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ABSTRACT OF THE DISSERTATION

Essays on the Economics of Environmental Policy

by

Jackson Chandler Somers

Doctor of Philosophy in Economics

University of California San Diego, 2022

Professor Mark Jacobsen, Chair

This dissertation consists of three chapters, linked by the theme of analyzing household

behavioral responses to environmental policies. Chapter 1 investigates the behavioral response of

households receiving a composting program expansion, in particular when they can throw food

scraps into their compost, and analyzes the effect on methane emissions reductions. Chapter 2

investigates the effect of carbon cap and trade permit and low-carbon fuel standard credit prices

on consumer gasoline purchases, and compares the effect size to gasoline taxes and gasoline

price increases unrelated to either policy. Chapter 3 investigates the heterogeneity in responses

to water quality violations by examining how different demographic groups respond to these

violations.
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1. Do Composting Programs Work and
Are They Worth It?

1.1 Introduction

Mounting scientific evidence indicates that urgent action to reduce greenhouse gas

emissions is required in order to mitigate large, widespread climate damages. Enacting the

necessary reductions is a burdensome policy challenge that requires implementing effective

abatement investments. In particular, methane emissions reduction has recently garnered a

substantial amount of attention in international climate change agreements. One additional

ton of methane released into the atmosphere does approximately 80 times as much damage

over a 20 year period as one additional ton of CO2 (Pachauri et al. (2014)), with even higher

estimates such as from Errickson et al. (2021), making it a valuable target to rapidly lower

emissions over the short-term. Over 100 countries, including the United States, have pledged to

cut methane emissions by 30% by the year 2030.1 It is important to choose policies that will lead

to positive net benefits, i.e. to have the policy benefits outweigh the costs. This paper evaluates

the efficacy of one proposed policy to reduce methane emissions: diverting household organic

waste (compost) away from landfills.

Landfills in the United States produce 17.4% (4.56 MMT of methane) of all US anthro-

pogenic methane emissions (EPA (2021b)). Landfill methane emissions are generated by the

decomposition of organic materials. A common policy solution to mitigate landfill methane

1Lisa Friedman, “More Than 30 Countries Join US Pledge to Cut Methane Emissions” The New York Times,
October, 11, 2021, https://www.nytimes.com/2021/10/11/climate/methane-global-climate.html
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emissions is to divert organic materials generated by households and businesses – materials

such as yard waste, food waste, and soiled paper. However, the number of households that

participate in organic materials diversion and the extent to which they participate are both un-

known quantities. Further, these programs are costly for jurisdictions to implement, resulting in

a tension between the benefits of avoided methane and the cost of the program. In this paper, I

investigate household behavior in response to an organics program expansion and conduct an

analysis to estimate the cost of these programs per ton of carbon dioxide equivalent emissions

(CO2e) avoided for counties across the United States.

In this article, I examine the rollout of a residential curbside food scraps and soiled paper

products (FS&SP) program in Austin, Texas. All households serviced by the city of Austin

waste department, Austin Resource Recovery (ARR), were provided with weekly curbside yard

trimmings services prior to the implementation of the FS&SP program.2 Once the program

began, households were additionally allowed to dispose of FS&SP into their organics bins. All

households were provided with a new organics bin and charged for the service, but participation

in setting out and using the bin was not mandatory. Households were also provided with a

pamphlet explaining the program and detailing the new materials allowed in the bin.

To identify the causal effects of adding FS&SP to organics disposal, I obtained admin-

istrative data to estimate a difference-in-differences model that uses the staggered, route-level

rollout of the FS&SP program in Austin to compare organics disposal quantities before and after

the program began. In addition to graphical evidence showing the validity of the identification

strategy, the city of Austin chose pilot sites to be representative of the city’s demographics and

expanded further program phases around the pilot routes. This alleviates concerns for a bias in

site selection.

The addition of FS&SP to the organics bin increased weekly organics diversion by 2.3

pounds per household per week, or about a 45% increase in organics diversion. The set-out rate

2It is important to understand the distinction between yard trimmings and organics collection in this setting.
Yard trimmings means small branches and leaves from a yard, while organics is yard trimmings plus food waste and
soiled paper. An organics expansion means including food scraps and/or soiled paper into yard trimmings.

2



for this program is approximately 30%, suggesting most residents don’t set out their organics bin

in any given week. Conditional on participation, households dispose of about 7.67 pounds of

FS&SP per week. This corresponds to nearly 100% of FS&SP that the average household in

Austin sent to a landfill prior to the FS&SP program.

A household diverting organic waste will necessarily stop putting organic matter into

the garbage. Yet, it is not obvious how household recycling behavior will change. Specifically,

soiled paper and cardboard are not recyclable3 but they are compostable, so recycling totals

may decline if households fix this common error.4 Alternatively, households may recycle more

than before (if that is feasible) due to pro-environmental behavior spillovers, as argued in Ek

and Miliute-Plepiene (2018) and Alacevich et al. (2021). I find that households see a decline in

both garbage and recycling disposal. This suggests that households are not only diverting their

organic matter from the garbage, but they are also fixing their errors in recycling soiled paper

and cardboard by diverting them into the organics bin.

Next, I formulate the social cost-benefit of a FS&SP program, which allows me to

estimate the cost per ton of CO2e avoided. Recent literature within economics has focused

on evaluating programs and policies with emissions reduction as a primary goal, typically

finding programs to be costlier than anticipated. Examples of program evaluations include the

Weatherization Assistance Program (Fowlie et al. (2018)), “Cash For Coolers” (Davis et al.

(2014)), CAFE standards (Jacobsen (2013)), “Cash for Clunkers” (Busse et al. (2012), Jacobsen

and Van Benthem (2015)), and promoting energy efficient technology (Allcott and Taubinsky

(2015)).

To calculate the net benefit across the contiguous United States, I take the household-level

estimate and match route-level Austin covariates to county covariates across the United States to

estimate the implied diversion behavior of that county. As methane is emitted by landfills, the

3Soiled paper and cardboard, such as a greasy pizza box, have an altered fiber structure from being soiled and
are of sufficiently low quality that they cannot be recycled.

4Fixing this disposal error has a welfare benefit in that fewer loads of recyclable material are sent to a landfill
after processing at a materials recovery facility. Recyclable material that contains too much contaminated material
is not recyclable.

3



emissions estimate is affected by a landfill having a landfill gas (LFG) capture system in place;

these systems reduce LFG emissions by 50-75% on average. LFG capture systems are legally

required by EPA to be installed in large landfills.5 This results in locales that have high methane

emissions potential (i.e. large cities) also disposing of their garbage into landfills with LFG

systems. Welfare considerations are necessarily altered by LFG systems, since the emissions

damages from the largest potential emitters are significantly reduced.

My baseline results suggest that with the city of Austin’s program cost per household

and estimated diversion behavior, the cost per ton of CO2e avoided for the City is $541. Across

the United States, the cost per ton of CO2e ranges from $117 to $3410 per ton of CO2e. The

conventionally accepted social cost of carbon (SCC) is $51 per ton of CO2e (IWG (2021)). While

these estimates cast doubt upon cost viability of FS&SP programs, a discussion is necessary.

This analysis suggests that FS&SP programs result in a substantially higher cost per ton of CO2e

avoided than conventional SCC values. One ton of food scraps releases approximately 0.045 -

0.055 tons of methane in a landfill, suggesting around $183 to $224 in damages per ton of food

waste, but this is greatly outweighed by the cost of the program.

Greenhouse gas damages per ton are subject to a great amount of uncertainty and it

is possible organics diversion programs will be necessary to reduce the chance of a potential

climate catastrophe. The social cost of carbon, the global warming potentials (GWP) horizon,

the costs incurred by the jurisdiction, and household diversion behavior are all key variables in

the net benefit equation. A cost of $0.37 per household per month for the service or a diversion

amount of approximately 27 pounds per household per week (which is substantially over 100%

of all household FS&SP) would result in a net benefit of zero (that is, the costs are equal to

the benefits). Household diversion cannot exceed 100% of total household FS&SP – which is

typically about 7 to 10 pounds per household per week. This means that the estimate of necessary

household diversion is unattainable. On the other hand, given the uncertainty of the SCC, it could

be substantially too low and if so, the value of organics expansion programs are dramatically

5Installation is required for landfills that produce 25,000 metric tons of CO2e per year.
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understated. This implies that the programs could be worthwhile if the SCC is underestimated.

My results suggest the national median estimated FS&SP program cost is $536 per ton

of CO2e avoided. To place my results in context, I compare this to other existing policies whose

aim is to offset carbon emissions. For a broad overview of program costs per ton of CO2e, see

Gillingham and Stock (2018). In his analysis of CAFE standards, Jacobsen (2013) estimates that

the cost of the CAFE standards are $222 per ton of CO2 avoided. Fowlie et al. (2018) examine

the Weatherization Assistance Program in the US and find that the cost of residential energy

efficiency standards are approximately $200 per ton of CO2 avoided. In studying the Energy

Star program, Datta and Gulati (2014) find a cost range of $140 to $352 per tonne of carbon

saved. The most recent Regional Greenhouse Gas Initiative auction had a clearing price of $9.30

per cap-and-trade allowance, which implies a price of $9.30 per ton of CO2e (RGGI (2021)).

Meanwhile, the California-Quebec cap-and-trade program had an implied price of $23.30 per

ton of CO2e (CARB (2021)). This suggests that a FS&SP program is more expensive per ton of

CO2e than other existing policy solutions.

I contribute to our understanding of organics programs, which are becoming increasingly

popular.6 To the best of my knowledge, this is the first paper to provide a causal estimate

of the impact of an organics program in any context. Pertaining to waste, my paper is most

similar to Fullerton and Kinnaman (1996). They study the effect of the implementation of a

pay-as-you-throw program, finding a modest decrease in total garbage disposed. Additionally,

Ek and Miliute-Plepiene (2018) and Alacevich et al. (2021) study a composting program rollout,

but are concerned with behavioral spillovers onto other disposal behavior. My paper directly

estimates household diversion behavior. An estimate of this nature is missing in the literature and

is important for assisting cities in assessing the value of implementing a FS&SP program. While

there will be implementation differences across cities (such as whether or not to fine residents

6For example, some large cities that have already implemented these programs are Seattle, WA, Portland, OR,
San Francisco, CA, and Toronto, Canada. These programs are mandatory, while New York City has a voluntary
FS&SP program. Many smaller cities in the United States have organics programs in place, see Steeter and Platt
(2017). California, Vermont, and Massachusetts have mandatory organics diversion laws in place as well.
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for non-compliance or to ban organics from the garbage), understanding approximately how

households respond to receiving organics services is important. This allows us to evaluate the

efficacy of the programs, assess whether a city should implement one, and understand which

cities should mandate organics laws.

My paper contributes to understanding household demand for pro-environmental services.

By providing households with the ability to divert organics, households take up this voluntary

behavior due to warm-glow (Andreoni (1990)) and by revealed preference are increasing their

own welfare through diversion. The benefits to a household from organics diversion are almost

exclusively due to less waste being sent to landfills. Therefore, warm-glow is likely the force

behind households diverting their FS&SP upon receiving the program expansion. In particular,

organics diversion can be seen to have a “positive frame”: to divert organics waste benefits all

households, while not doing so maintains the status quo of a household’s waste being disposed

of into the garbage (Andreoni (1995)). The “positive frame” amplifies household organics

diversion behavior. Additionally, households voluntarily correct their recycling mistakes, further

suggesting that household participation is due to warm-glow.

My paper also augments a large environmental and engineering literature on landfill

methane emissions. I calculate the emissions reduction from FS&SP diversion and the cost

per ton of CO2e avoided using an empirical estimate of diversion, which is the first of its kind.

As a comparison, most literature estimating methane emissions reductions use hypothetical

diversion estimates for their analyses, for example EPA (2010), Cruz and Barlaz (2010), Shahid

and Hittinger (2021), Pai et al. (2019). Despite a large literature on methane emissions and

the significant impact of methane as a greenhouse gas, there is little on household organics

disposal behavior and the impact it has on the viability of organics programs. Further, instead of

assuming a representative landfill to calculate the emissions changes, I use landfill-level data

to estimate the emissions avoided from implementing a FS&SP program. Given that landfill

methane emissions are a large source of total US methane emissions and the current international

scrutiny of methane emissions, it is important and pertinent to understand if diverting household
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organic material from landfills is a cost-effective solution.

The paper now proceeds. Section 2 discusses the background on the Austin curbside

organics program. Section 3 features a model to motivate organics diversion behavior and which

types of households might engage in diversion. Section 4 provides background on the data used

and the analysis. Section 5 presents the results of the regression and additional analyses. Section

6 provides background on methane emissions, the cost-benefit analysis, and the results. Section

7 discusses possible explanations for the findings and how the policy might be adjusted. Finally,

Section 8 concludes.

1.2 Background on the Austin Curbside Organics Program

Austin is a large city home to nearly one million people in southeastern Texas. About

half of the residents of Austin are served by the local waste department, Austin Resource

Recovery (ARR). ARR services all non-private community residences with fewer than 5 units. If

a residence has 5 or more units on the property, it must seek out private collection services.7

From here on, “residences” will refer to those that ARR services, i.e. it will not include

properties with 5 or more units. Prior to the implementation of the expanded organics program

in Austin, residences received curbside garbage, curbside single-stream recycling, and curbside

yard trimmings services, along with other services such as twice-yearly brush pickup. In 2011,

the city of Austin proposed a zero-waste “Master Plan” with the goal of Austin becoming a zero

waste city by the year 2040 (The City of Austin (2011)). The report briefly details the rollout of

their organics expansion, which was to expand the program across different portions of the city

over time.

The organics program expansion built upon the weekly yard trimmings service by

additionally allowing food waste, plant matter, and soiled paper into the organics bin.8 Prior

7This seems to be fairly common across cities. Many have the cutoff of 5 units, while a few others (such as
Denver, CO) have a 7 unit cutoff.

8As the city of Austin puts it, “If it grows, it goes!”
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to the expansion, only grass clippings, leaves, and small branches (i.e. yard trimmings) were

allowed in the organics bin. All residents who received the organics expansion were provided

with a 32-gallon organics bin.9 Organics collection, before and after the expansion, was weekly

and year-round.

The City of Austin contracts with the composting business Organics By Gosh (OBG) to

accept the organic matter diverted by the residents. The organic matter is processed by OBG and

the compostable soil created at the end of this process is sold to residences and businesses. The

City pays for OBG to accept the organic matter, however the tipping fee is much lower than that

of the landfill. Finally, it is important to note that the composting process generates almost no

pollution.

The expansion consisted of two pilots and four phases. For the pilots and the first three

phases, residents were supplied with a new organics bin one week prior to the beginning of the

FS&SP addition. When a household received the new bin, on top was an information packet

describing the program expansion and what belongs in the organics bin. Beginning in the fourth

phase, residents had the information packets mailed to them.

The pilot routes chosen across the city were intended to be representative of the Austin

populace. Expansions for further phases were outgrowth from the initial routes and subsequent

phases. In all, the City had two pilots and four “phases”, resulting in a total of six different

(actual) phases.

The fact that this program is a curbside program is non-trivial. Among cities with

organics programs, 133 out of 270 are curbside only, while 101 are drop-off only.10 Curbside

programs provide collection to households at the curb of their residence, while drop-off programs

requires residents to deliver their organics to a centralized drop-off location somewhere in the city.

Typically there are several drop-off centers throughout a city. Comparing these two diversion

9Prior to phase 1, residents were provided with 96-gallon containers. ARR determined these were too large for
residents and began providing smaller 32-gallon bins.

10Nora Goldstein, “Residential Food Scraps Collection Access In The U.S.”, Biocycle, October, 22, 2021,
https://www.biocycle.net/residential-food-scraps-collection-access-in-the-u-s/
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policies, curbside programs require substantially less effort from households to divert organic

materials. A curbside program provides the best opportunity to engender household participation

in the program.

Table 1.1 shows the dates the phases began, the number of households in each phase, and

the number of routes after each phase was rolled out. The two pilots only included 5 new routes

and constituted about 7700 people each. Subsequently, the phase rollouts included significantly

more routes and households. The original begin date for phase 4 – the final phase – was delayed

from 9/30/2020 to 2/8/2021 because of COVID-19.

1.3 Model

This section lays out the household’s problem, the firm’s problem, the government’s

problem, and the environmental damages. All of this determines the social planner’s problem for

the full cost-benefit at the end.

1.3.1 Households

Formalizing a household’s decision can help guide how households determine their

organics diversion decision. A household must decide between disposal into the garbage or

organics diversion. The household will execute this decision by considering the costs and benefits

of organics diversion and garbage disposal. Specifically, even in a very simple setting where

more organics diversion results in less garbage, both of these margins matter. For example, a

household can derive benefits from either less waste going to the landfill or from diverting more

material to the compost. Therefore, considering both quantities is essential to examine the drivers

of organics diversion behavior. Further, we should expect heterogeneity in household disposal

behavior due to differences in effort costs, awareness of proper disposal/diversion behavior, and

different pro-environmental preferences. In the econometric model, this means that covariates are

important factors to consider in extrapolating the results to other counties in the United States.

However, this model omits certain considerations. For example, I assume there is
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no feedback effect, that is participating households do not consume even more products re-

sulting in organic waste.11 I omit signaling concerns, such as a household wanting to look

pro-environmental or experiencing social pressure and so putting out their organics bin or par-

ticipating as a consequence of these effects. I omit alternative margins of disposal as well, in

particular using the garbage disposal for food waste or an at-home composter.12

Prior to receiving the organics expansion, a household could either use an at-home

composter for their FS&SP or they could dispose of it into the garbage bin. There is the

additional option that soiled paper could be disposed into the recycling bin, leading to only food

scraps being placed into an at-home composter or the garbage.

Let G be all waste disposed of by a household in pounds per week, with y being the

pounds per week of FS&SP disposed. Prior to the expansion, the lack of FS&SP disposal can be

viewed as a quota set equal to zero. This means that no FS&SP is diverted. Let b(y,G−y) be the

benefits of disposal to a household. The first slot describes the benefit from disposing of waste

in something other than the organics bin and the second slot represents the benefit of disposing

of FS&SP into the organics bin.13 Let c(y,G− y) encompass the effort costs of disposal. This

model assumes that the level of G remains fixed throughout. Note that with the implicit quota

of no FS&SP diversion, we have y = 0. Omitting a numeraire consumption good, prior to the

expansion we have

uprior = b(0,G)− c(0,G)

With expansion, now we have 0≤ y≤ ymax < G, where ymax represents the total amount

of divertable FS&SP by a household. Using the above utility function and proper assumptions,

11However, this is an intriguing avenue of future research.
12In Austin, a household could receive up to a $75 rebate from the purchase of an at-home composter or chicken

coop. In total, approximately 2% of households received rebates/vouchers for at-home composters or chicken coops
over an eight year period, from 2009 to 2017.

13It should be noted that y is FS&SP and not the larger classification of organics. This is because the problem
of concern is on FS&SP diversion and not all organics. To include yard trimmings is trivial, however the model
becomes less clear in its description.

11



there exists a y∗ which maximizes utility resulting in:

upost = b(y∗,G− y∗)− c(y∗,G− y∗)

Note that y∗ > 0 ⇐⇒ upost ≥ uprior. This suggests a household will only undertake FS&SP

diversion if it results in higher utility. However, this model of behavior can have households that

do not participate (y = 0) or fully participate (y = y∗) and these represent important and desirable

edge cases to fully capture household behavior.

Observe that with G fixed, we can parameterize the equation to bG(y)−cG(y). To achieve

a unique maximum, we need bG(y)− cG(y) to be continuous and strictly quasiconcave on the

interval [0,y]. This guarantees the existence of a maximum on the closed interval.

The implementation of the organics expansion, not considering pecuniary costs, results

in a Pareto improvement. Households that wish to participate in FS&SP diversion are now able

to, while those with their highest utility at y∗ = 0 can refrain from participating.

Examining the benefits and costs of diversion is important. The costs of disposal can

incorporate many things, such as inertia, effort costs, disutility of organic matter decaying, and

so forth. It seems reasonable to expect there to be inertia present in disposing of FS&SP to

something other than the organics bin. Further, the typical process of FS&SP diversion is to

have a small container for the FS&SP until it gets full, at which point it is taken to the outside

organics bin. The small container can generate smells and pests. This contributes to the costs of

FS&SP disposal. This makes the case that one should expect households to find it requires more

effort and is therefore costlier to engage in FS&SP diversion behavior than to simply dispose of

the material into the garbage.

Consider a household that is observed with y∗ > 0. The above paragraph argues that it is

unlikely for the case to be that c(0,G)> c(y∗,G− y∗), implying that the benefits of diversion

behavior to a household drive the diversion decision. There are no particular private tangible

benefits to organics diversion. The clearest benefits to a household to begin FS&SP diversion

12



comes primarily through warm-glow, pro-environmental preferences, or social pressure. In

the first case, marginally less garbage results in higher benefits. That is, ∂b(·,G−y)
∂ (G−y) is negative,

implying that more garbage results in lower benefits. This can be interpreted solely as a warm-

glow from lowering disposal to a landfill. In the second case, having more organics diversion

results in higher benefits, that is ∂b(y,·)
∂y > 0. This can be interpreted as either a warm-glow from

more compostable matter to be converted into soil or as social pressure, specifically a household

wishes to signal that they are diverters of FS&SP.14 The drivers of a positive y∗ largely derive

from warm-glow or pro-environmental preferences.15

Next, consider the pecuniary costs of disposal. In addition to relying on a household’s

goodwill, an additional measure a jurisdiction can implement is to offer smaller garbage bins for

a lower price.16 A household may be motivated to divert FS&SP of an amount y that results in a

lower garbage bin price tier, incentivizing households to participate when they may otherwise

lack intrinsic motivation. However, many households will not be on the margin to benefit from a

smaller garbage bin. It might simply be that the household produces too much waste, they do not

care about composting or the smaller bin, there is too much variance in their weekly waste loads,

or their value on time is too high to separate the waste.

