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Abstract

The widespread adoption of artificial intelligence (AI) and Intelligent Transportation Systems

(ITS) technologies has led to the increasing application of AI-based ITS controllers, with the Traffic

Signal Controller (TSC) being a prominent example. Reinforcement learning (RL) models have

shown promising results for adaptively adjusting traffic light schedules in urban environments

through RL-based TSCs (RL-TSCs). The real-world deployment of RL-TSCs involves three key

aspects: performance, security, and data privacy. In terms of performance, RL-TSC models need to

be designed with consideration for various metrics, such as fair traffic scheduling and air quality

impact. To address this, our approach takes into account a multi-objective constrained learning

formulation to optimize performance. However, the use of RL-TSCs for automation, by leveraging

external inputs, introduces security concerns that require active research to mitigate. We address

these security challenges by introducing an innovative defense mechanism. Additionally, the training

of RL-TSCs relies on real-world mobility datasets, necessitating the protection of data privacy

at different levels of granularity. To minimize the constraints associated with limited real data

availability or privacy concerns, we introduce two distinct directions: synthetic trajectory data

generation using recent generative AI methods, and location privacy models for raw mobility

datasets based on differential privacy, which safeguard individual trajectories and aggregated

mobility datasets. This research provides a valuable tool for evaluating the practical deployment of

RL-TSCs, particularly in real-world settings where the last mile of implementation and security is

paramount. By addressing the key challenges of performance, security, and data privacy, this work

aims to facilitate the successful real-world deployment of AI-powered ITS controllers.
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CHAPTER 1

Introduction

1.1. Overview

Intelligent transport systems (ITS) integrate information and communication technologies (ICT)

with transportation applications that increase the efficiency and security of traffic for all the

participants, such as pedestrians and vehicles. Latest technological improvements have improved

the quality of transportation. New data-driven approaches bring out a new research direction

for all control-based systems, e.g., transportation, robotics, IoT, and power systems. Combining

data-driven applications with transportation systems plays a key role in recent transportation

applications.

Artificial intelligence (AI) tries to control systems with minimal human intervention. AI-based

control mechanisms in ITS, such as traffic signal control (TSC) systems, take action based on

real-time data from the environment for online updating. There are several reasons why authorities

want to implement data-driven autonomous controllers in ITS, such as time-saving for drivers,

energy-saving for the environment, and safety for all participants. Coordinated and connected traffic

management systems can save travel time with the help of TSCs. Spending more time in traffic

increases fuel consumption with environmental and economic impacts. Another reason why human

intervention is tried to be minimized using AI-based controllers is the unpredictable nature of human

behavior. It is expected that autonomous ITS controllers will decrease traffic accidents and increase

the quality of transportation [48]. For the above reasons, there is a high demand for various aspects

of autonomous and adaptive TSCs in ITS. One popular approach is to use experience-based learning

models, similar to human learning.

Reinforcement learning (RL) is conceived to increase the traffic efficiency in ITS by enabling

a learning structure that interacts with the environment. While many RL-based traffic optimiza-

tion methods are presented for different ITS applications, the majority of these applications are
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concentrated on TSCs. RL-TSCs have the potential to offer a solution by decreasing the travel

delay and increasing the traffic efficiency. Nonetheless, security vulnerabilities and possible security

mechanisms of RL-based TSC are research questions that must be addressed. A security breach of

RL-TSC in the case of either compromising the learning model or participating device such as a

vehicle is a challenge.

Training RL-TSCs mainly rely on traffic simulators, which can generate traffic flow using model-

based travel demands or real traffic trajectories showing the travel path of a user. These collected

trajectories can be used to design a traffic model or used to validate ITS control algorithms such as

RL-TSCs. However, the convenience of trajectory datasets comes with a cost of privacy because

user trajectories contain personally identifiable information such as home and office addresses. Due

to the privacy issue, trajectory datasets are not easily accessible. The datasets should be synthesized

or privatized before being made available to the public.

This thesis delves into three critical challenges within the ITS: the performance and security of

RL-based TSCs, and the privacy concerns surrounding vehicular mobility datasets. To underscore

the rationale for adopting learning-based TSCs, we initiate our exploration by assessing the impact

of RL-TSCs on traffic delay and air pollution, drawing insights from a real traffic dataset sourced

from downtown San Francisco. Subsequently, we propose a constrained RL model to promote

fairness and environmentally responsible RL-TSCs. Furthermore, our investigation extends to the

security aspects of RL-TSCs, examining a range of threat models and potential defense mechanisms.

Beyond the performance and security challenges of RL-TSCs, this research also addresses the privacy

and data availability challenges inherent in vehicular mobility datasets. The privacy constraint has

been addressed through the application of differential privacy techniques. To overcome the limited

availability of diverse real-world mobility data, we propose using synthetic data generation methods

leveraging generative AI models.

1.2. RL-based TSCs

RL is a general learning tool where an agent interacts with the environment to learn how

to behave without prior knowledge by learning to maximize a numerically defined reward (or to

minimize a penalty). After taking an action, RL agent receives feedback from the environment at
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each time step t about the performance of its action. Using this feedback (reward or penalty) it

iteratively updates its action policy to reach an optimum control policy. RL learns from experiences

with the environment, exhibiting a trial-and-error kind of learning, similar to human learning [194].

In a general RL model, an agent controlled with an algorithm, observes the system state st

at each time step t and receives a reward rt from its environment/system following the action at.

After taking an action based on the current policy π, the system transitions to the next state st+1.

At every interaction, RL agent updates its knowledge about the environment. Fig 1.1 depicts the

schematic of the RL process.

Action at

State st

Reward rt

Environment Agent

Figure 1.1. Reinforcement learning control loop.

Standard RL algorithms cannot efficiently compute the value or policy functions in high-

dimensional state spaces. Although some linear function approximation methods are proposed for

solving the large state space problem in RL, their capabilities are still up to a certain point. In

high-dimensional and complex systems, standard RL approaches cannot learn informative features

of the environment. However, this problem can be easily handled by deep learning-based function

approximators, in which deep neural networks are trained to learn the optimal policy or value
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functions. Different neural network structures such as convolutional neural network (CNN) and

recurrent neural network (RNN) are used for training RL algorithms in large state spaces [124].

In the case of RL-TSCs, RL agent is implemented in the TSC center to control traffic signals

adaptive to the traffic flow. First, the control unit collects the state information, which can be in

different formats such as queue length, position of vehicles, speed of vehicles etc., and then control

unit takes an action based on the current policy of RL method. Finally, the agent (control unit)

gets a reward with respect to the action taken. By following these steps, the agent tries to find an

optimal policy to minimize the congestion on the intersection.

1.3. Vehicular Mobility Datasets

Vehicular mobility datasets are a great source of information for understanding and extracting

knowledge from dynamic human mobility. The mobility datasets can be at different scales from an

individual level to the collective level of populations such as trajectories, origin-destination travels,

or aggregated level of user movements. Human mobility using real datasets has been studied in

many fields, such as geography, transportation, physics, and public health. The data sources of

mobility datasets are very broad, such as census data & surveys, mobile devices, GPS devices, and

online data collection sources [13].

In transportation, different applications require different scales of information. For example,

user stay point analysis cannot be performed on an aggregated level because the problem requires

analysis of individual user stay points. On the other hand, major route identification or traffic

zoning problems can be studied with aggregated mobility datasets since routes can be extracted

from aggregated traffic networks.

Due to the high correlation between user characteristics and group behaviors, there is a high

demand for human mobility studies. However, the mobility datasets have two main challenges:

privacy concerns and a lack of publicly available mobility data.

• Data Privacy: The data collected from users can reveal private lifestyle patterns, such as

home and office addresses and user point of interest locations. Applying privacy protection

tools to data before sharing it with third parties is required to relieve such concerns. The

privacy issues are valid for both trajectory datasets and aggregated traffic mobility datasets.
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While privacy issues on individual trajectories are well known, it is already proven that

aggregated mobility datasets also have some privacy issues. The authors were able to

re-identify user trajectories from raw aggregated trajectories [220]. User locations need to

be privatized at the individual trajectory and aggregated level.

• Data Availability: Limited mobility datasets can have significant negative impacts on

transportation systems, from biased and inaccurate AI/ML models to reduced safety and

inefficiencies in transportation systems. Enhancing the availability of mobility datasets

provides additional benefits to the transportation sector, such as improved safety, better

efficiency, and increased innovation.

1.4. Contributions

1.4.1. Performance of RL-TSC. Traffic signal controller (TSC) has a crucial role in man-

aging traffic flow in urban areas. We designed an on policy multi-agent RL model assuming a

vehicular network-based communication environment. We first analyzed the performance of on

policy RL-TSC model in the case of a small-scale synthetic TSC network and real TSC network

from the San Francisco downtown in terms of traffic delay and air quality in [92] using SUMO traffic

simulatior. The results show that RL-TSCs are prone to high air pollution compared to standard

TSCs for urban traffic control if it does not carefully designed.

Although the proposed RL-TSC model performed well, these RL-TSC still need to be improved

for real-world deployment due to limited exploration of different performance metrics such as fair

traffic scheduling or air quality impact. Furthermore, we introduce a constrained multi-objective

RL model that minimizes multiple constrained objectives while achieving a higher expected reward.

Our proposed RL strategy integrates the peak and average constraint models into the RL problem

formulation with maximum entropy off-policy models. We applied this strategy to different networks

of TSCs. As part of this constrained RL-TSC formulation, we discuss fairness and air quality

parameters as constraints for the close-loop control system optimization model at TSCs called

FAirLight. Our experimental analysis shows that the proposed FAirLight achieves a good traffic

flow performance in terms of average waiting time while being fair and environmentally friendly.
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Our method outperforms the baseline models and allows a more comprehensive view of RL-TSC

regarding its applicability to the real world.

Our relevant publications are listed below:

• A. Haydari, M. Zhang, C. N. Chuah, & D. Ghosal, “Impact of Deep RL-based Traffic

Signal Control on Air Quality.” In 2021 IEEE 93rd Vehicular Technology Conference

(VTC2021-Spring) (pp. 1-6). IEEE, (2021, April).

• A. Haydari, V. Aggarwal, M. Zhang , C. N. Chuah, “Constrained Reinforcement Learning

for Fair and Environmentally Efficient Traffic Signal Controller ”, Under Review, ACM

Journal on Autonomous Control, 2023

1.4.2. Security of RL-TSCs. Controlling ITS components with learning-based model opens

up a new attack surface for adversaries [127,203,222]. Misleading the behavior of ITS controllers

with adversarial samples may result in life-threatening conditions. One of the main application areas

of learning based controller models is TSC with RL. Therefore, the security analysis of RL-TSCs

needs to be investigated. We identified two main threat models for RL-TSCs: injecting minimal

random perturbations to the learning controller directly or sending falsified information to the TSC

using Sybil or compromised vehicles. We investigate the RL-TSC security in adversarial attacks

with threat models and a novel statistical detection mechanism in Chapter 4. The proposed security

model reaches average 98% of detection performance. The relevant publication for this work is

below:

• A. Haydari and C.N. Chuah, M. Zhang, Adversarial attacks and defense in deep reinforce-

ment learning (DRL)-based traffic signal controllers. IEEE Open Journal of Intelligent

Transportation Systems, 2021.

1.4.3. Privacy and Availability of Vehicular Mobility Datasets. The widespread adop-

tion of location-based services and smart GPS devices (smartphones/watches) make continuous

monitoring of human mobility both desirable and feasible. Such mobility data can enable differ-

ent smart urban planning and other applications, such as training learning-based ITS controllers.

However, real mobility data can reveal private lifestyle patterns (e.g., home/office addresses, points

of interest). Removing personal identifiers from the dataset does not adequately provide privacy
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because attackers can still re-identify users [50]. These privacy concerns inhibit free sharing of

mobility or CAVs data across multiple entities.

ITS research can face limited progress due to insufficient training data. Since existing publicly

available datasets [36,123,167] are not rich enough for large-scale evaluations, researchers resort to

simulating realistic human trajectories with generative models. Although there are several attempts

at mobility data generation, their capabilities are limited to specific data types.

In this thesis, we investigate two primary directions in the realm of privacy preservation and

mobility data generation. The First direction focuses on privacy protection mechanisms for different

granularity levels of vehicular mobility datasets, including individual and aggregated mobility

datasets, using differential privacy (DP), which protects the query output against inference attacks

regardless of background knowledge. We proposed a DP-based map-matching algorithm, called

DPMM, that generates link-level location trajectories in a privacy-preserving manner to protect

users’ origin destinations (OD) and travel paths. OD privacy is achieved by injecting Planar Laplace

noise to the user OD GPS points. Travel-path privacy is provided with randomized travel path

construction using exponential DP mechanism [93]. Furthermore, we extended this to aggregated

datasets using map-matching to protect the origin destination of users at aggregated mobility

networks [90]. This is achieved by injecting Planar Laplace noise to the user origin and destination

GPS points. The noisy GPS points are then transformed into a link representation using a map-

matching algorithm. The injected noise level is selected using the Sparse Vector Mechanism. This

DP selection mechanism considers the link density of the location and the functional category of

the localized links.

The second direction delves into developing synthetic data generation tools utilizing transformer-

based models [201], specifically on generating individual trajectories. By leveraging the capabilities

of transformers, this approach addresses the challenge of data availability by synthesizing realistic

mobility data, which can be crucial in scenarios where access to real-world data is limited or

restricted [89].

Through these complementary directions, we aim to contribute to the advancement of mobility

data generation techniques while addressing critical privacy concerns in the context of ITS and

beyond.
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Our relevant publications are listed below:

• A. Haydari, C. N. Chuah, M. Zhang, J. Macfarlane, & S. Peisert (2022, December).

Differentially private map matching for mobility trajectories. In Proceedings of the 38th

Annual Computer Security Applications Conference (pp. 293-303).

• A. Haydari, C. N. Chuah, M. Zhang, J. Macfarlane, & S. Peisert (2023). Differential

Privacy in Aggregated Mobility Networks: Balancing Privacy and Utility. arXiv preprint

arXiv:2112.08487.

• A. Haydari, D. Chen, Z. Lai, & C.N. Chuah (2024). MobilityGPT: Enhanced Human

Mobility Modeling with a GPT model. arXiv preprint arXiv:2402.03264.

8



CHAPTER 2

Impact of Deep RL-based Traffic Signal Control on Air Quality

2.1. Introduction

Air pollution becomes a very problematic issue in urban areas due to the rise of the number of

motor vehicles. In the US, transportation accounts for the 28% of greenhouse gas emissions in which

97.2% of source of emission is CO2 via consumption of fuels [3]. Vehicular emission depends on

several circumstances such as traffic condition, vehicle characteristics, and driver behaviors. Traffic

intersections play a key role in managing mobile air pollution since frequent vehicles’ speed changes

and stop-and-go traffic result in increased fuel consumption and CO2 emissions.

Machine learning-based control mechanisms in intelligent transportation systems (ITS), such as

traffic signal control (TSC) systems, take action based on real-time data from the environment for

online updating. Today, popular learning-based controller approaches combine deep neural networks

(DNN) with RL, referred to as DRL, in which policy estimation is performed by DNNs. One good

example application of such methods in ITS is developing the optimal traffic signal schedules. In

general, learning-based TSCs perform better than standard dynamic TSCs in terms of delay and

throughput for multi-intersection settings [91]. However, it remains an open research question how

such learning based TSCs affect local mobile emissions near the surface streets.

In this context, we investigate the emission and fuel consumption produced by DRL controlled

intersections. To assess the impact of such controllers in terms of the emissions, we consider policy-

gradient-based advantage actor-critic (A2C) DRL algorithm with multi-agent settings and simulate

the following: (i) grid-like 4-intersection TSC scenario, and (ii) the San Francisco Downtown road

network. We run all our experiments on the SUMO traffic simulator where pollutant emission and

fuel consumption models are derived from the HBEFA application database [87]. SUMO collects

fuel consumption and pollutant emission results from each vehicle individually based on the speed
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and acceleration parameters. These emission statistics are examined using different type of traffic

network settings.

The contributions of this work are as follows:

• We quantify fuel consumption and CO2 emission rates with multi-agent DRL controller

methods using a simple delay-based penalty function. Our results show that the pollution

levels are highly correlated with the total travel time in intersections and reducing the

travel times spent in intersection also lowers the CO2 emission.

• In addition to simulation study of a synthetic 2x2 grid network (Fig. 2.2), we train and

test our DRL controller on the San Francisco downtown network with real data consisting

of 24 hours traffic flow. To study the effect of peak and off-peak hours, we also perform

different trace-driven simulations with 3 hours in the morning and 3 hours in the afternoon

traffic flow, respectively.

• Although DRL-based TSCs perform the best on the synthetic network, they do not

outperform the rule-based TSC method (max pressure control) in the San Francisco

downtown network in terms of CO2 emissions and fuel consumption. DRL-based TSCs

outperforms both fixed-time and queue-based vehicle-actuated TSCs.

The rest of the chapter is organized as follows. Section 2.2 discusses related work while Section

2.3 provides background for DRL learning agents and TSC settings. We discuss our simulation

results in Section 2.4. Section 2.5 concludes the chapter.

2.2. Related Work

Learning-based TSC control mechanisms have good performance compared to classic TSC

approaches. One such approach leverages different DNN settings, RL settings and traffic network

structures referred to as DRL [91]. In general, the performance of learning based TSCs are better

than standard TSC controllers in terms of delay and total waiting time [68]. Existing DRL based

TSC approaches may differ from one another in terms of problem definitions [196], neural network

structures [155] and applied algorithms [28]. While some studies control multiple intersections

with a centralized agent [232], some others assign different agents for different intersections with

multi-agent models [39].
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Emission and fuel consumption increases in the urban areas due to high load of traffic and

congestion [19]. Authors in [120] evaluates the impact of TSCs on air pollution based on VT-Micro

microscopic fuel and emission estimation model [4]. Another team studies the effects of coordinated

and non-coordinated TSC on emission rates with different emission models [42]. The work in [64]

examines the roundabout effects on air pollution on a microscopic traffic simulator by comparing

the results with standard fixed-time TSCs. A recent review discusses impact of different traffic

management systems such as lane management, speed management and traffic flow control strategies

on air pollution [19].

There are not many studies investigating the effects of learning based TSCs on air quality. In

this work, we examine the effects of learning based TSCs on CO2 emission and fuel consumption on

both a synthetic network and the San Francisco downtown network with the SUMO microscopic

traffic simulator.

2.3. DRL-based Traffic Signal Controllers

2.3.1. Deep Reinforcement Learning. Reinforcement learning (RL) is a trial-and-error

based learning algorithm where agent interacts with the environment and takes action to maximize

cumulative reward. Mathematical formulation of RL is based on Markov Decision Process (MDP).

In general, an RL agent interacts with the environment and receives a numerical reward (or penalty

if it is negative). Continuously observing the environment called state st, receiving feedback from

the environment rt and taking action at, an RL agent learns an action policy which defines how to

behave by computing action value function Q(st, at) after each iteration [194].

