
UCLA
UCLA Previously Published Works

Title
Transcriptomic Insight Into the Polygenic Mechanisms Underlying Psychiatric Disorders

Permalink
https://escholarship.org/uc/item/09h4066r

Journal
Biological Psychiatry, 89(1)

ISSN
0006-3223

Authors
Hernandez, Leanna M
Kim, Minsoo
Hoftman, Gil D
et al.

Publication Date
2021

DOI
10.1016/j.biopsych.2020.06.005
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/09h4066r
https://escholarship.org/uc/item/09h4066r#author
https://escholarship.org
http://www.cdlib.org/


Transcriptomic insight into the polygenic mechanisms 
underlying psychiatric disorders

Leanna M. Hernandez1,2,#, Minsoo Kim1,2,3,4,#, Gil D. Hoftman1, Jillian R Haney1,2, Luis de 
la Torre Ubieta1,2, Bogdan Pasaniuc3,4,5, Michael J Gandal1,2,3,4,5,*

1Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of 
California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA.

2Intellectual and Developmental Disabilities Research Center (IDDRC), Semel Institute, David 
Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.

3Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, 
University of California, Los Angeles, Los Angeles, CA 90095, USA.

4Department of Human Genetics, David Geffen School of Medicine, University of California, Los 
Angeles, Los Angeles, CA 90095, USA.

5Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University 
of California, Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA.

Abstract

Over the past decade, large-scale genetic studies have successfully identified hundreds of genetic 

variants robustly associated with risk for psychiatric disorders. However, mechanistic insight -- 

and clinical translation -- continues to lag the pace of risk variant identification, hindered by the 

sheer number of targets, their predominant non-coding localization, as well as pervasive pleiotropy 

and incomplete penetrance. Successful next steps require identification of ‘causal’ genetic variants 

and their proximal biological consequences; placing variants within biologically-defined 

functional contexts, reflecting specific molecular pathways, cell-types, circuits, and developmental 

windows; and characterizing the downstream, convergent neurobiological impact of polygenicity 

within an individual. Here, we discuss opportunities and challenges of high-throughput 

transcriptomic profiling in human brain, and how transcriptomics can help pinpoint mechanisms 

underlying genetic risk for psychiatric disorders at a scale necessary to tackle daunting levels of 

polygenicity. These include transcriptome-wide association studies (TWAS) and related 

approaches for candidate risk gene prioritization through integration of GWAS with expression 

quantitative trait loci (eQTL). We outline transcriptomic results informing our understanding of 

the brain-level molecular pathology of psychiatric disorders, including autism (ASD), bipolar 
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disorder (BD), major depression (MDD), and schizophrenia (SCZ). Finally, we discuss systems-

level approaches for integration of distinct genetic, genomic and phenotypic levels, including 

combining spatially-resolved gene expression and human neuroimaging maps. Results highlight 

the importance of understanding gene expression (dys)regulation across human brain development 

as a major contributor to psychiatric disease pathogenesis, from common variants acting as 

expression quantitative trait loci (eQTL) to rare variants enriched for gene expression regulatory 

pathways.
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Introduction

A major barrier to the treatment of psychiatric disorders is our limited understanding of 

pathogenic mechanisms across molecular, cellular, and systems levels. For most disorders, 

the majority of liability is mediated by heritable genetic variation, thereby providing a 

tractable framework for gaining neurobiological, mechanistic insights (1). Accordingly, 

large-scale genetic studies have made tremendous gains identifying thousands of risk 

variants. However, biological interpretation of these variants is challenged by predominant 

localization in non-coding regions (3), substantial linkage disequilibrium (LD), pleiotropy, 

incomplete penetrance, and daunting polygenicity. Whereas brain non-coding regions were 

previously poorly annotated, now the opposite problem is true--there are many functional 

annotations for a given variant. These challenges culminate in ~1000s of small effect-size 

risk alleles with unknown function which can only be confidently localized to a given LD 

block (5).

