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Article

Cell cycle networks link gene expression
dysregulation, mutation, and brain
maldevelopment in autistic toddlers
Tiziano Pramparo1, Michael V Lombardo2,3,4, Kathleen Campbell1, Cynthia Carter Barnes1,

Steven Marinero1, Stephanie Solso1, Julia Young1, Maisi Mayo1, Anders Dale1, Clelia Ahrens-Barbeau1,

Sarah S Murray5,6, Linda Lopez1, Nathan Lewis7, Karen Pierce1 & Eric Courchesne1,*

Abstract

Genetic mechanisms underlying abnormal early neural develop-
ment in toddlers with Autism Spectrum Disorder (ASD) remain
uncertain due to the impossibility of direct brain gene expression
measurement during critical periods of early development. Recent
findings from a multi-tissue study demonstrated high expression
of many of the same gene networks between blood and brain
tissues, in particular with cell cycle functions. We explored rela-
tionships between blood gene expression and total brain volume
(TBV) in 142 ASD and control male toddlers. In control toddlers,
TBV variation significantly correlated with cell cycle and protein
folding gene networks, potentially impacting neuron number and
synapse development. In ASD toddlers, their correlations with
brain size were lost as a result of considerable changes in network
organization, while cell adhesion gene networks significantly
correlated with TBV variation. Cell cycle networks detected in
blood are highly preserved in the human brain and are upregu-
lated during prenatal states of development. Overall, alterations
were more pronounced in bigger brains. We identified 23 candi-
date genes for brain maldevelopment linked to 32 genes frequently
mutated in ASD. The integrated network includes genes that are
dysregulated in leukocyte and/or postmortem brain tissue of ASD
subjects and belong to signaling pathways regulating cell cycle G1/
S and G2/M phase transition. Finally, analyses of the CHD8 subnet-
work and altered transcript levels from an independent study of
CHD8 suppression further confirmed the central role of genes
regulating neurogenesis and cell adhesion processes in ASD brain
maldevelopment.
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Introduction

Autism Spectrum Disorder (ASD) is a heritable disorder involving

early brain maldevelopment (Courchesne et al, 2011a). The brain at

young ages is abnormal in a myriad of ways including brain over-

growth with an anterior/frontal to posterior cortical gradient in the

majority, but undergrowth in a minority, during the first years of life

(Courchesne et al, 2007); this shift upward in brain size distribution

is quantitative and not categorical. Brain weight at autopsy is also

shifted upward with heavier than the normal mean for an estimated

80% of 2–16 year olds, but lighter for a minority (Redcay &

Courchesne, 2005; Courchesne et al, 2011b). A small sample of

young ASD boys with heavy brain weight exhibited an excess of

67% neurons in the prefrontal cortex, which mediates social,

communication and cognitive development (Courchesne et al,

2011b). The excess of neurons in enlarged brains points to potential

dysregulation of mechanisms that govern cerebral cortical neuron

number during second trimester development. Indeed, gene

expression studies of prefrontal cortex in young ASD postmortem

cases report dysregulation of gene expression associated with cell

production, DNA-damage response, and apoptosis (Chow et al,

2012). Recently, alterations were detected in cell cycle timing and

excess cell proliferation in neuroprogenitor cells derived from

fibroblasts of living ASD patients who displayed early brain

overgrowth (Marchetto et al, unpublished data).

1 Department of Neurosciences, UC San Diego Autism Center, School of Medicine University of California San Diego, La Jolla, CA, USA
2 Department of Psychology, University of Cyprus, Nicosia, Cyprus
3 Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
4 Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
5 Scripps Genomic Medicine & The Scripps Translational Sciences Institute (STSI), La Jolla, CA, USA
6 Department of Pathology, University of California San Diego, La Jolla, CA, USA
7 Novo Nordisk Foundation Center for Biosustainability at the UCSD School of Medicine, and Department of Pediatrics, University of California San Diego, La Jolla, CA, USA

*Corresponding author. Tel: +1 858 534 6914; E-mail: ecourchesne@ucsd.edu

ª 2015 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 11: 841 | 2015 1



Disrupting mechanisms regulating cell number in the second

trimester has long been theorized to play a role in brain maldevelop-

ment in ASD (Courchesne et al, 2001) because mutant mouse model

studies show that cell cycle molecular machinery governs the over-

all size of the brain (Nakayama et al, 1996; Ferguson et al, 2002).

In fact, several pathological changes characteristic of ASD were

recently modeled in mouse (WDFY3 loss of function) and displayed

abnormal decreases in cell cycle timing, excess radial glia cell prolif-

eration, prenatal brain overgrowth, and an abnormal anterolateral

to posteromedial gradient of cortical overgrowth; interestingly, it

also displays focal laminar dysplasia associated with mis-migrated

cells (Orosco et al, 2014). This latter pathology may also parallel the

report of focal prefrontal and temporal cortical laminar defects in

91% of young ASD males and females (Stoner et al, 2014).

However, additional genes are known to be associated with either

abnormal brain enlargement or reduction in animal models

(Ellegood et al, 2014) and/or rare individual ASD cases (O’Roak

et al, 2012), suggesting additional mechanisms underlying ASD.

Recent genomic analyses of high-confidence genes in ASD

(Parikshak et al, 2013; Willsey et al, 2013; De Rubeis et al, 2014)

also point to dysregulation of cortical neuron number, laminar

development, and cell cycle in the prefrontal cortex during second

and third trimesters. While each of these genes occurs only in rare

individual ASD cases, cycle cell dysregulation functions may

commonly disrupt development in the second trimester in ASD.

While many high-confidence ASD genes regulate downstream tran-

scriptional programs including cell cycle functions and proliferation,

such as CHD8, in general they are not cell cycle genes per se. This

suggests that effects of high-confidence ASD genes on cell prolifera-

tion and brain size may be quantitative and continuous and not

categorical. Many genetic and non-genetic defects could disrupt cell

cycle, with changes in signaling and transcriptional activity, which

could lead to variations in cell number and brain size. Unfortu-

nately, it remains infeasible to directly test the impact of cell cycle

changes on cell number and brain size in ASD in vivo or with

postmortem approaches. This is because cell cycle activity changes

with development, and assays that test cell cycle activity in older

postmortem tissue provide only indirect information about its

function during fetal development. Moreover, the scarcity of post-

mortem ASD cases further limit getting even indirect evidence of cell

cycle dysfunction on brain size from this avenue.

These barriers hinder the study of relationships between cell

cycle disorganization and brain size variance in ASD during early

development. However, we note that genetic disruption of cell cycle

network organization could be detectable in multiple tissues at dif-

ferent ages. While the physiological response of a genetic perturba-

tion often varies with tissue type and age, the presence of disruption

may nonetheless be detectable and quantifiable across types and

ages. That is, detection in one tissue type at one age, such as leuko-

cytes in infants, may help the search for the presence of disruption

in other inaccessible cell types and ages, such as fetal neuroprogeni-

tor cells. Of note, the GTEx Consortium reported in Science that cell

cycle gene expression networks are present in all tissues, including

brain and blood (GTEx Consortium, 2015).

Therefore, we took a systems biology approach to analyzing gene

co-expression patterns in blood leukocyte samples of ASD and

control infants and toddlers in order to examine how variation in

co-expression modules are associated with variation in brain size at

very young ages in ASD. Here, we show that gene expression pro-

files from leukocytes at very young ages may be a biomarker of

early brain growth deviance in ASD. Furthermore, we use cell cycle

networks as an entry point to elucidate perturbation of transcrip-

tional networks associated with smaller and bigger brains. Our find-

ings of network dysfunction are integrated with recent genomic

studies describing genes frequently mutated in ASD, thus providing

compelling evidence that cell cycle networks may indeed be a point

of convergence for gene expression dysregulation, mutation, and

early brain maldevelopment in ASD.

Results

We tested the hypothesis that blood-based gene expression profiling

may reveal biological signatures relevant to neurodevelopment and

that such signatures may differ between ASD and control toddlers.

Leukocyte RNA levels were analyzed in relationship to total brain

volume (TBV) using an established approach based on gene co-

expression (WGCNA; Fig 1A and B; Langfelder & Horvath, 2008).

