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A B S T R A C T   

Background: Whole brain delineation (WBD) is utilized in neuroimaging analysis for data preprocessing and 
deriving whole brain image metrics. Current automated WBD techniques for analysis of preclinical brain MRI 
data show limited accuracy when images present with significant neuropathology and anatomical deformations, 
such as that resulting from organophosphate intoxication (OPI) and Alzheimer’s Disease (AD), and inadequate 
generalizability. 
Methods: A modified 2D U-Net framework was employed for WBD of MRI rodent brains, consisting of 27 con
volutional layers, batch normalization, two dropout layers and data augmentation, after training parameter 
optimization. A total of 265 T2-weighted 7.0 T MRI scans were utilized for the study, including 125 scans of an 
OPI rat model for neural network training. For testing and validation, 20 OPI rat scans and 120 scans of an AD rat 
model were utilized. U-Net performance was evaluated using Dice coefficients (DC) and Hausdorff distances (HD) 
between the U-Net-generated and manually segmented WBDs. 
Results: The U-Net achieved a DC (median[range]) of 0.984[0.936–0.990] and HD of 1.69[1.01–6.78] mm for 
OPI rat model scans, and a DC (mean[range]) of 0.975[0.898–0.991] and HD of 1.49[0.86–3.89] for the AD rat 
model scans. 
Comparison with existing methods: The proposed approach is fully automated and robust across two rat strains and 
longitudinal brain changes with a computational speed of 8 seconds/scan, overcoming limitations of manual 
segmentation. 
Conclusions: The modified 2D U-Net provided a fully automated, efficient, and generalizable segmentation 
approach that achieved high accuracy across two disparate rat models of neurological diseases.   

1. Introduction 

Preclinical magnetic resonance imaging (MRI) is an important tool 
for the non-invasive assessment of brain structure, function, and pa
thology in models of human disease (Cunha et al., 2014; Denic et al., 
2011). It has found application for detailed cross-sectional and longi
tudinal monitoring of the brain and therefore, assessment of disease 
progression and treatment response (Eed et al., 2020; Ni et al., 2021; 
Prescott, 2013). Furthermore, rodent brain MRI scans are often fused 

with image data from other modalities, such as Positron Emission To
mography (PET), to provide anatomic and complementary information 
(Hutchins et al., 2008; Judenhofer and Cherry, 2013). Quantitative 
metrics can be extracted from brain MRI and complementary modalities, 
and have shown utility as biomarkers for disease screening, diagnosis, 
prognosis, and evaluating treatment response (Fowler et al., 2022; 
Hobson et al., 2017; Wolf and Abolmaali, 2013). 

Whole brain delineation (WBD), also known as skull stripping, is the 
removal of unwanted, non-brain signal from MR images and is an 
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integral component of most sophisticated neuroimaging analysis toolkits 
available today (Ashburner, 2012; Avants et al., 2011; Fischl, 2012; 
Shattuck and Leahy, 2002). WBD is often a precursor to regional 
delineation in MRI, which in turn is essential for quantification of 
regional biomarkers for neurologic diseases or disorders (Jack et al., 
2010). WBD also benefits multimodality image registration by excluding 
artifacts caused by anatomical structures such as the eyes, ears, and the 
jaw. Manual segmentation, where an expert outlines the brain from MRI 
scans, is considered the gold standard for performing WBD. While this 
technique can produce robust results, it is often time-consuming, sub
jective, and laborious (Feo and Giove, 2019). To address this issue, a 
range of semi- or fully automated analytical computational methods 
have been developed and have been implemented within commonly 
used brain images analysis tools (Avants et al., 2011; Fedorov et al., 
2012; Fischl, 2012; Jenkinson et al., 2012; Shattuck and Leahy, 2002). 
Despite their wide-spread availability, these methods are often opti
mized for clinical MRI acquisition parameters such as spatial resolution, 
matrix size, and T1-weighted image contrast (Avants et al., 2011; Fischl, 
2012; Jenkinson et al., 2012; Shattuck and Leahy, 2002). These 
methods, therefore, perform suboptimally for small animal MRI pro
cessing where differences in MR scanner hardware, and inter-species 
differences in brain size and shape, lead to significant variation in 
spatial resolution, signal-to-noise-ratio and selection of MRI contrast 
mechanism (Feo and Giove, 2019). Furthermore, even when optimized 
for preclinical models such as rodents (Klein et al., 2010), these methods 
can fail in the context of severe neuropathology. In such cases, manual 
segmentation has remained the most practical option for image analysis. 

Recently, advances in machine learning (ML) have provided candi
date automated methods for WBD (Feo and Giove, 2019; Lenchik et al., 
2019), including those based on convolutional neural networks (CNNs). 
CNNs, such as the U-Net have been shown to be effective for image 
segmentation (Azad et al., 2022), however, current studies are 
frequently limited to one or multiple healthy animal datasets (Gao et al., 
2021; Hsu et al., 2020; Liang et al., 2023; Liu et al., 2020; Pontes-Filho 
et al., 2022), or a single neurological disease model (Chang et al., 2023). 
Network parameters from these approaches are not easily transferable to 
other experimental models without significant additional training data 
(Davatzikos, 2019; Weiss et al., 2020). Thus, there is a need for devel
oping ML frameworks that are generalizable across multiple datasets, 
disease models, and phenotypes, with limited or no additional training. 

We developed a modified 2D U-Net framework for automated WBD 
of MRI brain scans of two anatomically disparate rat models: (1) a 
Sprague-Dawley rat model of acute organophosphate intoxication 
(Hobson et al., 2017; Siso et al., 2017), and (2) a transgenic Fischer rat 
(TgF344) model of Alzheimer’s Disease pathology (Cohen et al., 2013; 
van Oostveen and de Lange, 2021). These rodent models present a wide 
range of anatomic variation and neuropathology that are classic chal
lenges for analytical segmentation methods. We improved the network’s 
generalizability to both models through the careful optimization of 
network training parameters and designing of data normalization and 
augmentation strategies to accommodate common scenarios in 
multi-strain MRI-based neuroimaging. The performance of the neural 
network was assessed through a comparison of WBD generated by the 
U-Net versus manual segmentation. 

