UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Characterizing, Rationalizing, and Reifying Mental Models of Recursion

Permalink
https://escholarship.org/uc/item/09d23182]
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Authors

Bhuiyan, Shawkat H.
Greer, Jim E.
McCalla, Gordon I.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/09d23182
https://escholarship.org
http://www.cdlib.org/

Characterizing, Rationalizing, and Reifying
Mental Models of Recursion

Shawkat H. Bhuiyan

Jim E. Greer

Gordon 1. McCalla

ARIES Laboratory
Department of Computational Science
University of Saskatchewan
Saskatoon, SK, Canada STN OW0
aries@cs.usask.ca

Abstract

Mental models reflect people's knowledge about entities
and systems around them. Therefore, knowing and
understanding mental models can help in exploring
cognitive issues in instruction including why a student
takes a certain approach or applies a particular strategy to
solve a problem, why a student makes mistakes, and why
and how misconceptions are developed. Four different
mental models of recursion, used for synthesizing
solutions to recursive programming problems, have been
identified through students’ protocols. Each model has
been characterized in a way consistent with the students’
protocols. Various problem solving behaviours are
rationalized in terms of the models. Suggestions are made
as to how the mental models develop and evolve in the
course of learning. We also present a learning
environment in which these mental models are reified and
we show how mental models can be incorporated into an
intelligent tutoring system.

Introduction

A mental model is a coherent collection of knowledge held
by a person about some aspect, entity or concept of the
world. People use mental models to interpret the world,
and therefore, aspects of human behaviour can be explained
through these models (Gentner and Stevens 1983). Since
mental models reflect people's knowledge about entities
around them, knowing and understanding mental models
can help in understanding cognitive issues in instruction
such as why a student takes a certain approach or applies a
particular strategy to solve a problem, why a student
makes mistakes, and why and how misconceptions are
developed. By understanding the mental models of a
student, a tutor or mentor can design appropriate
individualized pedagogical guidance.

Most mental model research has been conducted in
domains involving physical devices with well-structured
physical principles. Working on the Student Computing
ENvironmenT (SCENT) LISP programming advisor
(McCalla er al 1988), an ongoing intelligent tutoring
project at the ARIES Laboratory, we became interested in
understanding mental models of abstract concepts,
especially recursion in computer programming. Recursion
is a very interesting domain to study because many
students claim to experience a significant cognitive change
(often describing this as a radical re-organization of

120

knowledge) as they gain understanding of recursive
conceplts.

In this regard, an empirical study was carried out to
study mental models of recursion with the following goals
in mind: 1) What are mental models of recursion in the
context of computer programming? 2) How do these
models develop and how are they modified? 3) How does
migration from one model to another model take place? 4)
How do different models relate to one another? 5) When
multiple models exist, are they all applicable or are they
situation dependent? 6) What are the transformation
operators or mapping functions among different mental
models? 7) Are changes in mental models evolutionary or
revolutionary in nature?

The protocol analysis and preliminary findings of our
empirical study were discussed in (Bhuiyan, Greer &
McCalla 1989). This paper takes the work further by
characterizing mental models of recursion, rationalizing
students' problem solving in light of these models, and
providing a system for reifying these mental models.

Background

Various researchers have studied students' conceptions of
recursion in the context of computer programming. Their
findings can be summarized as follows: 1) Novices at early
stages of learning about recursive programming possess a
loop model; that is, they view recursion as some sort of
iterative process (Anzai and Uesato 1982; Kahney 1982;
Kurland and Pea 1985; Kessler & Anderson 1986). 2) A
syntactic model of recursion has been suggested by Pirolli
(1985) as an ideal novice model of recursion, yet with a
syntactic model a student cannot explain the behaviour of a
recursive procedure (Kahney 1982). 3) First learning
iteration may help students learning recursion, but not vice
versa (Anzai and Uesato 1982; Kessler and Anderson
1986). 4) Experts' mental models of recursion are different
from those of novices (Kahney 1982). 5) There are no
significant difference in students’ performance with
recursive tasks when they were taught with theoretical vs
syntactic methods, although there is some indication that
transfer is enhanced through a theoretical approach (Greer
1987).

