictions has effects on LT reg·ardless of whether or how it is learning. 
The question is how much of an effect? How will the relationships between non
learning and the competing learning strategies change? 

8.1. Results on Search and Quality of Solutions 
Figure 16 ~hows the search behavior of three versions of LT on unsolved problems. 

Lifting the IMPLIES restrictions has substantial impact. The branching factors are 
much higher, especially in the learning systems. EBL's average ·branch now seems to 
increase with learning at nearly the same rate as RL, whereas under the IMPLIES 
restrictions its branching factor curve seemed relatively flat. In addition, ·the 
relationships between the various systems are simpler: the RL curve is now always 
above the EBL curve and it in turn is always above the NL curve. 

Turning to solved problems, Figure 17 shows ·rhe search behavior of rote versus 
EBL. There are no isolated circles but three isolated boxes indicate that EBL solves 
everything that rote solves and more. Furthermore, EBL does less search than rote on 
every problem now, as measured by problems generated, subproblems attempted, and 
by average branching factors. The exceptions observed in the initial experiments no 
longer occur once the IMPLIES restrictions are lifted. 

6 The resulting subproblem is, by definition, an explicit implication, but it may ground in (match 
with) a known theorem that is not an implication. 

7 We shall see in the next section that this is due to the IMPLIES restrictions. With a "dumb" 
matcher, EBt can actually hurt performance as much or more than it improves it, not just in terms of 
search costs, but in terms of the quality of the solutions found as well. 
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Figure 16. Search Behavior Without the IMPLIES Restrictions 

Figure 18 shows the quality of the solutions provided by RL vs EBL. Note that 
RL no longer gets superior solutions, once the IMPLIES restrictions are lifted. 

8.2. Discussion on the Effects of Lifting the IMPLIES Restrictions 
Lifting the IMPLIES restrictions tends to increase branching factors, as reflected 

in the numbers of problems generated in limited attempts on the unsolved problems. 
However, this is offset by the fact that the new sub-problems generated sometimes lead 
to early proofs. This sometimes makes the difference, in limited search, between solving 
or not solving a problem. In other cases it means that a shorter proof is found. 

Since problems must be reduced to the initial axioms when learning is disallowed, 
changes in behavior noted in the non-learning system are due solely to the fact that 
chaining is allowed to work on subproblems that are no longer required to be 
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Figure 17. RL vs EBL Without the Il\1PLIFS Restrictions 

implications (the initial axioms are always implications). In rote learning, changes are 
due to both types of IMPLIES restriction, but the effect of the requirement that known 
theorems be implications is muted by the fact that almost all of the Principia problems 
are implications. Thus, once they are learned, they can be used even under the 
IMPLIES restrictions. In the EBL system, however, lifting the IMPLIES restrictions 
leads to much more pronounced changes in performance, because many of the theorems 
learned are not implications. 

EBL does significantly more search than rote in some cases due to the fact that 
the IMPLIES restricted LT fails to put the results of explanation-based learning to full 
use. LT only uses the chaining schema to solve problems when they have the form of 
implications. In addition, it only uses known implications in chaining, in order to 
transform problems into new sub-problems. These restrictions effectively prevent the 
EBL LT from finding some legitimate proofs by preventing LT from using some of the 
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theorems learned by EBL. 8 Thus, in the remaining experiments discussed in this paper, 
the IMPLIES restrictions are lifted. 

9. Extended Search Experiments 
It is important to determine whether the relationships observed so far are 

dependent on the fact that search was restricted rather severely in the previous 
experiments. Increasing the search limits should enable each version of the problem 
solver to solve more problems. What else happens when the search limits are relaxed? 
In this section, we abandon the implies restrictions and loosen the limits on search. 
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Figure 18. Quality of Solutions Without the Il.\t1PLIES Restrictions 

8 Some of the theorems learned by EBL are disjunctions more general than implications; they can be 
specialized to implications. 
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Figure 19. Search Behavior on Unsolved Problems in Extended Search 

Instead of only attempting the first 15 subproblems, 200 subproblems may now be 
attempted. 