2. Materials and methods 

2.1. Datasets and animal models 

All experiments with animals were approved by the UC Davis Insti
tutional Animal Care and Use Committee and used facilities fully 
accredited by AAALAC International. All experimentation was in 
accordance with the National Institute of Health (NIH) Guide for The 
Care and Use of Laboratory Animals (NIH publication No. 8023, revised 
1978). Brain MRI scans of the following two rat models were utilized. 

2.1.1. Rat model of acute organophosphate intoxication (OPI) 
Adult male Sprague Dawley rats were acutely intoxicated with the 

organophosphate cholinesterase inhibitor, diisopropylfluorophosphate 
(DFP), as a part of a drug development study (DAlmeida et al, 2024) 
evaluating novel neuroprotective therapies as previously described 
(Dhir et al., 2020). Rats received a single subcutaneous injection of DFP 
(4 mg/kg; Sigma Chemical Company, St. Louis, MO, USA), or vehicle 
control (phosphate-buffered saline, 3.6 mM Na2HPO4, 1.4 mM 
NaH2PO4, 150 mM NaCl; pH 7.2), followed 1 minute later by a com
bined injection (im) of atropine (2 mg/kg,; Sigma; >97% purity) and 
2-PAM (25 mg/kg, Sigma; >99% purity) to increase survival. Forty 
minutes after injection, DFP-exposed animals were further randomized 
into one of four interventional groups: no intervention (DFP), mid
azolam (MDZ, 1.8 mg/kg, im), allopregnanolone (ALO, 24 mg/kg, im), 
or combined MDZ and ALO (DUO), administered intramuscularly 
(DAlmeida et al, 2024). Vehicle control animals (VEH) were not 
intoxicated with DFP. MRI brain scans were acquired at three timepoints 
(3-, 7-, and 28-days post-DFP) for each group (Fig. 1A). 

This rat model has been shown to present with severe neuropa
thology as a consequence of OP-induced status epilepticus (Siso et al., 
2017), including significant regional brain atrophy that causes large 
changes in brain structure (Hobson et al., 2017). Intervention with 
therapy, such as MDZ, has been shown to acutely attenuate the severity 
of neuropathology (Supasai et al., 2020). Thereby, MR data from these 
animals provide a broad range of imaging features, such as lesions or 
infarcts, for neural network training. 

2.1.2. Rat model of Alzheimer’s disease (AD) 
The TgF344-AD rat model is a double knock-in gene model of fa

milial AD that expresses two human AD risk genes, APPswe (K670N, 
M671L) and PS1ΔE9 (deletion of the exon 9 Presenilin 1 gene) (Cohen 
et al., 2013; Saré et al., 2020). Phenotypic characterization of the 
TgF344-AD rat suggests that it recapitulates the progression and path
ological hallmarks of human AD, including amyloid plaque formation, 
neurofibrillary tau tangles, and age-dependent neuronal loss and 
cognitive decline that is not typically seen in mouse models of AD (Saré 

Fig. 1. : Schematic illustrating the experimental study design of the rat models 
of: (A) OPI, and (B) AD. (A) OPI paradigm, where DFP is administered to each 
animal, followed by the initial rescue therapy, atropine and 2-PAM, 1 minute 
later. The therapy (MDZ, ALO, or DUO) is administered 40 minutes post- 
injection of DFP. T2-weighted MRI scans are captured at each timepoint (3-, 
7-, and 28-days post-exposure); 55 unique rats were imaged. (B) The AD rat 
model was imaged with T2-weighted MRI at 7, 9, 11, and 13 months of age; 48 
unique rats were imaged. At each timepoint, six animals from each group, 
transgenic (TG) vesus wildtype (WT), were euthenized for histology. The tables 
below the imaging timelines indicate the number scans captured by timepoint 
and group. 
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et al., 2020). 
Female Fischer 344 rat were scanned in a prospective longitudinal 

imaging study to characterize the spatiotemporal evolution of AD. An
imal were separated into two genotypic groups, transgenic (TG) and 
matched congenic controls (WT). MRI brain scans were acquired at four 
timepoints (Rat ages: 7-, 9-, 11- and 13-months) for both groups 
(Fig. 1B). 

2.2. MR acquisition protocol 

MRI brain scans were acquired on a Biospec 70/30 (7 T) preclinical 
MR scanner running Paravision 6.0 (Bruker BioSpin MRI, Ettlingen, 
Germany), equipped with a 116-mm internal diameter (ID) B-GA12S 
gradient (450 mT/m, 4500 T/m/s), and a 72 mm ID volume coil and 
20 mm ID surface coil for signal transmission and reception, respec
tively. Rats were anesthetized with isoflurane/O2 (Piramal Healthcare, 
Bethlehem, Pennsylvania) using 2.0%–3.0% vol/vol to induce and 
1.0%–2.0% vol/vol to maintain anesthesia, stereotactically mounted to 
the MR scanner bed, and imaged as described previously (Hobson et al., 
2017). For the present study, multi-slice, T2-weighted, Rapid Acquisi
tion with Repeated Echoes (RARE) axial images were collected using the 
following parameters: repetition time (TR) = 6100 ms; echo time (TE) =
15 ms; RARE factor 8; averages = 4; field of view (FOV) = 35 × 25 mm2, 
with an in-plane data matrix of 280 × 200, resulting in a data set res
olution of 0.125 × 0.125 mm2; 59 slices with a 0.5 mm thickness 
spanning approximately the posterior aspect of the eyes through the 
anterior aspect of the spinal cord, 11 mm to − 18.5 mm bregma. Subsets 
of animals received additional MR scans for T2 parametric mapping and 
PET to assess neuroinflammation. These data are the subject of separate 
publications and, therefore, will not be discussed further herein. 