Although the literature hints at several different mental
models of recursion, no comprehensive work has yet been
done in this domain. Therefore, we believe it is important

to investigate mental models of recursion more carefully,
especially how the models are used in synthesizing
recursive programs, and hence we carried out the empirical
study. The intent of the study was not to statistically
validate mental models of recursion, but rather Lo cxplore
the goals mentioned above.

Mental Models of Recursion

Our empirical study involved monitoring the problem
solving of six non-major computer science students on a
weekly basis to analyse their knowledge of recursion as
they learned the concept in a programming course. Four
different mental models of recursion: loop model, syntactic
model, analytic model and analysis/synthesis (A/S) model
have been identified through analysis of the students' verbal
protocols. These four mental models of recursion were
used by various students at varying times as they
synthesized solutions for recursive problems. Earlier
papers (Bhuiyan et al. 1989; Greer 1987) provide evidence
justifying these mental models. A number of analysis
models were also used by the students for analyzing and
tracing recursive programs, but these are not discussed
here. Here an attempt is made to characterize students'
problem-solving behaviour consistent with each model.

Loop Model

The loop model is a flawed model of recursion that many
students develop early in their study of recursive
programming (Anzai and Uesato 1982; Kahney 1982;
Kurland and Pea 1985; Kessler and Anderson 1986). This
model comes into existence when the student tries to
understand and explain recursion in terms of prior
knowledge about iterative programming.

Typically, the beginner has some basic declarative
knowledge about recursion either from a text book or from
a teacher. This knowledge could include facts such as: a
recursive function calls itself, a recursive function has a
base case and a recursive case, and so forth. The student
may not have acquired any means to apply this declarative
knowledge, i.e, he/she may not have the procedural
counterpart of the knowledge. On the other hand, his/her
knowledge about iteration typically consists of both
declarative and procedural knowledge. The student's
knowledge about iteration dominates his/her knowledge
about recursion, and it is likely that the student tries to
understand recursion by drawing analogies to loop or
iterative structures.

Usually students develop informal solution plans before
writing programs. A student with a loop model is likely
to develop an iterative solution plan. If he/she attempts to
translate this to a recursive algorithm, there is a good
chance that the algorithm will be flawed, incorporating
such features as declaration of loop index variables,
initialization of loop index variables, update (increment/
decrement) of these variables, and a termination test.
Manifestation of these features depends upon the initial
selection of the loop structure that the student had in mind
while developing the algorithm. The student's program
usually does not contain an explicit loop, because the

121

student knows that recursions are different from iterations,
but instead substitutes the intended loop structure with a
recursive call.

Protocol analysis revealed several issues related to
students' use of the loop model. Learning iteration may
assist later learning of recursion, as Kessler and Anderson
(1986) and Uesalo and Anzai (1982) claim, but we
observed that the loop model did not help students in
understanding recursion; rather students became confused as
they tried to apply the loop model to synthesizing
recursive solutions. By the end of the second week of our
investigation, all students who were initially using the
loop model seemed to have moved on to more suitable
mental models. Greer (1987) made a similar observation
in his experiment.

Syntactic Model

Students acquire the syntactic model by abstracting
structural features of recursion when they have little
conceptualization of recursion as a problem-solving
technique, but have considerable declarative knowledge
about recursion. At this stage, their declarative knowledge
focuses on two structural features of recursive functions: a
base case and a recursive case; where a process to solve a
problem is repeatedly called in the recursive case, and the
base case stops the process. When a student transforms
such knowledge of recursion into problem solving for
simple problems, he/she usually abstracts these two
features into a recursion template, a schema with slots for
base case and recursive case as shown in Figure 1. Again,
each case has a condition part and an action part.