9.1. Search Performance 
Figure 19 shows the search behavior of NL, R.L, and EBL on the problems they fail 

to solve. vVith extended search, the learning methods each fail to solve only 8 out of 92 
problems. As in limited search, NL solves far fewer problems than the learning 
methods. The branching factor observed in NL seems to be roughly constant and 
much lower than the sharply increasing branching factors of the learning systems. 
Again, EBL's branching factors are uniformly below those of R.L. vVith extended 
search, there is no difference in the number of problems solved by the learning systems, 
but R.L does more· search as indicated by subproblems generated and attempted, and 
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Figure 20. Rote vs EBL on Solved Problems in Extended Search 

faces higher branching factors in all cases as shown i? Figure 20. 

9.2. Quality of Learning 
A comparison of the quality of the results learned by RL vs those learned by EBL 

is shown in Table 1. Note that EBL is not attempted in many cases, specifically in case 
the original problem is an instance of a known theorem and in cases where no proof is 
found. The following is a discussion of the theorems learned by EBL versus rote
learning in the remaining cases. 

A priori, one can see that when EBL works at all, it provides theorems that are at 
least as general as the original problems. The original problems are always instances 
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Table 1: Corq:>arison of Theorems Learned by EBL vs Rote 

EBL 
Problem vs Theorem Learned by EBL () 

Rote 
-

2.06 > P\/Q \/( Q\/ R\/( P\I R)) {P/p,Q/q,Rlr} 

2.08 = P::JP 

2.11 = P\/P 

2.14 = P::JP 

2.16 > P\/Q ::J'fJ\JP {P/p,Q/q} 

2.17 > P\I Q ::JQ \/ P {P/p,Q/Q} 

2.18 = (P::JP)::JP 

2.2 = P::JP\/Q 

2.24 > P\/(P\/Q) {Plp,Q/q} 

2.25 = P\/( P\/Q ::JQ) 

2.3 = P\/(Q\/R) ::JP\/(R\IQ) 

2.31 = P\I( Q \IR) ::J( P\/Q) \IR 

2.32 = (P\/Q)\/R::JP\/( Q\/R) 

2.36 = ( P::JQ) ::J( R\/ P::JQ \IR) 

2.37 = ( P::JQ) ::J( P\I R::JR\IQ) 

2.38 = ( P::JQ) ::J( P\/ R::JQ \/ R) 

2.4 = P\I ( P\/ Q) ::JP\/ Q 

2.41 = P\I( Q \/ P) ::JQ \/ P 

2.45 = P\IQ :JP 

2.46 = P\IQ ::J{J 

2.47 > P\/Q ::JP\IR {P/p,Q/q ,RJq} 

2.48 > P\I Q ::JR\/ r:J ~ 

{Plp,Q/q ,Rip} 

2.521 > P\/Q\/(Q\/R) {P/p,Q/q ,Rip} 

2.53 = P\IQ ::J( P::JQ) 

2.54 = ( P::JQ) ::JP\/ Q 

2.55 = P::J( P\IQ ::JQ) 

2.56 = P::J( Q \/ P::JQ) 

2.6 > P\/( r:J\/( R\IQ)) {P/p,Q/q ,RJP\/q} 
-

2.61 > P\IQ ::JP\IQ\/Q {Plp,Q/q} 

2.621 = ( P::JQ)::J( P\/Q ::JQ) 
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Table 1: Comparison of TheoreIIB Learned by EBL vs Rote ( ctd.) 