2.3. Manual segmentation 

A protocol was developed to manually outline the brain on 2D MRI 
slices from the image volume based on the Paxinos and Watson’s The Rat 
Brain in Stereotaxic Coordinates (Paxinos and Watson, 2007). Scans were 
manually segmented from approximately 6 mm to − 14 mm bregma, by 
an observer blinded to the group assignments. The trigeminal nerves, 
olfactory bulb, pituitary, and brainstem were not included in the seg
mentations. Manual segmentation accuracy was assessed additionally by 
an expert in rodent neuroanatomy with greater than 10 years of expe
rience, and discrepancies were resolved by consensus upon rigorous 
re-evaluation of the scans. 

2.4. Image pre- and post-processing 

Scans included in the present study contained biological and tech
nical variation reflected in T2-weighted image contrast, signal intensity, 
and spatial localization of the brain within the field-of-view. Therefore, 
to normalize input image data and improve the U-Net training perfor
mance we created an image pre-processing pipeline that applies bias 
correction, standardized image cropping, resampling, and normaliza
tion. In this pipeline, we applied N4ITK bias correction with the Sim
pleITK python library (Beare et al., 2018) to reduce signal drop off and 
homogenize signal intensities of brain tissue. We center-cropped the 
MRI scans and their matching manually segmented images (from 
[280×200] to [200×200]), removing areas to the left and right side of 
the brain without brain signal. We then resampled each volume with 
bicubic interpolation to [128×128] to enhance convergence of the 
U-Net. Lastly, we performed intensity normalization with a range be
tween 0 and 1. The training and testing data were randomly selected to 
ensure representation across treatment groups and timepoints to provide 
a similar number of scans across treatment groups for training and 
validation. 

Once each scan had been processed through the neural network, the 
label volumes were converted to original MRI data space dimensions by 

reversing the pre-processing steps. That is, U-Net-generated label vol
ume [128×128] were up-sampled to [200×200] using nearest-neighbor 
interpolation, zero padding was performed to add empty voxels to the 
lateral edges of the image to convert it back to a matrix size of 
[280×200], and finally, we concatenated the 2D label images for each 
rat into a 3D label volume that matched the dimensions of the original 
MR data. 

2.5. Training and test dataset composition 

To train the U-Net, we utilized 145 OPI rat scans. These data were 
subdivided into training and test datasets for the U-Net consisting of 125 
randomly chosen scans (DFP = 31, MDZ = 33, ALO = 25, DUO = 24, 
VEH = 12) and the remainder 20 scans (DFP = 4, MDZ = 4, ALO = 4, 
DUO = 4, VEH = 4), respectively. A validation dataset consisted of a 
single randomly selected scans within the training dataset. This OPI-rat- 
trained U-Net and weights were then utilized for WBD of the AD rat 
dataset (TG = 60, WT = 60) without any additional training. 

2.6. U-net architecture and data augmentation 

We used the 2D U-Net architecture (Ronneberger et al., 2015), with 
modifications (Fig. 2). The left half of the U-Net is the analysis path, 
where the network performs down-sampling convolutions that analyze 
the image based on important features for segmentation. Each convo
lution creates feature maps used to determine the classification of each 
pixel into brain and non-brain tissue. Feature maps are then utilized in 
the synthesis path, the right side of the U-Net, by performing 
up-convolutions to create a segmentation label map for the image. We 
modified the architecture by using padded convolutions with a 3×3 
kernel for each layer and used the leaky rectified linear unit (ReLU) as 
the activation function. We used padded convolutions since our data 
input is already preprocessed to the correct size, and we used leaky ReLU 
to speed up the training time and improve weight training. We added a 
batch normalization layer to the first step and a drop-out layer (rate =
0.2) to the fourth and fifth steps in the U-Net architecture. The batch 
normalization was used to normalize the batched input data between 
0 and 1, and we added the drop-out layers to reduce overfitting of the 
weights during training. Lastly, we trained the network with images 
down-sampled to 128×128 pixels. In total the network had 23 con
volutional layers, 4 max pooling layers with zero padding, and 2 dropout 
layers. 

The output labels are a probability label map that are binarized by 
using a threshold value (T), where if the label voxel value is greater than 
or equal to T, the voxel is set to 1, and vice versa. During training, the 
MR volume scans were picked randomly from the training dataset and 
loaded as 2D slices. For each slice that has a corresponding non-zero 
label, data augmentation was applied to enhance the model’s general
ization by artificially increasing training images to emulate the distri
bution of the test data. The network optimized weights based on the non- 
zero label MR slices. The output of the network was a 2D label image 
that was concatenated to create a 3D label map volume. When applying 
the weights to test data, a T value was applied to the label map to 
convert label pixels into an integer mask. The final output was a 3D label 
that delineated the whole brain from the MR scan. This framework was 
trained with an Intel Core i7–6800 K CPU equipped with 128 GB of 
GDDR4 memory operating at 3.40 GHz and an NVIDIA GeForce RTX 
2080 Ti GPU with 11 GB of dedicated VRAM. 

Data augmentation was performed with Medical Open Network for 
Artificial Intelligence (MONAI)(The MONAI Consortium, 2020), a py
thon library, to improve the training performance of the U-Net. The 
augmentation function parameters we utilized were random shift by 
[− 40, 40] pixels in the x- and y- direction to account for the different 
locations of the brain in the field-of-view, rotation between [− 45, 45] 
degrees to increase the diversity of head and brain poses, flipping the 
image horizontally and vertically with a probability of 0.5 to increase 
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the variety of image orientation, random scaling with a factor between 
[− 0.3, 0.3] to increase variation in size, shifting the brightness levels by 
±0.5 to accommodate image contrast variety, and adding gaussian noise 
(mean=1, st. dev.=0.25). These augmented data were included with the 
original OPI rat dataset to create the full training dataset. 

2.7. Parametric selection for the U-Net 

We assessed the impact of four U-Net hyper-parameters, namely, 
training dataset size (TDS), learning rate (LR), epoch (E), and proba
bility map threshold (T) on segmentation performance. This was per
formed to increase the generalizability of the network while mitigating 
the impact of overfitting. Each hyper-parameter was varied, as described 
below, and upon network training, the performance was assessed on OPI 
rat test dataset and compared with manual segmentations. 