(defun <function-name> (<argl> ... <arg n>)
(cond

(<condition-1> <action-1>)

(<condition-2> <action-2>)

;; base case
;; base / recursive case

(<condition-k> <action-k>))) ;; recursive case

Figure 1: Syntactic model template

To synthesize a solution to a recursive programming
problem using the syntactic model, first a template is
selected. The selected template can be a 'basic template’
like the one in Figure 1 or a template from an earlier
problem analogous to the current problem. After selecting
the template the student fills in the condition and the
action parts in the case slots with programming language
specific code chunks. In general, a student makes several
attempts to fill in recursive case slots when partial results
are to be passed back. The protocols in Figure 2 illustrate
the use of the syntactic model.

A serious shortcoming of the syntactic model is that
although a student is aware of the conditions and actions in
a template, he/she may not know how to derive them.
This frequently results in nearly random slot-filling
behaviour by novice programmers. Moreover, while
synthesizing programs using this model, novices,

generally, think of the solutions at the programming
language code level. This may be due to the fact that they
are simply concerned with filling in the template slots.

(a) Student K is looking for an arbitrary recursion template
K: .. I don't know. I have to ... I can't remember the
"format” that goes here. You showed me a couple of
minutes ago.
Tutor: Okay. Why do you have to see a format?
K: Well, the base case and the recursive case - how they are
set up, I forgoL

(b) An example of template filling behaviour

K: So, we need a base case. The base case would be: if the
list is empty then return 0, else .. (over a minute) ..
Else take rest of L. ... return Count + 1.
....This is not how it's done

Figure 2: Protocol demonstrating the syntactic model

Although the syntactic model is better than the loop
model it does nol constitute a complete understanding of
recursion. Nevertheless, we observed that novice students
frequently used the syntactic model in synthesizing
recursive solutions. This corresponds to Escott's (1988)
research, where she found 80% of students' programs were
structural analogies of earlier programs. The LISP Tutor
(Anderson and Reiser 1986) encourages students to use
recursion templates which they fill in to arrive at a final
program. We have found that for solutions to routine
problems, the syntactic model is sufficient, although its
usefulness diminishes when students are faced with novel
or difficult problems. Perhaps for this reason the LISP
Tutor augments the problem solving by guiding students
through a planning dialog to formulate solutions.

Analytic Model

Although a student may solve simple recursive problems
employing the syntactic model, complex problems require
a deeper understanding in order to map the problem to a
recursive construct. This "deep understanding” involves
the ability to analyze input-output behaviour of a problem
and to determine input conditions and corresponding output
actions together with associated transformations. Such
analytic cognitive ability to synthesize a recursive solution
gives rise to the analytic model.

With the analytic model, a student does not view
recursion simply as a physical construct like the syntactic
template; rather he/she views recursion as a problem-
solving technique. Therefore, the significance of this
model is to analyse the input-output behaviour of the
given problem.

Solution synthesis using the analytic model has the
following three steps: 1) Determine cases: Analyze the
various input cases for the given problem. Determine the
input cases and the corresponding output strategies. In this
step, the student specifies his/her intentions, an informal
solution specification, for the problem. 2) Translate input
cases to input conditions and translate output strategies to
output actions: In this step, the student plans a high-level
solution, which can be translated to any programming

122

language. Students in the empirical study were found to
use natural language phrases to outline the solution plan.
3) Translate input conditions and output actions into
programming language code.

The analytic model provides two levels of intermediate
represcentations between the problem statement and the
solution (step 1 and step 2 above). The step 2 intermediate
representation is particularly interesting because it supports
a pseudo-language; a mixture of natural language and
programming language primitives, which students use to
elaborate the input conditions and the corresponding output
actions for the problem. To describe a solution in natural
language, a student needs to attain a deeper level of
cognition than for the syntactic model. The protocol in
Figure 3 shows a student's solution plan for the L/ST-B
problem, to return a list of all top level B's in a list:

S:....So, these are lists, then? O.K. If Null L then Return the
empty list. If First of the list is a B then return B, and
work (on) the rest. Else Gather ..