2.3.2. Advantage Actor-Critic DRL. In a general DRL model, DNNs extract the features

from data with multi-layered neural networks [149]. Actor-critic-based DRL models consist of

policy estimation and value function estimation algorithms applying to an advantage function (Fig

2.1). While the actor is responsible for determining the actions to take, based on the current state,

by learning a policy function that maps states to actions, the critic evaluates the actions taken

by the actor and provides feedback on how good or bad those actions were. The critic learns

a value function that estimates the expected future reward for a given state and action. Actor-

critic reinforcement learning offers several key advantages over traditional Q-learning approaches,
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particularly in tasks with continuous or high-dimensional action spaces, where the actor network can

directly output the optimal actions rather than requiring a costly search, leading to more stable and

efficient learning. Additionally, actor-critic methods can learn stochastic policies, enabling better

exploration-exploitation trade-offs, and scale more effectively to high-dimensional state spaces by

leveraging the compact policy representation learned by the actor network, making them a more

powerful and flexible reinforcement learning technique for a wide range of real-world applications

compared to Q-learning.

Actor-critic models update both actor and critic networks synchronously. There are several

synchronous and asynchronous actor critic models in literature [130]. Asynchronous advantage

actor-critic (A3C) models estimate both actor and critic networks in parallel asynchronously, which

increases the computation time. Since there is not much performance difference between synchronous

and asynchronous actor-critic models, we used synchronous actor-actor critic method know as A2C

in on-policy settings, which utilize the most recent interaction data to update the policy and value

function, leading to more efficient use of samples.

2.3.3. Deep Reinforcement Learning for TSC. In this work, the states of A2C agents are

value vectors for each incoming lane of intersection. For one intersection, we created two value

vectors for each lane: one is average speed and the other is total number of vehicles. Position and

speed of each vehicle can be collected from individual vehicles via vehicle-to-infrastructure (V2I)

communication to calculate the average speed and number of vehicles. Using the formed state

input, the DRL agent in TSC selects a green phase from among possible green phases: North-South

Green, East-West Green, North-South Advance Left Green, East-West Advance Left Green. Each

selected green phase is executed after a yellow phase transition. With the objective of maximizing

cumulative reward, a scalar reward is computed for penalizing or rewarding each taken action. There

are several reward/penalty definitions for TSC settings such as vehicle waiting time, cumulative

delay, and queue length. Although there are more complicated reward designs in literature, the

authors in [232] demonstrated that in general, simpler state and reward definitions are superior

to the complex reward functions. For this reason, in our DRL-based TSCs, we choose a simpler

reward function namely the change in the waiting time at an intersection for one green phase.
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Figure 2.1. Actor Critic RL model for a TSC

For DRL models, designing a DNN structure for better performance is another critical step. In

this work, we used multi-layer perceptron with 5 layers for both actor and critic, with ”relu” and

”softmax” activation functions for policy estimations of learning agents. In multi-agent RL settings,

interaction with the nearest agents is necessary to reach a global optimum. In our experiments,

each agent updates its policy by including the current traffic condition of neighbor TSCs as well to

decrease the overall traffic delay. The global state is found with concatenation of the local states of

neighboring intersections and the reward is generated by summing the local rewards of neighboring

intersections.

2.3.4. Fuel Consumption and Emission Models. There are several vehicle acceleration-

based emission estimation models such as HBEFA [94], MODEM [224]. We adopted the HBEFA

emission estimation model in our experiments, which is widely used in Europe, with SUMO traffic

simulator providing a variety of tools for collecting statistics from the simulation. The parameter
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called relative positive acceleration (RPA) is a key component determining the emission rates for

driving cycles. RPA value is calculated using the equation:

(2.1) RPA =
1

λ

∑
ai ∗ vi ∗∆t

where λ is the total traveled distance, ai is positive acceleration value, vi is speed for the sample i,

and ∆t is the time interval between sample i and i− 1.

The latest version of HBEFA is v4.1 released in August 2019. Although HBEFA includes a large

amount of source data for different sort of pollutants, SUMO only allows its users to simulate a few

of them such as fuel consumption, CO2, CO, HC. In our experiments, we only measured the rates

of fuel consumption and CO2 since we know that 97.2% of emission in traffic is only CO2. SUMO

also enables the use of different vehicle classes for simulating such parameters. Some of them are

passenger cars, buses, heavy duty vehicles with gas driven and diesel driven types. In this work, we

only simulated one type of vehicle that releases the same amount of gas to the air and consumes the

same amount of fuel for all the vehicles.

2.4. Experimental Evaluation

In this section, we experimented the impact of DRL-based TSCs on fuel consumption and CO2

emission statistics using SUMO [138] microscopic vehicular traffic simulator with Tensorflow Python

API for controlling multi-agent A2C agents. Both synthetic and real networks are trained on the

same agent parameters with 2000 experience replay memory size, discount factor γ = 0.95, as well

as, 0.00001 and 0.000005 learning rates for actor and critic networks, respectively.

All our experiments compare the performance of DRL TSCs with three baselines. One of

the baselines is standard fixed time TSC where green light times are allocated to each direction

with pre-defined duration. We also compared our method with two adaptive control methods:

queue-based vehicle-actuated TSC [214], and max-pressure-based TSC [200]. Maximum phase

duration for the vehicle-actuated controller and the max-pressure controller and DRL controller is

set to be 40 seconds.
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2.4.1. Results from the Synthetic Network. In this section, we perform experiments on

a multi-intersection environment with A2C DRL-based TSCs using 4 connected intersections (see

Fig. 2.2). One traffic intersection has only 3 incoming roads while the other three intersections

have 4 incoming roads. The roads connecting the different intersections are 1000 meters long, while

the roads on the edges are 500meters long. 1 hour traffic flows on the synthetic traffic network

constitutes one episode. The traffic is generated one vehicle per second by selecting the origin and

destinations randomly. We trained our DRL agent on synthetic network for 20 episodes.

Due to space limitations we do not include comparison results with other DRL methods here but

our previous experiments show that multi-agent A2C model achieves the best performance among

other DRL models. In this study, we only showed the impact of multi-agent A2C (MA2C) model

on fuel consumption and CO2 emission rate in addition to total network waiting time. Fig. 2.4

shows the air pollution statistics and total vehicle waiting time with established baselines fixed-time,

actuated and max-pressure TSCs throughout the simulation for the synthetic network. Fig. 4(a)

exhibits the learning curve of multi-agent A2C agents in terms of total travel waiting time. Fig.

Figure 2.2. Traffic scenario for multi-agent multi-intersection TSCs.
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Figure 2.3. San Francisco downtown traffic network

4(b) and Fig. 4(c) show the total fuel consumption rate and total CO2 emission rate. Results in

Fig. 2.4 shows that DRL based TSC can achieve the minimal fuel consumption and CO2 emission

rate, along with the total waiting time. In general, as the total vehicles travel time decreases, fuel

consumption and CO2 emission rate also decrease proportionally.

2.4.2. Results from the Real Network. In addition to simulating the synthetic road net-

work, we evaluated the DRL-based traffic controllers and state-of-the-art conventional TSC controllers

using a real dataset on San Francisco downtown road network, which follows a grid structure. The

traffic from the bay bridge is also a part of the traffic flow in San Francisco downtown, where

the bridge is merged with the main downtown traffic network. Fig. 2.3 shows the downtown San

Francisco traffic network with 115 signalized intersections in total. Since it is not practical to control

all the signalized intersections, we trained and tested only 10 neighboring intersections in the lower
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(a) Total waiting time for 1 hour traffic flow. (b) Total fuel consumption for 1 hour traffic flow.

(c) Total CO2 emission rate for 1 hour traffic flow.

Figure 2.4. Waiting time, fuel consumption and CO2 emission rate results compared
with standard fixed time and actuated controller models including max-pressure
control

central downtown area. In addition, we tested our DRL agent with 4 neighboring intersections

on the real road network, closer to the synthetic network. The results of such a 4 intersection

controller have similar results with 10 intersections. Hence, in this study, we only present the 10

intersection controller model results below. We trained our DRL-based TSC controller with a 24

hours replicated traffic route file where similar timely traffic patterns are preserved. Cumulative

CO2 emission and fuel consumption rates are collected at around the signalized intersections. We

presented real network test results in separate tables for three scenarios: 24-hour all-day traffic,

8am-11am morning traffic, and 5pm-8pm evening traffic.
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First, the all-day simulation results for the San Francisco traffic network is shown in Table 2.1.

Although multi-agent A2C achieves the highest performance in the synthetic network, it performs

slightly worse than Max-pressured-based TSC in the San Francisco network. Among the four TSC

models we evaluated, DRL-based TSC controller achieves the second best performance in terms of

total vehicle waiting time, total fuel consumption and total CO2 emission.

Table 2.1. Comparison of different TSC controllers using 24 hours traffic flow on
San Francisco downtown network

TSC Waiting time (sec) Fuel (liter) CO2 (gram)

Max-pressure 658656 1658.5 128443.5

MA2C 783140 1835.2 146028.4
Actuated 845829 1925.4 159295.3

Fixed-time 1453968 2543.5 254762.2

Next, we studied the San Francisco network with 3 hours traffic flow for two groups of time

periods: 8am-11am and 5pm-8pm. The purpose of this analysis is to identify how learning agents

behave in different time periods of the day. SUMO runs traffic flow with a given route file. Since

we have only one all-day dataset, we need to train the network with replicated traffic flow route

files before testing learning agent with the actual traffic conditions. We randomly sampled traffic

routes and replaced some of the routes with sampled routes for creating a replicated route file. This

way, we preserved the same traffic behaviors for the given time period. However, we observe that

training with the 3-hour dataset with one replicated route file does not provide sufficient learning

for the DRL agent. Therefore, we generated 10 different route files with the same traffic behaviours

and trained the DRL agent 10 episodes. Then we tested real traffic routes with DRL agent. Tables

2.2 and 2.3 summarize our results.

Table 2.2. Comparison of different TSC controllers using 3 hours traffic flow on
San Francisco downtown network between 8am and 11am

TSC Waiting time (sec) Fuel (liter) CO2 (gram)

Max-pressure 94762 285.6 19594.0

MA2C 110485 310.1 21789.2
Actuated 141265 341.7 27024.0

Fixed-time 218525 421.1 38889.0
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We begin with presenting the morning simulation results in Table 2.2. Similar to the all-

day results in Table 2.1, the max-pressure TSC performs best in lowering traffic congestion, fuel

consumption and CO2 emissions than other controllers, with MA2C comes second.

Table 2.3. Comparison of different TSC controllers using 3 hours traffic flow on
San Francisco downtown network between 5pm and 8pm

TSC Waiting time (sec) Fuel (liter) CO2 (gram)

Max-pressure 40537 146.7 8941.3

MA2C 61584 170.6 11972.0
Actuated 69748 181.2 13495.7

Fixed-time 117731 227.5 20824.9

Next we present the results for the evening period shown in Table 2.3. Compared with the

morning period, the evening period has lower congestion, fuel consumption, and CO2 emissions,

largely due a difference in traffic demand between the two peak commuting periods. Among all the

control methods, the max pressure controller still performs the best, with MA2C being the second

best. But the performance of MA2C is closer to that of the actuated controller in the evening period

than in the morning period.

2.5. Conclusion

This chapter investigated the effectiveness of learning based TSCs in reducing fuel and emissions,

as compared with other state-of-the-art conventional TSCs, on both a synthetic and a real road

network. The main findings are (i) there is a high correlation between the CO2 emission and fuel

consumption rates and the total waiting time, (ii) learning based TSC controllers are not universally

more effective than other types of controllers in our application context. While the multi-agent

A2C controller achieves the best performance on the synthetic network, it was outperformed by

the max pressure traffic controller on the San Francisco downtown network in all three testing

scenarios. Nevertheless, the DRL controller still performs the second best in these cases. Several

factors influence the ability of DRL controllers to learn and generalize, one of which is the reward

function. Our current study used a simple reward function based on vehicle waiting time only. We

will explore other forms of reward functions including the emission in our future work to see if the

performance of the DRL controller can be further improved.
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CHAPTER 3

Constrained Reinforcement Learning for Fair and

Environmentally Efficient Traffic Signal Controllers

3.1. Introduction

Traffic signals at intersections play a vital role in urban traffic management. The currently

deployed Traffic Signal Controllers (TSCs) are predominantly fixed-time or vehicle-actuated con-

trollers that are rule-based. These TSCs often provide sub-optimal control under rapidly changing

and/or heavy traffic load.

Reinforcement learning (RL) has been shown to be a promising control strategy for TSCs with

the advantage of adaptive learning in response to different traffic conditions [91, 129, 213]. RL

learns how to act based on the feedback from the environment for online updating. RL-based TSCs

can efficiently assign green phases and their durations to improve performance. Although the current

TSC methods with RL made progress in regulating traffic flow dynamically, in general, prior works

target the only one performance metric, such as increasing the traffic flow or decreasing the delay.

However, this could result in poor traffic scheduling, causing substantial delays for vehicles or traffic

flows with low traffic rates While a TSC that provides a high traffic flow is desirable, it may lead to

other undesirable traffic conditions, such as longer vehicle waiting times on side roads (which raises

fairness concerns) or increased air pollution.

A well-rounded TSC should, therefore, not only address efficiency as measured by delay or

throughput, but also take into account its effect on fairness and greenhouse gas emissions. To this

end, applying RL-based TSCs to the real world requires proven efficiency in multiple metrics. This

research presents a novel constrained multi-objective RL approach formulation to circumvent the

aforementioned restraints by combining traditional objective functions such as minimizing the delay

along with fair scheduling and air pollution constraints.
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Fair traffic scheduling is an essential performance aspect of TSCs. Prolonging the green phase

time for one road direction may result in an unfairly higher waiting time for other traffic flow

directions. The aim is to allocate proper time for all traffic directions (north-south, east-west)

without exceeding the maximum green time for each phase in the TSC optimization performance.

For instance, allocating disproportionate green time to the arterial road would cause higher waiting

time for the side road entering vehicles. In this work, we consider an intersection level fairness in

terms of maximum-green time, where the goal is to schedule traffic fairly for different approaching

traffic flows to the TSC. We customize RL controller optimization with the maximum green time

constraints that maintain more efficient traffic scheduling.

The efforts on TSC optimization considering air quality metrics (e.g., emission or fuel consump-

tion) focus on offline methods. However real-time adaptive TSC mechanisms are rarely optimized

with such metrics [6]. One well-studied objective function is minimizing delay and unnecessary stops

at intersections for finding a signal plan to minimize the emission at intersections [5]. However,

since the RL-based TSCs have proven to outperform the fixed-time controllers in heterogeneous and

dynamic traffic conditions, optimizing the learning-based TSC by considering emission metrics is

necessary. A relatively recent research studies the mixed linear integer optimization approach for

dynamic TSC control with emission constraints [83], which accomplishes optimization with a set of

cycle length durations. Our work, on the other hand, optimizes TSCs considering the CO2 vehicle

emissions with RL models in real-time.

Dealing with different objectives with an RL controller and integrating these different objectives

into RL formulation in the form of constraints is challenging. In general, RL models focus on either

instantaneous performance with peak constraints or long-term average performance with average

constraints. In this work, we consider instantaneous constraints as the upper bound of air pollution

and average constraints as the maximum green time with multi-objective form of RL formulation

for TSCs. The goal is to achieve scheduling fairness in terms of maximum-green time violations and

air quality in terms of lower CO2 emission rate at the signalized intersections.

Several prior works studied the fairness [176] and air pollution aspects [117] of RL-based TSCs

separately in different studies. Unfortunately, such studies cannot address multi-objective TSCs.

Hence, the RL model should be designed considering different objectives in advance to reach an
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optimal control performance. In this work, we incorporate the fairness and air quality constraints to

the RL formulation, strengthening the applicability of such learning-based TSCs to the real world.

Specifically, we designed FAirLight, a multi-objective model-agnostic RL module using constrained

RL formulation. Our key contribution is designing an RL framework with peak and average RL

constraints. We conduct experiments on a network of signalized intersections with real datasets.

Our model has improved fairness in terms of maximum green threshold by 68% compared to second

best RL controller and achieves lowest CO2 emission rates with around 6% improvement.

Our summary of contributions are as follows:

• We propose a generalized RL formulation with multiple objectives that maximizes the

cumulative reward subject to average and peak constraints. Although RL has been studied

with either average or peak constraints, but not both, this work combines the two constraints

and each targets a different objective of signalized traffic control.

• We formulate the air quality-related constraints (CO2 emission rate) with a linear regression

model with respect to the vehicle occupancy rate and introduce an upper bound for emission

rates. The emission rate is conditioned with a separate constraint value network, known as

average constraints.

• We develop a constraint model of fair traffic scheduling with a maximum-green threshold

term and incorporate a penalty function into the RL controller. This maximum-green

threshold is a peak constraint, which learns a constraint on the reward function.

• We conduct simulation with real and synthetic traffic networks to evaluate the performance

of our proposed approach

3.2. Related Works

In recent years, there has been growing interest in the research community towards developing

effective strategies for controlling signalized traffic signals. One main direction is applying RL

techniques to TSC optimization. Unlike traditional rule-based TSC methods like SOTL [40],

learning-based TSC approaches have shown superior performance in terms of optimizing specific

objectives such as traffic flow or delay reduction [145]. However, despite the advancements in

RL-based TSC optimization, there is still limited exploration of multi-objective TSC optimization
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using RL models. While existing studies have primarily focused on optimizing a single objective,

such as maximizing traffic flow or minimizing delay, the consideration of multiple objectives in TSC

optimization remains an ongoing challenge.

Reward engineering for improving the performance of RL-TSCs has been explored [215,221].

Recently several researchers studied RL-TSC formulation with multiple objectives, including fair

traffic scheduling and safety. One type of reward engineering is to add multiple objectives to the

reward definition with weighted averaging. One of the earlier works utilized multiple traffic-related

parameters in reward definition for RL-TSCs in [112]. In another study [176], authors proposed

two fairness variants of rewards definitions with a delay-based and a throughput-based approach for

RL-TSCs. The proposed strategy weighted averages the fairness objectives with the traffic flow. Thus

it requires fine hyper-parameter tuning and does not guarantee convergence. However, modeling

the objectives on Q values of the RL model tends to converge better with stronger guarantees. A

hierarchical multi-objective RL model with a maximum green threshold for fairness property is

presented in [100] . While RL is responsible for scheduling at a higher level, the lower-level module

optimizes the control parameters. Safety is another objective considered in RL-TSC optimizations

in a few studies [51,73]. Compared to prior works, in this research, we consider constrained RL

formulation for fairness objective using average constraints formulations with separate Q function

estimation.

Several earlier studies focused on air quality and fuel consumption at signalized intersections

[5, 126]. However, they generally target fixed-time or rule-based adaptive TSCs. This line of

research aims to penalize vehicle stops since deceleration and acceleration cause more air pollution.