2.7.1. Training dataset size assessment 
We evaluated multiple training data sizes while maintaining similar 

dataset composition across treatment groups (Table 1) and secondarily 
by timepoint, except for the N=1 case. For the latter case, an MDZ Day 
28 rat was used because that treatment group and timepoint was 
determined to be a median representation of disease pathology between 

VEH (no detectable pathology) and DFP (severe pathology) groups. Each 
training dataset size was trained with LR=0.002, E=150, and T= 0.85. 
More details of the performance of the U-Net are reported in supple
mentary materials in Supplementary Table S1. 

2.7.2. Learning rate evaluation 
The learning rate for the U-Net was varied by factors of 10, ranging 

from 2×10− 3 to 2×10− 7, while keeping the other parameters constant, 
TDS=100, E=150, and T= 0.85. 

2.7.3. Epoch assessment 
With TDS = 100, LR = 0.0002, and T= 0.85, the U-Net was trained 

over 300 epochs and repeated for a total of ten training sessions. The 
minimum moving average error (Eq. 1) over a range of ten data points 
for each training metric (training accuracy, training loss, validation 
accuracy, and validation loss) and its corresponding epoch value were 
calculated for each training session. The epoch values across all ten 
training sessions were averaged to determine average number of epochs 
for each training metric. The moving average error is given by: 

Moving Average Error =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

∑i− 5

i− 10
Xi

N −

∑i

i− 5
Xi

N

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

∑i

i− 5
Xi

N

(1)  

where i is the epoch number and i ≥ 10, provided the range of the epoch 
value where the U-Net was stable. 

Each metric’s epoch value was compared to the epoch value where 
overfitting occurred during training across all ten sessions. The metric 
with an epoch value that was less than but closest to the overfitting 
epoch value was considered as the suitable epoch value. 

2.7.4. Probability map threshold selection 
A range of T values from 0 to 1 at 0.05 intervals were evaluated to 

binarize the U-Net-generated label volumes. The training parameters 
utilized are based on the parameters found via the methods mentioned 
above: TDS=100, LR= 0.0002, and E=150. 

Fig. 2. : Architecture of the segmentation pipeline utilized; Each blue box is an image volume, where the x- and y-dimensions are denoted in the lower left of the box, 
and the number of slices (z-dimension) is denoted above the box. The arrows indicate different operations in the pipeline and the order in which operations are 
applied to the image. For the modified 2D U-Net architecture, each slice of the scan is processed through the neural network individually, and the z-axis indicates the 
number of feature maps generated. The light blue boxes represent concatenated feature maps from previous layers. Post-processing converts the U-Net-generated 
segmentation map to the original size of the input scan. 

Table 1 
Composition of training datasets at each TDS evaluated by treatment group. 
Each TDS was distributed equally across treatment groups. The VEH group had 
12 scans total. Thus, for TDS>50, training dataset makeup prioritized MDZ and 
DFP groups to provide more training data with moderate to severe neuropa
thology, while maintaining similar numbers of scans across treatment group and 
timepoint. TDS at 125, used all remaining scans and did not prioritize any 
treatment group or timepoint.  

Treatment Groups Training Dataset Sizes (TDS) 

1 10 25 50 75 100 125 

DFP  0  2  5  10  15  23  25 
MDZ  1  2  5  10  18  23  31 
ALO  0  2  5  10  15  21  24 
DUO  0  2  5  10  15  21  33 
VEH  0  2  5  10  12  12  12  
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2.8. U-Net performance evaluation metrics 

To evaluate performance accuracy, the Dice coefficient (DC) of 
volumetric overlap (Zou et al., 2004), and the Hausdorff distance (HD) 
were calculated between the U-Net-generated WBD labels and those 
from manual segmentation. These are commonly used evaluation met
rics for image segmentation methods (Crum et al., 2006; Eelbode et al., 
2020; Karimi and Salcudean, 2020; Müller et al., 2022; Taha and Han
bury, 2015), including those based on neural networks (Hsu et al., 2021, 
2020; Liang et al., 2023). DC is given by: 

DC =
2|X ∩ Y|
|X| + |Y|

(2)  

where X is the manual segmentation and Y is the U-Net-generated seg
mentation. The HD was calculated as: 

HD(X, Y) = max{h(X,Y), h(Y,X) } (3)  

where h(X,Y) = max
x∈X

{min
y∈Y

{d(x, y)}}, and d(x, y) is the distance between 

point cloud X (from manual segmentation) and Y (from U-Net-generated 
segmentation). 

The DC ranges from 0 (no overlap between the U-Net-generated label 
and manual segmentation) to 1 (perfect match between the two). The 
HD evaluates the distance between the U-Net-generated and manual 
segmentation point clouds and the lower this metric, the better 
concurrence is between the point clouds. In comparison to DC, HD has 
the advantage that it takes voxel location into consideration. 

The accuracy of each segmentation was further evaluated by calcu
lating the true positive rate (TPR) and the false positive rate (FPR) for 
each voxel (Taha and Hanbury, 2015), with manual segmentation as the 
ground truth. TPR and FPR were graphed in a receiver operating char
acteristic (ROC) for threshold optimization. TPR and FPR are defined as 
follows for the U-Net generated segmentation: 

TPR =
TP

TP + FN
(4)  

FPR =
FP

FP + TN
(5)  

where TP is the number of true positive pixels, TN is the number of true 
negative pixels, FP is the number of false positive pixels, and FN is the 
number of false negative pixels. 

For all of these metrics, the values are reported as [median[range]] 
for the (N=20) OPI rat test dataset and [mean ± sd] for the (N=120) AD 
rat test dataset due to the size of the test datasets. The DC and HD metrics 
were calculated within the 3D Slicer program (Fedorov et al., 2012) 
segment comparison module (Slicer Wiki contributors, 2020) and the 
TPR and FPR metrics were calculated with Numpy library in Python 3.8 
(Harris et al., 2020). Additionally, ROC curves were generated for 
threshold value analysis in RStudio 4.2.2 (R Core Team, 2022) with R 
packages ggplot2 (Wickham, 2016) and ggbeeswarm (Clarke et al., 
2023). 