This method elucidates patterns of altered gene expression, orga-

nized as networks of co-expressed genes, and provides insights into

relationships of genes with disease-related endophenotypes or traits.

Furthermore, it provides metrics to understand the details of

network perturbation (Langfelder & Horvath, 2007, 2008; Fig 1C).

We leveraged network metrics to understand whether network

perturbation differentially affected smaller and bigger brains in ASD

toddlers as compared to controls (Fig 1D). Lastly, we used a reverse

genetic approach to frame our findings with recent evidence from

genomic studies reporting high-confidence genes of ASD (De Rubeis

et al, 2014).

Different gene networks associate with brain size in ASD and
control toddlers

Analyses were run using processed gene expression data (Pramparo

et al, 2015) that included 12,208 unique gene-probes from 87 ASD

and 55 control male subjects ages 1–4 years. The majority of

subjects were of Caucasian origin and Pearson’s chi-squared test

showed no significant difference in race characteristics between

ASD and control (X2
[5] = 7.98, P = 0.1569). Multivariate regression

analysis showed no variance explained by differences in race and

ethnicity characteristics between ASD and control subjects and age

variance was accounted in downstream analyses. Unsupervised

WGCNA resulted in 22 co-expression modules (Appendix Fig S1).

Each module was given an arbitrary color name and was summa-

rized by a metric known as the module eigengene (ME), which is

the first principal component of the module (i.e., axis capturing the

majority of variation in expression in the module). After degree-

preserving random shuffling, it was determined that all 22 modules

were significantly detected above chance levels (see Materials and

Methods and Appendix Fig S2). Module preservation analysis

between the two separate datasets (ASD/control) displayed high-

preservation scores, suggesting that the combined analysis was not

confounded by differences in networks structure of the two datasets

(Appendix Fig S3 and Appendix Table S1).

Module eigengene values from each of the 65 ASD and 38 control

subjects, who also had MRI scans, were used in linear correlation
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A

B

C

D

Figure 1. Schematic of the approach used in the study.

A Blood gene expression was analyzed in relationship with neuroanatomic measures using a co-expression network-based approach (WGCNA). The distribution of
neuroanatomic measure was normal and not significantly different between ASD and control toddlers. The analysis of co-expression was combined with all available
samples.

B Data from the combined network-based analysis was further investigated in each ASD and control group separately using a linear model.
C Network features, calculated from the WGCNA co-expression analysis in relationship to brain size, were used to dissect alterations of network patterns in ASD brains.
D Network features were also used to characterize smaller and bigger brains in each study group.
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tests in which we related RNA levels to brain size. TBV measures

were age-corrected (see Materials and Methods) and showed normal

distributions with no statistically significant differences in mean and

variance between the two groups (Fig 2A). Seven modules were

significantly correlated with TBV measures across all subjects

(FDR < 0.05) with the greenyellow and grey60 gene modules

displaying the strongest correlations (Fig 2B). Permutation analysis

with randomly generated MEs (see Materials and Methods) demon-

strated that these associations were significant against chance for all

but the yellow module (Appendix Fig S4).

To identify gene networks that correlated with brain size within

each diagnostic group, we computed Pearson’s r correlation statis-

tics between each of the seven MEs and TBV measures in ASD and

control toddlers, separately. In control toddlers, the greenyellow

and grey60 MEs were significantly correlated with age-corrected

TBV (Fig 2B), while brain size in ASD toddlers displayed significant

linear correlations with the salmon, turquoise, and cyan MEs

(Fig 2B; see Appendix Table S2 for bootstrapped 95% confidence

intervals). We restricted further analyses to only modules showing

the strongest effects on brain size (i.e. r > 0.3, P < 0.05,

FDR < 0.05), which included greenyellow, grey60, and salmon

modules. These effects were found to be independent of age

(Appendix Table S3) and confirmed to be significant against chance

after permutation analysis (Appendix Fig S5 and see Materials and

Methods). WGCNA on the separate ASD and control datasets also

confirmed that these three gene networks were the strongest signal

associated with TBV variation in each group (Appendix Figs S6 and

S7 and Dataset EV1). We next used permutation tests to examine

A B C

D E F

Figure 2. Analysis of gene networks associated with variation in brain size in ASD and control toddlers.

A Distributions of brain size as indexed by total brain volume (TBV) in ASD and control toddlers used in the co-expression analysis (WGCNA). T, value from t-test;
F, value from Levene’s test.

B Module eigengenes (MEs) from the combined WGCNA are linearly correlated with TBV measures in all brains, ASD and control groups. P-value is in parenthesis and
adjusted P-value (q-value) is < 0.05 for all seven modules. Significant associations after 10,000 permutation tests are provided in Appendix Figs S4 and S5.

C Metacore enrichment scores of the seven (7) modules initially related to brain size variation across all subjects. Each module is called by its assigned color and
represents the top process network obtained by the enrichment analysis in Metacore GeneGO (see also Dataset EV1).

D–F (i) Linear modeling of module eigengenes (MEs) by TBV measures in control (blue) and ASD (red) toddlers. See also Fig 2B for cor and P-values. (ii) Linear modeling
of GS by GC to display changes in network organization relevant to brain size. (iii) The top 30 genes with highest values for GS and GC were compared between
ASD and control. Purple indicates the number of genes that moved away from the top 30 rank position between the two groups (Different genes), and grey
indicates the number of genes that did not (Common genes). Significance codes: ***P-value < 0.001; **P-value < 0.01; cor, correlation coefficient; ns, not
significant.
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whether the strength of these correlations (MEs-TBV) significantly

differed between the two groups. However, correlations were not

significantly different between groups for greenyellow P = 0.33, but

were at or beyond trend level significance for grey60 (P = 0.06) and

salmon (P = 0.01; see Fig 2Di–Fi and Appendix Table S4).

To investigate the biological functions of these modules, we ran

pathway enrichment analysis in Metacore GeneGO using a threshold

of FDR q < 0.05. The greenyellow and grey60 modules were

enriched in genes with cell cycle and protein folding functions,

respectively, while genes in the salmon module were enriched in

cell adhesion functions (Fig 2C and Dataset EV1). This enrichment

remained significant after filtering for expression in fetal and adult

brain tissue using the Metacore GeneGo database (Dataset EV1).

The other modules with modest correlations displayed enrichment

in translation, inflammation, and cytoskeleton rearrangement func-

tions (Fig 2C and Dataset EV1).

Network perturbation in ASD affects gene connectivity and
relevance for brain size

In addition to quantifying gene module summary measures like the

module eigengene and its relationship to brain size, we also used

two gene-level metrics (gene significance and gene connectivity) to

assess associations with brain size. Gene significance (GS) is defined

as the correlation between gene expression and a trait (i.e., TBV),

thus providing a measure of “significance or relevance” of a particu-

lar gene to variation in a trait such as TBV. Gene connectivity (GC)

is a connectivity measure indicating how strongly connected (i.e.,

correlation strength) is a particular gene with all other genes within

the module. Higher GC values are indicative of central or ‘hub’

genes, whereas genes with lower GC are oriented around the periph-

ery of the co-expression module. Examining the correlation between

GC with GS values for each gene allows for insight into understand-

ing how metrics of a gene’s organization within a network (i.e. gene

connectivity) may be associated to its relevance with brain size

(i.e., gene significance).

GS-GC correlations were stronger in control compared to ASD

(i.e. more positive) in both the cell cycle (control: r = 0.64; ASD:

r = 0.42; z = 3.47) and protein folding modules, (control: r = 0.64;

ASD r = 0.40; z = 3.19) (see Fig 2Dii–Fii). Thus, as a gene becomes

more highly connected with other genes within the cell cycle and

protein folding modules, it also becomes more relevant to (or has

stronger impact on) TBV, and this relationship is stronger in control

than ASD. For the cell adhesion module, the ASD group showed a

stronger correlation between GS and GC than the control group

(ASD: r = 0.22; control: r = 0.002; z = 2.48; see Fig 2Dii–Fii). Thus,

as a gene becomes more highly connected within the cell adhesion

module, it becomes more relevant to brain size in ASD than in the

control group. Along with the evidence showing generalized atypi-

cality in GS in ASD (i.e., reductions in GS in cell cycle and protein

folding modules, but increase in cell adhesion; Appendix Fig S8),

this evidence supports the idea that GS is accompanied by a modest

alteration in GC between groups, indicating that a gene’s relevance

to brain size covaries with changes in network organization in ASD

(Fig 2Dii–Fii). With regard to the cell cycle network in particular,

this network re-organization in ASD can be described as many high

GC genes (i.e., hub-genes located more centrally within the

network) with a reduced GS, but also many low GC genes (i.e.

low-connectivity genes located around the periphery of the network)

which displayed some of the highest GS levels (Fig 2Dii–Fii).