As variant discovery continues on its exponential trajectory, biological interpretation is now 

the major obstacle impeding translation. Mechanistic insight requires finding robust ‘causal’ 

variant(s), identifying the biological effect of a variant (e.g., putative target gene), 

understanding how multiple variants converge onto specific downstream molecular 

pathways, and finally understanding how an individual’s variants aggregate to mediate 

phenotypic risk. Here, we discuss how the transcriptome--the collection of RNAs expressed 

in a given cell/tissue--represents a proximal, quantitative readout enabling mechanistic 

interrogation of the biological impact of genetic variation, individually or in aggregate, 

across both clinical and experimental settings (Figure 1).

Tissue Considerations

Transcriptomics has received renewed focus in psychiatry, particularly in the post-GWAS 

era. The etiologically relevant tissue for psychiatric traits is the human brain (7), which 

shows complex gene expression patterns due to the large number of expressed genes, 

including non-coding RNAs, and abundant alternative splice isoforms (4,10). More 

accessible tissues, such as blood, fail to recapitulate these complexities (6); only ~2/3 of 

brain-expressed genes are detected in blood, which undergo less splicing to yield fewer 

isoforms (7). Post-mortem brain samples have been used to fill this gap, but are not without 
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challenges, including limited access, ascertainment, agonal and degradation effects (13). 

Interpretation is further complicated by potential reverse causality, hidden confounding, and 

pleiotropic effects. Nevertheless, the transcriptomic architecture of the human brain has 

demonstrated remarkable stability across cortical regions, individuals, and studies, including 

its genetic regulation (4,15,16). Further, such challenges can be mitigated, in part, by 

associating expression changes with germline variation, across large numbers of individuals, 

providing a directional anchor. Finally, methods for generating neurons and 3D cortical 

organoids from patient-derived human induced pluripotent stem cells (hiPSCs) can now be 

performed at the necessary scale to fill some of these gaps, although there are still key 

biological differences between these models and true brain development (9,11).

Transcriptomic Methods

RNA-sequencing enables accurate, quantitative transcriptomic profiling with wide dynamic 

range, including across protein-coding and non-coding genes, splicing events, and 

unannotated genomic regions (19,21,23). Recent developments in single-cell and long-read 

sequencing enable interrogation of individual cells and full-length isoforms, respectively 

(21). RNA-seq quantifications, however, are relative and often biased by technical factors 

(Figure 2), including PCR amplification, GC content, RNA quality, gene and mitochondrial 

mapping rates, gene body coverage uniformity, among others (25,27). The importance of 

experimental batch correction was recognized for microarrays (29), and with RNA-seq, 

these can be introduced at many steps. To enable direct comparison, libraries should be 

processed together in parallel, and multiplexed in random groups where possible (31). RNA 

quality of most human brains is lower than cell lines or tissues from experimental models. 

Proper detection, visualization, and correction for such factors should therefore be a critical 

aspect of any workflow (12,25). Achieving an appropriate balance between under- and over-

correction remains a challenge, as many commonly used latent variable approaches are 

effective but also prone to capture true biological signal (34,36,38).

The human brain transcriptome exhibits a robust, hierarchical organization of co-expression 

patterns, reflecting cell-types, subcellular organelles and region-, sex-, and age-specific 

processes (15,16,40,42). Dimensionality reduction techniques can capture co-expression 

‘modules’ reflecting these processes, boosting power and facilitating interpretability (44). 

Weighted gene correlation network analysis (WGCNA) is a popular unsupervised approach 

(46), although many methods are available (48,50). As subtle shifts in cellular proportion 

contribute are among the largest source of expression variation across samples (Figure 2), 

particularly in brain (24), the most connected (‘hub’) genes of a module often show strong, 

selective enrichment for cell-type-specific markers (25). Modules can be further functionally 

annotated by assessing overlap with protein-protein interaction (PPI) databases, brain-

relevant gene ontology pathways (52), transcription-factor or miRNA targets, among others. 