EBL 
Problem vs Theorem Learned by EBL e 

Rote 

2.64 ;;;;; 

2.67 > 

2.68 > 

2.69 > 
2.73 ;;;;; 

2.76 ;;;;; 

2.81 ;;;;; 

2.83 > 
2.85 > 
2.86 > 
3.12 > 
3.21 > 

3.22 > 

3.24 > 

3.26 > 

3.27 > 

3.3 > 

3.31 > 

3.33 > Pr I ,Rlr 

3.34 > 

3.35 > 
---3.37 > 

= 
3.4 > 

-- = 
3.41 > Pl 

-- = 
3.42 > 

3.43 > 
3.45 > 
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of the generalized conclusions of their proofs. 9 

From the experiment, one sees that while many theorems (25 of 57, or about 44%) 
learned via EBL are no more general than the given problems, in many cases ( 32 of 57, 
about 563) the theorem added by EBL is strictly more general than the theorem 
added by rote-learning. 

How are the results of EBL more general? In many cases (e.g., 2.06) EBL 
produced a variant of the original problem, minus an extraneous negation. The EBL 
version of LT acquires the theorem P\IQ\l({[":J'K\l(P\/R)) from the solution of Principia-
2.06. The problem, (p:Jq):J((q:Jr):J(p:Jr)), is an instance of this theorem with Q bound 
to q, R bound to r, and P bound to p. (This is the meaning of the difference 
substitution in the theta column of Table 1.) The rote-learning LT demands a 
negation that is not required by the proof. 

The EBL version of LT offers oniy modest improvements over rote-learning in such 
examples because it is well known that one can reverse the sign of a literal everywhere 
in a theorem to get a new theorem. One could easily modify the rote-learning LT to 
take advantage of the fact that whenever a literal appears only negatively in a 
Principia problem, one can safely delete the negative sign to obtain a logically 
equivalent but syntactically more general problem. 

In a number of cases, however, there is no such simple fix that the rote-learning 
LT could use to obtain theorems as general as those acquired by the EBL version. For 
example, in a number of cases, rote-learning unnecessarily collapses two or more 
variables into one. Problem 36, Principia-2.47, is p\fq:J(p:Jq). The EBL version of LT 
acquires P\IQ:J[P\IR) from the proof. The problem is obtained as an instance by 
substituting p for P and by binding both Q and R to q. 

In other cases rote-learning results in more interesting overspecializations. In these 
examples, variables are not simply collapsed by rote-learning, instead they are required 
to be related logically in complicated ways when they really should be completely 
independent. 

In Problem 42, one variable is made to be the negation of another when they 
should be independent and neither need be a negation. The problem (Principia~2.521) 
is p:Jq:J(q:Jp), the generalized conclusion of the proof is P\IQ\l[Q\IR). These match with 
bindings of P top, Q to q, and R top. 

In problem 47, three independent variables are specialized by effectively making 
one into a negation of an implication between the others and by requiring one to be a 

9 The reader should note that we are using a purely syntactic measure of generality (see [20]). We 
are considering our well-formed propositional formulae as terms, focusing on the syntax of these terms, 

. and ignoring logical relationships between them such as the fact that P and NOT NOT P are logically 
equivalent. A one-way match between the theorems learned by EBL and the theorems learned by RL is 
used to determine whether they are variants. If they are variants, they are instances of each other and 
so equally general. Otherwise, the theorem learned by EBL is strictly more general than the correspond
ing theorem learned by RL and a substitution list shows how to specialize the EBL result to get the one 
learned by RL. ' 
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double negative. The problem (Principia-2.6) is jj":)(q:J((p:Jq):Jq)) and the generalized 

conclusion of the proof is P\/(Q:J(R\/Q)). These match with P bound top, Q bound to 
q, and R bound to p::Jq. 

vVith LT's IMPLIES restrictions loosened, the improved generality afforded by 

EBL leads to performance that is superior to that of the rote-learning version of LT .10 

Sometimes the EBL system solves problems that could not be solved by the rote system 
due to limits on search. Sometimes both RL and EBL solve the problem but the EBL 
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Figure 21. The Effects of Adding Instances During Rote Learning 

10 For detailed discussions of examples of how EBL improves performance, see the appendix on "Ex
amples of Improvements in Performance Due to EBL." 
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solution is found earlier in the search. In some of these cases, the EBL solution is of 
higher quality in that it is simpler than the solution provided by RL. The quality of 
solutions found by the learning systems in extended search was not discussed in this 
section. Instead, this comparison will take place in the next section, in the context of a 
comparison between EBL and a version of rote learning that produces the same 
solutions as the present rote learning system using a more efficient search. 