The solution plan consisted of the following three cases:

Case 1: If NULLL then return an empty list.

Case 2: If the first of the list is a B then return B, and
work on the rest of the input list.

Case 3: Else (for none of the above conditions),

Gather

Figure 3: Protocol demonstrating the analytic model

In Figure 3, student S was not working directly with
base case(s) or recursive case(s) as in the syntactic model.
Moreover, she was also not concerned with transforming
the solution plan into program code. For example, in
Case 2, she did not articulate the exact code for the
condition part or for the action part. Interestingly, she
made no mention of constructing an output list of B's,
which the problem asked for, but she wanted to process
("work on") the rest of the input list. This suggests her
intention (or goal) was implicit from the problem
statement.

The main difference between the analytic model and the
syntactic model is that with the syntactic model a student
writes program code directly from the problem statement,
whereas with the analytic model the student first
determines a solution plan from the problem statement
using an intermediate language and then transforms the
plan into program code.

Analysis/Synthesis Model

The analysis/synthesis (A/S) model is the most powerful
model of recursion encompassing both structural and
functional properties. Expert programmers seem to
possess this model. Only one student in our study began
to acquire this model and attempted to use it in the
solution of a challenging problem in the last week of our
study. We have uncovered little direct evidence for this
model, although other work (cf. Greer 1987) supports the
existence of the A/S model. We include a brief description
of the A/S model in this paper for the sake of
completeness.

The A/S model gives the ability to reduce a given
problem into smaller ones and to synthesize the
corresponding solutions into a global solution for the
problem. The usual steps of solving a problem using the
A/S model are as follows: 1) Determine the smallest
pieces that can be solved instantaneously. 2) Break the
problem into subproblems where solution to a subproblem
is the solution to a smallest piece plus solution to a
smaller subproblem. 3) Determine stopping case(s).

Even expert programmers do not apply the A/S model
every time they solve a problem recursively. If the
problem is simple then there is a good chance that a
similar problem has been previously solved, thus
providing a template or a chunk to embody the solution.
In other words, for familiar problems, most programmers
seem to employ a syntactic model.

Evolution of Mental Models

Students acquire (or develop) mental models of recursion
during instruction and problem solving. Mental models
seem to evolve in a sequential fashion, roughly in the
sequence of loop model, then syntactic model, analytic
model and finally the A/S model.

Over the five weeks of our study students were asked
(among other things) to solve nine problems with
recursive solutions. From their protocols, the mental
model that they were trying to use for formulating each
problem solution was identified. The problems generally
increased in difficulty through the first four weeks and a
difficult, challenging problem was given in the final week.
Table 1 shows the mental models that the six students used
while attempting to formulate a solution to the problems.
In a number of cases one mental model proved insufficient
for the student, and a second attempt using a different
mental model was observed. Table 1 demonstrates that in
most cases students evolved more sophisticated mental
models over time.

Student

K

z|lo| A | o

week 3 (2 icms)

ookl @i

Note: Items with two di
a failed artempt at one model
followed by the second model.

- Loop Model B AovyicMoa

i b s %% - synactic Model [JJ] - Avalysis/synthesis Model

Table 1: Evolution of Mental Models of Recursion

Our empirical study supports the hypotheses that
students construct particular mental models, that the
models are enhanced by new material that they learn from
class lectures or from other sources, that the models
become inappropriate for certain problem solving
situations, and finally that new models evolve. It seems
that mental models, once formed, are persistent. Students
frequently return to more established mental models when a

123

first attempt to solve a problem with a new model fails. It
also scems that some students will attempt to apply a well
established mental model, find that it is not sufficient to
conceptualize the solution to the problem, and only then
will they apply a new mental model. Students seem to
adopt more sophisticated mental models of recursion as
they meet with more difficult recursive problems.