In the case of constant prices, we can have households where y∗ = 0, whereas a step-

function pricing scheme we can have a positive y∗ that results in b(y∗,G− y∗)− c(y∗,G−

y∗)+(pi
G− pi−1

G )> u(0,G), where i is the tier of the garbage bin. In this case, the household

undertakes organics diversion because of the pecuniary benefit received, namely a lower monthly

garbage bin bill. This is facilitated because diverting organics necessarily reduces the total

14One possibility is that a household, in an effort to signal their moral virtue but to avoid the displeasure of
diversion, simply puts their organics bin out as a signal to their neighbors but never diverts any waste. This is
entirely possible, however we began with the presumption that y∗ > 0, so these cases are excluded.

15A possible tangible, non-pecuniary motivation is free compost, which some jurisdictions offer. However, this
is not the case in the City of Austin. Further, unless there are strict protocols, free-riding is an easily imaginable
option for a household that desires compost soil but does not want to divert their organic material.

16As of 2021, in the City of Austin, there is a $18.80 user fee. A 24-gallon bin additionally costs $3.85 per month,
32-gallon costs $5.10 per month, 64-gallon costs $10.25 per month, and 96-gallon costs $30.70 per month. In the
City of Seattle, which does not mention a fixed user fee, a 19-gallon bin is $31.50, a 32-gallon bin is $40.95, a
64-gallon bin is $81.55.

13



amount of waste disposed of in other ways.

It is important to note that it is nearly universal to make recycling and organics bin costs

a requirement, that is households do not receive an opt-in/opt-out choice, they are required to

have the bins.17 The mechanism to increase diversion behavior arises from providing a choice in

garbage bin size, which incentivizes more diversion from a household in order to get a smaller

garbage bin. Once a household receives the organics program expansion and the new bin, they

do not factor the program cost into their decision; however, a social planner does consider this

additional cost.

Another pecuniary cost – one which is not implemented by the City of Austin – is fines.

These are in place in San Francisco, Seattle, and Portland. Fines are typically paired with bans

on organic material in the garbage in order to incentivize proper organics diversion. These

programs also have tagging programs which inform residents they have made an error in their

disposal behavior. In particular, these programs that require organics diversion inspect garbage

bins to verify households are not simply putting out their organics bins in order to appear to be

in compliance.

1.3.2 Firm

There are two firms in this model. The first is the landfill and the second is the composter.

Both industries are assumed to operate in perfect competition.

The landfill has the profit function:

π
L(y,g) = pt · (y+g)+ pE · f (y,g)− c(y+g)

Where g is the amount of non-compostable material taken in by the landfill, y is the amount of

compostable taken in by the landfill, pt is the tipping fee charged per ton of waste, pE is the price

17However, some jurisdictions provide a choice in the size of organics bin as well. The City of Austin does not.
Further, cities that do provide a choice in organics bin size typically have the incremental costs as substantially
less than that of garbage bin sizes. Therefore, all else equal, a household would rather divert more and get a larger
organics bin while getting a smaller garbage bin than remain at the larger garbage bin.
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of energy, f (y,g) is a function that determines the amount of electricity/natural gas generated by

y and g. These are not summed because the rate of methane generation differs between the two

waste categories. The function c(y+g) is the landfill’s cost of disposal.

For a change in food waste, the marginal condition is:

pt + pE ·
∂ f
∂y

=
∂c
∂y

The landfill will maximize profits, in particular before the program it will choose

(y∗NP,g
∗
NP) and after the program it will choose (y∗P,g

∗
P). “NP” stands for “no program” and “P”

stands for “with a program”. In both cases, π(y∗NP,g
∗
NP) = π(y∗P,g

∗
P) = 0, by perfect competition.

Composters typically make many different compost soils, each using different mixtures

of organics material. I simplify this case to be a compostable soil that uses diverted household

organics material and one that does not.18 In the case of the composter, the firm will maximize:

π
C(yh,yo) = pC · fh(yh,yo)+ po fo(yo)+ ps · yh− c(yh,yo)

The variable yh represents the organics diverted from households to the composter, while yo

represents the other (typically organics) materials used in producing compost. The price pC

is the price that compost made from household organics sells for, while po is the price of

compost that uses entirely non-household organics. The function fh uses household organics and

non-household organics to produce compostable soil, while fO uses non-household organics to

produce compostable soil. These soils are not interchangeable. Due to the low profitability of

household organics, the composter chargers a tip fee ps for each ton of yh received. Finally, the

function c(yh,yo) is the cost function.

18Processing household organics is non-trivial because the ratio of yard trimmings to organic matter has to be
within a narrow range. Further, there are typically additional materials added to aid the decomposition process.
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Profit maximization has the condition:

pC ·
∂ fh

∂yh
+ ps =

∂c
∂yh

In this case, the price ps allows the composter to achieve zero profit. This cost is charged

to the consumer through the local government. Again, by the perfect competition, profits before

and after the program are zero.

1.3.3 Government and Environment

Each week, in total households divert:

Wf =

∫ y
0 y ·N(y)dy

2000

N(y) is a function outputting number of households that dispose of y pounds of waste per week.

It is on the interval [0,y], with y equal the maximum amount of divertable FS&SP. The integral

is divided by 2000 to have Wf in short tons of FS&SP.

The governing jurisdiction’s equation is:

Wf · (ps− pt)+ p j ·N− c(Wf ,N) = 0

The difference Wf · (ps− pt) represents the savings from diverting FS&SP waste to a composter.

The amount p j is the price to each household for the program. The function c j(W,N) represents

the cost of the program given the weight W and the number of households in the jurisdiction N.

The jurisdiction chooses p j so that the jurisdiction’s problem is equal to zero.

The environment avoids damages equal to:

Damages Avoided = CH4(Wf ) ·GWP ·SCC
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Where CH4 is a function that outputs the estimated tons of methane emissions given the tons of

FS&SP diverted. The variable GWP is global warming potentials, which in this case is 80 tons

of CO2e per ton of methane. This describes the equivalent amount of CO2e that would need to

be emitted into the atmosphere to do as much damage as one ton of methane. The SCC is $51

per ton of CO2e, which describes the damages of one additional ton of CO2 into the atmosphere.

All of this results in Damages Avoided being in units of dollars per ton of CO2e.

Assume that the household utility is normalized to b(0,G)− c(0,G) = 0. Let y = yh.

Time notation will be suppressed for clarity of the equations. This results in the social planner

solving:

max
y,yo,g

∫ y

0
[b(y,g− y)−c(y,g− y)− p j]N(y)dy

+π
L(y,g)+π

C(y,yo)

+Wf · (ps− pt)

+ [CH4(Wf ) ·GWP ·SCC]

Then the cost-benefit equation simplifies to:

Net Benefit =
∫ y

0
[b(y,g− y)−c(y,g− y)− p j]N(y)dy

+Wf · (ps− pt)

+ [CH4(Wf ) ·GWP ·SCC]

Where the firm profits are equal to zero because of perfect competition. This net benefit will be

used to estimate the cost per ton of CO2e avoided.

The econometric model will estimate the average household diversion of w f per week.

With this, w f ·N =Wf , where N is the total number of households, provides the total amount of
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FS&SP diverted.

From the household model arises two hypotheses of interest.

Hypothesis 1: A lower price of garbage disposal for smaller bins will incentivize

households to downsize their garbage bins, resulting in a leftward shift in the distribution of

garbage bins.

Hypothesis 2: A household engaging in a positive amount of FS&SP diversion behavior

will decrease the amount of improper disposal to the recycling bin. Namely, if we interpret the

variable G as recyclable material and y as the potential FS&SP that is compostable and potentially

recyclable, we will observe a decrease in improperly recycled material. This hypothesis will be

tested with the available data.

1.4 Data and Analysis

1.4.1 Data

This paper uses route-level waste data provided by ARR from January 2010 to January

2020. This data includes all routes ARR services for each waste type collected, including

garbage, recycling, yard trimmings, organics, brush, street sweeping, and more, at the route-day

level. Routes are assigned pickup days that remain constant so long as the route is not phased

out and barring any holidays. Nearly all routes with the same pickup day are adjacent. Routes

for different waste types (e.g. garbage and recycling) do not have the same name nor do they

overlap perfectly.

January 2020 was chosen as the stopping point for the analysis due to COVID-19. During

this time, many businesses – in particular restaurants – closed down. These closures caused more

households to eat in, thereby generating more waste within households, but less waste in the

commercial sector. This represents a non-permanent change in household behavior that can vary

across households, and as such I stop short of the “beginning” of COVID-19 in Austin. Further,

COVID-19 caused numerous employment shortfalls in the waste industry across the nation due
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to employees with safety concerns, resulting in waste pickup becoming less reliable. Because

these issues affect the reliability of the data, I do not conduct the analysis past January of 2020.

Most of the route names, for all types of waste, changed over time. Many route shapes

also changed over time. These changes were implemented in order to alter the names for clarity,

balance out the routes as the population changed over time, or balance out responsibility for

supervisors over the routes. For the organics service maps, which include organics and yard

trimmings routes, I use the phase 3 map as the master template. This map was the most recent map

prior to COVID-19. I overlay the phase 3 map with the previous organics/yard trimmings maps

and assign area shares to the routes for any previous iterations of the organics/yard trimmings

maps. For routes from the phase 3 map that are derived from a larger yard trimmings route,

I assign average disposal rates using the fraction of the phase 3 area the newer, smaller route

occupied across the older routes.

Further, I overlap the phase 3 map with the available garbage and recycling maps during

the time periods that those maps were in effect. For each week, I first aggregate the particular

waste type to the week-level for each route because, for example, a Monday organics route may

in part receive Tuesday recycling service. I multiply these area shares by the household service

count in each area and the amount of waste disposed and assign this number to the appropriate

phase 3 organics route. Since recycling services are bi-weekly, I divide the total amount over

two weeks in half and assign the resulting number to each of the two weeks.

Finally, the Census covariates are at the Census tract level. I overlap the 2010 Census

tract map with the phase 3 route maps, constructing area shares for each Census tract overlapping

with a phase 3 route. For each covariate and a given route, I weight the value of the covariate

by area share of an overlapping Census tract to provide an area share weighted-average for the

covariates of a given route.

Prior to the program implementation, all organics routes were yard trimmings routes (i.e.

only yard trimmings were allowed as organics disposal). As the program expanded, the existing

yard trimmings routes were broken up into multiple “organics routes”, which allowed disposal of
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both yard trimmings and FS&SP. The phase 3 organics and yard trimmings map can be seen in

Figure 1.1. This map includes routes for both yard trimmings only and organics (which includes

yard waste service). The routes beginning with “Y” are yard trimmings routes, while the routes

beginning with “O” are organics routes. On the map, the north-most routes are all Wednesday

pickups (hence the “W” as the second letter), while the routes just south are Thursday pickups,

then Friday below that, and so forth. In this map, the routes with names in black are routes that

existed prior to phase 3, while the routes with red names are those that were added for the phase

3 rollout. The numbers below the route names state the number of households served within that

route.

Occasionally, the data has a one week gap. These, according to ARR, are due to data

logging errors and not due to missed pickup collection. Further, these errors are infrequent

and random, therefore they are not a concern for biased data. The route “OF25” was dropped

from the data. It did not overlap with routes initially serviced by ARR, so there is no prior data

available.

For this particular map, there 8 new Monday routes servicing 11,233 households, 8

new Tuesday routes servicing 11,306 households, 8 new Wednesday routes servicing 10,848

households, 8 new Thursday routes servicing 10,069 households, and 7 new Friday routes

servicing 9,612 households.

The dataset consists of 64,927 total route-week level observations. This consists of

131 routes, of which 25 are yard trimmings routes and 106 are organics routes. Routes are of

varying size by area and household count. The smallest organics route by household count is

929 households (OH2) and the largest is 2125 households (OH12). Yard trimmings route are

larger than organics routes in both area and population served. This is because they pick up less

material per household.

Table 1.2 presents summary statistics of the pilot and phases of the organics expansion.

The statistics suggest that phases are well-balanced across covariates, with very little variance in

average values. This is a positive sign and evidence against any biased choice in routes. Within
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Figure 1.1. Phase 3 Organics Routes

Note: This is the map of the phase 3 rollout. The routes beginning with the letter “O” are organics
routes, while those beginning with “Y” are yard waste routes (no organics). The routes in black
were already in place prior to the rollout of phase 3 and the routes in red are the new routes added
from the phase 3 rollout. The numbers below the route names are the number of households served
by ARR within the route.
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Table 1.2. Summary Statistics

Phase Pilot Phase 1 Phase 2 Phase 3
Year 2012 & 2014 2017 2018 2019

Avg Route Pop 4547 4783 5732 5773
SD (2250.93) (2287.02) (2804.22) (4766.07)

Pct Bachelor Deg 0.474 0.513 0.501 0.505
SD (0.153) (0.155) (0.144) (0.195978)

Median income 65760 66416 70908 66207
SD (12604) (14904) (18664) (20143)

Avg HH size 2.47759 2.42984 2.3948 2.45199
SD (0.42) (0.339) (0.3) (0.431)

Med. home value 301170 317354 322243 315448
SD (93067.4) (103957) (149806) (152237)

Frac. White only 0.4968 0.5347 0.5205 0.5207
SD (0.172) (0.173) (0.159) (0.186)

Frac. Latino 0.3797 0.3043 0.3173 0.324
SD (0.169) (0.149) (0.132) (0.186)

Frac. Black only 0.0657 0.076 0.0742 0.061
SD (0.0481) (0.075) (0.0543) (0.044)

Frac. Asian only 0.0334 0.057 0.0617 0.0669
SD (0.027) (0.041) (0.041) (0.043)

Note: This table presents summary statistics of the pilot and phases of the organics program expansion in Austin,
Texas.
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a phase, routes have substantial heterogeneity as the table suggests, this is because rollouts

occurred simultaneously across different sectors of the city. As Table 1.1 displays, as phases

continued to be added the expansions included larger numbers of households, but even still Table

1.2 shows the phase covariates remained relatively balanced over time.

1.4.2 Estimating Equation

The analysis uses the staggered rollout to identify the effect of the curbside organics

program. The estimate seeks to identify the estimated increase in organics composting once a

route is a recipient of the program. The regression run is:

yrt = β ·1{Received Organics Expansionrt}+ΘXrt +αr +δt + εrt (1.1)

The outcome variable yrt is the pounds of organic waste disposed of per household in the

route r in time period t.19 The variable yrt represents organics diverted. When the variable

1{Received Organics Expansionrt} is equal to 0, yrt consists solely of yard trimmings weight.

When the curbside organics program indicator switches to a value of 1, the variable yrt becomes

the sum of yard trimmings and the newly allowed FS&SP. The coefficient β is the additional

amount of organic material diverted once the program is expanded to include the route. Route

fixed effects are found in αr while a variety of time fixed effects are in δt . The δt is a stand-in for

different time fixed effects used, such as month, week, and year or week-by-year. The matrix

Xrt is the set of demographic covariates described above, including garbage and recycling per

household per week. Standard errors for this regressions are clustered at the route level.

The coefficient β can be interpreted as the additional pounds of organics diverted per

week per household when the route receives the organics program expansion. That is, it reflects

the additional material, beyond yard trimmings, diverted to the organics bin.

There are several potential confounders to properly estimating β . The staggered rollout

19For complete clarity, the subscript t is week-year, it begins on January 1st, 2010 and ends on January 31st,
2020.
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allows me to characterize the counterfactual diversion behavior for routes that receive the organics

expansion. The routes that receive the expansion are the treated group, while those that have not

yet received the expansion are the control group. The control routes allow me to establish how

much the treated groups would have disposed of had they not received the organics expansion.

Without the control group, it would be significantly more challenging to disentangle the effect of

receiving the organics expansion from any possible shocks or underlying trends.

Across routes, we should expect differences in household behavior. While some of this

behavior will be captured by the covariates, there may be unobservable differences across routes.

For instance, one route could contain more households with pro-environmental preferences than

another route. Another example is that one route might have a higher diversion rate prior to

the program than another route. The route fixed effects alleviate these issues by controlling for

differences across routes.

Food waste and soiled paper are not generated at a constant rate throughout the year. For

example, major holidays/events such as Independence Day, Thanksgiving, or the Super Bowl

all generate more food scraps than other times of the year. Week fixed effects control for this

seasonality. Further, we might expect that a supply shock, such as a poor harvest increasing food

prices, would lower household consumption of food, thereby reducing food scraps. Shocks such

as this are controlled by the addition of year fixed effects.

The results from Equation (1) will be used for the methane emissions avoided estimate.

A slightly modified formulation of Equation (1) will also be used for covariate analysis and the

impact on garbage and recycling behavior.

1.5 Results

This section presents the results of the econometric estimate. Additional results analyzing

spillovers onto recycling and the impact of specific covariates are also discussed. Appendix 4

contains the results by estimating the regression using the estimation strategy from Callaway
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and Sant’Anna (2021), to avoid the pitfalls of TWFE. However, the results do not change in any

substantive manner.

1.5.1 Main Results

Figure 1.2 shows the effect of the organics program expansion rollout. Prior to the

program, only yard waste was allowed in organics disposal. Once the program rolled out,

residents were then allowed to dispose of food waste and soiled paper in addition to yard waste

in the organics bin. This plot shows the estimates for each week, from 51 weeks before to 51

weeks after, with the 52nd weeks before and after being pooled. The values shown in the plot are

normalized to the week before an expansion began in a given route. Upon the program taking

effect, the plot displays a sudden increase that sustained throughout the program. Also, the plot

shows that the program did not affect organics disposal behavior prior to the program expansion.

It is possible that households may require some time to learn what materials can be added

to the organics bin or to develop a system/“rhythm” to begin diverting FS&SP. Alternatively,

households may initially participate and taper off. For example, they may find it onerous to

maintain the altered disposal behavior or find the smell problematic. Figure 1.2 answers both of

these questions and suggests there is minimal learning and there is potentially a small amount of

tapering; however if there is any it is not large. Further, running a regression with four 13-week

bins (i.e. one bin for weeks 0-12, one for weeks 13-25, one for weeks 26-38, and one for weeks

39-51 suggests that the only tapering would be from weeks 39 to 51. However, an indicator for

all weeks after the first year has a higher estimate than weeks 39 to 51, so this could simply be a

result of noise.20

The figure shows that participating households begin diverting immediately and then

maintain that level of engagement thereafter. A striking observation that the plot shows is

that households appear to have readily understood the program and proper diversion behavior.

This plot and this data display an average household within a route, so certain changes such

20These results can be provided upon request.
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Figure 1.2. Effect of Organics Expansion: Before/After Expansion

Note: This plot shows the before and after of a phase rollout on the increase in the pounds of
organics disposed of per household. All values are relative to the week prior to the rollout. Weeks
before 52 weeks prior and 52 weeks after are pooled.
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as a household engaging less in a given week while another engages more will average out

and are not observable. However, the graph becomes exhibits more variance past the 15 week

post-implementation mark. This is likely due to the fact that Phase 3 data does not extend much

beyond 15 weeks because it is very late in the timeframe of the dataset.

This plot also provides evidence that households did not change their behavior prior to

the program expanding to their residence. A household, learning of this program, could in theory

increase their organics disposal behavior prior to the rollout. The plot suggests that households

do not anticipate the program rollout and do not change their disposal behavior beforehand.

The results of the regression can be found in Table 1.3. The first three columns of the

regression are without covariates, while the second three include covariates. The first and fourth

columns have fixed effects for the route, the particular week of collection, year of collection,

and the day of the week of collection. The second and fifth columns have the same time fixed

effects just mentioned, but include a route-week fixed effect. Finally, the third and sixth columns

have route, week-by-year, and day-of-the-week fixed effects. The second set of three columns

have covariates of pounds of garbage per week per household, pounds of recycling per week per

household, average family size, average household size, median income, median age, median

home value, percentage of people with at least a high school degree, percentage of people with

at least bachelor’s degree, percent of the population over age 65, percent male, percent white,

percent black, and percent population over the age of 25.

The table describes the results for the coefficient β as presented in Equation 1. The table

shows that receiving the organics program increases weight to the organics bin by between 2.25

and 2.43 pounds per week per household. The estimates are very stable across specifications.

Prior to the organics program, yard trimmings weight was about 5 pounds per week per household,

suggesting that the total weight of the organics bin increased by about 45%.

The stability of the estimate is striking. The variety of fixed effects used and the inclusion

of covariates have minimal impact on the estimate. In examining individual routes for hetero-

geneity, Figure 1.3 shows the results of running the regression interacting each organics route
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Figure 1.3. Histogram of Coefficients

Note: This plot shows the results of interacting the program expansion indicator with every
organics route.

with the indicator for receiving the organics expansion. The figure shows that the coefficients

are clustered between 2 and 3, which is where the main estimate β resides. The distribution

is not skewed and looks roughly normal. In addition, a reasonable number of negative values

occur in line with statistical chance. This plot shows variation across routes, with some routes

participating more than other routes. This plot displays the variation across routes, which will be

exploited for the county covariate matching below.

Analyses of the Austin waste stream in 2012 estimate about 7.2 pounds of organic matter

in the waste stream after accounting for the diversion of yard trimmings. The city of Austin

estimates approximately a 29% participation rate (i.e. 29% of people actually set out their bins)

in the organics program, which, using the estimates found in Table 1.3, suggests an estimate of

2.3
0.29

= 7.59 additional pounds per week per household that uses the organics bin.
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This coincides closely with the estimated maximum amount of disposable household organic

matter. It suggests that conditional on a household participating, they are disposing of (nearly)

all of their organic material into the organics bin.

Most cities in the United States only collect city-level waste data. The results from Austin

can be compared to overall averages of other large cities that have added FS&SP to their organics.

The city of Seattle, WA disposed of approximately 4.81 pounds of FS&SP per household per

week in 2016, while the city of Portland, OR disposed of approximately 2.2 pounds of food

scraps (not including soiled paper) per household per week in 2016. Other program factors matter

here, such as laws banning organics from the garbage or the maturity of the program. Further,

other cities have organics programs, such as New York City, but they require a neighborhood

to achieve a certain number of sign-ups before it is rolled out. Their estimates are around 10

pounds of FS&SP per household per week, but the selection effect biases collection estimates

relative to city-wide programs.