10. On the Effects of Adding Instances in Rote Learning 
In the future work section of (18] it was stated that it would be interesting to 

determine the exact contribution of each source of the improved performance of the 
EEL version of LT. The improved generality of learned solutions helps, as does the 
fact that the EBL system does not add instances of known theorems. In this section, 
we report on an experiment that isolates these sources of improvement by allowing the 
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rote-learning LT to avoid adding problems that are instances of known theorems. 

Figure 21 shows the search behavior of RL (without adding instances) on unsolved 
problems superimposed on that of the systems previously studied. Figure 22 illustrates 
the search performance of the improved RL system vs EBL on solv~d problems. The 
differences in numbers of problems attempted are very similar to differences shown 
between the number of subproblems generated. 

The results on search behavior indicate that adding instances accounts for much of 
the decrease in branching factors that occurs in going from the original rote to EBL. 
While EBL does uniformly less search than the original RL system on both solved and 
unsolved problems, EBL tends to do slightly more search than the improved RL 
method. This is always the case on the unsolved problems, and often the case in solved 
problems as well. However, exceptions in the solved problems occur when EBL pays off 
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by enabling the problem solver to hit upon a solution earlier in the search. As a result, 
EBL generates 2791 fewer subproblems than the improved RL method and attempts 84 
fewer problems overall on the problems solved by both methods. 

RL should never produce shorter proofs than EBL since the theorems learned by 
EBL are always at least as general as those learned by RL. Figure 23 shows that some 
of the proofs discovered by EB L are shorter than the proofs provided by the improved 
RL system. The bottom line seems to be that, for a small increase in search on most 
problems, one can buy large decreases in search and improved solutions on some 
problems by using EBL rather than the improved rote learning procedure. 

11. Conclusion 
This section summarizes the contributions of this study toward an empirical 

understanding of explanation-based ,learning (EBL). It might be nice to make grand 
general claims of the form "learning method X is universally superior to all other forms 
of learning" at this point. No such claim can follow from experiments, however, 
because one can only test a given learning method against a limited set of competitors, 
in the context of a limited set of performance elements, on limited sets of test data. 

It would make no sense to claim that the performance element used in these 
experiments is a "representative" performance element. It would make even less sense 
to claim that the problems used in this study are "typical" problems. Performance 
elements and problem domains vary dramatically. Thus the conclusions of this study 
must be carefully qualified. Peculiarities of the performance element that seem to 
interact with the learning methods and the problem domain under study are identified. 
The test problems used here are also characterized, especially when aspects of the 
problems influence the effectiveness of learning. 

One virtue of this study is that it explores the performance of a complete EBL 
system against competing learning methods on a significant number of examples. The 
examples used in the study are uncontrived in the sense that the Principia problem 'set 
was designed for entirely different purposes three quarters of a century ago - long 
before electronic computers existed and with no consideration of machine learning 
experiments in mind. During the study a number of interactions between performance 
elements, learning elements, and the problem set were observed. Some of these 
interactions were quite unexpected. 

The experiments reported here show that both EBL and rote-learning are much 
better than no learning at all on the Principia problems. The experiments focus on the 
difference between EBL and rote learning in an abstract, purely logical setting, using 
very general problems, where neither learning method is allowed an advantage in 
"turning constants to variables." 

Before these experiments were done, it was hypothesized that generalization and 
performance would not improve in going from rote to EBL on purely logical problems 
because neither learning system is allowed to make inductive leaps from concrete 
propositions like "It is raining" or "Today is Monday." It seems harder for EBL to 
"win big" on the Principia problems because any impro\'ements of EBL over rote-
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learning are forced to occur at a very high level of abstraction. Indeed, the experiments 
can be interpreted as supporting this hypothesis, because rote-learning is "roughly 
comparable" to EBL on the Principia problems in the sense that the difference between 
the learning systems is small when compared with the large differences between non
learning and learning. 