Finally, additional insight is provided by gene connectivity within a module, as hubs are 

more likely to act as drivers or regulators, making them useful targets for experimental 

validation (53–55).
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Prioritization of target genes and proximal mechanisms underlying GWAS 

loci

GWAS loci are largely localized within non-coding, regulatory regions (3,5), that control 

gene expression and/or splicing often in a species and cell-type-specific manner. However, 

regulatory elements exhibit temporally dynamic and pleiotropic biological effects, 

necessitating high-throughput unbiased interrogation of their impact across distinct contexts 

(58). Along these lines, large-scale efforts have been undertaken to map expression and 

splicing-QTLs across development (14,59–64), facilitated by the high-throughput and 

systematic nature of transcriptomic phenotyping. For QTL discovery, sample size and tissue/

cell-type are critical (65). PsychENCODE has compiled the largest panel to date (64), with 

>30,000 eGenes identified with a cis-eQTL, but results are restricted to bulk frontal cortex 

(35). Although cortical regions exhibit relatively homogenous transcriptomic patterns, 

distinct ‘patterning’ differences have been identified and non-cortical regions are highly 

distinct (37). Such differences are driven by unique cell-type compositions (56), which are 

obscured when profiling bulk tissue. Further, QTL mapping is typically performed after 

removing dozens of large expression variance components (e.g., ‘PEER’ factors), which 

maximizes identification of cis-eQTLs but also removes distinct cell type signals and other 

trans-acting factors (34). Temporal eQTL variability also remains underexplored, but is 

likely to uncover additional hidden signal, particularly during fetal and early postnatal 

timepoints (60,63,66).

Under the assumption that gene expression mediates the effect of genetic variation on a 

complex trait, several methods integrate GWAS and cis-eQTL signals to prioritize candidate 

risk genes (67). Colocalization-based methods estimate the probability of a shared causal 

variant between expression and trait, given observed marginal association statistics (68,69). 

Summary mendelian randomization (SMR) estimates the mediating effect of gene 

expression on a trait using top eQTLs as instrumental variables (70). Under multivariate 

predictive models, transcriptomic imputation methods (e.g., TWAS or S-PrediXcan) test for 

genetic correlation between the cis-regulated component of gene expression and a trait 

(71,72). Here, a sparse set of local SNP predictors is trained for each gene, using a large 

tissue-specific reference panel, followed by imputation into an association cohort to 

prioritize candidate risk genes and their direction of dysregulation. By aggregating effects of 

multiple SNPs onto specific features, these methods increase power for detection of 

associations potentially even outside GWAS loci. However, as these are association tests, 

they remain susceptible to potential confounds of linkage and pleiotropy (67). Recent 

frameworks have been developed to identify potential associations driven by linkage (70,73), 

to control for pleiotropy (74), and to provide probabilistic interpretation for locus-specific 

associations (75). Ultimately, this is an active research area which will continue to improve 

with incorporation of additional annotations from specific cell-types, tissues (76), and other 

(e.g., epigenetic) regulatory mechanisms (77).

These methods have prioritized several high-confidence psychiatric risk genes. For example, 

in SCZ, increased expression of C4A can (partially) explain the top GWAS-associated locus 

in Europeans (59,67,78–80). The CommonMind Consortium (CMC) performed 
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colocalization of frontal cortex cis-eQTL, prioritizing several SCZ risk genes, including 

SNAP91, FURIN, and TSNARE1 (61), and SMR and tWaS have concordantly prioritized 

SNX19,among others (70,79). PsychENCODE, with its larger frontal cortex reference panel 

(80), prioritized many of these candidate genes and several more, including RERE, SETD6, 

SETD8, MCHR1, JKAMP, and AKT3--all of which were also concordantly differentially 

expressed (DE) in SCZ. Finally, incorporating splicing into the TWAS framework uncovered 

a number of candidates not identified through expression (79). Highlighting the importance 

of the reference panel tissue, TWAS-prioritized genes from fetal brain (60) or within distinct 

GTEx brain tissues (76) showed only modest overlap.