An optimization study considering air pollution for rule-based TSCs using mixed linear integer

programming is presented on a fairly simple traffic network in [117]. The authors proposed a new

reward function to lower the air pollution at RL-based signalized intersections. In our previous

work [92], we empirically evaluated the impact of RL-TSCs on air quality at intersections using the

San Francisco downtown area with a real traffic dataset without constrained optimization. This

work proposes a novel RL approach that integrates the air quality constraints into the RL objective

using peak constraint formulation and further reduces the CO2 emission rate at intersections by

around 6%.
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3.3. Preliminaries

3.3.1. Partially Observable Markov Decision Process. A Markov Decision Process (MDP)

is a mathematical framework used to describe sequential decision-making processes. It consists

of a tuple (S, A, T,R, ρ0, γ), where S represents the state space, A represents the action space,

T : S × A → ∆(S) is the stochastic transition function, R : S × A → R is the reward function,

ρ0 : S → ∆(S) is the initial state distribution, and γ ∈ [0, 1] is a discount factor.

We frame the scenario in the TSC context as a Partially Observable Markov Decision Process

(POMDP). When the environment is not entirely observable by the agent, an observation function

Ω maps a state s ∈ S to an observation o ∈ O, where O represents the observation space. Thus,

the agent’s knowledge is based on these observations, allowing for decision-making in a partially

observable environment.

The objective of the RL in this POMDP framework is to search for an optimal policy π∗ that max-

imizes the expected cumulative reward over time. The goal is to find a policy that leads to the highest

expected total reward. Mathematically, this can be represented as maxπ E(s,a)∼ρπ
[∑∞

t=0 γ
tR(st, at)

]
.

Here, π represents a policy, and ρπ represents the state-action distribution induced by the policy.

The reward function R(st, at) provides immediate feedback after taking action at in state st. The

agent aims to make effective decisions in the TSC domain by learning from these rewards.

3.3.2. Constrained Reinforcement Learning. Constrained RL aims to maximize the ex-

pected reward while satisfying some constraints in which the MDP environment is modeled by

additional limitations such as peak [65] and average [47,66] constraints. While peak constraints

limit the immediate reward function, cp(st, at) ≥ 0, average constraints target long-term limitations,

E(s,a)∼ρπ
[∑

t γ
tca(st, at)

]
. Both peak and average constraints can be unknown functions with

known return values at each time step. Additionally, the constraint functions ca(st, at) and cp(st, at)

evaluate whether the constraints are satisfied under the current (st, at).

Most RL research direction focuses on either peak or average constraint formulations. When

the problem domain has different constraint objectives with different functions, finding a Pareto

optimality on a reward function is hard. Therefore, in this work, we implement multi-objective

constraint learning to the RL formulation with both peak and average constraints to find a feasible
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policy while satisfying the constraints. The problem with peak and average constraints can be

formulated as:

max
π

E(s,a)∼ρπ

[∑
t

γtR(st, at)

]
,(3.1)

s.t. E(s,a)∼ρπ

[∑
t

γtca(st, at)

]
≥ 0,(3.2)

cp(st, at) ≥ 0,(3.3)

where optimal policy is found in Eq. 3.1 by maximizing the expected cumulative reward, Eq. 3.2

and Eq. 3.3 satisfy average and peak constraints in long-term and immediate returns, respectively.

3.4. Constraints on RL-TSCs

The motivation behind this research is to develop a policy, denoted as π, that enhances the

efficiency of Traffic Signal Controllers (TSCs) while simultaneously reducing emissions and ensuring

fairness through constrained optimization. To achieve this, we introduce two constraints: a peak

constraint, denoted as cp(st, at), which represents the maximum threshold for a green phase duration,

and an average constraint, denoted as ca(st, at), which represents the total vehicular emission in a

green phase.

3.4.1. Emission as a Constraint. As early studies stated [83], total emission on the road is

closely related to the number of vehicles passing by in a given period. Assuming a linear relationship

between emission and the number of vehicles, we can formulate the emission rate as an average

constraint. Figure 3.1 depicts the linear correlation between the number of vehicles and the total

CO2 emission rate based on one-hour traffic simulation in a traffic network using a single vehicle

type. More vehicle ‘stop and go’ will cause more traffic congestion, leading to higher emissions. A

regression analysis can evaluate this relationship in closed form. In this work, we employ a linear

relationship formulation of total emission vs the number of vehicles running on a road from [83].

Since we are using microscopic simulators for experiments, we use a discretized version of the

emission estimation.
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Figure 3.1. Relation of the number of vehicles vs total emission.

Let xt be the number of vehicles at time t and L be a polynomial degree. The total emission ψ

at a road link can be represented with:

(3.4) ψt =
L∑
l=0

wxlt = wTxt

where w is the vector of coefficients and xt is the vector of the number of vehicles on different

orders of l. The coefficient vector w can be estimated using linear regression models. Considering

the linear relationship, the maximum total emission on a road network at time t should satisfy the

peak emission constraint cp(st, at). The coefficients w for a controller can be learned by pretraining,

which will be used for constraining the total emission while RL training. We can define the peak

constraint in terms of the total emission as:

(3.5) ψt − dt(s, a) ≥ k

where ψt is the predicted total emission using coefficients w, dt(s, a) is the estimated total emission

during RL training and k is the desired threshold that RL agent tries not to exceed.

3.4.2. Maximum Green Time as a Constraint. Fixed-time traffic signal controllers (TSCs)

operate with predetermined phase durations, making them suitable for consistent traffic volumes

and patterns. In contrast, RL controllers typically operate on TSCs with discrete action spaces,

where the RL agent selects a green phase from a set of available options. In situations with high
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traffic demand in a particular direction, the RL agent is expected to repeatedly choose the same

action to prolong the green duration in that phase. However, this can lead to unfair traffic flow, as

it favors one direction over others.

To achieve fair traffic scheduling at TSCs, the TSC must have both maximum and minimum

green phase duration. During RL training, the minimum green phase duration is fixed, but the RL

agent may exceed the maximum green threshold and allocate more time to a specific green phase.

While a simple approach would be to force the RL agent to change the phase once it surpasses the

maximum threshold, an ideal RL-TSC agent should learn a policy that respects such constraints.

Existing literature on learning-based TSCs often needs to look more closely at fairness criteria

when optimizing TSC policies. Fairness, in terms of equitable traffic distribution among different

directions, is an important aspect that should be considered for efficient traffic management.

Consequently, there is a need to address fairness concerns in RL-based TSC approaches and develop

policies that strike a balance between optimizing traffic flow and ensuring fairness.

We incorporate the maximum green threshold to the RL-TSCs as a peak constraint cp(st, at).

The agent learns a policy π by minimizing the maximum green time violations,

(3.6)
∑
t

γt(gmax − gt) ≥ 0

where gmax is the maximum green threshold for given traffic direction and gt is the total green time

of the current phase assigned by the RL-TSC agent.

3.4.3. Multi-objective Problem Setting. The aim of the proposed algorithm is to find a

feasible policy while minimizing the peak constraint violations of Eq. 3.5 along with the average

constraint violations of Eq. 3.6. Instead of dealing with two constraints separately in this work,

we absorbed the peak constraints into reward and average constraints functions. Formally, the

proposed strategy adds a penalty cp(st, at) to the global reward r(st, at) and average constraint

function ca(st, at) if the peak constraint is violated. Otherwise, peak constraint cp(st, at) is equal to

zero.

By incorporating the peak constraints into the reward function and separate average constraint

functions, the proposed algorithm aims to find a feasible policy that minimizes both the violations of

peak constraints and average constraints simultaneously. This approach offers a unified framework
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to handle multiple constraints, allowing for more effective optimization of TSCs. By penalizing

peak constraint violations within the reward function, the algorithm encourages the RL agent to

prioritize actions that maintain compliance with the peak constraints, leading to improved overall

performance and adherence to traffic regulations.

Using the multi-objective constraint formulation, the objective policy search problem can be

expressed with average constraints as follows:

max
π

E(s,a)∼ρπ

[∑
t

γt(r(s, a) + cp(s, a))

]
(3.7)

s.t. E(s,a)∼ρπ

[∑
t

γt(ca(s, a) + cp(s, a))

]
≤ d(3.8)

where expected value is computed with respect to the (s, a) pairs generated by policy π and the

expectation of long-term costs generated by the policy π is less than or equal to d. In the remaining

of the chapter, we represent expectation without (s, a) ∼ ρπ to save space.

In literature, several research groups studied designing multi-objective reward designs for

TSCs [134]. However, this work is the first initiative in this domain considering constrained and

multi-objective RL for TSCs.

3.4.4. Conservative Constraints. In our research, we have made significant progress in

advancing the constrained multi-objective reinforcement learning (RL) formulation by introducing

conservative constraints. These conservative constraints have proven to be highly effective in reducing

constraint violations and improving the performance of RL agents in complex environments.

To implement these conservative constraints, we have chosen to lower-bound the original

constraints with tighter thresholds. By doing so, we establish more stringent limits that decrease

the likelihood of constraint violations occurring during the RL process. This allows us to achieve

lower rates of constraint violations compared to the traditional approach of using original inequality

limits (as seen in equations 5 and 6).

The integration of conservative constraints has an important impact on the RL agent’s learning

process. By imposing stricter limits, the agent is encouraged to develop a policy that adheres more

closely to the imposed constraints. As a result, the agent becomes more skilled at navigating the

environment while staying within the specified limitations.
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It is worth mentioning that our conservative approach is a point-wise lower bound, which

has been commonly employed in achieving zero constraint violations in constrained reinforcement

learning. This approach has been previously explored and validated in the works of Bai et al.

(2022) [8] and Bai et al. (2023) [9]. We specify the values of constraint limits in the section of

experimental analysis (Section 3.6)

3.5. Proposed Solution

3.5.1. Maximum Entropy RL. An RL model aims to maximize the expected return from

the environment while exploring the environment. A well-known RL method for policy gradients

with stochastic policies is based on the maximum entropy principle that controls the entropy of the

policy with an additional term aiming to improve exploration [56]. We study a known maximum

entropy RL model, Soft-Actor Critic (SAC), to learn optimum policies [82]. The objective function

for SAC with entropy function is

(3.9) E

[∑
t

γtr(s, a) + κH(πφ(.|s))

]

where κ is the temperature parameter for adjusting the relative importance of the entropy versus

reward, and H(πφ(.|s)) is the entropy of policy π at state st, which is calculated as H(πφ(.|s)) =

− log πφ(.|s) to regularize the policy gradient objective. While the original implementation of SAC

is for continuous action space, in this work, we implement the SAC in a discrete action space where

each action refers to a green phase in a set of green phases.

The policy evaluation step computes the value of a state for policy π, and SAC defines a soft

state value function with entropy term as:

(3.10) V (s) := πφ(s)T [Qθ(s)− κ log(πφ(s))]

Using the soft state value function from Eq. 3.10, policy evaluation updates the soft Q-value

with Bellman backup (Q : S ×A→ R) as:

(3.11) Qθ(s, a) := r(s, a) + γE[V (s′)]
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where s′ indicates the next-state after taking action a. Following the update on the soft Q-function

with Bellman residuals, we can define the policy improvement as follows:

(3.12) Jπ(φ) = E[πφ(s)T [κ log(πφ(s))−Qθ(s)]]

These steps and equations highlight the iterative process of policy evaluation and improvement

in the SAC algorithm, where the soft state value function and the soft Q-value are updated to

optimize the policy toward maximizing the expected cumulative reward.

3.5.2. SAC with Peak and Average Constraints. We approach the problem of finding

feasible policy π under peak and average constraints with Lagrangian relaxation, which turns the

constrained optimization problem into the unconstrained form. Soft Actor-Critic (SAC) is designed

with an actor policy and multiple critics for reward and average constraints. Recently, [81] proposed

SAC optimization with a Lagrangian update form for only average constraints. The constrained

problem can be expressed in the Lagrangian form with both peak and average constraints, which is

equivalent to a saddle point problem given by

(3.13) min
λ≥0

max
π

L(π, λ) = GπR − λ (GπC − d) ,

(3.14) GπR = E

[∑
t

γtR(s, a) + κH(π(.|s))

]

(3.15) GπC = E

[∑
t

γtcC(s, a)

]
− d

where GπR and GπC are the reward and cost functions, the reward with peak penalty is R(s, a) =

r(s, a) + cp(s, a) and average constraint with peak penalty is C(s, a) = ca(s, a) + cp(s, a). The

saddle point problem can be solved with a primal-dual gradient descent approach in alternating

optimization between policy π and λ. For policy optimization in constrained SAC, we train two

separate critics: Q value function Qθ and a cost Q function Qcθ with the soft Q update rule. Qθ

trains the reward and entropy while Qcθ trains the cost critic network for average constraints. T π
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refers to the Bellman backup operator and is applied to the critic networks repeatedly:

T πQθ(s, a) := R(s, a) + γ · Eπ(s′)

[
Qθ(s

′, a′)
]
,(3.16)

T πQcθ(s, a) := C(s, a) + γc · Eπ(s′)

[
Qcθ(s

′, a′)
]
.(3.17)

This paper represents the losses with J and in total, there are five losses: policy Jπ, reward critic

JQ, cost critic JQc , entropy coefficient Jκ, and Lagrange coefficient Jλ. We have the same update

rule as described in [82] for reward critic Qθ and entropy coefficient κ. Due to the Lagrangian

update, the policy loss with constraints is similar to [81]. However, authors in [81] only deal with

a single average constraint for policy search, while our work deals with both peak and average

constraints in discrete action settings.

The original update rule for SAC policy is designed for the continuous action domain and

requires a reparameterization trick to pass gradients through the expectation. However, since we

use a discrete action space in our RL model and policy outputs action distribution, we can do

back-propagation directly. In this case, the update for policy becomes:

(3.18) Jπ(φ) = Es∼D,a∼πφ [πφ(s)T (κ log(πφ(s))−Qθ(s, a) + λη(Q
c
θ(s, a)− d))],

In constrained SAC formulation, we have two parameter space to be estimated for reaching an

optimal policy:

• κ Entropy term for maximum entropy which can be updated as in the original SAC work.

(3.19) J(κ) = πφ(s)T [−κ(log(πφ(s)))]

• λ for Lagrangian constrained problem with dual update.

(3.20) J(λ) = Es∼D,a∼πφ [λη(Q
c
θ(s, a)− d)]

Setting different update frequencies for different coefficients leads to stable performance for

achieving desired policies. Thus, in this work, we set different update frequencies for entropy weight

κ and Lagrange multiplier λ. Furthermore, Lagrange multiplier λ can also be estimated with a

separate neural network model. However, to keep policy search more straightforward, we use a
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similar search strategy with κ as proposed in [82]. The complete constrained SAC algorithm with

peak and average constraints is given by Algorithm 1.

Algorithm 1 Soft Actor-Critic with Peak and Average Constraints

1: Initialize weights φ, θ, θc, κ, λ
2: Initialize target network weights θ, θc
3: Initialize learning rate α for {Qθ, Qcθ, πφ, κ, λ}
4: Initialize a replay memory D
5: for each iteration do
6: for each environment step t do
7: a ∼ πφ, st+1 ∼ p(st+1|s, a)
8: Collect r, cp and ca
9: D ← D

⋃
{s, a, r, cp, ca, st+1}

10: end for
11: for each gradient step do
12: Sample batch experience from D
13: Update gradients for {θ, θc, φ, κ, λ}
14: θ ← θ − αQ∇JQ(θ)
15: θc ← θc − αQc∇JQc(θc)
16: if gradient step mod k = 0 then
17: φ← φ− απ∇Jπ(φ)
18: κ← κ− ακ∇Jκ(κ)
19: end if
20: if gradient step mod n = 0 then
21: λ← λ− αλ∇Jλ(λ)
22: end if
23: Update target network weights
24: Qθ ← τQθ + (1− τ)Qθ
25: Qcθ ← τQcθ + (1− τ)Qcθ
26: end for
27: end for
28: Output Optimized parameters φ, θ, θc, κ, λ

3.5.3. RL model for TSCs. This work implements multi-objective constrained RL formu-

lation to the SAC maximum entropy RL model. Here, the state of the RL agent forms traffic

conditions at intersections with a lane-level queue length of incoming approaches and the current

green phase. Our experiments show inevitable performance differences with varying state forms,

including vehicle waiting time and/or traffic flow speed.

In our RL-TSC model, the action space is structured in a discrete format, enabling the RL

agent to make decisions by selecting a specific green phase from a predefined set of available green
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phases. This discretization of the action space allows for more manageable decision-making and

simplifies the learning process.

When the RL agent chooses an action that necessitates a phase change, we incorporate a yellow

transition phase to facilitate a smooth transition between different green phases. The inclusion of

the yellow transition phase helps prevent sudden changes in traffic flow and allows vehicles to safely

adjust their movement before the next phase begins. By incorporating this transitional phase, we

ensure a seamless and efficient TSC strategy that minimizes disruptions and enhances overall traffic

flow.

We acquired a reward function from the literature that is designed for penalizing vehicle stops to

reduce fuel consumption [181]. Lower fuel consumption leads to lower gas emissions. This reward

function, known as performance index PI in the emission research community, has been widely used

by the TSC optimization [5]. The reward function PI is defined as follows:

(3.21) PI = D +K ∗ S

where D represents the delay experienced by vehicles, K is a linear coefficient, and S denotes the

stop penalty measured in terms of the number of stops at incoming roads. The PI index penalizes

both delay and stops in seconds, providing a comprehensive metric for evaluating TSC performance.

3.6. Experiments

In this section, we present the experimental evaluation of our proposed FAirLight, which utilizes

multi-objective constrained RL formulation to optimize fairness and air quality. The proposed

FAirLight employs cooperation between agents through graph-neural networks [202], which learns

the traffic representation from neighboring intersections through graph-attention networks similar

to [212].

We performed all the tests on NVIDIA Titan Xp with 32 GB RAM and Intel i9-9900k CPU

using Ubuntu 20.04 device. The code for all experiments is publicly available1.

3.6.1. Experimental Setup. We conducted our experiments using a simulated urban traffic

environment with a real traffic dataset on a multi-intersection environment with varying traffic

1https://github.com/ammarhydr/FAirLight
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Figure 3.2. Representation of Experimented road networks, ”Gudang sub-district,
Hangzhou, China” and a single intersection.

density levels. The simulation was implemented using the Cityflow [226], which is widely used for

traffic simulation and evaluation of traffic control systems.

Traffic Network Dataset

In our study, we conducted experiments on two distinct road network setups: a synthetic

single-intersection road network and a city-level road network based on real data obtained from

the city of Hangzhou, China (see Figure 3.2). The real traffic flow data contains information about

the vehicles coming through the intersections that are collected with surveillance cameras. The

dataset captured traffic flow for a duration of one hour and included details about vehicles using

three different types of lanes at each intersection: left turn, through traffic, and right turn lanes.