Ignoring non-learning, however, the experimental data focusing on the differences 
between the learning systems clearly shows that EBL is significantly more effective 
than rote-learning even in highly abstract settings. The experiments and analysis show 
that even in this context EBL learns strictly more general results quite frequently and 
that - provided the matcher is "smart" enough - EBL's superior generalization 
contributes to superior problem solving performance. 

The caveat that the matcher should be "smart" is critical. The experiments 
reported here include all problems from chapter 3 of Principia, thus going beyond the 
q2 problems from chapter 2 used in Newell, Shaw, and Simon's work and our early 
work reported in [18]. \Ve were surprised to find that, in a reversal of our earlier 
results, EBL's overall performance was actually worse than rote in some experiments 
involving the new problems. The explanation turned out to be that, while the matcher 
supplied to our version of LT was capable of decoding P:JQ using its definition in terms 
of P\IQ, this was short-circuited by LT's "IMPLIES restrictions". These restrictions 
forced problems and known theorems to have IMPLIES as the main connective, 
rendering unusable some of the generalizations of problems learned by EBL. Thus it 
was found that LT's IMPLIES restrictions can cause EBL to be less effective than 
rote-learning. This is an instance of a more general observation, that it is important 
not to restrict matching unnecessarily in EBL. 

When one considers the goals of the designers of a logical system such as the one 
found in Principia A!f athema.tica, it seems surprising that the EBL LT (with the 
IMPLIES restrictions removed) performs significantly better than rote-learning on the 
PrinciP'ia problems. Surely, the authors of Principia must have intended each problem 
to be as general as possible. Imagine Whitehead and Russell creating their sequence of 
theorems. Assume they have proposed a certain problem as the next theorem in the 
sequence. If they found a proof for this problem t~hat actually proved a more general 
theorem than the problem they began with, they should have crossed out the proposed 
theorem, replacing it with the more general one. With this in mind, one can view the 
superior generalizations produced by the EBL version of LT as suggesting 
improvements on the logical system of Principia lvlathema.tica. 

12. Relation to Previous Work 
This is part of the growing body of work on Explanation-Based Learning. The 

papers by DeJong and Mooney [3, 14] and Mitchell, et al [13] provide overviews and 
pointers into the EBL literature. The present paper is basically an experimental study 
of EBL versus no learning and rote learning in a particular "domain", a logic where 
rote learning was expected to do \Vell because of the generality of the problems. Other 
experimental studies of EBL involving relatively large numbers of examples have been 
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done recently in a number of other task domains, including planning [11, 12]. Mooney's 
Ph.D. thesis [15] reports on experiments with a general EBL system solving examples 
from a number of task domains such as planning, recognition, etc. Shavlik's Ph.D. 
thesis [24] contains the results of a number of experiments on planning and physical 
reasoning tasks and Segre's Ph.D. thesis [22, 23] contains experimental work on 
applications of EBL in robotics. 

The present study is also related to work on macro-operators, and can be viewed 
as a step in the direction of viewing theorem proving as a process that can benefit from 
the acquisition of macro-operators (as suggested, for example, by Korf in [7]). However, 
it should be noted that the way explanation-based generalization contributes to future 
problem solving in the present study is a bit unusual. In contrast to EBG macro
learning systems based on PROLOG [6, 19] and MRS [5] only generalized conclusions 
are learned in the EBL LT. The leaves of the "generalized" proof tree are thrown 
away; they are not needed because they are (always true) theorems. 

It might be interesting to try an alternative approach: an EBL version of LT could 
learn general macro operators which would play roles similar to detachment and 
chaining. These operators could be constructed by ignoring not just the specific 
problem proved by a composition of schemata, but also by ignoring the specific known 
theorems used to ground the leaves of the proof tree. 