Of the three modules, the cell cycle module displayed the most

severe network re-organization. This can be shown through further

analyses of the top 30 genes on each metric (GS and GC; see Materi-

als and Methods). First, we ran Venn analyses to determine the

gene overlap between ASD and control toddlers and found that the

majority of the genes with highest GS were unique to each group,

especially for the cell cycle gene network with 29 out of 30 genes

being different between groups (Fig 2Diii and Dataset EV1). Then

we investigated whether the top 30 GC genes (i.e., hub-genes) in

the co-expression network were also the top GS genes in each

group. Within the cell cycle module, 16 of the 30 hub-genes also

possessed the top GS scores for controls, while in ASD only 5 of the

30 hub-genes were top GS genes (OR = 5.71, P = 0.004 CI = 1.72–

18.94). The remaining 25 top GS genes in ASD had lower GC

scores, and thus were considered ‘peripheral’ in the cell cycle co-

expression network. While in controls these 25 peripheral genes

displayed a strong positive association between GS and GC

(r = 0.74, P = 2.7e-5), in ASD the directionality of the association

flipped (r = �0.34, P = 0.098; Appendix Fig S9), resulting in a

substantial group difference in correlation strength (z = 4.33,

P = 1.51e-5). For the protein folding module, there were similar

proportions of hub-genes displaying top GS scores in both groups

(OR = 1.96, P = 0.198, CI = 0.70–5.48). However, among the

peripheral genes (i.e. top GS genes with low GC scores), again there

was a flip in directionality of GS-GC correlation (controls r = 0.89,

P = 1.8-e-6; ASD r = �0.19, P = 0.45; z = 0.35, P = 8.60e-8;

Appendix Fig S9). Likewise, the cell adhesion module also

displayed similar proportions of hub-genes with top GS scores

(OR = 1, P = 1, CI = 0.30–3.30). Peripheral genes (i.e., top GS

genes with low GC scores) display similar GS-GC correlations across

controls and ASD (controls r = 0.04, P = 0.85; ASD r = �0.35,

P = 0.094; z = 1.34, P = 0.17 Appendix Fig S9).

This evidence reinforced the findings of network re-organization

and revealed a trend in gene expression relevance for brain size that

shifts from central genes (hub-genes) in control toddlers to periph-

eral genes in ASD toddlers particularly within the cell cycle network.

The overall network perturbation may underlie potential down-

stream consequences in overall transcriptional regulation.

Cell cycle module is preserved and highly expressed during early
stages of normal fetal brain development

We next reasoned that if correct neurodevelopment relies on the

tight modulation of gene networks driving brain size, changes in

expression levels of these networks would likely be most damaging

at early developmental stages. It is also expected that biological

processes involved in cell proliferation (e.g., during the neuronal

progenitor pool expansion) would be expressed at high levels at

earliest ages and lowest during postnatal life when the brain struc-

tures have already been formed.

Based on these hypotheses, we utilized gene expression data

from the Allen Institute BrainSpan Atlas (Miller et al, 2014), in

which control human brain tissues were expression-profiled at

multiple time points from early prenatal stages to adulthood. First,

we examined which of the modules detected in blood would be

highly preserved in a WGCNA on BrainSpan data. Several of the 22
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blood-modules were moderately to highly preserved (i.e., moder-

ate = Zsummary values between 2 and 10; high = Zsummary > 10;

Fig 3A; see statistics in Appendix Table S5). The cell cycle module

(greenyellow) showed the highest level of preservation (e.g., Zsum-

mary = 14 and top median rank), suggesting that its network struc-

ture is highly preserved in human brain samples taken at different

developmental stages. Due to its relevance for development, we

next focused on the cell cycle module and investigated the develop-

mental trajectory of the gene expression and specifically tested the

hypothesis that expression would be upregulated in prenatal vs

postnatal time points. Indeed, BrainSpan cell cycle ME values from

prenatal time points were much higher than at postnatal time points

(Wilcoxon rank sum z = 3.51, P = 4.44e-4; Fig 3B and C). Of note,

consistent with prior literature indicating that cell cycle processes

are important to drive early brain development, our findings provide

postnatal in vivo evidence of gene expression alterations in ASD that

can be traced back to early developmental stages and that are rele-

vant to brain size.

Network perturbation is more pronounced in bigger ASD brains

We next wanted to test whether the cell cycle module showed high

levels of protein–protein interactions (PPIs) and how perturbation

of these PPI genes would be relevant to brain size variation in ASD.

This analysis would also provide independent validation that gene

products (proteins) within the same biological process, such as cell

cycle, display consistent perturbations; we have detected from the

co-expression analysis. In addition, we designed the PPI analysis to

determine whether smaller brains significantly differed from bigger

brains in ASD compared to controls.

A

B C

Figure 3. BrainSpan preservation analysis and cell cycle developmental trajectory.

A Preservation analysis between BrainSpan dorsolateral prefrontal cortex gene expression data and the ASD + control blood data. Zsummary statistic (e.g.,
Zsummary > 10 means highly preserved, Zsummary in between 2 and 10 is weak to moderate preservation, Zsummary < 2 is little to no preservation and median
rank (modules with lowest rank are highly preserved)). Median Rank and Zsummary values indicate high module preservation between the two datasets.

B Boxplot showing module eigengene (ME) values the BrainSpan cell cycle module for fetal versus postnatal time points (15 fetal versus 16 postnatal time points). The
box refers to the interquartile range (IQR), which we refer to as Q1 (25th percentile) and Q3 (75th percentile). The upper whisker represents Q3 + 1.5*IQR, while the
lower whisker represents Q1 � 1.5*IQR. The line in the middle of the box represents the median.

C Scatterplot indicating the BrainSpan cell cycle module trajectory across development (vertical line indicates birth; time points to the left of the line are fetal time
points, while time points to the right of the line are postnatal time points; best-fit curve indicates a 4th order polynomial fit).
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A cell cycle reference network based on PPI was constructed by

querying all 253 genes from the cell cycle module using the DAPPLE

database (Rossin et al, 2011). Out of these genes, 119 displayed

a higher number of PPIs compared to chance (P < 0.001;

Appendix Fig S10; see PPI stats in Dataset EV1). We then mapped

onto this reference PPI network the top 30 hub-genes relevant to

brain size that we previously identified in the combined co-expression

network analysis (Fig 2Diii–Fiii). Of the top 30 hub-genes, 19

and 20 genes (in control and ASD, respectively) mapped into the

PPI network (Dataset EV1). For each of these, 19 and 20 hub-genes

in the PPI network, we re-calculated their GS scores and P-values

(see Materials and Methods) for subgroups with either smaller (GS-

SM, residuals < 0 cc) or bigger (GS-BG, residuals > 0 cc) than the

mean average brain size (see Fig 2A) and compared their GS scores

with the GS scores calculated from the previous combined analysis

using all brains (GS-ALL). We used the lowest GS-ALL value as

threshold in each group and observed whether the new GS-SM or

GS-BG values passed this GS-ALL threshold. When a gene did not

meet the GS-ALL threshold in GS-SM or GS-BG subgroups, we

considered the gene as losing its relevance to brain size within the

subgroup. If a gene passed the GS-ALL threshold in GS-SM or GS-BG

subgroups, we considered that gene as retaining or gaining rele-

vance within the subgroup.

Surprisingly in controls, all 19 genes passed the GS-ALL thresh-

old in both the small and big brain subgroups (Fig 4A and

Dataset EV1). This suggested that brain growth in control toddlers

is possibly driven by a common set of genes regardless of size varia-

tion. In ASD, 14 of these 19 genes passed the GS-ALL threshold in

A B C

Figure 4. Topological analysis of cell cycle hub-genes in a protein–protein interaction (PPI) network.
Mapping of the top 30 hub-genes relevant to TBV measures in smaller and bigger ASD and control brains.

