
UCLA
UCLA Previously Published Works

Title
Impact of incomplete ventricular coverage on diagnostic performance of myocardial 
perfusion imaging

Permalink
https://escholarship.org/uc/item/09h0h434

Journal
The International Journal of Cardiovascular Imaging, 34(4)

ISSN
1569-5794

Authors
Sharif, Behzad
Motwani, Manish
Arsanjani, Reza
et al.

Publication Date
2018-04-01

DOI
10.1007/s10554-017-1265-1

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/09h0h434
https://escholarship.org/uc/item/09h0h434#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Vol.:(0123456789)1 3

The International Journal of Cardiovascular Imaging (2018) 34:661–669 
https://doi.org/10.1007/s10554-017-1265-1

ORIGINAL PAPER

Impact of incomplete ventricular coverage on diagnostic performance 
of myocardial perfusion imaging

Behzad Sharif1,3,5   · Manish Motwani4 · Reza Arsanjani4,7 · Rohan Dharmakumar2,3,5 · Mathews B. Fish6 · 
Guido Germano4,5 · Debiao Li2,3,5 · Daniel S. Berman2,4,5 · Piotr Slomka2,4,5

Received: 11 July 2017 / Accepted: 26 October 2017 / Published online: 1 December 2017 
© The Author(s) 2017. This article is an open access publication

Abstract
In the context of myocardial perfusion imaging (MPI) with cardiac magnetic resonance (CMR), there is ongoing debate on 
the merits of using technically complex acquisition methods to achieve whole-heart spatial coverage, rather than conventional 
3-slice acquisition. An adequately powered comparative study is difficult to achieve given the requirement for two separate 
stress CMR studies in each patient. The aim of this work is to draw relevant conclusions from SPECT MPI by comparing 
whole-heart versus simulated 3-slice coverage in a large existing dataset. SPECT data from 651 patients with suspected coro-
nary artery disease who underwent invasive angiography were analyzed. A computational approach was designed to model 
3-slice MPI by retrospective subsampling of whole- heart data. For both whole-heart and 3-slice approaches, the diagnostic 
performance and the stress total perfusion deficit (TPD) score—a measure of ischemia extent/severity—were quantified 
and compared. Diagnostic accuracy for the 3-slice and whole-heart approaches were similar (area under the curve: 0.843 vs. 
0.855, respectively; P = 0.07). The majority (54%) of cases missed by 3-slice imaging had primarily apical ischemia. Whole-
heart and 3-slice TPD scores were strongly correlated (R2 = 0.93, P < 0.001) but 3-slice TPD showed a small yet significant 
bias compared to whole-heart TPD (− 1.19%; P < 0.0001) and the 95% limits of agreement were relatively wide (− 6.65% to 
4.27%). Incomplete ventricular coverage typically acquired in 3-slice CMR MPI does not significantly affect the diagnostic 
accuracy. However, 3-slice MPI may fail to detect severe apical ischemia and underestimate the extent/severity of perfusion 
defects. Our results suggest that caution is required when comparing the ischemic burden between 3-slice and whole-heart 
datasets, and corroborate the need to establish prognostic thresholds specific to each approach.

Keywords  Myocardial ischemia · Myocardial perfusion imaging · Cardiac magnetic resonance · Coronary artery disease · 
Myocardial ischemic burden · Whole heart imaging
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AUC	� Area under the ROC curve
CAD	� Coronary artery disease
CI	� Confidence interval
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Introduction

Direct visualization of perfusion abnormalities using 
stress myocardial perfusion imaging (MPI) enables nonin-
vasive assessment of the functional relevance of impaired 
coronary blood flow, and is currently the preferred test 
in patients with suspected ischemic heart disease. With 
several million studies performed in the U.S. alone, myo-
cardial perfusion is most commonly assessed using nuclear 
imaging modalities coupled with stress-induced hyperemia 
to detect hypoperfusion [1]. Within the realm of single-
photon emission computed tomography (SPECT) MPI, 
various studies have documented an important prognostic 
significance associated with stress-induced myocardial 
perfusion deficits [2, 3]. With recent technical improve-
ments, first-pass MPI using cardiac magnetic resonance 
(CMR) is emerging as an alternative to SPECT MPI [4–6]. 
Recent single-and multi-center clinical trials have shown 
non-inferiority of CMR MPI in detecting significant coro-
nary artery disease (CAD) in comparison to SPECT [7–9].