1.5.2 Additional Results

The Austin residential waste stream, as of the most recent 2019 materials audit, was

77.4% yard trimmings, 15.2% food scraps, 4.9% soiled paper, and 2.5% non-compostable

material.21 My estimate does not account for non-compostable material nor is it known what the

percentage of the organics stream was non-compostable prior to adding FS&SP. Assuming there

was no new contamination upon adding FS&SP, this implies that 15.2/20.1 = 75.6% (or about

1.74 lbs per household per week) of newly diverted waste is food scraps, while 4.9/20.1 = 24.4%

(or about 0.56 lbs per household per week) of newly diverted waste is soiled paper and soiled

cardboard.

Adding FS&SP to organics diversion also impacts household garbage and recycling

disposal behavior. Because households are diverting what was once garbage, households should

21These audits typically sample several hundred households over the course of many weeks. The auditors separate
the waste into categories, weigh them, and report. The margin of errors for the percentages are not listed.
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experience a decline in the weight of their garbage disposal (assuming there is not a strong

rebound effect). Meanwhile, it is ambiguous how households’ recycling behavior will respond.

There could be no change in household recycling behavior since material that is recyclable is

not compostable and vice versa. By adding FS&SP to organics diversion, this could generate

spillovers causing households to recycle more. Finally, households could recycle less because

they were previously recycling certain material improperly (in this case it would likely be soiled

paper and soiled cardboard, which is not recyclable22). Table 1.4 tries to resolve this question.

Here I use the pounds of garbage or recyclable material disposed of per household per week

as the dependent variable to estimate the impact on garbage and recycling behavior when a

household receives FS&SP services. Otherwise, the regression is the same as in Equation 1.

As anticipated, the total amount of garbage disposed declines by about 0.75 pounds

per household per week. Note that this is not a pound-for-pound decrease compared with the

increase in organics disposal. Interestingly, households also recycle less material after the FS&SP

program begins. The estimated portion of soiled paper and soiled cardboard in the organics waste

stream is about 0.56 pounds per household per week, while the estimate in Table 1.4 showing

the change in recyclable material with the implementation of the program is nearly identical

in weight at about 0.6 pounds per household per week. This suggests that at least some of the

decrease observed in household recycling behavior comes from diverting improperly placed

soiled paper and soiled cardboard from recycling into the organics bin. It is not clear if this effect

arises from the information pamphlet provided with the new bin or from the expansion simply

including soiled paper and allowing households to dispose of the material properly. Either way,

this is a positive incidental benefit to expanding organics programs.

Household size is arguably the only demographic characteristic where it is reasonably

clear to conjecture the correlation between it and organics diversion. In general, larger households

have more waste (because they have more people) and so it is reasonable to assume that larger

22The particulars of this are simple: the fibers of soiled paper are weaker than unsoiled paper. The lesser integrity
of soiled paper makes it unusable.
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Figure 1.4. Covariate Marginal Effects

Plotted are the marginal effects of each of the covariates after receiving the organics program
expansion.
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households will also divert more waste (all else equal). Otherwise, correlations are not so clear.

For example, richer people may have a higher valuation of time and so do not find it worthwhile

to participate in an organics program; alternatively, richer people might be more environmentally

aware and so participate more than poorer people. Households with a higher income (typically)

have a higher time value, which suggests that it is expected for them to engage in less organics

disposal behavior. Alternatively, they could eat out more and so do not have as much FS&SP

waste in the first place. People with bachelor’s degrees might be more aware of the benefits of

organics diversion and so participate more; or, they might not believe it is worthwhile and so do

not participate.

The plot in Figure 1.4 shows the marginal effect of each of nine demographics. This

estimate is obtained by running Equation (1), but including interaction terms of each of the

demographics with the indicator for receiving the organics program expansion. Two of these

route-level covariates are insignificant and close to zero: median home value and the percent

of the population that identifies as white. Unsurprisingly, routes with larger household sizes

have more organics disposal. Adding one additional individual to a household increases disposal

by 1.32 pounds per week (however, the graph shows a 1/10th increase in household size for

graphical clarity). Routes with older populaces tend to experience more organics disposal – about

0.05 pounds per week more for a 1% increase; on the other hand, a one year increase in the

median age of a route causes disposal to decrease by 0.10 pounds per week. This is interesting

and perhaps seems contradictory. However, generations can differ and in particular, a higher

median age does not necessarily imply more people over age 65, only that there are more older

people. For example, if a route has more people further along in their middle age versus younger

people, this will increase the median age but not affect the percent over age 65. Meanwhile,

routes where there are more children present have lower organics disposal, about 0.06 pounds

less per week. This seems plausible if families are simply too busy to have the time to separate

their waste (or cannot generate family-wide compliance). In a similar contradiction, routes with

a higher percentage of bachelor’s degrees have slightly more organics disposal – a one percent
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increase is associated with an increase of 0.018 pounds per week – while routes with higher

median incomes disposed of less, approximately 0.16 pounds less for a $10,000 increase in

median income.

1.6 Methane Emissions Impact

The remainder of the paper now focuses on using the empirical estimate from above to

estimate the cost of an organics program expansion per ton of CO2e across the United States.

1.6.1 Landfill and Methane Emissions Background

A landfill is a firm that effectively sells space to place waste. The waste is systematically

buried. The important features are that waste is buried in the landfill after which it is covered

with a clay, dirt, or synthetic material (usually at the conclusion of the day). If a landfill has a

capture system, there are pipes throughout the landfill that capture the methane. Landfills are

complex and their construction affects several aspects of decomposition. Appendix 2 provides

additional details on landfill construction.

Almost all material in a landfill decomposes to some degree. Both the rate of decay and

the total percent of decomposition within a landfill varies by material type. Organic matter, such

as food scraps, paper, leaves, and branches decompose rapidly in a landfill. For example, it

takes a banana peel about one month to begin to decompose, while an aluminum can takes a

century or two, and styrofoam containers begin decomposition anywhere between 500 and 1

million years (but are non-biodegradable). Not all of a given material decomposes in a landfill.

For example, about 50% of food waste decomposes in a landfill, while 50% of food waste will

never decompose and remains in the landfill. Due to their rapid decomposition, diversion of

organic material from a landfill, relative to all other materials, will rapidly affect landfill methane

emissions.

Some landfills have landfill gas capture systems in place. EPA mandates that a landfill

producing more than 25,000 metric tons of greenhouse gases (in CO2e) must install a landfill gas
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capture system onsite. There were 559 operational LFG collection projects and 357 shutdown

projects in 2020. These systems have substantial fixed costs to install. The methane can either

be put to use or flared. In the case of flaring, the methane produces no additional value as it

is simply burned off. Otherwise, a landfill can convert the methane to a usable form, such as

natural gasoline or electricity. Electricity can be sold to the grid, while natural gas (depending on

the type) can be sold or used onsite as fuel for waste trucks. In this way, a landfill can generate

an additional revenue stream by converting methane into a usable resource.

Generally, landfill gas capture systems do not capture methane emissions from materials

that decompose quickly as effectively as from materials that decompose slowly (Barlaz et al.

(2009) and Cruz and Barlaz (2010)). This raises an issue with food scraps because food scraps

decompose quickly (relative to other organic materials, excluding grass and leaves – which

also decompose rapidly). Therefore, using the average capture rate of a landfill for FS&SP

methane emission estimates will overstate the amount of methane captured, implying that more

methane will be saved from the diversion of food scraps compared to diversion of an average

waste composition. Assuming average landfill moisture conditions, “Bulk MSW”, a catch-all

category for the average US waste composition, has an estimated typical collection efficiency of

85%, while food scraps and mixed organics have an estimated collection efficiency of 66% and

65%, respectively.

Landfill emissions are measured in three ways. The first way is with engineering equations

provided by EPA to estimate the methane emissions from the landfill, while the second and third

are empirical estimates from airplanes/drones and satellites (Duren et al. (2019) and Jacob et

al. (2016)). The IPCC and EPA have standardized emissions equations that represent “good

practice”, along with empirical estimates (or ranges) of the parameters used in the equations.

Many model and parameter details can be found within the IPCC Solid Waste Disposal chapter

(IPCC (2006)). However, the accuracy of this bottom-up estimation method has faced substantial

scrutiny (of Sciences (2018)) and is considered “low confidence” in its accuracy. The report

suggests alternatives, primarily calling for a mixture of the latter two empirical measurements to
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augment engineering data estimates. However, this data is not readily available for most landfills.

The standard first-order decay model for landfill methane emissions is additively separable

in the waste types. This means that methane generation from one waste type is independent

of any other waste. Emissions are only dependent on the weight of the material, the time the

waste is in place, and the specific waste type decay parameters. Background information on the

equation used to estimate emissions can be found in Appendix 1, along with explanations of the

relevant parameters. The derivation of the model assumes that diversion of one type of material

does not affect diversion of any others. In particular, a household diverting food waste does not

impact how said household disposes of any other types of waste. This allows for the household

waste stream excluding food scraps to be identical over time. Therefore, the only impact on

landfill methane emissions as a result of diverting food waste results from food waste. These

assumptions have been scrutinized, as mentioned above. However, it is the current standard

approach and there is no data available to be able to construct a better model or estimates for the

United States.

Methane emissions are considered non-biogenic. Note that a landfill emits many different

gases, but primarily CO2 and methane. CO2 is not counted in emissions inventories because it is

of biogenic origin and is accounted for in “Agriculture, Forestry, and Other Land Use”. Further,

because the material does not decay under natural conditions (it instead is buried in a landfill).

The equation to estimate methane emissions in year t is:

CH4t =
t

∑
i=0

∑
s<t

Ws ·DOC ·DOC f ·MCF ·F · (16/12) · (e−k(t−s−1)− e−k(t−s))

The input Ws represents tons of waste disposed of in year s. The remaining inputs are described

in Appendix 2; they are standard parameters used to estimate landfill methane emissions in the

United States. Material in a landfill, as described above, does not decay immediately; methane

is slowly released over time. This equation captures that a decreasing proportion of the waste

decays every year. Over time, if waste is disposed of in the landfill, then waste at different
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times will decay simultaneously. For example, if in the first year 10,000 tons of food waste is

disposed of, then in the second year, approximately 11% of the decomposable food waste will

have decayed.23 In the second year, if another 10,000 tons of food waste are disposed of, then in

the third year 11% of the decomposable tons disposed of in the second year will decompose and

approximately 11% of the remaining decomposable tons from the first year will decompose as

well. Thorough explanations of the equation and its parameters can be found in IPCC (2006)

and EPA (2020), while a more basic explanation of the variables in the equation can be found in

Appendix 1.

As methane passes through the intermediate cover, some of it is oxidized. This oxidation

reduces the amount of methane emissions. Further, by including the empirical capture rate

estimated by landfills from GHGRP, this further reduces methane emissions, resulting in end

result emissions of:

CH4emitted
t =CH4t · (1− capture rate) ·OX

1.6.2 Cost-Benefit Equation

The implementation of the food scraps program takes food waste from the landfill and

provides it instead to the composter. However, this comes at a cost to the jurisdiction providing

the new food scraps service. Unfortunately, estimating the internal benefits and costs households

experience is not feasible in this setting, so it is omitted from the cost-benefit equation.

The cost-benefit equation, in “per ton of organics disposed”, is:

Net Benefit = ∆CH4 emissions damages

+City tip fee reductions

−Cost of the program

23This is assuming use of an average landfill food waste decay value of k = 0.12.
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The variable ∆CH4 emissions represents the change in CH4 emissions when the program begins.

All else equal, this will be a benefit, as CH4 emissions will be reduced because there is less

decomposable material in the landfill. This benefit is calculated as

CH4 emissions value =
T=50

∑
t=1

CH4t ·GWP ·SCC

Where the GWP value used is 80 tons of CO2e per ton of methane, as consistent with the

most recent IPCC estimate. However, recent literature, such as in Errickson et al. (2021), have

estimated US methane costs at $8,290 per tonne of methane (using the GWP figure of 80, this is

approximately $103 per ton of CO2e, implying about double the cost I use in this estimation).

Given the equation, the SCC can be backed out to estimate the cost per ton of CO2e for the

program. The variable City tip fee reductions represents the per ton difference in tipping fees

to the city by diverting waste to a composter from a landfill. In general, this will be a benefit as

composting tipping fees are almost always cheaper than landfill tipping fees. The negative value

for Cost of the program is straightforward: it costs the city money to run the program. This

cost includes additional trucks, labor, overhead, and purchasing new bins.

Certain costs are excluded from this analysis. An important cost that is excluded is

transportation costs. Typically, large cities must transport waste a great distance to large landfills.

Diverting waste might reduce the distance traveled to deliver the organics. It is assumed the

distance between the two is approximately the same, which anecdotally is true, except in extreme

cases. Pollution from electricity utilities is also not included because landfills are not marginal to

electricity production.

The Cost of the program can vary for jurisdictions. For example, Austin’s cost of

$3.75/HH/month might be high because of their waste contracts or the department’s cost structure.

As a comparison, the city of Seattle in April of 2009 began to allow residents to divert FS&SP

into the organics bin. Simultaneously, Seattle’s waste department (Seattle Public Utilities)

increased pickup frequency to weekly from bi-weekly (every other week). As a consequence of
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these two changes, organics bin rates increased. If it is assumed that the cost of a 32-gallon bin

doubles because collection frequency doubled, then the cost increase from adding FS&SP to the

yard trimmings bin cost households an additional $3.42/HH/month.24

In the case of the city of Austin, Texas, these values can readily be filled in to evaluate the

program. The component ∆CH4 emissions is calculated using the empirical household organics

diversion estimate. The landfill that services Austin has a landfill gas capture system in place,

but the methane is flared, thereby resulting in no additional use for the captured methane. The

City tip fee reductions component was acquired through discussions with employees at ARR,

where the landfill tip fee (for the year 2019) was $23 per ton of waste and the composting tip

fee (for the year 2019) was $16 per ton of waste, resulting in a savings to the city of $7 per ton

of waste diverted to the composter. While other cities may have differences in costs associated

with transportation (such as the landfill used being significantly farther from the city than the

composter), this is not the case with Austin. The landfill and composter are on opposite sides of

the city, but approximately equidistant in this regard, resulting in no additional transport costs.

Finally, the Cost of the program is estimated at about $9 million in total for FS&SP. There is a

component for the yard trimmings program, but that program was already in place prior to the

addition of food scraps to the organics bin (and prior to the start date of this analysis). The cost

of the program per ton of CO2e avoided is $546, while the cost of the program per ton of FS&SP

is $791.

In order to match the county covariates to Austin covariates, I run a regression in the

form of Equation 1, except I interact the indicator of receiving an organics program with each of

the following covariates: percent of households with at least a bachelor’s degree, median income,

average household size, average family size, percent under age 18, percent age 65 and over, and

percent of the population identifying as white. I adjust median income by the cost of living index

in order to more reliably represent income of a county. Then, I sum up the resulting estimates

24Prior to the addition of FS&SP, compost cost $5.35/HH/month for up to 128-gallons of waste. If the cost
is assumed to be linear, this is implies a 32-gallon bin would have cost $1.34/HH/month. Doubling this, we get
$2.68/HH/month. After the change, a 32-gallon bin cost $6.10/HH/month, so 6.10 - 2.68 = $3.42.
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in order to obtain the implied estimate for pounds of organic waste diverted per household per

week. I input this estimate into the cost-benefit equation to estimate yearly tons of food waste

and get the estimate for county methane emissions.

For counties I use only the contiguous United States. I omit Alaska because of the

existence of numerous, very small landfills scattered across the state. Accurately matching with

the demographic composition of these areas is not feasible, given their unique characteristics. In

particular, these landfills typically serve fewer than 500 people and are not subject to the same

federal regulations as landfills that service a larger population. For similar demographically

unique reasons to Alaska, I do not include Hawaii either.

There are a total of 3,108 counties in the contiguous United States. This data comes from

the Census, along with the same covariates from the Census as used for the City of Austin. My

data has a total of 1,716 open landfills. This data comes from the Waste Business Journal, a trade

journal that collects landfill data (at least) every year. This data contains information such as

landfill name, location coordinates, tipping fee by year, disposal tonnage by year, and ownership.

In addition, I download data from the Greenhouse Gas Reporting Program (GHGRP) hosted by

EPA. This data consists of similar data as the Waste Business Journal, however it is voluntary,

so many landfills are missing from the data. While the GHGRP data lacks the more granular

business details such as tipping fees, it does contain emissions and capture system data, such as

if a capture system is in place, what kind of capture system is in place, collection efficiency, and

emissions estimates for the landfill. I merge the Waste Business Journal data with the GHGRP

data to construct a landfill database. For landfills not in the GHGRP but in the Waste Business

Journal database, I assign them as having no capture system in place.

For the largest 30 counties by population, I match their true landfills used if that infor-

mation is available. Very large areas produce a lot of waste and this waste either must go to

a “mega landfill” or to a few different large landfills. If we take New York City, for example,

all waste is exported out of the state to Pennsylvania, Virginia, and Michigan. Connecting

this is important because these landfills might have different collection systems in place than
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nearer, smaller landfills, which would generate inaccurate estimates of methane emissions. The

remaining counties are matched to the nearest 3 landfills because they typically deliver to their

nearest landfills. I assume that counties send 1/3rd of their total waste to each landfill.

1.6.3 Emissions Costs

I present my results in a sequence. The first map only includes methane emissions. All

maps thereafter include the full cost-benefit analysis results. The cost-benefit analysis uses a

SCC of $51 per ton of CO2e and a GWP20 of 80 where relevant. These parameters can be

adjusted and do not necessarily represent the true damages. In particular, as the results will show,

these values will result in a consistently negative net benefit across the counties of the contiguous

United States. Given the GWP used is an optimistic choice, using a lower GWP will result in

smaller benefits from avoided methane emissions.

For all of these maps, I assume a time frame of 50 years. For estimating methane

emissions, it is common practice to use at least a 50 year window in order for the model

to converge on a near-constant rate of methane emissions. All amounts presented should

be interpreted as being over a 50 year time frame. In particular, the methane emissions are

monotonically increasing up to the converging amount. The plot shown in Figure 1.5 describes

methane emissions from a landfill. In this plot, I assume a rate of one ton of food scraps disposal

per year for 50 years, at which point disposal ceases. It can be seen that the plot begins to

converge around 30 years and the slope is nearly flat around the 50th year of disposal. Methane

emissions immediately begin to drop off once disposal ends.

In all of the plots, there will be two kinds of dots overlain on the maps. The light blue

dots represent landfills with some kind of landfill gas capture system in place, while the dark

blue dots represent landfills with no LFG capture system in place.

The largest counties by population are the greatest emitters of methane pollution simply

because of the large number of people within the county, all of whom dispose of waste. An

initial guess might suggest that large metropolitan areas should implement organics programs,
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Figure 1.5. Example Methane Emissions from Landfill

This graph shows the estimate methane emissions from a landfill that receives one ton of food
scraps per year for 50 years. The convergence of methane emissions begins to become clear
around the 30th year. I use conventional values here, in particular I assume a decay rate (k) of
0.12.
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Figure 1.6. Estimated Methane Emissions from FS&SP Diversion

This graph shows the estimated methane emission tonnages by counties across the United States
accounting for capture rates.

while smaller counties should not. However, the requirement that sufficiently large landfills must

install an LFG capture system will stymie this guess because large population centers effectively

have to use landfills with capture systems in place.

Figure 1.6 displays estimated emissions while accounting for landfill gas capture systems

in place. In the case with no LFG capture system, the maximum methane emissions declines

from approximately 454,000 tons of methane emitted, which amounts to emission damages of

$1,816,000,000, to a maximum when including LFG capture systems of 126,000 tons of methane

emitted, which equals $504,000,000 of damages.

Plots now proceed with full net benefit calculations. Figure 1.7 shows the cost per ton of

CO2e avoided. The values in the plot are much higher than the SCC of $51 per ton of CO2e.
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Figure 1.7. Cost per ton of CO2e Avoided

This graph shows the estimated cost per ton of CO2e avoided for counties across the United States.
The median and mean values are $536 and $627 per ton of CO2e avoided, respectively. The
monthly household cost for the FS&SP program is the same as in Austin, Texas of $3.75/HH/month.
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There are several reasons for this. The first is that, as Figure 1.6 displays, while large population

centers emit a lot of methane, they also tend to have LFG capture systems in place. This reduces

the social value of an organics program because diverting waste will release substantially less

methane into the atmosphere than without the capture system. The second reason is that Austin

does not have perfect compliance with their organics program, which this calculation extends to

other regions. The third reason and arguably the most important is simply the cost of the program.

While it is not a particularly large amount per resident, at a cost of $3.75 per household per month,

on average a household must dispose of $3.75 worth of FS&SP equivalent emissions per month

to break-even. This amounts to approximately 9.7 pounds of FS&SP per week assuming no

capture system is installed. This amount is near or exceeds the average total FS&SP disposable

within households.

The values shown can be compared to the SCC is an estimate that is subject to uncertainty

and, in particular, because the tail risks have substantial consequences for the planet, understand-

ing what SCC values can justify an organics program expansion is important. For example, to

limit warming to 1.5 degrees Celsius, de Coninck et al. (2018) suggests a carbon price range in

2030 should be between $135-$5500 per ton of CO2e. The estimates from this map are near the

lower end of this estimate.

Figure 1.8 shows the necessary weekly disposal amount per household required to achieve

a net benefit of zero. While many areas across the United States might produce the necessary

amount of FS&SP if disposing at a 100% rate, much of the United States exceeds 100% of their

weekly FS&SP in total. The median weekly diversion rate per household is estimated at 27

pounds. This suggests that even with a 100% FS&SP diversion rate (which again, is 7-10 pounds

per week per household at most), these programs do not pass a cost-benefit test at their current

costs or at the chosen SCC. The next two graphs explore the net benefit of an organics program

expansion and monthly household costs to break-even.