The RL-TSC agent is responsible for selecting the appropriate green phase from a set of four

available options: North-South Green, East-West Green, North-South Advance Left Green, and

East-West Advance Left Green. Each chosen green phase was subsequently executed following

a transition period involving a yellow phase. Our experiment design allowed us to evaluate the

performance and effectiveness of the RL-TSC agent in both controlled synthetic road networks and

real-world city-level road networks. By utilizing real traffic flow data, we aimed to create a more

realistic and representative environment for assessing the agent’s decision-making and traffic signal
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control capabilities. These experiments contribute to the understanding of RL-based traffic signal

control methods and their applicability to real-world scenarios.

CO2 Emission Model

The original Cityflow implementation does not support emission modeling. In this work, we

utilized an emission model based on Handbook Emission Factors for Road Transport (HBEFA).

While HBEFA includes an emission estimation model for varying vehicle models, we integrated

CO2 emission estimation model to Cityflow for only passenger vehicles using HBEFA-v3.1 with

third-order polynomial and fixed coefficients [118]. As a result, the simulator collects instantaneous

CO2 statistics per vehicle in milliliters.

Constraint Settings

CO2 emission rate is upper-bounded with the regression model. Given the characteristics in

Figure 3.1, we choose a linear regression model with L = 1 in Eq. 3.4 for experiments. The goal of

the RL agent is to reduce the CO2 emissions at a signalized intersection by penalizing the green

phases when the actual value exceeds the predicted value given the same number of vehicles. We

design the CO2 emission rate as an average constraint in the experiments. The threshold k in

equation 3.5 is chosen as zero. While the actual constraint limit is the difference between the

predicted and actual emission rates as in equation 3.5. However, the conservative constraint limit is

applied on the predicted value as 10% lower than the ψt.

Considering the fairness, we formulate maximum green time as a peak constraint. Given the

medium traffic demand on both road networks, the maximum green threshold for one direction is 45

seconds. The conservative version of the green threshold is selected as 35 seconds, known as the soft

threshold constraint limit, to let the agent learn not to reach the hard constraint limit of 45 seconds.

3.6.2. Compared Methods. We compared the performance of our constrained RL-based

TSC to four commonly used TSC methods:

• Fixed-time: The traffic signals switch between red and green phased at fixed intervals

regardless of the traffic conditions.

• Max-pressure [200]: Max-pressure control is a TSC algorithm that aims to optimize

traffic flow by adjusting traffic signal timings based on vehicles’ pressure (or density) on

the road using incoming and outgoing traffic. It is an adaptive and responsive control
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method for changing traffic conditions, allowing it to adjust to different traffic patterns

throughout the day.

• DQN [91]: The standard value-based RL model minimizes the queue length or delay

without fairness and emission constraints.

• CoLight [212]: An RL-based TSC model provides cooperation between neighboring

intersections using attention models [202] for a network of intersections.

• SAC-GNN [82]: A standard Soft-Actor-critic RL model with graph-attention networks

for TSC has been tested. Without cooperation between multiple intersections, SAC has

a hard time converging. This approach becomes a standard soft-actor critic for single

intersection network.

3.6.3. Ablation Study. Our study also aimed to examine the effects of two specific constraint

formulations, namely ”Only Peak” and ”Only Average,” on our constrained RL model for TSCs.

The ”Only Peak” constraint formulation involved applying a weighted sum of the green time and

emission constraints to the RL model’s reward function. In contrast, the ”Only Average” constraint

formulation utilized a separate critic q network that incorporated the sum of two constraints:

maximum green time and emission.

By implementing and evaluating the constrained RL model with both constraint formulations,

we could assess their respective impacts on the performance of FAirLight. The findings from this

study provided insights into the effectiveness and limitations of the ”Only Peak” and ”Only Average”

constraint formulations in optimizing TSC with a constrained RL model. This information can

guide future research and development efforts in refining the constraint formulations and improving

the overall performance of TSC systems.

3.6.4. Metrics. We evaluated the performance of the different traffic signal control methods

using the following metrics:

• Average travel time: The average time refers to the travel time of vehicles through the

simulated urban environment in terms of seconds.

• Queue length: The queue length is the number of stopping vehicles at intersections on

average in terms of the number of vehicles.
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Figure 3.3. The training process for the proposed FAirLight model compared with
baseline methods in terms of CO2 emission rate and average travel time. The lower
the value is better the performance. The x-axis indicates the episode for one-hour
traffic flow on the experimented road network.

• Average speed: The average speed is calculated by averaging the speed of all vehicles for

one episode of traffic simulation. The constrained RL model minimizes the emission, and

one leading factor for emission is the average speed. Speed is a frequently used metric for

evaluating the emission of vehicles at signalized intersections.

• Total Emission: Total vehicle emission refers to the total amount of pollutants, CO2,

that are emitted by vehicles within a simulated environment in terms of liter. This is an

accumulated statistic that considers the number of vehicles, their emission rates, and the

amount of time they spend in the simulated environment. This metric is used to evaluate

the environmental efficiency of different TSC strategies.

• Maximum green violation: Maximum green violation is a measure of the fairness of the

traffic signal control system, calculated as the number of times a green phase assigns traffic

flow more than maximum-green time.

• Emission violation: Emission violation rate considering the proposed constrained RL model

refers to the rate at which RL-TSC allows vehicles to exceed the emission limits set for

the simulated environment. We set the emission violation limit based on the pre-trained

RL-TSC model, where the linear emission rate coefficients are estimated.

3.6.5. Numerical Results. Training Performance

In this work, we show the performance of FAirLight in terms of various aspects: traffic flow,

emission, and constraint violations.
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Figure 3.4. The training process for the proposed FAirLight model compared with
baseline methods in terms of constrained violations. The lower the value is better
the performance. The x-axis indicates the episode for one-hour traffic flow on the
experimented road network.

First, we assess the training performance of FAirLight on the Hangzhou TSC network. Figure

3.3 illustrates the results obtained from 300 episodes of one-hour traffic simulation, focusing on two

key metrics: average CO2 emission rate and average travel time. These metrics provide insights

into the efficiency and environmental impact of FAirLight ’s traffic signal control strategy during the

training process. The results demonstrate that the FAirLight achieves the lowest CO2 emission rate

as compared to other baselines (see Figure 3(a)) by 8%. Furthermore, it is worth mentioning that

previous studies, such as Stevanovic et al. [192] and De et al. [42], have also reported a limited

improvement margin in terms of the emission rate.

The implementation of the proposed constrained RL model not only optimizes traffic flow but

also effectively reduces air pollution at signalized traffic intersections. The model also improves travel

time performance by prioritizing the reduction of CO2 emission rate as one of its objectives. This

multi-objective optimization approach reduces air pollution, ultimately positioning the proposed

constrained RL model as the best controller in terms of both travel time and environmental impact

(as depicted in Figure 3(b)).

Regarding the baseline models, the SAC-GNN model, which employs the actor-critic policy

gradient with maximum entropy reinforcement learning, demonstrates stable performance throughout

the training process. It exhibits slight improvements over the CoLight model in terms of both

travel time and emission reduction. In contrast, the DQN TSC model struggles to comprehend the

environment’s complexity and performs poorly compared to all other models. It yields the highest

travel time and CO2 emission rate, highlighting its limitations in optimizing the TSCs.
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Next, we look at the constraint violation rates for different RL models. As shown in Figure 4(a),

our model achieves the lowest violation rates through constrained optimization for peak constraints,

maximum green time. On the other hand, the DQN TSC model achieves the lowest emission

violations compared to all other methods (see Figure 4(b)). However, this does not lead to better

emissions as DQN is the worst RL-TSC model. FAirLight lowers the constraint violations in both

peak and average constraint formulations, leading to a fair traffic scheduling and CO2 emission rate.

Table 3.1. Performance of different TSC models on Single intersection and
Hangzhou 4x4 network intersections with respect to different metrics. Bold re-
sults show the best performance. While all the metric targets the lowest value, a
higher speed is desired. The results are the average of the last 100 episodes.

Model Travel T. Emission Queue Speed Green V. Emission V.
Model (sec) (l) (#Veh.) (m/s)

Single
Intersection

FixedTime 355.6 631.1 160 3.80 - 49
MaxPressure 392.4 744.7 177 2.48 0 48

DQN 161.0 433.3 86.3 2.86 24 63.4

SAC-GNN 166.1 448.6 90.4 2.76 41 76.5
FAirLight 156.0 421.3 83.1 2.98 5 74.3

Hangzhou
4x4 Network

FixedTime 549.0 195.83 35.7 3.81 - 572
MaxPressure 407.0 159.25 20.0 4.51 11572 662

DQN 355.9 138.02 13.1 4.92 4892 979.6
CoLight 342.0 131.35 12.2 4.96 4031 1204.5

SAC-GNN 341.7 131.41 11.5 4.88 1266 1115.7
FAirLight 337.7 125.21 11.1 4.84 277 1083.5

To clarify the results, we show the performance metrics in Table 3.1, where the values average

100 episodes. The proposed FAirLight achieves the goals with the lowest travel time, emission rate,

maximum green time violation rate, and the lowest queue length for both single intersection and

Hangzhou networks. For single intersection FAirLight provides fair traffic scheduling by almost 79%

better performance with average 5 maximum green time violations compared to the second-best TSC

model DQN with average 24 violations. For the Hangzhou network, the proposed FAirLight has a
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Figure 3.5. The training process for the proposed FAirLight model compared with
different variants in terms of emission rate and constrained violations. The lower the
value is better the performance. The x-axis indicates the episode for one-hour traffic
flow on the experimented road network.

similar fairness performance of average 79% green violation decrease compared to SAC −GNN .

The other TSC models have unfair traffic scheduling performance, resulting in longer travel times

for the light traffic direction by prioritizing the higher traffic demand incoming directions.

FAirLight slightly decreases the emission violation rates compared to unconstrained RL version

SAC-GNN, which does not lead to the lowest CO2 emission rate for both networks. FixedTime

and MaxPressure controllers have the lowest emission violation rates, but their performance is not

promising in lowering the CO2 emission. The lower speed trend directs to a higher average travel

time at TSCs as FAirLight is the best control method for reducing the average travel time and

emission rate. Still, it fails to achieve that results in the average speed of running vehicles. Table

3.1 demonstrates that different TSCs have varying results on different metrics. At the same time,

FAirLight provides consistent performance in terms of lower travel time, lower CO2 emission rate,

and fair traffic scheduling.

Ablation Performance

Lastly, we performed an ablation study to represent which part of the model performs better for

giving good results on a single intersection network. With the ablation studies, we differentiate the

FAirLight from SAC-GNN on different variants of constrained formulations.

In Figure 5(a) of the initial 100 episodes, we observed some fluctuations in the performance of

our constrained RL model, particularly in terms of CO2 emission rate. While the results appeared

more favorable, it was primarily due to stuck traffic in one particular incoming traffic direction.

In such scenarios, the emissions were significantly lower when vehicles were in idle mode, thereby
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misleading improved statistics. However, it is essential to note that this improvement was not

representative of the overall performance, as the specific traffic conditions influenced it during those

episodes.

Comparing the emission consumption with ’Only Peak’, ’Only Average’ and SAC-GNN, we

found that our proposed TSC model, FAirLight, and ablation variants achieved a similar level of

CO2 emission rate of 421 Litre/Hour, demonstrating their effectiveness in reducing overall emissions.

In contrast, the SAC-GNN model consumed slightly higher emissions, totaling 450 Litre/Hour.

This difference highlights the advantage of incorporating the constrained RL framework to optimize

TSC systems for emission reduction.

When considering the violation of green time constraints, FAirLight outperformed other variants

and SAC-GNN. It achieved the lowest green violation rate, indicating its ability to manage green

time allocations within the specified constraints. In comparison, SAC-GNN and the ”Only Peak”

and ”Only Average” constraint formulations exhibited higher maximum green time violation rates.

This suggests that FAirLight successfully balances optimizing traffic flow and adhering to the

specified green time constraints, resulting in improved performance in fairness and lower emission

with efficient traffic signal control.

3.7. Conclusion

This chapter introduces a novel approach to tackle the challenges of fair and environmentally

friendly traffic scheduling through a multi-objective constrained RL model. By formulating the

problem as a constrained multi-objective optimization task and integrating different objectives

with a maximum entropy off-policy RL model, we aim to address both fairness and air quality

concerns at the intersection and network levels. To evaluate the effectiveness of our model, we

conducted experiments using both a synthetic dataset in a single intersection environment and a

real traffic dataset from Hangzhou city, China, featuring a 4x4 intersection road network. The

results demonstrate the effectiveness of the model in achieving lower travel times, reducing the

CO2 emission rate, and promoting fair traffic scheduling. Comparing our proposed FAirLight model

with state-of-the-art RL-based and rule-based TSCs, we observed improvements in fairness and

reductions in average CO2 emission rates at signalized intersections. Additionally, our RL-TSC
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models showcased strong performance across various traffic flow objectives. By leveraging constrained

RL and integrating peak and average constraints, we have demonstrated the potential to optimize

traffic systems in a way that prioritizes fairness and sustainability.

In the future, we plan to generalize the performance of the FAirLight model to different road

network structures and datasets. For this purpose, applying this model to larger city-level TSC

models such as San Francisco, CA, or Manhattan, NY road network structure would be desirable.
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CHAPTER 4

Adversarial Attacks and Defense in DRL Traffic Signal Controllers

4.1. Introduction

In recent years, data-driven approaches are often used to drive the design and performance

evaluation of different control algorithms in Intelligent Transportation System (ITS). With the

proliferation of such data-driven models and communication technologies, Information and Commu-

nication Technology (ICT) have revolutionized ITS by connecting different components: vehicles,

road-side units and sensors, cameras, loop detectors and control modules such as ramp meters, traffic

signal controllers via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications.

In addition, some in-vehicle and road-side units are also connected to wide-area Internet via 4G/5G

cellular technologies.

Learning-based control mechanisms in ITS, such as traffic flow control systems, travel demand

prediction, and autonomous vehicles, take action based on real-time data from the environment.

Traffic signal controller (TSC), which schedules the green/yellow/red phases at road intersections,

plays a critical role in ITS, especially in busy urban settings. Control loops like TSCs often use

real-time traffic information (e.g., captured by local cameras/sensors or broadcast messages from

vehicles) to perform intelligent control decisions. This opens up the attack surface. Cybersecurity

attacks such as falsified data may lead to erroneous control decisions, jeopardizing the safety and

efficient operation of the transportation corridor. Mitigating risks due to those issues remains an

open and active research area.

Machine learning (ML)-based learning models are classified into supervised learning, semi-

supervised learning, unsupervised learning, and reinforcement learning (RL). The first three ap-

proaches use labeled or unlabeled training datasets to identify patterns and create models to

discriminate between different output classes. On the other hand, RL learns by interacting with

the environment and the actions are rewarded or penalized. The environment is typically stated in
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the form of a Markov decision process (MDP). RL agents exploit the knowledge to make cognitive

choices, such as decision making and scheduling [194]. Today, popular learning-based controller

approaches combine deep neural networks (DNN) with RL, referred as DRL, in which policy

estimation is performed by neural networks. One good example application of such methods in

ITS is estimating the optimal schedules of TSCs. In general, learning-based TSCs perform better

than standard dynamic TSCs in terms of delay and throughput for isolated single-intersection and

multi-intersection settings [91].

Learning based intelligent TSC agent collects messages from environment and schedules the

traffic according to inputs. Recently, many DRL-based data driven solution methods are proposed

in the literature for controlling TSCs in a network of intersections and a successful cyber-attack

targeting such TSCs can cause chaos in cities. Regardless of the underlying technology (WAVE

or 5G) for V2V or V2I communications, the defense mechanisms of learning based TSCs needs

thorough investigation.

Learning-based TSCs may make wrong decisions or take wrong actions in the presence of

adversarial attacks. In more advanced attack models known as insider attacks, attacker falsifies the

data input by considering the target DNN structure of the learning model. There are two distinct

clever adversarial attack settings on learning agents: white-box attack where attackers have access

to the training model of learning agent and interacts with target model for generating adversarial

inputs, and black-box attack where malicious inputs are generated from an estimated training

model which is close to the true target model of learning agent [37]. In this study, we thoroughly

investigate security vulnerabilities of DRL based TSCs under two adversarial attack models namely

Fast Gradient Sign Method (FGSM) [76] and Jacobian-based Silency Map Attack (JSMA) [163]

with white-box and black-box settings. We, then, proposed an online anomaly detection algorithm

for detecting such adversarial attacks.

4.1.1. Adversarial Attacks on DRL-TSCs. The falsified data attacks generally designed

with optimization techniques to identify which feature to perturb [101]. Similar to this analogy,

the attack strategy in DRL targets DNN structures where policy of learning agent is calculated

to find the minimum perturbation amount. There are two possible threat models for DRL-based

TSCs; attack may be carried out in the cyber domain by directly accessing the input pipeline of
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DRL agent or attack may be launched over the communication network by releasing falsified data

from actual devices or Sybil devices to mislead the learning agent. Since FGSM attack perturbs all

the input features only a slight amount, this attack can be launched purely in the cyber-domain

without considering physical traffic conditions by accessing the input gate of the DRL agent. On

the other hand, JSMA adversarial attack selects specific feature dimensions to perturb based on the

constructed saliency map. JSMA can achieve this by using compromised vehicles or creating Sybil

vehicles to send falsified data to TSCs.

In order to assess the impact of these adversarial attacks on different DRL-based TSCs, we

consider both value-based, namely Deep Q Network (DQN), and policy-gradient with actor-critic-

based, advantage actor-critic (A2C), DRL algorithms. We simulate the following: (i) single-

intersection TSC scenario trained with DQN and A2C approaches, and (ii) multi-agent grid like

4-intersection TSC scenario trained with A2C approach. Since the black-box attack assumes attacker

does not have access to the actual target DNN model, we trained a separate DRL agent with different

traffic demands and DNN settings for black-box attack. All the experiments are performed using a

realistic SUMO traffic simulator. Detailed analysis shows that DRL-based TSCs are vulnerable to

cyber-attack with or without knowledge of the trained DNN models.

4.1.2. Defense Mechanisms Against Adversarial attacks on DRL-TSCs. Adversarial

attack surface for targeting DRL agents is very broad. Therefore protecting DRL agents against

adversarial attacks is a challenging task. There are two general protection mechanism for DRL

agents: (i) the agent builds a defense mechanism within the agent model that increases the robustness

of DRL agent against the attacks, (ii) the agent is equipped with an external detection mechanism

that detects the anomalies and raises an alarm. One possible mitigation strategy for external

anomaly detectors is changing the controller model from learning-based one to another model such

as max-pressure TSC or actuated TSC. Since gradient-based adversarial attacks such as FGSM and

JSMA generally have a minimal perturbation on the data, it is also hard to differentiate adversarial

samples from real samples with standard anomaly detectors.

Given the adversarial attacks FGSM and JSMA for single intersection and multi-intersection

scenarios discussed in the previous subsection, we studied the performance of statistical anomaly

detectors to detect even infinitesimally small anomalies. An ensemble anomaly detector that
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combines two sequential anomaly detection models and an autoencoder-based anomaly detection

model with CUSUM-like detection model is evaluated on the gradient-based adversarial attacks.