Such discrepancies highlight the need for validation, although true experimental replication 

remains challenging. For GWAS loci with a single high probability credible/causal variant 

and a specific eQTL colocalization, CRISPR/Cas9 genome editing can potentially be used 

for target validation (81). Yet, such strategies cannot distinguish between pleiotropic 

associations, if a given variant shows a functional effect across multiple genes. Integration of 

orthogonal annotations, such as chromosomal interactions with Hi-C or chromatin 

accessibility with ATACseq (63), can provide additional evidence of functionality and 

connect enhancers to genes, but remains susceptible to pleiotropy and generally lacks the 

resolution to pinpoint effects of individual variants. Integration with robustly-associated rare 

coding variants for the same trait may provide validation if available (82,83). In ASD, for 

example, the lysine methyltransferase KMT2E shows genome-wide significant associations 

across both common and rare variant studies (84,85). We recommend a probabilistic 

interpretation of prioritized candidate genes (75), including a potential null result, and 

hypothesize that integration of biologically-informed pathway-level priors will significantly 

boost performance.

Finally, these methods assume that genetic risk for disease is mediated through regulation of 

gene expression. Yet, recent evidence suggests that the overall proportion of disease 

heritability mediated by cis-eQTLs is much lower than previously thought, around ~10% in 

SCZ at least with current bulk tissue reference panels (86). The missing signal may be 

explained by distal QTLs, missing cis-eQTLs for lowly expressed genes (e.g., ncRNAs), 

those not captured in bulk tissue (cell-type-specific QTLs) (37,38), or distinct biological 

contexts, such as fetal brain (60). Effects other than expression regulation, including SNPs 

tagging structural variants, splicing or isoform-QTLs, methylation- or chromatin-

accessibility QTLs, coding variants or even variants within ncRNA exons may explain 

additional missing variance.

Identifying Biological Convergence Through Transcriptomics

Due to the overwhelming polygenicity of psychiatric disorders, two unrelated affected 

individuals likely possess distinct combinations of risk variants. As such, the next challenge 

is to characterize whether the effects of multiple risk variants converge onto ‘key’ 

downstream molecular pathways. Early examples came from ASD-associated copy-number 

variants (CNVs), found to be enriched for neuronal and synaptic cell-adhesion genes (87). 

Exome sequencing studies found enrichment for genes harboring ASD-associated rare, de 
novo, protein-disrupting variants (RDNVs) among synaptic, chromatin, and gene regulation 
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pathways (88). Further, although the overall RDNV burden in SCZ is smaller, similar 

pathways including synaptic genes, glutamate signaling, and activity-regulated cytoskeletal 

pathways are implicated (89,90). Common-variants across SCZ, MDD, and BD, in 

aggregate, show similar enrichments across synaptic and gene regulatory pathways (91).

Such enrichments are based on manually annotated pathways, which are unlikely to capture 

the full genomic complexity of the human brain (22). Transcriptomics provides a natural, 

bottom-up framework for systematically extending such annotations. The molecular 

underpinnings of human brain development are under exquisite spatiotemporal regulation, 

prompting several efforts to map expression across brain regions throughout development 

(40,92,93). Regional “patterning” of gene expression has been well captured in fetal (94) 

and adult human brain (9), a trend which will only be amplified with the advent of spatial 

transcriptomic profiling (95). These data enable systematic characterization of potential 

spatio-temporal, regional, and cell-type-specific convergence of the molecular genetic 

underpinnings of psychiatric disease. Along these lines, nearly all well-powered psychiatric 

genetic studies show enrichment for brain-expressed genes (7,84,85,96–98). Temporally, 

RDNVs associated with ASD and SCZ show enrichment among mid-fetal cortex gene 

networks (99–101). Experimentally-defined genomic targets of the RNA-binding proteins 

FMRP, RBFOX1, and CELF4 exhibit among the strongest enrichments for cross-disorder 

genetic risk (80,89,97,102,103).