Figure 1.9 displays the net benefit per ton of food waste disposed. As the plot shows,

in all counties the net benefit is negative. The median net benefit is $528 per ton of FS&SP
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Figure 1.8. Weekly Household FS&SP Disposal Rate Needed

This graph shows the estimated required weekly FS&SP disposal rate of households per month
needed for counties across the United States to have a net benefit of zero, using a monthly household
cost of $3.75
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Figure 1.9. Net Benefit by County: Cost of $3.75/HH/mo.

This graph shows the estimated net benefit for counties across the United States, using the same
monthly household cost for the FS&SP program as Austin, Texas.
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disposed. Many of the smaller counties in the United States have a lower SCC required; this is

primarily due to the fact that their landfills typically don’t have a LFG capture system installed.

The counties with the highest cost per ton of CO2e are those with large populaces that are served

by landfills with LFG capture systems.

These plots all show not only the variation of uptake for an organics program, but also

the importance of the landfill where the waste is sent. If a landfill has a LFG capture system then

an organics program has a harder time passing a cost-benefit test, even more so if the system

is more efficient than average. However, while this conclusion might be valid, this does not

examine the costs of a landfill itself, which might be substantially more in whole than diverting

waste.

Now, I turn my attention to the issue of landfill methane emissions underestimation. The

underestimation of landfill emissions in total is important. With methane emissions comprising

a large part of the social benefit, getting this estimate right is essential. While the cost-benefit

largely remains negative, it presents a less stark result.

In Figure 1.10, I double the total emissions tonnages. This is in line with upper ranges

from Table 1.1 in of Sciences (2018), where underestimates are within this range. The graph still

depicts a large cost per ton of CO2e avoided, however it is near the upper end of estimates from

Nordhaus (2017) for more stringent temperature increase goals at 2.5 degrees Celsius. while it is

on the lower end of estimates provided in de Coninck et al. (2018).

Table 1.5 summarizes the map information, with the columns displaying the 1st, 25th,

50th, 75th, and 99th percentile of the cost of a FS&SP program per ton of CO2e avoided. Each

block is a specific estimate. The first block of the table shows the “Base Estimate”, where only

standard values are used for the estimation. In the second portion, the emissions from landfills

are doubled. As we would expect, when emissions are doubled, then the value of FS&SP doubles,

resulting in the cost per ton of CO2e avoided to halve. This also shows that most of the value

from FS&SP diversion is a result of avoided methane emissions. The third block shows what

happens if methane capture is lowered by one-third because FS&SP decomposes more quickly
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Figure 1.10. Cost per ton of CO2e Avoided: Doubled Emissions

This graph shows the estimated cost per ton of CO2e avoided for counties across the United
States assuming the landfill emissions rate is doubled from the estimate a standard FOD equation
produces, using a monthly household cost of $3.75
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Table 1.5. Results of Cost-Benefit

Estimate Cost($) / tCO2e Avoided

Percentiles
1st 25th 50th 75th 99th

Base Estimate
161 240 536 879 2120

Double Emissions Estimate
81 120 268 439 1061

Lower Capture Estimate
161 238 348 430 621

Constant Capture Rate (70%)
503 665 718 777 986

No Capture Estimate
152 201 217 235 298

Using GWP100 (= 32)
403 600 1348 2167 5275

Max Diversion Rate (10 lbs/HH/week)
55 62 151 236 463

No Tip Fee Difference
164 245 547 895 2171

Note: This table displays the 1st, 25th, 50th, 75th, and 99th percentiles of the estimates. The first row displays the
base estimate. The remaining rows make certain assumptions within the cost-benefit model to explore the effect of
different margins. Descriptions of each row are provided in the text.
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than most waste, resulting in lower landfill gas capture. The lower percentiles are very close

to the base estimate because these are landfills that are already not capturing their emissions

or have low capture rates. Higher percentiles have a much lower cost per ton of CO2e avoided

because their capture rates are lowered.

The remaining rows make certain assumptions about the cost-benefit equation to display

how particular parameters matter. In the fourth row, the capture rate is set to 70%.25 This results

in a rightward compression of the distribution of cost per ton of CO2e avoided. The lower cost

counties have a dramatic increase (because they have no capture) while the higher cost counties

have a decrease (because they have higher empirical capture rates). In the fifth row, I assume

that landfills have no capture. This results in a leftward compression of the distribution, reducing

the cost per ton of CO2e avoided.

The sixth row uses the GWP100 figure of 32 tons of CO2e per ton of methane instead of

80. This dramatically increases the cost per ton of CO2e avoided. This should be anticipated,

since the emissions damages are now much lower. In the seventh column, I assume a “maximum”

diversion rate of 10 pounds per household per week. This greatly reduces the cost per ton of

CO2e avoided, suggesting that in many regions of the United States, if maximal FS&SP can be

achieved, then the costs are sufficiently low to justify the programs. I believe this estimate is

particularly noteworthy; while there will be variation across counties in the maximum FS&SP

diversion rate, if a county can achieve 100% participation and diversion (or close to it), the

programs can be readily justified. In the eighth row set the difference between the tip fee at the

landfill and the composter to zero. The tip fee at the composter is always lower than the landfill,

however it can be seen this is a rather small portion of the cost.

This table shows that the distribution of methane polluting behavior has a long right tail.

This is due to the very high populace counties, which dispose of high quantities of FS&SP. As

can be seen, if the evidence that emissions from landfills are undercounted is correct, then the
25This is because in EPA (2020), the emissions for a landfill with no capture is calculated to be 1.39 tons of CO2e

per short ton of food scraps, while capture with electricity use is 0.42 tons of CO2e per short ton of food scraps.
The implied capture rate from the difference of these values is approximately 70%.
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cost per ton of CO2e avoided is substantially lower than the baseline estimate.

1.7 Discussion

The purpose of this section is to discuss what alternatives are feasible given the results of

my cost-benefit analysis.

The City of Austin’s organics expansion is younger than other cities’ programs. For

example, the City of Seattle implemented their food scraps program in April of 2009 (and

changed collection from bi-weekly to weekly). On January 1st, 2015, Seattle then banned all

organics from the garbage, making organics disposal mandatory. Seattle’s organics program

already had a reasonably high participation rate, but the requirement of mandatory organics

disposal increased the number of households subscribed and slightly increased the disposal rate.

It is entirely possible that household curbside organics is not worthwhile, yet commercial

organics programs are worthwhile. While this is a topic for a different paper, supermarkets

produce a large amount of organics waste. Implementing organics collection or diversion for

this has several benefits. First, it is generally cheaper to dispose of organics in bulk. Second,

the organics stream from a supermarket is largely food waste, which can be used uniquely as a

specific input for certain composting/reuse methods. Finally, the food waste doesn’t have to be

disposed of; in particular, some commercial composting policies encourage food deemed safe to

be provided to homeless shelters and food banks.

In some cases, the incentive for a jurisdiction to expand an organics program is ambiguous.

The social benefits received from a reduction in methane emissions is global, not local, so this

is typically not factored into local benefits. In certain parts of the United States, such as the

northeastern United States, landfill tipping fees are very high (typically around $100 per ton of

waste or higher). In many cases, the jurisdictions must pay this fee. Diverting organics to local

farms or larger-scale composting/anaerobic digesters is typically much cheaper. In the case of

California, jurisdictions are implementing composting programs because the laws mandate them.
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In the case of Austin, it is not as clear. Anecdotally, the government incentive to implement the

program largely seems to come from a warm-glow or (relative) over-valuation of environmental

benefits. Certain cities, such as Austin or San Francisco, are also subject to certain perceptions

nationally which they may be inclined to fulfill.

In some cases, such as Massachusetts’ law to have a state-wide commercial composting

program, jurisdictions are persuaded by (claims of) increases in employment and revenues. In

addition, they can cite to business owners their costs will decrease because organics hauling is

cheaper than garbage hauling.26 This is pertinent for commercial organics, but it is not true for

residential programs.

An alternative to composting not discussed in this article is anaerobic digestion (AD).

With AD, organic material – be it of a singular kind (e.g. food waste) or mixed (called co-

digestion) – is placed into an enclosed reactor, where microbes break down the matter within.

This process generates both biogas and “digestate”27, which can be converted into fertilizer or

other products. The production of biogas in an AD is typically higher than in a landfill, between

50-75%. The resultant digestate has both solid and liquid forms and if treated properly can be

converted into a fertilizer, compost, or an addition to soil. Most AD systems are located on farms,

with it being fairly rare for an AD facility to be stand-alone. These are a viable alternative to

composting, with the additional by-product of biogas. In addition, industrial-scale composting

centers typically take up many acres of space in order for the organic material to aerobically

decompose into compost, which is a similar constraint faced by landfills seeking to expand.

1.8 Conclusion

Methane emissions are substantially more costly than CO2 emissions, especially over

a short horizon. This paper explores one methane emission mitigation strategy: household

26Per ton, this is true. However, hauling is typically priced by bin size, not weight, so it is possible for businesses
to be spending more if the cost of the two bins required (even if the business acquires a smaller garbage bin) is more
than the single, larger garbage bin.

27This is the by-product of anaerobic digestion after the organics have been processed.
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diversion of organic matter – such as food scraps, leaves, and grass – from landfills. However,

jurisdictions must pay for these programs, which can be costly. I first provide novel findings

regarding household responses to receiving an expanded organics program. Households do

participate in this program (though not all participate); on average, households that participate

divert nearly all of their organics. Further, households fix mistakes they make regarding recycling

once they are provided with the proper method of disposing of their seemingly-but-not-actually

recyclable material.

With this estimate, I wrote a cost-benefit equation to explore where in the United States

an organics program (expansion) would be viable. In addition to the tension between the social

benefit of avoided methane emissions and cost of the program, the largest landfills emitting

methane typically have landfill gas capture systems in place. All of this results in a needed cost

per ton of CO2e avoided of approximately $536 per ton of CO2e or an additional diversion rate

of approximately 27 pounds per week per household, which is significantly greater than 100% of

organic matter that could be disposed of under the program expansion to achieve a break-even

net benefit.

While an expanded organics program does appear to fail a cost-benefit test, this does not

mean it is not viable. The estimates here are founded on specific assumptions that may not prove

to be true. In particular, if there is a true social cost of carbon and it is much higher, then the

estimated damages from methane emissions will increase substantially. Also, if a jurisdiction

can implement the program rather cheaply (as a monthly cost to a household), then the programs

can also be worthwhile.

The conclusions of this article should concern proponents of household organics diversion,

but the proper conclusion is not dismal. Alternative methane-reducing options, such as reducing

enteric fermentation or oil and gas well and pipe leaks may be more viable option (Hausman

and Muehlenbachs (2019)). However, the implementation of organics programs requires careful

investigation of how to lower the cost of the programs and how to generate high level of

participation across a jurisdiction’s populace. Both of these are essential to the viability of
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organics programs.
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1.9 Appendix 1: First-Order Decay Equation

The first order decay equation used is considered good practice by the IPCC (IPCC

(2006)). The equation embodies a linear relationship between waste in place and landfill methane

emissions. While this estimation method has faced much scrutiny, it is standard and more robust

estimation methodologies do not have data available across the United States.

The equation in year t is:

CH4t =
t

∑
i=0

∑
s<t

Ws ·DOC ·DOC f ·MCF ·F · (16/12) · (e−k(t−s−1)− e−k(t−s))

Each of the acronyms must be described and more details can be found in IPCC (2006). First,

pick a particular waste type, such as food waste, wood, grass, and so forth. The weight of this is

represented by W . A certain percent of each waste type is degradable organics carbon, whereas

the remainder is not; this is what DOC represents. For food waste, the number is 15%, while for

soiled paper it is 40%. A certain percentage of this DOC is also decomposable; the standard value

is 50% and is represented by DOC f . The value MCF is the “methane correction factor”, a value

between 0 and 1 that is 1 for all landfills in the United States, but in lower- and middle-income

countries this value will typically be less than one. The factor itself is a representation of how

effective the anaerobic decomposition in the landfill is; the worse a landfill is managed, the less

anaerobic decay that likely takes place. The term F is the percentage of landfill emissions that is

methane – the standard percentage is 50% and this is typically not a debated value. Between

50-60% of landfill emissions are methane while 40-50% are CO2, with a middling amount of

NO2. As discussed in Section 5.1, a landfill emits both CO2 and methane but only the methane

is considered in landfill methane inventory calculations. The 16
12 number is the weight ratio of

methane to CO2. Finally, the e−k(t−s−1)− e−k(t−s) is used to calculate the amount of waste in

place for a specific year. In this case, since s < t, it is the amount of waste that decomposes in

the year s. The term k represents the decay rate; a larger k provides a faster decay rate and a
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smaller k is a slower decay rate. If waste is deposited in a given year, say year 1, then each year

thereafter it decomposes. However, every year less and less material from year 1 decomposes,

by weight. In order to determine the half-life, t1/2, of the waste type in place it is calculated as

t1/2 = ln(2)/k.

This equation does not include an index for waste material type. The equation above

is the same for all materials, only the parameter values change. That is, for each waste type,

calculate CH4t and sum all of the resulting emissions values to obtain the total emitted.

The above equation describes the potential CH4 emissions from a landfill. However,

several factors can cause landfill methane emissions to be lower or higher. In this case, both

the landfill gas capture rate and the oxidation factor impact methane emissions, both of which

lower emissions. In the first case, a landfill must first have a capture system in place. These

capture systems can vary in their effectiveness. As methane travels upward to escape the landfill,

it passes through the intermediate cover layer. This oxidizes some of the methane.

CH4emitted
t =CH4t · (1− capture rate) ·OX

Where OX is the oxidation factor, typically assumed to be 0.9. The capture rate used for a landfill

is calculated as the average capture rate from 2017 to 2019 based on the GHGRP data. The mean

collection efficiency for all landfills is 45%, however for landfills with LFG capture systems the

collection rate is 67%.

1.10 Appendix 2: Additional Methane Emissions Details

Leaving aside legal permitting, a modern “sanitary” landfill begins by digging a very

large, deep hole. The bottom and sides of the cell are lined with a low-permeability layer, such

as densely-packed clay. Atop this is a (typically plastic) liner. Both of these layers are intended

to prevent leachate28 from leaking out of the landfill into nearby groundwater. Above the liner
28Leachate is created by water percolating through the waste in a landfill and “leaching” out some of the

components of the waste passed through. Less technically, it can be thought of as “garbage juice”.
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is typically a geotextile mat to prevent the gravel placed on top of this mat from damaging

the plastic liner. In between this is a series of leachate collection pipes, which collect leachate

and (usually) pipe it out of the landfill. On top of the gravel layer is a soil layer that ranges in

thickness of one to two feet. Finally, waste is placed on top of all of this. Waste is placed every

day, where it is compacted (typically by a bulldozer driving over the waste pile) and dirt is placed

on top at the end of every day, called a cover. This represents the closure of the cell.

Figure 1.11 shows the four phases of pollution from decomposition in a landfill. There is

a fifth phase for decomposition, but it is not displayed in this graph as it is the end phase where

the landfill has stabilized and has a limited number of chemical reactions.

The first phase is aerobic. Oxygen-consuming bacteria break down the waste in a landfill,

which largely results in carbon dioxide. Over time, the oxygen in the landfill is exhausted and

phase two begins.

Phase two, as with all following phases, is anaerobic. This phase is a transition phase

from an aerobic to anaerobic environment. The bacteria in the waste pile produce alcohols (e.g.

methanol and ethanol) and acids (e.g. acetic, lactic, and formic acids). This conversion produces

carbon dioxide and hydrogen. The pH level of the landfill lowers, while the acids interact with

certain available nutrients and produce nitrogen and phosphorus.

Phase three exhibits bacteria consuming the available acids produced in phase two and

producing acetate. The consumption of acids raises the pH level in the landfill. These bacteria

produce compounds for methanogenic bacteria to consume. The acetate-producing bacteria

produce nutrients for the methanogenic bacteria, while the methanogenic bacteria consume the

carbon dioxide and acetate, which allows the acetate-producing bacteria to thrive.

Phase four features the same processes as phase three, but this phase is marked by the

relative stabilization of the composition and production of methane and carbon dioxide. The

precise composition split for methane and carbon dioxide is not known, but it is typically around

50%, with a spread of about 5-10%.

The length of these phases depends on the waste composition within the landfill. However,
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Figure 1.11. Phases of Landfill Decomposition

This graph shows the four phases of decomposition in a landfill. The phases are described in the
text.
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gas production typically lasts for at least 20 years while emissions from the landfill can last for

much longer. If a landfill is composed of a large number of organics, gas production will typically

be much longer. Different portions of a landfill will be in different phases of this decomposition

process.

The stage of the waste cell impacts methane collection efficiency. Emissions collection in

a cell does not start immediately, however I am abstracting from this problem for these purposes.

The thickness of the intermediate cover used affects methane oxidation as does particular features

of the soil and climate, such as dry soil or a dry climate. The thickness of intermediate cover is

typically not tracked by government entities nor are the intermediate cover soil characteristics.

Precisely the extent to which these variables affect landfill methane emissions is not currently

known.

1.11 Appendix 3: Additional Maps

The plot seen in Figure 1.12 shows the necessary household monthly organics service

fee required for the net benefit to be equal to zero. There is a strong correlation between a higher

household cost (which means that it would be “cheaper” to implement the program) and whether

the county is serviced by a landfill without a LFG capture system. For example, large-populace

counties such as those containing Seattle, Los Angeles, Austin, or Philadelphia require much

lower household costs to be viable (implying it is more expensive for them to implement) because

they are serviced by large landfills with LFG capture systems in place.

1.12 Appendix 4: Alternative Specifications

Recent econometric literature has called into question the validity of two-way fixed

effects (TWFE) models in the presence of treatment effects varying over time (Goodman-Bacon

(2021), Sun and Abraham (2021), Callaway and Sant’Anna (2021)). The recent literature has

described a significant problem with current TWFE models: the treatment effects may be biased
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Figure 1.12. This graph shows the estimated household cost per month needed for counties
across the United States to have a net benefit of zero.
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and even more worryingly, the treatment effects may have units assigned negative weights. This

problem does not arise in standard two-by-two difference-in-differences models, only in the

generalized version of difference-in-differences, which is when TWFE models are typically used.

As a robustness check to these recent concerns, I estimate a regression using the assump-

tions and methodology of Callaway and Sant’Anna (2021). The authors estimate a treatment

effect, Yt(g) that depends on the group g and the time period t. The group g is defined by the time

at which treatment begins for a group of treated units. The authors avoid the issues of TWFE

models by estimating an average treatment on the treated for each group-time pair, AT T (g, t).

In the simplest version, these AT T (g, t)’s are actually two-by-two difference-in-differences

estimates comparing the treated g to some control group, comparing some post-treatment period

t to the pre-treatment period g−1 (the g denotes both the group and the treatment timing).

Following the paper’s assumptions, I assume there is no treatment anticipation (Assump-

tion 3 in the paper) because households were not permitted to begin diverting their FS&SP into

the organics bin beforehand. In addition, I present results using both “Not-Yet-Treated” groups

(Assumption 5) and “Never-Treated” groups (Assumption 4). Although all groups are eventually

treated, they are not treated in my sample horizon. Further, the results are nearly identical. To

avoid any issues, I will use the results from the “Not-Yet-Treated” regression. I use the “doubly

robust” estimator provided in the paper, which exploits both outcome regression and inverse

probability weighting components of the AT T (g, t) estimator.

The authors present several schemes for aggregating the AT T (g, t)’s to provide a swathe

of estimates of the effect of the policy under consideration. For estimating group level effects,

they propose: The authors propose the measure,

θ
O
W =

1
κ

∑
g∈G

T

∑
t=2

1{t ≥ g}AT T (g, t)P(G = g|G≤T )

where κ = ∑g∈G ∑
T
t=2 1{t ≥ g}P(G = g|G≤T ), to ensure the weights in the second term sum

to one. This is the “simple” ATT term in the tables below. This measure represents the weighted
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average of the AT T (g, t)’s. This estimate avoids the potential issus with a TWFE estimator,

however it does not account for treatment timing. That is, some groups may be exposed to

treatment longer than others.

To accommodate this, the authors first propose the estimate:

θsel(g̃) =
1

T − g̃+1

T

∑
t=g̃

AT T (g̃, t)

where T is the final time period in the sample. The θsel(g̃) represents the average treatment

effect among the units in group g̃ over all periods from the beginning of their treatment to the

end of the sample period. This measure can then be aggregated to provide an overall treatment

effect.

θ
O
sel = ∑

g∈G
θsel(g)P(G = g|G≤T )

where each θsel(g) is defined in the equation above. This term better accounts for groups that are

in the treatment for longer to estimate the overall ATT. This estimate is called the “Group” ATT

in the tables.

There are three results in the table presented. The first result will show the “simple”

aggregation, where the average of the group-time treatment effects are calculated, weighted by

the number of units in each treatment group. The third result will show the “group” aggregation,

which takes the average treatment effect across each group. The second result aggregates to an

overall effect by averaging the group effects while weighting them by the length of time treated.

Table 1.6 contains results using both “not yet treated” units and “never treated” units.

The preferred specification is for “not yet treated” units as all the units are eventually treated

in the rollout, even though the entirety is not in the purview of this sample. Regardless, the

estimates for both groups are nearly identical. The format of the two tables is identical, with the

“simple” aggregate first, then the “group” aggregate, and finally the estimate for each treatment

group.

64



Table 1.6. Callaway & Sant’Anna Estimation: Main Estimate

Dependent variable:

Pounds of Organics Disposed Per Household
Not Yet Treated Never Treated

ATT “Simple” 2.6959∗∗∗ 2.4965∗∗∗

(0.5264) (0.5915)

ATT “Group” 2.7502∗∗∗ 2.6233∗∗∗

(0.3094) (0.399)
Pilot 1 4.8851∗∗∗ 4.8090∗∗∗

(1.1293) (1.3095)
Pilot 2 1.6611 1.1927

(3.2542) (3.4216)
Phase 1 2.3223∗∗∗ 2.1230∗∗∗

(0.4289) (0.5213)
Phase 2 (1st week) 2.5467∗∗∗ 2.4451∗∗∗

(0.8204) (0.8971)
Phase 2 (2nd week) 2.7150∗∗∗ 2.5193∗∗∗

(0.4871) (0.5507)
Phase 3 (1st week) 3.2540∗∗∗ 3.2517∗∗∗

(0.5584) (0.5777)
Phase 3 (2nd week) 2.9898∗∗∗ 2.9898∗∗∗

(0.5655) (0.5671)

This table displays the results of running the doubly-robust estimation procedure as described in Callaway and
Sant’Anna (2021). This set of results shows the estimation by using the data according to the true beginning
treatment time (i.e. because some phases happened in consecutive weeks). The “Not Yet Treated” column shows
the results by using the control group for units that are not yet treated and the “Never Treated” column shows the
results by using the control group for units that are never treated.