A Hub-genes that are normally active in control toddlers.
B Hub-genes that are active in both control and ASD toddlers.
C Hub-genes that are abnormally active in ASD toddlers.

Data information: Node size (circle) is proportional to the number of actual biologically driven PPIs. Blue and red nodes are hub-genes that displayed PPIs and were in
the top 30 lists in control and ASD, respectively. Grey nodes are genes in the cell cycle PPIs network that were not ranked within the top 30 genes. Black nodes are genes
that fall out from the top 30-gene list in ASD compared to control.
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the small brain subgroup (Fig 4B and Dataset EV1). The difference

in these ratios (i.e. 19/19 in controls vs 14/19 in ASD) was signifi-

cant (OR = 14.8, P = 0.02, CI = 0.75–289.4). Conversely, in ASD

only 1 gene (CCNB2) passed the GS-ALL threshold in the big brain

subgroup (Fig 4B) and this difference in ratios (i.e. 19/19 in controls

vs 1/19 in ASD) was highly significant (OR = 481, P = 3.35e-9, CI =

18.4–12,570). Lastly, we identified the genes that were unique to

smaller or bigger ASD brains, thus either lost or gained relevance for

size. A total of 9 hub-genes were found abnormally correlated

(ZWINT, CENPE, MCM10, and UHRF1), or uncorrelated (CDC20,

BUB1, NEK2, PTTG1, and CCNE2) with smaller ASD brains. Bigger

ASD brains instead displayed greater PPI network alteration in

respect to smaller brains with 18 genes (Fig 4C and Dataset EV1)

losing correlation strength for size, while 1 gene (UBE2C) displayed a

gain in correlation for bigger brains (14 and 9 in smaller vs 1 and 18

in bigger ASD brains; OR = 28, P = 2.2-e-4, CI = 3.2–248; Fig 4C).

In total, we identified 23 co-expressed hub-genes within the cell

cycle PPI network abnormally related to brain size variation in ASD

that are good candidate genes for brain maldevelopment (Dataset

EV1). These findings added substantial biological validation to the

above genetic interaction analyses that showed genes governing

brain size in ASD and controls are substantially different from each

other. Furthermore, while such differences are present for both

smaller and bigger ASD brains, the difference from controls is much

greater for bigger ASD brains compared to smaller ASD brains.

Cell cycle networks link gene expression dysregulation, mutation
and brain maldevelopment

A large body of evidence suggests that developmental alteration of

genes that control cell number may underlie neuropathology of ASD

(Courchesne et al, 2001, 2007, 2011b). Moreover, recent genomic

studies identified High-confidence (Hc) genes with loss-of-function

mutations that are involved in large networks including functions in

the regulation of cortical cell number production (Willsey et al,

2013; De Rubeis et al, 2014). Two Hc genes were also found

mutated in subjects with significantly smaller (DYRK1A) and bigger

(CHD8) heads (O’Roak et al, 2012).

To identify specific molecular mechanisms of dysregulation, we

tested the hypothesis that these Hc genes may be at least partially

involved in the upstream regulation of the 23 PPI candidate genes

we identified abnormally expressed in ASD. Thus, we constructed

an Hc network by using 32 Hc genes (out of the 33 reported in De

Rubeis et al, 2014) in Metacore GeneGO to identify their direct

downstream targets. These Hc genes are associated with pleiotropic

roles including not only the regulation of synaptic processes, but

also the regulation of cell number and expression of other down-

stream genes (Dataset EV1) (Geschwind & State, 2015). The Hc

network included a total of 414 genes (Fig 5). Similarly, we queried

the same database to obtain the list of genes with regulatory

functions upstream of the 23 PPI candidate genes and mapped these

genes in the Hc network. One hundred and six (106) genes were

identified as upstream regulatory. A schematic description of the

network construction can be found in Fig EV1.

Analysis of the integrated Hc network demonstrated that four of

the 23 PPI candidate genes (AURKA, CDK1, CCNA2 and CCNE) were

direct downstream targets of Hc genes (CHD8, ARID1A/B, and CUL3)

and upstream regulators of other PPI candidate genes (Fig 5). Using

differentially expressed (DE) from a companion study (Pramparo

et al, 2015), we found that eight Hc genes (CHD8, ARID1A, ASH2L,

ACTB, NR3C2, SUV420H1, ADPN, and MYO9B) were DE in leuko-

cytes obtained from ASD and control (Fig 5). Four other Hc genes

(CUL3, SYNGAP1, NAA15, and ARID1B) were upstream regulators of

the PPI candidate genes and CUL3, SYNGAP1, and NAA15 were also

DE in postmortem brain tissue (Voineagu et al, 2011; Pramparo

et al, 2015; Fig 5). Several other upstream regulatory genes were

included in the Hc network, such as E2F1, MYC, GSK3, YWHAB,

ESR1, EGFR, PCNA, CDKN1, and ERBB1. Most importantly, many key

upstream regulatory genes were DE in leukocytes, such as CHD8,

ARID1A, AKT1, Beta-catenin (CTNNB1), SMAD3, CREB1, and

NOTCH1 and/or in postmortem brain tissue (TCF4, CREB1, SMAD3,

CAMK2A, LIMK1, NCOA3, CCNE1, and BRD2).

We found an over-representation of DE genes, previously identi-

fied in (Pramparo et al, 2015), among the upstream regulatory

genes (n = 106) in the Hc network (n = 414) (see Materials and

Methods; Hyp. P = 1.e-12), suggesting their role in regulating the

cell cycle network. Further pathway analysis of the upstream regula-

tory genes displayed a strong enrichment in processes involved in

the regulation of cell cycle phase transition (G2-M and G1-S) under

the master regulation of APC (inducing progression and exit from

mitosis), ESR1 (promoting G1-S transition) and ATM (initiating

G2-M arrest) genes (Dataset EV1). Top signal transduction

pathways were PTEN (P = 2e-16, FDR = 4e-14), ESR1 (P = 5.7e-14,

FDR = 2.1e-12) and NOTCH (P = 2.2e-13, FDR = 4.4e-12). These

findings demonstrate a clear connection between the dysregulation

of cell cycle gene networks and abnormal brain size/development

in ASD toddlers. Overall, a large proportion of genes in the Hc

network were DE in postmortem brain tissue (Hyp. P = 2.6e-11),

demonstrating the validity and relevance of the Hc network in brain

tissue development and function. Lastly, a significant enrichment

was found also for SFARI ASD candidate genes (excluding the 32 Hc

query genes; 706 curated SFARI genes Updated March, 2015) within

the Hc network (Hyp. P = 1.4e-13), further reinforcing the link of

the cell cycle network to ASD.

CHD8-subnetwork perturbation causes significant loss of
association with brain size in ASD via E2F-dependent genes
expressed at G1-S phase transition

We further analyzed the Hc network to pinpoint which of the Hc

subnetworks displayed gene expression levels associated with

normal brain size and whether the dysregulation of gene expression

in ASD would significantly disrupt this association with ASD brains

(see Materials and Methods). Hc subnetworks were defined based

on each Hc gene as central hub and all the genes that directly linked

to it. We then extracted expression values from our dataset for all

genes in each Hc subnetwork and calculated the average expression

value for each subnetwork. For instance, CHD8 was directly linked

to a total of 25 genes (Fig 6A) and 16 had expression values; thus,

the average expression for the CHD8 subnetwork was calculated

using these 16 genes. Next, we ran linear correlations between each

average subnetwork expression value and TBV measures and tested

whether the strength of these correlations significantly differed

between ASD and control groups. Out of all the Hc subnetworks,

three were found with significant associations (CHD8, NR3C2,

APH1A), and only the CHD8 subnetwork displayed significant group
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differences via permutation analysis (see Appendix Table S6,

Fig 6B). The significant association of the CHD8 subnetwork in

controls was found to be independent of age by linear modeling and

ANOVA testing (see Appendix Table S7).

