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Abstract

Estimation, Identification and Data-Driven Control Design for Hard Disk Drives

by

Omid Bagherieh

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Roberto Horowitz, Chair

The demand for online storage has been increasing significantly during the last few years.
Hard disk drives are the primary storage devices used in data centers for storing these online
contents. The servo assembly of the dual-stage Hard Disk Drive (HDD) is composed of the
Voice Coil Motor (VCM) and the Mili-Actuator (MA), where the VCM is responsible for
coarse positioning at low frequency regions and the MA is responsible for fine positioning
at high frequency regions. Controlling these two actuators is very critical in precision posi-
tioning of the read/write head, which is mounted at the edge of the servo assembly. In this
dissertation, the precision positioning of the head during the self-servo writing process as
well as feed-forward and feedback controls in the track following mode are considered.

This dissertation discusses three control design methodologies for hard disk drives servo
systems, in order to improve their performance as well as their reliability. The first is a
state estimator for non-uniform sampled systems with irregularities in the measurement
sampling time, which estimates the states at a uniform sampling time. The second is an
online uncertainty identification algorithm, which parameterizes and identifies the uncertain
part of transfer functions in a dual-stage HDD. The third is a frequency based data-driven
control design methodology, which considers mixed H2/H∞ control objectives and is able to
synthesize track following servo systems for dual stage actuators utilizing only the frequency
response measurement data, without the need of identifying the models of the actuators.

The state estimator design for non-uniform sampled systems with irregularity in the
measurement sampling time is considered, where it is proposed to design an observer to esti-
mate the states at a uniform sampling time. This observer is designed using a time-varying
Kalman filter as well as a gain-scheduling observer. The Kalman filter has the optimal per-
formance, while the gain-scheduling observer requires relatively lower computational power.
Simulations are conducted involving the self-servo writing process in hard disk drives, where
performance as well as computational complexity of these two observers are compared under
different noise scenarios.

Uncertainties in system dynamics can change the closed loop transfer functions and
affect the performance or even stability of the control algorithm. These uncertainties are
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parameterized as stable terms using coprime factorizations, and are identified in an online
fashion. The uncertainty identification, in comparison to the complete transfer function
identification, requires less computational power as well as a smaller order for the identified
transfer function.

The proposed online uncertainty identification algorithm is utilized to factorize and iden-
tify the uncertain part of transfer functions in a dual-stage Hard Disk Drive (HDD). The
dual-stage actuators’ gains and resonance modes are affected by temperature variations,
which in turn affect all closed loop transfer functions. Therefore, these transfer functions
must be periodically updated in order to guarantee the convergence and stability criteria for
the adaptive Repeatable Run-Out (RRO) following algorithm proposed in [61, 62]. Experi-
mental results conducted on a hard disk drive equipped with dual-stage actuation, confirm
the effectiveness of the proposed identification algorithm.

A frequency based data-driven control design considering mixed H2/H∞ control objec-
tives is developed for multiple input-single output systems. The main advantage of the
data-driven control over the model-based control is its ability to use the frequency response
measurements of the controlled plant directly without the need to identify a model for the
plant. In the proposed methodology, multiple sets of measurements can be considered in the
design process to accommodate variations in the system dynamics. The controller is obtained
by translating the mixed H2/H∞ control objectives into a convex optimization problem. The
H∞ norm is used to shape closed loop transfer functions and guarantee closed loop stability,
while the H2 norm is used to constrain and/or minimize the variance of signals in the time
domain.

The proposed data-driven design methodology is used to design a track following con-
troller for a dual-stage HDD. The sensitivity decoupling structure[34] is considered as the
controller structure. The compensators inside this controller structure are designed and
compared by decoupling the system into two single input-single-output systems as well as
solving for a single input-double output controller.
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Chapter 1

Introduction

1.1 Introduction

Rapid development of Internet and computer technologies continue to demand ever increasing
digital data storage. Hard disk and solid state drives are the dominant players in the digital
storage game. Hard Disk Drives (HDDs) are primarily used in data centers, while Solid
State Drives (SSDs) are mainly used in personal computers and portable devices [43]. It is
predicted that the amount of data stored in data centers will increase by a factor of six from
2015 to 2020 [63]. As a consequence, data centers need to be equipped with high storage
density devices, with continuous improvement of their reliability and performance.

Hard disk drive servo systems and their structures are described in chapter 2. High
precision positioning of the actuators in HDDs is critical for the performance and reliability of
these devices. There have been significant scientific efforts to improve the HDD performance
and reliability using a variety of control theories [1, 5, 17]. These control theories design
controllers which are utilized during the manufacturing as well as the operating stages of the
HDD.

In one of the manufacturing process, servo patterns are written on the disk surface [5].
These patterns are used as a reference for measuring the head position during the operating
stage. The conventional mechanism for writing these servo patterns is to use an external
device [2], which increases the HDD manufacturing time. The latest methodology uses the
HDD head to write these patterns [27, 68]. This new methodology is called the self-servo
writing process [13, 16, 22] and is helpful in decreasing the HDD manufacturing time.

In one of the procedures used in the self-servo writing process, the actuator control
inputs are updated at a uniform sampling time, but the feedback measurements are arriving
at a nonuniform sampling time [12, 59, 70]. In order to close the loop and form a feedback
controller, the inconsistency between measurements and control input sampling times should
be resolved. Chapter 3 proposes to design an observer which can estimate system states at
the control input uniform sampling time. Therefore, the output of this observer can be used
to generate the uniform sampled control inputs.
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The variations in the measurements sampling times can be modeled as plant dynamics
variations [12, 60], where the plant model is obtained as an explicit function of the sampling
time variations. The observers for this class of plants will be obtained using Kalman filter [40]
and gain-scheduling [23, 24] techniques. In the gain-scheduling technique, the functionality
of the plant model on the sampling time is considered in the design step, and the observer
will be designed as a function of sampling time variations. The Kalman filter will obtain
the optimal observer, which minimizes trace of a-posteriori state estimation error covariance
for given variances of noises. The performance of the gain-scheduling observers will be
evaluated by comparing them with Kalman filters. Although the tuned Kalman filter has
optimal performance, observers designed using gain-scheduling techniques are significantly
more computationally efficient [23, 24]. The performance of detuned gain-scheduling and
Kalman filters will be compared in chapter 3.

The controllers designed for the operating stage of the HDD can be categorized as feed-
forward and feedback controllers [5, 35, 46]. The feed-forward controllers are primarily used
for track seek controls, repeatable run-out following and vibration rejection [10, 20, 38], while
the feedback controllers are primarily used for stabilizing the closed loop system considering
a desired set of performance specifications [30, 31, 52, 53] as well as vibration rejection [19,
66]. Examples of HDD feed-forward and feedback controls will be given in chapters 4 and 6,
respectively.

Bit patterned media is a new technology that the HDD industry is exploring in order to
increase storage density by writing data in magnetic islands [57, 67]. In conventional HDDs,
data are written in concentric tracks and read back from those tracks. However, there
are repeatable and non-repeatable run-out in the system, which the HDD track-following
servo attempts to reject, in order to write and read on near circular tracks [5, 12, 21]. In
bit patterned media, data are written on the predetermined tracks that are not concentric
and maybe subjected to significant Repeatable Run-Out (RRO). As a consequence, in Bit-
Pattern Media (BPM), the HDD track following servo must follow the repeatable run-out
instead of rejecting it.

An adaptive RRO following algorithm for BPM was presented in [61, 62]. The proposed
feed-forward controller was designed to follow the RRO using an adaptive algorithm by
estimating the signals that must be injected in a feed-forward fashion, in order to track the
RRO on the disk [61, 62]. This methodology utilizes a modified filtered-X LMS method [4,
49, 58], which requires a sufficiently accurate model of the closed-loop sensitivity transfer
function. The required condition for convergence of this algorithm is that the phase mismatch
between this model and its actual transfer function should be less than 90 degrees [11].

Temperature variations affect actuators’ gains and resonance modes, which will change
closed-loop sensitivity transfer functions. Therefore, these transfer functions must be period-
ically updated in order to guarantee satisfaction of the 90-degree criteria. Chapter 4 utilizes
coprime factorizations [26, 64] in order to estimate plant uncertainty relative to a nominal
closed-loop error rejection transfer function. Therefore, only identification of the uncertain
part is required [11, 64].

The feedback controllers in HDDs are designed primarily for stabilizing the actuators



CHAPTER 1. INTRODUCTION 3

as well as achieving the desired performance specifications required for reliable and precise
positioning of the read/write head mounted on the edge of the servo assembly [31, 69].
The most common configuration for the servo assembly is to use the dual-stage actuation,
which uses two actuators to control the head position [6]. The controllers for the dual-stage
actuation can be designed using either the model of actuators or their frequency response
measurement data sets. The former is called the model-based control design [1, 31], while
the later one is called the data-driven control design [28, 41, 42].

The data-driven control design is a frequency-based methodology, which designs the
controller based on the frequency response measurements of the plant rather than using
the plant model in the design process [14, 41, 42]. The main advantage of using frequency
measurement is to represent the real dynamics of the system, while the model cannot capture
all the dynamics represented by the measurement. Moreover in the model-based control
design, the order of the controller is a function of the model complexity. Therefore, if a
relatively high order model is used to accurately represent the measurement, the resulting
controller will be relatively high order and may not be practical to implement. In the data-
driven approach, the controller order is predetermined and depends on how aggressive the
control objectives are.

The robust control theory has been developed to consider dynamics uncertainties in
the design process [32, 72]. In the model-based robust control, the nominal model as well
as uncertainties are modeled based on the available measurements [47, 56]. However, this
methodology has two major drawbacks. The first drawback is that the accurate modeling
requires high order dynamics for both the nominal model and the uncertainties, which will
lead to a high order controller [72]. The second drawback is that the modeled uncertainties
may not be representing the actual variations in the system dynamics [29]. In the data-driven
control design, the measurements represent the real dynamics of the system. Therefore, if
the number of measurements are adequate enough to represent uncertainties and modes of
the system, the stability and performance level achieved in the design step are guaranteed
to be achieved when implementing the controller on the real system [14]. Moreover, the
data-driven control methodologies can be useful in designing a common controller for a
set of plants produced in a production line [36]. The dynamics variations among all these
plants are represented by their frequency response measurements, and the data-driven control
methodologies use these measurements to design a common controller for all these plants.

In order to design the controller using the data-driven control methodology in the fre-
quency domain, the state of the art is to convert the problem into an optimization problem
where H2 and/or H∞ norms of the closed loop transfer functions can be considered as the
objective and/or constraints. The data-driven H∞ control problem for Single Input-Single
Output (SISO) systems was addressed in [42], where a necessary and sufficient convex con-
dition for the H∞ norm constraint was obtained. This H∞ control methodology is extended
to systems with Multiple Input-Single Output (MISO) in chapter 5. A sufficient convex con-
dition for the H∞ norm of Multi Input-Multi Output (MIMO) systems was also developed
in [41]. The data-driven H2 control problem for SISO systems with pre-specified control
structures such as Finite Impulse Response (FIR) filters was given in [14]. The data-driven
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H2 control for MIMO systems with general control structures was developed in [41], where
a sufficient convex condition for the upper-bound of the H2 norm of closed loop transfer
functions was derived.

The H∞ and H2 norm criteria for the closed loop transfer functions can be considered as
a mixed H2/H∞ control problem [41, 44]. This problem is addressed in chapter 5 for MISO
systems. The proposed algorithm combines the necessary and sufficient convex conditions for
the H∞ norm and the sufficient convex conditions for the H2 norm [41]. The mixed H2/H∞
developed in [41] used a sufficient convex condition for the H∞ norm, whereas a necessary
and sufficient convex condition for the H∞ norm is considered here. Moreover, the mixed
H2/H∞ in [41] designs the controller based on one set of frequency response measurement
of the system. However, one set of measurement cannot represent the uncertainties in the
plant dynamics, and multiple measurements are required to capture these uncertainties [54].
Therefore, multiple measurements are considered in the proposed algorithm.

The proposed data-driven mixed H2/H∞ methodology is applied to a dual-stage HDD
in chapter 6. The dual-stage HDD utilizes two actuators for the precision positioning of the
read/write head [3, 5, 25]. These actuators have several resonance modes [9, 37]. Includ-
ing each of these resonance modes in the actuator model directly increases the controller
order [72]. However by using the data-driven control methodology, all these modes are al-
ready included in the system frequency response measurements and are considered in the
controller design step without any direct effect on the controller order [14]. In the proposed
methodology, the controller order is fixed and is a function of the control objectives rather
than a direct function of the model complexity.

The dual-stage HDD accepts two control inputs, while having only one measurement out-
put. Therefore, the controller for this system will be a single input-double output controller.
The conventional design methodology in the HDD industry is to decouple the system into two
SISO systems using a well-known methodology called the sensitivity decoupling approach [1,
45, 34]. Therefore, the individual controllers can be obtained in two sequential steps by
considering the mixed H2/H∞ design process for SISO systems. Chapter 6 proposes to use
the mixed H2/H∞ methodology developed for MISO systems, where the complete SIMO
control block will be obtained in one step. The controller synthesized using the MISO design
strategy will be compared with the controller synthesized using the sequential SISO design
strategy. The main advantage of the MISO design is its ability to design both controllers in
one step, rather than having one controller fixed in the design of the other controller.

1.2 Contributions of Each Chapter

The contributions for each chapter of the dissertation are provided below.

• Chapter 2: This chapter provides a general overview of the hard disk drive structure
and mechanisms. Moreover, the control blocks diagram used for precision positioning
of the head will be explained in this chapter.
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• Chapter 3: The observer design problem for systems with uniform sampled control
inputs and non-uniform sampled measurements is considered in this chapter. The non-
uniformity in the measurement sampling time is modeled as plant dynamics variations,
and an observer which can estimate system states at uniform sampled time is designed
for this varying plant. This observer is designed using the gain-scheduling methodol-
ogy and its performance as well as its computational complexity will be evaluated in
comparison with a Kalman filter under several different noise scenarios.

• Chapter 4: Temperature variations in HDDs can move system resonance modes which
directly affect system dynamics. These variations in system dynamics are described by
stable uncertainty parameterizations using coprime factorizations [26, 64], which will
be identified in an online fashion. The main reason for parameterizing the uncertainty
is to avoid unnecessary identification of the unchanged part of the plant dynamics.
Therefore, the uncertainty identification, in comparison to the complete plant dynamics
identification, will require less computational power as well as a smaller order for the
identified transfer function.

The uncertainty parameterizations are identified for an experimental dual-stage HDD,
where its dynamics is changing mainly as a function of temperature. The identification
is done in an online fashion, where the identified uncertainty parameterizations are used
to guarantee the stability and convergence criteria for the adaptive RRO following
algorithm proposed in [61, 62].

• Chapter 5: The data-driven control design methodology, which designs the controller
based on the frequency response measurements of the system, is discussed in this
chapter. The main advantage of data-driven control over model-based control is the
ability of data-driven control methodology in using the frequency response measure-
ments directly without the need to identify a model. Therefore, the designed controller
is guaranteed to stabilize the real system and achieve the performance specifications
considered in the design process.

The control objectives considered in the data-driven approach are usually described in
terms of H∞ and H2 norms of closed loop transfer functions. The controller is obtained
by solving a convex optimization problem, where these norms are translated to convex
constraints and objectives. The necessary and sufficient convex conditions for the H∞
constraints of the SISO systems were proposed in [42]. This chapter will extend these
result to MISO systems. Moreover, the extended results are considered along with
H2 results from [41] to form a mixed H2/H∞ control problem. The plant dynamics
variations are addressed by considering multiple frequency response measurements of
the plant in the design step.

• Chapter 6: The data-driven mixed H2/H∞ control algorithm proposed in chapter 5
is used to design a track-following controller for a dual-stage HDD. The designed con-
troller is a SIMO controller with the sensitivity decoupling structure. However, the
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controllers inside this block are designed and compared using the sequential SISO and
SIMO data-driven design strategies. In the sequential SISO design strategy, the dual-
stage closed loop system is decoupled into two SISO loops, where the controller for
each loop is synthesized using the SISO mixed H2/H∞ control algorithm. On the
other hand, the SIMO design strategy will synthesize a SIMO controller for the MISO
plant in one step.

• Chapter 7: This chapter concludes the dissertation by providing a concise conclusion
of the materials discussed in different chapters. Moreover, the potential future works
and directions are provided. One of the proposed future works is the potential guideline
for the extension of the developed data-driven H∞ control designs from MISO to MIMO
systems, where a necessary and sufficient condition for the H∞ norm constraint is
obtained.

• Appendix A: The algorithm for data-driven H∞ control design is extended to MISO
systems in chapter 5. The proof of this algorithm is provided in this appendix.

• Appendix B: The closed loop transfer functions as well as their H∞ constraints used
to shape these closed loop transfer functions are shown here. These results are obtained
for the example used in chapter 6.

1.3 Notations and Preliminaries

The notations used throughout this dissertation will be introduced in this section. The
set of real and complex matrices with m rows and n columns are denoted as Rm×n and
Cm×n, respectively. The set of real and complex scalars use the same notation without the
superscript. Considering a complex scalar a ∈ C, the real and imaginary parts of the scalar
a are denoted as Re(a) and Im(a). The magnitude of this scalar is also denoted as |a|.

The dimensions of a complex matrix are shown as a subscript, where Mm×n ∈ Cm×n

represents a complex matrix with m rows and n columns. In and 0n respectively denote the
identity and zero matrices of size n. The dimension of a matrix, shown as a subscript, may
be eliminated to simplify the notation. The trace of a matrix M is denoted as Tr(M) and
its minimum and maximum singular values are denoted as σ(M) and σ̄(M), respectively.
M∗ represents the complex conjugate transpose of M . The matrix inequalities are shown
with � and ≺.

The proposed estimation, identification and control algorithms in this dissertation are all
considered to be in the discrete time domain. Therefore, the transfer functions are repre-
sented either in the z-domain or the frequency domain. Gm×n(z) and Gm×n(ejω) represent
the transfer function Gm×n in the z-domain and the frequency domain, respectively. More-
over, the subscript m × n indicate that the transfer function has n inputs and m outputs.
The notations for the transfer function dimensions, z-domain and frequency domain may be
eliminated to simplify the notations. Rm×n

p denotes the class of all rational causal transfer
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Figure 1.1: The closed loop block diagram. The plant and controller can be either represented
in the z-domain or the frequency domain.

functions with m outputs and n inputs. Rm×n
p,q denotes the same class of transfer functions

as Rm×n
p with order q. RHm×n

∞ denotes the class of all asymptotically stable rational proper
transfer functions with m outputs and n inputs.

The well-known stable factorization results [64] are used to factorize the plant and con-
troller. Consider the feedback system in Fig. 1.1, and assume that a negative feedback
controller Kn×m ∈ Rn×m

p is designed, which stabilizes the plant Gm×n ∈ Rm×n
p . The plant

and controller can respectively be represented by the factorizations

Gm×n = Nm×nM
−1
n×n, (1.1)

Gm×n = M̃−1
m×mÑm×n, (1.2)

and

Kn×m = Xn×mY
−1
m×m, (1.3)

Kn×m = Ỹ −1
n×nX̃n×m, (1.4)

where Mn×n ∈ RHn×n
∞ , M̃m×m ∈ RHm×m

∞ , Nm×n ∈ RHm×n
∞ , Ñm×n ∈ RHm×n

∞ , Xn×m ∈
RHn×m

∞ , X̃n×m ∈ RHn×m
∞ , Ym×m ∈ RHm×m

∞ and Ỹn×n ∈ RHn×n
∞ are all stable transfer func-

tions. These transfer functions can be obtained such that they satisfy the double Bezout
identities given in the following equations[

Ỹn×n X̃n×m
−Ñm×n M̃m×m

] [
Mn×n −Xn×m
Nm×n Ym×m

]
=

[
I 0
0 I

]
, (1.5)

[
Mn×n −Xn×m
Nm×n Ym×m

] [
Ỹn×n X̃n×m
−Ñm×n M̃m×m

]
=

[
I 0
0 I

]
. (1.6)

Norms

The infinity norm and the two norm can be defined for transfer functions as well as matrices.
The H∞ and H2 notations are used to represent the infinity and two norms of transfer
functions, and they should not be confused with matrix norms.

The matrix norms are defined by considering a complex matrix M ∈ Cm×n with m rows
and n columns. Here, the infinity norm and two norm for the matrix M are defined.
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• Infinity norm: The maximum magnitude column sum of the given matrix.

‖Mm×n‖∞
∆
= max

j

m∑
i=1

|mij| (1.7)

where mij represents the element in row i and column j of the matrix M . If the
matrix has only one row, the infinity norm will be the maximum magnitude of the
matrix entries.

• Two norm: The maximum singular value of the matrix.

‖Mm×n‖2

∆
= σ̄(M). (1.8)

The transfer function norms are defined considering a transfer function Hm×n(ejω) with
m outputs and n inputs in the frequency domain, where ω ∈ Ω and Ω = (−π, π]. Here, the
infinity norm and two norm for the transfer function Hm×n are defined.

• Infinity norm also known as H∞ norm: The supremum of the largest singular value of
the transfer function Hm×n(ejω) across the entire frequency region.

‖Hm×n‖∞
∆
= sup

ω∈Ω
σ̄(Hm×n(ejω)) (1.9)

where σ̄(.) denotes the largest singular value of the matrix Hm×n(ejω). According to
Eq. (1.8), the H∞ norm definition in Eq. (1.9) can also be written as follows

‖Hm×n‖∞
∆
= sup

ω∈Ω

∥∥Hm×n(ejω)
∥∥

2
. (1.10)

In the case of SISO systems, the largest singular value is equivalent to the magnitude
of the frequency response, and the H∞ norm definition can be simplified as

‖H1×1‖∞
∆
= sup

ω∈Ω

∣∣H1×1(ejω)
∣∣ . (1.11)

According to Eq. (1.9), the H∞ norm of a system will be helpful in the control design
process to constrain the maximum singular value of the system. Moreover in the case of
the SISO system in Eq. (1.11), the maximum magnitude of the system can be directly
constrained.