Despite recent developments, CMR MPI remains as one 
of the most technically challenging modalities for detec-
tion of ischemia and achieves a limited spatial coverage 
of the left ventricle, typically 3 short-axis slices: basal, 
mid ventricular, and apical [10, 11]. Among the most sig-
nificant recent technical advances for CMR MPI is the 
ability to achieve whole-heart spatial coverage [12–21]. 
Whole-heart CMR MPI has notable advantages relative 
to the conventional 3-slice CMR—specifically, the ability 
to yield the myocardial ischemic burden as a potentially 
important prognostic index similar to nuclear MPI meth-
ods [16–19]. However, unlike nuclear MPI methods, which 
intrinsically achieve whole-heart coverage, extending the 
spatial coverage to whole-heart in CMR methods involves 
technical challenges, advanced computational platforms 
and image-quality tradeoffs [14–19].

Weighing such potential advantages against current 
technical challenges, there is ongoing debate on the mer-
its of whole-heart CMR MPI compared with conventional 
3-slice imaging in terms of improving the overall diag-
nostic performance and assessment of extent/severity of 
ischemia [20, 21]. Within the same context and consid-
ering the growing number of clinical studies comparing 
nuclear MPI and 3-slice CMR MPI [7–9], it is not clear to 
what extent nuclear MPI methods benefit from their inher-
ent whole-heart imaging capability, or how assessments 
of ischemic burden vary between the two modalities with 
such different levels of spatial coverage. The purpose of 
this study is to compare the diagnostic performance of 
whole-heart and 3-slice MPI and their assessment of the 
extent/severity of stress-induced perfusion deficits, using 
nuclear MPI as the modality being tested. To this end, our 

study is based on retrospective analysis of a large SPECT 
MPI dataset with correlative invasive coronary angiogra-
phy (ICA), and the results are discussed in terms of their 
implication with respect to CMR protocols.

Materials and methods

Studied population

Subjects were selected from 9709 patients with suspected 
CAD who were referred for a stress/rest SPECT MPI study 
from 2003 to 2006 [22]. The SPECT MPI study protocols 
for retrospective analysis of anonymized data were approved 
by the local institutional review board. The exclusion crite-
ria for the selected patients included prior history of CAD 
including prior myocardial infarction, cardiomyopathy, sig-
nificant valve disease, left bundle branch block, and paced 
rhythm. The studied population was limited to patients 
who had also undergone correlative ICA performed within 
60 days of imaging with no intervening event. A total of 651 
sequential studies were retrospectively identified to form the 
studied population. Informed consent was obtained from all 
individual participants included in the study.

Imaging protocol

Subjects underwent electrocardiography-gated SPECT MPI 
using a standard 99mTc-sestamibi rest/stress protocol. Rest 
images were acquired 60 min after administration of the 
radiotracer. This was followed by stress imaging performed 
at 15–45 min after either adenosine infusion with low-level 
exercise or radiopharmaceutical injection during treadmill 
exercise stress. Dual-detector scintillation cameras (Vertex, 
Philips Medical Systems, Milpitas, CA) were used. Image 
acquisition and tomographic reconstruction were performed 
using the previously described conventional protocol [23]. 
Gender-matched normal limits for MPI were employed, 
derived from a separate group of 100 subjects (50 males, 50 
females) with low likelihood of CAD and visually normal 
scans [23].

Data analysis methods

Method for automatic analysis of myocardial perfusion 
studies

MPI images were automatically analyzed based on the clini-
cally validated measure of total perfusion deficit (TPD) [24, 
25] using the standard Quantitative Perfusion SPECT algo-
rithm (QPS software, version 2013, Cedars-Sinai) [26, 27]. 
TPD is a continuous measure of perfusion defect extent and 
severity, designed to be equivalent to the commonly used 
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summed segmental scoring [24, 25]. Figure 1 provides a 
schematic description of the TPD score. To compute the 
TPD for a given patient, in the first step a standard ellipsoi-
dal contouring model for the left ventricular (LV) surface 
was automatically generated in the QPS software. Polar-map 
samples were extracted from the stress SPECT MPI data 
corresponding to the maximum count profiles normal to 
the LV surface [26]. Next, for each pixel on the polar map, 
presence of hypoperfusion was detected by comparison to 
gender-matched normal perfusion limits using a mean abso-
lute deviation threshold of 3.0 (equivalent to ≈ 2.5 standard 
deviation) [23]. Finally, severity of hypoperfusion among 
the abnormal polar-map pixels (detected in the previous 
step) was computed and integrated to yield the “whole-heart 
TPD,” which is expressed in a percentage format (with a 
theoretical maximum of 100% corresponding to no visible 
uptake in the entire LV surface). Previous studies have estab-
lished that automated evaluation of SPECT MPI using the 
described stress TPD measure achieves a diagnostic perfor-
mance equivalent to, or better than, expert visual analysis 
[24, 28].