65



Table 1.6 shows the results of the estimation strategy. Note that because the unit of

analysis is at the route-week level and that the rollout for both Phase 2 and Phase 3 were done in

adjacent weeks, both of these phases have a “1st week” and a “2nd week” estimate. Additional

results are provided in Table 1.7 by shifting all of the rollouts to the earlier week or the later week.

The results from this table do not change conclusions in a substantive manner. The primary

difference is that the treatment timing is slightly different, so the AT T (g, t)’s are either a little

larger or a little smaller than the results from Table 1.6.

The “simple” ATT is 2.696 additional pounds of diverted material for the “not yet treated”

specification and 2.497 additional pounds for the “never treated” group. The parameter for ATT

“Group” additionally weights by length of time in the treatment; the results are 2.75 pounds

of additional diverted material for the “not yet treated” group and 2.62 pounds for the “never

treated” group. While both of these are larger estimates than the TWFE estimate, they are within

one standard error and are very similar estimates. The similarity between the estimates suggests

that proceeding with the TWFE estimate is not unreasonable.

The breakdown of the group ATTs reveal more about the rollouts. The first pilot has the

highest group estimate of all at 4.89, however the second pilot has the lowest at 1.66. Given the

small number of routes in each of these pilots, this is not terribly surprising. These two average

out to approximately 3.27 pounds of additional organic material diverted, suggesting that they

are still above average, but within the margin of error. The phases initially suggest that as phases

were rolled out, each phase diverted more additional material on average. However, these are

again all easily within the margin of error, making conclusions difficult to draw. The aggregate

ATTs are both reasonably close to the TWFE estimates, suggesting that the potential bias in the

TWFE estimator is not too large.

Due to the rollouts sometimes occurring in different weeks, even if they are in the same

phase, and the structure of the data, some estimates are split into two different weeks. I again

present three different sets of results. This table takes the consecutive weeks for Phases 2 and 3
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and moves them “down” or “up” so they all occur in the same week.29 This does not change

results in any substantial manner. The reason for doing shifting the start date “up” or “down”

is because there is only one “Phase 2”, but the rollout happened in different (but consecutive)

weeks. Obtaining an estimate for the entirety of Phase 2 and Phase 3 using this estimator is to

provide additional information on the treatment group dynamics.

Table 1.7 has a similar format to Table 1.6, however it is split in two. The first set of

results show moving the dates for Phase 2 and 3 “down”, while the second set of results show

moving the dates “up”. The first estimate in the two sections shows the result of the “simple”

aggregation. In the “down” results, the “not yet treated” estimate is 2.57, while the “never

treated” estimate is 2.4. These are even closer to the TWFE estimates than those in Table 1.6.

The ATT “group” estimates are very close to the “simple” estimates, with the “not yet treated”

group estimate of 2.575 and the “never treated” group estimate of 2.471. The group dynamics

are similar to those in Table 1.6 as well, with Pilot 1 being the highest estimate, with 4.88 and

4.81 for “not yet treated” and “never treated”, respectively. Meanwhile, Pilot 2 has the lowest

estimates for “not yet treated” and “never treated” at 1.66 and 1.193, respectively. The phase

results suggest the Phase 1 and Phase 2 estimates are both very close to the main TWFE estimates.

The “not yet treated” group has an estimate for Phase 1 of 2.32 and for Phase 2 of 2.27. The

“never treated” group has estimates for Phase 1 and Phase 2 of 2.123 and 2.17, respectively.

For Phase 3, both specifications have the same estimate of 2.915 pounds of additional organic

material diverted. One interesting result from these specifications is that the estimate for Phase

3 is much larger than Phase 1 and Phase 2, but still within the margin of error. The particular

reason for this is unclear. One particular proposal is that because Phase 3 was the most recent

phase rolled out in the data, there is the least amount of data available.

For the “up” portion of Table 1.7, the ATT “simple” estimate for the “not yet treated”

specification is 2.68 and the “never treated” specification is 2.48. The ATT “group” results are

29E.g. Phase 2 occurred in weeks 446 and 447 of the data. Moving it “down” moves the rollout in week 447 to
446. Moving it “up” moves the week 446 rollout routes to week 447. Phase 3 is the same for weeks 512 and 513 in
the sample.
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Table 1.7. Callaway & Sant’Anna Estimation: Simultaneous Rollouts

Dependent variable:

Pounds of Organics Disposed Per Household
Not Yet Treated Never Treated

DOWN

ATT “Simple” 2.5743∗∗∗ 2.3987∗∗∗

(0.5283) (0.5616)

ATT “Group” 2.5748∗∗∗ 2.4709∗∗∗

(0.3603) (0.3732)
Pilot 1 4.8817∗∗∗ 4.8090∗∗∗

(1.1218) (1.3844)
Pilot 2 1.658 1.1927

(3.2671) (3.3327)
Phase 1 2.319∗∗∗ 2.1230∗∗∗

(0.4140) (0.5061)
Phase 2 2.2683∗∗∗ 2.1698∗∗∗

(0.5395) (0.6535)
Phase 3 2.9149∗∗∗ 2.9149∗∗∗

(0.581) (0.5360)

UP

ATT “Simple” 2.6796∗∗∗ 2.4759∗∗∗

(0.5214) (0.5599)

ATT “Group” 2.7247∗∗∗ 2.5934∗∗∗

(0.3294) (0.3707)
Pilot 1 4.8834∗∗∗ 4.8090∗∗∗

(1.1486) (1.2871)
Pilot 2 1.6606 1.1927

(3.2336) (3.1619)
Phase 1 2.3223∗∗∗ 2.1230∗∗∗

(0.3945) (0.5210)
Phase 2 2.6313∗∗∗ 2.4345∗∗∗

(0.4) (0.5657)
Phase 3 3.0547∗∗∗ 3.0547∗∗∗

(0.5543) (0.5456)

This table displays the results of running the doubly-robust estimation procedure as described in Callaway and
Sant’Anna (2021). The first set of results shows the result from shifting the start week of the Phase 2 and Phase
3 rollouts to the first week (of two) of the rollout (446 and 512, respectively). The second set of results show the
results by shifting the start week for all Phase 2 and Phase 3 to the second of the rollout (447 and 513, respectively).
The “Not Yet Treated” column shows the results by using the control group for units that are not yet treated and the
“Never Treated” column shows the results by using the control group for units that are never treated.
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2.73 and 2.6, a larger estimate than the “simple” estimate, but not much larger. The estimate for

Pilot 1, Pilot 2, and Phase 1 are very similar to the “down” portion of the table. In fact the “never

treated” estimates are identical, but the SEs are different. Given how group-time estimates are

calculated, the “not yet treated” group estimates being different makes sense.30 The estimate for

Pilot 1 for the “not yet treated” specification is 4.88, practically the same as the “down” portion.

Pilot 2 has “not yet treated” at 1.661, compared to the “down” portion of 1.66. Phase 1 for the

“not yet treated” group is 2.322, while the “down” specification has 2.319. Now, for Phase 2

and 3 both “not yet treated” and “never treated” have different estimates than the “down” set of

results. In both cases, the “up” estimates are larger. For Phase 2, the “not yet treated” estimate is

2.63, while the same estimate for the “down” group is 2.27. The “never treated” group estimate

is 2.435, while the “down” group is 2.17. Finally, for Phase 3, both “not yet treated” and “never

treated” have an estimate of 3.055, while in the “down” portion of the table the estimate is 2.915.

Overall, these results are simply an upper and a lower bound on the baseline estimates.

The disparity between the two sets of results arises because the AT T (g, t)’s effectively estimate

a canonical two-by-two difference-in-differences. Given the chosen week changes, we should

expect variation in the baseline control group and observe that while this happens, these estimates

are both readily within the error bars of each other. Therefore, these differences are not a cause

for concern.

Chapter 1, in part is currently being prepared for submission for publication of the

material. The dissertation author was the sole author of this chapter.

30The “never treated” group does not change, so the estimates should be the same. The “not yet treated” group
also does not change, however the timing changes. Each ATT for a given group-time is therefore estimated with a
slightly different group of control estimates.
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2. Heterogeneity in Consumer Response to
Water Quality Violations31

2.1 Introduction

Regulated community water systems (CWS) in the United States provide drinking water

to approximately 94% of Americans. In 2017, 22 million people – 7.2% of all CWS customers –

experienced a violation by their CWS provider in the United States. These violations can cause

negative health effects, such as bacterial infections, lead poisoning, or “blue baby syndrome”

from nitrates. Eight percent of CWSes serve populations greater than 10,000, yet provide water

to 82% of the population served, while 27% of all CWSes serve populations ranging from 501 to

3,300 serve, yet provide water to about 7% of the population.32 The dispersion in the number

of customers results in heterogeneity in the populations served, both within a CWS and across

CWSes. A water quality violation can affect a large number of households, requiring many

households to cease consuming their tap water (if unfiltered) and finding alternative means to

access clean drinking water. As such, understanding which groups respond to these violations is

important in order to identify inequities regarding who responds and to consider which groups

may not be responding to these violations and why. This paper investigates how different

demographic groups respond to water quality violations.

31Researcher(s)’ own analyses calculated (or derived) based in part on data from Nielsen Consumer LLC and
marketing databases provided through the NielsenIQ Datasets at the Kilts Center for Marketing Data Center at The
University of Chicago Booth School of Business. The conclusions drawn from the NielsenIQ data are those of the
researcher(s) and do not reflect the views of NielsenIQ. NielsenIQ is not responsible for, had no role in, and was not
involved in analyzing and preparing the results reported herein.

32Further information can be found in Tiemann (2017).
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CWSes incur violations by not testing for contaminants or exceeding a certain pre-

determined threshold for a contaminant in their water supply.33 CWSes are legally required to

report any violations to their regulatory entity (the state or federal government). Water quality

violations are placed in one of three tiers. Tier 3 is the lowest (and least severe) tier; the CWS

must inform consumers of the violation within one year of its occurrence. As CWSes must send

out a yearly Consumer Confidence Report (CCR) to each household served, these violations

are typically contained therein.34 Tier 2 is the middle tier, where consumers must be informed

within one month of the violation. These are typically included in a household’s monthly water

bill. Finally, Tier 1 is the highest (and most severe) tier.35 Consumers must be informed within

24 hours of the violation. The reports informing consumers must be conveyed in multiple

ways, including mail, TV news, paper news, and if necessary, phone calls. In addition, if the

CWS customers are linguistically diverse, they must be provided with resources to acquire the

information in their preferred language. Any of these violations must be remediated according to

the rules set forth by the regulatory body. The immediacy of reporting Tier 1 violations results in

customers of the violating CWS being able to respond rapidly to their circumstances. However,

this assumes that all customers see the violation notice and respond accordingly.

This paper examines the heterogeneity in responses at the household level to water quality

violations. Our data gives us a unique perspective by focusing on household-level responses

to water quality violations. We explore the demographic heterogeneity in response to these

contaminants, by considering important factors in responses such as race, education, and income.

Depending on the severity of the contamination, consumers may respond to these violations by

substituting from tap water to other sources (such as bottled water) or by investing in a cleaning

technology. Different demographic groups may respond differently depending on certain factors.

33The threshold depends on the contaminant. The thresholds are measured in either maximum contaminant level
(MCL), maximum residual disinfectant level (MRDL), or treatment technique (TT).

34The CCR must be submitted every year by July 1.
35Examples of Tier 1 violations include MCL exceedance of E. coli, MCL nitrate violations, and chlorine dioxide

MRDL exceedance, among others. Most Tier 2 violations are failure to report tests for “serious” contaminants or
exceedances not considered Tier 1 violations.
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For example, higher-income households can more readily afford to install a filtration system

inside their home to avoid any concerns about violations, whereas lower-income households do

not necessarily have the capital or the ability to install these systems. They must purchase water

on a frequent basis to avoid drinking and using contaminated water. Similarly, there is evidence

that certain groups – such as black households or lower-income households (Pierce and Gonzalez

(2017)) – exhibit more mistrust in their tap water than other racial groups or higher-income

households.

To identify the effect of a water quality violation on household purchases, we exploit the

timing of violations occurring in CWSes by comparing households that experienced a violation

to those that did not experience a violation. Our identifying assumption is that, conditional on

covariates, households do not systematically have different water bottle purchasing behavior.

Furthermore, households are not able to anticipate water quality violations in their systems. In

cases where the violations are more common with a CWS, fixed effects across time and units

alleviate these concerns.

Households react most strongly to Bacteria and Lead & Copper Rule violations. Our

findings show that white and black households both respond to Bacteria violations, consuming

approximately 7% and 8% more ounces of bottled water when a violation occurs, respectively.

When a Lead & Copper Rule violation occurs, black households consume approximately 23%

more ounces of bottled water. Meanwhile, when a household with income below the median

faces a Lead & Copper Rule violation, they consume approximately 13% more ounces of bottled

water for the duration of the violation. We find results that augment and differ from previous

work, such as Shimshack et al. (2007), finding educated households (with at least some college

education) respond to Bacteria violations, while we also find that less educated households

respond to Other violations – which includes categories such as turbidity36 – by increasing their

consumption by 13% for the duration of a violation. Our results overall show an important

36This is a measure of how cloudy the water is. The concern arises from the correlation between higher turbidity
water and higher levels of pathogens.
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variety of responses, however we show that only certain groups respond. These results are a

cause for concern for both households that are responding and those that are not. The households

that are responding are purchasing a luxury good, yet we do not observe only higher-income

households purchasing bottled water. As a consequence, these violations may put additional

financial strain on households. The groups that do not respond are also a cause for concern

and we are not able to identify why there is a lack of a response. If the households are simply

immune to the violations – perhaps because of filtration – there is no cause for concern. However,

if households are simply ignoring the violations or are unable to respond due to a lack of means,

this is an important concern.

Consumers can respond to water quality violations in several ways. For the moment,

assume that individuals are consuming tap water. They can ignore the violation and continue

to drink tap water. This comes with the health risks associated with consuming that particular

contaminant. Alternatively, they can substitute to drinking bottled water or other liquids, or

subscribe to a water delivery service. This comes at a pecuniary cost. Lastly, they can install a

water filtration system. This typically requires a higher fixed cost than bottled water and requires

replacement of the filters, along with other possible inconveniences (such as being slow to refill),

while also requiring them to have the financial means to do so. All of the potential responses for

consumers are pecuniary, allowing us to directly see the costs incurred. Our data allows us to

observe all of these margins to some degree.

The financial circumstances of a household may restrain their ability to adapt in the most

effective manner possible. Lower-income households will not necessarily be able to make large

purchases for products that will filter their water long-term. These households may not own

their homes and so simply are not permitted to install filtration systems. In this regard, we may

expect poorer households to purchase more water bottles to avoid contaminated water relative

to higher-income households. However, higher-income households can more easily afford to

purchase additional bottles of water, so it is possible that higher-income households have a

stronger behavioral response than lower-income households.
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Figure 2.1. US Bottled Water Consumption

Note: This is plot shows ounces of bottled water consumption per capita per year in the USA.

An additional issue when observing household responses to these violations is that the

household must see the violation notification sent by the CWS. If a household does not see the

violation or ignores it, they may not respond as a result of not seeing the violation rather than a

lack of means to respond. It is important to be able to distinguish the two, however with our data

we are not able to do so. Disentangling the two is very important for improving the violation

notification system and our results suggest a good starting place for exploring the system.

The effect of a water quality violation may have a lasting impact. Once a violation is

remedied, a household may not revert to the same behavior as before the violation occurred. For

a variety of reasons – such as trust in the tap water/water company or a newfound preference for

bottled water – a household may consume a different amount of bottled water after the violation.

As a result, some households may have a permanent response to a violation, causing us to observe

different consumption levels across demographic groups.

Over time, bottled water consumption per capita has increased in the United States, as
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seen in Figure 2.1. This trend is present in most states as well. Due to the lack of data, mapping

CWS service areas to zip codes is a challenge and so we only examine certain states where this

data is available.37 The states in our dataset represent 33% of the United States population and

about 20% of all PWSes in the United States.

Figure 2.2 shows the number of violations per year by category in our dataset. Overall,

there are between 10,000 and 20,000 violations per year, with a majority of them in Tier 3. Tier 1

violations are the least common violations. This suggests that most violations are not harmful to

consumers and are primarily failures to report. However, even a few Tier 2 and Tier 1 violations

can affect a large number of households for an extended period of time, causing acute negative

health responses.

To the best of our knowledge, this is the first paper to use household-level data to estimate

the response to water quality violations on a large-scale. While our analysis is similar to that

of Allaire et al. (2018), Allaire et al. (2019), and Graff-Zivin et al. (2011), we are able to use

household-level data to examine heterogeneity in the response to these violations. Our analysis

at this level allows us to investigate precisely the kind of households that respond to water

quality violations. With these heterogeneous responses, we are able to consider how households

respond and relate this to tap water mistrust (e.g. Pierce and Gonzalez (2017)). Education,

income, and race are important factors associated with mistrust in tap water and our results

suggest that it is precisely lower-income households and black households that respond strongly

to water quality violations. These are among the groups that have deeper mistrust of tap water.

Relatedly, our analysis is useful for concerns about the reach of Consumer Confidence Reports

and who responds (Bennear and Olmstead (2008)). Our analysis points to groups that might not

be responding to these violations and it is important to investigate precisely why this is the case.

Our paper contributes to the increasingly important academic and social discussion on

inequality. In particular, we focus on consumption inequality (Attanasio and Pistaferri (2016)).

37The eight states we have in our dataset are Arizona, Arkansas, California, Kansas, New Jersey, Oklahoma,
Pennsylvania, and Texas.
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Figure 2.2. Water Quality Violations by Tier

Note: This figure shows the number of water quality violations each year by tier.

Our research suggests that there is a surprising heterogeneity in responses to water quality

violations that are not necessarily in step with income, which one might expect given water

bottles are a luxury good. On the other hand, for example, we find that it is primarily lower-

income households who respond to Lead & Copper Rule violations. Additionally, we find that

black households are the primary respondents to Lead & Copper Rule violations, while both

black and white households respond to violations pertaining to excess bacteria levels. Our

article also contributes to the literature on mortality inequality (Currie and Schwandt (2016)).

Water quality violations affect health outcomes and our results suggest that some household

demographic groups are aware of these adverse effects. These violations will not necessarily

have acute health effects, yet the exposure necessarily imposes an additional cost to health, even
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if it is not guaranteed.

The paper now proceeds. Section 2 briefly discusses background information on the

Safe Drinking Water Act. Section 3 describes the datasets used. Section 4 presents the analysis

used. Section 5 provides the results of both analyses, a hurdle model and a regression. Section

6 discusses possible explanations for the findings and important questions for policy. Finally,

Section 7 concludes.

2.2 Background

The United States federal government enacted the Safe Drinking Water Act (SDWA)

on December 16, 1974. This required the EPA to set standards for drinking water quality for

all public water systems (PWS)38 and oversee implementation of the law across states and

territories.3940 Over time, the SDWA has been amended, typically increasing its oversight and

tightening restrictions. All states except Wyoming and “Indian Country” have primacy, meaning

they are the enforcing bodies. States can and typically do have more stringent requirements

beyond federal requirements. This means that many exceedances or reporting violations will be

in higher tiers than the federal law stipulates, require testing of additional contaminants, or more

frequent testing.

When a CWS conducts the required test on their water supply and the test exceeds

the legal amount, they are obligated to report this to the state.41 Once the state receives the

notification of an exceedance, different actions are taken depending on the contaminant and the

severity. In general, the state will provide a timeline and instructions for remediation to the CWS

along with the required date for a public notification to be sent. Sometimes a fine is administered,

38A public water system has three subcategories: CWSes, non-transient non-community CWSes (e.g. schools),
and transient non-community CWSes (e.g. campgrounds).

39This does not cover private wells.
40Bottled water is not covered by this act; that is under the purview of the Food and Drug Administration.
41It should be noted that precisely who conducts the test and who notifies the state of the violation is state

dependent. For example, in some states a third-party (usually the laboratory conducting the tests) might retrieve the
sample from the CWS, while in other states the CWS will send in the sample to the laboratory.
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though this is infrequent and usually only if it’s a repeat warning or violation.

An important review of the history of the SDWA is contained in Tiemann (2017). This

paper summarizes the legal aspects and requirements behind the laws. The Governmental

Accountability Organization in GAO (2011), conducted a review of the data provided by states to

the Safe Drinking Water Information System (SDWIS), finding a large amount of underreporting,

typically due to state department resource constraints, the lack of a streamlined data entry process,

or due to inadequate guidance, but also occasionally due to “sympathy” for PWSes (i.e. if a

small CWS incurs a violation not seen as a health hazard, let it violation do not report it to

lessen the legal repercussions, in particular if the CWS is “trying”). A majority (91%) of these

reporting errors are due to “compliance determination” errors, meaning a violation occurred

but the primacy agency did not issue a violation to the CWS in violation and did not report this

violation to the Federal EPA SDWIS.

2.3 Data

Our data on consumers comes from the Nielsen Homescan Consumer Panel dataset,

covering the years 2009 to 2017. This dataset is gathered by The Nielsen Company, consisting of

a “stratified, proportionate” sample of about 60,000 United States households. Each household

reports all of their household purchases to Nielsen via a scanner. Various quality assurance

measures are taken to motivate households to submit their purchases and to verify the accuracy

of their purchases and the prices. Households purchases are characterized by “trips”, in which

there are typically multiple purchases at a store or stores. Each item purchased corresponds to a

unique UPC code and relevant product information, along with the price and quantity purchased.