• Two norm also known as H2 norm: The H2 norm is a representative for the system
energy and is defined as

‖Hm×n‖2
2

∆
=

1

2π

∫
Ω

Tr[H∗m×n(ejω)Hm×n(ejω)] dω (1.12)
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In the case of SISO systems, the term inside the trace is a scalar, and the H2 norm is
defined as follows

‖H1×1‖2
2

∆
=

1

2π

∫
Ω

∣∣H1×1(ejω)
∣∣2 dω. (1.13)

According to the Parseval’s relation[72], the H2 norm of a transfer function is equal
to the square root of the variance of the transfer function output in the time domain,
if the input to the transfer function is zero mean white noise with a unit variance.
Therefore, the H2 norm is a useful criteria for constraining the variance of stochastic
signals in the time domain.
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Chapter 2

Hard Disk Drive (HDD) Servo
Systems

2.1 Introduction

Everyday more than 2.5 Exabytes1 of data are produced. The Hard Disk Drives (HDDs)
and the Solid State Drives (SSDs) are the primary devices used for storing these massive
amount of data. SSDs have been successful in personal computers markets, because they
are significantly faster than the traditional HDDs. However, HDDs are still the dominating
data storage devices in the data centers all around the world because of their reliability and
cost effectiveness.

Fig. 2.1 shows the amount of data stored in data centers worldwide from 2015 to 2020 in
Exabytes of data. As one can notice, the amount of stored data in data centers is increasing
exponentially. Therefore, the demand for the enterprise level HDD market will be growing,
despite the decay in the personal computers market. HDDs with high storage capacity
and improved reliability and performance are necessary to supply the data center market
demands.

In this chapter, the servo structure of the HDD is described first. Then, the feedback
structure used for controlling this servo structure is introduced.

2.2 Hard Disk Drive Structure

The structure of a HDD is shown in Fig. 2.2. Data are stored on a rotating magnetic
disk. This disk is rotating with a constant angular speed, and there is a head moving along
the radius to read/write data on the disk. These data are stored in relatively tinny circular
tracks called data tracks, where their width can be smaller than 100 nm. Therefore, accurate
positioning of the head on data tracks is essential for a reliable HDD performance.

1One Exabyte is one billion Gigabytes of data.
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Figure 2.1: This statistic provides a forecast of the actual amount of data stored by data
centers worldwide, from 2015 to 2020. Adapted from [63] with permission.

Figure 2.2: The structure of a dual-stage HDD.
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Figure 2.3: The structure of a dual-stage HDD servo assembly. Adapted from [34] with
permission.

As shown in Fig. 2.2, the state of the art for nano-positioning the head on the tracks
is to use the dual-stage actuation. The dual-stage HDD is composed of two actuators, the
Voice Coil Motor (VCM) and a piezoelectric actuator called the Mili-Actuator (MA). These
two actuators are located in the HDD servo assembly shown in Fig. 2.3. The E-block is
the main structure of the servo assembly and is connected to the VCM directly. This block
is extended through a flexible structure called the suspension. The suspension is a flexible
structure designed to avoid any contact between the magnetic disk and the servo assembly.
Finally, the head is attached to the suspension through a solid structure called the slider.

The magnetic field inside the VCM creates rotational movement around the pivot point
shown in Fig. 2.3. This actuator is capable of having a large range of movements and is
used for coarse positioning at lower frequency regions. In dual-stage actuations, the MA
can be used to either move the suspension or the slider. The former configuration is called
the suspension-actuated, while the later one is called the slider-actuated configuration. In
both of these configurations, the MA creates translational movements along the disk radius,
which is used in the fine positioning of the head on data tracks. The MA has limited range
of movements and is used at higher frequency regions.

The read/write head will also be used as a sensor to measure the head position on the
magnetic disk. There are servo patterns written at each circular track of the magnetic disk,
and the head can measure its position relative to those servo patterns. Therefore, the head
can measure its position relative to circular data tracks. This measurement is called the
Position Error Signal (PES).
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Figure 2.4: The feedback structure for a dual-stage HDD.

2.3 Hard Disk Drive Controls

The general feedback structure used for designing the controllers in dual-stage HDDs is
shown in Fig. 2.4. The two actuators used in the HDD structure will receive their individual
control inputs, however only the overall movement of the head relative to the center of the
data track, which is generally known as PES, can be measured. Therefore, the system is a
Multi Input-Single Output (MISO) system and the controller will be a Single Input-Multi
Output (SIMO) block.

The high rotational speed of the disk will create air flow inside the disk. This air flow
tends to move the head and act as a disturbance on the actuators. In HDD terminology, the
air flow disturbance input is called the windage. The windage along with external vibrations
and other disturbances can deteriorate the performance of the HDD. As shown in Fig. 2.4,
these noises can be modeled as run-out, r, measurement noise, n and control input noises,
wv and wm.

The data are written on circular tracks, as shown with red dotted circles in Fig. 2.5.
Therefore, during the read/write process, the actuators should reject the disturbances and
try to keep the head on the desired track. The controller used for keeping the head on the
desired track is called the track following controller and is shown in Fig. 2.5a. This process
requires high-precision positioning control, since the track width can be smaller than 100 nm.

In order to move the head from one track to another, track seeking and settling processes
are used. These two processes are shown in Figs. 2.5b and 2.5c, respectively. The track
seeking process will use VCM as the actuator and move the head toward track B as fast
as possible. As the head gets close to the track B, the controller is switched to the track
settling controller, which uses the VCM and MA to settle the head on track B as fast as
possible. After settlement of the head on track B, the track following control is used to read
or write data on this track.

The state of the art for designing the track following controller in a dual-stage HDD
is to use the sensitivity decoupling design methodology. This methodology decouples the
system into two Single Input-Single Output (SISO) systems and designs the controller for
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(a) Track following (b) Track seeking

(c) Track settling

Figure 2.5: Three types of actuator controls used in HDDs for reading or writing data on data
tracks. The data tracks are shown with red dotted lines and the blue square is representing
the read/write head with exaggerated dimension.
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Figure 2.6: Sensitivity decoupling control structure. Ĝm(z) represents the estimated MA
transfer function.

each actuator individually.

Sensitivity Decoupling Design Method

The sensitivity decoupling control design method is proposed for the dual-stage HDD control
design [1, 34, 45, 51]. The control block diagram for this structure is shown in Fig. 2.6. In
the sensitivity decoupling control structure, the estimated model of the MA plant, Ĝm(z), is
used inside the control structure in order to decouple the sensitivity of the VCM loop from
the MA loop. The overall sensitivity transfer function from the external signal r to e is given
by

Sr(z) =
1

1 +Km(z)Gm(z) +Kv(z)Gv(z)(1 +Km(z)Ĝm(z))
. (2.1)

This overall sensitivity function can also be written as

Sr(z) =
1

1 +Kv(z)Gv(z)
.

1

1 +Km(z)Ḡm(z)
, (2.2)

where the modified MA plant, Ḡm(z), is derived using the following equation

Ḡm(z) =
Gm(z) +Kv(z)Gv(z)Ĝm(z)

1 +Kv(z)Gv(z)
, (2.3)

or equivalently

Ḡm(z) = Gm(z) +
Kv(z)Gv(z)(Ĝm(z)−Gm(z))

1 +Kv(z)Gv(z)
. (2.4)

The MA has high frequency uncertainties. Therefore, the estimated model of the MA ,
Ĝm(z), is a good approximation for the MA plant, Gm(z), in low frequency regions and as a
result Ḡm(z) will be very close to Gm(z) in those low frequency regions. In the high frequency
regions, the Kv(z)Gv(z) term is relatively small since the VCM is not active in that region.
Consequently, any difference between Ĝm(z) and Gm(z) at high frequency regions will be
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decreased by the Kv(z)Gv(z) term, and the Ḡm will also be a good approximation of Gm(z)
at high frequency regions. Therefore, the overall sensitivity of the dual-stage actuation in
Eq. (2.1) can be approximately decoupled as the multiplication of the actuators’ sensitivity
transfer functions

Sr(z) = Sr,v(z).Sr,m(z), (2.5)

where

Sr,v(z) =
1

1 +Kv(z)Gv(z)
, (2.6)

Sr,m(z) =
1

1 +Km(z)Gm(z)
. (2.7)

In HDD control design, the sensitivity transfer function which denotes the closed loop
transfer function from the track run-out, r, to the PES, e, is one of the most important trans-
fer functions to consider in the design process, since it describes the level of attenuation that
the track-following servo system is able to attenuate. In the sensitivity decoupling design
methodology, the overall attenuation provided by the feedback system can be approximated
as a loop series combination of attenuation provided by the VCM and the MA loops [45].
Therefore, Kv(z) and Km(z) can be individually designed, since their effects on the sensi-
tivity transfer function is decoupled according to Eq. (2.5). As a result, shaping individual
sensitivity of each transfer function will shape the overall sensitivity transfer function.

The controller obtained using the sensitivity decoupling structure can guarantee the
stability of each individual loop as well as the stability of the overall dual-stage actuation.
The advantage of guaranteeing the stability of single loops is that, in the case of MA failure,
the dual-stage HDD can be converted to a single-stage HDD, where the single-stage loop is
stable and working with degraded performance compared to the dual-stage HDD.
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Chapter 3

Observer Design for Non-uniform
Sampled HDD Servos

The servo patterns written on the HDD magnetic disk are used as a reference to measure
the head position. In the self-servo writing procedure, the HDD head is used to write
these servo patterns in a few consecutive steps [13, 16]. One of these steps is called the
spiral self-servo writing [22], where the seek movement of the head with constant speed will
create a spiral path. As a result of this movement, the head will arrive at the previously
written circular servo patterns in non-uniform time intervals. Therefore, the head position is
measured with irregular sampling time. However, the control inputs to the actuators should
be updated at regular sampling time. In this chapter, it is proposed to design an observer
which can estimate the states of this system with the same sampling time as the control
inputs. Therefore, the estimated states can be directly used to generate the control inputs.

The proposed observer should deal with uniform sampled control inputs and non-uniform
sampled measurements. The non-uniformity in the measurement sampling time is modeled
as plant dynamics variations in section 3.1. An observer structure which can estimate sys-
tem states at uniform sampled time is introduced for this varying plant in section 3.2. The
observer gain for this structure is designed using the gain-scheduling method and its per-
formance as well as its computational complexity will be evaluated in comparison with a
Kalman filter under several different noise scenarios. Section 3.3 will compare the simulation
results for these two types of observers.

3.1 Modeling

A special case of non-uniform sampled systems given in Fig. 3.1 is considered in this chap-
ter. It is assumed that the system is excited with uniform-sampled control inputs with the
interval of Tc, and that measurements are arriving at non-uniform time intervals. These
measurements can arrive anytime between two consecutive control updates. The parameter
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Figure 3.1: The system with non-uniform-sampled measurements. w(k) and v(k) represent
the control input disturbance and measurement noise, respectively.

θT represents the delay in the measurement arrival for the sampling interval k.

0 ≤ θT (k) ≤ Tc (3.1)

If the value of θT (k) for all the sampling intervals is zero, the measurements are arriving at
uniformed-sampled time intervals without any delay.

In order to obtain the discrete-time model of the system given in Fig. 3.1, it is assumed
that the continuous model of the system is known. This continuous model is represented as

ẋ(t) = Acx(t) +Bc
uu(t) +Bc

ww(t)

y(t) = Ccx(t) +Dc
uu(t) +Dc

ww(t) + v(t) (3.2)

where x(t), u(t) and y(t) represent the internal state of the system, control input and mea-
surement output in the continuous time-domain.

The given continuous time model can be discretized with the sampling time τ .

x(k + 1) = Ad(τ)x(k) +Bd
u(τ)u(k) +Bd

w(τ)w(k)

y(k) = Cdx(k) +Dd
uu(k) +Dd

ww(k) + v(k) (3.3)

where the discretized model for the state-update equation can be computed as

Ad(τ) = eA
cτ

Bd
u(τ) =

∫ τ
λ=0

eA
cλBd

udλ (3.4)

Bd
w(τ) =

∫ τ
λ=0

eA
cλBd

wdλ

and the discretized model for the output equation is computed as

Cd = Cc
u

Dd
u = Dc

u (3.5)

Dd
w = Dc

w.
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It is worth mentioning that the parameters of the output equation for the discrete-time model
will be the same as the continuous time model. However, the parameters of the state-update
equation for the discrete-time model depends on the sampling time τ .

The discretized model of the system in Fig. 3.1 is obtained under the assumption that
the state of the system is updated with the uniform sampling time of the control inputs.
Therefore, the state-update equation can be derived as

x(k + 1) = Ad(Tc)x(k) +Bd
u(Tc)u(k) +Bd

w(Tc)w(k). (3.6)

In order to obtain the discretized output equation, the state of the system at the instance
of measurement arrival is computed as

x(θT ) = Ad(θT )x(k) +Bd
u(θT )u(k) +Bd

w(θT )w(k). (3.7)

Also, the output of the system at that instance can be computed as

y(θT ) = Cdx(θT ) +Dd
uu(k) +Dd

ww(k) + v(k). (3.8)

Therefore by using Eq. (3.7) and (3.8), the discretized output equation of the system will be
written as

y(θT ) = CdAd(θT )x(k) + (CdBd
u(θT ) +Dd

u)u(k) + (CdBd
w(θT ) +Dd

w)w(k) + v(k). (3.9)

Eq. (3.6) and (3.9) represent the state-update and output equation for the discretized model
given in Fig. 3.1. As one can notice, the state-update equation is not a function of delay in
the measurement arrival, θT , and this delay is modeled to affect the output equation given
in Eq. (3.9). Therefore using Eqs. (3.6) and (3.9), the plant dynamics can be written as

x(k + 1) = Ax(k) +Buu(k) +Bww(k)

y(k) = C(k)x(k) +Du(k)u(k) +Dw(k)w(k) + v(k) (3.10)

where
A = Ad(Tc), Bu = Bd

u(Tc), Bw = Bd
w(Tc) (3.11)

and

C(k) = CdAd(θT (k))

Du(k) = CdBd
u(θT (k)) +Dd

u (3.12)

Dw(k) = CdBd
w(θT (k)) +Dd

w.

3.2 Observer Design

The non-uniform sampled system modeled in the previous section has the control input with
regular sampling time and the measurement output with irregular sampling time. In order
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Figure 3.2: Observer structure for both Kalman filtering and Gain-scheduling techniques.

to be able to use the measurement output as a feedback signal for generating the control
inputs, it is proposed to design an observer. This observer is used to estimate the plant
states with uniform sampling time, given uniform sampled control input and non-uniform
sampled measurements.

The structure used to design this observer is given in Fig 3.2. In this structure, the only
unknown is the observer gain F (k). Kalman filtering and Gain-scheduling techniques are
the two methodologies which will be considered to design this observer gain.

The structure of the observer in Fig. 3.2 uses both the a-priori and a-posteriori state
estimations. The a-priori state estimate x̂0(k) is obtained using the measurements up to time
step k− 1, while the a-posteriori state estimate x̂(k) is obtained using the measurements up
to time step k. The estimation errors for the a-priori state estimate, x̂0(k), a-posteriori state
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estimate, x̂(k), and the a-priori output estimate, ŷ0(k) are defined as follows.

x̃0(k) = x(k)− x̂0(k),

x̃(k) = x(k)− x̂(k), (3.13)

ỹ0(k) = y(k)− ŷ0(k).

Kalman Filter

The structure of the observer shown in Fig. 3.2 is the Kalman filter structure. The Kalman
filtering technique will find the optimal observer gain F (k) at each time step which minimizes
the trace of a-posteriori state estimation error covariance defined as

J(k) = Tr[Z(k)], (3.14)

where Z(k) represents the a-posteriori state estimation error covariance and is defined as

Z(k) = E[ (x(k)− x̂(k))(x(k)− x̂(k))T | yk, .., y0 ]. (3.15)

E, Tr and T are the symbols for the expectation, trace and transpose, respectively. The
notation |yk, .., y1 is used to represent the knowledge of measurement up to time instance k.

The Kalman filter computes the optimal observer gain given the variance of input dis-
turbance, W and measurement noise, V . The optimal Kalman filter gain is computed using
the following equation[40].

F (k) = M(k)C
′
(k)[C(k)M(k)C

′
(k) +Dw(k)WD

′

w(k) + V ]−1 (3.16)

where M(k) represents the a-priori estimation error covariance, and is defined as follows

M(k) = E[ (x(k)− x̂(k))(x(k)− x̂(k))T | yk−1, .., y0 ]. (3.17)

The a-priori estimation error covariance is computed using the following iterative equation

M(k + 1) = AM(k)A
′
+Bw(k)WB

′
w − ...

(AM(k)C
′
(k))[C(k)M(k)C

′
(k) +Dw(k)WD

′
w(k) + V ]−1(AM(k)C

′
(k))

′
. (3.18)

Gain-Scheduling Observer

The gain-scheduling is a feedback design methodology used for systems with known dynamics
variations[23, 24]. In this methodology, first the dynamics variation is modeled as a function
of a varying parameter called the scheduling parameter. Then, the gain-scheduling method-
ology considers the plant dynamics variation in the design step and obtains a feedback loop
as a function of the scheduling parameter.

The plant dynamics represented in Eq. (3.10) is a function of the scheduling parameter,
θT . The objective is to design the observer as a function of this scheduling parameter such
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Figure 3.3: The augmented plant for the observer strucutre given in Fig. 3.2.

that the H2 or H∞ norm of the transfer function from disturbances, w(k) and v(k), to the
estimation error is minimized.

The structure considered for the observer is the same as the Kalman filter structure
shown in Fig. 3.2. Since the only unknown parameter is the observer gain F (k), all the
known blocks in Fig. 3.2 will be augmented into one block known as the augmented plant in
Fig. 3.3. Considering the transfer function T x̃w,v from disturbances w and v to the a-posteriori
estimation error x̃, the observer gain F (k) will be designed to minimize either H2 or H∞
norm of this transfer function.

The augmented plant model is obtained by considering the relations between blocks in
Fig. 3.2. The a-priori state estimate will evolve as a function of the a-posteriori state estimate
and control input.

x̂0(k + 1) = Ax̂(k) +Buu(k) (3.19)

and the a-posteriori state estimate will be obtained as summation of a-priori state estimate
and the state-update term, xb(k)

x̂(k) = x̂0(k) + xb(k), (3.20)

where the state-update term is defined as follows

xb(k) = F (k)ỹ0(k). (3.21)

Considering the definition of a-priori and a-posteriori estimation error given in Eq. (3.13),
Eqs. (3.19) and (3.20) will result in

x̃0(k + 1) = Ax̃(k) +Bww(k) (3.22)

and
x̃(k) = x̃0(k)− xb(k). (3.23)

The equation for updating the a-priori state estimation error is obtained by combining Eqs.
(3.22) and (3.23)

x̃0(k + 1) = Ax̃0(k) +Bww(k)− Axb(k). (3.24)
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The a-priori output estimation is computed based on the a-priori state estimation and
the control input

ŷ0(k) = C(k)x̂0(k) +Du(k)u(k). (3.25)

Considering the estimation error for the a-priori output defined in Eq. (3.13) and the output
equation defined in Eq. (3.10), Eq. (3.25) will result in

ỹ0(k) = C(k)x̃0(k) +Dw(k)w(k) + v(k). (3.26)

Therefore, the state-space model for the augmented plant in Fig. 3.3 will be derived using
Eqs. (3.23), (3.24) and (3.26).

 x̃0(k + 1)
x̃(k)
ỹ0(k)

 =

 A Bw 0 −A
I 0 0 −I

C(k) Dw(k) I 0



x̃0(k)
w(k)
v(k)
xb(k)

 (3.27)

According to Eq. (3.12), the augmented plant dynamics in Eq. (3.27) is a function of
the measurement time delay, θT . Therefore, the observer gain F (k) in Fig. 3.3 is obtained
as a function of θT using the synthesis techniques presented in [24] by using Linear Matrix
Inequalities (LMIs). These LMIs have been defined in Theorem 8 and 9 of [24] to respectively
minimize H∞ and H2 norm of the a-posteriori state estimation error from disturbances w
and v.

The functionality of the observer gain F (k) on scheduling parameter θT is usually con-
sidered to be similar to the functionality of the plant on θT . However, more complex func-
tionality can also be considered to achieve a smaller state estimation error. As an example,
if the plant dynamics is a quadratic function of θT , the parameter F (θT ) is also considered
to be a quadratic function of θT

F (θT ) = F2θ
2
T + F1θT + F0. (3.28)

The observer gain coefficients in Eq. (3.28) are obtained offline using LMIs proposed in
[24]. Once these coefficients are known, the implementation of the gain-scheduling observer
will be relatively fast compared to the Kalman filter gain computation given in Eqs. (3.16)
and (3.18). The Kalman filter gain requires matrix inversion and also higher number of
multiplications which makes it computationally less efficient compared to the gain-scheduling
observer. However the solution to the Kalman filter will be optimal in terms of minimizing
trace of a-posteriori state estimation error covariance given in Eq. (3.14), while the gain-
scheduling observer is a sub-optimal solution.

3.3 Simulation Results

The proposed observer design methods for the non-uniform sampled systems are applied
to the self servo writing process in hard disk drives, where there is non-uniformity in the
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Table 3.1: The relative percentage for the trace of state estimation error covariance (gain-
scheduling observer relative to the Kalman filter) given in Eq. (3.31). The time domain
simulations were run for 5 seconds with sampling time Tc = 70 µs.

Vsimulation

Vdesign

10−4 10−2 1

10−4 120 % 75 % 91 %
10−2 173 % 109 % 92 %

1 186 % 153 % 116 %

measurement sampling time as described in Fig. 3.1. The self-servo writing process is a low
frequency process, at which VCM is only used as an actuator. This process mainly uses
the VCM at low frequency regions, therefore a simple double integrator is considered for the
VCM model. It is possible to consider more complex model at the cost of having more offline
computations for obtaining the observer gain.