Method for retrospective simulation of 3‑slice perfusion 
imaging

We developed a computational approach for retrospective 
analysis of the whole-heart MPI dataset to model/simulate 
3-slice MPI. The approach was based on a modified TPD 
metric and leveraged the automatic perfusion-assessment 
capability and flexibility of the QPS software. Briefly, a new 
set of truncated “3-slice polar maps” was derived from the 
set of SPECT MPI whole-heart polar maps corresponding to 

the 651 studied patients. First, for a given patient, a binary 
mask corresponding to the whole-heart polar map was gen-
erated that selected only 3 short-axis slices at apical, mid 
ventricular, and basal position—same 3 slices convention-
ally acquired in CMR MPI [10, 11]. Specifically, as dem-
onstrated in Fig. 2, two consecutive rings from the whole-
heart polar map used in the QPS software were combined 
(≈ 10 mm slice thickness) at the center of apical, mid ven-
tricular, and basal positions as defined by the AHA 17-seg-
ment LV model [29]. Next, this 3-slice binary mask was 
applied to the corresponding whole-heart polar maps (stress 
images) generating the 3-slice polar map, which subsampled 
the whole-heart data down to 3 short-axis slices. Finally, the 
new measure of “3-slice TPD” was computed according to 
the same formulation as whole-heart TPD but only consid-
ering hypoperfusion severity/extent within the 3-slice polar 
map, and expressed as a normalized percentage. Analysis 
was performed in completely automated mode using the 
same LV contour definitions as obtained for whole-heart 
MPI.

Statistical methods

Based on the ICA data, significant CAD was defined as a 
coronary stenosis of ≥ 70% on visual assessment in any 
of the main epicardial coronary arteries or their branches 
with diameter ≥ 2 mm. Receiver-operating characteristic 
(ROC) analysis was used to determine the diagnostic per-
formance (area under the curve [AUC]) for each of the 

Fig. 1   Schematic description of the total perfusion deficit (TPD) 
score for analysis of SPECT myocardial perfusion imaging (MPI). 
TPD is a continuous measure of the combined extent and severity 
of perfusion defects, designed to be equivalent to the visual summed 
segmental score. Derived automatically from SPECT MPI data 
using the Quantitative Perfusion SPECT (QPS) software, presence 
and severity of stress-induced hypoperfusion is measured relative to 
gender-matched normal perfusion limits for each pixel on the polar 
map (using a mean absolute deviation threshold of 3.0). Whole-heart 
stress TPD is computed by integrating the stress hypoperfusion sever-
ities across the left ventricular polar map, expressed in a percentage 
format

Fig. 2   Demonstration of the 3-slice binary mask (blue color) super-
imposed on the whole-heart LV polar map used in the QPS software 
for retrospective analysis of SPECT MPI data. Two consecutive rings 
from the whole-heart polar map in the QPS software were combined 
(thickness ≈ 10  mm) at the center of apical, mid ventricular, and 
basal positions (defined by the AHA 17-segment LV model), respec-
tively. To simulate 3-slice imaging using the SPECT MPI datasets, 
this binary mask was applied to the whole-heart data (polar map) in 
order to select only 3 short-axis slices as conventionally acquired in 
magnetic resonance MPI (apical, mid ventricular, and basal slices). 
LV left ventricular, MPI myocardial perfusion imaging. (Color figure 
online)
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TPD measures (whole-heart and 3-slice) and these were 
compared according to the Delong method [30]. Sensitiv-
ity and specificity of both techniques were compared using 
McNemar’s paired test. The optimal cut-off threshold for 
whole-heart stress TPD was ≥ 3% based on a method 
described in prior studies [22]. For the 3-slice technique, 
the optimal TPD cut-off threshold was determined by the 
same method and was also ≥ 3% on a per-patient basis. 
Agreement and correlation between the two TPD measures 
(whole-heart vs. 3-slice) was evaluated in patients with 
significant CAD using linear regression and Bland–Altman 
analysis [31]. The categorization of TPD as < 3% or ≥ 3% 
by both techniques was also compared. All statistical tests 
were 2-tailed and p < 0.05 was considered significant. All 
statistical calculations were performed using Analyse-It 
version 2.10 (Analyse-it Software Ltd., Leeds, UK).