In addition to RNA-binding proteins, non-coding RNAs such as microRNAs (miRNAs) are 

known to play an important role in human brain development and are implicated in 

psychiatric disease risk, as reviewed (87). miRNAs fine-tune gene expression by binding to 

the 3’ untranslated region (UTR) of specific target genes, inhibiting translation or promoting 

degradation. Several established genetic loci associated with psychiatric disorders harbor 

miRNAs, notably miR-137 as one of the top SCZ GWAS hits (88) as well as miR-130B, 

miR-185, and DGCR8 in 22q11.2 region. The exact nature and extent of dysregulation of 

miRNAs or other short non-coding RNAs (e.g. snoRNAs) in psychiatric disorders needs to 

be further explored.

Transcriptomic Insight into the Molecular Pathology Associated with 

Psychiatric Disorders

Psychiatric disorders lack a clearly defined anatomic pathology. Yet, given strong genetic 

roots, the question becomes -- what are the downstream biological consequences of these 
genetic risk factors? This question has fueled hundreds of case-control studies attempting to 

characterize group-level differences in molecular biomarkers, such as gene expression 

(13,44). Here, transcriptomics can provide a strategy for high-throughput, comprehensive 

molecular phenotyping of affected neural systems to characterize the current reactive state of 

a biological sample. Tissue and sample size are again critical, particularly given substantial 

levels of heterogeneity.

Initial seminal studies employed expression microarrays or in-situ hybridization in human 

postmortem prefrontal cortex from matched pairs of subjects with SCZ and controls. These 

studies identified notable dysregulation in synaptic machinery (89), interneuron markers 
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(90), mitochondrial processes (91), and myelin-related genes (92), among others, as 

reviewed (13). Following on this initial work, post-mortem brain transcriptomics became 

widely performed across many disorders, fueled by the growth of brain banks (93) and 

advances in high-throughput profiling. Decreased expression of interneuron markers was 

also reported in BD and major depression (MDD; (104) as well as mitochondrial 

dysfunction in BD (95,96). Synaptic dysregulation was also observed in ASD cortex, as 

were elevated neuroinflammatory markers and notable splicing changes (105). Cross-

disorder comparisons have been conducted, with layer-specific pyramidal cell changes 

observed in SCZ, but not BD or MDD (106). Further, when directly compared, 

transcriptomic changes were substantially larger in ASD than SCZ or BD (107). However, 

results have been variable across studies, particularly for individual DE genes-discrepancies 

which have been attributed to methodological, analytic, and/or cohort specific effects. 

Consistency tends to be greater at the level of pathways, cell-types, and networks, for 

example, and with meta- and mega-analytic approaches (107–109).

To address these challenges, consortia such as the Common Mind (61) and BrainSeq (63) 

were formed to aggregate and uniformly profile large numbers of psychiatric brain samples. 

Common Mind profiled more than 500 prefrontal cortex brain samples from SCZ and 

control subjects (>250 per group), prioritizing several new candidate risk genes through 

eQTL and GWAS colocalization (61). Several hundred DE genes were identified and, 

although effect sizes were modest, modeling estimated >40% of the transcriptome is 

perturbed in SCZ--a level of polygenicity that parallels GWAS findings to date. A neuronal 

co-expression module, associated with SCZ DE genes, was enriched for common and rare 

variation as well as postsynaptic density and synaptic signaling pathways, pointing to a 

convergent disease biology. More recently, PsychENCODE has compiled and meta-analyzed 

transcriptomic data from >2000 samples, including hundreds of individuals across SCZ, 