This evidence suggested an important role of CHD8 on brain size

in ASD which is strongly supported by a growing literature describ-

ing its mutations (O’Roak et al, 2012; Bernier et al, 2014; McCarthy

et al, 2014; Prontera et al, 2014) and function (Rodriguez-Paredes

et al, 2009; Subtil-Rodriguez et al, 2014; Sugathan et al, 2014).

Recent in vitro studies aiming to define the cellular phenotypes

and downstream targets of CHD8 supported the relevance of this

subnetwork to brain size. Indeed, five brain-relevant genes included

in the CHD8-subnetwork (CCNE2, TYMS, CCNA2, CDC6, and BRCA2)

were reported with impaired expression upon CHD8 knockdown

(Rodriguez-Paredes et al, 2009; Subtil-Rodriguez et al, 2014). Dysreg-

ulation was found specific for E2F-dependent genes expressed during

G1-S phase transition in proliferating cells, supporting our findings

that point to this mechanism as underlying brain maldevelopment in

ASD (Subtil-Rodriguez et al, 2014). To test whether potential down-

stream effects of CHD8 would converge to the same gene networks

we found dysregulated in ASD, we ran pathway analysis using the

CHD8-targets identified by ChIP-chip in two independent studies

(Sugathan et al, 2014; Cotney et al, 2015). Most importantly, we ran

enrichment on the common targets from these studies. Analysis of

the common genes found DE and CHD8 bound in neuronal progeni-

tor cells (NPCs) from the Sugathan study (Sugathan et al, 2014)

showed enrichment in development, signaling processes, and tran-

scription as well as DNA-damage and cell cycle functions (Dataset

Figure 5. High-confidence (Hc) network.
A Hc network was generated following the approach represented in Fig EV1. Big nodes represent Hc genes (grey or colored circles). Small grey or colored circles represent
direct downstream targets of the Hc genes. Colors code for different categories of genes mapped into the Hc network. Red indicates genes that are differentially expressed
(DE) in blood of the same subjects described in this study. Cyan indicates genes that are upstream and regulate any of the 23 brain-relevant genes identified in this
study. Green indicates genes that are both DE and regulators of the 23 brain-relevant genes. Big cyan diamond shapes are brain-relevant genes that mapped into the Hc
network. Bold circle outlines represent genes that are DE in postmortem brain tissue of ASD donors.
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EV1). Common targets from Sugathan et al and Cotney et al (hNSC

and brain genes, N = 1,620 and N = 1,662, respectively) studies

showed a strong enrichment for cell cycle and DNA-damage

processes with prominent S phase functions (Fig 6C). Of note, we

looked for enrichment in perturbed cell cycle genes that we identified

(greenyellow module) using the common targets from Sugathan et al

and Cotney et al (hNSC and brain genes) and we found significant

enrichment when using the hNSC genes (Hyp. P = 6.3e-5).

Altogether, these data suggest a role for CHD8 in development.

Upon disruption, its downstream effects converge to genes and

networks we have found predicting risk for ASD, associated with

brain maldevelopment in ASD and pointing to mechanisms that

affect regulation of cell phase transition during mitotic cycle via

E2F-dependent genes.

Discussion

This study of in vivo gene expression relationships with early brain

size addresses questions relevant to ASD patho-etiology and

physiology. It is currently unknown whether blood gene expression

can be used to identify biomarkers of brain maldevelopment in vivo

at early ages and/or whether these biomarkers could elucidate the

molecular mechanisms underlying fetal cortical maldevelopment.

Several lines of evidence suggest that aberrant regulation of cell

number may underlie the ASD neuropathology during the second/

third trimester of prenatal life. However, fundamental limitations,

related to the inaccessibility of the tissue in vivo and the paucity of

young postmortem samples, prevent the testing of this hypothesis

with both exploratory and targeted research. Our study represents a

step in this direction and aims to lay the groundwork for further

hypothesis-driven investigations. A systems-level analysis of biolog-

ical networks is indeed required to build a framework to understand

the spatio-temporal scale, the effects of perturbation and the result-

ing physiological states characterizing diseases (Ge et al, 2003;

Somvanshi & Venkatesh, 2014). Thus, our findings suggest a point

of reference to further the study of alterations in genes and biologi-

cal processes that underlie neuropathology of ASD.

Here, we identified gene networks—cell cycle and protein folding

—in blood that strongly correlate with early brain size in control

A

C

B

Figure 6. CHD8 subnetwork analysis in relationship to brain size and downstream CHD8-knockdown effects in vitro.

A CHD8 subnetwork analysis included all CHD8-targets from the Hc network. Network legend is the same as in Fig 5: grey (downstream CHD8 target), cyan (upstream
regulatory gene of brain-size relevant genes altered in ASD), red (differentially expressed in blood), green (cyan and red), diamond shape (brain-size relevant gene
altered in ASD), and black circle (differentially expressed in ASD cortex from Voineagu et al, 2011).

B Linear correlation analysis of gene expression levels with TBV measures in ASD and control toddlers. See permutation analysis in Appendix Table S6. **P < 0.001.
C Pathway analysis in Metacore. FDR < 0.05.
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toddlers. We additionally identified dysregulated gene networks in

blood that correlate with early brain maldevelopment in infants and

toddlers with ASD. These gene networks retained functional enrich-

ment in human brain tissue and displayed consistent expression

profiles during cortical fetal development.

The combined findings of this study suggest that there is a prena-

tal disruption of neuron number regulation, cell differentiation, and

overall architecture of the developing cortex in ASD. Underlying this

disruption is an abnormal functional organization of cell cycle and

protein folding gene networks and the abnormal activation of other

functional networks, such as cell adhesion. Thus, our evidence

suggests that brain maldevelopment in autistic infants involves

dysfunction in such gene networks.

The present evidence of abnormal cell cycle networks involved

in early brain maldevelopment in ASD is consistent within a larger

and well-established animal model literature that cell cycle molecu-

lar machinery governs the overall size of the brain (Nakayama et al,

1996; Groszer et al, 2001; Chenn & Walsh, 2002; Ferguson et al,

2002; Feng & Walsh, 2004; Dehay & Kennedy, 2007; Ellegood et al,

2014) and supports the original theory proposed to explain early

brain overgrowth in ASD (Courchesne et al, 2001). Here, we used

the cell cycle network in leukocytes as an entry point to dissect the

transcriptional alterations underlying pathology in living ASD

infants and toddlers across developmental brain sizes, from small to

abnormally large. Cell cycle network abnormalities involved

substantial alteration of activity patterns of cell cycle hub-genes and

modulation in expression of different peripheral genes. Such func-

tional abnormality in the cell cycle network was greatest in ASD

infants and toddlers who had bigger brain size, and moderate in

those who had smaller brain size.

Abundant research shows that, beyond its effects on global brain

and cerebral cortical size, cell cycle dysregulation can impact the

core foundational framework of the fetal brain. Disruption may

involve area-specific rates of cell production, cortical areal expan-

sion, cell-fate determination, cell migration and differentiation, lami-

nar specification, DNA integrity, the genesis of the connectivity of

critical transient structures (subplate), and the generation of cyto-

architectonic maps (Galderisi et al, 2003; Dehay & Kennedy, 2007).

Thus, we hypothesize disruptions in cell cycle regulation in early

prenatal life may be a key defect underlying ASD. Such disruption

may explain why some cortical regions have excess cells

(Courchesne et al, 2011b) while other regions have too few (van

Kooten et al, 2008). It may also explain why there are focal patches

of disorganized prefrontal and temporal cortex in which cell-type

and laminar-specific ISH expression are abnormally reduced (Stoner

et al, 2014); this cortical pathology points to failure of the full

normal cell- and laminar-fate program, which should be completed

during the second and third trimesters (Stoner et al, 2014). More

broadly, because the cell cycle disruption we identified appears to

vary across affected ASD individuals with greater disruption associ-

ated with brain enlargement and lesser with smaller brain size, varia-

tion in the timing, nature and cellular location of its disruption could

explain some aspects of variation in brain microstructural and func-

tional outcome as well as clinical symptom heterogeneity in ASD.