Another way to view the work presented here is as evidence bearing on the relative 
value of methods for generalizing examples by turning constants into variables versus 
EBL methods of generalizing examples by specializing existing general knowledge. 
Thus, this work may be viewed as providing experimental evidence that conversions 
such as the one described in [21] should lead to improved performance. 

13. Future Work 
More experiments should be done involving complete explanation-based learning 

systems and large numbers of examples. Several possible extensions to the experiments 
reported here suggest themselves. For example, we have recently completed new 
e iments involving reversals and random permutations of the problem sets, in an 
etlon to determine how changes in the order of the Principia problems affect the 
learning rnethods. In another experiment, we have disallowed learning of unsolved 
problems, in order to address concerns that this strategy, while it may be appropriate 
for highly structured learning situations, is not appropriate in general. The results of 
these experiments will be presented in a follow-on paper. 

It would be interesting to see how much of the improvement in going from non
learning to rote learning and EBL is due to the limited control structure of LT 
requiring that proofs be linear. How much of the improvement is due to macro 
learning? It might also be interesting to augment the simple EBL version of LT with 
subgoal learning. This could yield results on how much improvement occurs in between 
trial learning. The original LT would have to be modified to produce non-linear proof 
trees in order to get results on the effectiveness of within trial learning. 
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The results on the Principia problems presented in the present paper are part of 
an effort to provide a baseline characterization of the performance of learning methods 
such as rote and basic EBL on these problems. It is hoped that this will make it 
possible to use the Principia problems as a benchmark for testing improved learning 
methods, just as problems like the eight puzzle have been considered the Drosophila or 
fruit fly of research on search in AI [8]. 

If one looks at the theorems learned by EBL in the present study, it is obvious 
that they could stand some improvement. Many of these theorems are still less general 
than they could be (e.g., some contain double negations). It would be interesting to 
see how performance changes in this domain when basic EBL is augmented by a system 
designed to transform learned expressions in to their most general form. 

The present domain also seems like a good place for studies of proposed 
improvements in storing and accessing learned results. It was noted here that it is a 
rµistake to add instances to the end of a list of known theorems in rote learning. It 
would be interesting to see if they can make a positive contribution if they are added to 
the beginning of the list rather than the end. Unlike the EBL LT discussed in this 
paper, EBL systems typically try the most recently learned solutions first. This 
strategy may make especially good sense when facing highly structured sequences of 
problems where new problems often build upon their immediate predecessors as in 
Principia. Indeed, it would be interesting to· try out more sophisticated storage and 
retrieval mechanisms in this highly organized domain.· Rather than looking down linear 
lists as was done in this study, discrimination nets [1]) could be used. Perhaps more 
powerful methods for organizing learned knowledge can be used so as to benefit EBL. 

EvidenGe that carefully controlled "forgetting" will play an important role in the 
management of memories containing learn~d results is beginning to accumulate. One 
such method is based on tracking the usefulness of learned results in terms of 
measurements of search utility. It would be interesting to see whether Minton's results 
on search utility in planning [11] can be replicated in the purely logical domain of 
Principia. 

Acknowledgements . 
Some of the results presented here were originally published in the Proceedings of 

the Fourth International Conference on Machine Learning [18]. The research presented 
here grew out of a discussion with Pat Langley at the Cognitive Science Conference 
held at the University of California, Irvine in the summer of 1985. Early work was 
carried out by the author when he was a member of Gerald DeJong's Explanation
Based Learning Research Group at the University of Illinois at Champaign-Urbana. 
Special thanks to Gerald DeJong and Scott Bennett at Illinois, to Ray Mooney (now at 
the University of Texas at Austin), and also to Pat Langley, Michael Pazzani, Tony 
Wieser, and Heping He at Irvine. Wieser provided a great deal of research assistance to 
the author, including reimplementation of the author's LISP systems in PROLOG, as 
well as having discovered that the IMPLIES restriction forced the EBL LT's 
performance to deteriorate in the extended experiments first reported here. Heping He 