Results

Study population

Characteristics of the studied patient population are sum-
marized in Table 1. Of the 651 patients, 187 (29%) had no 
significant CAD based on ICA, and the rest (n = 464) com-
prised a relatively even mixture of single-vessel (36%) and 
multi-vessel (30%) disease with “vessel” referring to the 
left main artery or one of the three major epicardial arter-
ies: left anterior descending artery (LAD), left circumflex 
artery, or right coronary artery. Furthermore, of the 464 
patients with significant CAD based on ICA, 35 patients 
(5%) did not have a significant stenosis in any of their 
major epicardial arteries and instead had ≥ 70% stenosis 
in one or more of the diagonal/obtuse marginal branches, 
or the posterior descending artery.

Diagnostic accuracy

To directly compare the diagnostic accuracy of whole-
heart and 3-slice imaging, we generated ROC curves for 
detection of significant CAD for each approach as shown 
in Fig. 3a. As described in Fig. 3b, the AUC for whole-
heart imaging and 3-slice imaging were similar with no 
significant difference (0.855 ± 0.015 vs. 0.843 ± 0.015, 
respectively; P = 0.07). At the optimal TPD cut-off thresh-
old (≥ 3% for both techniques), whole-heart imaging had a 
higher sensitivity than 3-slice imaging (84.5% vs. 80.1%, 
respectively; P < 0.01) but specificities showed no signifi-
cant difference (70.0% vs. 74.9%, respectively; P = 0.08).

TPD scores: level of agreement

Among the 464 patients with significant CAD based on 
ICA, TPD was found to be ≥ 3% by both methods in 367 
patients; and < 3% by both methods in 67 patients. Overall, 
when used to categorize TPD as ≥ 3% or < 3%, there was 
excellent agreement between the two techniques (observed 
agreement = 93.5%). In 30 patients with significant CAD, 
the two methods disagreed at the ≥ 3% threshold: in 26 
patients, the whole-heart method determined TPD ≥ 3% 
(true positives) but 3-slice stress TPD estimated it as 
< 3% (mean TPD difference = 3.2%); and in 4 patients, 
the whole-heart method estimated TPD as < 3%, but 3 
slice technique estimated it as ≥ 3% (mean TPD differ-
ence = 0.9%). Figure 4 shows an example of such a case 
of disagreement in which ischemia is detected on the basis 
of whole-heart TPD but 3-slice TPD fails to detect the 
perfusion defect since it is located at the apex (details 
provided in caption). Overall, in 14 of the 26 cases that 
were detected by whole-heart but missed by 3-slice, the 
perfusion defect was mainly apical (similar to Fig. 4) and 

Table 1   Characteristics of the studied patient population

A total of 651 SPECT myocardial perfusion imaging studies were 
analyzed. All patients underwent correlative invasive coronary angi-
ography (ICA)
LAD left anterior descending artery, LCX left circumflex artery, RCA 
right coronary artery, SD standard deviation, SPECT single-photon 
emission computed tomography
‡ Vessel refers to one of the major epicardial arteries (left main, LAD, 
LCX, or RCA)

Characteristic Patients

Number 651
Age (years) 64 ± 12
Male (%) 57
Female (%) 43
Mean body mass index ± SD 31 ± 6.3
Diabetes mellitus (%) 27
Hypertension (%) 64
Hyperlipidemia (%) 51
Smoking (%) 19
Exercise SPECT (%) 34
Adenosine SPECT (%) 66
Mean ejection fraction ± SD (%) 61.7 ± 12.2
ICA results (disease defined as ≥ 70% stenosis)
 No disease 187 (29%)
 LAD disease 280 (43%)
 LCX disease 169 (26%)
 RCA disease 247 (38%)
 1-vessel disease‡ 232 (36%)
 2-vessel disease‡ 127 (19%)
 3-vessel disease‡ 70 (11%)
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corresponded to significant single-vessel LAD disease on 
ICA.