A Learning Environment to Support
Mental Models

We have determined that mental models play an important
role in students' understanding of recursive programming.
It follows that mental models can be utilized in better
understanding students' intermediate problem solving
behaviour and also can help in promoting students'
learning of recursion. In essence, mental models, if
properly used in intelligent tutoring systems, will increase
the diagnostic precision and the appropriateness of
pedagogical guidance offered by the system. To this end,
we have constructed a prototype learning environment
(named PETAL) in which students may choose from a
variety of Programming Environment Tools (PETs)
which correspond to various mental models of recursion.

At the present time PETAL is being used to further
explore mental models of recursion by observing student
problem-solving behaviour when they are constrained by
an environment that supports a particular mental model.
PETAL does not simulate the execution of explicit
runnable mental models; rather it uses what we believe
about the existence of these models in the learner's mind to
provide scaffolding to support the learner's use of the
models. It is important to realize that it is the learner who
"runs” the mental model on his/her mind with PETAL
merely providing support and constraint. PETAL directly
supports specific models of recursion by providing an
intelligent computer-based environment in which students
formulate solutions to programming problems. The
student first selects a problem to work on and then
specifies the parameters for the function to be synthesized.
Next the student selects among the available PETs to
choose an environment corresponding to a mental model in
which to solve the problem. Students may switch from
one PET to another as they attempt to solve a problem.
Since the loop model is not a viable model of recursion,
there is no corresponding PET. In our prototype
implementation of PETAL, only the synractic and the
analytic PETs have been built. Twenty-three programming
tasks have been included so far.

The syntactic PET supports solution synthesis from the
viewpoint of the syntactic model. The student using this
PET must construct a recursive template of base case(s)
and recursive case(s). Next he/she must fill in the case
slots with problem specific code chunks. In order to assist
the student, the syntactic PET provides a menu of available
code chunks specific to the selected problem. The code
chunks for a particular problem are created in advance by a
domain expert. Code chunks may contain distractors,
which can be useful in diagnosing and clarifying potential

misconceptions which the student might possess. Once
the code chunks have been filled into the template,
corresponding LISP code is automatically generated by the
PET.

The analytic PET corresponds to the analytic model for
solution synthesis. With the analytic PET, the student
views recursion as a problem solving technique based on
input/output (I/O) analysis of the problem whereupon
these I/O behaviours are mapped to properties of recursion:
base case(s) and recursive case(s). Unlike the syntactic
model, the analytic model provides cognitive support to
the student to derive the cases through 1/O analysis.
Program synthesis using the analytic PET consists of three
stages. Intention stage: Determine input cases and
corresponding output strategies for the given problem.
Plan stage: Determine the solution plan by deriving
input conditions and output actions corresponding to the
input cases and the output strategies respectively. Code
translation stage: Translate the solution plan into
program code.

Figure 4 shows the analytic PET initialized with the
count-atoms problem (counting the number of top level
atoms in a list). The analytic PET manifests these three
stages of solution synthesis. First, at the intention
stage, the student determines the possible input cases and
the corresponding output strategies for the problem. Lists
of such choices of the input cases and the output strategies
are displayed in Input Case Choices and Output Strategy
Choices tables (in the upper left part of the screen display).
As input case choices and output strategies are selected,
each is displayed in the I-Cases and O-strategies tables (in
the lower left part of the screen display). Together the
cases and the strategies constitute an informal and coarse-
grained solution to the problem. In a broad sense, the
student's intentions are captured in this informal solution.

During the plan stage, the student develops a solution
plan consisting of input conditions and output actions,
derived from the input cases and the output strategies
respectively. An input condition and its corresponding
output action together make a subplan, where the condition
is the context of the subplan and the action is the goal of
the subplan. The analytic PET provides natural language
phrases to elaborate the solution plan. These phrases are
problem specific and are supported by empirical evidence
from our earlier study of problem-solving protocols.