Lastly, the neural network was timed during training and testing of 
the method for each dataset and averaged across both datasets. Manual 
segmentation was timed for comparison with the modified U-Net. 

3. Results 

3.1. Training dataset size assessment 

The median DC and HD [metric: median[range]] reached their 
highest values at TDS=100 [DC: 0.984 [0.936,0.990]; HD: 1.69 mm 
[1.01,6.78]] (Supplementary Table S1). The median TPR achieved the 
maximum value at TDS=25 [TPR: 0.991 [0.786,0.994]], while FPR 
achieved its minimum value [FPR: 1.8×10− 3 [1.0×10− 3,4.8 ×10− 3]] at 

TDS=100. A notable finding was that as TDS increased, each median 
metric value improved until TDS=25, slightly worsened until achieving 
their highest value at TDS=100, or their second-most highest value for 
the TPR. For TPR and FPR, the difference between the maximum and 
minimum values for each metric were lowest at TDS=100 (Fig. 3). 

3.2. Learning rate evaluation 

As the learning rate increased to 2×10− 4, the median DC [metric: 
median[range]] improved greatly (see Supplementary Table S2). 
However, at higher learning rates, LR≥2×10− 3, the network did not 
produce any label maps, a likely byproduct of not finding an optimal 
solution for the weights (Takase et al., 2018). All metrics achieved their 
best performance values at LR=2×10− 4 [DC: 0.984 [0.936,0.990]; HD: 
1.69 mm [1.01,6.78]; TPR: 0.989 [0.885,0.993]; FPR: 1.8×10− 3 

[1.0×10− 3,4.8×10− 3]]. For TPR and FPR, the difference between the 
maximum and minimum values for each metric were lowest at TDS=100 
(Fig. 4). 

3.3. Epoch assessment 

Across 10 training runs, the average epoch value based on training 
accuracy metric was 179 epochs [accuracy: 0.990, minimum moving 
average error: 9.09×10− 6] (Table 2). For training loss metric, it was 284 
epochs [loss: 5.72×10− 3 and minimum moving average error of 
1.44×10− 3] (Table 2). For validation accuracy and loss, the number of 
epochs were 125 [val. accuracy: 0.992, minimum moving average error: 
1.79×10− 3] and 149 [val. loss: 8.73×10− 3, minimum moving average 
error: 2.34×10− 3], respectively. Validation accuracy had the smallest 
epoch range across all ten runs, suggesting validation accuracy during 
training improved in a similar manner despite different training runs. 
Notably, the range of accuracy or loss between runs suggested over
fitting starting around 175 epochs. Thus, the mean epoch based on 
validation loss (149 epochs) was chosen as the value for training to 
reduce overfitting while maximizing the number of cycles for weight 
optimization during training (Fig. 5). 

3.4. Probability threshold value selection 

The ROC curve (Fig. 6A) illustrates how TPR and FPR are affected as 
T values decrease, from left to right. Zooming in on the knee of the curve 
(Fig. 6B), there are a range of T values from 0.25 to 0.90 that produce 
reasonable segmentations, where TPR and FPR minimally affected. 
Based on this defined range of T values, the highest median DC [metric: 
median[range]] and the lowest average HD [DC: 0.984 [0.936,0.990]; 
HD: 1.69 mm [1.01,6.78]] was achieved at T=0.85 (Supplementary 
Table S3). DC and HD values marginally improved between 0.60 and 
0.85, suggesting robustness of the U-Net. Thus, T=0.85 was selected as 
the parameter value. 

3.5. U-Net segmentation results of OPI and AD Rat Models 

The U-Net training parameters based on the above analysis 
converged on a LR=2×10− 4, and number of epochs=149, rounded to 
150 for future analyses after ensuring that there was no impact of the 
results. The most accurate training of the modified 2D U-Net architec
ture was with 100 OPI rat training scans and a threshold value of 0.85. 
Other parameters included steps per epoch=20, and batch size=10. The 
training runtime was 30 minutes for 150 epochs, while the mean U-Net 
segmentation computation time was 8 seconds per scan for both the OPI 
rat and the AD rat dataset, whereas for manual segmentation, it took 
approximately 30 minutes per scan. Model training accuracy quickly 
improved until 60 epochs (Fig. 7), where accuracy increased marginally 
from 98.08% to 99.37% from epochs 60–150. 

Accuracy metrics of the 2D U-Net for each model (1: OPI Rat, 2: AD 
Rat) are organized by group and timepoint and are formatted as [metric: 
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median[range]] for the OPI Rat dataset (Table 3) and [metric: mean ±
sd] for the AD Rat dataset, based on the size of each dataset (Table 4). 
The most accurate segmentations results were at T=0.85 for both models 
(Fig. 8). Both models achieved similar DCs and HDs values across all 
groups (OPI Rat Model: DC:0.984 [0.936,0.990], HD: 1.69 [1.01,6.78], 
AD Rat Model: DC: 0.975±0.015, HD: 1.49±0.59 mm). For the OPI rat 
model, the best and worst generated labels (Tables 3 and 4) were an 
MDZ, Day 3 scan [DC: 0.990, HD: 2.02 mm] and a DUO, Day 28 scan 

[DC: 0.936, HD: 2.50 mm], respectively, while for the AD rat model, 
they were a WT, Month 8 [DC: 0.991, HD:1.24 mm] and TG, Month 10 
[DC: 0.898, HD: 3.25 mm], respectively. The most consistent tissue 
classification error with the 2D U-Net appeared at tissue border at the 
ventral aspect of the brain, between the brain and the trigeminal nerves 
for both datasets (Fig. 8). For the images with the worst performance, 
the U-Net failed to find the start and end slices of the brain in the 
anterior-posterior direction, or did not segment the posterior portions of 
the cerebellum due to a drop-off in imaging signal. 