Linear regression analysis in patients with significant 
CAD (n = 464), shown in Fig. 5a, demonstrated very strong 

correlation between whole-heart and 3-slice TPD scores 
(R2 = 0.93, P < 0.001) but with a noticeable intercept of 
1.41% (95% confidence interval (CI): 1.01% to 1.80%). 
Bland–Altman analysis in patients with significant CAD, 

Fig. 3   Comparison of the diagnostic accuracy of whole-heart myo-
cardial perfusion imaging (MPI) versus 3-slice MPI with invasive 
coronary angiography (ICA) as the reference. a Receiver-operating 
characteristic (ROC) curves corresponding to whole-heart imaging 
(using the whole-heart TPD scores) versus 3-slice imaging (using 
the 3-slice TPD scores) for detection of significant CAD, defined 
as ≥ 70% coronary stenosis (any main epicardial vessel or branches 

with diameter ≥ 2 mm) based on ICA (n = 651). b The area under the 
ROC curves (AUCs) for whole-heart imaging and 3-slice imaging 
are 0.855 and 0.843, respectively (P = 0.07), indicating a statistically 
insignificant difference in terms of diagnostic performance. The 95% 
confidence interval corresponding to each AUC is also provided in 
panel (b). CAD coronary artery disease, TPD total perfusion deficit

Fig. 4   Example stress SPECT MPI data for a case wherein ischemia 
is detected on the basis of the whole-heart TPD score but 3-slice TPD 
measurement fails to detect the severe ischemia. a Polar map with 
raw perfusion data; b automatically analyzed whole-heart polar maps 
generated in the QPS software (whole-heart stress TPD = 6.0%). The 
presented case is the stress MPI data for a 58-year-old female patient 
showing a severe apical perfusion defect, which is consistent with 
her invasive angiography results that indicated 90% LAD stenosis. 

In b, the measured perfusion defect region is shown in black and the 
numbers in each segment indicate the corresponding defect extent (in 
percentage) for that segment. The 3-slice stress TPD (computed from 
the conventional short-axis slice positions as shown in Fig.  2) was 
0.9%, which is below the 3% abnormality threshold. LAD left anterior 
descending, MPI myocardial perfusion imaging, TPD total perfusion 
deficit
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shown in Fig. 5b, demonstrated good agreement at low 
TPD values but only a moderate level of agreement was 
observed for the medium-to-high range of TPD scores 
(mean TPD ≥ 8%). Overall, the 95% limits of agreement 
were − 6.65% to 4.27% and the estimated bias was − 1.19% 
(P < 0.0001; 95% CI: − 1.45% to − 0.94%).

Discussion

Despite having a limited spatial coverage of the LV myocar-
dium, assessment of myocardial perfusion using vasodilator 
stress CMR has been shown to be an effective diagnostic 
tool in evaluation of patients with suspected CAD, and yet it 
remains as one of the most technically challenging modali-
ties for MPI. Whole-heart CMR MPI is even more challeng-
ing and is accompanied with higher likelihood of artefactual 
perfusion images, especially due to high heart rates or inabil-
ity of the patient to perform a breath-hold during the stress 
MPI scan [21, 32, 33]. Compared to the conventional 3-slice 
CMR MPI approach, however, whole-heart CMR techniques 
have notable advantages including accurate assessment of 
ischemic burden and detection of apical ischemia, and are 
therefore being extensively developed [14–19]. In fact, a 
recent multi-center study showed excellent diagnostic per-
formance for whole-heart CMR MPI in detecting significant 

CAD [34]. On the other hand, conventional 3-slice MPI 
has also been shown to achieve high diagnostic accuracy 
in large single- and multi-center clinical trials without the 
additional technical complexity of the whole-heart approach 
[7–9]. Furthermore, whole-heart CMR MPI requires a high 
“imaging acceleration” factor (as high as 8–10 fold [21]) and 
therefore involves inevitable trade-offs in terms of spatial 
and temporal fidelity (loss of high-frequency information) 
and/or image quality—specifically, reduced in-plane resolu-
tion and a larger acquisition window (temporal footprint) 
within each cardiac cycle, which both may contribute to 
increased prevalence/frequency of image artifacts. Conse-
quently, there is ongoing debate on the optimal technique 
for CMR MPI protocols and a need to better understand 
the impact of spatial coverage on diagnostic performance 
of MPI [20, 21].