ASD, and BD as well as ~1000 controls for frontal cortex (64,80). Concordant results 

include interneuron marker downregulation, especially PVALB and SST, across SCZ and 

ASD (104,107,110). Many neuronal processes were dysregulated, particularly in ASD and 

SCZ, including those related to synaptic signaling and/or regulated by RBFOX1 
(63,80,105,107). Notably, neuronal isoform-level changes showed the greatest effect-size 

changes in ASD and SCZ as well as the largest genetic enrichments (80). Mitochondrial and 

metabolic processes were broadly disrupted (106,107,111) as were blood-brain-barrier 

markers (80). In contrast, a number of processes were concordantly upregulated, such as 

NFkB and interferon response pathways along with astrocyte genes in SCZ and ASD 

(80,112,113). Microglia genes exhibited more distinct changes, with upregulation in ASD 

and downregulation in SCZ and BD (80). Many of these ASD results were recapitulated by a 

recent sn-RNAseq study (114). Importantly, regional differences need to be characterized, 

particularly for non-cortical brain structures, which can exhibit highly distinctive changes 

(115,116).

Interpretation of such changes is challenging, however, as they may reflect a compensatory 

or reactive consequence of disease, rather than a true causal pathophysiology, as argued 

(116). Integration of established genetic risk factors, imparted at birth, with identified 

expression changes can provide a directional framework for interpretation, although 

pleiotropy can still confound observed associations. DE genes or co-expression modules can 
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be assessed for GWAS enrichment with methods such as LD-score regression (117) and 

MAGMA (110).

Cell-type specificity

Interpretation of bulk tissue transcriptomic results is further challenged due to its component 

mixture of individual cell types. Indeed, as much as ~85% of tissue-level RNA-seq data in 

human brain is driven by cell-type proportional differences (64). Computational approaches, 

including unsupervised co-expression network analysis or supervised cell-type 

deconvolution methods, can be used to gain inference into specific cell classes at a 

population level (38,57,64,107,118). However, individual cellular-level variability is lost and 

these methods are often limited to common cell-types. Initial targeted experimental methods, 

such as laser capture microdissection, flow cytometry or immunopanning, used cell-type 

specific visualization or labeling to enrich for a given population followed by transcriptomic 

profiling (119), although these approaches can be labor intensive and limited in throughput.

Advances in high-throughput single-cell/nuclei RNA-seq now provide cellular-level 

resolution to the aforementioned approaches (120,121). Microfluidic technologies capture 

individual cells in an oil droplet along with a barcoded bead and enzymes. Cells are lysed 

and polyA+ mRNAs are reverse transcribed into cDNA, which is amplified, fragmented, and 

sequenced. Barcoded cDNAs are pooled for PCR amplification, library construction, and 

fragmentation. Libraries are typically only sequenced at the 3’ end of a transcript, which is 

sufficient to quantify overall gene abundance. Transcripts from the same cell contain the 

same barcode, whereas a unique molecular index controls for biases due to PCR 

amplification. To avoid artifacts from tissue dissociation, single-nuclei RNA-seq using 

frozen tissue samples has become popular, as nuclei are more resistant to the stresses of 

freeze-thaw during isolation (122). snRNA-seq is generally comparable to scRNA-seq, 

although it detects more intronic reads and fewer total genes (122,123). Resulting datasets 

are large but sparse, with substantial gene dropout and noisy quantification of at most a few 

thousand genes per cell. Analytic methods are rapidly evolving, including quality control, 

normalization, batch correction, and multimodal integration (121,124,125). Non-linear 

dimensionality reduction methods identify unique cell-type clusters, which can then be 

contrasted across experimental conditions (121). Emerging methods can infer cellular 

lineage and “pseudo-temporal” trajectories, to characterize cell-type transition states and 

branch points (124,126). Nevertheless, as most methods rely on polyA+ 3’ sequencing, these 

data generally fail to capture the full transcriptome, missing many non-coding genes and 

splicing changes which are likely important contributors to psychiatric pathophysiology 

(80,115,127,128).