After developing the solution plan, the code
translation stage begins. The translation is not fully
automatic since precise code cannot always be inferred from
the student's natural language plans. When the student
presses the Edit Program button, a LISP Editor appears
which shows all the input-output analysis (as commentary)
together with a partially filled code template for the
solution. It is left to the student to flesh out the program
code derived from the solution plan.

The example above, shows how the analytic PET
provides students support for synthesizing solutions to
recursive problems consistent with the analytic model of
recursion. PETAL currently acts as a stand-alone
programming environment, and not as a complete
instructional system like the Bridge System (Bonar &
Cunningham, 1988) or the LISP Tutor (Anderson &
Reiser 1986). PETAL is designed to ease students'
transitions through increasingly sophisticated mental
models of recursion. Even without knowledgeable
feedback to the student, PETAL is proving to be a useful
programming environment, since students explore
solutions to problems in a rich conceptual environment
and can produce LISP code with litde effort. After pilot-
testing PETAL with a small number of students we are
now beginning to consider its potential as an interface to
an intelligent tutoring system (specifically the SCENT-3

_ AM PET Window for the count-atoms-problem ﬁ

input Casa Choices

Putput Strategy Cholcas

Matural Languagea Phrases

an olom at tha front

T imvalid input ﬁ

L
I5EPTY

an atom at the front
a |ist at the fronti

return value

return value

an atom at tha end freatern value IS-A-LIST
I S-AR-ATON

a ‘B° at the front recursion ;

; 15-A
a list at tha front _Jrecursion with composi.| || IS-EQUAL-TD
list at the end s
a list a cor recursion
“]| 15-oT-EPTY

Ke =1 [[__'CJI T

I
Input Cases Oulputl Siretegies] Inpul Conditions I ouiput-sclions
enpty list inw walue _"Q_ I Is eapty Qul‘.rn o Q

Tirst of | is on alom
=lzs

retun add | to work o
call counl-aloas on r

& = 0] =
= B g I Kl Kl =
Deietie |—Cose J| Enter as Input Cond]p.l&t. Input Conditi Copy
Delets O-Strotegy JEnter os Outpul Action Delete Output Action | Nove /Ssap
talus Info:
| =2]
Delete |10-Pod lete lost Insertion| Expand] [Edi t Progros Done

Figure 4: Analytic PET for the count-atoms problem

124

system). Interacting with PETAL, students make explicit
the general strategies and specific plans they are
considering. This knowledge about strategies and plans is
extremely useful and difficult to infer in a standard
intelligent tutoring system. The additional knowledge
available to a tutoring system that uses a mental model-
based interface is considerable. At the same time, the added
benefit of knowledgeable feedback to the student using
PETAL should prove to be substantial. Although much
more research is needed, PETAL promises to be a viable
front-end for the SCENT intelligent tutoring system.

Conclusion

Intelligent tutoring systems will achieve their fullest
potential when they can support students' learning at the
deep "mental modelling” levels, rather than merely support
their understanding at a surface level. We have examined
how to create such support tools for the domain of
programming, in particular for recursive programming
concepts. A prerequisite to the success of our endeavour
has been to carry out an empirical study delineating the
space of mental models actually used by students. Then
support tools for each identified mental model have been
defined and are currently being tested on students. Student
use of these tools is feeding back into our understanding of
the mental models themselves. The symbiotic relationship
between empirical studies and the system that grows out of
these studies is an important lesson of this research.

This research also contributes to the burgeoning body of
knowledge about mental models. In contrast to the usual
mental models of physical systems, we investigate mental
models in an abstract domain. Recursion in computer
programming has two features: first, it is a problem
solving technique used in synthesizing programs, and
second, it is a process or control structure that controls the
execution order of the program. Using the synthesis
models of recursion, discussed in this paper, students
formulate recursive solutions. Our experiments have
shown that students do indeed employ mental models in
recursive problem solving, that they adopt more
sophisticated mental models as the need arises, and that
they can switch among mental models as appropriate.