Ultimately, a large-scale study evaluating both whole-
heart and 3-slice stress CMR MPI in the same patient popu-
lation can provide a definitive assessment of the merits of 
whole-heart CMR. Although this is the ideal approach, a 
large study population would be required to detect a dis-
cernible difference with adequate power—as both tech-
niques are already known to have high diagnostic accu-
racy. Furthermore, recruitment would be challenging given 
the requirement for two serial stress CMR exams for each 
patient. An alternative to performing an adequately-powered 

Fig. 5   Evaluation of correla-
tion and agreement between 
whole-heart versus 3-slice 
stress TPD scores in patients 
with significant CAD (≥ 70% 
stenosis; n = 464). a Scatter plot 
and linear regression of whole-
heart TPD against 3-slice TPD 
showing a very strong correla-
tion (R2 = 0.93, P < 0.001) but 
a noticeable intercept of 1.41% 
(95% CI: 1.01% to 1.80%) 
indicating the presence of a 
systematic bias. b Bland–Alt-
man analysis demonstrates a 
moderate level of agreement 
between whole-heart and 3-slice 
TPD scores that decreases 
at higher TPD values (95% 
limits of agreement: − 6.65% to 
4.27%), and a small but signifi-
cant systematic bias of − 1.19% 
(P < 0.0001; 95% CI: − 1.45% to 
− 0.94%). CAD coronary artery 
disease, CI confidence interval, 
TPD total perfusion deficit
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comparative CMR study is to draw relevant conclusions 
from a large existing nuclear MPI dataset. Therefore, in the 
current study, we used a computational approach to sys-
tematically study the effect of reduced spatial coverage on 
the diagnostic performance of MPI using a large SPECT 
dataset with available correlative invasive angiography. This 
computational data analysis was enabled by an automated 
measure of stress-induced perfusion defect extent and sever-
ity, namely, the TPD score, using a previously established 
approach shown to be equivalent to the standard visual 
assessment.

Main findings

The first finding of this study, based on retrospective analysis 
of a SPECT MPI dataset, is that the diagnostic accuracy of 
MPI with whole-heart spatial coverage is similar to MPI 
with 3-slice coverage (distributed at basal, mid ventricular, 
and apical positions with ≈ 10 mm thickness) for detection 
of significant CAD (AUC: 0.855 vs. 0.843 respectively; 
P = 0.07). This finding is in keeping with a smaller CMR-
based study (n = 53) by Jogiya et al. [19], which took a 
similar approach with CMR and also found no difference in 
diagnostic accuracy between whole-heart acquisition and a 
3-slice model selected from the same CMR data. The limi-
tations of the Jogiya et al. study were its small sample size 
(53 vs. 651 in our study) and a potentially unfair represen-
tation of the 3-slice technique as noted in the same study 
[19]. (Image quality of the selected 3 slices from whole-
heart CMR data was inferior to separately-acquired 3-slice 
data because of the inherent CMR data acquisition trade-offs 
involving spatial and temporal resolution [21]). In this con-
text, our study is particularly additive as it overcomes both 
of these limitations by using a large nuclear MPI dataset.

The second finding of the current study is that a majority 
(54%) of the cases missed by 3-slice MPI involved patients 
with significant single-vessel LAD disease for which 
ischemia was mainly located at the apex (17th segment in 
the AHA myocardial segmentation model), which is not 
adequately captured by 3-slice imaging. Consequently, our 
results suggest that, in CMR protocols, potential diagnostic 
benefits of whole-heart imaging will be due to the ability to 
capture apical defects in patients with LAD disease. This 
phenomenon may also explain the systematic underestima-
tion of TPD (significant negative bias) with 3-slice coverage 
compared to whole-heart MPI (bias: − 1.19%; P < 0.0001). 
A prudent approach for overcoming this limitation of 3-slice 
CMR MPI versus whole-heart imaging is to increase the 
ventricular coverage to 4 slices by adding a long-axis slice 
(2- or 4-chamber view) to the 3 short-axis slices. This 
approach will provide a notably improved visualization of 
the apical region and therefore may improve the detection of 
stress-induced perfusion defects that are primarily located at 

the apex. It should be noted, however, that addition of a 4th 
slice to a two-dimensional multi-slice CMR perfusion pulse 
sequence will inevitably limit the peak stress heart-rate than 
can be accommodated during acquisition of the first-pass of 
the contrast agent. In such patients, a potential solution for 
performing 4-slice CMR MPI is to employ a high level of 
parallel-imaging acceleration (beyond the typical twofold 
acceleration), which may result in reduced image quality.