A double integrator in the continuous time is discretized according to Eq. (3.10)

A =

[
1 Tc
1 0

]
, Bu = Bw =

[
T 2
c /(2J)
Tc/J

]
, (3.29)

C(k) =
[

1 θT (k)
]
, Du(k) = Dw(k) =

[
θT (k)2/(2J)

]
, (3.30)

where J is the VCM inertia. Tc and θT represent sampling time and measurement arrival
delay in Fig. 3.1.

Gain-scheduling and Kalman filters are designed using the observer structure given in
Fig. 3.2. The performance of the designed gain-scheduling observer is compared with the
optimal Kalman filter in terms of trace of covariance matrix for the a-posteriori state esti-
mation error given in Eq. (3.14). Also, the plot of state estimation error in the time domain
are compared among two methods.

The observer design is a function of the relative variance of input disturbance W and
measurement noise V . Therefore, the observers are designed based on different values of the
variance V by assuming W = 1. These noises are considered to be white in this example.
However, colored noises can be considered by augmenting the noise model into the plant
model. This augmentation will create more complex augmented plant model and has signif-
icant effects on offline computation for the gain-scheduling observer and online computation
for the Kalman filter.

The trace of state estimation error covariance for the gain-scheduling observer relative to
the Kalman filter is shown in table 3.1. This value is defined as follows

100
JGain scheduling observer

JKalman filter

, (3.31)
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where JGain scheduling observer and JKalman filter are the trace of a-posteriori state estimation error
covariance for the gain-scheduling and Kalman filters, defined in Eq. (3.14). The observers
in each column are designed based on a given variance of measurement noise. However,
the simulations were conducted using different variances for the measurement noise, since in
physical systems the exact variance of noises may not be known.

The performance of the tuned gain-scheduling observer deviates about 10-20 percent as
compared to the tuned Kalman filter. The better performance of the tuned Kalman filter is
expected, since the Kalman filter gain is the optimal gain for the given variance of noises.
However, if the simulation variance is less than the designed variance, the gain-scheduling
observer achieves smaller error covariance compared to the detuned Kalman filter, since the
gain-scheduling observer is designed to accommodate noises with the variance of equal or
smaller than the designed value. If the simulation noise variance is greater than its designed
value, the Kalman filter performs better than the gain-scheduling observer. However, none
of these two observers are designed for this magnitude of measurement noise variance.

The time domain simulation results for the case of Vdisturbance = Vdesign = 10−4 in table 3.1
are shown in Fig. 3.4. The original simulation was run for 5 seconds with control update
rate of 70 µs. However to make the plots visible, the results for a smaller portion of time
is sketched in Fig. 3.4. The measurements arrival time relative to the latest control update,
θT , is shown in the top figure, and the two bottom figures show the a-posteriori states
estimation errors. Since the tuned Kalman filter has the optimal gain, the Kalman filter
achieves a smaller state estimation error variance compared to the gain-scheduling observer.

The gain-scheduling observer and Kalman filter both use the same observer structure.
However, their performance and online computational complexity are different. In terms
of performance, if the variance of noise is known in advance, the Kalman filter has rela-
tively better performance compared to the gain-scheduling observer. However, if only the
upper bound of the noise variance is known, the gain-scheduling observer will outperform
the Kalman filter. In terms of computational complexity, the observer gain F (k) in the
Kalman filter, Eq. (3.16), requires relatively more online computations compared to the
gain-scheduling observer gain given in Eq. (3.28). The gain-scheduling gain only requires
few multiplications, while the Kalman filter gain requires significantly higher number of
multiplication as well as a divisions which are computationally expensive.
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Figure 3.4: Time domain results. The top figure plots the delay in the measurement arrival
time, while the other two figures plot the states estimation errors as functions of time.
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Chapter 4

Online Identification of HDD
Modeling Uncertainties

Temperature variations in HDDs will move system resonance modes which directly affect
system dynamics. These variations in system dynamics are identified in an online fashion by
coprime factorizations of uncertainties using coprime factorizations [26, 64]. The main reason
for factorizing the uncertainties is to avoid unnecessary identification of the unchanged part of
the plant dynamics. Therefore, the uncertainty identification, in comparison to the complete
plant dynamics identification, will require less computational power as well as smaller order
for the identified transfer function.

In section 4.1, the motivation for performing online identification of the closed loop
transfer functions in dual-stage HDDs is elaborated. Subsequently, a methodology for plant
uncertainty identification is presented in section 4.2. Experimental results are provided in
section 4.3, which shows the effectiveness of this algorithm in satisfying the stability criteria
for the adaptive RRO following algorithm proposed in [61, 62] for the dual-stage HDDs.

4.1 Motivation

The simplified block diagram of a dual-stage, double input-single output hard disk drive
track following servo system is shown in Fig. 4.1. In this figure, GV CM ∈ Rp is the voice coil
motor, VCM transfer function, while GMA ∈ Rp represents the micro-actuator, MA transfer
function. uvcm and uMA are respectively the control inputs to the VCM and the MA. r
is the track run-out while e is the measured Position Error Signal (PES) of the magnetic
hard relative to the center of the data track. n is the non-repeatable run-out. The adaptive
RRO following algorithm described in [61] injects signals at uV CM , uMA in order to track
the RRO written on the disk. The model of the system from these injection points to e is
used for obtaining the RRO tracking control signals. The closed loop block diagrams in this
chapter use the negative feedback to close the loops. Let G = [GV CM GMA] ∈ R1×2

p and
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Figure 4.1: Control block diagram for a dual-stage HDD. GV CM and GMA are respectively
open-loop plant transfer functions for the voice coil motor and mili-actuator. Also, KV CM

and KMA are their corresponding controllers. r and n are respectively representing the
repeatable run-out RRO and noises in the system.

K = [KV CM KMA]T ∈ R2×1
p , then

R = [RV CM RMA] =
1

1 +GK
G ∈ RH1×2

∞ . (4.1)

RV CM ∈ RH∞ and RMA ∈ RH∞ are respectively two closed-loop sensitivity transfer func-
tions from the VCM and MA injection inputs, uV CM and uMA to the PES e. R̂V CM ∈ RH∞
represents the model estimate of the true transfer function RV CM . Similarly, R̂MA ∈ RH∞
represents the model estimate of the true transfer function RMA.

The adaptive RRO following algorithm introduced in [61, 62] has guaranteed convergence
if and only if the frequency response phase differences between the actual transfer functions,
RV CM , RMA, and their respective model estimates, R̂V CM , R̂MA, are less than 90-degree.
More specifically denoting ∠G(jω) as the phase of the frequency response of the transfer
function G ∈ Rp, the adaptive RRO following algorithm in [61, 62] converges iff∣∣∣∠(RV CM(jω)/R̂V CM(jω))

∣∣∣ < 90◦ and∣∣∣∠(RMA(jω)/R̂MA(jω))
∣∣∣ < 90◦.

(4.2)

We will often refer to Eq. (4.2) as the ”90-degree” criteria.
The frequency response measurements of the transfer function R = [RV CM RMA] can be

used to obtain the nominal model R0 = [RV CM,0 RMA,0], such that the 90-degree criteria
given by Eq. (4.2) is satisfied. However, temperature variations affect the MA dynamics,
resulting in variations in some of its resonance modes. These resonance frequencies varia-
tions may cause Eq. (4.2) to be violated, as illustrated in Fig. 4.2. This figure shows the
magnitude and phase of the frequency responses for the MA closed-loop sensitivity trans-
fer function RMA at different temperatures, relative to its nominal frequency response at
T = 34◦ Celsius. As shown in the figure, there are significant phase variations at the
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Figure 4.2: The actual frequency responses from the MA injection point to PES signal,e,
compared to the one at T = 34◦ Celsius.

resonance mode located around harmonic 120 and also in the resonance modes located be-
tween harmonics 140 to 160. These variations can violate the 90-degree criteria in Eq. (4.2).
Therefore, we need to identify these variations online, and accordingly modify the model
R̂MA which must be used in the adaptative RRO following algorithm.

4.2 Methodology

In this section we will parameterize uncertainty due to temperature variations using coprime
factorizations [26, 64]. These factorizations are used to parameterize and isolate the uncer-
tainty relative to the plant nominal transfer function in terms of a causal and stable transfer
function S ∈ RH1×2

∞ . As will be shown subsequently, identification is only required for the
uncertain parameterization, S, and not the entire closed-loop transfer function R.

Uncertainty Factorization

The closed-loop feedback system in Fig. 4.1 can be described as shown in Fig. 4.3, where the
plants and controllers are defined as

G =
[
GV CM GMA

]
∈ R1×2

p , (4.3)

K =

[
KV CM

KMA

]
∈ R2×1

p . (4.4)
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Figure 4.3: Uncertainty factorization in the control block diagram of a dual-stage HDD. JG
represents the nominal factorization of the open-loop plant.

As stated previously, Rm×n
p denotes the class of rational proper transfer functions and RHm×n

∞
denotes the class of all stable, rational proper transfer functions with n inputs and m outputs.
Also, u = [uV CM , uMA]T is the injection signal and the stable transfer function S ∈ RH1×2

∞
parameterizes the class of all transfer functions G(S) ∈ R1×2

p that are stabilized by the
feedback controller K ∈ R2×1

p [64].
The closed loop transfer function from the injection points u to e is given by

R(S) =
1

1 +G(S)K
G(S), (4.5)

where
R(S) = [RV CM(S), RMA(S)] ∈ RH1×2

∞ . (4.6)

The first and second columns are respectively representing the closed-loop transfer functions
from VCM and MA injection points to e.

As illustrated in Fig. 4.2, temperature variations affect the MA resonances at high fre-
quencies, which can change the closed-loop transfer functions. Considering the closed-loop
transfer functions from the injection points to e, we will make the simplifying assumption
that temperature variations will only affect RMA(S) and not RV CM . This assumption is jus-
tified by the fact that the control system KV CM is designed in order to not excite the VCM’s
high frequency resonance modes, which are uncertain and may be affected by temperature
variations. Therefore, uncertainty identification is only required for the MA. In other words,

R(S) = [RV CM , RMA(S)]. (4.7)

In order to identify the uncertainty, we utilize well-known factorization results [64] to
characterize plant uncertainty. Consider the feedback system in Fig. 4.3, and assume that
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a negative feedback robust controller K is designed, which stabilizes the nominal plant
G0 ∈ R1×2

p as well as all possible plant variations in G. According to coprime factorizations
of the plant and controller given in Eqs. (1.2)-(1.4), the nominal plant and controller can
respectively be represented by the factorizations

G0 = N0M
−1
0 = M̃−1

0 Ñ0, (4.8)

K = X0Y
−1

0 = Ỹ −1
0 X̃0, (4.9)

where M0 ∈ RH2×2
∞ , M̃0 ∈ RH1×2

∞ , N0 ∈ RH1×2
∞ , Ñ0 ∈ RH2×2

∞ , X0 ∈ RH2×1
∞ , X̃0 ∈ RH2×1

∞ ,
Y0 ∈ RH1×1

∞ and Ỹ0 ∈ RH2×2
∞ are all stable transfer functions and satisfy the double Bezout

identities given in Eqs. (1.5) and (1.6). These transfer functions can be obtained given the
nominal plant and controller as described in [64].

In the presence of plant uncertainty, the transfer function G deviates from its nominal
value G0. The class of all plants G(S), which can be stabilized by the controller K, can be
parameterized in term of a stable transfer function S ∈ RH1×2

∞ as follows

G = G(S) = NM−1 = M̃−1Ñ ∈ R1×2
p , (4.10)

where,

N = N0 + Y0S M = M0 −X0S, (4.11)

Ñ = Ñ0 + SỸ0 M̃ = M̃0 − SX̃0. (4.12)

According to Eq. (4.7), temperature variations only change RMA(S); RV CM is assumed
to remain constant in its operating frequency region. Therefore, transfer function RMA, in
the nominal and uncertain cases, can be obtained as described below [64].

Nominal case: Consider the case when S = 0. The nominal closed loop transfer function
is given by

R0 =
1

1 +G0K
G0 ∈ RH1×2

∞ . (4.13)

Substituting Eq. (4.8) and (4.9) into the above equation and using the double Bezout
identities given in Eqs. (1.5) and (1.6) will result in

R0 = [R0,V CM , R0,MA] = N0Ỹ0 . (4.14)

Uncertain case: Consider the case when S is non-zero. The closed loop transfer function
is given by

R(S) =
1

1 +G(S)K
G(S) ∈ RH1×2

∞ . (4.15)
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Utilizing Eqs. (4.9)-(4.12) and the double Bezout identities given in Eqs. (1.5) and
(1.6) will result in

R = [RV CM , RMA] = N(S)Ỹ0, (4.16)

where the transfer function N(S) = N0 + SY0 is affine in S. As mentioned earlier, it
is assumed that the uncertainty is not affecting the closed-loop transfer function for
the VCM, RV CM , in its operating frequency region. Therefore, the MA closed-loop
transfer function can be written as follows

RMA(S) = R0,MA + S Y0Ỹ0,2nd ∈ RH1×1
∞ , (4.17)

where Ỹ0,2nd ∈ RH2×1
∞ represents the second column of Ỹ0 ∈ RH2×2

∞ .

In the subsequent section, the method for identification of uncertainty transfer function
Ŝ ∈ RH1×2

∞ is represented, and the MA closed loop transfer function R̂MA will be updated
using Eq. (4.18). If Ŝ is identified with sufficient accuracy, R̂MA can be close to RMA and
the robustness condition (90-degree criteria) given by Eq. (4.2) will be satisfied.

R̂MA = R0,MA + Ŝ Y0Ỹ0,2nd ∈ RH1×1
∞ . (4.18)

Uncertainty Identification

In order to identify the uncertain stable transfer function Ŝ in Eq. (4.18), the first step is to
obtain the nominal model. This nominal model is obtained by taking the average of several
uncertain models of the system and reducing the order of the resulting transfer function.
Having the nominal model, all the nominal transfer functions, such as the ones used in Eq.
(4.18) are obtained. Then, the plant uncertainty (Ŝ) will be identified using Eq. (4.18).

In order to identify the uncertainty parameter, Ŝ, the recursive least square technique has
been utilized. In this identification approach, a white noise, which is passed through a band
pass filter, is used as an excitation signal at uMA. The band pass filter is used to attenuate
excitation outside of the frequency range at which the system is going to be identified. The
response of the system to this excitation is measured by PES signal, e. According to Fig. 4.3,
signal e can be written as

e = RMA uMA + Ts r + Ts n, (4.19)

where Ts ∈ RH1×1
∞ is representing the closed loop sensitivity transfer function. Moreover,

Eq. (4.18) can be written as

R̂MA uMA = R0,MA uMA + ŜY0Ỹ0 uMA (4.20)

In this equation, R̂MA uMA can be used as an approximation of PES, e, if the effects of the
repeatable run-out, r, and noise, n are eliminated from e. The effects of run-out can be
eliminated by filtering both uMA and e at the run-out frequencies. Let

F (z−1) = (1− z−N) ∈ RH1×1
∞ , (4.21)
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where N is the total number of PES measurements collected during one disk revolution.
This filter can annihilate the repeatable run-out, i.e. F (z−1) r = 0. Notice that N also
represents the number of RRO harmonics. If the excitation signal is large enough compared
to the noises in the system, term Ts n in Eq. (4.19) can be ignored. Therefore, Eq. (4.19)
can be written as

F e ' R̂MAF uMA = R0,MAF uMA + S̄Y0Ỹ0F uMA, (4.22)

In this equation, the only unknown is the stable transfer function Ŝ ∈ RH1×2
∞ , which is

obtained using the recursive least square technique.
As mentioned in the previous section, the transfer function S is guaranteed to be input-

output stable, therefore, it can be identified either as a finite impulse response (FIR) or a
stable infinite impulse response (IIR) transfer function. Eq. (4.23) shows the FIR formulation
of this transfer function. The advantage of the FIR filter is that the resulting estimated
transfer function

Ŝ
FIR

(z−1) =

[
M∑
m=0

z−mŝm,1,
M∑
m=0

z−mŝm,2

]
∈ RH1×2

∞ (4.23)

is always stable. Here, ŝm,1, ŝm,2, m = 0, · · ·M , are the identified parameters, M is the order
of the FIR filter and z−d is the backwards-shift operator (i.e. y(k− d) = z−dy(k)). However,
FIR filters normally require a larger number of parameters than IIR filters to adequately
characterize a plant response, particularly if the identified plant has lightly damped poles.

Infinite impulse response (IIR) filters have both numerator and denominator polynomials.
Thus, the identified transfer function is given by

Ŝ
IIR

(z−1) =

[ ∑M
m=0 z

−mb̂sm,1

1 +
∑N

n=1 z
−nâsn,1

,

∑M
m=0 z

−mb̂sm,2

1 +
∑N

n=1 z
−nâsn,2

]
. (4.24)

where M and N are respectively the orders of the numerator and denominator polynomials,
while b̂sm,1 ∈ R, b̂sm,2 ∈ R, m = 0, . . . ,M and âsn,1 ∈ R, âsn,2 ∈ R, n = 1, . . . , N , are the
estimated parameters. It is however necessary to guarantee that identified denominator
polynomial parameters are such that the roots of the polynomials zN +

∑N
n=1 âsn,1z

N−n = 0

and zN +
∑N

n=1 âsn,2z
N−n = 0 are all inside the unit circle.

In order to address the concern about the stability of the identified IIR transfer function,
the Jury test[39] can be used in each time step, to check the stability of the identified transfer
function. If at any time step, the obtained IIR transfer function is not stable, all the closed
loop poles can be projected inside the unit circle by a simple multiplication. Therefore, the
resulting closed loop feedback system in Fig. 4.3 can be guaranteed to be stable when S is
identified using an IIR filter, as given by Eq. (4.24).
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Figure 4.4: The experimental setup

4.3 Experimental Results

The proposed algorithm in the previous section has been implemented on a real hard disk
drive, as shown in Fig. 4.4. The setup includes a DSP board which receives the PES signal,
e, and can compute the signals which are needed to be injected at the uV CM

1 and uMA

ports. The output of the DSP board is digital, therefore, DAC cards have been used to
convert uV CM and uMA to analog signals prior to injection of these signals to the HDD. In
this experiment, at each time step, the excitation signal, uMA, is applied to the HDD and
e is measured as the response of the system to this excitation. Therefore, the DSP board
will use both the excitation and response signals in order to identify the uncertainty transfer
function S ∈ RH1×2

∞ .
Simulation results demonstrate that S ∈ RH1×2

∞ can be identified with a single transfer
function estimate, Ŝ ∈ RH1×2

∞ , for the entire frequency range ω ∈ [0, ωN ] where ωN is
the Nyquist frequency. However, the variance of the random excitation signal uMA that is
required to identify Ŝ for the entire frequency range is too large and results in an unacceptable
track mis-registration (TMR). Therefore, Ŝ has been identified in three smaller frequency
regions. In this case the required excitation signal variance is smaller than the maximum
allowable injection signal. Moreover in each region, each element of Ŝ ∈ RH1×2

∞ was identified
using a second order IIR filter, as shown in Eq. (4.25).

Ŝ =
1

S0 + S1z−1 + S2z−2

[
S3 + S4z

−1 + S5z
−2

S6 + S7z
−1 + S8z

−2

]T
∈ RH1×2

∞ (4.25)

In this structure, the same denominator is used for both elements of Ŝ ∈ RH1×2
∞ , in order to

reduce the number of identified parameters. Moreover, during the identification process, the

1uV CM port has not been used for this experiment.
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Figure 4.5: Frequency responses of RMA at different temperatures, compared with the fre-
quency response of the reduced order transfer function R0,MA at the nominal temperature
of 34◦ Celsius

stability of this second order denominator can be easily verified online using e.g. Jury test
and, in the case of instability, the poles are projected inside the unit circle [18].

Fig. 4.5 shows the Bode plot of the ratio RMA(T )/RMA,0, where RMA(T ) is the transfer
function RMA obtained at temperature T , while RMA,0 is a reduced order transfer function
at the nominal temperature of 34◦ Celsius. According to the ”90-degree criteria,” the phase
mismatch between RMA(T ) and RMA,0 must be less than 90 degree, which is violated here.
Therefore, a single nominal second order transfer function RMA,0 cannot be used in the
adaptive RRO following algorithm.

The next set of plots in Figs. 4.6 and 4.7 show the experimental results. First, Ŝ has been
identified using Eq. 4.25. This identification has been taken place in three frequency regions
shown in Fig. 4.5. The Bode plots of the identified Ŝ’s are given in Fig. 4.6, where the red
asterisks show the frequency region in which the the parameter Ŝ has been identified. These
identified transfer functions have been used in Eq. (4.18) to generate R̂MA, which is in turn
used in the adaptive RRO following algorithm. The ratio of the actual transfer function,
RMA, over the updated models, R̂MA, are shown in Fig. 4.7, for the three frequency regions
in Fig. 4.5. As shown in Fig. 4.7, the phase mismatch between the actual and the updated
model is always less than 90 degree in each identified region, which shows the effectiveness
of the proposed algorithm in satisfying the ”90-degree criteria” in Eq. (4.2). It is worth
mentioning that the proposed identification process was implemented as an online process,
in order to compensate in real time the effect of temperature variations in the HDD dynamics.
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(a) Region 1

(b) Region 2

(c) Region 3

Figure 4.6: Bode plot of the identified uncertainty, Ŝ = [Ŝ1, Ŝ2] ∈ RH1×2
∞ , for the three

frequency regions (The red asterisks show the frequency region in which the identification
has been done.)
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(a) Region 1

(b) Region 2

(c) Region 3

Figure 4.7: Comparison of the relative frequency response from the MA injection point to
PES for the three frequency regions (The red asterisks show the frequency region in which
the identification has been done.)
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Chapter 5

Data Driven Control Design

The data-driven control design methodology, which designs the controller based on the fre-
quency response measurements of the system, is discussed in this chapter. The main ad-
vantage of data-driven over model-based control design techniques is that the former only
require the frequency response measurements of the plant without the need to identify a
model. Therefore, the designed controller is guaranteed to stabilize the real physical system
and achieve the performance specifications considered in the design process, if the number of
measurements are adequate enough to represent the variations in the real physical system.