Using a reverse genetic approach, we demonstrated that brain

maldevelopment in ASD is likely due to the disruption of cell cycle

networks, which in turn is related to key genes that have been

frequently found mutated in ASD (De Rubeis et al, 2014). For the

majority of high-risk ASD genes, the specific functional role and

modalities of interactions are currently unclear. A recent literature

review focusing on regulatory roles for genes in neurogenesis,

neural induction, and neuroblast differentiation found that the vast

majority of high-risk ASD genes help to regulate neural induction

and early neuroblast development (Casanova & Casanova, 2014).

Most importantly, the majority of core set genes influence neuronal

development through multiple stages and are not limited to one

single process. This pleiotropy of functions likely suggests that dif-

ferent modalities of interaction may co-exist, such as DNA-, RNA-,

and protein-binding and may vary depending upon cell type and

stage of development. The integrated Hc network displays a high

content of regulatory elements strongly enriched in cell cycle phase-

transition functions, suggesting that cell cycle length and timing

may be one possible disrupted mechanism that can, at least

partially, explain the downstream alteration of hub-genes associated

with brain maldevelopment in ASD. This hypothesis is consistent

with recent findings describing alterations of cell cycle timing and

excess cell proliferation of neuroprogenitor cells derived from

fibroblasts of living ASD patients who displayed early brain over-

growth (Marchetto et al, unpublished data). Several genes in the Hc

network (e.g. E2F1, Cyclins, MYC, CHD8, PIK3, AKT1, GSK3, PCNA,

ERBB2, Beta-catenin, and SMAD3) are known to play a role in G1/S

and G2/M checkpoints, and to regulate neurogenesis (Zhu et al,

2003; Zhou & Luo, 2013). Some of these genes are also dysregulated

in dorsolateral pre-frontal cortex of young ASD cases (e.g. GSK3,

AKT1, Beta-catenin, CREB1, SP1, TP53, SRC, FPS, and NODAL;

Voineagu et al, 2011; Chow et al, 2012). At the pathway level,

PTEN, NOTCH and ESR transduction signals point to the same cell

cycle phase-transition dysregulation. PTEN is a well-known tumor

suppressor gene that counteracts the activation of PIK3/AKT in

proliferation/self-renewal of neural progenitor cells, both in vivo

and in vitro (Worby & Dixon, 2014). In vivo, its ablation leads to

enhanced self-renewal capacity, accelerated G0-G1 cell cycle entry

(Groszer et al, 2001, 2006; Gregorian et al, 2009), and faster transi-

tion from the G2/M to the G1 phase in embryonic stem cells result-

ing in overall shortened cell cycle (Kandel et al, 2002). Importantly,

PTEN mutations have been found associated with enlarged brain

size in ASD subjects (O’Roak et al, 2012) and one ASD PTEN brain

has > 100% excess prefrontal neurons (Courchesne et al, 2011b;

Courchesne personal communication). A target of PTEN signaling is

the NOTCH pathway that as well represents a key regulator of

neural stem cells (NSCs) maintenance. NOTCH inhibition has been

shown to delay G1/S phase transition and commit NSCs to neuroge-

nesis (Borghese et al, 2010). Similarly, the ESR1 pathway acts like a

ligand-dependent transcription factor and promotes G1/S transition

through several pathways (Prall et al, 1997; Foster et al, 2001).

Lastly, in addition to cell cycle dysfunction, we also found

dysregulation of cell adhesion and protein folding networks in ASD

toddlers. Alteration of cell adhesion functions, as in our case

mediated by integrins, may have pleiotropic effects during both

early and later developmental stages. During early cortical develop-

ment neurogenesis, neuronal migration and cell specification are

most active (Schmid & Anton, 2003), while later in development

synapse formation, finalization and function become of primary

importance (Milner & Campbell, 2002). Converging evidence shows

that accumulation of misfolded proteins leads to the Unfolded

Protein Response (UPR) (Walter & Ron, 2011) which in turn may
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underlie impaired synaptic function in ASD (Fujita et al, 2010;

Falivelli et al, 2012), as well as global alterations of transcriptional

regulation (Mendillo et al, 2012). Analysis of CHD8 knockdown

in vitro has provided evidence converging its downstream effects

on transcriptional regulation to pathways we found altered in ASD

(translation, cell cycle, protein folding, and cell adhesion).

Figure 7. Schematic representations of mechanisms that may underlie brain maldevelopment in ASD.
In control brains (top panel), both smaller and bigger brains develop and function normally. At the cellular level, there are no significant alterations of cell division phases and
the number of cells produced is within normal variation. At the molecular level, there are no genetic alterations and changes in gene expression are within normal
variation with no significant alterations of network structure and function. In ASD brains (bottom panel), brain development is abnormal and smaller and bigger brains
represent two different anatomical and functional outcomes. In smaller ASD brains, the cellular characteristics are currently less clear compared to bigger brains. We
hypothesize that G1/S phase transitions may be longer and/or checkpoints may stall/delay the timing of cell divisions leading to a reduced number of cells. Alternatively, there
are an increased number of apoptotic cells. These cellular phenotypes may be related to genetic mutations (red lightning bolt) of Hc genes that, for instance, regulate
chromatin modification as in case of CHD8 (blue). The mutation leads to altered regulation (red arrows) of downstream transcription factors or regulatory elements (yellow,
cyan, green diamond shapes) that in turn regulate the expression of brain-relevant genes (purple square). Mutated CHD8 can also alter directly the expression of
brain-relevant genes, as in case of CCNE2. Gene expression and network functions are altered, but closer to normal brains. In bigger brains, cellular andmolecular phenotypes
are more pronounced compared to smaller ASD brains. Cellular evidence suggests that the increased number of neurons may be due to the shortening of G1/S phases. At the
molecular level, this may be related to mutations and changes in gene expression that lead to a reorganization of networks controlling neuroprogenitor cell divisions. In
addition to the downstream effects of Hc mutations (i.e. CHD8, red arrows), pronounced gene expression changes cause a substantial reorganization of the network with the
activation of new regulatory genes (i.e., TOP2A, TYMS, triangle shapes) and new interactions (green arrows), thus leading to altered or different network functions.
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Conclusion

Our study provides compelling evidence to demonstrate that analy-

ses of gene expression in peripheral blood allow the identification

of functional genetic correlates of brain maldevelopment in ASD.

Results point to convergent pathways of altered expression of

genes and networks that ultimately lead to abnormal regulation of

neuron production via defective G1/S phase transition during early

stages of brain development (Fig 7), thus likely affecting neuropro-

genitor divisions. While larger ASD brains display greater networks

alterations with shorter G1/S phase timing (Marchetto et al,

unpublished data) (Fig 7), the molecular underpinning of smaller

brains remains less clear. It is plausible to hypothesize that either

a lengthening of the G1/S phases or a checkpoint delay/malfunc-

tion may lead to reduced number of neurons or to increased cell

removal (Fig 7).

Together with previous evidence (Courchesne et al, 2011b;

Chow et al, 2012; Parikshak et al, 2013; Willsey et al, 2013; Stoner

et al, 2014), we argue that disruption of gene networks related to

specific prenatal genetic programs may underlie abnormal neuronal

development in both small and large brains and may be part of the

cause of ASD in a majority of individuals. Furthermore, genetic

programs that control synapse development in early life provide a

core functional neuronal component essential to further brain

development and complex process elaboration; genetic defects in

such genes have long been theorized, but not demonstrated, to

impact postnatal brain growth and function in ASD (Parikshak

et al, 2013). Further elucidation of these functional genomic

pathologies underlying early brain development in ASD will facili-

tate research into biological targets for biotherapeutic intervention

and development of accurate biomarkers for the early detection of

babies and infants at risk for ASD.