Large-scale sc/sn-RNAseq efforts are underway to fully elucidate the ‘parts-list’ of the 

human brain across development, including mid-gestational human fetal brain (129,130) and 

adult cortex across multiple regions (56,131), as well as hippocampus, striatum (132), and 

substantia nigra (125). Results highlight notable species-specific differences, including 

primate-specific striatal interneuron populations (132) and human-specific cell-type 

expression patterns for several serotonin and glutamate receptors (131). GWAS enrichment 

analyses have identified a set of genetically “vulnerable” cell-types in schizophrenia, 
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including cortical pyramidal cells, interneurons, and DRD2+ medium spiny neurons (133). 

Rare variants associated with ASD, which are most highly expressed early during brain 

development, show particular enrichment among excitatory and inhibitory neuronal lineages 

(84,129,130). Concordantly, snRNAseq profiling of ASD cortex found notable alterations in 

synaptic gene expression in upper layer excitatory neurons (114). Finally, there is hope that 

cell-type-specific eQTL mapping will provide critical missing annotations for psychiatric 

GWAS loci and uncover hidden disease mechanisms. Some evidence already supports this 

(69), and while cell-type-specific analyses will undoubtedly identify new eQTLs, many non-

expression-based mechanisms (e.g,. splicing) will remain hidden.

Model Systems

Transcriptomics can provide an important mechanistic readout in experimental settings, such 

as with animal models, hiPSC-derived neurons, or 3D cortical organoids. hiPSC-based 

methods provide an exciting opportunity to interrogate subject-specific neurobiology in an 

otherwise inaccessible context (127). To date, these approaches have been most fruitful 

characterizing effects of rare, large-effect-size mutations. For example, hiPSC-derived 

neurons from SCZ subjects harboring rare, pathogenic deletions in NRXN1 show strong 

allele-specific accumulation of ‘mutant’ isoforms and concomitant reduction in neuronal 

activity (128). hiPSC-derived neurons from subjects with MECP2mutations associated with 

Rett Syndrome show transcriptomic signatures of increased stress and senescence (129). In 

the context of common variation, genetic background effects can be difficult to control, 

although strategies enriching for subjects with strong polygenic burden have been 

successfully used (130). High-throughput genome-editing approaches coupled with 

transcriptional readouts are likely to provide important insights (134), for example, 

identifying convergent patterns of neuronal differentiation delay or acceleration associated 

with repression of distinct groups of ASD risk genes (132). Similar approaches taken in the 

context of animal models have begun to elucidate convergent biological mechanisms 

underlying psychiatric risk mutations. For example, overlapping transcriptomic changes in 

mouse models of 3 distinct CNVs associated with SCZ and ASD pinpointed convergent 

dysregulation of neuronal mitochondrial function (133). However, species differences in 

genomic regulation and brain cell-type organization (131) poses notable challenges for 

translational investigation of brain-relevant traits (134).

Integrative Approaches: Linking brain imaging & transcriptomics

Magnetic resonance imaging (MRI) is an important tool to investigate changes in brain 

structure, connectivity, and function that are associated with psychiatric traits at the 

macroscale. Due to a lack of resources integrating human neuroimaging data with gene 

expression patterns across cortical regions, previous studies have primarily examined 

associations between polygenic risk scores and brain structure/function. However, the recent 

availability of whole-brain gene expression atlases has enabled investigation into how 

regional gene expression relates to spatial patterns of in vivo neuroimaging phenotypes (9). 