The third important finding is that although there is a 
good correlation between the stress TPD scores for 3-slice 
and whole-heart imaging, there are relatively wide limits 
of agreement between the two TPD scores. Since our study 
population excluded patients with prior history of CAD and 
prior myocardial infarction, the stress TPD score presented 
in our results is a surrogate of ischemic burden. In this con-
text, the Bland–Altman 95% agreement limits of − 6.65% 
to 4.27% are relatively wide considering that an ischemic 
threshold of 10% is often used to guide revascularization 
versus medical therapy decisions in whole-heart MPI [2, 
3]. This implies that the “ischemic burden” derived/extrapo-
lated from 3-slice imaging (e.g., those derived in clinical 
CMR studies) may not be an accurate measure for guid-
ing therapy or assessment of risk in CAD patients based on 
the previously established cut-offs for whole-heart SPECT 
MPI. Our TPD-comparison results corroborate a recent pilot 
CMR MPI study of 27 subjects by McDiarmid et al. [35], 
which found a strong correlation but wide limits of agree-
ment for estimates of ischemic burden between 3-slice and 
whole-heart CMR approaches. Notably, the latter pilot study 
called for a much larger study to confirm these findings but 
accepted the impracticality and significant cost given the 
requirement for two serial stress CMR MPI studies and an 
adequately-powered sample size [35]. Our study, although 
drawing on data from SPECT, has the significant advantage 
of a much larger study population (651 vs. 27)—enabling it 
to draw statistically meaningful conclusions.

Study limitations

The presented work is a “simulation” study in that SPECT 
MPI inherently achieves whole-heart coverage and 3-slice 
imaging was simulated by subsampling of the whole-heart 
dataset. Since the underlying data-acquisition physics and 
resolution of CMR and SPECT MPI are different (first pass 
of MR contrast agent vs. accumulation of the SPECT radio-
tracer), we acknowledge that our results present a partial 
view into the potential advantages of whole-heart versus 
3-slice CMR MPI. However, a recent study has demonstrated 
a close agreement between ischemic burden identified by 
SPECT MPI and 3-dimensional whole-heart CMR MPI 
[36] and a similar but weaker agreement with SPECT MPI 
is likely to hold for 2-dimensional multi-slice CMR MPI, 
especially if “all systolic” methods are used [37]. Second, 
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given the fully-automatic processing methods employed for 
quantification of TPD in our study, it can be argued that our 
comparison of the ischemic-burden surrogate (i.e., TPD) 
was free of “operator bias” and other complicating factors 
encountered in analysis of CMR MPI data, which often 
involves manual steps. In common with the majority of prior 
MPI studies, the use of a visually assessed anatomical refer-
ence standard for CAD is a known limitation, and fractional 
flow reserve would have been preferable. However, this limi-
tation is less relevant here as the same patients provide the 
two compared imaging methods from the same dataset, and 
therefore the deficiencies in ICA as a reference standard for 
ischemia affect both groups to a similar extent.

Conclusions

There is ongoing debate on the merits of using technically 
complex whole-heart MPI methods using cardiac mag-
netic resonance (CMR) rather than conventional 3-slice 
CMR acquisition. Based on retrospective analysis of a large 
SPECT MPI dataset, our results demonstrate that MPI with 
whole-heart coverage versus three short-axis slices—as typi-
cally acquired in CMR MPI protocols—have similar diag-
nostic accuracy for detection of significant CAD, defined as 
≥ 70% coronary stenosis using invasive angiography. How-
ever, a detailed comparison of whole-heart versus 3-slice 
MPI indicates that 3-slice coverage may fail to detect severe 
ischemia that is primarily apical and can lead to a system-
atic underestimation of the TPD score—a surrogate of 
myocardial ischemic burden. The presented results suggest 
caution when comparing the myocardial ischemic burden 
between approaches with different spatial coverage (3-slice 
vs. whole-heart datasets), and therefore underlines the need 
to establish prognostic ischemic-burden thresholds specific 
to level of spatial coverage in CMR MPI protocols.
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