In section 5.1, the notations and mathematical preliminaries used in the data-driven
control designs are elaborated. Subsequently, the control objectives which are considered
in terms of H∞ and H2 norms of closed loop transfer functions are provided in section 5.2.
The controller is obtained by solving a convex optimization problem, where these norms
are translated to convex constraints and objectives. The necessary and sufficient convex
conditions for the H∞ constraints of the SISO systems have been proposed in [42]. Section 5.3
will extend this result to MISO systems. These extended results are considered along with
H2 results from [41] to form a mixed H2/H∞ control problem. The plant dynamics variations
are addressed by considering multiple frequency response measurements of the plant in the
design step.

5.1 Notations and Mathematical Preliminaries

In this section, the notations and preliminary concepts used for the data driven controller
design are presented. First, the stable factorizations of the plant and controller will be
reviewed. Then, the closed loop feedback structure and the resulting closed loop transfer
functions are introduced.
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Figure 5.1: Control block diagram. G1×n(ω) represents the frequency response data of
the plant. The disturbances to the system are colored by the stable weighting functions
R(ω) ∈ RH∞, N(ω) ∈ RH∞ and W (ω) ∈ RHn×n

∞ .

Plant and Controller Factorizations

Consider the control block diagram given in Fig. 5.1. The block G1×n(ω) represents a
controllable MISO system in terms of frequency response measurements. The plant accepts
n control inputs and has only one sensor measurement as the output. The controller Kn×1(z),
uses the single measurement and generates the n control inputs. Therefore, the controller
has one input and n outputs. This controller is called a SIMO system. The dimension
notation used as a subscript may be eliminated in few places for the purpose of simplifying
the notations.

The plant and controller are factorized using stable factorizations[26] given in Eqs. (1.2)
and (1.3). According to stable factorizations, any system can be represented as the product
of one stable system and the inverse of another stable system. Stable factorizations for the
plant and the controller are as follows

G1×n(ω) = M̃−1
1×1(ω)Ñ1×n(ω), (5.1)

Kn×1(z) = Xn×1(z)Y −1
1×1(z), (5.2)

where M̃1×1 ∈ RH1×1
∞ , Ñ1×n ∈ RH1×n

∞ , Xn×1 ∈ RHn×1
∞ and Y1×1 ∈ RH1×1

∞ . It is worth men-
tioning that the stable factorizations can be obtained in both the frequency and z domains.
Here, the plant G1×n(ω) in Eq. (5.1) is factorized in the frequency domain, while the con-
troller Kn×1(z) in Eq. (5.2) is factorized in the z domain. The stable factorizations in the z
domain can be easily converted to the frequency domain using z = ejω.

Deriving the stable factorizations for the plant G1×n(ω) in Eq. (5.1) can be challenging,
since inspecting the stability of frequency response data is not straightforward. Here, three
different scenarios for obtaining stable factorizations for the plant G1×n(ω) in the frequency
domain are considered.

• Stable G1×n(ω): The most straightforward stable factorizations for a stable plant
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G1×n(ω) is

Ñ1×n(ω) = G1×n(ω), (5.3)

M̃1×n(ω) = 1. (5.4)

• Unstable G1×n(ω): A stabilizing controller K0
n×1(z) will be used to obtain the stable

factorizations.

Ñ1×n(ω) =
G1×n(ω)

1 +G1×n(ω)K0
n×1(ejω)

, (5.5)

M̃1×1(ω) =
1

1 +G1×n(ω)K0
n×1(ejω)

. (5.6)

The factorizations given in Eqs (5.5) and (5.6) are stable, since both of these factoriza-
tions represent closed loop transfer functions of stable loops. It should be noted that
Ñ1×n(ω) and M̃1×1(ω) in Eqs. (5.5) and (5.6) are themselves frequency response data,
which are generated by computing the right side of the equation point-wise at the fre-
quency point ω ∈ Ω. Also, K0

n×1(ejω) ∈ Cn×1 is the data generated by computing the
frequency response of the compensator K0

n×1(z)
∣∣
z=ejω

at the frequency point ω ∈ Ω,
where Ω = (−π, π].

• Known marginally stable poles times a stable G0
1×n(ω): In the case of known marginally

stable poles, these poles can be considered as zeros in the factorization M̃1×1(ω). As
an example, the stable factorizations of the following plant

G1×n(ω) = (
ejω

ejω − 1
)2G0

1×n(ω) (5.7)

can be derived as

Ñ1×n(ω) = G0
1×n(ω), (5.8)

M̃1×1(ω) = (
ejω − 1

ejω
)2, (5.9)

where Ñ1×n(ω) and M̃1×1(ω) will be stable factorizations of the plant G1×n(ω).

The controller K(z) is implemented in the z domain. Subsequently, the factorizations of
this controller given in Eq. (5.2) are obtained in the z domain as well. These factorizations
are stable if and only if all their poles are chosen to be inside the unit circle. Considering
the following structure for the SIMO controller with m outputs in Fig. 5.1

Kn×1(z) =
1

ynzn + ..+ y1z + y0

 x1,nz
n + ..+ x1,1z + x1,0

..
xm,nz

n + ..+ xm,1z + xm,0

 , (5.10)
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a simple set of stable factorizations will be the finite impulse response, FIR, filter with all
the poles located at the origin.

Xn×1(z) =
1

zn

 x1,nz
n + ..+ x1,1z + x1,0

..
xm,nz

n + ..+ xm,1z + xm,0

 , (5.11)

Y1×1(z) =
ynz

n + ..+ y1z + y0

zn
(5.12)

where X(z) and Y (z) represent stable factorizations of the controller in Eq. (5.2). The
stable factorizations can be written as the product of the controller coefficients and filter
terms

Xn×1(z) = ρxFx(z), (5.13)

Y1×1(z) = ρyFy(z), (5.14)

where ρx and ρy represent the controller coefficients

ρx =

 x1,n, .., x1,1, x1,0

..
xm,n, .., xm,1, xm,0

 , (5.15)

ρy =
[
yn, .., y1, y0

]
, (5.16)

and the filter terms Fx(z) and Fy(z) are written as follows

Fx(z) =
1

zn
[
zn .. z1 z0

]T
, (5.17)

Fy(z) =
1

zn
[
zn .. z1 z0

]T
. (5.18)

Here for simplicity, the poles of stable factorizations are chosen to be at the origin.
However, these poles can be chosen to be anywhere inside the unit circle. Any change in
the location of these poles will directly affect the denominator of filter terms given in Eqs.
(5.17) and (5.18).

A fixed structure can be considered inside the controller while deriving the stable factor-
izations for the controller. Assuming that the first element of the controller should include
an integrator with the following structure

Kf,1(z) =
z

z − 1
. (5.19)

The stable factorizations of the controller given in Eqs. (5.11) and (5.12) are modified to
include this integrator in the structure.

Xn×1(z) =
1

(z − α)zn−1


z (x1,n−1z

n−1 + ..+ x1,1z + x1,0)
(z − 1) (x2,n−1z

n−1 + ..+ x2,1z + x2,0)
..

(z − 1) (xm,n−1z
n−1 + ..+ xm,1z + xm,0)

 , (5.20)
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Y1×1(z) =
z − 1

z − α
yn−1z

n−1 + ..+ y1z + y0

zn−1
, (5.21)

where |α| < 1 is a pole inside the unit circle. The stable factorizations in Eqs. (5.20) and
(5.21) can also be written in terms of controller coefficients using Eqs. (5.13) and (5.14).

Feedback structure

The feedback structure given in Fig. 5.1 is used to design the controller K(z). In this block
diagram, r represents the reference trajectory which is desired to be followed. In addition,
signals n, w represent measurement and control input noises, respectively. Signals r̄, n̄, w̄ are
white noises with unit variances, and the filter blocks R ∈ RH∞, N ∈ RH∞, W ∈ RHn×n

∞
are used to color these white noises.

In Fig. 5.1, the lower-case letters are used to represent signals, where the upper-case
letters are used to represent open loop transfer functions. The closed loop transfer functions
are also denoted using upper-case letters, where their subscripts represent the input to output
causality. For example, Er→e denotes the closed loop transfer function from input r to output
e. Since the plant G(ω) in Fig. 5.1 is represented in the frequency domain, all the closed
loop transfer functions are derived in the frequency domain. To make the notations simple,
the frequency domain arguments (ejω) and (ω) will be eliminated from transfer function
notations.

The closed loop transfer functions from external signals in Fig. 5.1 to tracking error e,
control input u and the measurement output y are given by e

u
y

 =

Er→e En→e Ew→e
Ur→u Un→u Uw→u
Yr→y Yn→y Yw→y

 r
n
w

 . (5.22)

Eq. (5.22) represents the transfer functions from colored excitation signals. The closed loop
transfer functions from the white noises can be easily derived as followsEr̄→e En̄→e Ew̄→e

Ur̄→u Un̄→u Uw̄→u
Yr̄→y Yn̄→y Yw̄→y

 =

Er→e En→e Ew→e
Ur→u Un→u Uw→u
Yr→y Yn→y Yw→y

 ·
R 0 0

0 N 0
0 0 W

 . (5.23)

The closed loop transfer functions in Eqs. (5.22) and (5.23) are written in terms of the plant
G and controller K using the block diagram in Fig. 5.1Er→e En→e Ew→e

Ur→u Un→u Uw→u
Yr→y Yn→y Yw→y

 =
1

1 +KG

 1 −KG −G
K K −GK
GK GK G

 . (5.24)
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Eqs. (5.1) and (5.2) can be used to derive the closed loop transfer functions in Eq. (5.24) in
terms of the stable factorizations of the plant and controllerEr→e En→e Ew→e

Ur→u Un→u Uw→u
Yr→y Yn→y Yw→y

 =
1

XÑ + Y M̃

M̃Y −XÑ −ÑY
M̃X M̃X −ÑX
ÑX ÑX ÑY

 . (5.25)

It is worth mentioning that using the stable factorizations given in Eqs. (5.1) and (5.2) will
create the common scalar denominator, XÑ+Y M̃ , for all the closed loop transfer functions.
Moreover, both the numerators and the denominator are all linear functions of both plant
and controller stable factorizations, where these factorizations are also linear functions of
controller coefficients in Eqs. (5.13) and (5.14).

5.2 Control Objectives

The very first step to design the controller Kn×1(z) in Fig. 5.1 is to define the desired control
objectives. The H∞ and H2 norms of the closed loop transfer functions will be used to define
the control objectives, since these norms are representing both the average performance of
the closed loop systems across the frequency region as well as the worst performance at a
single frequency.

H∞ norm

The H∞ norm of a system was defined in Eq. (1.9). This norm is helpful for constraining
the maximum singular value of the system across the entire frequency region. Therefore,
this norm criteria can be used to shape the closed-loop transfer functions. As an example,
the following H∞ norm constraint for the SISO system H1×1 is defined as

‖WHH1×1‖∞ < γ, (5.26)

where WH ∈ C is a bounded weighting function in the frequency domain and γ is the upper-
bound for this H∞ norm. According to the definition of the H∞ norm for the SISO systems
given in Eq. (1.11) and assuming

∀ω ∈ Ω : |WH | 6= 0, (5.27)

Eq. (5.26) can be written as follows

∀ω ∈ Ω : |H1×1| < γ |WH |−1 . (5.28)

Therefore, the magnitude of the transfer function H1×1 can be shaped with respect to the
weighting function WH and the scalar γ. In the data-driven control design method, WH can
be any numerically shaped bounded weighting function satisfying Eq. (5.27).
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The H∞ norm constraint defined in Eq. (5.26) can also be used for the MIMO system
Hp×q ∈ Rp×q

p as follows
‖WHHp×q‖∞ < γ, (5.29)

where WH ∈ Co×p is a bounded weighting function in the frequency domain. According to
the definition of the H∞ norm for the MISO systems given in Eq. (1.9), Eq. (5.29) can be
written as

∀ω ∈ Ω : σ̄(WHHp×q) < γ, (5.30)

where σ̄(M) represents the maximum singular value of the matrix M . In [33], it has been
proved that the following inequality holds for the maximum singular value of the product of
matrices A ∈ Ca×b and B ∈ Cb×c, a > b,

σ(A)σ̄(B) ≤ σ̄(AB). (5.31)

where σ(M) represents the minimum singular value of the matrixM . By combining Eqs. (5.30)
and (5.31), and assuming

∀ω ∈ Ω : σ(WH) 6= 0, WH ∈ Co×p, o > p, (5.32)

Eq. (5.29) will result in the following equation

∀ω ∈ Ω : σ̄(Hp×q) < γ σ(WH)−1, (5.33)

where the weighting function WH can be defined to shape the maximum singular value of
the transfer function Hp×q. It is worth mentioning that Eq. (5.33) is only a necessary and
not a sufficient condition for the H∞ criterion defined in Eq. (5.29). However, Eq.(5.29) is
directly used in the proposed control algorithm to derive a necessary and sufficient condition
for the H∞ norm criterion. Eq. (5.33) is used to represent the intuition behind the weighting
function selection for MIMO systems.

Eq. (5.26) represents a H∞ constraint on a closed loop transfer function. However, the
H∞ can be considered as an objective

min
ω∈Ω, K∈Rn×1

p,g

‖WHH‖∞ , (5.34)

where the goal is to find the controller K(z) of order g in Fig. 5.1, which minimizes this
norm.

H2 norm

The H2 norm of a system defined in Eq. (1.12) is a representative of the system average en-
ergy over the entire frequency region. Therefore, this norm is considered in the control design
process to take into account the average energy of different closed loop transfer functions.
Similar to the H∞ norm, the H2 norm can be either constrained by a scalar η

‖H‖2
2 ≤ η, (5.35)
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or minimized
min

K∈Rn×1
p,g

‖H‖2
2 , (5.36)

where the goal is to find the controller K(z) of order g in Fig. 5.1.
The Parseval’s relation [72] states that the square of the H2 norm of a transfer function

in the frequency domain is equal to the the variance of the corresponding signal in the time
domain, if the input to the transfer function is zero mean white noise with a unit variance.
Therefore, the H2 norm constraint and objective defined in Eqs. (5.35) and (5.36) will directly
constrain or minimize the variance of signals in the time domain.

Consider a signal s(ω), which is constructed using the following equation

s(ω) = G(ω)w(ω) + s0, (5.37)

where w(ω) is a zero mean white noise with unit variance, G(ω) is a SISO stable filter transfer
function and s0 is a constant scalar. According to the Parseval’s relation [72], the square of
the H2 norm of the transfer function G(ω) is equal to the variance of the signal s(ω) in the
time domain which is denoted by σ2.

σ2 = E[
∥∥(s(k)− s0)2

∥∥] = ‖G(ω)‖2
2 (5.38)

where k represent the time domain notation. As a result, the variance of the signal s(ω)
in the time domain can be directly minimized or constrained by considering the square of
the H2 norm of the transfer function G(ω) in the frequency domain as the minimization
objective or constraints. The ability to restrict the variance of signals in the time domain
can be helpful when dealing with actuator limitations such as input voltage or output stroke
limitations.

Multiple plant measurements

The H∞ and H2 control objectives defined above are based on one frequency response mea-
surement from a single plant. However, plants produced in the same production line may
have slight variations in their frequency response measurements. Moreover, the frequency re-
sponse measurement of a specific plant may have uncertainties or variations due to changing
conditions. The H∞ and H2 control objectives can be modified to accommodate a number
of plant frequency response measurements in the control design process.

Assume that there are l frequency response measurements available for the plant G in
Fig. 5.1. Each of these measurements is denoted by Gi, where i represents the i’s mea-
surement. As a result for each specific closed loop path in Fig. 5.1, there are l closed-loop
transfer functions corresponding to each individual plant measurement. These closed loop
transfer functions are denoted as Hi.

In this dissertation, the H∞ control objective for multiple plant measurements is defined
based on the worst case scenario. Therefore, the H∞ norm constraint given in Eq. (5.26)
can be extended to multiple measurements using the following definition

∀i ∈ 1, ., l : ‖WHHi‖∞ < γ, (5.39)
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which basically constrains the H∞ norm of the closed loop transfer function for each indi-
vidual measurements. Similarly, the H∞ norm minimization objective defined in Eq. (5.34)
can be extended as

min
ω∈Ω, K∈Rn×1

p,g

max
i
‖WHHi‖∞ , (5.40)

where the goal is to find the controller K(z) of order g, which minimizes the largest H∞
norm among all the measurements.

The H2 control objective for multiple plant measurements can be defined as the average
of or the worst H2 norm square of all the plant measurements.

• The average H2 norm: The H2 norm constraint given in Eq. (5.35) can be extended
for multiple plant measurements as follows.

1

l

l∑
i=1

‖Hi‖2
2 ≤ η (5.41)

which constrains the average H2 norm square of all the measurements. The H2 norm
minimization objective defined in Eq. (5.36) can be extended as

min
K∈Rn×1

p,g

n∑
i=1

1

l
‖Hi‖2

2 (5.42)

where the average H2 norm square of all the measurements is minimized by solving for
the controller K(z) of order g.

• The worst H2 norm: The H2 norm constraint given in Eq. (5.35) can also be extended
for multiple plant measurements as follows

∀i ∈ 1, ., l : ‖Hi‖2
2 ≤ η. (5.43)

This inequality constrains the worst H2 norm square of all the measurements. The H2

norm minimization objective defined in Eq. (5.36) can be extended as

min
K∈Rn×1

p

max
i
‖Hi‖2

2 , (5.44)

where the worst H2 norm square of all the measurements is minimized.

5.3 Control Algorithms

The algorithm used to design the controller K(z) in Fig. 5.1 will be discussed in this section.
This algorithm does not rely on the use of a plant model. Instead, the algorithm synthesizes
the controller by directly utilizing the available frequency response data from the plants.
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The control objectives considered for this algorithm were reviewed in section 5.2, where
it is desired to either constrain or minimize the H∞ and H2 norms of closed loop transfer
functions. In this section, the individual convex conditions of H∞ norm control objectives
given in Eqs. (5.39) and (5.40) as well as H2 norm control objectives given in Eqs. (5.41)-
(5.44) are first described. Subsequently, the mixed H2/H∞ control problem are formulated
by combining the convex conditions for both the H∞ and H2 norm control objectives.

Data-driven H∞ control design

The data-driven H∞ control design method is developed to design a stabilizing controller by
minimizing or constraining the H∞ norm of selected sets of closed loop transfer functions.
In [42], Karimi et al. proposed a data-driven H∞ control design methodology for Single
Input-Single Output (SISO) systems. In this section, this algorithm is extended to Multi
Input-Single Output (MISO) systems. The developed control algorithm obtains a necessary
and sufficient convex condition for the H∞ norm, which also guarantees the closed loop
stability. Since the H∞ norm control problem is translated to a convex condition, the
controller can be obtained by solving a convex optimization problem.

The SIMO control block diagram for a MISO system is shown in Fig. 5.1, where the
goal is to obtain the controller K(z) satisfying the control objectives in section 5.2. Eq.
(5.25) represents the closed loop transfer functions in terms of stable factorizations of the
plant and controller given in Eqs. (5.1) and (5.2). As one can notice, all the closed loop
transfer functions have a scalar denominator. However, the numerators can be scalar, vector
or matrix transfer functions.

As an example, the convex condition for the H∞ norm of the closed loop transfer function
from control input disturbance w to control input u will be presented. The procedure for
obtaining the convex condition of all other closed loop transfer functions in Eq. (5.25) is
similar.

Uw→u =
−ÑX

XÑ + Y M̃
(5.45)

where Uw→u ∈ Rn×n
p , since control input disturbance w ∈ Rn and control input signal u ∈ Rn.

The weighted H∞ norm for this transfer function can be defined as follows.

H∞ = ‖WUw→uUw→u‖∞ , (5.46)

where the weighting function, WUw→u ∈ Cn×n, can be any numerically shaped bounded
function of frequency. As mentioned in section 5.2, this weighting function will shape the
maximum singular values of the closed loop transfer function Uw→u across the entire fre-
quency region, if Eq. (5.32) is satisfied.

The following theorem proposes a methodology to convert the data-driven H∞ control
problem into a convex optimization problem for the given H∞ norm defined in Eq. (5.46).
The theorem was first developed for SISO systems in [42]. Theorem 5.3.1 extends the results
to MISO systems.
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Theorem 5.3.1. Assume that the frequency response data for the plant G1×n(ω) with n
inputs and one output is given over the frequency region Ω, and is factorized according to
Eq. (5.1). Given a positive scalar γ, the following two statements are equivalent.

• I) Controller Kn×1(z) stabilizes the plant G1×n(ω) and

‖WUw→uUw→u‖∞ < γ (5.47)

• II) There exists controller stable factorizations X(z)
∣∣
z=ejω

, Y (z)
∣∣
z=ejω

according to Eq.
(5.2), such that the following convex inequality holds,

∀ω ∈ Ω : γ−1σ̄( WUw→u(ω)X(ejω)Ñ(ω) ) < Re( Ñ(ω)X(ejω) + M̃(ω)Y (ejω) ) (5.48)

where σ̄(M) and Re( r ) functions represent the maximum singular value of the matrix
M and the real part of the complex number r, respectively.

Proof: See appendix A.
This theorem defines a necessary and sufficient convex condition for the H∞ norm cri-

terion given in Eq. (5.47). This H∞ criteria can be used to either constraint or minimize
the H∞ norm in Eq. (5.46). It is worth mentioning that the frequency set Ω represents the
entire frequency region. However, it is not practical to consider the condition in Eq. (5.48)
for the entire frequency region. Therefore, a linear frequency grid is utilized to estimate the
set Ω. This frequency grid will be considered throughout this dissertation for the H∞, H2

and mixed H2/H∞ control design problems.
If it is desired to constraint the H∞ norm given in Eq. (5.46), the goal is to find a

controller such that Eq. (5.48) holds for a given value of γ. Using the stable factorizations’
coefficients ρx and ρy mentioned in Eqs. (5.13) and (5.14) to factorize the controller Kn×1(z),
Eq. (5.48) becomes a convex function of the coefficients ρx and ρy.