The experiments show that proposed ensemble sequential anomaly detection model achieves the

best detection rate with different DRL agents and TSC scenarios.

4.1.3. Contributions. In this work, we characterize the impact of two state-of-the-art ad-

versarial attack models on DRL-TSCs and evaluate multiple statistical anomaly-based detection

techniques. Our ensemble detection mechanism outperforms the other statistical anomaly detection

models. The contributions of this work can be summarized as follows.

• We demonstrate experimentally that both FGSM and JSMA adversarial attacks degrade

the performance of DRL-based TSC agents as long as attack continues. White-box and

black-box FGSM attacks have similar effects on TSC. However, black-box JSMA attack is

less effective compared to white-box JSMA attacks.

• We developed and applied a sequential anomaly detection mechanism to the FGSM and

JSMA adversarial attack on DRL-TSC scenarios with single intersection and multiple

intersection models. The method combines multiple detection models in a computationally

efficient method.

• The ensemble anomaly detection method is agnostic to both the model of the neural

network policy and the type of adversary. Hence, the detection algorithm protects the

DRL-TSC agents against different adversarial attack models.

• While different sequential anomaly detection models achieve the best performance on

different attacks and DRL settings, our proposed ensemble model achieves the best detection

performance on all the scenarios.

The rest of the chapter is organized as follows. Section 4.2 discusses related work while Section

4.3 provides background for DRL learning agents and TSC settings. We present our adversarial

attack models in Section 4.4 and statistical anomaly detection model in 4.5. We discuss our

adversarial attack and defense results in Section 4.6 and Section 4.7, respectively. Finally, Section

4.8 concludes the chapter.
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4.2. Related Work

Adversarial machine learning is an active research field for data scientists. Many attack models

and defense mechanisms have been studied by researchers for different ML models including

DNNs [209]. DRL agents are vulnerable to different kind of adversarial attacks and detecting such

adversarial attacks is a challenging task. In this section, we review the existing works on security of

TSCs, DRL adversarial attacks and potential detection models.

4.2.1. Security of TSCs. Initial studies on adaptive TSC methods are rule-based or threshold-

based control methods where predefined values of different traffic parameters such as queue or delay

can trigger adaptive rules [160]. Lately, many machine learning-based TSC control mechanisms

have been proposed. One such approach leverages DNN in a RL agent referred to as DRL and

applies it to a network of traffic intersections [91]. The performance of learning based TSCs are

generally better than standard TSC controllers.

There are many security analysis papers in literature for different type of TSCs. In [128], the

authors identified some of the underlying threats against TSCs and proposed a game-theoretic

risk minimization model without specifying the type of TSC. The study assumes that attacker has

access to the control center and manipulates the traffic lights directly. Security of single intersection

and multiple intersection back-pressure based TSCs is studied in [223]. The same group later

extended their study with multiple attack strategies with several protection algorithms [222]. With

the advanced vehicular and communication technologies, vehicles expected to be communicate

with the TSCs through Vehicular Ad Hoc Network (VANET). The security vulnerabilities of such

VANET-based TSCs are investigated without considering a signal control mechanism in [101] where

adversary uses decision three ML model to find the optimum perturbation. Although machine

learning-based, especially DRL TSCs, offer promising performance gain, their security vulnerabilities

need to be studied carefully. Apart from TSCs, there are various other studies on assessing the

vulnerability of different ML-based ITS control mechanisms. Autonomous vehicles need to have a

perfect perception while driving. Hence, deep learning has been exploited to process high-dimensional

data. Since securing autonomous vehicles against malicious activities is an important and challenging
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task [171], the effects of adversarial attacks on DNN structures are studied in [25] where LIDARs

of autonomous vehicles are under attack.

4.2.2. Adversarial attacks on DRL. There have been numerous studies on the adversarial

attack models on the DNN policies of DRL agents. Adversarial attacks targeting DNNs are generally

applicable to DRL agents. However, most of the DRL attack models are not applicable to DRL-TSC

settings because it requires access to multiple parts of learning agent such as state, action and

rewards and directly accessing the DRL-TSC components are challenging.

One of the earlier generative adversarial attack [195] targets the DNN classifier by perturbing

the input data. The attack model is designed with constrained minimization approach using L2

norm. Another constraint optimization adversarial attack for image classification task is proposed

in [27]. Gradient-based adversarial attack models have promising results on DNN classifiers. Two

well know gradient based adversarial attacks are FGSM [76] and JSMA [163] which deteriorate the

performance of DNNs by crafting data input geared towards confusing the neural networks. These

discussed adversarial attacks are know as the state of the art sequential adversarial attacks mainly

proposed for DNNs.

Authors, in [116], presented a strategic attack reducing the number of attack times for DRL

agents using random noise and FGSM attack strategies. With the transferability of neural networks,

similar attack concepts can be extended to black-box attacks [162] and can target directly the

DRL agents [16]. Since DRL agents estimate state values or policy values using DNNs, they are

also vulnerable to adversarial attacks with white-box attack settings [102] and black-box attack

settings [16]. A sequential adversarial attack for DRL agents is proposed in [198] in which adversarial

samples are generated using adversarial transformer networks [10] on white-box attack strategy.

Another strategic timing and target specific adversarial attack model for DRL agents is presented

in [132]. The authors perturbed the input states selectively to reduce the visibility of attacker while

achieving higher attack performance. Similar to our black-box attack settings, the authors in [15]

injects perturbations from imitatively learned black-box model. There are also other adversarial

attack models which are specific to application areas such as multi-agent robot interactions and

path findings [38,70].
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4.2.3. Defense models for DRL. There are multiple defense options for the DRL agents

including adversarial training, defensive distillation and adversarial detection. Adversarial training

idea trains the learning model with adversarial samples that makes the learning model more

robust. Several adversarial training-based defense mechanisms are exist in literature for DRL

agents [84,116,166]. However, adversarial training is attack dependent and it is easy to fool the

model with a different attack strategy. Another defense model is called defensive distillation that

trains the DRL policy with a different DNN model and transfers pre-trained soft-max layer from the

other trained model to increase the robustness of DRL agent [164]. However it is already proven

that bypassing the defensive distillation method is easy with various techniques [27]. The other

security model, which is more aligned with our proposed detection model, is adversarial detection

that distinguishes the adversarial samples from the clean samples without modifying the DRL model.

One of the earlier adversarial attack detection mechanism for DRL agents is proposed in [133] where

defense mechanism detects the adversarial samples and suggests alternative actions for the DRL

agent instead of the wrong action. A DNN-based adversarial sample detection model for DNNs is

presented in [146]. The adversarial samples are classified and rejected by DNN models using the

autoencoder reconstruction error similar to the robust autoencoder model [234].

Statistical properties of input data susceptible to divergence after the perturbation. The study

in [79] analyzes two statistical distance measures maximum mean discrepancy and energy distance

for detecting adversarial samples against several adversarial attacks including FGSM and JSMA.

There are several adversarial detection models for DNN classifiers applicable to DRL agents [18,59].

Sophisticated adversarial detection models for DRL agents are also proposed in literature [63,88].

4.2.4. Summary. To date, there remains a limited understanding of the security vulnerabilities

of learning-based ITS controllers and their impact on various operational performance metrics. In

our project, we experimented another research direction of ITS security where we characterize the

security vulnerabilities of TSCs when implemented with DRL model and proposed a novel statistical

detection model. Main stream adversarial attack models continuously injects adversarial samples to

the learning models and expects to fool the model quickly. To protect the DRL-TSC learning model

we propose to use statistical sequential detection models with a novel ensemble detection algorithm

that achieves to the best detection performance in all cases.
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4.3. Overview of DRL-based Traffic Signal Controllers

4.3.1. Deep Reinforcement Learning. Reinforcement learning (RL) is a trial-and-error

based learning algorithm where agent interacts with the environment and takes action to maximize

cumulative reward. Mathematical formulation of RL is based on Markov Decision Process (MDP).

In general RL agent interacts with environment and receives a numerical positive reward (penalty if

it is negative). Continuously observing the state of the environment defined by st, taking action at,

and receiving reward (or penalty) from the environment rt, RL agent learns an action policy which

defines how to behave by computing action value function Q(st, at) after each iteration. In high

dimensional environments, RL agent cannot estimate this action value functions easily. Through

non-linear approximation, deep learning can estimate this function easily. Controlling RL agents

with deep neural network based function approximations is called DRL. In this section, we explain

two popular DRL algorithms, DQN and A2C.

4.3.1.1. Deep Q-Network. Deep learning extracts the features from data with multi-layered

neural networks. Tabular Q-learning method stores every state-action pair in a q-table, however,

controlling agents in high dimensional systems with tabular methods is not tractable. The pioneering

algorithm called Deep Q-Network (DQN) approximates state-action value function Q(st, at) using

non-linear DNN models, which maps N dimensional state inputs to M dimensional actions (output).

RL agent selects the best action from the output of DNNs [149] using Q-learning concept. Using

DNNs for function approximation sometimes result in unstable learning performance. To ease this

problem, temporal difference and batch learning techniques are used. DRL agent is controlled with

target network every k steps by updating the main network with respect to target network. The

agent may get stuck in a local optimal point due to recent trajectories and by randomly sampling

stored experiments, DRL agent learns how to behave from a broad range of experiences.

4.3.1.2. Advantage Actor-Critic. Another main approach estimates policy function with gradient

methods instead of estimating value function. However, policy gradient algorithms are not effective

in large scaled applications due to high variance of the policy estimation. A general solution to this

problem is to combine policy and value functions with an advantage function using two individual

estimators, where the agent’s behaviour is controlled with policy and the actions are balanced with
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value functions. These models are referred to as actor-critic RL. Synchronously updating both actor

and critic estimators is known as advantage actor-critic (A2C) RL.

4.3.2. Deep Reinforcement Learning for TSC. In this section, we will discuss relevant

DRL settings for single-agent and multi-agent settings. First, we will explain state, action and

reward definitions, and then we will explain our collaboration technique for multi-agent RL model.

In this application, the state of the environment is described a vector of values for each incoming

lane of the intersection. For one intersection, we created two valued vectors for each lane: one is

average speed and the other is total number of vehicles. Position and speed of each vehicle can be

collected from individual vehicles for calculating average speed and number of vehicles using V2I

communication. Based on the information received from vehicles, the DRL agent in TSC selects a

green phase from among possible green phases. The TSC at a single intersection (such as Fig. 4.1)

has four possible green phases: North-South Green (NSG), East-West Green (EWG), North-South

Advance Left Green (NSLG), and East-West Advance Left Green (EWLG). Each selected green

phase is executed after a yellow phase transition. With the objective of maximizing cumulative

reward, a scalar reward is computed after each action (phase selection in this case). There are

several reward definitions for TSC settings such as vehicle waiting time, cumulative delay, and queue

length. In our DRL-based TSC, we used the change of the vehicle waiting time at an intersection

for one cycle as a reward function.

As mentioned earlier, applying deep learning techniques to RL can help compute the action

value functions more efficiently. For DRL models, designing a neural network structure for better

performance is another critical step. Multi-layer perceptron (MP), i.e., the standard fully connected

neural network model, is a useful tool for classic data classification. In this project, we used MP

with 4 layers in DQN and 5 layers in A2C with relu and softmax activation functions for policy

estimations of learning agents.

To test more general cases in DRL-based TSCs, we also studied a multiple intersection scenario

with multi-agent RL settings where interaction among agents is necessary to reach a global optimum

performance. In multi-agent settings, each agent updates its policy by including the current state

and reward functions of neighbor TSCs as well to decrease the overall delay in traffic. For this
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purpose, global state is found with concatenation of the local states of neighboring intersections and

reward is generated by summing the local rewards of neighboring intersections.

4.4. Adversarial attacks on DRL

In data-driven learning algorithms, function estimator tunes the parameters precisely and

carefully with respect to the training set. An adversary can manipulate the training set by injecting

falsified data into the system. A smart way of attacking the learning agent is to inject carefully-

crafted fake data that has very similar patterns with actual data. In white box attack model, the

adversary has knowledge of the exact learning model and the corresponding output classes, and

will manipulate the input to mislead the model. In black box attack model, the exact learning

model is not known but the adversary can estimate a similar learning model to help generate input

perturbation that can affect the target learning model.

In DRL controller, DNN function estimator, which estimates the action with respect to given

state, is the most probable adversarial target. The objective of the adversary is to craft the data

input in order to lead DNN to a wrong action. When the DNN of DRL is under attack, it may

select an incorrect action. For targeting DRL-based controllers, adversarial attacks can be launched

sequentially at every time step to mislead the system as quickly as possible or strategically at specific

time steps to hide itself from the controller center. In this study, we simulated sequential FGSM

and JSMA attack strategies on DRL-based TSCs, which plays a critical role in traffic management

systems. The threat model of adversarial attacks on DRL-TSCs is shown in Fig 4.1.

4.4.1. Fast Gradient Sign Method. A clever attack model, fast gradient sign method

(FGSM) introduced in [76], calculates the gradient of the cost function with respect to DNNs

to maximize the perturbation using the L∞ distance. Adversarial input is generated by adding

generated adversarial data to the input state as follow:

(4.1) η = ε ∗ sign(∇xJ(θ,xxx, a))

where ε is the attack magnitude, J is the cost function of DNN, and θ is the model parameters. ∇x

refers to the gradient of the cost function related to model input state xxx, and true action a.
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Figure 4.1. TSC is controlled with a DRL agent and an adversary that can attack
the agent with falsified data which perturbs the input state. While adversary can
input directly for FGSM attack, it can use compromised vehicles for JSMA attack.

The FGSM attack designed to be fast and effective by generating infinitesimal perturbation that

is close to the true input with perturbation parameter e.g., ε = 0.007. FGSM attack model is an

untargeted where attacker do not specifies the target action when FGSM is launched. The optimal

perturbation η satisfies ||η||∞< ε.

The perturbation amount η is added to the input data x:

(4.2) xxxadv = xxx+ η.

In DRL-TSC, FGSM attack perturbs all the input features with very low values, therefore,

launching this attack from the communication network requires to modify all the state dimensions

that corresponds to each traffic lanes. The attack model assumes that the attacker has access to the

input gate of DRL agent. By using this gate, attacker perturbs the input state xxx right before it

goes into the DNN where Q values for each action is estimated. Launching FGSM with the black
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box settings is also possible. In this case, the attacker will not be able to access to the DRL agent

directly, it only has access to the data pipeline of the DRL agent.

4.4.2. Jacobian-based Saliency Map Attack. Another attack model utilizes forward de-

rivative, jacobian based saliency map attack (JSMA), presented in [163]. The intuition of JSMA

attack is to find the influence of each state feature xxxi to a specified output action a and then perturb

only those specified feature dimensions. This influence relies on the jacobian matrix of outputs with

respect to each action taken by the DRL agent using the forward gradient of the DNNs to construct

adversarial saliency maps.

The adversary can control which input feature to perturb with respect to constructed saliency

maps to achieve desired goal. In this attack model, attacker selects a target action for the DRL

agent where the output of the DNN is Q values for each action. With greedy mechanism, action is

selected from the DNN during the test phase with respect to given state xxx as:

(4.3) at = argmax
a

Q(xxx, a)

where at refers to the selected action by thr DRL agent at time t.

In our case, adversary tries to mislead DRL agent to select wrong action and for this purpose,

the output Q value for the desired action should be increased. The Q values are the probabilities of

corresponding actions. The adversary can increase the desired Q values estimated through DNNs

by using the saliency map:

(4.4) S+(x(i), a) =


0 if

∂f(xxx)(a)
∂x(i)

< 0 or
∑
a′ 6=a

∂f(xxx)(a′)
∂x(i)

> 0(
∂f(xxx)(a)
∂x(i)

) ∣∣∣∣∣ ∑a′ 6=a ∂f(xxx)(a′)
∂x(i)

∣∣∣∣∣ otherwise

where i is the input feature of state xxx, a is the action corresponding to the input, and a′ is the other

actions of DRL agent. In Equation 4.4, the first line of the expression rejects the negative target

derivative with respect to action a and positive derivatives with respect to other actions a′ of input

state xxx feature i. The second line of Equation 4.4 extracts the positive forward derivative of state xxx

of feature i given the action a. Based on the constructed silency map, adversary selects which input
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feature to perturb in order to mislead the agent for selecting the wrong action. Higher S+(x(i), a)

values mean the attacker can more easily determine if increasing this feature either increase the

Q value of the target action a or decrease the Q values of other actions. In the JSMA model, the

attacker first selects which action to perturb randomly then based on that selected action it creates

the saliency map. Using the saliency map attacker finds the best features to perturb.

The threat model for JSMA attack is different from the FGSM attack. Since JSMA perturbs

specific features based on the saliency map, it is possible to launch this attack by compromising the

communication between vehicles and TSC unit. In this attack model, attacker can use compromised

vehicles and/or Sybil vehicles to broadcast falsified information in order to increase or decrease the

corresponding feature dimension values.

4.5. Sequential anomaly detection for DRL-TSCs

The attackers can exploit wide range of vulnerabilities in DRL-TSCs, and attack patterns are

generally unpredictable. Therefore, it is hard to model a defence mechanism for a broad range of

anomalies. Besides, defining a parametric model, which tries to fit a probability distribution to the

data, is not practical. Due to life threatening effect of misbehaved DRL-TSCs, it is critical to detect

and mitigate adversarial attacks in a timely manner. Considering the major challenges in DRL-TSC,

non-parametric sequential anomaly detectors are suitable for detecting streaming anomalies in online

settings. There are three main reasons why we employed a non-parametric sequential statistical

anomaly detectors for adversarial attacks on DRL-TSCs: (i) consecutive adversarial samples are

more harmful for DRL controllers and need to be detected quickly, (ii) standard outlier detectors are

susceptible to false alarms due to not considering temporal correlations in data, (iii) non-parametric

sequential detectors have less miss-match error that results in lower detection error.

Statistical anomaly detectors operate by comparing the summary statistics extracted from the

training set in offline phase and summary statistic of data in online phase for detecting potential

anomalies. Since no single statistical property captures all anomaly types, we present a sequential

anomaly detection model that extracts multiple summary statistics and leverages an ensemble model

for online test phase. In this section, we first explain three summary statistic extraction models
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that are distance-based, PCA-based and Robust Autoencoder-based and present online sequential

detection algorithm.

Let us first explain the data representation that is used for the rest of the chapter. The

monitoring system observes d dimensional each data instance {xxx1
i , . . . ,xxx

d
i } that forms a set of

nominal streaming data X = {xxx : j = 1, 2, . . . , N}. Depending on the TSC setting and DRL model

the size of d can change. In our experiments, DRL collects the summary statistics from each lane

and forms d dimensional state information xxxt at time t.

4.5.1. GEM-based Summary Statistic. Geometric Entropy Minimization (GEM) method

defines an acceptance region for the offline training set based on the nearest neighbor statistics

with respect to significance level α [98]. GEM-based computationally efficient summary statistic

extraction method using bipartite kNN graph is presented in [191]. In the training phase summary

statistic extracted as described in the following.