UPC codes allow for detailed item-level identification of the product. In addition, the Consumer

Panel dataset tracks household characteristics yearly. Most of the household characteristics are

binned; for example income is in bins of at least five-thousand dollars and race is coarsely listed

in five groups.
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The Nielsen dataset does not allow us to fully observe the universe of purchases by

consumers. If a consumer does not purchase from stores within the Nielsen data scope, then it is

not contained in the dataset. Specifically, if a consumer procures water from a delivery service

or from their refrigerator/freezer door, this is not observed. As mentioned, we observe bottled

water purchases from a large number of stores, water filter purchases, and water filtration unit

purchases. In this paper, we only present the results on bottled water purchases.

Our data source on CWS violations comes from the EPA SDWIS violations database.

This database stores all violations by all PWSes in the United States. Quarterly, each state

submits their SDWIS violations to the SDWIS database. EPA retains this data for at least five

years. The data consists of unique PWS identifiers, the violation start date, population served,

the violation end date, the contaminant code and type, and the violation code and type.

The SDWIS violations database is not without issues. Chief among them is underreport-

ing. “For example, we estimate that the 14 states audited in 2009 did not report or inaccurately

reported about 54,600 – or 84 percent – of the monitoring violations (typically Tier 3 violations)

committed by community water systems to SDWIS/Fed” GAO (2011). Fortunately, more severe

infractions experienced less underreporting. Meanwhile, the estimated percentage of unreported

or inaccurately reported health-based violations was between 12% and 40%. Overall, this

underreporting implies that some households are unknowingly exposed to (possibly harmful)

contaminants. As reporting is biased one way, the total cost of water quality violations is going

to be an underestimate. We drop observations with known data entry issues (e.g. very small

CWSes) to try to minimize this bias.

Zip code level water company service areas are not readily available. For states that

provide geographic information system (GIS) matched PWS zip code data, we use this to

determine service areas. We match the polygons representing service areas to the Census-

provided polygons representing ZIP Code Tabulation Areas (ZCTA).42 In addition to the state-

42In general, a ZCTA is exactly the zip code. Most of the time the difference arises in non-residential areas, for
example where a business/businesses has/have a very large factory or warehouse.
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provided GIS data, we gathered data from the past two Unregulated Contaminant Monitoring

Rule (UCMR) data collections.43 EPA chooses 25 to 30 unregulated contaminants to be tested

by PWSes in the United States. Testing occurs over a two year period. PWSes that serve more

than 10,000 people must test for the contaminants, while PWSes below the cutoff are randomly

selected as testers. This data contains all zip codes served by the PWSes participating in the

particular round of the UCMR program.

2.4 Model

Our model estimates the treatment effect of a household experiencing a water quality

violation. In particular, due to zeroes, we are not able to apply the more often used log-linear

regression. Hence, our model takes the form:

yht = α + ∑
c∈C

βc× ∑
w∈Wz

[1{ctw}
pwz

pz
] +ΘXht +ΛPzt +δt +φz + εht

Here, yht is the outcome of interest – in most cases ounces of bottled water purchased – for

household h in time period t. The parameters βc measure the effects of having a particular

contaminant group – outlined below – occurring within the region z (that household h lives in)

at time t. Here, z will either be county or ZCTA. The indicator for a violation is multiplied by

the ratio of pwz, the estimated population served in zip code z by water company w, over pz, the

population of the zip code. This ratio represents the fraction of the population served by the

violating water company in a zipcode. This provides us with the correct coefficient β because

not all households in a zip code are served by the same water company. The matrix Xht is a

vector of covariates, such as income or household size, while Pzt are weather variables, including

average temperature and rainfall. The time fixed-effects δt are year-by-month fixed-effects and

the area fixed-effects φz.

The primary contaminant categories are Chemicals and Elements, Nitrates, Bacteria,

43“UCMR 4” took place from 2018-2020 and “UCMR 3” took place from 2013-2015.
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LCR, and Other. We constructed these categories manually. Each contaminant is assigned a

particular four-digit number. We created the groups based their first digits. For example, all

bacterial codes begin with a “3”, while all chemicals begin with a “2”. In cases where there are

too few observations, such as with radioactive contaminants, we placed them into the nearest

category according to their characteristics.

The Other category consists of turbidity and violations of the Surface Water Treatment

Rule. LCR is the Lead and Copper Rule,44 which mandates an “action level” (rather than the

standard maximum contaminant level (MCL) or maximum contaminant level goal (MCLG))

where a CWS must take action to remediate the high levels of lead or copper. The category

of Bacteria consists of bacteria that cause illnesses, such as E Coli (one of the most common

bacteria violations).

One issue is that for a large fraction of trips, households do not purchase any bottled water.

Further, as a violation can last a long period of time, households make their purchases at different

times. Both of these imply that a large fraction of the data consists of zeroes. As such, our

analysis also runs a hurdle model for the first stage. The hurdle model works by assuming that the

“zeroes” (those who do not purchase bottled water) and the non-zero values (those who purchase

bottle water) are the result of different data-generating processes. The first-stage estimates these

DGPs, then separately estimates a standard regression in the second stage. With this, directly

interpreting coefficient estimates is incorrect and requires the computation of marginal effects.

For more information, see Cameron and Trivedi (2005). Our primary results are for the hurdle

model, yet we also include the results from the regression without the hurdle model as well.

We windsorize our sample by excluding the top 0.05% individual shopping trips including

bottled water. This is to avoid outliers artificially increasing coefficient estimates. Further, we

remove CWSes with a population served under 500. Smaller CWSes are subject to less stringent

reporting requirements and have substantially more variability in reporting accuracy. This helps

44In December 2016, after the Flint, Michigan water crisis, this rule was updated in the Water Infrastructure
Improvements for the Nation Act (WIIN). This added a public notification requirement for LCR action level
violations, typically within 24 hours of the discovery of the violation.
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alleviate the underreporting concerns mentioned earlier.

Further, the data is not always complete. In some instances, a violation start date is

provided, but no violation end date is provided. In other cases, no contaminant type is provided,

so we cannot identify the tier for the violation. In either instance where the missing data cannot

be readily inferred, it is dropped. Finally, if a violation start date is more than four years from the

compliance start date, it is dropped. This is because SDWIS systems can become backlogged, so

the occurrence and the submission time can have large gaps.

2.5 Results

The results section is presented in two subsections. The first subsection shows the

specification when the regression is run with a hurdle model, while the second subsection shows

the results without the hurdle model. The results between the two methods are largely the same

and many conclusions and implications follow.

Hurdle

The results presented are interpreted as the marginal effect dy
dx , the effect of a particular

violation on weekly ounces of bottled water purchased. The tables presented include two different

columns: one where the violation is not included in the first stage and one where it is included.

The second stages for both are the same. These are included because the interpretation of the

result is slightly different, however both interpretations are important. Both estimations in the

first stage include covariates of race, an indicator for a child under age 6, education, household

income, minimum and maximum temperature in the location, and precipitation in the location.

In addition, we include county fixed-effects and year-month fixed-effects. However, only the

second column includes the violation times the population ratio affected in the first stage. The

second stage includes the violation treatment times the population ratio, education, income, and

household size, along with year-month fixed-effects and county fixed-effects. We then estimate

the marginal effects from this estimation.
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Table 2.1. Hurdle with Violation Only

Dependent variable:

Ounces of Bottled Water Purchased Per Week
Vio. No Vio. in First Stage With Vio. in First Stage

(1) (2)

Bacteria 1.905** 4.645**
(0.807) (1.882)

Chem/Ele 1.430* 0.796
(0.865) (1.423)

LCR 2.564 3.712
(1.730) (3.181)

Nitrate -1.017 -3.41
(2.006) (2.938)

Other 1.083 1.666
(0.976) (1.446)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: The dependent variable is ounces of bottled water purchased per week per household. The primary variable
of interest is a set of binary variables indicating if a household has experienced a violation within a contaminant
group. The first column does not include the violation in the first stage of the hurdle model; the second column does
include the violation in the first stage of the hurdle model. Standard errors are clustered at the zip code level.

The interpretation of the two columns differ slightly and either can be appropriate

depending on the circumstance. The first column – which does not include the violations in the

first stage – can be interpreted as the effect of a violation on households that are predicted to be

purchasers of bottled water. The second column, on the other hand, restricts the interpretation by

additionally requiring that these households are responding to the water quality violations by

purchasing bottled water (i.e. in the former, we are only requiring the hurdle to consider “not

purchaser” versus ”purchaser”. In the latter, “purchaser” now becomes akin to “purchaser and

responder to violations”). As a result, in many instances the magnitude of the second column

results will be larger than the first column. For this section, the first column will be emphasized

more than the second.

Table 2.1 presents the results of the hurdle model with no interactions on the treatment

variable for a violation. The estimate for Bacteria is smaller than those from the regression

at 1.9 ounces of bottled water per week. The estimates for Chemicals/Elements are 1.43
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additional weekly bottles of water consumed. On average consumers increase their bottled

water consumption by about 65 ounces over the average duration of a Bacteria violation and by

approximately 56 ounces of bottled water over the length of a Chemicals/Elements violation. The

second column shows that households that respond to these violations have a stronger response

to Bacteria violations – 4.65 ounces of bottled water per week – or approximately 181 extra

ounces of bottled water purchased per week.

The coefficient estimate on Nitrate is negative in both specifications. Nitrates are usually

found in water contaminated by fertilizer runoff and the acute toxicity from nitrates is low. Young

infants are most affected by this risk, but other populations are not particularly at risk. Thus,

these coefficients seem reasonable, especially given they are not significant.

Table 2.2 shows the results from the hurdle model by interacting a violation category

with a race category. In this, for ease of exposition, we have three groups: white households,

black households, and households that identify as any other race. The reason for this choice is

that including more race categories does not aid with the exposition of the results. The table

shows that two groups react to violations: white households and black households; however

the two groups respond to different violations. In the case of white households, they react to

Bacteria violations in both specifications. We estimate in the first specification an additional 2.3

ounces of bottled water purchased and in the second specification an additional 4.93 ounces. The

mean duration for a bacteria violation is approximately 239 days or about 34 weeks, suggesting

that the average white household purchases about 90 extra ounces of bottled water per violation –

approximately a 7% increase in consumption. At approximately $0.08 per fluid ounce of water,

this suggests white households spend an additional $7.18 per bacteria violation.

Black households respond to LCR violations in both specifications. Additionally, in

the first specification they respond to Bacteria and Chem/Ele violations. In response to LCR

violations, which have a mean duration of 39 weeks, we find black households purchase 8.73

additional ounces of bottled water in the first specification and 9.19 additional ounces of bottled

water in the second specification. This amounts to a 23% increase in consumption for the duration
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Table 2.2. Hurdle with Violation and Race Interaction

Dependent variable:

Ounces of Bottled Water Purchased Per Week
Race, Vio. No Vio. in First Stage With Vio. in First Stage

(1) (2)

White, Bacteria 2.299** 4.934**
(0.929) (1.996)

Black, Bacteria 3.274* 2.857
(1.720) (3.007)

Other, Bacteria -3.687 3.91
(3.755) (8.158)

White, Chem/Ele 0.797 0.659
(0.892) (1.404)

Black, Chem/Ele 7.453*** 5.41
(1.870) (4.454)

Other, Chem/Ele 0.874 -3.595
(2.304) (4.071)

White, LCR 1.422 3.461
(2.521) (4.351)

Black, LCR 8.728*** 9.186**
(1.760) (4.492)

Other, LCR -0.0694 -4.734
(2.261) (5.015)

White, Nitrate -1.534 -3.882
(2.185) (3.567)

Black, Nitrate 3.961 5.634
(5.538) (17.560)

Other, Nitrate 1.385 -2.212
(3.675) (5.396)

White, Other 1.099 2.021
(1.091) (1.688)

Black, Other 1.321 1.173
(1.554) (3.081)

Other, Other 1.514 0.133
(1.336) (3.919)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: The dependent variable is ounces of bottled water purchased per week per household. The primary variable
of interest is a set of binary variables indicating if a household has experienced a violation within a contaminant
group, interacted with a category for race. The first column does not include the violation in the first stage of the
hurdle model; the second column does include the violation in the first stage of the hurdle model. Standard errors
are clustered at the zip code level.
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of the violation or approximately $27.24 extra spent on bottled water. In the first specification,

there is a somewhat less precise estimate that black households respond to Bacteria violations,

with an estimate of 3.27 additional ounces of bottles of water purchased per week. This is

approximately an 8% increase in bottled water consumption and a $10.20 increase in bottled

water purchases for the duration of the violation. Further, they respond to Chem/Ele violations

with a point estimate of 7.45, with a length of 39 weeks, which suggests a 20% increase in

bottled water consumption from these violations.

The disparity of these results is interesting and suggests that different households respond

to different violations – a theme for the remainder of this section. Notably, if most households

undertake permanent avoidance behaviors such as water filtration, then we should not observe

different groups responding to only some violations but not all violations. Namely, the water

filtration or permanent avoidance behavior should mean we do not observe any reaction. This

table suggests that white and black households respond to different violations, but also do not

respond to certain violations and that many have not undertaken permanent avoidance behavior.

In particular, it is revealing that these households respond to different violations and that

most households do not respond at all. This table suggests that black households respond to most

violations and do so rather strongly, which is an additional burden of the violations occurring.

This relates to the general mistrust in tap water among the black community – who already have

the highest baseline level of bottled water consumption of any race. However, white households

appear to be sensitive to bacteria violations, but not other violations. This table also disentangles

Table 2.1 by breaking out which groups are responding. It suggests that some groups respond

more strongly than others. Considering these results in addition to the income results below and

within the categories is a cause for concern.

Table 2.3 shows the results from interacting “high income” households – the upper 50%

of the income distribution – with the contaminant groups and does the same for low income

households. The responses to both Bacteria and LCR are both solely from households below

the median income threshold. The first column of the table shows that the reaction by “low
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Table 2.3. Hurdle with Violation and Income Interaction

Dependent variable:

Ounces of Bottled Water Purchased Per Week
Income, Vio. No Vio. in First Stage With Vio. in First Stage

(1) (2)

High, Bacteria 1.72 3.775
(1.317) (2.433)

Low, Bacteria 2.161* 5.657**
(1.202) (2.230)

High, Chem/Ele 1.346 2.125
(1.084) (1.823)

Low, Chem/Ele 1.454 -0.344
(0.970) (1.868)

High, LCR 0.692 1.276
(1.612) (3.376)

Low, LCR 4.464** 6.224
(2.113) (3.858)

High, Nitrate -1.537 -1.212
(1.542) (2.532)

Low, Nitrate -0.517 -5.108
(3.471) (4.507)

High, Other 0.471 -0.58
(1.152) (2.273)

Low, Other 1.566 3.472
(1.323) (2.124)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: The dependent variable is ounces of bottled water purchased per week per household. The primary variable
of interest is a set of binary variables indicating if a household has experienced a violation within a contaminant
group, interacted with a binary variable for being above or below the median income in our sample. The first column
does not include the violation in the first stage of the hurdle model; the second column does include the violation in
the first stage of the hurdle model. Standard errors are clustered at the zip code level.
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income” households for Bacteria is 2.16 additional ounces of bottled water. In the case when

the violation is included in the first stage, this estimate more than doubles to 5.57. Households

below the median react to LCR violations by purchasing 4.46 additional ounces of bottled water

per week. For both Bacteria and LCR violations, households below the median income respond

more strongly than households above the median income. In particular, households below the

median income increase their bottled water purchases by 13% or approximately $13.91 for the

duration of an LCR violation. Meanwhile, accordingly, these households purchase 6% more

ounces of bottled water per week according to the first specification and 16% more according to

the second specification.

This table suggests that the household response depends on income and in particular, it

is predominantly households below the median income that are responding to these violations.

Given bottled water is a luxury good and these households typically have lower disposable

incomes, this indicates that these violations put an additional financial strain on households who

are not as well equipped to afford the avoidance behaviors that need to be undertaken. This is

concerning for equity as it suggests the brunt of the violations falls on lower-income households,

while higher-income households are not responding presumably because many have undertaken

avoidance behaviors already.

Table 2.4 shows the results of the hurdle model with contaminants interacted with

education. We have two categories for education: up to a high school degree, and some college

or more. For the education variable, Nielsen includes both female and male heads’ of household

education. We constructed a variable that is the maximum of these two variables. The results

show that Bacteria and Other violations generate avoidance behavior. In particular, households

with education of at least some college respond to Bacteria violations at 1.91 additional ounces

of bottled water purchased per week. When we include the violation variable in the hurdle

model, at least some college has a stronger response, as expected, of 3.97 ounces. Meanwhile,

households with up to a high school degree have a less precise response of 7.44 additional

ounces. Respectively, these are a 13% and 20% increase in bottled water consumption. Further,
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Table 2.4. Hurdle with Violation and Education Interaction

Dependent variable:

Ounces of Bottled Water Purchased Per Week
Education, Vio. No Vio. in First Stage With Vio. in First Stage

(1) (2)

Up to HS Deg., Bacteria 1.906 7.436*
(1.609) (3.859)

Some College and Up, Bacteria 1.908** 3.965**
(0.929) (1.835)

Up to HS Deg., Chem/Ele 1.266 -2.373
(1.163) (2.851)

Some College and Up, Chem/Ele 1.46 1.574
(0.999) (1.663)

Up to HS Deg., LCR 1.635 -1.359
(2.669) (7.472)

Some College and Up, LCR 2.783 4.811
(1.727) (2.977)

Up to HS Deg., Nitrate 1.149 -7.186
(5.287) (8.649)

Some College and Up, Nitrate -1.415 -2.674
(1.947) (2.674)

Up to HS Deg., Other 2.803** 5.236*
(1.417) (3.085)

Some College and Up, Other 0.592 0.749
(1.090) (1.710)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: The dependent variable is ounces of bottled water purchased per week per household. The primary variable
of interest is a set of binary variables indicating if a household has experienced a violation within a contaminant
group, interacted with a binary variable for education status. The first column does not include the violation in the
first stage of the hurdle model; the second column does include the violation in the first stage of the hurdle model.
Standard errors are clustered at the zip code level.
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households with at most a high school degree respond to Other violations. In the case of no

violations in the hurdle model, the response is 2.80 additional ounces of bottled water, while

when violations are included in the hurdle the response is a less precise but larger 5.24 additional

ounces purchased.

The culmination of these results suggests surprising heterogeneity in household re-

sponses to these violations. An important conclusion from these results is that different types

of households choose to respond to different violations. For example, it is predominantly black

households that respond to LCR violations, while both black and white households respond

to Bacteria violations. Lower-income households exhibit a strong response to LCR violations

as well. These results suggest that household racial makeup is an important determinant for

avoidance behavior as well as highlighting which violations are responded to. Furthermore, these

results show that lower-income households also undertake avoidance behavior; however they

are less able to afford the burden of additional avoidance costs from the violations relative to

higher-income households. These differential responses are important because some households

may not be responding to these violations or are selecting which violations to respond to, and

it implies that an additional financial burden is placed upon households that respond to the

violations.

Regression

Our results begin with a non-interacted specification at the weekly level. Here we use

indicators for the occurrence of a violation as the treatment multiplied by the population ratio as

described in the previous section. The results can be found in in Table 2.5. We run the regression

with two specifications. The first specification has unit fixed-effects at the county level with

standard errors clustered at the county level. The second specification has fixed-effects at the

ZCTA level and is clustered at the ZCTA level.

The table shows that individuals react most strongly to Bacteria violations. Both specifi-

cations show that individuals have a statistically significant reaction to the Bacteria violations.
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Table 2.5. Effect of Violation on Bottled Water Purchases

Dependent variable:

Ounces of Bottled Water Purchased Per Week
Violation County ZCTA

(1) (2)

1(Bacteria) 4.940** 5.428***
(2.273) (1.579)

1(Chem/Element) -0.173 -1.279
(1.359) (0.933)

1(LCR) 1.526 2.012
(3.408) (2.026)

1(Nitrate) -3.956 -2.584
(3.033) (2.484)

1(Other) -0.0832 0.247
(1.533) (1.276)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: The dependent variable is ounces of bottled water purchased per week per household. The primary variable
of interest is a set of binary variables indicating if a household has experienced a violation within a contaminant
group. The first column has fixed effects at the county level and the standard errors are clustered at the county level;
the second column has fixed effects at the ZCTA level and the standard errors are clustered at the ZCTA level.

When county FEs are used, the magnitude is 4.94 additional ounces of bottled water purchased

per week, while when ZCTA FEs are used the reaction is 5.43 additional ounces of bottled water

purchased per week. For the specification at the ZCTA level, the mean duration for a Bacteria

violation is approximately 34 weeks, suggesting that the average consumer purchases about 185

extra ounces of bottled water for the duration of the violation. At approximately $0.08 per fluid

ounce of water, this suggests consumers spend an additional $14.80 per Bacteria violation. As

a comparison, the mean duration for an LCR violation is about 39 weeks, suggesting that the

average consumer purchases about 78 extra ounces of bottled water.

These results broadly suggest that consumers react to these water quality violations. Our

investigation now turns to which groups of individuals react. As discussed in a previous section,

it is not obvious which group will react, as there are plausible arguments either way.

Table 2.6 displays the results of interacting the treatment with being above or below the

median level of income. The results show that households above and below the median income
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both respond to Bacteria violations, and the magnitudes are nearly equal. This is encouraging,

suggesting that there is not a discrepancy in reaction to these violation across income levels.

However, given bottled water is a luxury good, it is surprising to see a behavioral response of

the same magnitude from lower-income households compared to higher-income households.

The lower-income households will be spending a larger portion of their income on avoidance

behavior, which is concerning. This result is largely consistent with the tables in the hurdle

section.