Materials and Methods

Subject recruitment, tracking, and developmental evaluation

Research procedures were approved by the Institutional Review

Board of the University of California, San Diego (No. 110049). Infor-

mation on subject recruitment, evaluation, RNA samples, and gene

expression procedures are provided also in a recent companion

study (Pramparo et al, 2015). Toddlers were recruited via the 1-Year

Well-Baby Check-Up Approach from community pediatric clinics

(Pierce et al, 2011) as well as via referral from other community

sources and evaluated using a battery of standardized and experi-

mental tests that included: the Autism Diagnostic Observation

Schedule (ADOS; Lord et al, 2000; Luyster et al, 2009), the Mullen

Scales of Early Learning (Mullen, 1995) and the Vineland Adaptive

Behavior Scales (Sparrow et al, 2005). Diagnoses were determined

via these assessments and the Diagnostic and Statistical Manual,

Fourth Edition (DSM IV-TR) (American Psychiatric Association,

2000). Testing sessions generally lasted 4 h and occurred across 2

separate days and the blood sample was usually taken at the end of

the first day. Parents were interviewed with the Vineland Adaptive

Behavior Scales (Sparrow et al, 2005) and a medical history inter-

view. All toddlers were developmentally evaluated by a Ph.D. level

psychologist and those that were younger than 3 years at the time

of blood draw were tracked every 6 months until their 3rd birthday

when a final diagnosis was given. Only toddlers with a provisional

or confirmed ASD diagnosis were included in this study. Our recent

study (Pierce et al, 2011), which included the participation of 137

pediatricians who implemented > 10,000 CSBS screens showed that

75% of toddlers that fail the screen at the 1st year exam have a true

delay (either ASD, language delay, global developmental delay or

other condition). While ASD toddlers were as young as 12 months

at the time of blood sampling, all but 3 toddlers have been tracked

and diagnosed using the ADOS toddler module (Luyster et al) until

at least age two years, an age where diagnosis of ASD is relatively

stable (Cox et al, 1999; Kleinman et al, 2008; Chawarska et al,

2009). Toddlers received the ADOS module that was most appropri-

ate for their age and intellectual capacity. Of the 87 enrolled ASD

subjects, 64% had an ADOST, 31% had an ADOS 1, and 5% had an

ADOS 2. Only toddlers with a provisional or confirmed ASD diagno-

sis were included in this study. Twenty-four final diagnoses for

participants older than 30 months were also confirmed with the

Autism Diagnostic Interview–Revised (Luyster et al). In order to

monitor health status, the temperature of each toddler was taken

using an ear digital thermometer immediately preceding the blood

draw. If temperature was higher than 99, then the blood draw was

rescheduled for a different day. Parents were also asked questions

regarding their child’s health status such as the presence of a cold

or flu, and if any illnesses were present or suspected, the blood

draw was rescheduled for a different day. The control group was

comprised of typically developing toddlers as well as contrast

toddlers (Table 1).

RNA extraction, quality control and samples preparation

Four to six milliliters of blood was collected into EDTA-coated tubes

from toddlers on visits when they had no fever, cold, flu, infections

or other illnesses, or use of medications for illnesses 72 h prior blood

draw. Blood samples were passed over a LeukoLOCKTM filter

(Ambion, Austin, TX, USA) to capture and stabilize leukocytes and

immediately placed in a �20°C freezer. Total RNA was extracted

following standard procedures and manufacturer’s instructions

(Ambion, Austin, TX, USA). LeukoLOCK disks were freed from

RNA-later and Tri-reagent was used to flush out the captured

lymphocyte and lyse the cells. RNA was subsequently precipitated

with ethanol and purified though washing and cartridge-based steps.

The quality of mRNA samples was quantified by the RNA Integrity

Number (RIN), values of 7.0 or greater were considered acceptable

(Schroeder et al, 2006), and all processed RNA samples passed

RIN quality control. Quantification of RNA was performed using

Nanodrop (Thermo Scientific, Wilmington, DE, USA). Samples were

prep in 96-well plates at the concentration of 25 ng/ll.

Gene expression and data processing

RNA was assayed at Scripps Genomic Medicine (La Jolla, CA, USA)

for labeling, hybridization, and scanning using expression

BeadChips pipeline (Illumina, San Diego, CA, USA) per the

manufacturer’s instruction. All arrays were scanned with the Illu-

mina BeadArray Reader� and read into Illumina GenomeStudio�

software (version 1.1.1). Raw data was exported from Illumina

GenomeStudio�, and data pre-processing was performed using
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the lumi package (Du et al, 2008) for R (http://www.R-project.org)

and Bioconductor (http://www.bioconductor.org; Gentleman et al,

2004).

Several quality criteria were used to exclude low-quality arrays as

previously described (Chow et al, 2011, 2012). In brief, low-quality

arrays were those with poor signal intensity (raw intensity box plots

and average signal > 2 standard deviations below the mean), deviant

pairwise correlation plots, deviant cumulative distribution function

plots, deviant multi-dimensional scaling plots, or poor hierarchical

clustering (Oldham et al, 2008). Five samples (four ASD and one

control) were identified as low quality due to poor detection rates,

different distributions, and curved dot plots, and were removed prior

normalization. Eighteen (18) samples had 1 replicate and all

pairwise plots of each replica had a correlation coefficient of 0.99.

Hierarchical clustering of these replicated samples showed 13

samples having with the two replicas that clustered together; there-

fore, the B array was arbitrarily chosen for the following steps. For

the remaining 5 of these replicated samples, the two replicas did not

cluster together; thus, the averaged gene expression levels were used

in the following steps. No batch effects were identified. BrB-array

filtering Tool was used to obtain a final set of genes without missing

expression values. Filtering criteria were Log Intensity Variation

(P > 0.05) and percent missing (> 50% of subjects). A total of 142

final samples/arrays (87 ASD, 55 control), and thus 142 unique

subject datasets, were deemed high quality and entered the expres-

sion analysis. Inter-array correlation (IAC) was 0.983. From among

these subjects, 65 ASD and 38 controls had parental consent for

MRI testing and neuroanatomical analysis.

MRI scanning and neuroanatomic measurement

Scanning was performed with a 1.5 T GE scanner. A T1-weighted

IR-FSPGR sagittal protocol (TE = 2.8 ms, TR = 6.5 ms, flip angle =

12 deg, bandwidth = 31.25 kHz, FOV = 24X cm, slice thickness =

1.2 mm, 165 images) was collected during natural sleep(Eyler et al,

2012). FSL’s linear registration tool (FLIRT) rigidly registered brain

images to a custom template that was previously registered into

MNI space (Jenkinson & Smith, 2001). Registered images were then

processed through FSL’s brain extraction tool (BET) removing skull

and non-brain tissue (Smith, 2002). Remaining non-brain tissue was

removed by an anatomist to ensure accurate surface measurement.

Gray matter, white matter, and CSF were segmented via a modified

version of the FAST algorithm (Zhang et al, 2001) using partial

volumes rather than neighboring voxels to increase sensitivity for

detecting thin white matter in the developing brain (Altaye et al,

2008). The brain was divided into cerebral hemispheres, cerebellar

hemispheres, and brainstem via Adaptive Disconnection (Zhao

et al, 2010). Each cerebral hemisphere mask was subtracted from a

sulcal mask generated by BrainVisa and recombined with the

original FSL segmentation to remove all sulcal CSF voxels. The

final hemisphere mask was reconstructed into a smoothed, three-

dimensional mesh in BrainVisa to obtain surface measures (Rivière

et al, 2009). ASD neuropathology exhibits larger brain size in a

substantial proportion of affected toddlers (Courchesne et al, 2007,

2011a). In order to overcome trivial effects due to brain size

differences between ASD and control toddlers, we randomly

equilibrated the control sample with large-brain subjects. Total

brain volume (TBV) measures were age-corrected using a general-

ized additive model (GAM-R package v1.06.2; Hastie & Tibshirani,

1995).

A semi-automated pipeline integrating features of FSL (www.

fmrib.ox.ac.uk/fsl/) and BrainVisa (brainvisa.info) provided total

brain volume (TBV). TBV measures were age-corrected using a

generalized additive model (GAM-R package v1.06.2) (Hastie &

Tibshirani, 1995).

Weighted gene network co-expression and preservation analyses

Weighted gene network co-expression analysis (WGCNA) was used

to identify gene modules across all 142 subjects and to calculate the

first principal component of each module, herein called module

eigengene (ME). All subjects were used in WGCNA to represent the

largest gene expression variance available in each ME. Co-expression

analysis was run by selecting the lowest power for which the scale-

free topology fit index reached 0.90 and by constructing an unsigned

(i.e., bidirectional) network with a hybrid dynamic branch cutting

method to assign individual genes to modules (Pramparo et al,

2011). To generate random co-expressed modules for statistical

analysis (see below), we scrambled 10,000 times module-color

assignment for each gene and generated random co-expressed

modules with the same number of genes of the real analysis.