However, if the objective is to minimize the H∞ norm, the value of γ which is the upper-
bound of the H∞ norm in Eq. (5.47) should be minimized. In this case, γ, ρx, ρy are
all optimization variables and Eq. (5.48) will become nonlinear in terms of these variables.
Therefore, the following iterative bisection algorithm[42] is used to solve this problem.

• 1) Pick a value for γ, which can obtain a feasible solution to Eq. (5.48).

• 2) Given γ, find ρx, ρy such that Eq. (5.48) is satisfied.

• 3) Given ρx, ρy, find the minimum value for γ such that Eq. (5.48) is satisfied.

• 4) Go back to step 2 until the difference between the value of γ in step 2 and 3 is
smaller than a desired threshold.

The iterative bisection algorithm will not necessarily converge to the global optimal solution.
Therefore, the controller obtained using this algorithm may only locally minimize the H∞
norm given in Eq. (5.46).
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The convex condition proposed in theorem 5.3.1 is a necessary and sufficient condition
for the H∞ norm criterion given in Eq. (5.47). In [41], a sufficient convex condition has been
proposed for this criterion. For comparison purposes, this results is reviewed in the following
theorem for MISO systems, but it is applicable to MIMO systems [41]. The controller design
results based on theorems 5.3.1 and 5.3.2 are compared in chapter 6.

Theorem 5.3.2. Assume that the frequency response data for the plant G1×n(ω) with n
inputs and one output is given over the frequency region Ω, and is factorized according to
Eq. (5.1). Given a positive scalar γ and the initial stabilizing controller K0(z) = X0(z)Y0(z)−1,
the H∞ constraint given in Eq. (5.47) is satisfied, if there exists controller stable factoriza-
tions X(z)

∣∣
z=ejω

, Y (z)
∣∣
z=ejω

according to Eq. (5.2), such that the following LMI is satisfied

∀ω ∈ Ω :

[
P ?P0 + P ?

0P − P ?
0P0 (WUw→uXÑ)?

WUw→uXÑ γIn

]
� 0 (5.49)

where
P = ÑX + M̃Y, (5.50)

and
P0 = ÑX0 + M̃Y0. (5.51)

Proof: See [41].
This algorithm requires an initial stabilizing controller K0(z). Moreover, the resulting

controller K(z) = X(z)Y −1(z) does not necessarily stabilize the closed loop system. Theo-
rem 5.3.4, which is reviewed in the next section and has been proposed in [41], will be used
to guarantee closed loop stability.

A single set of plant measurement is considered in theorems 5.3.1 and 5.3.2. As mentioned
in section 5.2, an H∞ constraint norm for multiple plant measurements is defined to be the
worst H∞ norm. Therefore, theorem 5.3.1 can be extended for multiple plant measurements
by replacing Eq. (5.48) with the following set of inequalities

∀i, ∀ω ∈ Ω : γ−1σ̄( WUw→u(ω)X(ejω)Ñi(ω) ) < Re( Ñi(ω)X(ejω) + M̃i(ω)Y (ejω) ), (5.52)

where i represents the i’s plant measurement, and M̃i and Ñi represent stable factorizations
for that measurement. Similarly, theorem 5.3.2 can be extended for multiple plant measure-
ments by replacing Eqs. (5.61)-(5.51) with the following set of Linear Matrix Inequalities
(LMIs)

∀ω ∈ Ω :

[
P ?
i P0,i + P ?

0,iPi − P ?
0,iP0,i (WUw→uXÑi)

?

WUw→uXÑi γIn

]
� 0, (5.53)

Pi = ÑiX + M̃iY, (5.54)

and
P0,i = ÑiX0 + M̃iY0. (5.55)

As one can observe from Eq. (5.52) or Eqs. (5.53)-(5.55), the goal is to find a common
value of γ and controller coefficients ρx and ρy for all the plant measurements, and the value
of γ will represent the upper-bound for the worst H∞ norm of all the plant measurements.



CHAPTER 5. DATA DRIVEN CONTROL DESIGN 50

Data-driven H2 control design

The data-driven H2 control design methodology used here was developed in [41] for MIMO
systems, where a convex upper-bound for the H2 norm is obtained using an affine approx-
imation of quadratic terms [41, 71]. The H2 constraint or minimization control objectives
defined in Eqs. (5.35) and (5.36) are imposed by constraining or minimizing this upper-
bound. Consider the following H2 norm for the MISO system given in Fig. 5.1

H2 = QEr→e ‖Er→e‖
2
2 +QUr→u ‖Ur→u‖

2
2 , (5.56)

where Er→e is a SISO and Ur→u is a SIMO transfer function. QEr→e and QUr→u are scalar
weighting functions. The upper-bound for the H2 norm defined in Eq. (5.56) can be written
as

H2 6
∫

Ω

[QErTr(ΓEr→e) +QUr→uTr(ΓUr→u)] dω, (5.57)

where ΓEr→e(ω) ∈ R and ΓUr→u(ω) ∈ Rn×n are the positive definite variables. Theorem 5.3.3
was developed in [41] to impose constraint on this upper-bound of the H2 norm. Please note
that the upper-bound for any other closed loop transfer functions can be formulated in a
similar fashion.

Theorem 5.3.3. Assume that the frequency response data for the plant G1×n(ω) with n
inputs and one output is given over the frequency region Ω, and is factorized according to
Eq. (5.1). Given a positive scalar η and an initial stabilizing controller K0(z) = X0(z)Y0(z)−1,
the H2 norm defined in Eq. (5.56) and its upper-bound in Eq. (5.57) are constrained by η

H2 6
∫

Ω

[QErTr(ΓEr→e) +QUr→uTr(ΓUr→u)] dω 6 η, (5.58)

if Eq. (5.58) is satisfied and there exists controller stable factorizations X(z)
∣∣
z=ejω

, Y (z)
∣∣
z=ejω

according to Eq. (5.2), such that the following LMIs are satisfied

∀ω ∈ Ω :

[
ΓEr→e Y M̃

M̃?Y ? P ?P0 + P ?
0P − P ?

0P0

]
� 0 (5.59)

and

∀ω ∈ Ω :

[
ΓUr→u XM̃

M̃?X? P ?
kP0 + P ?

0P − P ?
0P0

]
� 0. (5.60)

where P and P0 are defined in Eqs. (5.50) and (5.51), respectively.

Proof: See [41].
Theorem 5.3.3 imposes a sufficient convex condition on the upper-bound of the H2 norm

defined in Eq. (5.57) using the variable η. This variable can be utilized to either constraint
or minimize the H2 norm upper-bound according to Eqs. (5.35) and (5.36).
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Notice that the algorithm in theorem 5.3.3 uses the initial controller to find the current
controller. Therefore, the H2 norm conditions in Eqs (5.59) and (5.60) can be reformulated
as an iterative approach by replacing those equations with the following equations

∀ω ∈ Ω :

[
ΓEr→e YkM̃

M̃?Y ?
k P ?

kPk−1 + P ?
k−1Pk − P ?

k−1Pk−1

]
� 0, (5.61)

and

∀ω ∈ Ω :

[
ΓUr→u XkM̃

M̃?X?
k P ?

kPk−1 + P ?
k−1Pk − P ?

k−1Pk−1

]
� 0, (5.62)

where the subscript k is representing the iteration number and the parameter Pk is defined
as follows

Pk = ÑXk + M̃Yk. (5.63)

In this iterative approach, the controller stable factorizations Xk−1 and Yk−1 from the pre-
vious iteration k − 1 are used to find the stable factorizations Xk and Yk for the current
iteration k. Therefore, the controller is obtained by iterating over its stable factorizations.
According to [41, 71], the following two properties can be proved for this iterative approach.

• 1) If the algorithm converges, this upper-bound converges to the real value of the H2

norm defined in Eq. (5.56).

• 2) Considering the minimization of the H2 norm upper-bound defined in Eq. (5.57),
the value of the upper-bound is guaranteed to decrease at each iteration.

Theorem 5.3.3 can be used to obtain a controller which impose H2 constraint or minimiza-
tion objectives on the upper-bound of the H2 norm in terms of convex conditions. However,
the obtained controller does not necessarily stabilize the closed loop system. Therefore, the
following theorem has been proposed in [41] to guarantee closed loop stability.

Theorem 5.3.4. Given a strictly proper plant G, an initial stabilizing controller K0 =
X0Y

−1
0 and a feasible solution to the following LMI,

∀ω ∈ Ω : P ∗P0 + P ∗0P � 0 (5.64)

where P0 and P are defined in Eqs. (5.50) and (5.51), and K = XY −1. The controller K
stabilizes the closed loop system, if

• The initial controller K0 and the controller K share the same poles on the unit circle.

• The following inequality holds.

∀ω ∈ Ω : Y ?Y0 + Y ?
0 Y − Y ?

0 Y0 � 0 (5.65)
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Proof: See [41].
Another approach to guarantee the closed loop stability is to consider the mixed H2/H∞

control problem, where the convex condition for the H∞ norm criterion developed in the-
orem 5.3.1 guarantees the closed loop stability. The mixed H2/H∞ control design will be
illustrated in the next section.

The above H2 control design methodology was developed for a single plant measurement.
In the case of multiple plant measurements, as mentioned in section 5.2, the H2 norm criteria
can be defined either as the worst H2 norm or as the average H2 norm. Considering l plant
measurements with stable factorizations M̃i and Ñi where i represents the i′s measurement,
the H2 norm upper-bound will be defined as follows.

• Worst case H2 norm: The worst case H2 norm for l measurements is denoted as Hworst
2

and is defined as follows

Hworst
2 = max

i∈{1,2,..,l}
QEr→e ‖Er→e,i‖

2
2 +QUr→u ‖Ur→u,i‖

2
2 . (5.66)

where Er→e,i and Ur→u,i represent the closed loop transfer functions from r to e and
u in Fig. 5.1 using the i′s plant measurement. In this case, common positive defi-
nite frequency based variables, ΓSr and ΓUr , are considered for all the measurements.
Therefore, Eqs. (5.58), (5.61) and (5.62) can be rewritten as follows.

Hworst
2 6

∫
Ω

[QEr→eTr(ΓEr→e) +QUr→uTr(ΓUr→u)] dω 6 η (5.67)

where,

∀i ∈ 1, .., l, ∀ω ∈ Ω :

[
ΓEr→e YkM̃i

M̃?
i Y

?
k P ?

k,iPk−1 + P ?
k−1,iPk,i − P ?

k−1,iPk−1,i

]
� 0, (5.68)

∀i ∈ 1, .., l, ∀ω ∈ Ω :

[
ΓUr→u XkM̃i

M̃?
i X

?
k P ?

k,iPk−1,i + P ?
k−1,iPk,i − P ?

k−1,iPk−1,i

]
� 0 (5.69)

and also
Pk,i = ÑiXk + M̃iYk. (5.70)

• Average Haverage
2 norm: The average H2 norm for l measurements is denoted as Haverage

2

and is defined as follows

Haverage
2 =

1

l

l∑
i=1

QEr→e ‖Er→e,i‖
2
2 +QUr→u ‖Ur→u,i‖

2
2 . (5.71)

In this case, for each individual measurement i, the positive definite frequency based
variables ΓiEr→e

and ΓiUr→u
are defined. Therefore, Eqs. (5.58), (5.61) and (5.62) can

be written as follows

Haverage
2 6

1

l

l∑
i=1

∫
Ω

[QEr→eTr(Γ
i
Er→e

) +QUr→uTr(Γ
i
Ur→u

)] dω 6 η (5.72)
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where,

∀i ∈ 1, .., l, ∀ω ∈ Ω :

[
ΓiEr→e

YkM̃i

M̃?
i Y

?
k P ?

k,iPk−1 + P ?
k−1,iPk,i − P ?

k−1,iPk−1,i

]
� 0, (5.73)

∀i ∈ 1, .., l, ∀ω ∈ Ω :

[
ΓiUr→e

XkM̃i

M̃?
i X

?
k P ?

k,iPk−1,i + P ?
k−1,iPk,i − P ?

k−1,iPk−1,i

]
� 0, (5.74)

and also Pk,i is given in Eq. (5.70).

The H2 norm can be either minimized or constrained by imposing minimization or con-
straint criteria on the upper-bound of the H2 norm given in Eqs. (5.58), (5.67) and (5.72).
The inequalities in these equations are linear in terms of unknown variables which are ΓEr→e ,
ΓUr→u , ρx and ρy and η. Moreover, the inequalities given in Eqs. (5.61), (5.62), (5.68), (5.69),
(5.73) and (5.74) are all linear matrix inequalities (LMIs). Therefore, the H2 control prob-
lem can be formulated as a convex optimization problem. The convex optimization solvers
are used to solve this problem. However, the solver should be capable of handling the LMIs
as the constraints.

Data-driven mixed H2/H∞ control design

The convex conditions for either H2 and H∞ control design criteria are illustrated above.
These H2 and H∞ criteria can be combined to form a mixed H2/H∞ control design problem.
The main advantage of mixing the H2 and H∞ norm criteria is the capability of considering
both these criteria in the controller design step.

In order to formulate the mixed H2/H∞ control design problem, the sufficient convex
conditions for the H2 norm criteria in theorem 5.3.3 are used to impose the H2 norm con-
straints or minimization objectives. The conditions for the H∞ norm criteria are imposed
by using the necessary and sufficient convex conditions in theorem 5.3.1, or the sufficient
conditions in theorem 5.3.2. The H∞ conditions in theorem 5.3.1 will guarantee the closed
loop stability, while the conditions in theorem 5.3.2 cannot guarantee the closed loop stabil-
ity without considering the additional conditions given in theorem 5.3.4. Moreover, the H∞
conditions in theorem 5.3.1 are necessary and sufficient, while the H∞ conditions in theo-
rem 5.3.2 are only sufficient. Therefore, the controller design algorithm in the next chapter
mainly utilizes theorem 5.3.1 for imposing the H∞ criteria as part of the mixed H2/H∞
control design problem. However in section 6.4, the design results for the mixed H2/H∞
control problem, when theorem 5.3.1 is utilized are compared with the corresponding results
when theorem 5.3.2 is used instead of theorem 5.3.1.

Here as an example, the following mixed H2/H∞ control design problem is considered.

min
Xk∈RHn×1

∞ ,Yk∈RH∞
H2, objective defined in Eq. (5.42) or Eq. (5.44)

subject to H∞, constraints defined in Eq. (5.39),

H2, constraints defined in Eq. (5.41) or Eq. (5.43).

(5.75)
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Figure 5.2: Mixed H2/H∞ design algorithm flowchart.

where the objective is the minimization of H2, objective norm, subject to constraints imposed
in terms of H∞ and H2 norms.

The mixed H2/H∞ control design scenario uses the design algorithm flowchart shown in
Fig. 5.2. In this flowchart, k represents the iteration number and K is the total number
of iterations used for obtaining the final iteration of the controller. Xk(e

jω) ∈ Cn×1 and
Yk(e

jω) ∈ C are the frequency responses of the controller factorizations, which are transfer
functions or polynomial in the z domain, evaluated at z = ejω. On the other hand, Ñi(ω) ∈
C1×n, M̃i(ω) ∈ C are frequency response data points of stable factorizations of the i’s plant
measurement.

The very first step to design a mixed H2/H∞ controller is to design a controller which
satisfies the H∞, constraints. The H∞ control design algorithm proposed in theorem 5.3.1
stabilizes the closed loop system. Therefore, the roots of the common denominator for all
the closed loop transfer functions, Ñi(ω)Xk(e

jω) + M̃i(ω)Yk(e
jω), will be inside the unit

circle. This common denominator obtained at iteration k is used to normalize the plant
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factorizations at iteration k + 1 as follows

∀i ∈ 1, .., l, ∀ω ∈ Ω :

Ñi(ω)← Ñi(ω)

Ñi(ω)Xk(ejω) + M̃i(ω)Yk(ejω)
,

M̃i(ω)← M̃i(ω)

Ñi(ω)Xk(ejω) + M̃i(ω)Yk(ejω)
,

(5.76)

where Ñi(ω) and M̃i(ω) on the left side of the arrows represent the plant factorizations used at
iteration k+1. The next step is to design a controller which minimizes the H2, objective subject
to H∞, constraints. Finally, the H2, constraints will be included in the optimization problem and
according to the flowchart, this optimization problem will be iterated over for the remaining
iterations. The main reason for the step by step inclusion of the H2, objective and H2, constraints

is that the convex condition of the H2 norm is a sufficient and not a necessary solution, and
depends on the plant factorizations M̃i(ω), Ñi(ω). Therefore, the normalizations of these
parameters in Eq. (5.76) can be helpful in avoiding locally optimal solutions.
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Chapter 6

Application of Data Driven Control
Design to HDDs

In this chapter, the data-driven mixed H2/H∞ algorithm proposed in chapter 5 is used to
design a track-following controller for a dual-stage HDD. The dual-stage HDD actuators
have several resonance modes [9, 37]. In most model-based robust control design methodolo-
gies, including each of these resonance modes in the actuator models directly increases the
controller order [72]. However by using the data-driven control methodology, all these modes
are already included in the system frequency response measurements and will be considered
in the controller design step without any direct effect on the controller order [14].

The feedback structure considered for the dual-stage HDD control design is presented
in section 6.1. The feedback block is a SIMO controller with the sensitivity decoupling
structure. However, the controllers inside this block will be designed using two different
control synthesis strategies: the sequential SISO and SIMO data-driven design strategies,
and the results obtained from these strategies will be compared with each other. In the
sequential SISO design strategy, the dual-stage closed loop system is decoupled into two
SISO loops, and SISO controllers are sequentially synthesized for each loop. On the other
hand, the SIMO design strategy will design a SIMO controller for the MISO plant in one
step.

The control objectives for the dual-stage HDD, represented in terms of H∞ and H2 norms
of closed loop transfer functions, are defined in section 6.2. These control objectives are con-
verted into convex optimization problems in section 6.3 for both sequential SISO and SIMO
design strategies. In section 6.4, the controllers are designed by solving these optimiza-
tion problems for five sets of actuators’ frequency response measurements, and the designed
controllers using both the sequential SISO and SIMO design strategies are compared.
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Figure 6.1: Sensitivity decoupling control Structure for a dual-stage HDD. Ĝm(z) represents
an estimated Mili-Actuator (MA) transfer function.

6.1 Feedback Structure

The structure of a dual-stage HDD has been described in chapter 2. The Voice Coil Motor
(VCM) and Mili-Actuator (MA) are the two actuators used for nano-positioning the head
on the data tracks. These two actuators are respectively denoted as Gv and Gm in the dual-
stage feedback structure shown in Fig. 6.1. In this block diagram, there are four sources of
external noises and disturbances considered to be applied on the HDD. n is contaminating
the position error, e, and is called the measurement noise. wv and wm are the control input
noises and the r is the track run-out. The major sources for these noises and disturbances
are the windage caused by the rotation of the magnetic disk, external vibrations and also
the measurement noises.

The HDD actuators have uncertain dynamics, primarily consisting of resonance modes
at high frequency regions, which make the control design problem challenging. The data-
driven control design introduced in chapter 5 uses several actuator measurements as the
representative of plant uncertainties and a controller is synthesized that stabilizes the closed
loop system and achieves the desired performance characteristics for all the measurements.
These performance characteristics are considered to be in terms of H∞ and H2 norms of
closed loop transfer functions, where these norms can be constrained or minimized.

The common control structure used in the dual-stage HDD is the sensitivity decoupling
structure illustrated in Fig. 6.1. As mentioned in chapter 2, the main advantage of using
the sensitivity decoupling structure is that the sensitivity transfer function for the dual-stage
structure, Er→e, can be written as the product of VCM and MA sensitivity transfer functions.
Moreover, in the case of a MA failure, the signals um and ŷm in Fig. 6.1 will be disconnected,
and the HDD will perform as a single-stage HDD as shown in Fig. 6.2. The effect of the MA
control input noise wm on the VCM single-stage closed loop signals will not be considered in
the controller design, since it is assumed that the effect of control input noises are lumped
into the track run-out and measurement noise spectrum. This is a standard practice for
designing a track following controller in the hard disk drive industry. However, if the noise
spectrum for the MA control input noise is known, the transfer functions from the MA
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Figure 6.2: The single-stage HDD with VCM as the actuator. The cross-marks determine
the signals which will be eliminated when switching to the single-stage actuation. The values
of these signals will be zero.

control input noise to different closed loop signals can be included in the design process.
The sensitivity decoupling control structure depicted in Fig. 6.1 should be designed such

that both the dual-stage and single-stage loops respectively depicted in Figs. 6.1 and 6.2 are
stable and achieve the desired control objectives presented in section 6.2. The following two
control design strategies are used to synthesize the controllers in the sensitivity decoupling
structure.

• Sequential SISO design strategy : This is a two step design process. In the first step,
the VCM SISO compensator Kv is designed for the single-stage loop given in Fig. 6.2.
Then in the next step, the compensator Kv is fixed and the MA SISO compensator
Km for the dual-stage loop in Fig. 6.1 is designed.

• SIMO design strategy : In this design strategy, both the VCM compensator Kv and
the MA compensator Km are designed simultaneously. The controller block diagram
in the sensitivity decoupling structure given in Fig. 6.1 can be expressed as follows

K̄ =

[
K̄1

K̄2

]
=

[
Kv(1 +KmĜm)

Km

]
. (6.1)

As a result, the sensitivity decoupling compensators Kv and Km will be obtained in
terms of K̄.