The most widely used technique for integrating neuroimaging and transcriptomics links 

regional patterning of gene expression with spatial variation in brain structure using the 

Allen Human Brain Atlas (AhBA). A detailed description of this approach is provided 
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elsewhere (135,136). The AHBA consists of 6 adult human brains from which T1-weighted 

MRI images were collected and co-registered with gene expression profiled from ~900 

neuroanatomically defined regions. The resulting dataset provides an index of gene 

expression by brain region, which is then related to spatial patterns of neuroimaging 

phenotypes. This integrative method has the potential to inform our understanding of how 

gene networks relate to the hierarchical organizing principles of brain structural topography 

(137) and cortico-cortical connectivity patterns (138) relevant to behavioral symptoms 

associated with psychiatric disorders, and may also elucidate the genetic mechanisms by 

which particular brain regions are susceptible to disease-associated pathology as indexed in 

vivo by MRI. Indeed, work in this area has already shown that regional gene expression 

relates to atypical structural connectivity in SCZ (139,140) and regional variability of 

cortical thickness in ASD (141). Importantly, as the AHBA is derived from 6 neurotypical 

adults, future research integrating neurodevelopmental patterns of gene expression with age-

appropriate neuroimaging data, as well as disease-specific expression profiles, will 

undoubtedly shed light on how polygenic risk for mental illness relates to the emergence of 

psychiatric illness across the lifespan. Overall, these methods have the potential to inform 

our understanding of how individual variability in gene expression affects both behavioral 

and brain-based phenotypes of psychiatric dysfunction, as well as how genetic control of 

transcription relates to symptomatology and neuro-endophenotypes across time.

Conclusions and Future Directions

Altogether, transcriptomics provides a rich resource for informing our understanding of the 

mechanisms underlying genetic risk for psychiatric disorders. Yet, we emphasize this is not 

the only approach, nor is it without limitations. Indeed, RNA-seq provides only a static 

snapshot of the transcriptional state of a biological system, and RNA abundance is highly 

dynamic, undergoing concomitant synthesis, splicing, and degradation. Integration of 

orthogonal measures, including epigenetic and proteomic annotations, including PPIs, will 

be highly complementary (142,143). Future approaches to non-invasively interrogate the 

genomic architecture of the human brain--whether through 3D organoids or by exosomes--

will be important. Nevertheless, there is much more to be gained through investigation of 

postmortem human brains, including fully elucidating the component cell-types and their 

genetic regulation (113,115), characterization of spatial transcriptomic patterning (78), and 

detailed investigation of the full complexity of local splicing and isoform-level regulation 

(6,40,128,144). Finally, the notable enrichment of psychiatric genetic risk among gene 

regulatory pathways, particularly during fetal timepoints, highlights a strong, continued need 

for basic research into the complex molecular genetic principles orchestrating human brain 

development.
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Figure 1 -- A transcriptomic framework for mechanistic dissection of complex psychiatric traits.
A) A hierarchical neurobiological organization linking genotype to phenotype. B) Two main 

approaches are highlighted. Left, disease-associated genetic risk variants can be integrated 

with gene expression measures through transcriptome-wide association studies (TWAS) and 

related approaches to prioritize proximal biological mechanisms, particularly for non-coding 

variants. Right, differential gene expression analyses of brain tissue from subjects with 

psychiatric disorders compared with controls can be used to identify a reactive, brain-level 

molecular pathology of disease. C) Gene expression patterns are highly dynamic and 

interpretation requires understanding the relevant biological context.
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Figure 2. Factors influencing gene expression patterns across cortical brain samples in GTEx.
Sequencing related technical factors, along with estimated cell proportions, are top drivers of 

expression variance across anterior cingulate and frontal cortex brain samples in GTEx (v8; 

n=629 samples). Sequencing-related technical covariates were computed using PicardTools 

(“collectMultipleMetrics”) and combined with sample and subject-level metadata provided 

GTEx. Collinear covariates were removed and gene expression variance explained by each 

covariate was calculated using a linear mixed effects model using the variancePartition 

package (28). Sample specific proportions for major cortical cell-types were estimated with 

Bisque using single-nucleus RNA-seq data as a reference (56,57)
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