Module preservation analysis (Langfelder et al, 2011) was used

to test network structure against random chance in the combined

WGCNA and to test comparability of modules structure between

ASD and control datasets. Module preservation analysis was also

used to compare network structure between the combined dataset

and BrainSpan dataset. We assessed quality measures for the

Table 1. Summary of subject characteristics and clinical information.

Subject characteristics (all male) ASD control

AD 77

PDD-NOS 10

TD 41

Other* 14

Age in years – mean (SD) 2.3 (0.7) 2.7 (0.7)

Mullen scales of early learning (T-scores) – mean (SD)

Visual reception 39.7 (11.0) 53.55 (9.65)

Fine motor 37.3 (12.2) 55.85 (8.75)

Receptive language 29.1 (12.0) 49.65 (98.4)

Expressive language 29.1 (11.4) 50 (8.7)

Early learning composite 71.0 (16.2) 104.6 (11.9)

Autism diagnostic observation schedule (ADOS)† mean (SD)

ADOS CoSo/SA score 15.0 (3.9) 3.1 (2.7)

ADOS RRB score 4.1 (1.9) 0.4 (0.8)

ADOS total score 19.1 (4.7) 3.6 (3.2)

Vineland scores (VABS)‡ 82.2 (9.4) 97 (8.45)

* > Toddlers from “Other” category included language delay (n = 9),
radiological abnormality (n = 1), premature birth but tests within the normal
range on standardized tests (n = 2), socially emotionally delayed (n = 1), and
prenatal drug exposure (n = 1).
†All toddlers received either the Toddler Module or Module 1 or 2, depending
on age and verbal ability at time of testing. Sample: 64% of ASD population
had ADOS T, 31% had ADOS Mod. 1, and 5% had ADOS Mod. 2.
‡Adaptive Behavioral Scales Adaptive Behavior Composite Score.
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Zsummary component with the related log.P-values (�log10(P-values))

extracted from the preservation function output. Documentation

for these types of analysis can be found here: http://labs.genetics.ucla.

edu/horvath/CoexpressionNetwork/ModulePreservation/Tutorials/.

Two network metrics available in the WGCNA package were

used to quantify networks perturbation and included: Gene Signifi-

cance (GS) and Gene Connectivity (GC). GS is the correlation

strength of gene expression levels with TBV and represents a

measure of “biological significance or relevance” to a trait

(Langfelder & Horvath, 2008). GC is a measure of correlation among co-

expressed genes within a module and defines the gene-to-gene rela-

tionship, thus the level of gene connectivity (high/low) (Langfelder

& Horvath, 2008; Langfelder et al, 2013). Genes with high GS values

(ranked by high to low values) were considered highly relevant to

brain size and genes with high GC values (ranked by high to low

values) were considered centrally positioned in the co-expression

network, therefore called hub-genes. The default minimum

number of genes to constitute a module was 30. This threshold

was used to define the top 30 genes that ranked highest using each

network feature (GS and GC), thus providing information on their

central role as relevance to brain (GS) and position within the

network (GC). For instance, high connectivity (hub-genes) was

defined by the highest 30 GC values of a module, while genes not

ranking in the top 30 were deemed of low-connectivity (peripheral)

genes.

Statistical analyses

In our primary analysis, MEs were used in Pearson correlation

tests to identify associations between modules and TBV across all

available subjects. Adjusted P-values (q-values) were calculated

across all 22 modules with the function qvalue() in the WGCNA

package with default settings (lambda = 0,0.90,0.05 and method =

“smoother”). Subsequent correlation tests were run within each

diagnostic group and investigations focused only on modules with

modest to high correlation coefficients (r > 0.3, P < 0.05 and

FDR < 0.05). Bootstrapping on the correlation tests (10,000

resamples) was run to determine 95% confidence intervals around

each correlation estimate. Permutation tests (10,000 iterations)

were run to determine whether the association between MEs and

TBV measures were specific to our dataset or given by chance. To

do so, we scrambled 10,000 times module-color assignment for

each gene and recalculated new module eigengene values (MEs)

on each iteration. We then computed a correlation between ME

and TBV for each of the 10,000 iterations. Finally, we calculated

the P-value as the number of times within the null distribution,

found a correlation as large or larger than the true correlation, and

divided this by 10,001.

Linear modeling of MEs and TBV measures were followed by

ANOVA analyses to test potential age-related effects on MEs signifi-

cantly associated with TBV measures.

Permutation tests (10,000 iterations) were also run to test signifi-

cant difference in correlation strength between ASD and control

groups in ME-TBV correlations. To achieve this, we used a Fisher’s

z transform on the correlation values and computed the difference

score between z-values (zDiff) for each group. Then within the

permutation test, we shuffled group labels randomly, computed

correlations, converted to Fisher’s z, computed zDiff, and then

iterated this entire procedure 10,000 times (each time with a dif-

ferent random shuffling of the group labels). To compute a P-value,

we examined in the null distribution of zDiff values how often were

values as large or larger than the zDiff value computed on the real

(unpermuted) data.

Gene significance P-values for each gene represented in the

networks were calculated using a Student asymptotic test for corre-

lation within the WGCNA package. Quantification of difference

between groups in GS-GC correlations was achieved by computing a

z-statistic for the difference using the paired.r function from the

psych R library. No P-values accompany this statistic because the

statistic reflects the population estimate, given that all genes within

the module are measured. Any z-statistic > 0 here reflects a dif-

ference between groups in GS-GC correlation strength.

Hypergeometric tests were run to establish significant enrich-

ments against random chance in the Hc network and we provide the

P-value as Hyp. P. The background pool total used in these calcula-

tions was 21,405.

Differentially expressed genes (DE; P < 0.05) was performed

as previously described (Pramparo et al, 2015) to identify

differentially expressed (DE) genes using a standard univariate two-

sample t-test model with 10,000 random permutations in BRB-Array

Tools.

Functional enrichment, Hc network and PPI analyses

Pathway enrichment analysis was performed using the Metacore

GeneGo platform, which provides a more extensive hand-curated,

up-to-date gene annotation than available in other freely accessible

sources (Scheiber et al, 2009; Shmelkov et al, 2011). Only enrich-

ments with P-values (P) and FDR < 0.05 have been reported in this

study. Metacore GeneGo was also used to generate a High-

confidence (Hc) network using 33 reported Hc genes (De Rubeis

et al, 2014). A total of 32 out of the 33 Hc genes were present in the

GeneGO database and we used them as seeds to build a network by

selecting the “create network” function, together with “down-

stream” and “by one interaction” options. The resulting Hc network

included 414 genes. This Hc network therefore included subnet-

works in which the 32 Hc genes were the main nodes and other

genes were their direct targets. The Hc network was then color-

coded based on other information.

We used the same strategy to identify to build upstream

networks of the identified 23 candidate genes of brain maldevelop-

ment. We used these 23 genes as seeds and created a network

expanding upstream by one interaction. The list of upstream regula-

tory genes we identified included 106 genes. These were transcrip-

tion factors and gene expression regulators. Subnetworks analysis

followed the same methods used to test significant associations

between MEs and TBV, but here we used the average value of

expression for a subnetwork. Permutation tests (10,000 times) anal-

ogous to those run for testing the between-group difference in ME-

TBV correlation strength were also ran here to test between-group

difference in correlation strength (avg expression value—TBV

measures).

DAPPLE software (http://www.broadinstitute.org/mpg/dapple/

dappleTMP.php) was used for the genetic interaction and

protein–protein interaction analysis using 1,000 permutations and a

common interactor binding degree of 3.

ª 2015 The Authors Molecular Systems Biology 11: 841 | 2015

Tiziano Pramparo et al Converging evidence in autism point to cell cycle networks Molecular Systems Biology

15

http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/ModulePreservation/Tutorials/
http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/ModulePreservation/Tutorials/
http://www.broadinstitute.org/mpg/dapple/dappleTMP.php
http://www.broadinstitute.org/mpg/dapple/dappleTMP.php


Data availability

Raw and normalized gene expression data are available at http://

www.ncbi.nlm.nih.gov/geo/ with accession number GSE42133.

Expanded View for this article is available online.
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