The trained modified 2D U-Net and it’s documentation is available 
at: https://github.com/ajchaudhari/OPI_Rat_NN. 

4. Discussion 

In this study we presented a modified 2D U-Net CNN framework for 
fully automated and efficient WBD that achieved high accuracy across 
two disparate rat models of neurological disease. Optimization of the 
framework with one disease model provided robust segmentations that 
improved the generalization of the U-Net CNN to other disease models. 
This framework resulted in a 225x reduction in segmentation time 
compared to manual segmentation (from 30 mins/scan to 8 seconds/ 
scan) and achieved excellent volumetric overlap (DC>0.9) and reason
ably well-aligned edge voxels (HD<3 mm). As the spatial resolution of 

Fig. 3. : Box and whisker plots of (A) true positive rate (TPR) and (B) false positive rate (FPR) at different training dataset sizes (TDS). A TDS=100 produced the 
lowest median FPR without decreasing the median TPR. Median, first and third interquartile ranges are shown. Error bars indicate min-max range of data. 

Fig. 4. : Box and whisker plots of (A) true positive rate (TPR) and (B) false 
positive rate (FPR) at different learning rates (LR). An LR of 2×10− 4 produced 
the highest TPR and the lowest FPR. An LR of 2×10− 3 did not produce seg
mentations, so no TPR or FPR values could be calculated. Boxes denote the 
median, first and third interquartile ranges; whiskers denote range of data. 

Table 2 
Epoch evaluation outcomes of the 2D U-Net for OPI Rat model for 10 training 
runs [median[range]]. Accuracy and loss measures are calculated from the 
training dataset, while the validation accuracy and loss are from the validation 
dataset during training. The neural network training data tend to worsen per
formance or overfit at epoch=175 or greater. To reduce the chance of overfitting 
the data, the metric with an average epoch value of ≤ 175, was epoch:149. This 
shows that the metric with lowest minimum moving average error was not the 
best metric to use for epoch selection. For each metric, the table shows the mean, 
standard deviation, range, and error at mean epoch.  

Training 
Metric 

Value Epoch Epoch Range 
(Min-Max) 

Minimum Moving 
Average Error 

Accuracy 0.990 ± 0.002 179 ±
59 

37–279 9.09×10− 6 ±

7.30×10− 6 

Val. 
Accuracy 

0.992 ± 0.005 284 ±
8 

269–290 1.44×10− 3 ±

8.82×10− 4 

Loss 5.72×10− 3 ±

2.01×10− 3 
125 ±
74 

30–260 1.79×10− 3 ±

1.88×10− 3 

Val. Loss 8.73×10− 3 ±

9.80×10− 3 
149 ±
59 

59–264 2.34×10− 3 ±

2.24×10− 3  

Fig. 5. : Plots of accuracy (top) and loss (bottom) during training of the neural 
network; In both graphs, the blue line shows each metric calculated from the 
training dataset (Tr) and the orange line represents each metric calculated from 
a single image from randomly selected scan from the training dataset, called the 
validation dataset (Val). The colored lines represent the median value from ten 
training runs, and the shaded regions represent the range of values from the ten 
runs. The vertical solid black lines indicate potential stopping points based on 
the mean minimum moving average error from all training and validation (Tr +
Val) metrics (solid, mean=184), Tr + Val loss metrics (dash, mean=137), and 
val loss (dash-dot, mean=149). The range of accuracy or loss depicts overfitting 
starting at 175 epochs. The mean epoch value closest to 175 but with validation 
loss value less than 175 was epoch=149. 
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MRI improves, the limitations of manual segmentation are amplified as 
more slices need to be segmented, thereby efficient and accurate WBD is 
a growing challenge. The proposed method provides means to poten
tially address that challenge. 

With a mean DC=0.98, our method demonstrated improved results 
compared to approaches proposed by (Hsu et al., 2020), and (Gao et al., 
2021) [DC<0.97]. We achieved comparable overlap metrics with ap
proaches proposed by (Chang et al., 2023), (Hsu et al., 2021) and (Liang 
et al., 2023). While the approaches proposed by (Hsu et al., 2021) and 
(Liang et al., 2023) utilized 3D network architectures working with 3D 
volumes, which result in a higher computational cost, it is encouraging 
to see that the performance of the proposed 2D U-Net was capable of 
performing segmentations that are comparable to 3D networks, but at a 
lower computational cost. 

4.1. Generalization of the U-Net CNN 

The generalizability of our framework was demonstrated using two 
disparate imaging datasets. Although both models were rats and utilized 
the same MR acquisition protocols, brain morphology and size vary 
significantly between strains of rats (Welniak-Kaminska et al., 2019). 
Fischer 344 and Sprague-Dawley rats, inbred and outbred strains, 
respectively, have anatomical brain differences that reduce the gener
alizability of atlas-based methods of segmentation methods (Goerzen 
et al., 2020). Nonetheless, our framework produced similar and highly 
accurate segmentations [metric: mean ± sd] for both OPI [DC: 0.978; 
HD:1.97] and AD [DC: 0.975; HD:1.49] rat models. This may help 
address limitations of classic skull-stripping techniques that are often 
tailored to images with specific strains. 

We believe the MRI data from the OPI rat model contributed to the 
generalization of the U-Net by introducing a wide range of 

Fig. 6. : Receiver operator characteristics (ROC) analysis as a function of threshold (T) values; (A) ROC curve and (B) a zoomed-in view of the ROC curve in (A), 
indicated by the red box. The black curve represents the mean TPR and FPR data as the threshold decreases (left to right). The red dashed line indicates the random 
classifier cutoff. (A) indicates that T is a strong classifier for determining brain vs non-brain pixels. In (B), the zoomed in graph shows specific values of T between 
0.05 and 0.95, in increments of 0.05. Values in increments of 0.10 are listed above the corresponding points. Each point is color coded with a gradient from blue 
[T=0.95] to white [T=0.05]. Along the knee of the ROC curve, there are a range of values from 0.25 to 0.90 that marginally affect TPR and FPR (Supplementary 
Table S3). Within that range of T values, DC and HD values indicate that T=0.85 produces the highest level of segmentation accuracy. 