.35 

provided programming support and assisted in the analysis and presentation of the 
data. This research was supported in part by the National Science Foundation under 
grant NSF IST 83-17889, by a Cognitive Science/ AI Fellowship from the University of 
Illinois, and by a McDonnell-Douglas University External Relations award to UCL 



36 

Appendix 1: Examples of Improvements in Performance Due to EBL 
The superior generality of EBL contributes to superior problem solving 

performance in two main ways. Sometimes it enables the problem solver to solve 
problems that could not be solved before. Alternatively, when both rote-learning and 
EBL systems solve a problem, the EBL solution is sometimes found more quickly and is 
sometimes simpler than that provided by rote-learning. 

For an example of an EBL system solving more problems as a result of improved 
generality note that the EBL version of LT found a proof for Problem 17 (Principia-
2.18) while the rote-learning version failed to find a proof in small search (with the 
subproblems attempted limited to 15). The proof found by EBL involves the theorem 
learned from Problem 16 (Principia-2.17). It was obtained by chaining forward on the 
learned theorem and axiom Principia-1.2 (see Figure 24). The generalized conclusion of 
this proof of Principia-2.18 is ( .A::JA) ::JA. The proof is not constructed by rote-learning 
because of the extraneous NOT in Principia-2.17. 

Chaining forward on the result of rote-learning on Principia-2.17 yields the less 

general conclus
1

ion (X::JA)::JA, (Figure 25). Principia-2.18 (P::JP)::JP is not an instance of 
this conclusion. 

Concrete examples of EEL constructing simpler solutions as a result of improved 
generality also occurred in the experiments (see Figure 26). ·while both learning 
versions of LT solve Problem 38 (Principia-2.49), the EBL version recognizes it as an 
instance of the class of problems solved by a previous solution while the rote-learning 
version has to regenerate that solution. The problem is P\/Q::J(P\HJ), an instance of the 
generalized conclusion of the proof of Problem 36 (Principia-2.47), namely A \f B::J(.4\ID). 
This proof is not constructed during rote-learning because Principia-2.47 identifies"B 
and D but Q and rJ are incompatible. It turns out that in order to prove Principia-
2.49, the rote-learning LT winds up having to prove the theorem that the explanation-

(A::JA )::JA 

EBL-2.17 Principia-1.2 

Figure 24. The Proof of Principia-2.18 
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Rote-2.17 Principia-1.2 

Figure 25. Inferiority of Rote Learning on Principia-2.18 

A \/B-::J(Jf\ID) 

Rote-2.45 Rote-2.2 

Figure 26. Rote-Learning Proof of Principia-2.4 7 and 2.49 

based learning LT extracted from Principia-2.47. That is, it regenerates the same proof 
that it used before on Principia-2.4 7 because it failed to learn all it could from this 
proof. This is a very clear case of rote-learning losing because it simply stores problems 
instead of generalizing and computing the class of problems that a novel solution 
solves. 
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Appendix 2: Axioms and Problems from Principia 
This appendix contains the propositional logic axioms and problems used in 

experiments with non-learning, rote-learning and explanation-based learning versions of 
LT. The axioms corresponding to numbers 1.2 through 1.6 in Whitehead and Russell's 
Principia Mathematica are shown in Table 2. Note that Principia-1.1 is not included 
because it corresponds to a rule of inference, an operator in LT. 

Table 2: AxiorrE from Princi 1a 

Designation 
in Princi ia 

1.2 
+.3 
1.4 
1.5 
1.6 

Axiom 

p\fp-:Jp 

p-:Jq\fp 

p\f q-:Jq\fp 

p \/( q \Ir )-:Jq \f (p \Ir) 

The problems are shown in Table 3. They are the first 92 theorems from chapters 
two and three of part one of Principia. The axioms and problems are listed in an 
abbreviated format using operators for (in order of increasing priority) logical 
equivalence, implication, disjunction, conjunction, and negation. Machine readable 
versions of these (and other) Principia axioms and problems may be obtained by 
writing the author (preferably via electronic mail). 
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