Table 2.6. Regression with Interaction of Income Level with Treatment

Dependent variable:

Ounces of Bottled Water Purchased Per Week
Income, Violation County ZCTA

(1) (2)

High, Bacteria 4.011 5.254**
(3.029) (2.440)

Low, Bacteria 5.940** 5.657**
(2.607) (2.541)

High, Chem/Ele 1.298 -1.165
(1.948) (1.883)

Low, Chem/Ele -1.330 -1.381
(1.700) (1.411)

High, LCR -0.417 0.596
(3.760) (2.807)

Low, LCR 3.334 3.337
(4.135) (3.153)

High, Nitrate -3.127 -0.0679
(2.860) (3.321)

Low, Nitrate -4.503 -4.371
(4.040) (3.387)

High, Other -2.812 -1.571
(2.621) (2.495)

Low, Other 1.977 1.607
(2.244) (1.983)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: The dependent variable is ounces of bottled water purchased per week per household. The primary variable
of interest is a set of binary variables indicating if a household has experienced a violation within a contaminant
group, interacted with a binary variable for being above the median income level. The first column has fixed effects
at the county level and the standard errors are clustered at the county level; the second column has fixed effects at
the ZCTA level and the standard errors are clustered at the ZCTA level.

Next, Table 2.7 shows the interaction of the treatment variable with three coarse race
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categories: white, black, or “other”. The category of other includes all households whose head

of household does not identify as white or black.45 The results show that white households

have a statistically significant response at approximately 6 additional ounces of bottled water

per week to Bacteria violation, almost identical to both tables described above. This implies an

additional 204 ounces of bottled water purchased for the duration of the violation, or almost a

19% increase in consumption. These results suggest that white households are the primary group

responding, while non-white households either do not respond at all or do not respond nearly

as strongly. Assuming that non-white households are not engaging in some type of permanent

avoidance behavior, this implies that the notifications that are dispersed when a violation occurs

may only be reaching white households, or white households are the only ones with the capacity

or willingness to respond.

Table 2.8 displays the results of interacting the treatment with education, where education

is either “up to a high school degree” or “some college and above”. The results show both groups

responding to bacteria violations. However, there households with an education level of “up to a

high school degree” respond to Bacteria violation with a somewhat imprecise 9.86 ounces of

additional bottles of water per week – 335 ounces of water for the duration of the violation –

while “some college and up” has a response of 4.40 – nearly 150 extra ounces of bottled water.

Both groups respond, however the less educated households have the much stronger response

than the more educated households.

2.6 Discussion

There are three possible behavioral explanations from particular households not respond-

ing: Either the households have already permanently altered their behavior, they are simply not

concerned about the violations, or they do not receive the violation notifications. Investigating

how various demographic groups are responding (if at all) is very important, as it suggests that

45The coarse categories are chosen because it exemplifies the same results when the racial groups are finer,
however this is less cluttered.
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Table 2.7. Interaction of Race with Treatment

Dependent variable:

Ounces of Bottled Water Purchased Per Week
Race, Violation County ZCTA

(1) (2)

White, Bacteria 5.350** 6.011***
(2.404) (1.875)

Black, Bacteria 1.814 1.534
(3.670) (5.492)

Other, Bacteria 4.278 4.173
(9.253) (6.230)

White, Chem/Ele 0.140 -0.685
(1.368) (1.019)

Black, Chem/Ele 2.790 -0.444
(5.994) (4.734)

Other, Chem/Ele -6.214 -8.204**
(3.936) (4.066)

White, LCR 1.755 1.843
(4.393) (2.319)

Black, LCR 7.301 7.958
(6.312) (6.633)

Other, LCR -7.925 -5.148
(5.282) (6.421)

White, Nitrate -4.062 -2.107
(3.485) (2.584)

Black, Nitrate 2.959 -10.75
(23.11) (21.47)

Other, Nitrate -4.237 -3.465
(5.741) (6.140)

White, Other 0.425 0.450
(1.834) (1.520)

Black, Other -0.969 1.227
(3.978) (4.643)

Other, Other -2.781 -2.902
(3.774) (4.460)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: The dependent variable is ounces of bottled water purchased per week per household. The primary variable
of interest is a set of binary variables indicating if a household has experienced a violation within a contaminant
group, interacted with a binary variable for a household head identifying as white or not. The first column has fixed
effects at the county level and the standard errors are clustered at the county level; the second column has fixed
effects at the ZCTA level and the standard errors are clustered at the ZCTA level.
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Table 2.8. Regression with Interaction of Education and Treatment

Dependent variable:

Ounces of Bottled Water Purchased Per Week
Education, Violation County ZCTA

(1) (2)

Some College and Up, Bacteria 3.906* 4.397**
(2.171) (1.729)

Up to HS Deg., Bacteria 9.368* 9.855**
(4.977) (4.717)

Some College and Up,, Chem/Ele 0.513 -0.840
(1.571) (1.056)

Up to HS Deg., Chem/Ele -3.027 -3.221
(2.990) (2.831)

Some College and Up, LCR 2.828 2.959
(3.234) (2.334)

Up to HS Deg., LCR -4.645 -2.544
(8.034) (4.967)

Some College and Up, Nitrate -3.346 -2.571
(2.774) (2.727)

Up to HS Deg., Nitrate -6.975 -2.523
(8.273) (8.463)

Some College and Up, Other -1.272 -1.022
(1.629) (1.543)

Up to HS Deg., Other 4.866 5.553
(3.836) (3.619)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: The dependent variable is ounces of bottled water purchased per week per household. The primary variable
of interest is a set of binary variables indicating if a household has experienced a violation within a contaminant
group, interacted with a binary variable for education status. The first column has fixed effects at the county level
and the standard errors are clustered at the county level; the second column has fixed effects at the ZCTA level and
the standard errors are clustered at the ZCTA level.
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Figure 2.3. Ounces of Bottled Water Consumption in the US, by Racial Category

Note: This plot shows ounces of bottled water consumed per capita in the United States, broken
down by racial category. “NH” stands for “non-hispanic” and “H” stands for “hispanic”.

certain groups may be financially burdened by their permanent avoidance behavior (this includes

permanent higher baseline bottled water purchases) or that some groups could not be switching

at all. In the latter case, these groups are ingesting tap water that is considered unhealthy or

dangerous and this will yield negative health effects.

It is possible to look for signs of permanent avoidance by particular groups. One way is

to look for higher levels of consumption in the groups who do not respond before the violation

occurs. Figure 2.3 shows the breakdown in ounces of bottled water consumption by race. The
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Figure 2.4. Ounces of Bottled Water Consumption in the US, by Income
Note: This plot shows ounces of bottled water consumed per capita in the United States, split by
being above the median income and below the median income.

graph shows that black households consume the most bottled water, which is important because

they also respond to violations by purchasing even more bottled water. Combined with the results

from Table 2.2, this describes black households not only having higher baseline levels of bottled

water consumption but also stronger reactions to these violations in magnitude. The remaining

groups consume much less bottled water. However, even with white households consuming

approximately 400 to 600 ounces less of bottled water per capita, our results show they respond

to Bacteria violations at a similar rate compared to black households.

Related to this, Figure 2.4 shows that for the early part of the sample, households

above the median income consume more ounces of bottled water than households below the

median. But, beginning in 2011 this trend shifts and households below the median income begin

consuming substantially more bottled water than households above the median income. Lower-

income households began to have higher baseline consumption than higher-income households,
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implying either some shift to more permanent avoidance behavior or a mistrust in their tap

water. Whatever the reason, this imposes an additional financial burden upon them. In particular,

with this higher baseline, lower-income households respond to LCR violations quite strongly,

implying that these violations exercise an even heavier burden.

These two graphs show that certain types of households consume more bottled water at

baseline levels. However, these households also have strong responses to water quality violations,

suggesting that they are at least aware of the violations. Assessing this higher baseline as

permanent behavioral response to violations or as a larger trend in consumption is not possible in

this analysis. Yet, it is significant because water bottles are a luxury good and households below

the median income now purchase more bottled water than households above the median. This

could indicate that households below the median income do not have the means to engage in

permanent avoidance behavior.

2.7 Conclusion

The goal of this paper was to investigate the heterogeneity in household responses to

bottled water consumption. After presenting baseline results, we presented our main results.

We used a hurdle model due to excess zeroes and estimated the responses. Broadly, white

and black households both respond to Bacteria violations, while both black households and

households below the median income respond to LCR violations. A striking result is that black

households increase their bottled water consumption by 23% when faced with a LCR violation.

Further, we replicate the more educated households respond to these violations, but only find

them responding to Bacteria violations. We also ran our analyses using only OLS sans the hurdle

model, however our conclusions are largely unchanged.

Our results suggest that household characteristics are an important consideration in

response to water quality violations. Further, while we are unable to identify why some groups

do not respond, it is an important concern for policy makers because it might be that these
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households are accessing their drinking water from other sources or that they are simply ignoring

the violations. The households that we do observe responding are facing an additional cost by

avoiding the contaminated water which is also problematic. Not only do certain groups express

skepticism in the cleanliness of their tap water, but some they face an additional financial burden

and are not necessarily readily able to afford the burden of avoidance. Remedying these issues

is important for an equitable water delivery system, as is identifying what is needed to allow

households the opportunity to respond to any water quality violations.

Chapter 2, in part is currently being prepared for submission for publication of the

material. The dissertation author was the sole author of this chapter.
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3. Gasoline Demand Response to Taxes
Versus Embedded Cap and Trade Prices

3.1 Introduction

In 2019, the United States Environmental Protection Agency estimated that the US

transportation sector is the largest emitter of greenhouse gas emissions, making up twenty-nine

percent of all GHG emissions (EPA (2021a)), while thirty-six percent of end-use carbon dioxide

emissions result from transportation. Gasoline taxes are a ubiquitous policy tool that reduce

vehicle miles, thereby lowering pollution.46 There is evidence suggesting gas taxes elicit strong

reactions from consumers relative to gasoline input price changes. Carbon cap-and-trade (CCT)

and low-carbon fuel standards (LCFS) are alternative pollution control policies many countries

have implemented. How consumers will react to the price signal sent by CCT permits or LCFS

credits compared with taxes is not immediately obvious and is investigated in this paper.

This paper examines the consumer response of gasoline consumption to the cap-and-trade

and low-carbon fuel standards47 policies implemented in the state of California, comparing this

reaction to the reaction from gasoline tax changes and tax-exclusive gas price48 changes. These

permits/credits are both an upstream cost and a tax, and recent literature49 shows consumers

have different reactions to these two costs. CCT permits50 are an upstream cost bourne (and

46They also generate significant revenues – the US federal gasoline tax is 18.4 cents per gallon, which in 2017
accrued $26.6 billion dollars in revenue FHWA (2017). California’s gasoline excise tax is 41.7 cents, which
generated $6.1 billion in revenue in 2017.

47A LCFS credit program operates very similarly to a CCT permit system; this is explained in the appendix.
48For example, oil price changes, labor costs, etc.
49See Li et al. (2014), Rivers and Schaufele (2015), Tiezzi and Verde (2016).
50For conciseness, I will refer to CCT permits and LCFS credits solely as CCT permits. When the distinction is
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likely passed down) by firms; the literature suggests consumers don’t react to tax-exclusive

(i.e. upstream) price changes nearly as much as taxes, so it is plausible that consumers treat

CCT permits similarly to other upstream price changes. On the other hand, these CCT permits

are implicitly a tax on gasoline levied by the government, so a consumer might react to them

similarly to a gasoline tax. My results show that consumers react to CCT permit price changes

very similarly to tax changes; both reactions are significantly stronger than tax-exclusive price

changes.

Neoclassical economics suggests that, when considering price, consumers are only

concerned with the final price. Indeed, the consumer only sees the posted price (which includes

all taxes and costs) when making a gasoline purchase, so gasoline taxes, CCT permit, and

LCFS credit prices all impact the consumer solely through the final posted price. In general, the

long-run gasoline price elasticity is around −0.8 (Sterner (2012)). Both Levin et al. (2017) and

Knittel and Tanaka (2019) use consumer microdata and find consumers have larger short-run

elasticities, very similar to those suggested in Sterner (2012) of between -0.2 and -0.3. A pair of

papers Davis and Kilian (2011) and Coglianese et al. (2017) suggest that consumers anticipate

tax increases and purchase gasoline just prior to the tax increase.

One mechanism put forth to explain the different reaction between gas taxes and other

gasoline input costs is salience. Gasoline tax changes usually generate significant media attention;

thus making gasoline taxes “salient” to the consumer, inducing a strong reaction. Applying this

mechanism to consumers’ reaction to CCT permit/LCFS credit prices seems reasonable. In

particular, given permit/credit prices change more frequently than taxes, on average they might

be more salient than gasoline tax changes. This should cause consumers to have relatively high

CCT permit/LCFS credit price elasticities of demand.

The salience explanation is undermined by the data presented in Figure 3.1, displaying

article counts discussing gasoline price impacts from gasoline taxes, the CCT program, and the

LCFS program within California. As can be seen, there is much more frequent discussion of

necessary, it will be made clear.
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gasoline taxes in the news than the CCT program and the LCFS program. This pokes a hole in

the above salience explanation, as it suggests consumers might not be as aware of (the impact of)

these greenhouse gas reducing programs.

The next section provides a brief background on the policies and the data used. The

section after presents the model and the results, followed by a section discussing salience as a

mechanism, with the conclusion being last.

Figure 3.1. Article Counts: All News Sources, California Only

Note: This plot shows article counts for articles discussing “gas taxes”, “cap-and-trade”, or
“low-carbon fuel standard” pertaining to California.

3.2 Policy and Data

In September of 2006, California passed AB-32, mandating that the California Air

Resources Board (CARB) develop and implement a plan for greenhouse gas emissions. On

December 17th, 2010, CARB implemented a cap-and-trade program. In 2012, the California

Cap-and-Trade program began. In this program, a firm is required to have one permit for every

metric ton of CO2e emissions emitted for the emissions covered under the program. Some of
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these permits are allocated for free, with the remainder being purchasable at a quarterly auction.

The price floor for permits increases every year by 5% plus inflation. The low-carbon fuel

standard was enacted by Executive Order S-1-07 by then-Governor Schwarzenegger on January

19, 2007. The LCFS operates by lowering the allowed carbon intensity (CI) of the fuel blend

produced by oil refineries and distributors over time.

Figure 3.2 displays the per-gallon cost to consumers from cap-and-trade and the low-

carbon fuel standard in California. Before 2012, the programs were not yet phased in. The

LCFS CI limit was flat for the first years and not particularly burdensome. Recently, the cost of

LCFS compliance has greatly increased. In 2015, California’s CCT program expanded to include

transportation fuels and the LCFS program began to implement more stringent compliance CI

levels each year. By 2020, the mandate is a 10% reduction in the CI of fuels.

Figure 3.2. LCFS credit prices and CCT permit prices per-gallon cost

Note: This plot shows the at-the-pump prices of LCFS credit prices and CCT permit prices.

Every state in the US has an excise tax on gasoline, but most states do not have a sales
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tax on motor fuel. Figure 3.3 shows the highest, lowest, and mean state gasoline taxes, as well as

the (unchanging) federal gasoline tax. The mean state gasoline tax rises slowly over time, while

some state taxes rise much more quickly than others. In 1998, the difference between the highest

and lowest taxes was 9.9 cents, while in 2019 the disparity was 29.4 cents.

Figure 3.3. State and Federal Gas Taxes Over Time

Note: This plot shows the median, maximum, and minimum state gasoline taxes and the federal
gasoline tax for the duration of the sample.

I use a monthly panel data set for nine US states51 consisting of gasoline consumption,

gasoline prices, gasoline taxes, carbon cap-and-trade permit prices, and low-carbon fuel standard

credit prices. The data begins January 1998 and ends December 2019. The gasoline consumption

and gasoline tax data come from the Highway Statistics published by the Federal Highway

51The nine states are California, Colorado, Florida, Massachusetts, Minnesota, New York, Ohio, Texas, and
Washington.
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Administration. Tax-inclusive gasoline prices come from the Energy Information Administra-

tion. Carbon cap-and-trade permit prices and LCFS prices both come from the California Air

Resources Board. CARB provides conversion tables to obtain an average cost per gallon of

gasoline for the relevant permits. I collected demographic variables of average family size,

income, population, and proportion of population living in metropolitan statistical areas from the

Current Population Survey. Further demographic variables include miles of public roads, number

of cars and trucks, and number of licensed drivers are collected from the Federal Highway

Administration Highway Statistics Series.

3.3 Model and Results

Recall that the goal is to estimate the consumer response to input price changes, tax

changes, and CCT permit price changes. Due to the endogeneity problem inherent in sales taxes,

they are left out of the analysis. Thus, taxes are taken only as excise taxes, both state and federal.

This decision is standard in the literature.

The econometric model is:

logqts = α +βp pts +βττts +βccts +ΘXts + γt + εts (3.2)

Let t denote the month-year in the sample and s denote the state. The variables are: q is

quantity of gasoline consumed, p is the tax-exclusive price of gasoline, τ is the gasoline tax, c is

the adding of the per-gallon cost of CCT and LCFS permit prices, X is a vector of controls, and

γ is a generic placeholder for various time fixed-effects which will vary by specification.

This model allows for direct interpretation of the coefficient estimates as semi-elasticities,

i.e.
∂ logq

∂ i
= βi for i ∈ {p,τ,c}. One may wonder whether elasticities or semi-elasticities are

the proper object to consider for reactions. Elasticities seem improper here because we are

concerned with an individual’s reaction to specific price components which impact the total price.

For example, an elasticity specific to a tax implicitly assumes that individuals react differently
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to taxes than other costs. Further, the concern here is about how a direct cost increase impacts

consumption, not relative percent increases (e.g. $0.05 increase in taxes versus $0.05 increase

from input prices). While the difference in reactions appears to be empirically founded, one

reason elasticities are preferred is because they are unitless. The units here are the same, so this

adjustment is not necessary. Therefore, semi-elasticities are the preferred measure.

An implicit assumption in the construction of c is that permit prices are passed through

one-for-one. While this itself has not been empirically verified, it is a logical assumption given

taxes have been shown to pass through one-for-one (Marion and Muehlegger (2011)). Further,

recall c is comprised of both the per-gallon cost of CCT permits and LCFS credits.

The regressions presented in Table 3.1 have two primary specifications (each specification

has 3 columns). The first specification uses state fixed-effects and month-of-sample fixed-effects.

The second specification uses state, year, state-year, state-year trend, and state-month fixed-

effects. As these two specifications include different controls, the sources of variation are

different. The first specification uses time-varying monthly deviations from the average of the

month sample and state average. The second relies on deviations from the state-average-month

effect and state-year average & linear trend. The second specification contains the preferred

estimates. The coefficients in the first specification are generally less precisely estimated, but

not different from the second specification in an impactful way. Hypothesis tests for equality

between coefficients within the same model can be found in Table 3.1 under the regression

coefficients results.

The first columns of the two specifications have total price as the only variable of interest.

The estimated coefficient is −0.00031 for column (1) and −0.00016 for column (4). For

comparison, the implied elasticity of these two columns is −0.05 and −0.03, respectively. These

values are within the standard range of estimates. The middle columns separate tax-exclusive

prices and tax variables. Overall, columns (2) and (5) show that taxes generate much strong

reactions than tax-exclusive gas price changes.

The final columns of the two specifications – which answer the question this paper
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pursues – separately estimate tax-and-CCT-exclusive [all-tax] price changes, tax changes, and

CCT (and LCFS) price changes. For these variables, column (3) has values 0.00012, −0.00357,

and −0.00141 respectively. The difference between tax changes and all-tax-exclusive gas price

changes remains large. CCT price changes are of a similar magnitude to the tax change variable

and a difference between the two is not statistically distinguishable, yet this is also the case

for CCT prices and all-tax exclusive gas price changes. Column (6) has similar results with

different (and significant) coefficients: the all-tax exclusive price coefficient is −0.00014, the

tax coefficient is −0.00231, and the CCT coefficient is −0.00185. This time, the taxes and

the CCT coefficient are statistically different from the all-tax-exclusive price change, but not

statistically different from each other. This suggests that individuals do not react identically with

all-tax-exclusive price changes and taxes or CCT prices. It cannot be determined whether taxes

and CCT prices elicit the same reaction, so the null hypothesis of no difference remains intact.

Both estimated specifications show a large differential response by individuals to all-tax

exclusive price changes compared with tax and CCT price changes. At the bottom of Table 3.1,

the percent change in quantity for a 5 cent increase in the relevant variable is presented. A casual

summary suggests that an all-tax-exclusive price increase affects consumption of gasoline by a

little under 0.1%, while both a 5 cent tax increase and a 5 cent CCT price increase affect gasoline

consumption by about 1%. In 2019, passenger vehicle transportation emissions in California

totaled a little over 119 MMTCO2e, implying that a 5 cent increase in the CCT price would

lead to about a 1.1 MMTCO2e reduction in transportation emissions, or approximately a 0.3%

decrease in total California 2019 CO2e emissions.

3.4 Discussion of Salience As A Mechanism

The primary piece of evidence for salience uses polling conducted by the Public Policy

Institute of California from their “Statewide Survey: Californians & the Environment”, which

asks questions about environmental policy knowledge in California. This survey is conducted
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Table 3.1. Gas Prices, Taxes, and Cap and Trade Results

Dependent variable:

Log Quantity of Gasoline
Month-of-year, State State, State-Year, State-Month, Year

(1) (2) (3) (4) (5) (6)

Gas Prices −0.00031∗∗∗ 0.00007 0.00012 −0.00016∗∗∗ −0.00015∗∗∗ −0.00014∗∗∗

(0.00010) (0.00016) (0.00014) (0.00004) (0.00004) (0.00004)

Taxes −0.00355∗∗∗ −0.00357∗∗∗ −0.00215∗∗ −0.00231∗∗∗

(0.00092) (0.00093) (0.00085) (0.00082)

CCT −0.00141 −0.00185∗∗∗

(0.00101) (0.00045)

Hypothesis Tests for Equality

p = τ 0.0005 0.0002 0.0227 0.01
p = c 0.1403 <0.0001
τ = c 0.2013 0.6464

Percent Change in Quantity for a 5 cent change in. . .