Kv =
K̄1

1 + K̄2Ĝm

, (6.2)

Km = K̄2. (6.3)

In the SIMO design strategy, the SIMO controller K̄ is designed such that it stabilizes
and achieves the desired control objectives for both the VCM single-stage loop in
Fig. 6.2 and the dual-stage loop in Fig. 6.1. Subsequently, the compensators Kv and
Km, are obtained as a function of K̄ utilizing Eqs. (6.2) and (6.3).
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6.2 Control Objectives

The data-driven control methodology presented in chapter 5 will consider the control objec-
tives in terms of H∞ and H2 norms of closed loop transfer functions in the frequency domain.
The H∞ norms will shape the frequency responses of the closed loop transfer functions and
also guarantee closed loop stability. The H2 norms of closed loop transfer functions will be
used to constraint and/or minimize the variances of the corresponding signals in the time
domain.

H∞ norm

The H∞ norm of closed loop transfer functions for both the dual-stage and the single-stage
loops in Figs. 6.1 and 6.2 will be constrained. According to theorem 5.3.1, these constraints
will guarantee closed loop stability for both of these loops.

The following H∞ norm constraints for the single-stage HDD in Fig. 6.2 will be imposed.

∀i ∈ 1, .., l :
∥∥WEs

r→e
Es

(r→e)i
∥∥
∞

< 1,
∥∥WUs

r→uv
U s

(r→uv)i

∥∥
∞

< 1,∥∥WEs
wv→e

Es
(wv→e)i

∥∥
∞

< 1,
∥∥WUs

wv→uv
U s

(wv→uv)i

∥∥
∞

< 1.
(6.4)

where WH(ω) ∈ Co×p is a bounded weighting function in the frequency domain for the
closed loop transfer function Hp×q, and the frequency argument (ω) is eliminated from the
notation for simplicity. The superscript Hs represents the closed loop transfer functions for
the single-stage HDD, which utilizes only the VCM loop, as depicted in Fig 6.2. The closed
loop transfer functions are denoted using upper-case letters, with their subscripts within
parenthesis representing the input to output causality, while the subscript i represents the
closed loop response using the ith frequency response data. l denotes the total number of
frequency response data sets used to synthesize the controller. As an example, Es

(wv→e)2
denotes the closed loop transfer function from input wv to output e in the block diagram
in Fig. 6.2 using the second frequency response data set. As mentioned in chapter 5, these
weighting functions can be any bounded numerically shaped weighting functions.

The H∞ norm constraints for the dual-stage HDD in Fig. 6.1 can be considered in a
similar fashion to Eq. (6.4).

∀i ∈ 1, .., l :
∥∥WEr→eE(r→e)i

∥∥
∞ < 1,

∥∥WUr→uU(r→u)i

∥∥
∞ < 1,∥∥WEw→eE(w→e)i

∥∥
∞ < 1,

∥∥WUw→uU(w→u)i

∥∥
∞ < 1,

(6.5)

where

u =

[
uv
um

]
, (6.6)

and

w =

[
wv
wm

]
. (6.7)
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Since the control input as well as control input disturbance have two components, the closed-
loop transfer functions in Eq. (6.5) are not necessarily SISO transfer functions and the H∞
norm constraints will shape their maximum singular values across the frequency regions as
explained in section 5.2.

If it is desired to shape the magnitude of individual SISO closed loop transfer functions
in the dual-stage settings, the H∞ norm for that specific SISO transfer function can be
considered. The closed loop transfer functions E(w→e)i, U(r→u)i and U(w→u)i all have multiple
inputs or multiple outputs. Therefore, the closed loop SISO transfer functions for each
individual elements of these transfer functions will be considered. The individual closed loop
transfer functions for the tracking error are

∀i ∈ 1, .., l :
∥∥WEwv→eE(wv→e)i

∥∥
∞ < 1,

∥∥WEwm→eE(wm→e)i
∥∥
∞ < 1, (6.8)

and for the control inputs are

∀i ∈ 1, .., l :∥∥WUr→uv
U(r→uv)i

∥∥
∞ < 1,

∥∥WUwv→uv
U(wv→uv)i

∥∥
∞ < 1,

∥∥WUwm→uv
U(wm→uv)i

∥∥
∞ < 1,∥∥WUr→um

U(r→um)i

∥∥
∞ < 1,

∥∥WUwv→um
U(wv→um)i

∥∥
∞ < 1,

∥∥WUwm→um
U(wm→um)i

∥∥
∞ < 1.

(6.9)

H2 norm

The primary control objective in the HDD is to minimize the variance of the position tracking
error, E[e2(k)] = ‖e‖2

2, despite the existence of all the disturbances in the system. We will
assume that the disturbances r, n, wv and wm shown in Fig. 6.1 can be accurately described
by filtering uncorrelated unit variance white noises through the transfer functions R(ω),
N(ω), Wv(ω) and Wm(ω), respectively. Therefore, the average variance of the tracking error
for the dual-stage loop will be expressed using the H2 norms of closed loop transfer functions
in the frequency domain

1

l

l∑
i=1

‖ei‖2
2 =

1

l

l∑
i=1

(
∥∥E(r→e)iR

∥∥2

2
+
∥∥E(n→e)iN

∥∥2

2
+
∥∥E(wv→e)iWv

∥∥2

2
+
∥∥E(wm→e)iWm

∥∥2

2
).

(6.10)
where i denotes the ith frequency response data set. The average variance of the tracking
error for the single-stage VCM loop depicted in Fig. 6.2 will be expressed in a similar fashion

1

l

l∑
i=1

‖esi‖
2
2 =

1

l

l∑
i=1

(
∥∥Es

(r→e)iR
∥∥2

2
+
∥∥Es

(n→e)iN
∥∥2

2
+
∥∥Es

(wv→e)iWv

∥∥2

2
). (6.11)

The SIMO and sequential SISO control design strategies, which were introduced in sec-
tion 6.1, will be used to synthesize the dual-stage controller in Fig. 6.1. In the SIMO control
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strategy, the VCM compensator Kv and the MA compensator Km are simultaneously de-
signed in order to minimize the dual-stage H2 tracking error criterion in Eq. (6.10) under
H∞ and H2 constraints. In the sequential SISO control strategy, the VCM compensator
Kv is first synthesized in order to minimize the SISO H2 tracking criterion in Eq. (6.11)
under H∞ and H2 constraints. Subsequently, Kv is kept fixed and the MA compensator
Km is synthesized in order to minimize the H2 criterion in Eq. (6.10) under H∞ and H2

constraints.
It is also necessary to constrain the average variances of several signals to take into

account actuator limitations. There is a limitation on the amplitude of the VCM control
input signal in the time domain and its average variance has to be constrained. The following
equations constrain the average variance of the VCM control input in terms of H2 norms in
the frequency domain for the single-stage VCM feedback loop depicted in Fig. 6.2

1

l

l∑
i=1

‖usvi‖
2
2 =

1

l

l∑
i=1

(
∥∥U s

(r→uv)iR
∥∥2

2
+
∥∥U s

(n→uv)iN
∥∥2

2
+
∥∥U s

(wv→uv)iWv

∥∥2

2
) < ηusv ,

(6.12)

and for the dual-stage feedback loop depicted in Fig. 6.1

1

l

l∑
i=1

‖uvi‖2
2 =

1

l

l∑
i=1

(
∥∥U(r→uv)iR

∥∥2

2
+
∥∥U(n→uv)iN

∥∥2

2
+
∥∥U(wv→uv)iWv

∥∥2

2
+
∥∥U(wm→uv)iWm

∥∥2

2
) < ηuv .

(6.13)

In the case of the MA, there are limitations on the amplitude of the MA control input as
well as the MA output signals in the time domain. Therefore, the average variances of these
two signals have to be constrained. Here for simplicity, only the average variance of the
MA output will be constrained. However if necessary, the average variance of the MA input
can also be considered as an additional constraint. The MA is only used in the dual-stage
feedback loop depicted in Fig. 6.1, and the average variance of its output can be constrained
in terms of H2 norms in the frequency domain as follows

1

l

l∑
i=1

‖ymi‖2
2 =

1

l

l∑
i=1

(
∥∥Y(r→ym)iR

∥∥2

2
+
∥∥Y(n→ym)iN

∥∥2

2
+
∥∥Y(wv→ym)iWv

∥∥2

2
+
∥∥Y(wm→ym)iWm

∥∥2

2
) < ηym .

(6.14)

The positive upper-bounds ηusv , ηuv and ηym are selected by the designer and will be specified
in section 6.4.
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6.3 Control Algorithms

In the previous section, the mixed H2/H∞ control objectives were defined by the general
optimization problem given in Eq. (5.75). In this section, this general optimization prob-
lem will be specified in terms of the dual-stage feedback structure given in Fig. 6.1. The
optimization problem will then be solved using both the sequential SISO and SIMO control
design strategies described in section 6.1.

These optimization problems are formulated as convex optimization problems. The con-
vex conditions for the control objectives defined in terms of H∞ and H2 norms were derived
in section 5.3. The H∞ norms control objectives are converted into their necessary and
sufficient convex conditions, and the H2 norms control objectives are approximated by their
sufficient convex conditions.

In the sequential SISO design strategy, first the VCM compensator Kv is designed con-
sidering the single-stage VCM loop depicted in Fig. 6.2. The optimization problem that will
be solved to synthesize Kv is

minimize
1

l

l∑
i=1

‖es
i‖

2
2 defined in Eq.(6.11)

subject to Eqs. (6.4),

Eqs. (6.12) .

(6.15)

After the VCM compensator Kv has been designed, the MA compensator Km is subsequently
designed considering the dual-stage loop depicted in Fig. 6.1 and fixing the compensator Kv.
The optimization problem that will be solved to synthesize Km, while keeping Kv fixed is

minimize
1

l

l∑
i=1

‖ei‖2
2 defined in Eq.(6.10)

subject to Eqs. (6.5), (6.8), (6.9),

Eqs. (6.13), (6.14).

(6.16)

The SIMO strategy can be used to obtain the compensators Kv and Km, simultaneously.
In this methodology, the dual-stage tracking error in Eq. (6.10) is minimized, while satisfying
H∞ and H2 constraints for both the VCM single-stage loop in Fig 6.2 and the dual-stage loop
in Fig. 6.1. Therefore, the obtained controller is not necessarily minimizing the single-stage
VCM loop tracking error in Eq. (6.11). The optimization problem for the SIMO methodology
that will be solved to synthesize the compensator K̄ in Eq. (6.1) is

minimize
1

l

l∑
i=1

‖ei‖2
2 defined in Eq.(6.10)

subject to Eqs. (6.4), (6.5), (6.8), (6.9),

Eqs. (6.12), (6.13), (6.14).

(6.17)

After obtaining K̄, the compensators Kv and Km are obtained from Eqs. (6.2) and (6.3).
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6.4 Control Design Results

Design Settings

In this section, the data driven mixed H2/H∞ control design methodology will be used to
design a track following controller for a dual-stage HDD. As previously stated, the data-
driven design methodology only uses frequency response measurements of the plant, without
requiring models of the actuators. Here, five sets of frequency response data are used to
represent dynamics variations for each actuator. Hence, l = 5 in Eqs. (6.4)-(6.17). These
five sets of frequency response data are plotted in Fig. 6.3. If a higher number of frequency
response data is required to represent system dynamics, those measurements can be easily
included in the design process. A linear frequency grid with 200 points will be used to
span the operating frequency region Ω, between 10-19,000 Hz. This frequency grid will be
employed throughout this chapter to characterize the open loop and closed loop transfer
functions, and synthesize all the compensators.

The frequency response plots shown in Fig. 6.3 were generated using realistic models of
both the VCM and the MA. The data-driven design methodology presented in this disserta-
tion was also used with real frequency response data provided by our HDD industrial research
partners. However, this data is considered confidential and proprietary by our partners and
cannot be presented here. Therefore, the frequency response data plotted in Fig. 6.3 were
produced to mimic real measurements. We emphasize that, although actual transfer func-
tions Gvi(z) and Gmi(z) were constructed to respectively characterize dynamics variations in
the VCM and MA, only the frequency response data generated by these transfer functions,
in the form of factorizations Nvi(ω), Mvi(ω) and Nmi(ω), Mmi(ω), were used in the control
synthesis algorithms, where i denotes the ith frequency response data set.

Noise Spectrum

The noise spectrums considered for the H2 norm computations in Eqs. (6.10)-(6.14) are
shown in Fig. 6.4 for the run-out R and measurement noise N . The spectrums are denoted
with the upper-case letters of the corresponding noises. These spectrums data will be used
directly in the design process without any model fitting. According to our HDD industrial
research partners, the spectrum for the control input noises can be set to zero, Wv = 0 and
Wm = 0, since the spectrums given in Fig. 6.4 are obtained by assuming that the effects of
control input noises are lumped into the run-out R and measurement noise N spectrums.
Although the spectrum for the control input noises are set to zero, the closed loop transfer
functions from control input noises to control inputs and error signals are considered in the
design as H∞ constraints.

H∞ Constraints

TheH∞ constraints used in the optimization problems are weighted using numerically shaped
bounded weighting functions over the frequency regions. As mentioned in section 5.2, the
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Figure 6.3: Hard disk drive actuators frequency response measurement data sets used in the
design. Five measurements from each actuator is used in the design. Gv and Gm represent
VCM and MA actuators’ transfer functions, respectively. The actuators output units for
both the VCM and the MA are 10 nm.

Figure 6.4: The magnitude Bode plots of the estimated spectrums of external noises applied
on the hard disk drive. R and N respectively represent the spectrums for the run-out r and
the measurement noise n. The units for both external noises are 10 nm.
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SISO transfer functions are shaped using the inverse of these weighting functions. Moreover,
the maximum singular values of the MIMO transfer functions are shaped using the inverse
of the minimum singular values of these weighting functions. These shaping functions are
shown with light blue dotted lines in appendix B and are called the H∞ constraint limits.
The scalar γ used in all H∞ constraints is chosen to be 1.

H2 Constraints

The H2 constraints in Eqs. (6.12), (6.13) and (6.14) are used to constraint the average
variances of the VCM input and the MA output stroke in the time domain for the set of
l = 5 frequency response data sets. As mentioned in section 5.3, the worst case H2 can be also
used to constraint the maximum variance among the l frequency response data sets. Assume
that the maximum allowable amplitude of a zero mean Gaussian random signal in the time
domain is X. The standard practice in the magnetic recording industry is to constrain the
3σ value of the signal to be within X, in order to assure with a 99.7% probability that the
random signal will remain within X, assuming that the signal is Gaussian. The maximum
allowable VCM control input is usually 5 V olts, therefore its standard deviation and variance
should be limited to be smaller than 5/3 V olts and (5/3)2 V olts2, respectively. Since the
actuator models and noise spectrums given in Figs. 6.3 and 6.4 are only an approximation
of the real system, therefore the upper-limits for the average variances of the VCM control
input both in the VCM single-stage and dual-stage loops are rounded up to be

ηusv = 2.02 V olts2, ηuv = 2.02 V olts2, (6.18)

respectively.
The MAs used in HDDs have limited output strokes. A MA with a smaller output stroke

is generally cheaper to fabricate, more reliable and has higher resonance mode frequencies
than MAs with larger strokes. On the other hand, decreasing the MA stroke can affect the
performance of the servo system. In order to study the effect of the MA output stroke on the
overall HDD track following servo performance, four different values for the average variance
upper-limit of the MA output stroke are considered here

ηym = 442, 422, 402, 382 nm2. (6.19)

Controller Structure

The sensitivity decoupling controller structure given in Fig. 6.1 is used for the dual-stage
HDD control design. The estimated model of the MA plant used in the controller structure
is considered to be a pure delay

Ĝm =
1

z
. (6.20)

Moreover, an integrator of the form z
1−z is incorporated into the VCM controller, in order

to eliminate the steady state tracking error due to DC disturbances. As mentioned in
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section 6.1, the compensators Kv and Km can be obtained using either the sequential SISO
or SIMO design strategies. In the sequential SISO design strategy, these compensators
are obtained in two consecutive steps, while in the SIMO design strategy, Kv and Km are
obtained simultaneously.

Stable Factorizations

The stable factorizations of a SIMO controller with an integrator included in the first element
of the controller was derived in Eqs. (5.20) and (5.21). In these equations, the value of the
parameter m is 2, since the SIMO controller for the dual-stage HDD has two outputs. The
controller order parameter, n, will be selected to be 25.

In the sequential SISO design strategy, first the compensator Kv is obtained using the
VCM single-stage loop in Fig. 6.2. Then, the compensator Km is obtained using the dual-
stage loop in Fig. 6.1 by fixing the compensator Kv. The first SISO design step for obtaining
the compensator Kv uses the controller stable factorizations in Eqs.(5.20) and (5.21), which
consider an integrator in the controller structure. Since this is a SISO loop, m = 1 is
chosen. The compensator Km uses stable factorizations given in Eqs. (5.11) and (5.12) with
m = 1. The compensator order parameters, n, for Kv and Km will be chosen to be 16
and 20, respectively. The reasoning behind choosing these values for the compensator order
parameters are provided later in this section in the explanation of Fig. 6.11.

The actuators in the HDD are stable actuators. Therefore, the initial stable factorizations
of the actuators frequency response measurements are obtained using Eqs. (5.3) and (5.4).
As mentioned in the mixed H2/H∞ flowchart in Fig. 5.2, these stable factorizations will be
normalized at the end of each iteration using Eq. (5.76).

Design Scenarios

Once the stable factorizations for the actuators and controllers are defined, the convex opti-
mization problems mentioned in section 6.3 are formulated and solved. The sequential SISO
controller design strategy solves the optimization problems formulated in Eqs. (6.15) and
(6.16) for the compensators Kv and Km, respectively. The SIMO controller K̄ in Eq. (6.1)
is obtained by solving Eq. (6.17). These convex optimization problems are formulated using
the YALMIP toolbox[48] in MATLAB software package[50]. The formulated optimization
problems are solved using the MOSEK solver[8]. This solver is capable of handling both
linear and quadratic programs, where the constraints in the optimization problem are for-
mulated as Linear Matrix Inequalities (LMIs).

The compensators in the sensitivity decoupling structure given in Fig. 6.1 were designed
under four different scenarios each involving a different value of ηym , the upper-limit of the
MA output stroke average variance. These values are given in Eq. (6.19) and also shown
in Table 6.1. Since the compensators obtained using the sequential SISO design strategy
always satisfied these four constraints, only the scenario involving the value of ηym = 44 nm
will be discussed for the sequential SISO design strategy. Table 6.1 presents the five cases
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of controller design scenarios that will be evaluated and compared with each other in this
section, as well as their respective color code used in the plots.

Table 6.1: Controller design scenarios and their color code.

Scenarios SIMO1 SIMO2 SIMO3 SIMO4 SISO1

Design strategies SIMO SIMO SIMO SIMO sequential SISO
ηym (nm2) 442 422 402 382 442

Color code

The design approach proposed in chapter 5 is an iterative approach. In the results
presented in this section, the controllers were designed using 10 iterations. The 10th iteration
is used as the stopping criterion for the algorithm in order to have the same number of
iterations for all the design scenarios in table 6.1. However, a more sophisticated stopping
criterion, which take into account the rate of optimization objective reduction as a function of
the iteration number can be implemented [15]. As shown in the flowchart given in Fig. 5.2,
the first iteration only considers the H∞ constraints. The second iteration also includes
the H2 objective. Finally starting from the third iteration, the full optimization problem
including H2 objective, and all H2 and H∞ constraints are considered.

Design Results

In this section, the synthesized dual-stage HDD compensators obtained by solving the control
objectives in section 6.2 are discussed. First, the design results for the data-driven mixed
H2/H∞ control methodology are discussed considering all the design scenarios in Table 6.1
using all the plant frequency response data sets in Fig. 6.3. The plots used to represent these
design results utilize the color code in table 6.1 to distinguish between different scenarios.
However, the plots for the same scenario but different frequency response data sets utilize
the same color code and may not be distinguishable from each other at some frequency
regions, where the plots are relatively close to each other. Subsequently, an example to
describe a limitation of the sequential SISO design strategy as compared to the SIMO design
strategy is provided. Last but not the least, the design results for the mixed H2/H∞ control
problem, when theorem 5.3.1 is utilized to impose the H∞ norm constraints, are compared
with the corresponding results obtained when theorem 5.3.2 is used instead of theorem 5.3.1.
Theorem 5.3.2 utilizes sufficient conditions for imposing the H∞ norm constraints, while
theorem 5.3.1 utilizes necessary and sufficient conditions.

Design Scenarios Comparison

The closed loop transfer functions in the final, 10th iteration, and their H∞ constraint limits
for the VCM single-stage and dual-stage loops are shown in appendix B. As shown in the
figures, all the closed loop transfer functions satisfy the H∞ constraints given in Eqs. (6.4),
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Figure 6.5: The H2 norm objective and constraints, for the VCM single-stage loop depicted
in Fig. 6.2 over the iterations. The average variances of signals are considered in the opti-
mization problems, however the square roots of the average variances are plotted here. The
triangles show the upper-bound for the square root of the average variance for the tracking
error (a) and the VCM control action (b), where the circles show the real values for these
variables. The H2 norm objective and constraints are activated starting from the second and
third iterations, respectively.

(6.5), (6.8) and (6.9). The weighting functions used in these equations will shape the closed
loop transfer functions. These weighting functions can be numerically shaped, since the
data-driven control design methodology is utilized.

The H2 norm objective and constraints, for the VCM single-stage loop depicted in Fig. 6.2
are shown in Fig. 6.5, considering all the scenarios mentioned in table 6.1. In the sequential
SISO design strategy, the objective is to minimize the average variance of the VCM single-
stage tracking error, while designing the VCM controller. However, the objective in the
SIMO design strategy is to minimize the average variance of the dual-stage tracking error,
without explicitly considering the average variance of the single-stage tracking error as an
optimization objective. Therefore, as one can notice in Fig. 6.5a, the sequential SISO design
strategy achieves the smallest average variance for the VCM single-stage tracking error, as
compared to the SIMO designs. Moreover, Fig. 6.5b shows that the VCM controller designed
using the sequential SISO strategy has the highest activity in terms of the VCM control input
average variance.