We begin with randomly partitioning the anomaly free dataset XN into two subsets S1 and S2

with sizes N1 and N2 where N = N1 + N2. Then, for each data point xxxj ∈ S1, we find the kNN

euclidean distance ej from S2. Sum of the distances of xxxj to its nth nearest neighbor in S2 can be

denoted as:

(4.5) dj =

k∑
i=1

ej(i).

Once {dj : xxxj ∈ S2} is computed and sorted in ascending order, we refer to this baseline set as

DDDGEM .

4.5.2. PCA-based Summary Statistic. High dimensional observation may exhibit sparse

data structure so underlying independent data dimension can be lower than the actual data

dimension. When we represent data xxxj in lower dimension as yyyj , the remaining parts rrrj is the

residuals. Adversarial noise injected to the actual data is mainly represented in residuals rrrj , hence

the magnitude of the residuals ‖rrrj‖2 expected to be higher than normal data. Recently a PCA-

based online anomaly detection model is proposed in [119]. Based on this intuition, and the same

partitioning strategy, we follow the PCA-based training steps for set S1.
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(1) Compute the sample mean xxx and sample covariance matrix Q

(2) Then, compute the eigenvalue {λj : j = 1, 2, ..., p} and the eigenvectors {vvvj : j = 1, 2, ..., p}

of Q

(3) Determine the dimension of yyyt, r, with respect to the desired level of data variance γ,

(4) Form the eigenmatrix corresponding the largest r eigenvalues λ1,λ2, ..., λr: VVV , [vvv1, vvv2, ..., vvvr]

(5) Compute the residual term rrrj−PCA for every sample xxxj in set S2 as follows:

yyyj = xxx+ VVV VVV T (xxxj − xxx)

rrrj−PCA = xxxj − yyyj(4.6)

= (IIIp − VVV VVV T )(xxxj − xxx)

(6) Finally form the residual term vector DDDPCA with {‖rrrj−PCA‖2: xxxj ∈ S2} in ascending order.

4.5.3. Robust Deep Autoencoder Summary Statistic. A deep autoencoder-based noise

and outlier extraction technique is proposed in [166] as an unsupervised Robust Deep Autoencoder

(RDA) anomaly detection algorithm. The proposed RDA learns the normal data behaviours with

a regularization penalty term using different norms. The idea of the RDA combines the powerful

nature of the Robust PCA model [23] with autoencoders that recovers low dimensional yyyt iteratively

by removing the residuals rrrt from the data xxxt.

Training procedure of the RDA-based summary extraction model starts with pre-training the

model with the sample set S1. After pre-training the model with certain number of episodes, which

is 10 in our experiments, RDA is trained with sample set S2 and summary statistic DDDRDA is formed

from ‖rrrj−RDA‖2 as a baseline.

4.5.4. Sequential Anomaly Detector. In the test phase, summary statistics dt−GEM , ‖rrrt−PCA‖2

and ‖rrrt−PCA‖2 of each anomaly detection model is found for the new data point xxxt independently.

The anomaly score expected to be higher in the case of adversarial attack. Since the procedure is

the same for all three models, we explain the remaining anomaly statistic extraction algorithm for

the GEM model as an example. For a new data point xxxt, once dt−GEM summary score is computed

using (4.5), tail probability of pt would be computed with respect to baseline set DDDGEM as follow:

57



(4.7) pt =
1

N2

∑
xxxj=S2

1{dj > dt−GEM}

which shows the fraction of the baseline summary statistics DDDGEM greater than dt. Given the

significance level α, we can get a real valued statistical score in log scale with

(4.8) sGEM = log(
α

pt
),

if the tail probability pt < α, we can consider xxxt as an outlier. We follow the same approach in

equations (4.7) and (4.8) to calculate sPCA and sRDA scores. Since the three scores are independent

from each other, they can be calculated in parallel. For extracting the final anomaly score, we

sanitized the three anomaly scores using a simple averaging as follows:

(4.9) st =
1

3

∑
(sGEM , sPCA, sRDA)

Note that the anomaly scores st can be positive or negative values with respect to the existence

of anomalies. Instead of sample-by-sample anomaly declaration we propose to use model-free

CUSUM-like anomaly detection approach [14]:

gt ← max{0, gt−1 + st}, g0 = 0

T = inf{t : max{0, gt ≥ h}(4.10)

where gt refers to the decision statistic. The anomaly is declared if enough sequential anomaly

evidence is accumulated. The detection threshold h is chosen to strike a balance between minimum

detection delay and lower false alarm rate. While lower detection threshold h results in lower

detection delay, it enables higher false alarm rate. The summary of the proposed anomaly detection

technique is shown in Algorithm 2. The proposed sequential anomaly detector is also robust against

system misbehaviour due to the nature of cumulative anomaly detection model.
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Algorithm 2 Proposed Nonparametric Anomaly Detection

Offline Phase

1: Partition the training set XN into two subsets S1 and S2 with sizes N1 and N2.
2: Compute GEM baseline set DDDGEM = {dj : xxxj ∈ S1}
3: Compute PCA baseline set DDDPCA = {‖rrrj−PCA‖2: xxxj ∈ S2}
4: Compute RDA baseline set DDDRDA = {‖rrrj−RDA‖2: xxxj ∈ S2}

Online Detection Phase

1: Initialization: t← 0, g0 ← 0.
2: while gt < h do
3: t← t+ 1.
4: Obtain the new data point xxxt.
5: Compute statistic sGEM , sPCA and sRDA

6: Form ensemble statistic st with averaging as in (4.9)
7: gt ← max{0, gt−1 + ŝt}.
8: end while
9: Declare an anomaly and stop the procedure.

4.6. Adversarial Attack Performance

In this section, we evaluated the impact of adversarial attacks on DRL-based TSCs using

SUMO [138] real-time vehicular traffic simulator, with Tensorflow Python API1 for DRL-based

controller and CleverHans Python API for adversarial input generation built upon Tensorflow [161].

1Allows to create and train ML models without loss of speed or performance.

Figure 4.2. Traffic scenario for multi-agent multi-intersection TSCs.
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We simulated both a single-intersection and multi-intersection environments with DQN and A2C

DRL-based TSCs. For single-intersection scenario, we observed similar results for DQN and

A2C DRL-based TSCs. For the rest of the chapter, we only present results for DQN for the

single-intersection case. Value-based DQN approaches do not perform well for large environments.

Therefore, we only simulated multi-agent A2C model based RL controllers for multiple intersections

traffic scenario organized in 2x2 grid topology. The structure of each of the 4 intersections is shown

in Fig 4.2. The DRL agent selects among four possible green phases as described in Section 4.3.2.

The traffic is generated with the arrival rate of one vehicle per second spanning 1-hour simulation

time. For each arrival, travel route is assigned with random origin and destinations selection.

We implemented FGSM and JSMA adversarial attacks for both white-box and black-box attacks.

One technical challenge we faced is the lack of computational resources to launch these adversarial

attacks continuously (for more than 5 episodes), as it requires high memory footprints due to the

batch gradient of the NNs2. All our experiments compare the performance of DRL TSCs with

three baselines. One of the baselines is standard fixed time TSC where traffic lights are allocated

to different phases with pre-defined durations. We also compared our method with two adaptive

controller methods: queue-based actuated TSC, and max-pressure-based TSC [214]. Maximum

phase duration for both actuated controller and max-pressure controller is set to be 45 seconds.

All the attacks experimented in this study starts after 15 episodes and the attack continues for 5

episodes, where every episode spans one hour of traffic simulation. After the attack terminates, we

observed the performance of the learning agent for an additional 20 episodes. In the absence of

attack, DQN achieves the second lowest total waiting time (only slightly inferior to Maxpressure)

for the single-intersection case while multi-agent A2C model achieves the lowest total waiting time

for multiple-intersection scenario.

4.6.1. White-box Insider Attack. Regardless of the DNN structure, learning models are

vulnerable to white-box adversarial attacks, even with a very slight perturbation on input data.

White-box adversarial attacks assume that the attacker has access to the target model of learning

policy.

2We employed transfer learning while simulating adversarial attacks on both single-intersection DQN and multi-
intersection A2C scenarios. We saved the NN model weights after training the agents, and launched the attack using
the latest NN weights. We repeated this for each attack episode.
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(a) FGSM attack for single-intersection DQN model. (b) FGSM attack for multiple intersections Multi-agent
A2C model

Figure 4.3. FGSM White-box and black-box attack results for DQN and multi-
agent A2C with 0.007 attack magnitude using FGSM attack model. Attack continues
5 episodes from 15 to 20. Both white-box and black-box attacks continuously effects
the performance of DRL agent while attack continues.

4.6.1.1. Attack Model. Using the target model, launching an adversarial attack with FGSM

and JSMA models on the DNN of RL agents is possible.The adversary launches the attacks on

DRL-based TSCs by injecting anomaly to the original input state. Since DNN is the policy of a

learning agent, selecting correct action of the DRL agent will be affected by the white-box attack.

For FGSM attack, an attacker will perturb the input state with very small changes that are

invisible by the controller. As pointed out in the original FGSM paper [76], minimal perturbation

leads to the DNN to classify output to a wrong class. We used the same attack magnitude ε = 0.007

as in the original FGSM attack [76] for DQN and A2C TSC simulations.

For JSMA attack, the attacker constructs the saliency map of given input state with respect to

randomly selected action using the forward gradient of the DNN. In this attack model, we found

that the attacker needs to perturb at least 40% of the feature dimensions to mislead the DRL agent,

hence, we selected γ = 0.4 as an input parameters for our experiments.

4.6.1.2. Results. Fig. 4.3 and Fig. 4.4 show the results from FGSM and JSMA, respectively.

After the attack is launched, both DQN and A2C TSCs perform poorly during the attack duration

with FGSM and JSMA attacks. Although DRL settings are different, single-intersection TSC (Fig.

3(a) and 4(a)) and multi-agent multi-intersection TSC (Fig. 3(b) and 4(b)) are both affected, and the
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(a) JSMA attack for single-intersection DQN model (b) JSMA attack for multiple intersection multi-agent
A2C model

Figure 4.4. JSMA attack continues with 10% of data perturbation for single agent
DQN model and with 40% of data perturbation for multi-agent A2C model. The
attack injects falsified data by selecting specific lanes of the intersection. The attack
starts at episode 15 and lasts for 5 episode and ends in episode 20.

total waiting time in the traffic exceeds even the fixed-time controller. While the total waiting time

increases almost 10x for single-intersection, it increases almost 6x for multi-intersection immediately

after the white-box FGSM and JSMA attacks are launched. DRL agents cannot respond to these

attack models and the attack continuously effects the learning agents as long as the DRL agent is

targeted because the DQN and A2C agents do not recognize the attacks. For FGSM attack, the

total waiting time decreases to pre-attack levels in 5 episodes after the attack ends in both the

single-intersection DQN and the multi-intersection A2C cases. On the other hand, for JSMA attack,

the total waiting time decreases to the pre-attack levels immediately right after the attack ends.

4.6.2. Black-box External Attack. In black-box attack scenario, the attacker does not have

a precise knowledge about the model. Here, we investigate the vulnerability of the DNN policies for

DRL-based TSCs when the attacker does not have access to the actual target model.

4.6.2.1. Attack Model. The transferability of trained DNNs allows attacker to train a separate

learning model and use it to generate adversarial perturbation. Both FGSM and JSMA adversarial

attacks require knowledge of DNNs for calculating gradients regarding to the DNN policy. Practically

it is not hard to train a separate policy for TSCs using real traffic maps on traffic simulators, and an
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Figure 4.5. Feature-based vectorized state representation.

attacker can do this training at a very low cost. In this work, we are proposing a practical black-box

attack strategy where the attacker uses the same number of layers for training a different DNN

policy as the original learning agent. Also, for training a separate DNN, the attacker considers

linear activation functions instead of the ReLU and Random Uniform DNN initialization technique

instead of Glorot initialization [71]. We assumed that attacker is not able to predict true travel

demand on the simulator. Therefore, we trained our adversarial policy with slightly different traffic

demands. Since we simulate the same adversarial attacks with black-box attack settings, to have a

precise comparison, we kept the same attack magnitudes as ε = 0.007 for FGSM attack and γ = 0.4

for JSMA attack similar to white-box attacks.

4.6.2.2. Results. The results of black-box adversarial attacks on DRL TSCs have similar patterns

with the white-box attacks for FGSM attack model. However, the impact of the JSMA attack

decreases to the half compared to white-box JSMA attacks in terms of the total waiting time. The

results for the three baseline TSCs are almost identical across two adversarial attack models. Red

dashed lines in Fig. 4.3 and Fig. 4.4 shows the adversarial attack results for DQN and multi-agent

A2C under black-box attacks. Similar to the white-box settings, DRL agent is severely impacted

by the attack resulting in average 9x and 6x increase in total waiting time in single and multi-

intersection scenarios respectively during the FGSM attack. The black-box JSMA attack increases

the total waiting time 5x and 3x for single intersection and multi-intersection scenarios likewise
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FGSM attack. The impact of the attack continues throughout 5 attack episodes by performing

worse than the other three control methods in both attack cases. Similar to the white-box attack

case, while the recovery period of DRL agent under FGSM attack is about 4 episodes after the

episode 24th, DRL agent recovers itself immediately after the attack terminates for JSMA attack.

4.7. Adversarial Detection Performance

After showing the vulnerability of DRL-TSCs against adversarial attacks, we evaluate the

proposed statistical anomaly detection model on DRL-TSCs. The nature of adversarial attack for

white-box and black-box attack settings are almost the same in terms of the data perturbation.

Therefore, in this section, we only evaluated the detection performance on white-box FGSM and

JSMA adversarial attacks on single intersection DQN-TSC and multi-intersection MA2C-TSC (see

Fig. 4.2). We also use the same attack magnitudes as described in Section 4.6 for evaluating the

performance of statistical detectors.

For evaluating the ensemble statistical detection performance, we compare the proposed algorithm

with individual adversarial detectors PCA, RDA and GEM models. We use the same CUSUM-like

detection structure on each model. Note that each anomaly detection algorithm is most effective

in recognizing different anomaly types. While noise injections on all input vectors such as FGSM

attacks can be detected by PCA anomaly detection model easily, selective perturbation-based

anomalies such as JSMA can be detected with RDA and GEM models effectively.

We quantified the detection performance in terms of three metrics. Quick and accurate detection

performance is presented with average detection delay vs false alarm rates, which is our first

result representation. Later, we present the performance of sequential detectors on ROC (Receiver

Operating Characteristics) curve and AUC (Area Under The Curve) scores which are the two leading

performance metrics for classification tasks. While ROC is the probability curve for true positive

rate vs false positive rate, AUC score quantifies how much the model is capable of distinguishing

between classes.

4.7.1. Sequential Detector Setup. To generate training and test sets for sequential detectors,

we collect anomaly-free training states and test sets that include anomalies from the DRL-TSCs.

For single intersection TSC model, the DRL setup has relatively low dimensional state format
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since each lane corresponds to two dimensions in state vector which are the number of vehicle and

average speed. This form of state known as feature-based vectorized state representation (Se Fig.

4.5). The number of vehicle and average speed per lane states are concatenated to form final state

representation. For example, the state definition for our single intersection DQN-TSC , which has 4

incoming roads with a 4 lane single intersection, is 32 units column vector.

Regarding the single-intersection DQN, sequential detectors are trained with 1 episode of

anomaly-free traffic flow. Then, the detectors are trained on FGSM and JSMA adversarial attacks

using 50 test episodes where adversarial attack starts after 200 state samples. Regarding the

multi-intersection MA2C, we followed similar data collection procedure with slight changes. In our

MA2C model, every intersection has a different number of approaching lanes, therefore, the state

dimensions varies in MA2C model. We have 3 group of state representation for 4 intersections as

82, 86, 92. After collecting neighborhood information, two of four intersections have the same size

of state dimensions. Due to having different state dimensions, each agent of MA2C model is trained

and tested separately, then, test results are concatenated. Adversarial attack for 1 episode is highly

time consuming. Hence, the number of test samples are relatively low which is 35 MA2C episode.

In total, we have 105 test trials for MA2C-TSC model.

4.7.2. Results. Fig. 4.6 shows average detection delay vs false alarm probability results for

the proposed ensemble model compared with the other statistical anomaly detectors. We observe

that the proposed ensemble model has the lowest detection delay vs lower false alarm probability on

FGSM attack to the single intersection DQN model (Fig 6(a)) and JSMA attack to multi-intersection

MA2C model (Fig 6(d)). The ensemble model also performs closer to the other statistical detectors

for JSMA to single intersection DQN (Fig 6(b)) and FGSM to multi-intersection MA2C (Fig. 6(c)).

Due to invisible nature of FGSM attack, all detectors have higher detection delays. The proposed

ensemble model is the second best detector among all. Except for FGSM attacks on MA2C, the

ensemble model detects the adversarial samples within less than 10 samples. This means that the

ensemble detector informs the DRL agent within 10 adversarial samples, which is small enough

for taking an action against adversarial attack. The ensemble model is able to handle multiple

adversarial attack types on different controller settings. The results can be extended to a broader

range of adversarial attacks that may target the DRL-TSCs. One proposed mitigation strategy on
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(a) FGSM on DQN-based single intersection DRL-TSC (b) JSMA on DQN-based single intersection DRL-TSC

(c) FGSM on MA2C-based multiple intersection DRL-
TSC

(d) JSMA on MA2C-based multiple intersection DRL-
TSC

Figure 4.6. Comparison of sequential detection performances in terms of average
detection delay vs false alarm period.

top of detecting the anomalies is switching to another TSC model such as max-pressure TSC after

attacks are detected.

Next, we analyzed the overall detection performance with ROC curve and AUC scores. Since

anomaly detectors are simple binary classifiers, evaluating the accuracy of anomaly detectors with

ROC classifier curve is important where the curve do not assumes any distribution on data for

producing classification performance. As depicted on Fig 4.7 and supported by the AUC scores

in Table 4.1, the proposed ensemble model outperforms the all other statistical detectors. While

the bold statistics shows the best detection performance, the green statistics tells the second best
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(a) FGSM on DQN-based single intersection DRL-TSC (b) JSMA on DQN-based single intersection DRL-TSC

(c) FGSM on MA2C-based multiple intersection DRL-
TSC

(d) JSMA on MA2C-based multiple intersection DRL-
TSC

Figure 4.7. ROC curves for different attacks and TSC settings with the proposed
anomaly detection model.

detection performance on Table 4.1. It is clear from the green statistics that different statistical

anomaly detectors performs differently on different threat models, however, proposed ensemble

model has clear advantage over the other detectors with almost perfect detection performance.