Input Prices -0.15344 0.03503 0.06023 -0.07841 -0.07359 -0.06909
(0.05229) (0.07879) (0.07065) (0.01983) (0.0221) (0.02118)

Taxes -1.77727 -1.78689 -1.0748 -1.15505
(0.4601) (0.46603) (0.42713) (0.41189)

CCT -0.70299 -0.92573
(0.50634) (0.22306)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: Data series from January 1998 to December 2019. The first three columns correspond to month-
of-year fixed-effects and state fixed-effects. The second three columns are run with state, state-year
linear trend, state-month, and year fixed-effects. Both regressions include state-level covariates. They are
percentage of population living in an MSA, family size, and the log of: automobiles per capita, trucks per
capita, drivers licences per capita, public road miles per adult, real income per capita, and population.
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Figure 3.4. Data from ‘PPIC Statewide Survey: Californians and the Environment’.

once per year, with some questions phasing in and out. The survey queries a representative

sample of California adults and likely voters. The results presented in Figure 3.4 are for “all

adults”.

There two key questions to focus on from this survey are question 22 and question 26.

The first notable question is “How much, if anything, have you heard about the state government

policy called ‘cap and trade’ that sets limits on greenhouse gas emissions? Have you heard a

lot, a little, or nothing at all?” The response of “nothing at all” is steady around 55%, while

the response of “a little” is around 30%, suggesting that Californians are largely unaware of the

cap-and-trade program in the state. The high percentage of those surveyed who know nothing is
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striking. These two responses, along with the general lack of news regarding cap-and-trade and

its impact on gas prices in California, greatly diminish the likelihood that salience is a driving

force in the heightened response of CCT prices, given most people seem to not be aware of the

program at all.

The second question asked is this: “Do you think that California doing things to reduce

global warming in the future would cause gasoline prices at the pump around the state to increase,

or to decrease, or wouldn’t affect gasoline prices at the pump around the state?” A majority of

respondents say that gasoline prices would “increase”, with the response rate hovering between

55% and 60%. That is, the respondents are saying they believe if a policy is implemented which

will reduce the impact of global warming, gas prices will go up. This does not require specific

policy knowledge, merely that there is some policy reducing global warming in effect. If it

is true that consumers believe there are recent policies aimed at combating global warming,

they may attribute that to observing gas price increases. Further, about an equal number of

respondents, between 15% and 20%, believe the effect will be “nothing at all” or that gas prices

will “decrease”.

3.5 Conclusion

This paper opened by discussing how consumers react differently to tax changes versus

tax-exclusive price changes. The natural extension of this is how other, equivalent policies

(those which implicitly tax individuals) affect consumption. I examined the effect of California’s

cap-and-trade program and the LCFS program, showing that individuals appear to react to tax

changes and CCT price changes similarly. Salience does not appear to be a plausible explanation,

but rather that consumers expect prices to increase if a policy intended to fight global warming is

implemented (if they are aware of it).

An important consideration for this literature is to better understand the process un-

dertaken by individuals in their gasoline purchase decisions. Until we understand whether
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individuals consider their decision to purchase gasoline on a daily basis, or, for example, when

their gasoline tank is below some threshold, is important. Further, the extent to which an individ-

ual is aware of all prices of gasoline stations readily accessible should be considered. Knowing

more about the decision process allows better insight into additional mechanisms not considered

here or in the previous literature. Yet, recent papers such as Levin et al. (2017) and Knittel and

Tanaka (2019) are using higher-frequency microdata to explore some of these issues.

Determining how consumers react to taxes and other similar policies is important for

deciding which policies will push consumers’ behavior as the policy intends and which policy

is ultimately the most beneficial. As this paper shows, economic policies that are equivalent in

theory might result in markedly different observable impacts.

3.6 Appendix

Gasoline Prices and Gasoline Consumption

Figure 3.5 shows gasoline prices and gallons consumed over the period. The states follow

similar changes across the sample. In particular, the graph shows that the same drops and rises

occur across states. Even with the incidence of the CCT program in California, there is a trend

upward in accordance with unaffected states and no noticeable decline.

Background on Cap-and-Trade and the Low-Carbon Fuel Standard

The state of California passed assembly bill AB-32 in 2006. The specified goal was to

reduce greenhouse gas emissions. The bill gave the California Air Resources Board (CARB)

control of designing and operating a carbon cap-and-trade program in California. This came into

place in 2012, where the regulated industries were large manufacturing and electricity. In 2015,

the program expanded (this was known ahead of time) to cover transportation fuels. The CCT

program allocates some permits to firms every year, while holding quarterly auctions for the
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Figure 3.5. Gasoline Prices and Gallons Consumed

Note: This plot shows the gasoline prices and gallons of gasoline consumed for each state in the
sample over the sample period.

remainder. The auction has a price floor which increases yearly by a known rate: 5% plus the

inflation rate.

The low carbon fuel standard (LCFS) was included as a program in AB-32. The goal of

the LCFS is to reduce the carbon intensity (CI) of the fuel pool of California, thereby reducing

emissions (all else being equal). The LCFS sets a ceiling for the carbon intensity of the fuel pool,

which declines every year until 2030. This forces firms to decrease the CI of their fuel stock or

to purchase credits on the market. Firms with CIs below the ceiling earn credits, those above

the ceiling create a deficit. Firms need to have a balance of credits at the end of the credit-year,

thereby creating a market for credits.

Both of these programs operate by firms writing up individual contracts amongst them-

selves and determining the necessary number of permits/credits to trade as required under Cali-

fornia State Law. These are also submitted to CARB, who oversees the bank of permits/credits.

At the end of the permit cycle, firms will either receive or disburse the remaining credits/permits

required determined by the firm’s GHG emissions. One primary difference, though not important

for this analysis, is the CCT program (not LCFS) allows permits to be paid by either entity (the
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upstream supplier or the downstream demander), whereas LCFS requires the supplier to pay.

Many countries, states, or groups of states have implemented cap and trade programs.

The breadth of these programs varies by governed body. In particular, some cap and trade

programs cover transportation fuels, while others do not, solely covering some larger entity

such as electricity or large manufacturing. California was the first jurisdiction to implement

an LCFS program in 2007, though it didn’t take effect until 2011. In 2016, Oregon officially

began an LCFS-like program of their own, called the Clean Fuels Program. Its creation and

implementation deliberately mimics California’s. Unfortunately, data for Oregon is not readily

available and so is not included. British Columbia (in Canada) and the EU also adopted LCFS

programs in 2008.

Additional Results Tables

A natural doubt to hold is that California is very different from other states, hence the

effect of a CCT program in California may not have external validity. Table 3.2 should allay

these concerns. The coefficients on both the tax-exclusive price variable and tax variable are

close, yet estimated very imprecisely. Thus, one should expect that the reaction to the CCT

program in California will be not far from how other states react.

Table 3.2. Comparison of Non-California states and California alone

Dependent variable:

Log Quantity of Gasoline Per Capita
Not California California

(1) (2)

Gas Prices −0.00017∗∗ −0.00016∗

(0.00007) (0.00008)

Taxes −0.00029 −0.00016
(0.00380) (0.00080)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Data series from January 1998 to December 2019. The first columns regresses log quantity of gasoline per capita
on tax-exclusive gas prices and taxes for California only. The second column does the same but with all states
excluding California.
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One concern might be that there are not enough states for either the standard errors to be

correct or the estimate is biased due to lacking other states. Here I replicate a table from Li et al.

(2014). They present a table using monthly data from 1983 to 2008 with all 50 states. In their

paper, it is “Table 5” which I have replicated here as Table 3.3, with an important modification.

Their regression model is log-log, while the model estimated here is log-linear. The first column

is the regression specified above where there is only the total price, while the second columns of

both specifications are when total price is split into tax-exclusive price (i.e. input prices only)

and taxes.

The coefficients presented in this table closely match the regression estimates from the

data I have collected, relieving potential worries about biased estimates. Columns (1) and (2)

should be compared from both tables, while columns (3) and (4) from Table 3.3 should be

compared to columns (4) and (5) in Table 3.1. Comparing the first specification, the coefficients

are nearly identical. In the second specification, the coefficients from Table 3.3 are larger, but

the standard errors easily include the coefficients from the other table. This suggests concerns

regarding insufficient data are not a problem.

Table 3.3. Li, Linn, and Muehlegger (2014) Replication

Dependent variable:

Log Quantity of Gasoline
Month-of-year, State State, State-Year, State-Month, Year

(1) (2) (3) (4)

Input Prices −0.00045∗∗∗ −0.00042∗∗∗ −0.00060 0.00061
(0.00005) (0.00006) (0.00107) (0.00125)

Taxes −0.00300 −0.00651∗

(0.00186) (0.00354)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: Data series from January 1983 to December 2008 for all 50 states in the USA. This table replicates the ”Table
5” found in Li, Linn, and Muehlegger (2014). This table shows the result of regressing log quantity of gasoline
per capita on (non-logged) tax-inclusive gasoline prices in columns (1) and (3), while columns (2) and (4) use
tax-exclusive gas prices and gasoline excise taxes. The fixed effects are displayed above the columns; in particular,
the first two columns use monthly time fixed effects and state fixed effects, while the latter two use state fixed effects,
a state-year fixed effect, a state-month (12 for each state) fixed-effect, and year fixed effects.
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It remains to investigate the impact of various assumptions made in the primary analysis.

Naturally, there are many assumptions made, but two are of significance. The first assumption

is simply including CCT prices in the tax-exclusive price variable as opposed to tax variable

when initially separating the tax and tax-exclusive price changes. This is easily tested by instead

including CCT prices in the tax variable in columns (2) and (5) of Table 3.1. The second

is that cap-and-trade permit prices and LCFS credit prices engender the same response. The

per-gallon costs are added together in the primary specifications, but the same estimation can run

the variables separately to test for equal effects.

Challenging the assumption that CCT prices are more similar to tax-exclusive prices is

simple: assume that individuals respond to CCT prices changes as they do to tax changes. To

do this, CCT prices are added into the tax for columns (2) and (5) of Table 3.1. The results are

contained in Table 3.4. The only differences between the two tables lies in columns (2) and

(5). The coefficients reported in column (2) of Table 3.4 are 0.00014 for (all-)tax-exclusive gas

prices and −0.00357 for tax (and CCT) changes. Compare this with −0.00007 and −0.00356,

respectively, in Table 3.1 and it is seen the impact of this inclusion is identical. Column (5) leads

to similar conclusions. The coefficients are −0.00014 and −0.00223, compared to the original

table of −0.00015 and −0.00215. These results are identical as well.

The most interesting observation is the inclusion of CCT prices in taxes causes the two

specifications to adjust their coefficients in opposite directions. Comparing column (2) in both

tables shows the coefficients have decreased in Table 3.4, while examining column (5) shows

both coefficients increasing. These changes are not statistically significant, but the change

going in opposite directions is particularly interesting. As I cannot test this further, the baseline

hypothesis remains that it is noise due to the differing sources of variation.

Overall, the interpretation to these imperceptible differences may be that CCT prices

don’t make a difference. Yet, an alternative explanation is that CCT prices act on a different

source of information than taxes and gas prices. This will be investigated in the next section.

The prior tables estimate the effect of CCT price changes by effectively taking a weighted
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average of the impact of LCFS credit prices and cap-and-trade permit prices.52 A question of

direct interest is whether individuals react to these two implicit taxes differently.

The same specification is run as in Equation 3.2, except the cts component is split into an

LCFS credit price variable and a cap-and-trade permit price variable. The regression runs these

components as separate variables. The results of this regression can be found in Table 3.5. This

table has the same columns as (1),(2),(4), and (5) in Table 3.1. Columns (3) and (6) show the

result of splitting up cap-and-trade permit prices and LCFS credit prices.

Column (3) estimates a positive CCT coefficient of 0.00918, while LCFS has a statis-

tically significant coefficient of −0.00485, while the tax change coefficient increases a little

to −0.00374. This coefficient is much larger than the coefficient on tax changes, but is not

statistically significantly different. In column (6), the coefficient on CCT is much smaller, yet

insignificant and positive at 0.00156. The coefficient on LCFS is slightly smaller, still significant,

and negative at −0.00287. Both of these columns together suggest that individuals are reacting

to the changes in the LCFS market. Further, this reaction remains of a similar size to the reaction

to tax changes.

An important issue raised in Coglianese et al. (2017) is that anticipation can bias the

estimate of the tax change coefficient because consumers might purchase gasoline just prior to

the price increase due to the tax. To control for this, the authors suggest and use 1-month lead

and lag coefficients to control for this anticipation. While their model is different than the typical

one in this literature, their point stands.

What should be expected from the inclusion of these variables? Conventional economics

says that a contemporaneous price increase should cause quantity to decrease. Now, consider

a price increase tomorrow, about which the consumer is aware. In general, we should expect

a consumer to purchase more gasoline today as the price will be higher tomorrow. That is,

consumers will fill their gas tanks in anticipation of the tax increase.53

52A clarifying point: my reference to “cap-and-trade permit prices” means only those permit prices; it does not
include LCFS credit prices.

53As an aside, it is somewhat peculiar that consumers do this. Most tax increases are at most $0.10 per gallon
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Table 3.5. Separating LCFS and CCT Prices

Dependent variable:

Log Quantity of Gasoline
Month-of-year, State State, State-Year, State-Month, Year

(1) (2) (3) (4) (5) (6)

Gas Prices −0.00031∗∗∗ 0.00007 0.00015 −0.00016∗∗∗ −0.00015∗∗∗ −0.00014∗∗∗

(0.00010) (0.00016) (0.00013) (0.00004) (0.00004) (0.00004)

Taxes −0.00355∗∗∗ −0.00374∗∗∗ −0.00215∗∗ −0.00238∗∗∗

(0.00092) (0.00091) (0.00085) (0.00085)

CCT 0.00918∗ 0.00156
(0.00499) (0.00285)

LCFS −0.00485∗∗∗ −0.00287∗∗∗

(0.00111) (0.00066)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: Data series from January 1998 to December 2019. This regression splits the CCT variable from Table 1 into
a CCT only at-the-pump price and an LCFS only at-the-pump credit price in columns (3) and (6). The first three
columns correspond to month-of-year fixed-effects and state fixed-effects. The second three columns are run with
state, state-year linear trend, state-month, and year fixed-effects. Both regressions include state-level covariates.
They are percentage of population living in an MSA, family size, and the log of: automobiles per capita, trucks per
capita, drivers licences per capita, public road miles per adult, real income per capita, and population.
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To test for the existence of this effect, model 3.2 is augmented to include both a lead and

lag of the relevant price change. This can be found in Table 3.6. The inclusion of these variables

changes the point estimates of the relevant contemporaneous variables. The all-tax-exclusive

gas price variable increases slightly in magnitude, while the tax and CCT variables decrease. In

general, the lead and lag coefficients do not have the expected pattern. In both cases, hypothesis

tests reject at the 1% level equality between the sum of tax coefficients and the sum of all-tax-

exclusive price coefficients. In the second specification, equality between the sum of CCT price

coefficients and the sum of all-tax-exclusive price coefficients is rejected at the 1% level as well,

but not in the first specification. This is consistent with results described above.

It has not yet been considered whether the tax-exclusive price might be endogenous

within this article. If there are relevant demand or supply shocks to the economy which correlate

with prices or consumption, then gasoline consumption might not be exogenous. To control

for this, an instrument using crude oil prices is constructed to control for potential endogeneity

of the tax-exclusive price of gasoline. The instrument uses gasoline monthly prices from 1996

interacted with monthly WTI oil prices spanning the timescale of the sample. This is a similar

instrument construction as used in Li et al. (2014). The assumption is that any demand shocks

after 1996 are not correlated with demand shocks occurring in 1998 and beyond. Similarly, CCT

or LCFS prices might be endogenous. To control for this, a one-year lagged price of CCT prices

is used. The resting assumption here is that any contemporaneous demand shocks will not be

correlated with the previous year’s CCT price. To control for possible endogeneity of taxes, I

use the inflation-adjusted tax level.

The results can be found in Table 3.7. Overall, the instruments do not change the values

too much. It is suggestive that the regression with monthly FEs are absorbing much of the

variation. Comparing columns (1) and (2), the tax-exclusive gas price coefficient decreases in

magnitude, while the tax and CCT price coefficients decrease in magnitude. Comparing columns

(many are much less), meaning a standard vehicle carrying capacity of 14 gallons costs a consumer at most $1.40
per gas station visit.
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Table 3.6. Gas Prices, Taxes, and Cap and Trade

Dependent variable:

Log Quantity of Gasoline
Month-of-year, State State, State-Year, State-Month, Year

(1) (2) (3) (4) (5) (6)

Gas Prices 0.00031 0.00036 0.00036 −0.00014∗∗ −0.00014∗∗ −0.00014∗∗

(0.00028) (0.00026) (0.00026) (0.00007) (0.00007) (0.00007)

Taxes −0.00185 −0.00187 −0.00009 −0.00006
(0.00221) (0.00221) (0.00135) (0.00133)

Cap and Trade −0.00183 0.00068
(0.00230) (0.00113)

Price lag −0.00029∗ −0.00010 −0.00007 −0.00010 −0.00009 −0.00008
(0.00017) (0.00019) (0.00018) (0.00008) (0.00008) (0.00008)

Tax lag 0.00025 0.00008 −0.00120 −0.00142
(0.00237) (0.00233) (0.00151) (0.00147)

CCT lag −0.00116 −0.00124∗∗

(0.00168) (0.00051)

Price lead −0.00042∗∗ −0.00024 −0.00021 0.00007∗∗ 0.00008∗∗ 0.00009∗∗

(0.00020) (0.00019) (0.00018) (0.00003) (0.00004) (0.00004)

Tax lead −0.00181∗∗∗ −0.00166∗∗∗ −0.00096 −0.00097
(0.00058) (0.00059) (0.00084) (0.00084)

CCT lead 0.00168 −0.00136∗

(0.00124) (0.00082)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: Data series from January 1998 to December 2019. This regression adds a one-month lag and lead to the
regression for each of tax-and-CCT-exclusive gas prices, gas taxes, and CCT prices. The first three columns
correspond to month-of-year fixed-effects and state fixed-effects. The second three columns are run with state,
state-year linear trend, state-month, and year fixed-effects. Both regressions include state-level covariates. They are
percentage of population living in an MSA, family size, and the log of: automobiles per capita, trucks per capita,
drivers licences per capita, public road miles per adult, real income per capita, and population.
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Table 3.7. Instrumental Variables of Gas Prices, Taxes, and Cap and Trade

Dependent variable:

Log Quantity of Gasoline Per Capita
Month-of-year, State State, State-Year, State-Month, Year

(1) (2) (3) (4)

Gas Prices −0.00094 −0.00018 −0.00031∗∗ −0.00029∗∗

(0.00120) (0.00064) (0.00012) (0.00012)

Taxes −0.00299 −0.00316∗∗ −0.00249∗∗∗ −0.00221∗∗∗

(0.00203) (0.00148) (0.00082) (0.00085)

Cap and Trade 0.00080 −0.00103 −0.00227∗∗∗ −0.00309∗∗∗

(0.00208) (0.00103) (0.00086) (0.00080)

Covariates? No Yes No Yes

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: Data series from January 1998 to December 2019. This table shows the result of an IV regression
of Equation 1. To instrument for gas prices, the monthly WTI oil price is used; for taxes, the inflation-
adjusted tax level is used; for CCT prices, a one-year lagged CCT price is used. The first three columns
correspond to month-of-year fixed-effects and state fixed-effects. The second three columns are run with
state, state-year linear trend, state-month, and year fixed-effects. Both regressions include state-level
covariates. They are percentage of population living in an MSA, family size, and the log of: automobiles
per capita, trucks per capita, drivers licences per capita, public road miles per adult, real income per capita,
and population.
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(3) and (4), the tax-exclusive gas price and CCT price coefficients increase in magnitude, while

the tax coefficient decreases.

Analysis with News Articles

I gathered data from NexisUni on all articles mentioning gasoline prices, gasoline taxes,

the California cap-and-trade program and gasoline prices, and the California low-carbon fuel

standards program and gasoline prices. The latter two are not merely articles about the cap-and-

trade program in California, but they must have included some key words pertaining to gasoline

prices as well. An article discussing the cap-and-trade program without mentioning that gas

prices change does not necessarily impart information about current gas prices.

The graph in the main paper displays article counts discussing gasoline taxes, cap-and-

trade, and the low-carbon fuel standard. The graphs here also include article counts of gasoline

prices. Figure 3.6 shows that discussion about gasoline prices and gasoline taxes in California is

significantly more than articles about CCT or LCFS.

Figure 3.7 shows articles counts for the four searches mentioned above in NexisUni

“Major US Newspapers”. This set of newspapers does not discuss California’s cap-and-trade

program as it pertains to gasoline prices. The highest article count in a month is five. Even less

discussed is the low-carbon fuel standard.

Finally, Figure 3.8 is all news articles as in Figure 3.6, but for all states in the dataset.

It should be noted that only California has either a CCT or LCFS program, so the counts for

gasoline prices or gasoline taxes will be much higher. This plot shows even more pronounced

results.

Chapter 3, in part is currently being prepared for submission for publication of the

material. The dissertation author was the sole author of this chapter.
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Figure 3.6. Article Counts: All News Publications, California Only

Note: The top graph shows monthly article counts in California for gasoline prices, gasoline taxes,
cap-and-trade, and the low-carbon fuel standard. The lower two figures split this larger graph to
better display the magnitude. The lower-left hand plot displays article counts for CCT and LCFS.
The lower-right hand plot shows article counts for gas prices and gas taxes. Note the axes are
different between the bottom two plots.
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Figure 3.7. Article Counts: Major US Newspapers

Note: The top graph shows monthly article counts in NexisUni “Major US Newspapers” for
gasoline prices, gasoline taxes, cap-and-trade, and the low-carbon fuel standard. See description
notes in Figure 3.6.
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Figure 3.8. Article Counts: All News Publications

Note: The top graph shows monthly article counts for gasoline prices, gasoline taxes, cap-and-
trade, and the low-carbon fuel standard. The lower two figures split this larger graph to better
display the magnitude. The lower-left hand plot displays article counts for CCT and LCFS. The
lower-right hand plot shows article counts for gas prices and gas taxes. Note the axes are different
between the bottom two plots.
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