The MA output stroke is restricted by defining an upper-bound on its average variance
in Eq. (6.14). Reducing the value of this upper-bound will reduce the MA range and consec-
utively reduce the MA’s ability to minimize the tracking error. In this case, the sensitivity
decoupling structure suggests that the VCM should compensate for the MA by achieving
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a smaller average variance of the VCM single-stage tracking error. According to Figs. 6.5a
and 6.5b, if the MA output stroke is reduced, the VCM single-stage loop achieves a smaller
average variance of the tracking error at the cost of having increased average variance of the
VCM control input.

As shown in Fig. 6.5a, the controller designed using the sequential SISO design strategy
is the most aggressive one in terms of minimizing the average variance of the VCM single-
stage tracking error. Also, the SIMO controllers with the more stringent restriction on the
MA output stroke will be more aggressive based on this definition. The VCM single-stage
sensitivity plots for all these scenarios are shown in Fig. 6.6. In the frequency region between
0 − 500 Hz, where the VCM is the dominant actuator, all these scenarios achieve almost
the same level of the VCM single-stage tracking error reduction. However in the frequency
region between 500 − 2000 Hz, where both actuators are active, the more aggressive VCM
single-stage controller will improve the VCM single-stage tracking error reduction, in order
to compensate for the MA output stroke restriction.

Since the z-domain transfer functions for all of the actuators frequency response mea-
surements shown in Fig. 6.3 are available for this example, we were able to compute the
closed loop poles of the feedback system, for all of the synthesized compensators and for
all of the scenarios in table 6.1, and to verify that all of the compensators designed yield
stable feedback systems for all of the plants. The stability margins and bandwidths for all
these scenarios are obtained in the frequency domain using the plant frequency response
data sets shown in Fig. 6.3. The worst case stability margins and bandwidths are defined in
Eqs. (6.21)-(6.25) and are shown in table 6.2 for all of the scenarios in table 6.1.

worst(Es
r→epeak) = max

i
Es

(r→e)ipeak (6.21)

worst(GM) = min
i
GMi (6.22)

worst(PM) = min
i
PMi (6.23)

worst(ωGM) = min
i
ωGMi

(6.24)

worst(ωPM) = min
i
ωPMi

(6.25)

where the subscript i denotes the ith frequency response data sets. The more aggressive con-
troller generally increases the worst case bandwidth, worst(ωPM), at the cost of having lower
stability margins. However, this trend is not completely followed, since the aggressiveness
of the controllers is defined in terms of the H2 norm of the closed loop transfer functions,
which restricts the integration of the frequency response magnitude over the entire frequency
region. Therefore, increasing the restriction on the H2 norm does not always directly affect
the bandwidth and stability margins of the open loop transfer function.

The H2 norm constraints for the VCM input and the MA output stroke in the dual-stage
HDD are shown in Figs. 6.7a and 6.7b, respectively. In the sequential SISO design strategy,
the VCM is designed to be aggressive. As a result, the average variance of the VCM control
input in both the VCM single-stage and dual-stage loops for the sequential SISO design
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Table 6.2: Open loop worst case stability margins for the VCM single-stage loop in Fig. 6.2.
These margins are obtained by selecting the worst case margins among all frequency response
data sets using Eqs. (6.21)-(6.25).

Scenarios
Worst case Es

r→e peak GM PM ωGM ωPM

dB dB degree Hz Hz

SIMO1 9.97 3.45 25.83 2,206 1,242
SIMO2 10.01 3.30 28.55 2,319 1,230
SIMO3 10.17 3.22 31.17 2,427 1,244
SIMO4 10.03 3.28 32.46 2,548 1,276
SISO1 10.10 3.28 31.45 2,493 1,344

Figure 6.6: The magnitude Bode plots of the VCM single-stage sensitivity transfer function,
Es
r→e. These plots include 25 closed loop transfer functions for all the 5 design scenarios in

table 6.1 using all the 5 frequency response data sets in Fig. 6.3.

strategy will be higher compared to all the scenarios in the SIMO design strategy, as shown
in Figs. 6.5b and 6.7a. As previously mentioned, using a MA with a smaller output stroke
will result in a corresponding increase in the average variance of the VCM control input
in the VCM single-stage loop, in order to compensate for the MA output stroke reduction.
However, the MA with a smaller output stroke decreases the average variance of the VCM
control input in the dual-stage loop. This can be justified by the fact that the the smaller MA
output stroke requires less VCM movements to compensate for the MA output movements,
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Figure 6.7: The H2 norm constraints for the dual-stage loop over the iterations. The average
variances of signals are considered in the optimization problems, however the square roots of
the average variances are plotted here. The triangles show the upper-bound for the square
root of the average variance for the VCM control action (a) and the MA output stroke
(b), where the circles show the real value for these variables. The H2 norm objective and
constraints are activated starting from second and third iterations, respectively.

which are out of phase with the VCM output movements. Fig. 6.7b demonstrates that
all the controller design scenarios considered in table 6.1 are satisfying their upper-bound
constraints for the average variance of the MA output stroke.

Fig. 6.8 plots the square root of the average variance of the tracking error for the dual-
stage feedback system in Fig. 6.1. According to Eqs. (6.16) and (6.17), the average variance is
considered as the minimization objective in the SIMO design strategy as well as the second
step of the sequential SISO design strategy. In the sequential SISO design strategy, the
obtained VCM compensator Kv, which is synthesized to optimize the average variance of the
VCM single-stage tracking error, is kept fixed during the synthesis of the MA compensator
Km. This results in a suboptimal overall compensator in terms of minimizing the average
variance of the dual-stage tracking error, since the compensator Kv design process in the
sequential SISO design strategy does not take into account the dual-stage loop. This is
verified in Fig. 6.8, which shows that the sequential SISO design strategy achieves a relatively
higher average variance of the dual-stage tracking error compared to all the scenarios in the
SIMO design strategy.

The results in Fig. 6.8 also suggest that the average variance of the dual-stage tracking
error in the SIMO design strategy is a non-linear function of the restriction on the average
variance of the MA output stroke. If the average variance upper-bound on the MA output
stroke given in Eq. (6.19) is 42 nm or greater, the average variance of the dual-stage tracking
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synthesis iterations: The average variances of signals are considered in the optimization
problems, however the square roots of the average variances are plotted here. The H2 norm
objective and constraints are activated starting from second and third iterations, respectively.

error will not change significantly. The main reason to this phenomenon is that, according
to Fig. 6.5a, the VCM is able to compensate for this MA output stroke restriction. However,
the VCM’s ability to compensate for the MA output stroke restriction is limited. If the
average variance upper-bound on the MA output stroke is smaller than 422 nm, the decrease
in this upper-bound will increase the average variance of the dual-stage tracking error at
a higher rate as compared to the case of the MA output stroke with the average variance
upper-bound of 422 nm or greater.

Similar to the VCM single-stage loop, the closed loop poles for all the scenarios in table 6.1
were computed using the z-domain transfer functions of the actuator frequency response
measurements. All these closed loop poles were confirmed to be located inside the unit circle.
Therefore, all the closed loop transfer functions were stable for all the plants used to generate
the frequency response data in the data-driven mixed H2/H∞ formulation. Table 6.3 presents
the dual-stage open loop stability margins and bandwidths for these design scenarios. These
stability margins and bandwidths are reported as the worst case margins and bandwidths
using Eqs. (6.21)-(6.25). In this table, the open loop transfer function is from the track
run-out r to the position head output y in Fig. 6.1. As shown in Fig. 6.1, the imposition of a
more stringent restriction on the MA output stroke, which is achieved by reducing the upper-
bound on the average variance of this signal, will result in a lower dual-stage bandwidth.
This reduction in the bandwidth will help to improve the stability margins. The dual-stage
controller designed using the sequential SISO design strategy will have a relatively lower
bandwidth and a higher peak for the sensitivity plot as compared to the SIMO4 case. The
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higher sensitivity plot peak for the sequential SISO design strategy can be justified by the
fact that this strategy will design compensators kv and km in two individual steps and the
compensator Kv is designed without considering the dual-stage actuation structure.

Table 6.3: Open loop worst case stability margins for the dual-stage loop in Fig. 6.1. The
open loop transfer function is from the track run-out r to the position head output y. These
margins are obtained by selecting the worst case margins among all frequency response data
sets using Eqs. (6.21)-(6.25).

Scenarios
Worst case Es

r→e peak GM PM ωGM ωPM

dB dB degree Hz Hz

SIMO1 9.63 8.85 19.13 12,392 4,924
SIMO2 9.62 8.85 19.14 12,393 4,922
SIMO3 9.55 8.86 19.36 12,390 4,914
SIMO4 9.43 8.87 19.74 12,401 4,884
SISO1 9.58 8.90 19.23 12,377 4,857

Fig. 6.9b plots the frequency responses of the closed loop transfer functions from the
track run-out r to the actuator outputs yv and ym. As shown in the figure, the VCM is more
active at the low frequency region, while the MA takes over at the mid-frequency region. At
the high frequency region, the output of both actuators will reduce, since the system can
not be controlled due to the dynamics uncertainty of the actuators.

According to Fig. 6.4, the run-out r is the dominant external noise and its magnitude has
an inverse relationship with frequency. Therefore, a more stringent restriction on the average
variance of the MA output stroke defined in Eq. (6.14) will force the MA output to be more
active at higher frequency regions, where the magnitude of run-out is smaller. As shown
in Fig. 6.9b, a controller designed with a more restricted MA output stroke criteria will
produce a smaller MA output magnitude in frequencies between 500−2000 Hz and a higher
MA output magnitude in frequencies between 2000− 3000 Hz. According to Fig. 6.9a, the
smaller magnitude of the MA output in lower frequency regions also deteriorates the tracking
error rejection in those regions. At higher frequency regions, the larger magnitude of the
MA output helps to improve the tracking error rejection.

The frequency responses of the obtained compensators Kv and Km are plotted in Fig. 6.10
for all the scenarios in table 6.1. The SIMO design strategy uses the stable factorizations
of the controller in Eqs. (5.20) and (5.21) with the controller order parameter n = 25 in
order to obtain the SIMO controller. After designing the SIMO controller, the compensators
Kv and Km are derived using Eqs. (6.2) and (6.3). The Hankel singular values [7] of these
compensators are plotted in Fig. 6.11. In order to reduce the compensators orders, a few of
the Hankel singular values with the smallest magnitudes were eliminated. The gray boxes
in Fig. 6.11 show the eliminated Hankel singular values. The reduced order compensators
Kv and Km will be 17th and 20th orders, respectively. The comparisons between the reduced
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(a) Er→e (b) Yr→yv ,ym

Figure 6.9: The magnitude Bode plots of the closed loop transfer functions for the dual-stage
loop. These plots include 25 closed loop transfer functions for all the 5 design scenarios in
table 6.1 using all the 5 frequency response data sets in Fig. 6.3.

order and the full order compensators are provided in Fig. 6.11. As shown in the figures,
the compensator order reduction will not create any significant difference in the low and
mid frequency regions of the compensators frequency responses. In high frequency regions,
the deviation between the reduced order and the full order VCM compensator Kv will not
significantly affect the closed loop transfer functions, since according to Fig. 6.3, the VCM
response has relatively small magnitude at high frequency regions. Moreover, the effect
of MA compensator order reduction at high frequency regions is negligible. Therefore, the
orders for the compensatorsKv andKm in the sequential SISO design strategy can be reduced
to 17th and 25th orders respectively, which are equal to the orders of the corresponding
reduced order compensators in the SIMO design strategy.

A limitation of the Sequential SISO Design Strategy

It is worth mentioning that if the SIMO design strategy is successful to find a feasible solution
for the optimization problem in Eq. (6.17), there is no guarantee that the sequential SISO
design strategy can also find a feasible solution for the optimization problem in Eq. (6.16)
by considering the same set of control objectives. As an example, the weighting function
used in the H∞ norm of the closed loop transfer function Uwv→um was adjusted to force more
restrictions at high frequency regions for the scenarios SISO1 and SIMO1 in table 6.1. In
Fig. 6.12, the less stringent H∞ constraint limit is shown with light blue dotted lines, while
the more stringent H∞ constraint limit is shown with red dotted lines. The SIMO design
strategy is able to synthesize a controller that can satisfy the more stringent constraint.
However, the sequential SISO design strategy is not able to find a feasible solution to satisfy
this constraint. This result can be partially explained by considering the fact that, in the
sequential SISO design strategy the compensator Kv is first synthesized without considering
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Figure 6.10: Frequency responses of the compensators Kv and Km for all the 5 design
scenarios in table 6.1 synthesized considering all the 5 plant frequency response data sets
plotted in Fig. 6.3. The frequency responses of the compensator Kv are plotted with thick
lines, while the frequency responses of the compensator Km are plotted with thin lines.

(a) Kv (b) Km

Figure 6.11: The Hankel singular values for both the Kv and Km compensators for the design
scenarios SIMO1-SIMO4 in table 6.1. The gray boxes show the singular values which were
eliminated in the compensator order reduction. The comparisons between the reduced order
and the full order compensators are also provided in these plots.
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Figure 6.12: The magnitude Bode plots of the closed loop transfer function from control input
disturbance wv to MA control input um, Uwv→um . The solid lines show the magnitude Bode
plots of the closed loop transfer function Uwv→um for the design scenario SIMO1 in table 6.1
considering all the 5 plant frequency response data sets in Fig. 6.3. The red dotted lines
represent the more stingest H∞ constraint limit, while the light blue dotted lines represent
the less stingest H∞ constraint limit used in this section. The SIMO design strategy obtains
the controller such that Uwv→um transfer functions satisfy the more stingest H∞ constraint
limit, while the sequential SISO design strategy cannot find a feasible solution for this H∞
constraint limit.

the overall dual-stage loop constraints, and in addition, the compensator Km is subsequently
synthesized without the added flexibility of changing the compensator Kv.

Design Results Comparison Using Two Different Conditions for Imposing H∞
Constraints

The results presented in this section, were obtained using theorem 5.3.1 to prescribe necessary
and sufficient convex conditions for imposing the H∞ constraints considered in the mixed
H2/H∞ optimization problems given in Eqs. (6.15)-(6.17). As mentioned in section 5.3,
sufficient convex conditions for imposing the H∞ constraints were proposed in [41]. These
two types of convex conditions for imposing the H∞ constraints can be summarized as

• I) necessary and sufficient convex conditions given in theorem 5.3.1,

• II) sufficient convex conditions given in theorem 5.3.2.

The H∞ sufficient convex conditions in theorem 5.3.2 can be applied to the synthesis of
general MIMO compensators, while the H∞ necessary and sufficient convex conditions in
theorem 5.3.1 is only applied to the synthesis of SIMO compensators.
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synthesis iterations, considering the design scenarios SIMO1-SIMO4 in table 6.1: The
average variances of the dual-stage tracking error signal are considered in the optimization
problems, however the square roots of the average variances are plotted here. The circle (◦)
and cross (×) marks respectively represent conditions I and II as the convex conditions for
imposing the H∞ constraints used in Eq. (6.17). The H2 norm objective and constraints
are considered in the optimization problem starting from the second and third iterations,
respectively.

In order to compare these two convex conditions for imposing the H∞ constraints, the
SIMO dual-stage controller in Fig. 6.1 that was synthesizes by solving the mixed H2/H∞
control design problem given in Eq. (6.17), for all the scenarios in table 6.1 using the SIMO
design strategy were redesigned using the sufficient convex conditions II instead of using
the necessary and sufficient convex condition I, and its performance was compared to the
compensator previously designed using condition I. All the designed compensators were able
to satisfy the H∞ and H2 norm constraints. The resulting H2 norm objectives for these two
conditions are compared in Fig. 6.13, where the circle (◦) and cross (×) marks respectively
represent conditions I and II as the convex conditions for imposing the H∞ constraints.
As shown in the figure, a controller designed utilizing the sufficient H∞ conditions II will
produce a larger cost when compared with the cost produced by a controller designed using
the necessary and sufficient H∞ conditions I under the same design scenariosg and the same
plant data sets. The degraded performance for condition II can be justified by the fact that
having only sufficient conditions for imposing the H∞ constraints introduces conservatism in
the optimization problem and leads to an increase in the minimization objective as compared
to the necessary and sufficient conditions.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation discussed three control design methodologies for hard disk drives servo
systems, in order to improve their performance as well as their reliability. The first was
a state estimator for non-uniform sampled systems with irregularities in the measurement
sampling time, which estimated the states at a uniform sampling time. The second was an
online uncertainty identification algorithm, which parametrized and identified the uncertain
part of transfer functions in a dual-stage HDD. The third was a frequency based data-driven
control design methodology, which considered mixed H2/H∞ control objectives and was
able to synthesize track following servo systems for dual stage actuators utilizing only the
frequency response measurement data, without the need of identifying the models of the
actuators.

In chapter 1, an introduction as well as a brief literature review for the control problems
in hard disk drives were provided first. Then, the contributions for each chapter of this
dissertation were summarized. Last but not the least, the notations used throughout this
dissertations were introduced in this chapter.

In chapter 2, a general overview of the dual-stage HDD structure and mechanisms were
provided. The servo assembly of the dual-stage Hard Disk Drive (HDD) is composed of
the Voice Coil Motor (VCM) and the Mili-Actuator (MA), where the VCM is responsible
for coarse positioning at low frequency regions and the MA is responsible for fine position-
ing at high frequency regions. Controlling these two actuators is very critical in precision
positioning of the read/write head, which is mounted at the edge of the servo assembly.

In chapter 3, the observer design problem for systems with uniform sampled control inputs
and non-uniform sampled measurements was considered. In the spiral writing procedure in
the self-servo writing process, the head position measurements are arriving at non-uniform
sampling times, while the control inputs are updating at uniform sampling times. The
variations in measurement sampling times were modeled as variations in the plant model
dynamics. The gain-scheduling technique accommodated these variations in the design stage
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and obtained a varying observer which could estimate system states at the uniform sampling
times. The gain-scheduling observer were designed using the Kalman filter structure and its
performance was evaluated by comparing it with the Kalman filter [40].

Kalman filter is the optimal observer in terms of minimizing the trace of a-posteriori state
estimation error covariance, given the values of noise variances. Therefore, if noise variances
were known in advance, the Kalman filter would achieve the best performance. However,
the exact values of noise variances may not be known in real systems. The simulation results
showed that if the upper-bound of the noise variances were known, the gain-scheduling
observer could outperform the Kalman filter. The main reason behind this observation is
that the Kalman filter was designed for the exact given values of noise variances, while
the gain-scheduling observer was designed for noise variances of equal or smaller than the
designed values.

It is worth mentioning that one of the main advantages of the gain-scheduling observer
is its less online computational complexity as compared to the Kalman filter. The gain-
scheduling observer gain can be computed using only a few multiplications and additions,
while the Kalman filter gain computation required significantly higher number of multipli-
cations as well as divisions, which could be computationally expensive.

In chapter 4, the variations in system dynamics were described by stable uncertainty pa-
rameterizations using coprime factorizations [26, 64], which was identified in an online fash-
ion. The main reason for parameterizing the uncertainty is to avoid unnecessary identification
of the unchanged part of the plant dynamics. Therefore, the uncertainty identification, in
comparison to the complete plant dynamics identification, requires less computational power
as well as smaller order for the identified transfer function.

As an example, the adaptive RRO following algorithm introduced in [61, 62] was consid-
ered. Stability and convergence of this algorithm require that the phase difference between
the actual closed loop transfer functions from feed-forward injection points to PES and their
corresponding models must be less than 90 degrees. Temperature variations affected the
MA dynamics, particularly the high frequency resonance modes. Therefore, it was necessary
to update in real time the MA closed-loop transfer function R̂MA, which was used by the
adaptive RRO following algorithm.

The coprime factorizations technique was used for an experimental dual-stage HDD in
order to parameterize and identify the uncertainty caused by temperature variations in terms
of a stable, second order causal transfer function S ∈ RH1×2

∞ . Therefore, only identification of
the uncertainty parameterization S was required at different temperatures, which reduced the
numbers of parameters to be identified as compared to the entire closed loop transfer function
identification. The uncertain transfer function S was identified in an online fashion, in three
co-adjacent frequency regions. The corresponding updated MA closed-loop transfer function
estimate, R̂MA, was found to satisfy the robustness criteria for the given experimental dual-
stage HDD.

In chapter 5, the frequency based data-driven mixed H2/H∞ control design algorithm was
studied in order to design feedback loops. The data-driven control design algorithm directly
uses the frequency response measurements of the plant in the control design step, rather
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than fitting an estimated model to those measurements. Therefore, the obtained controller
can guarantee the stability and performance level achieved in the design step, if adequate
number of frequency response measurements are considered in the design step to represent
system dynamics variations.

The data-driven mixed H2/H∞ control design problem was converted to a convex local
optimization problem, which was solved iteratively. In the proposed algorithm, the H2 and
H∞ norms of the closed loop transfer functions had the flexibility to be considered as the
constraints and/or the objective of the optimization problem. The H∞ norm criteria were
used for guaranteeing the closed loop stability and shaping the closed loop transfer functions.
The H2 norm criteria were used for constraining or minimizing the variance of signals in the
time domain, since H2 norms of transfer functions in the frequency domain are equivalent
to the square root of their corresponding signals variances in the time domain.

The necessary and sufficient convex conditions of the H∞ norm control problem for SISO
systems are obtained in [42]. These results were extended to MISO systems, where the ob-
tained controller stabilized the given MISO system and satisfied the defined H∞ constraints.
These results were combined with H2 results in [41] in order to form the mixed H2/H∞ con-
trol problem. The H2 and H∞ norms used in this algorithm were defined such that multiple
sets of plant measurements could be considered in the design process.