4.8. Conclusions

We have demonstrated the impact of adversarial attacks on DRL-based TSCs for a single-

intersection and multiple intersection cases using different threat models. First, we evaluated the

adversary impact of two adversarial attack models: FGSM and JSMA using white-box, and practical
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Table 4.1. AUC scores for different baselines for all configurations

TSC-Attack PCA RDA GEM Ensemble

DQN-FGSM 0.9844 0.9749 0.9839 0.9895

DQN-Jacob 0.9950 0.9980 0.9979 0.9994
MA2C-FGSM 0.9549 0.9258 0.9028 0.9637

MA2C-Jacob 0.9942 0.9951 0.9954 0.9978

black-box settings. The results show that the performance of a DRL agent decreases sharply after the

attack starts in all attack models and total waiting time increases becoming worse than the standard

TSC methods. While, white-box FGSM and JSMA attacks effects the learning performance with

similar impact. black-box FGSM attacks has severe impact compared to black-box JSMA attacks.

Second, we presented a non-parametric online anomaly detection model which detects different

anomalies sequentially by combining three existing anomaly detection models with CUSUM-like

algorithm. Through realistic SUMO traffic simulators, we evaluate the online detection performance

of various anomaly detection approaches in the presence of adversarial attacks. The results show

that the proposed ensemble model achieves superior performance in detecting anomalies in all threat

models compared to other existing anomaly detectors.

The proposed study provides a security mechanism for known attack models. However, there are

still some limitations that need to be addressed with further studies. While there are many different

attack models, vulnerability of DRL-TSCs should be evaluated with more threat models. This work

provides a novel anomaly detection model for DRL-TSCs but practical mitigation strategies and

internal system robustness mechanisms should also be investigated. For future work, we plan to

investigate on other types of adversarial attacks and provide an integration mechanism with the

proposed anomaly detection model and internal robustness mechanisms.
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CHAPTER 5

Differential Privacy in Aggregated Mobility Networks: Balancing

Privacy and Utility

5.1. Introduction

With the proliferation of smartphones, GPS devices, and connected vehicles, geospatial-temporal

datasets that capture the movements of these devices have emerged. The trajectories collected

from these devices are excellent sources of mobility information for city planners and researchers.

However, embedded in these datasets are details of the device owner’s mobility patterns. Privacy

concerns associated with lifestyle patterns, such as locations of home, work, and user specific points

of interest, have inhibited the release of these datasets by the organizations collecting the data. As

such, the datasets have remained siloed and their use has been limited to a few organizations.

Typical approaches for dealing with privacy issues, such as k-anonymity or other privacy methods,

often result in a very high utility loss for the type of transportation studies that cities need. A naive

approach of applying noise injection to the individual GPS points can perturb the trajectory too

much, particularly in urban areas where moving GPS point a few blocks away can dramatically

change the path (e.g., due to one-way streets or locations of highway exits).

Another approach to dealing with privacy issues is to aggregate the data before releasing the

dataset. However, [220] has shown that even aggregated outputs may still have privacy issues. The

authors were able to re-identify user trajectories from the aggregated trajectories. Additional studies

found that examining trajectories that were often repeated indicated unique mobility patterns that

could be associated to an individual. Other efforts to privatize mobility data [170,231], resulted in

a high utility loss.

Differential privacy (DP) is a statistical privacy-preserving technique [52] that is designed to

minimize leakage of information about individuals, while still preserving the characteristic patterns

in the data. Differential privacy controls the degree of information that can potentially be exposed.
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The DP control parameters can be tuned empirically for specific datasets, and specific application

use-cases [1,77,153]. The goal of DP is to ensure that an adversary with background knowledge

about the dataset cannot extract private information from the dataset.

The goal of our work is to design a DP-based approach that can achieve location privacy and

still maintain the relevant information content for deriving transportation metrics of interest. Our

approach focuses on designing a network-aware noise injection algorithm that uses the geospatial

constraints to apply noise and privatize the sensitive information. In this paper, we present a

differentially private adaptive noise injection (DP-ANI) model that generates an aggregated mobility

network from raw GPS trajectory data.

The contributions of this paper include:

• We propose a differential privacy-based noise injection (DP-ANI) model that perturbs the

origin-destination GPS points in an adaptive manner based on the road network’s density.

• We apply the Sparce Vector Technique to select the adaptive range parameters privately.

• We evaluate the impact of the degree of perturbation of the noise injection model by

comparing the geospatial statistics derived from the released mobility network after applying

our DP-ANI model compared to the raw mobility data.

The remainder of the paper is organized as follows. We present related work in Section 5.2, an

overview of the differential privacy in Section 5.3, and our metrics and models in Section 5.4. We

then present our differentially private adaptive noise injection (DP-ANI) model in Section 5.5. After

evaluating the experimental results of our privacy model in Section 5.6, we discuss the limitations

of this work in Section 5.7. Finally, Section 5.8 concludes the paper.

5.2. Background and Related Work

5.2.1. The Importance of Privacy in Geospatial Datasets. Geospatial mobility datasets

describe movement of vehicles, bikes, scooters, or pedestrians, and are often collected from users

with their permission. However, when these datasets are shared with third parties, significant

privacy issues may arise. Removing individual identifiers is not enough to achieve strong privacy

because it is well known that linkage attacks, using multiple datasets, can allow attackers to identify
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the users even if directly identifiers, such as name, social security number, etc... are excluded from

the dataset [156].

User patterns such as daily routines, extracurricular activities, and business activities are a part

of behavioral privacy [61]. Mobility datasets capture these movements and have the potential to

reveal information about behaviors of individuals and groups. Ideally, a privatized mobility dataset

should maintain the overall movement patterns of the general population, while preventing the

identification of small group or individual behaviors using inference attacks.

5.2.2. Related Work on Location Privacy. Protecting individual user location with DP

has been studied extensively [55]. We can divide the location privacy models into two categories:

privacy of online locations that shares the location data instantly and offline locations that uses

for location dataset for extracting information. Privacy research on online location deals with the

instant location information collected by user mobility applications such as navigation devices in

real-time [207]. Offline location privacy research focuses on movement data (time ordered locations)

and aggregated mobility datasets.

Privacy of Online Locations: There are several DP-based location models in the literature

for preserving the privacy of online locations where location information is protected before it

reaches to the data-center. For example, location-based social networks provide privacy for every

location sample [207].

Generalizing and perturbing the actual location are the two popular approaches for location

privacy. One of the early and well known location privacy techniques using DP models is called

geo-indistinguishability [7] where the authors injected planar Laplace noise to the GPS points for

hiding individual locations. A related study for real-time location sharing applications is proposed

by [54] using circular noise functions. There are several privacy applications in the transportation

domain inspired by the geo-indistinguishability [189,235] for location privacy.

Another approach for location privacy is snapping individual points to a grid with lower resolution

than the source data. The shared data is not the precise user location but is in a similar area. The

authors presented a differentially private grid partitioning model for hiding user locations [170].

Differential privacy for grid partitioning of spatial crowdsourcing applications is studied with an

adaptive multi-level grid decomposition technique in [216].
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Anonymity-based privacy approaches seek to provide indistinguishability between users. Several

k-anonymity privacy schemes in the case of real-time location sharing are presented in [67], and [58].

In [154], authors presented a location privacy approach for online locations using cloaking area [108]

and differential privacy models.

While there are many privacy models for online location sharing platforms, real-time trajectory

sharing requires more sophisticated and advanced privacy models due to spatial and temporal

correlations of location traces. There are several privacy protection attempts for the online

trajectories [32, 219]. The authors, in [218], presented a DP-based planar isotropic location

perturbation mechanism using a geometric sensitivity model.

Privacy of Offline Locations: Prefix-tree based aggregation is popular for achieving location

privacy. One of the earlier methods creates a prefix tree and adds noise to the output node counts to

achieve generalized trajectories [35]. Another prefix-tree and DP-based trajectory privacy method

is proposed in [231] where authors used minimum description length method for clustering the

trajectory segments on prefix-tree and injected a controlled noise to the count of clusters. Since

generating differentially private trajectories requires a dense trajectory population to generalize

or group trajectories, it is difficult to privatize individual trajectories. The methods presented

in [104,187] aim to preserve the privacy of a trajectory using differential privacy.

There are different research directions regarding the type of aggregated geospatial data that is

released: trajectories, networks, and statistics. Recently, a trajectory aggregation mechanism with

DP was presented in [69], where the aggregation range was found privately using the Sparse Vector

Technique (SVT). Inspired by this paper, we apply the SVT to our private range mechanism.An

aggregate mobility data publication approach using a count-min-sketch method is presented in [227]

for mobility distributions. This work evaluates the proposed aggregation mechanism against

trajectory recovery attack model [220]. The framework studied in [57] applies filtering and adaptive

sampling methods with differential privacy for sharing aggregate time-series statistics. The amount

of aggregation is calculated with the proposed approach adaptively. Another aggregate geospatial

statistic publishing approach with DP is presented in [111] where a sliding-window methodology

captures event consequences on data stream. A DP-based data aggregation model is presented

in [148] using a dataset from user call records. The traces are classified into several pre-defined
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groups, and noise is injected to the count of those groups. An online data aggregation method

with location privacy is studied in [206] where authors presented a framework that dynamically

groups and perturbs the statistics of aggregated locations using Laplace noise for achieving privacy

protection. Markov decision modeling has recently been applied to aggregate mobility data privacy

considering practical adversarial attacks to data privacy [229].

Recently, several private companies made location privacy tools available on their platforms.

Gratel Labs [121] offers a synthetic location sampling model using generative models. Here

Technologies [197] offers various location privacy techniques for protecting individual privacy,

however, provenance of the data and the solutions are unknown.

Several re-identification attacks were able identify individuals from publicly available datasets,

such as NYC [50] and London bike sharing [2]. The authors in [199] experimented with an attack

strategy that recovers trajectories from aggregated location datasets. The key assumption in the

paper is that the aggregated data is not anonymized.

Other location privacy methods include hidden Markov models and k-anonymity. One of the

offline trajectory privatization methods proposed in [157] used a hidden Markov model for protecting

trajectory datasets against multi-user correlation attacks. An example of the k-anonymity trajectory

privatization method is presented in [150] where authors generalized movements to groups using a

prefix-tree where leaves of the trees are removed if they have a value less than k. Transport network

sharing for fleet vehicles is presented with k-anonymity and information theoretic approach using

simulated ride-share datasets in [95] where the goal is to preserve the privacy of fleet trajectories by

hiding the pickup and drop-off locations.

5.2.3. Aggregation of Mobility Data. Modeling mobility in urban regions often involves

two main concepts: travel demand and infrastructure loading. Travel demand describes the mobility

needs of a user population over a period of time. Infrastructure loading refers to the loading that the

road network experiences as a function of the travel demand. The goal of transportation planning

and operations is to ensure travel demand is served in the most efficient and safe manner.

Aggregation is a common approach for managing privacy in transportation datasets [168].

Individuals are clustered into an aggregated group of users that reduce the size and complexity of

data. An example of publicly-available, aggregated mobility data is the Uber Movement website [186]
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where aggregated travel patterns for specified cities are released. The aggregation is done at both

the temporal (one hour bins) and geospatial level (traffic analysis zone - TAZ).

5.2.4. Differentially Private Movement Datasets. Our mechanism preserves user-level

privacy by hiding individual user participation in the aggregated dataset and prevents trajectory re-

identification attacks by perturbing the origin and destination points. The amount of information loss

associated with the applied privacy model is directly related to the granularity of the transportation

problem of interest. In this paper, we focus on two transportation problems that require coarse

or medium-level granularity and can be solved with our aggregated, differentially-private mobility

network.

Congestion Analysis: An estimate of expected traffic congestion and the associated congestion

mitigation plans are two key concerns for city planners. The transportation network is composed

of links that define the road network. A zone refers to a certain area of the city and a collection

of links. The capacity of links and their temporal changes are used to estimate traffic congestion

using link-level aggregated statistics. Our privacy model generates differentially private aggregated

link-level road metrics.

Major route identification: Differentially private traffic network generated from our model

is a directed graph which shows the origins and destinations of traffic flows at the link level. It is

possible to identify major traffic routes that may result in congestion in selected links. This output

also allows predicting future traffic behaviors using some data-driven prediction models. One could

train a machine learning agent with the privatized query response to predict travel behavior for the

next day. Authors in [173] studied major route and busy traffic with an aggregated bicycle dataset.

Our mechanism perturbs the origin/destination of trajectories before aggregation using the density

and attributes of the localized links and preserves the main traffic routes.

5.3. Differential Privacy: Overview

Location privacy is the notion of privacy for aggregated mobility datasets. We require that

the output of a query statistically guarantees privacy of individual user locations independent of

the background knowledge. Differential privacy (DP) [53] guarantees that modifying the single
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input value has a negligible effect on the output statistical query. In this section, we summarize the

general definitions and metrics of DP that are applicable to our problem.

We introduce the privacy concerning data X ∈ X as vehicular mobility information in query

q ∈ Q. The data holder wants a mechanism that hides the sensitive information and reports the

privacy preserved version of sensitive information using a randomized algorithm A : X×Q → D

where Q is the query space and D is the output space. DP promises that the algorithm A is

differentially private such that participation or removal of a record results in minimal changes to

the output of a query.

Let us first define the neighboring datasets:

Definition 1 (Neighboring Dataset). Considering two databases X and X′, if they differ by

only one element xi → xi
′ corresponding to a link on the network, they are neighboring datasets.

The above definition formalizes the adjacent or neighboring dataset that plays a crucial role in

differential privacy.

Definition 2 (ε-Differential Privacy). Given for every neighboring sets d ⊂ D, a randomized

algorithm A is ε-differentially private if

(5.1) Pr(A(X) ∈ d) ≤ eεPr(A(X ′) ∈ d)

where ε is a positive real number and probability comes from the randomness of the algorithm.

Pr(A(X)∈d)
Pr(A(X′)∈d) is the privacy leakage risk for the randomized algorithm A.

ε-differential privacy is known as randomized response where adding or removing a single element

from the database results in a similar probability. The smaller value of ε represents higher privacy

guarantee and provides in-distinguishability.

In differential privacy, the appropriate epsilon is typically determined based on the sensitivity of

the underlying data. The definition of sensitivity is given in [52] as follows:

Definition 3 (Sensitivity). For any query function f : D → Rn, the sensitivity of f is

(5.2) ∆f = max
X,X′

∥∥f(X)− f(X′)
∥∥

1
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for all datasets X and X′.

Input perturbation and output perturbation are the two ways to implement differential privacy.

When we want to release an aggregated mobility network, one way to protect privacy is through

input perturbation. Laplace mechanism adds a random noise sampled from Laplace distribution:

Definition 4. [Laplace Mechanism] For any function f : D → Rn, the mechanism A gives

ε-DP as follows:

(5.3) A(D) = f(D) + Laplace(ε, R)

Noise injection to the input can be done with different noise functions depending on the

application requirements. Section 5.5.1 describes our additive noise method in detail. For a given

sequence of queries and a threshold T , a mechanism called sparse vector technique (SVT) outputs a

vector indicating whether each query answer is above or below T. The goal is to find the first index

from query output that is above the threshold.

Definition 5. [Sparse Vector Technique] Suppose f1, f2, .., fk:X→ R be set of functions and T

be a threshold for a database X, the algorithm outputs binary outcome for each query answer ai if it

is above the noisy threshold or not: ai ∈ {>,⊥}k.

Definition 6. [AboveThreshold] Given f1, f2, .., fk:X→ R set functions with at most L sensi-

tivity, AboveThreshold algorithm is ε-DP for every ε > 0 [141].

Definition 7. [Composition] Let a set of randomized algorithms A1, ...,Ak that each Ai satisfies

εi-DP.

• Sequential Composition: Let A be another randomized mechanism that executes A1, ...,Ak

with independent randomness for each Ai, then A satisfies (
∑

i εi)-DP.

• Parallel Composition: Let dataset X is partitioned depterministically to different subsets

X1, ...,Xk and executing each Ai with a different disjoint set Xi satisfies maxi (εi)-DP.

• Post-processing a randomized algorithm A that satisfies ε-DP does not break or consume

any privacy budget.

76



Given the composition properties and total ε privacy budget, DP-ANI builds different blocks

according to composition properties to achieve a DP-satisfied randomized algorithm A.

5.4. Our Metrics and Models

Protecting personally identifiable information is a crucial step before publishing the output of

the queries. This section defines the existing structure and the privacy models we consider for our

mobility dataset.

There are several things to be considered before applying our privacy model on mobility datasets.

The privacy-protected aggregated mobility dataset includes both fleet and consumer trajectories.

Fleet trajectories may reveal business-related information, such as customer pick up and drop off

locations. Similarly, consumer trajectories can reveal daily behaviors of individuals. We solve the

problem with two steps: (i) select a perturbation rate adaptively with respect to road network

density for each OD of trajectories and (ii) perturb all OD GPS points and match them with new

link. With our approach, the output aggregated mobility network is free from privacy issues of

individual trajectories. We transform the point-wise GPS trajectories to an ordered series of road

network links and enforce privacy on the aggregation of such trajectories.

Let D(V,E) represent the road network as a weighted digraph, where the set of nodes V

correspond to road intersection, set of edges E to roads, and weights that represent link metrics,

such as length of the link or traffic volume. A link φ ∈ E connects intersections u and v where

specific link attributes, such as number of lanes, speed limit, are stored in the link description.

We have two set of trajectories: GPS trajectories and link trajectories. Let us define the GPS

trajectories and then link trajectories:

1) GPS Trajectories: A sequence of GPS coordinates with l number of samples x ∈ G =

{x1,x2, ...,xl} forms a GPS trajectory that reflects the continuous motion of the object. The set of

all GPS trajectories are Ψ where G ∈ Ψ.

2) Link Trajectories: Given the m number of vehicles on the road network, each vehicle travels

between origins and destinations using an ordered link path generating a user travel path known as a

micro-graph Φ ∈ D. Every link trajectory has n number of links φ ∈ Φ = {φ1, φ2, ..., φn} and Φ ⊂ E.

The set of trajectories is the corpus of all link trajectories with m users Φ ∈ Λ = {Φ1,Φ1, ...,Φm}.
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A link φi,j refers to the ith link of user j. Every link φi,j ∈ Φ has a set of values: length of the link,

travel time, speed, and link counts. The traffic density of the network is represented by aggregating

trajectories and is referred to the aggregated mobility network. The raw mobility network is ϑ

and the privacy preserved mobility network is Σ. The goal of our research is to release the privacy

preserved aggregated mobility network from the raw mobility network ϑ→ Σ.

Link count β refers to the number of times a link φ occurs on the mobility network ϑ. For

example, if a link φi,j of selected trajectory Φj has occurred in the graph ϑ only once, then 1 is

assigned for the link count value for corresponding link. The represented link model is built upon

the road characteristics. Each link φ is classified into one of five classes in terms of the capacity and

functional role of the road, called a functional class. Arterial roads have lower functional classes,

rural streets have higher functional classes. Next, we introduce link matching.

3) Link Matching: GPS coordinates are an estimate of a device’s location from satellite

broadcast information and are generally enhanced with localized terrestrial information. These

locations can be perturbed by localized environments, such as tree cover or urban canyons. As a

consequence, GPS locations may not match to a link on the road network. Link matching generates

ordered set of road network links describing the user’s trajectory considering the road network

D(V,E) and GPS points [172]. In this paper, we used a link-matching algorithm designed by

University of California, Berkeley Smart Cities and Sustainable Mobility Research Group [143].