Fig. 7. : Training graphs of the optimized OPI Rat 2D U-Net CNN. Graphs show (A) categorical accuracy and (B) loss for the model training and validation over 150 
epochs. Training data are in blue, and validation data are in orange. Over the last 10 epochs [mean±std]: training accuracy=[0.991±0.001] and loss=[0.0052 
±0.0007], and validation accuracy=[0.989±0.006] and loss=[0.0050±0.0033]. 
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neuropathologies and anatomical variation (e.g., ventricular volume 
and tissue atrophy) (Hobson et al., 2017) into the training dataset of the 
network. As a result, we believe that the U-Net optimized its weights 
based on general image features that are present in all groups rather 
than for one specific group (e.g., healthy controls). Thus, it was capable 
of performing WBD on rat brain images across different neurological 
disease models, without additional training. Our data suggests that the 
composition of the training data, specifically, its diversification, is 
important for development of a readily generalizable neural network. 
While the dataset from the OPI model presented a range of morphology, 
more research is needed to determine how training dataset composition 
(e.g., treatment group or severity of disease) affects network 
performance. 

4.2. Crucial parameters for network optimization 

The performance of the U-Net showed the most improvement with 
the optimization of the training dataset size consistent with reports that 
training dataset quality and quantity are both critical for improving the 
performance of deep learning methods (Halevy et al., 2009). However, 
the exact number of images required for optimal training is highly 
dependent on the type of data and complexity of the task. We observed 
that increasing the training dataset size improved median HD and DC, 
and reduced inter-scan variability across accuracy metrics (DC, HD, 
TPR, and FPR). However, with dataset sizes larger than TDS=100, the 
median FPR and HD tended to increase, while the other measures 
remained relatively unchanged, suggesting a fundamental reduction in 
real-world performance. This is a key finding that contradicts the hy
pothesis that larger datasets for machine learning methods will create 
more accurate neural networks (Halevy et al., 2009). Additionally, the 

threshold value (T) is a critical classifier to convert the output proba
bility segmentation map into a binarized segmentation mask. We believe 
that this parameter is under-reported in the literature due to its poten
tially small contribution to improving accuracy measures. However, 
visually, expert readers were able to detect improvements in the seg
mentation until T=0.85, despite minimal changes in DC, HD, TPR or 
FPR. Thus, reporting of T and a visual inspection of results in highly 
recommended with CNNs or equivalent neural networks. 

4.3. Optimization of training parameters for improved efficiency 

Optimization of the LR and the number of epochs were important for 
improving training efficiency of the 2D U-Net. Specifically, we observed 
increasing LR improved speed of weight optimization in the network, 
which was indicated by the stabilization of the training and validation 
accuracy and loss (Fig. 7). We observed that as learning rates increased, 
the fluctuations in validation accuracy and loss became larger. At LR 
values greater than 2×10− 4, the neural network updated its weights in 
larger increments (Konar et al., 2020), and this appeared to cause its 

Table 3 
Performance outcomes of the 2D U-Net for OPI Rat test dataset, organized by 
group and timepoint [median [min,max]]. The U-Net achieved similar median 
DC and HD values across treatment groups and timepoints. MDZ group achieved 
the best accuracy with the highest median DC and the lowest median HD, while 
the DUO group achieved the lowest outcomes. DC values and HD presented were 
calculated between the manual segmentations and the 2D-U-Net. HD values are 
in millimeters (mm).  

Group # of Scans DC HD 

DFP 4 0.985 [0.983–0.989] 1.68 [1.16–2.07] 
MDZ 4 0.986 [0.983–0.990] 1.38 [1.33–2.02] 
ALO 4 0.978 [0.939–0.985] 1.73 [1.61–2.53] 
DUO 4 0.975 [0.936–0.987] 1.90 [1.69–2.50] 
VEH 4 0.985 [0.965–0.988] 1.63 [1.01–6.78]  

Timepoint # of Scans DC HD 

Day 03 5 0.983 [0.967–0.990] 1.87 [1.01–2.02] 
Day 07 5 0.984 [0.965–0.989] 1.56 [1.16–1.86] 
Day 28 10 0.984 [0.936–0.987] 1.75 [1.35–6.78]  

Table 4 
Performance outcomes of the 2D U-Net for AD rat test dataset, organized by 
group and timepoint [mean±sd]. Both groups achieved similar DC and HD 
values. Month 12 timepoint achieved the best accuracy with the highest mean 
DC and the lowest mean HD values, whereas Month 8 achieved the lowest. DC 
values and HD were calculated between the manual segmentations and the 2D- 
U-Net. HD values are in millimeters (mm).  

Group # of Scans DC HD 

WT 60 0.974±0.018 1.58±0.69 
TG 60 0.977±0.012 1.40±0.46  

Timepoint # of Scans DC HD 

Month 07 48 0.976±0.012 1.46±0.54 
Month 09 36 0.976±0.013 1.41±0.53 
Month 11 24 0.968±0.024 1.72±0.81 
Month 13 12 0.982±0.041 1.44±0.34  

Fig. 8. : Representative images and U-Net-generated segmentations of: (row 1) 
VEH, (row 2) DUO, (row 3) ALO, (row 4) MDZ and (row 5) DFP animals from 
the OPI study, and (row 6) WT and (row 7) TG animals from the AD study. 
Columns from left to right: anatomical MR image, 2D U-Net-generated seg
mentation label (matched pixels in green and unmatched pixels in red) overlaid 
on MR image, and skull-stripped MR image created with the 2D U-Net-gener
ated label. 
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validation accuracy and loss to not converge to solutions, and therefore, 
not generate acceptable WBD segmentations. Thus, the optimal LR for 
this framework was the fastest value that allows validation accuracy and 
loss to converge and stabilize. 