In chapter 6, the proposed data-driven mixed H2/H∞ control methodology was used to
design a track following controller for a dual-stage HDD. The sensitivity decoupling approach
was considered as the control structure [34]. The controllers in this structure were obtained
using either sequential SISO or SIMO data-driven control design strategies. In the sequential
SISO strategy, the control problem was decoupled into two SISO problems, and the controller
for each actuator was obtained in one individual step. In the SIMO strategy, the complete
control block was obtained in one step. It is worth mentioning that the dual-stage controller
should be designed such that in the case of MA failure, the single-stage loop remains stable
and satisfies predefined performance characteristics. The single-stage and dual-stage sta-
bility and performance characteristics were considered together as the constraints and the
objectives of the optimization problem.

The dual-stage HDD controller was designed considering the set of five frequency response
plant measurement data sets. The closed loop transfer functions for all these data sets were
shaped using the weighted H∞ norm constraints. Since the H2 norms of closed loop transfer
functions are directly related to the square roots of variances for the corresponding signals
in the time domain, the H2 norm objective and constraints were imposed using the variances
of closed loop signals, which were averaged among the set of five frequency response plant
measurement data sets. The average variance of the tracking error was considered as the
minimization objective, while the VCM control input and the MA output stroke average
variances were constrained.

The design results demonstrated that the data driven mixed H2/H∞ control design algo-
rithm was successful in satisfying the defined mixed H2/H∞ control objectives by designing
controllers, which stabilized both the single-stage and the dual-stage loops. Considering
the set of five frequency response plant measurement data sets, the SIMO design strategy
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achieved a smaller average variance of the dual-stage tracking error as well as a higher worst
case bandwidth as compared to the sequential SISO design strategy, since it designed the
controllers for the VCM and MA simultaneously. Also, the more stringent restriction on
the MA output stroke in the SIMO design strategy compromised the worst case dual-stage
bandwidth as well as the average variance of the dual-stage tracking error.

7.2 Future Work

In the frequency based data-driven control design problem discussed in chapter 5 and 6,
multiple sets of frequency response measurements from the system are required in order
to capture the uncertainties and dynamics variations in the design step. The proposed
algorithm can accommodate multiple measurements in the design process. However, the size
of optimization problem, including variables and constraints, grows linearly by increasing
the number of measurements, which makes the algorithm computationally expensive and
impractical for large number of frequency response measurements.

In order to make this algorithm practical for the large number of measurements, the very
first solution is to improve the computational efficiency of the proposed algorithm. The more
efficient algorithm reduces the memory usage and increases the number of measurements
which can be handled by this algorithm.

The other possible solution for accommodating more plant measurements in the design
process is to cluster the plant measurements. Assume that a significant number of frequency
response measurement data sets from an uncertain plant are available. The objective is to
derive an efficient algorithm, which can cluster the frequency response measurements, based
on the dynamics uncertainties, and pick a few measurements from each cluster, which can
represent the dynamics uncertainties in that cluster.

The H∞ control problem is addressed for MISO systems by deriving sufficient and nec-
essary convex conditions for the H∞ constraints. However, these results cannot be used for
systems with multiple feedback measurements. It is proposed to extend the developed H∞
control algorithm to the MIMO systems. The extended algorithm will be useful in variety of
control system designs such as vibration rejection algorithms in HDDs, where accelerometer
measurement is available in addition to the head position signal. In this case, the accelerom-
eter measurement can be augmented into the plant model such that the augmented plant
has acceleration measurement in addition to the head position as the plant measurement
outputs. Therefore, the MIMO extension of the algorithm can be used to design a desired
feedback controller.

In order to consider the H∞ constraints in the data-driven control design problem for
MIMO systems, the H∞ constraints should be converted into convex inequalities. However,
deriving these convex inequalities for the case of MIMO systems is not as straightforward as
the MISO systems shown in theorem 5.3.1. Here, it will be demonstrated how to convert a
H∞ norm constraint of a stable MIMO system to an inequality between singular values and
Frobenius norms of specific expressions which are linear functions of controller factorizations.
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Figure 7.1: Control block diagram. Gm×n(ω) represents the frequency response data of the
plant.

However, the obtained inequality is not necessarily convex. The interested reader may be
able to find a convex equivalent for this inequality using similar approaches as the ones used
in proof of Lemma A.0.0.1 in appendix A.

Consider the frequency response of a stable system with n inputs and m outputs denoted
by Gm×n. Fig. 7.1 represents the general feedback structure for this plant. The objective is
to find a stabilizing controller Kn×m(z) with the following stable factorizations

Kn×m(z) = Xn×m(z)Y −1
m×m(z), (7.1)

such that the closed loop transfer function from reference signal to control input, Un×m
r→u ,

satisfies the following H∞ constraint∥∥WUr→uU
n×m
r→u

∥∥
∞ < 1, (7.2)

where WUr ∈ Cl×n is a bounded frequency response function used to shape the closed loop
transfer function. The closed loop transfer function in terms of controller stable factorizations
can be obtained as

Un×m
r→u = Xn×m(Ym×m +Gm×nXn×m)−1. (7.3)

Therefore, the term inside the H∞ norm constraint given in Eq. (7.2) can be simplified as

WUr→uU
n×m
r→u = Qn×mP

−1
m×m, (7.4)

where

Qn×m = WUXn×m, (7.5)

Pm×m = Ym×m +Gm×nXn×m. (7.6)

The parameters Qn×m and Pm×m are linear functions of controller stable factorizations.
According to [41], the H∞ norm mentioned in (7.2) is equivalent to the following inequality

Q∗n×mQn×m ≺ P ∗m×mPm×m, (7.7)

where ≺ represents the matrix inequality and the singular value decomposition of the P and
Q terms are

Qn×m = UQ, n×nΣQ, n×mV
∗
Q, m×m, (7.8)

Pm×m = UP, m×mΣP, m×mV
∗
P, m×m. (7.9)
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In these decompositions, UQ, n×n, VQ, m×m, UP, m×m and VP, m×m are all unitary matrices,
and ΣQ, n×m and ΣP, m×m are rectangular diagonal matrices containing the singular values
of Q and P . Without loss of generality, it can be assumed that m > n. Therefore, the
singular values matrices are given by

ΣQ, n×m =


σ2

1(Qn×m) 0 .. 0 .. 0
0 σ2

2(Qn×m) .. 0 .. 0
.. .. .. .. .. 0
0 0 .. σ2

n(Qn×m) .. 0

 (7.10)

and

ΣP, m×m =


σ2

1(Pm×m) 0 .. 0
0 σ2

2(Pm×m) .. 0
.. .. .. ..
0 0 .. σ2

n(Pm×m)

 . (7.11)

Substituting the singular value decompositions given in Eqs. (7.8) and (7.9) into Eq. (7.7)
will result in

VQ, m×mΣ∗Q, n×mΣQ, n×mV
∗
Q, m×m ≺ VP, m×mΣ∗P, m×mΣPVP, m×m. (7.12)

Multiplying left side of this inequality by V ∗Q, m×m and the right side by VQ, m×m will lead to
the following inequality

Σ∗Q, n×mΣQ, n×m ≺ Vm×mΣ∗P, m×mΣPVm×m, (7.13)

where Vm×m = V ∗Q, m×mVP, m×m are also the unitary matrices. According to Eqs. (7.10) and
(7.11), Eq. (7.13) can be expanded in the following form

σ2
1(Qn×m) 0 .. 0

0 σ2
2(Qn×m) .. 0

.. .. .. ..
0 0 .. σ2

n(Qn×m)

 ≺
[
V

(1)
m×m V

(2)
m×m .. V

(n)
m×m

]
σ2

1(Pm×m) 0 .. 0
0 σ2

2(Pm×m) .. 0
.. .. .. ..
0 0 .. σ2

n(Pm×m)



V

(1)∗

m×m

V
(2)∗

m×m
..

V
(n)∗

m×m

 , (7.14)

where V
(i)
m×m is the ith column of vector Vm×m. Since Vm×m is a unitary matrix and the

singular matrix is diagonal, the right side of the above inequality is equal to
∑n

i=1 σ
2
i (P ).In,

and In is the identity matrix of size n. Therefore, the H∞ constraint in Eq. (7.2) is equivalent
to the following inequality

∀i ∈ {1, 2, .., n} : σ2
i (Qn×m) <

n∑
i=1

σ2
i (Pm×m). (7.15)
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The Frobenius norm of a matrix P is defined as

‖Pm×m‖2
F =

n∑
i=1

n∑
j=1

|pij|2 , (7.16)

where pij represents the element in row i and column j of the matrix Pm×m. It has been
shown in [65] that the Frobenius norm can also be obtained using singular values of the
matrix

‖Pm×m‖2
F =

n∑
i=1

σ2
i (Pm×m). (7.17)

Therefore, Eq. (7.15) can also be written as

∀i ∈ {1, 2, .., n} : σ2
i (Qm×m) < ‖Pm×m‖2

F , (7.18)

or equivalently

∀i ∈ {1, 2, .., n} : σ2
i (Qn×m) <

n∑
i=1

n∑
j=1

|pij|2 . (7.19)

According to Eqs. (7.15), (7.18) and (7.19), the H∞ constraints for a MIMO system defined
in Eq. (7.2) are translated to an inequality between singular values of Qn×m and a quadratic
convex function of the parameter Pm×m, which can be represented in terms of singular values,
Frobenius norm or square of matrix elements. The challenge which is proposed as a future
work is to find a convex equivalent for these inequalities as it was obtained in appendix A
for MISO systems.
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Appendix A

Proof of Theorem 5.3.1

Theorem 5.3.1 is stated and proved for SISO systems in [42]. In this section, the proof pre-
sented in [42] is extended to MISO systems. In order to prove theorem 5.3.1, Lemma A.0.0.1
is first proved [55].

All transfer functions are considered in the discrete time frequency domain. However to
make the notations simple, the frequency dependence arguments (ejω) and (ω) will not be
written in the transfer functions. The feedback system shown in Fig. 5.1 is also plotted here
in Fig. A.1 as a reference.

Lemma A.0.0.1. Assume the transfer function WUw→uUw→u used in theorem 5.3.1 is bounded
and analytic in the right half plane, where Uw→u is written in terms of plant and controller
stable factorizations in Eq. (5.45). The H∞ norm defined in Eq. (5.47) is satisfied if and
only if the following inequality holds over the entire frequency region, Ω,

∀ω ∈ Ω : γ−1σ̄(WUωXÑF ) < Re(ÑXF + M̃Y F ) (A.1)

where F ∈ RH∞ is a stable proper rational scalar transfer function and ¯σ(M) denotes the
maximum singular value of the matrix M .

Figure A.1: Control block diagram. G1×n(ω) represents the frequency response data of the
plant. The disturbances to the system are colored by the weighting functions R(ω), N(ω)
and W (ω).
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Figure A.2: R and I represent the real and imaginary axes, respectively. The prime notation
is used to represent the rotated axes.

Proof of Lemma A.0.0.1

Proof. Considering the definition of H∞ norm in Eq. (1.9), the weighted H∞ norm criterion
given in Eq. (5.47) can be written as

∀ω ∈ Ω : σ̄(WUw→uXÑ(ÑX + M̃Y )−1) < γ. (A.2)

According to the dimensions of plant and controller stable factorizations given in Eqs. (5.1)
and (5.2), the term ÑX + M̃Y will be a scalar. Therefore, the above equation can be
simplified as follows

∀ω ∈ Ω : γ−1σ̄(WUw→uXÑ) <
∣∣∣ÑX + M̃Y

∣∣∣ . (A.3)

where |G| = |G(ω)| denotes the magnitude of G(ω).
At each given frequency ω ∈ Ω, a disk centered at z0 = ÑX + M̃Y with radius r =

γ−1σ̄(WUw→uXÑ) will be considered. This disk is shown in Fig. A.2, where all the points
inside this disk will be represented as

|z − z0| < r (A.4)

By combining Eqs. (A.3) and (A.4), it can be concluded that the origin z = (0, 0) is not
located inside this disk. Therefore, as one can see in Fig. A.2, there exists a line d passing
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through the origin that does not intersect the disk. A unitary rotation matrix f(jω) will be
considered which makes line d the new imaginary axis. The center and radius of the disk in
the new rotated system will be given by

zf0 = ÑXf + M̃Y f, (A.5)

rf = γ−1σ̄(WUωXÑf). (A.6)

Since line d is the new imaginary axis and is not intersecting with the disk, the real component
of the disk center must be always greater than the disk radius

rf < Re(zf0 ). (A.7)

Plugging in Eqs. (A.5) and (A.6) into Eq. (A.7) will result in the following inequality

∀ω ∈ Ω : γ−1σ̄(WUw→uXÑf) < Re(ÑXf + M̃Y f). (A.8)

According to [55], f can be approximated by the frequency response data of a stable proper
rational scalar transfer function F , if and only if

V =
1∣∣∣ÑX + M̃Y

∣∣∣− γ−1σ̄(WUw→uXÑ)
(A.9)

is analytic in the right half plane for all γ̄ > γ. In order to prove that V is analytic in the
right half plane, we first assume γ̄ → ∞. Therefore, V = 1

|Ñ.X+M̃.Y | is stable and analytic

according to stability of Uw→u. If γ̄ is reduced from infinity to γ, the poles of V will move
continuously, and according to Eq. (A.3), it can be shown that

∀ω ∈ Ω : V −1(jω) 6= 0. (A.10)

Therefore, the function V will remain analytic in the right half plane for all γ̄ > γ. As a
result, the rotation matrix f(jω) can be estimated by a stable proper rational scalar transfer
function F , which will prove the inequality given in Eq. (A.1).

Proof of Theorem 5.3.1

Proof. The equivalence of statements I and II presented in theorem 5.3.1 will be proved
here.

• (I ⇒ II) Assume the stabilizing controller is factorized as K = X0Y
−1

0 . According to
Lemma A.0.0.1, the H∞ norm criterion given in Eq. (5.47) can be written as

∀ω ∈ Ω : γ−1σ̄(WUw→uX0ÑF ) < Re(ÑX0F + M̃Y0F ). (A.11)

Since F is a stable proper rational scalar transfer function, it can be merged inside
the controller factorizations such that X = X0F and Y = Y0F . This merge will not
change the controller and K = XY −1 = X0Y

−1
0 . Therefore, Eq. (A.11) will result in

Eq. (5.48) given in statement II of the theorem.
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• (II ⇒ I) The real part of any complex number is always less than its magnitude

Re( ÑX + M̃Y ) <
∣∣∣ ÑX + M̃Y

∣∣∣ . (A.12)

Therefore, Eq. (5.48) will result in the following equation

∀ω ∈ Ω : γ−1σ̄(WUωXÑ) <
∣∣∣ ÑX + M̃Y

∣∣∣ . (A.13)

Since ÑX + M̃Y is a scalar term, Eq. (A.13) can be written as

∀ω ∈ Ω : σ̄(WUw→uXÑ(ÑX + M̃Y )−1) < γ (A.14)

According to the definition of the weighted H∞ norm given in Eq. (1.9), the above
equation is basically equivalent to the H∞ criterion given in Eq. (5.47).

Now, we have to show that the controller K stabilizes the plant G. The stability is
analyzed using the Nyquist stability theorem[72]. According to Eq. (5.25), the closed
loop transfer functions can be written as followsEr→e En→e Ew→e

Ur→u Un→u Uw→u
Yr→y Yn→y Yw→y

 =
1

D

M̃Y −XÑ −ÑY
M̃X M̃X −ÑX
ÑX ÑX ÑY

 , (A.15)

where
D = ÑX + M̃Y. (A.16)

Since all the elements of the numerator matrix in Eq. (A.15) are stable factorizations
of the plant and controller, they will have stable poles. Therefore, the closed loop
systems in Eq. (A.15) will be stable if all the zeros of D are stable.

In order to prove that the zeros of D are stable, the Nyquist plot for D will be consid-
ered. Since D is a linear function of stable factorizations, it will not have any unstable
poles. Moreover, Eq. (5.48) will result in

Re(D(ω)) > 0, (A.17)

which means that D will not encircle around the origin. As a result, the Nyquist
stability theorem will conclude that D will not have any unstable zeros. Therefore, all
the closed loop systems in Eq. (A.15) are stable and the controller K stabilizes the
plant G.
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Appendix B

The H∞ constraints

The closed loop transfer functions considered in the H∞ norm constraints given in Eqs. (6.4),
(6.5), (6.8) and (6.9) are plotted in this section. These plots include the closed loop transfer
functions, as well as the weighting functions used to shape those transfer functions. The
closed loop transfer functions are obtained for all the design scenarios in table 6.1 using all
the frequency response data sets in Fig. 6.3. These plots utilize the color code in table 6.1 to
distinguish between different scenarios. However, the plots for the same scenario but different
frequency response data sets utilize the same color code and may not be distinguishable from
each other at some frequency regions, where the plots are relatively close to each other.

According to Eq. (5.28) which is obtained for the SISO transfer functions, the inverse of
the weighting functions magnitude shapes the magnitude of the closed loop transfer functions.
The inverse of weighting functions for the single-stage loop as well as individual SISO loops
in the dual-stage loop are shown in Figs. B.1, B.3a, B.4 and B.5 with light blue dotted
lines. The closed loop transfer functions are also shown with their corresponding color code
mentioned in table B.1.

Table B.1: Controller design scenarios and their color code.

Scenarios SIMO1 SIMO2 SIMO3 SIMO4 SISO1

Design strategy SIMO SIMO SIMO SIMO sequential SISO
ηym (nm2) 442 422 402 382 442

Color code

The transfer functions for the dual-stage loops are plotted in Fig. B.2. Er→e is a SISO
and Ew→e, Ur→u, Uw→u are MIMO transfer functions. The weighting functions used to shape
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the MIMO transfer functions in Eq. (6.5) are as follows

∀ω ∈ Ω : WEw→e(ω) =

[
0.10
0.10

]
, (B.1)

∀ω ∈ Ω : WEr→u(ω) =

[
0.10 0.00
0.00 0.10

]
, (B.2)

∀ω ∈ Ω : WEw→u(ω) =

[
0.10 0.10
0.04 0.10

]
. (B.3)

According to Eq. (5.33), the weighting functions in the MIMO transfer functions shape
the maximum singular values of the closed loop transfer functions by limiting them to be
smaller than the inverse of minimum singular values of the weighting transfer functions across
the entire frequency region. Figs. B.3b-B.3d plot the maximum singular values of closed loop
transfer functions with the color code mentioned in table B.1 and the inverse of the minimum
singular values of the weighting functions with light blue dotted lines.

All the values corresponding to SISO and MIMO closed loop transfer functions plotted
in this section are smaller than their upper-bounds shown with light blue dotted lines.
Therefore, all these closed loop transfer functions satisfy the H∞ constraints defined in
Eqs. (6.4), (6.5), (6.8) and (6.9).
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(a) Esr→e, |WEr→e |
−1 (b) Eswv→e,

∣∣∣WEs
wv→e

∣∣∣−1

(c) U sr→uv ,
∣∣∣WUs

r→uv

∣∣∣−1
(d) U swv→uv ,

∣∣∣WUs
wv→uv

∣∣∣−1

Figure B.1: The magnitude Bode plots of the single-stage closed loop transfer functions (H)
and the inverse of the H∞ weighting functions magnitudes (|WH |−1). The |WH |−1 functions
are shown with the light blue dotted lines. The H∞ norm criteria are provided in Eq. (6.4).
These plots include 25 closed loop transfer functions for all the 5 design scenarios in table 6.1
using all the 5 frequency response data sets in Fig. 6.3.
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(a) Er→e (b) Ew→e, w =
[
wv wm

]T

(c) Ur→u, u =
[
uv um

]T
(d) Uw→u, w =

[
wv wm

]T
, u =

[
uv um

]T
Figure B.2: The magnitude Bode plots of the dual-stage closed loop transfer functions. These
plots include 25 closed loop transfer functions for all the 5 design scenarios in table 6.1 using
all the 5 frequency response data sets in Fig. 6.3.
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(a) σ̄(Er→e), σ
−1(WEr→e) (b) σ̄(Ew→e), σ

−1(WEw→e)

(c) σ̄(Ur→u), σ−1(WUr→u) (d) σ̄(Uw→u), σ−1(WUw→u)

Figure B.3: The maximum singular values of the dual-stage closed loop transfer functions
H shown as σ̄(H) and the inverse of the minimum singular values of the H∞ weighting
functions (σ−1(WH)). The σ−1(WH) functions are shown with the light blue dotted lines.
The H∞ norm criteria are provided in Eq. (6.5). These plots include 25 closed loop transfer
functions for all the 5 design scenarios in table 6.1 using all the 5 frequency response data
sets in Fig. 6.3.
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(a) Ewv→e,
∣∣WEwv→e

∣∣−1
(b) Ewm→e,

∣∣WEwm→e

∣∣−1

Figure B.4: The magnitude Bode plots of the individual SISO closed loop transfer functions
to the tracking error in the dual-stage HDD (H) and the inverse of their H∞ weighting
functions magnitudes (|WH |−1). The |WH |−1 functions are shown with the light blue dotted
lines. The H∞ norm criteria are provided in Eq. (6.8). These plots include 25 closed loop
transfer functions for all the 5 design scenarios in table 6.1 using all the 5 frequency response
data sets in Fig. 6.3.
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(a) Ur→uv ,
∣∣WUr→uv

∣∣−1
(b) Ur→um ,

∣∣WUr→um

∣∣−1

(c) Uwv→uv ,
∣∣WUwv→uv

∣∣−1
(d) Uwv→um ,

∣∣WUwv→um

∣∣−1

(e) Uwm→uv ,
∣∣WUwm→uv

∣∣−1
(f) Uwm→um ,

∣∣WUwm→um

∣∣−1

Figure B.5: The magnitude Bode plots of the individual SISO closed loop transfer functions
to the control inputs in the dual-stage HDD (H) and the inverse of their H∞ weighting
functions magnitudes (|WH |−1). The |WH |−1 functions are shown with the light blue dotted
lines. The H∞ norm criteria are provided in Eq. (6.9). These plots include 25 closed loop
transfer functions for all the 5 design scenarios in table 6.1 using all the 5 frequency response
data sets in Fig. 6.3.
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