Moreover, our work on PETAL adds to the repertoire of
tools to support deep concepltualization by students as they
learn. Our PETs are similar to so-called intermediate
representations employed in various intelligent tutoring
systems such as the Bridge Tutor (Bonar & Cunningham
1988), GIL (Reiser et al 1990), and Angle (Koedinger &
Anderson 1990). However, we provide several different
representations, rather than just one as in these other
systems. These multiple representations are proving to be
valuable pedagogically, and are being used to help us refine
and clarify our understanding of the structure and use of
mental models. They also provide us with a precise lens
through which to view the genetic relationships students
evolve among several different mental models.

Qur future work will continue to refine and elaborate
these mental models. We will explore how students

125

actually usc the mental models, especially how use of the
models is altered as student knowledge evolves. Finally,
we will continue to investigate how to build effective
support tools for the mental model level of learning.

Acknowledgements

We would like to thank NSERC and the University of
Saskatchewan for their financial support.

References

Anderson, J.R. and Reiser, B. 1986. The LISP Tutor,
Byte, April, 159-175.

Anzai, Y. and Uesato, Y. 1982. Learning recursive
procedures by middle school children. The 4th Cognitive
Science Conference, 100-102, Ann Arbor, MI, USA.

Bhuiyan, S.H., Greer, J.E. and McCalla, G.I. 1989.
Mental models of recursion and their use in SCENT. In
Ramani et al. (Eds.), Knowledge-based Computer
Systems, 135-144. Bombay, India.

Bonar, J.G. and Cunningham, R. 1988. Intelligent
tutoring with intermediate representations. In
Proceedings of ITS'88, 25-32. Montreal, Canada..

Escott, J. 1988. Problem Solving by Analogy in Novice
Programming. ARIES LAB Research Report 88-3. Dept
of Comp. Science, University of Saskatchewan, Canada.

Gentner, D. and Stevens, A. Eds. 1983. Mental Models.
Hillside, NJ: Lawrence Erlbaum.

Greer, J.E. 1987. Empirical Comparison of Techniques for
Teaching Recursion in Introductory Computer Science.
Ph.D. Thesis. The University of Texas at Austin.

Kahney, H. 1982. An In-depth Study of the Cognitive
Behaviour of Novice Programmers. Tech. Report No. 5.
Milton-Keynes, England: The Open University.

Kessler, C. and Anderson, J. 1986. Learning flow of
control: Iterative and recursive procedures. Human-
Computer Interaction, 2, 135-166. Hillside, NIJ:
Lawrence Erlbaum,

Koedinger, K.R. and Anderson, J. 1990. Theoretical and
empirical motivations for design of ANGLE. AAAJ
Spring Symposium , Stanford University.

Kurland, D.M. and Pea, R.D. 1985. Children's mental
models of recursive LOGO programming. Journal of
Educational Computing Research, 1(2):235-243.

McCalla, G.I., Greer, J.E. et al. 1988. Intelligent advising
in problem solving domains: The SCENT-3 architecture.
Proceedings of ITS'88, 124-131. Montreal, Canada.

Norman, D. 1983. Some observations on mental models.
In D. Gentner and A. Stevens (Eds). Mental Models.
Hillside, NJ: Lawrence Erlbaum.

Pirolli, P. 1988. A Cognitive model of computer tutor for
programming recursion. Human-Computer Interaction,
2, 329-355. Hillside, NJ: Lawrence Erlbaum.

Reiser, B.J., Ranney, M. Lovett, M.C. and Kimberg,
D.Y. 1990. Facilitating students' reasoning with causal
explanations and visual representations. 4th Conference
on Al and Education, 228-235. Amsterdam, Netherlands.

	cogsci_1991_120-125