Optimization of the number of epochs was also shown to be impor
tant for training time efficiency and to prevent overfitting of the data. 
Across ten training sessions, multiple fluctuations in accuracy and loss 
values, an indication of overfitting, occurred beyond 175 epochs. The 
metric that resulted in the best epoch optimization was the validation 
loss metric. A potential limitation of this method is that a constant epoch 
value may not produce the best results for any specific run, however, 
determining sensitivity to this value for each network remains critical. 

4.4. Relative importance of accuracy metrics 

DC, HD, TPR and FPR: Illustrated by the large area under ROC curve 
for the threshold value (Fig. 6), the threshold parameter itself is a robust 
classifier for distinguishing between brain tissue and non-brain tissue as 
it performs well across a wide range of values. While evaluation by ROC 
is important for an initial estimation of the threshold value, this only 
provided a range of threshold values that would be optimal due to the 
minimal change in mean TPR and FPR for threshold values between 0.60 
and 0.85. Similarly, for TDS, the mean TPR did not vary greatly between 
different values of dataset size, whereas the DC and HD improved until 
TDS=100. Collectively, the DC and HD were found to be the most useful 
metrics for determining optimal network parameter values. Addition
ally, now that most segmentation neural networks are achieving 
DC>0.97, evaluating other accuracy metrics, such as the HD, would be 
beneficial to ensure that segmentation shape, the boundaries of the 
segmentations, are also accurate. From the more recently published 
networks (Hsu et al., 2021, 2020; Liang et al., 2023), there is hetero
geneity in reporting HD, for example in terms of # of voxels as opposed 
to mm. Thus, standardized reporting of HD (in mm) in future published 
literature may allow for improved comparisons between models. 

4.5. Limitations of the modified 2D U-Net method 

Several limitations of our study must be noted. First, training of our 
network benefitted from access to heterogenous, well-curated data. Both 
the quality and composition of the data can impact the performance of 
the neural network (Halevy et al., 2009), and such data may not 
necessarily be accessible. Additionally, as a supervised machine learning 
method, our framework requires the creation of manual segmentations 
for each image in the dataset for training, which can be both resource 
and time intensive. Therefore, creation of open databases with such 
data, as planned, will benefit the community. Second, because our 
network was developed with T2-weighted images, additional training 
and optimization may be required to perform WBD with the modified 2D 
U-Net on images with other types of MRI contrast (e.g., T1

- weighting). 
Furthermore, while the network parameters were assessed, data 
augmentation strategies were not tested extensively. These augmenta
tions were selected based on translations, rotations, and brightness in
tensity shifts that are commonly utilized for machine learning methods 
(Mikołajczyk and Grochowski, 2018) and were represented in our data. 
More research is needed to determine if more specific data augmentation 
strategies would be beneficial for improving generalization of the U-Net. 
Third, our method did not utilize an adaptive learning rate that has been 
shown to improve the performance of neural network training (Konar 
et al., 2020). In order to reduce the barrier for entry for optimizing 
machine learning methods, however, we simplified the learning rate to a 
single value. Fourth, our method downscaled MR images to 128×128, 
which could introduce segmentation inaccuracy when upscaled to 
original MR resolution. A similar issue would arise if source image data 
are smaller than 128×128 in-plane as the image would need to be 
interpolated to a higher resolution, which could affect the accuracy of 
the generated segmentation. Ultimately, the in-plane resolution is 

inversely-related with computational time, and by down-sampling, the 
process benefits by a large reduction in computation time. Fifth, there is 
still an active debate about whether 2D or 3D CNNs would produce more 
robust segmentations. A benefit of the 3D approach is that it utilizes 
voxel relationship information, which may provide more useful infor
mation for segmentations. However, it is limited by high computation 
requirements (Woo and Lee, 2021) and a reduction in the number of 
training data, due to utilizing volumetric input rather than multiple 
in-plane images from a single volume scan. Our future research will 
include rigorous comparisons between the 2D and 3D architecture, and 
examining the applicability of this WBD CNN on other preclinical dis
ease and animal models, MR contrasts, and examining the impact of 
transfer learning to improve the generalizability of the network to other 
models. Lastly, for the worst performing segmentations, the U-Net 
incorrectly classified part of the trigeminal nerves along the ventral 
aspect of the brain as brain tissue, or the last posterior slices of the 
cerebellum as non-brain tissue. These findings are consistent with Hsu 
et al.’s method (Hsu et al., 2020), where the worst performing seg
mentations were in areas of low signal intensity (e.g., due to signal 
drop-off relative to head coil position) (Fig. 9). We similarly observed 
poorer performance independent of ventral distance, per se, and spe
cifically associated with deviation in coil placement. The results of this 
study indicate that fine-tuning of network training parameters is bene
ficial for improving its robustness and generalization and suggest that 
such optimization may be necessary for new and modified architectures, 
which has been similarly reported for other machine learning algorithms 
(Nakayama et al., 2012). 

5. Conclusion 

We assessed our modified 2D U-Net CNN framework as a fully- 
automated method for WBD for two disparate rodent models of neuro
logical diseases. Critically, this work showed that our framework can 
enable accommodating significant variability in imaging data resulting 
from neuropathology and strain differences and provide both general
izability and high accuracy comparable to manual segmentation. We 
believe that our analysis could be useful as a template for optimizing 
neural networks for preclinical brain image segmentation, as well as 

Fig. 9. : Representative images and U-Net generated segmentations of: (col 1) 
MDZ Day 3 scan and (col 2) DUO Day 3 scan. Rows top to bottom: anatomical 
MR image and 2D U-Net-generated segmentation label (matched pixels in green 
and unmatched pixels in red) overlaid on MR image. The MDZ Day 3 [DC: 
0.9900] is the best segmented scan with the U-Net and DUO Day 28 [DC: 
0.9356] is the worst segmentation. The white arrows indicate the difference in 
signal intensity in the cerebellum between an excellent segmentation versus a 
poor segmentation, where the U-Net performed suboptimally in the low signal 
region of the image. 
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provide a robust and accurate whole brain delineation tool applicable to 
rat neuroimaging data. 
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