5.5. Differentially Private Adaptive Noise Injection

Differential privacy is a probabilistic approach that provides privacy primarily by using injected

noise. This noise injection aims to hide individual contributions to the overall statistic while

preserving the statistical properties of data in the aggregate level. To make origins and destinations

of trajectories differentially private at aggregated mobility network, our DP algorithm uses the

first approach by injecting planar Laplace noise to the GPS points before generating an aggregated

mobility network. The noise level changes the underlying characteristics of the output. The higher

noise level leads to stronger privacy but less accurate results. For large and dense datasets, this

inaccuracy will be less significant in the overall statistics because the required level of noise to

achieve differential privacy is lower [45]. Now we explain our noise injection approach.
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Figure 5.1. Differentially private aggregated mobility network is released using our
noise injection model and link matching algorithm.

Figure 5.1 shows the flowchart of our differentially-private, aggregated mobility network concept.

A user starts from a geographical location called the origin and stops at another geographical

location called the destination. These origin and destination locations are considered sensitive

information that must be protected. A trajectory consists of the sampled locations between origin

and destination. The link-matching algorithm infers the ordered set of links using GPS location

data and the previously matched link path from the D(V,E) network for each user’s GPS points.

The network D(V,E) often constrains the link selection process. Since we release the aggregated

mobility network, the privacy issue is reduced to the link set that has a low density of links and are

connected to origins and destination nodes.

To provide privacy to the aggregate mobility datasets, we use a differentially-private, adaptive

noise injection (DP-ANI) model, using planar Laplace noise. The origin and destination GPS points

are obfuscated based on the network density, and noisy GPS points are matched with a new link

using the link-matching algorithm. The two key parameters used for noise sampling are ε and R.

While ε is responsible for the noise level, R is the distance parameter for moving the center of the

noise in the geospatial domain. Output of the noise function is a new randomized GPS location

in the same space. The noise function is a bounded probability distribution on polar coordinate

systems.
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5.5.1. Noise Sampling. One state of the art location-hiding approach to inject noise to the

GPS dataset is called geo-indistinguishability [7]. The mechanism adds planar Laplace noise to

the GPS point x0 within an area of r. The output of geo-indistinguishability is a perturbed GPS

location whose privacy level is εr. The radius r is the desired distance to provide privacy protection.

Geo-indistinguishability provides a guarantee that the probability of the exact GPS point

presence decreases exponentially with the radius r for given location x0. This noise function is a

linear distribution for problems in 1-D space. It is a 2-D surface for a geospatial problem. The

probability density function (PDF) of such noise function for any point x ∈ R2 is:

(5.4) Dε(x0)(x) =
ε2

2π
e−εd(x0,x)

where ε2

2π is a normalization factor. This PDF function is a planar Laplacian distribution that is

sampled in polar coordinates instead of Cartesian coordinates Dε(r, θ) = ε2

2π re
−εr. A point in polar

coordinates (r, θ), where r is the distance of x from x0 and θ is the angle, is randomly drawn. Since

r generally adds a small perturbation to the GPS point, in this work, the r value is scaled with

given R radius value from the input in order to provide adaptive noise structure. By scaling up

the obfuscation parameter r we have a larger noise level that moves the GPS point further away in

euclidean distance. The noise sampling approach involves the following steps:

• Draw θ uniformly in [0, 2π),

• Draw p uniformly in [0, 1),

• Find Γ = C−1
ε (p),

• Set r = Γ ∗R for larger noise with given input radius R

• Finally, calculate z = x + [r cos(θ), r sin(θ)],

where C−1
ε (p) = −1

ε (W−1(p−1
ε ) + 1) is the inverse cumulative distribution function of r, and W−1 is

Lambert W function (the −1 branch).

The original implementation of geo-indistinguishability achieves privacy through fixed bounding

range R. However, our approach provides geo-indistinguishability by adding controlled noise L(ε, R)

to the origin and destination GPS points xi within a certain range R in order to mask the actual

locations using density-based private noise range selection method R. Selecting the same threshold
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Figure 5.2. Buffer range for determining link density

from all noise function would allow adversaries to access private information through reverse

engineering. Our work also privatizes the range value R with a different DP mechanism.

5.5.2. Private Bounding Range Selection. This section explains determining the bounding

range and selecting the noisy link for the link-matching approach using planar Laplace noise

introduced in the previous section. Randomly injecting noise without considering the network’s

density would not achieve the desired privacy level consistently. Some GPS points with few links

nearby would match the noisy GPS point with the same link after the noise injection. To overcome

this problem, the noise level is selected adaptively with respect to the link density of network

D(V,E).

The adaptive bounding range selection may also reveal some information about the user’s

location. Therefore, we employed a private bounding range selection algorithm using the sparse

vector technique [141] to find the bounding range R privately. We were inspired to use the private

parameter selection method for geospatial domains by [69].
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Algorithm 3 Private Bounding Range Selection

1: Input privacy budget εradius, threshold τ , initial bounding circle zinit, maximum bounding
circle Rmax, network D(V,E), and number of iterations k = Rmax/Z, link functional class fc.

2: z ← zinit
3: for ` = 1, ..., k do
4: N` ← Number of links within z at network D(V,E)
5: z+=10 meters
6: end for
7: `∗ ← AboveThreshold(N1, ..., Nk, τ, εradius)
8: R← zinit ∗ `∗
9: BoindingSetFC ← links within R with functional class fc

10: return R and BoindingSetFC

Our approach generates noisy link-based trajectories while keeping the noisy trajectories close

enough to the original trajectories to have similar traffic characteristics at aggregated mobility

network. As we mentioned above, every link has functional class information, and the density-based

noise function should move the GPS point to a place that matches with the same functional class.

Definition 8 (Density Function). Given the ε value, bounding range R of the noise function

L(ε, R) is selected privately using SVT differential privacy mechanism using the function f(θ) where

θ is the network density in terms of the number of links.

Our noise model perturbs every origin and destination of trajectories and applies link-matching

to the noisy trajectories. Then, the aggregated mobility network is obtained with a DP guarantee.

The straightforward method would select a bounding range R considering the worst-case scenario

given the whole trajectory dataset. However, this would lead to a poor utility at aggregated mobility

network because the larger bounding range R takes the center of the noise function to a far distance,

resulting in higher perturbation on GPS location. Instead, we developed an algorithm to select the

bounding range R privately in Algorithm 3.

The method first adjusts the noise level using the link network density around the GPS point

(see Fig. 5.2). To do so, starting from an initial radius Z = Zinit, the method increases the radius k

iterations until reaching the maximum bounding range Rmax. The Rmax would be the area that

covers the whole geospatial region of the dataset. For each iteration, N` contains the number of links

within the bounding range Z at network D(V,E). In the second phase, our algorithm selects an

index `∗ given the threshold τ using AboveThreshold algorithm, an SVT algorithm described in [52].
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Algorithm 4 Noisy link matching algorithm

1: Input Λ,Ψ
2: Input εlaplace for planar Laplace noise function
3: for G ∈ Ψ do
4: for x ∈ G do
5: if For OD GPS points then
6: Select R and BufferSetFC using Algorithm 3
7: Inject adaptive noise to the GPS point x using L(ε, R)
8: Select closest link from BufferSetFC
9: else

10: Select closest nodes from V
11: end if
12: end for
13: Find candidate paths between closest nodes list
14: Connect the candidate paths
15: Build the noisy link-matched trajectory with connected links
16: end for
17: return The noisy link trajectory network Σ

The private bounding range R is acquired with respect to `∗ and corresponding road links within

this bounding range from the same functional class links are stored in BoindingSetFC. Please

refer to Algorithm 3 for the full pseudo-code.

Once the bounding range R is selected, our algorithm applies noise injection for the corresponding

GPS point using L(ε, R). After the noisy GPS point is returned, the closer link to the GPS point in

the set of the same functional class links is selected. Once all the links are found from the GPS

points, the candidate paths are selected, and the noisy link trajectory is built using the candidate

paths (see Algorithm 4). Finally, the noisy link-based trajectories generated with our approach

form a mobility network that ensures the privacy of link-level OD locations.

5.5.3. Differential Privacy Analysis. This paper provides origin-destination privacy to

aggregated mobility networks. For each trajectory, there are two sensitive locations, origin and

destination. While two DP mechanisms are used in this paper, bounding range selection and noise

injection, the sensitivity ∆ is the same for output data. Adding and removing a user can only

change the aggregated network visitation rate at most two links for each origin and destination.

Therefore, the sensitivity of our DP mechanisms is 2.

Lemma 5.5.1. Our bounding range selection algorithm satisfies εradius-DP.
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Figure 5.3. OD pair count for a typical week-day

Proof. Given the sensitivity of two queries N`, where adding or removing a user location

can change the link visitation at most two links by one, and the definition of SVT [141], the

AboveThreshold algorithm is εradius-DP. Accordingly, the private bounding range selection algorithm

is also εradius-DP. �

Lemma 5.5.2. Given the sequential and parallel composition properties of DP, the noisy link

matching algorithm satisfies 2*(εlaplace+εradius) DP for the output mobility network.

Proof. The aggregated mobility network is produced from the n user trajectories. Each

trajectory has one origin and one destination GPS point. For each of these GPS points, noisy link

matching algorithm selects a private bounding range R and adds planar Laplace noise using the

private R. Given the sequential composition property, total privacy budget for each trajectory is

εuser = 2 ∗ (εlaplace + εradius). Since each trajectory accessed only once and uses the same privacy

budget εuser, the overall privacy budget of output aggregated mobility network is εuser given the

parallel composition. In summary, our private aggregate mobility network satisfies εuser-DP. �
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5.6. Experimental Evaluation

5.6.1. Dataset Description. This project uses a real-world dataset collected in the San

Francisco Bay area in California from January to February 2019. It contains two months of fleet

and consumer GPS trajectories with varied sampling rates. To make the computation tractable,

we extract a smaller region in the Berkeley area and time period for evaluating our privacy model.

Most of the trajectories have sampling rates of less than 1-minute, which improved the ability of

the link-matching algorithm to generate realistic link trajectories.

The dataset is created from a variety of location-sharing applications and GPS tracking devices.

When the devices are active, location (lat, lon), speed, and heading are collected along with a unique

device identifier. While we do not necessarily know that the device was active at the user’s actual

origin and destination points, we assume that the start and end points of GPS traces represent

origins and destinations.

5.6.2. Temporal Correlation. Figure 5.3 shows the hourly distribution of the OD pairs in

the San Francisco region. A temporal pattern is associated with the time of the day, with distinct

rush hours where the number of OD pairs peaks. Hence, any aggregation methods should preserve

this pattern if it is to be useful for traffic management applications. For example, aggregating

mobility data from morning hours with afternoon non-busy hours would not reflect the real traffic

patterns for the morning or afternoon. Therefore, we apply our privacy-preserved aggregation model

for each 1 hour period. We show as an example the 1 pm to 2 pm time period.

5.6.3. Comparisons to Alternate Approaches. We compare the DP-ANI model to several

techniques. A straightforward privacy method, similar to the k-anonymity approach in [150],

removes successive links, either from the origin or to the destination, with less than k link counts

from the aggregated network. We have chosen k = 2 for our experiments. We refer to this model as

OD successive remove.

The privacy definition of DP-ANI is based on distance, the shortest distance between noisy and

the original location. Therefore, we also included an ablation study to have a fair understanding for

our DP-ANI model:
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• DP −ANIFix: This version performs the same privacy mechanism for origin-destination

without a private range selection. Here we assumed that the data curator sets a fixed

threshold of a number of links for adaptive range selection, which is 25 road links for our

network D(V,E).

• DP −ANIMax: Standard DP methods, mainly for tabular datasets, applies noise injection

based on the sensitivity with respect to the worst case scenario. However, geospatial

datasets are different, and their sensitivity definition differs from others. The other baseline

model applies the worst-case maximum range to all trajectory ODs. Instead of setting the

number of links and looking for a range value, we found the maximum range value with

more than 25 road links in whole trajectory ODs.

The DP-ANI provides stronger privacy by trading off some utility of the dataset (i.e., answering

a subset of finer-granularity queries). We show the performance of the proposed mechanism with

respect to the original aggregated model without any privatization method in our experiments as

Original data.

5.6.4. Utility Metrics. We have chosen practical utility metrics commonly used in trans-

portation studies to quantify the efficiency of our privacy mechanism. In this section, we explain the

importance of utility metrics. The goal is to have a higher similarity in the utility metrics between

the original and privacy-preserved mobility networks, given the same level of privacy protection. In

order to present results clearly, all the numerical results are normalized with respect to the original

mobility network.

Spacial density analysis plays a crucial role in understanding human mobility [86]. Our first

utility metric is the change in aggregated mobility network length. This is our primary utility

metric since we aim to acquire a similar mobility network that retains the mobility characteristics.

Minimizing the change in the length of aggregated mobility network makes output privatized data

more useful.

Since our mechanism provides privacy for user ODs, the second metric we looked at is trajectory

level utility: the rate of OD link that moves to another road link after noise injection. The goal is

to displace as many OD links as possible.
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The main characteristic of aggregated mobility networks is the link visitation rates or link

counts. There are several distance metrics to compare the probability distributions. The Wasserstein

distance metric is a good way of comparing the count query distributions quantifying the similarities

of probability distributions given a metric space. Our count query metric is the number of link

visitations named in figures as Link Counts.

The road network classifies the link in different classes, from local streets to highways, into five

classes. It is essential to retain the road class distribution in the output network similar to the

original aggregated network. We employed the Wasserstein distance on the road link functional

class distribution for another aggregated utility metric.

Figure 5.4. Network length for all trajectories with baseline comparisons.

5.6.5. Numerical Results. The DP-ANI method can extend or shrink the length of the

trajectories. As such, fluctuations in the experimental results concerning the different levels of ε

values are expected. For lower (or higher) ε values, we have higher (or lower) noise levels. A higher

noise level will perturb more links. When we apply the DP-ANI method to the mobility dataset,

the number of privatized single-link-count links vary depending on the privacy level ε. We use a
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Figure
5.5. Only
the original
network

Figure
5.6. Original
vs the DP-ANI
model network

Figure
5.7. Original vs
OD-successive
link removal
network

Figure 5.8. Aggregated trajectory networks for a 1 hour period are represented
together on the map. The red link network represents the DP-ANI-AT model for
ε = 1, the yellow represents the OD successive link removing model, and the light blue
represents the original model. Figure-(a) shows the original network only without any
overlap. In Figure-(b) and Figure-(c), when the DP and OD-successive links overlap
with the original network, the links appear as red and yellow, respectively. The
network lengths are 195.2, 138.2, and 194.6 miles for networks with the DP-ANI-AT
model, OD successive link removal model, original network respectively.

range of ε values between 0.1 and 10 to evaluate the performance of the DP-ANI. The chosen ε

values are selected to reflect the lower and upper limits of the impact of the DP-ANI perturbation

mechanism. We present our results with the same aggregation concept described in 5.6.2 and the

same set of ε values for all the experiments.

The DP-ANI may affect the active network length as the noise may adjust the trajectory to a

position that requires more maneuvers or positions a start location behind the original origin location

or similarly ahead of the original destination. Figure 5.4 shows the network lengths of different

privacy models with the set of ε values in terms of the divergence from the original aggregated

network. The blue line shows the performance of our adaptive threshold DP-ANI model. 1.0 in the

y-axis is the reference point for the original network. The DP-ANI model has the slightest change

from the original network compared to other variants with less than 10%. While DP −ANIMax is

the second-best-model, DP −ANIMax and OD successive yielded very high divergence from the
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original network. Note that since OD successive do not depend on the ε parameter, their resulting

plots are flat across the horizontal axis.

Next, we visualize the aggregated networks to see the differences between the DP-ANI-AT model

with ε = 0.1 and other comparative models in Figure 5.8. OD-successive, a k-anonymity based

approach, is another formal privacy protection model. For this reason, we compare our model with

OD-successive and original network models. To preserve the utility of the privacy-preserving data,

we would like the aggregated trajectory network to overlap with the original network except for

origin/destination points/segments. In Figure 5.5, we only present the original aggregated network

to reflect the actual coverage area. While the DP-ANI network shows a high similarity with the

original network (Figure 5.6), there is a distinct difference between OD-successive and original

networks shown in Figure 5.7, primarily in the outer areas of the San Francisco region.

Figure 5.9. Comparison of different ε values and the change of percentage of ODs.

Next, we identify the ratio of unchanged OD links after the noise injection and aggregation

steps. We only look at OD link displacements since we consider the link as not having any privacy

concerns if it is not an origin or destination for any trajectory. Depending on the noise level and the

density of the road network D(V,E), the links can be matched with the same link after the noise
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injection. The value of ε defines the level of privacy. To quantify the privacy of our method, we

inspect the privatized link ratio over the OD links with respect to different ε values. Fig. 5.9 shows

the ratio of unchanged OD links for all ODs. The goal of the DP-ANI model is to move OD links.

Therefore the output is expected to have higher ratios for the lower level of ε. The highest level of

the privatized link ratio is observed with the lowest ε = 0.1 with an average of 76%. DP −ANIMax

and DP −ANIFix achieve higher ratios compared to DP-ANI. However, they both have drawbacks:

DP −ANIMax results in lower utility and DP −ANIFix provides a lower privacy guarantee with a

fixed range value that could leak more information due to less randomization. The lowest ε produces

the fewest number of single-link-count OD-links.

Finally, we evaluate the performance of DP-ANI model with different variants and OD-successive

model on the Wasserstein distributional similarity metric in Figure 5.10 and Figure 5.11. The

lower value indicated higher similarity. For all the ε values, our method is more similar to the

original aggregated mobility network at link count distribution and the functional class distribution.

Increasing the ε value yields higher similarity in distributions for other variants DP-ANI-Max and

DP-ANI-Fixed with a lower privacy guarantee.

Figure 5.10. Wasserstein distance of link counts
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Figure 5.11. Wasserstein distance of link functional classes

5.7. Discussion

Privacy of aggregated mobility trajectories serves as a useful first step towards unlocking siloed

trajectory data. Because geospatially constrained and temporally correlated mobility datasets have

unique characteristics, it is difficult to preserve the privacy of individual trajectories. This paper

describes a method generating an aggregated mobility representation of the original trajectory set

using DP-based adaptive noise injection model. In this section, we summarize several limitations

and discuss open research questions.

5.7.1. Limitations. The first limitation of our study is aggregation scale. The generated

aggregate mobility network aims to reflect the general patterns of human mobility, however, due to

sparsity of most of the datasets that we used, the realistic travel patterns are not evident in the

aggregated dataset as shown in the earlier Figure 5.3, where the approximately 1200 trajectories

do not show the expected rush hour travel pattern. The sparsity of the dataset required high

perturbation in order to privatize the dataset. In order to overcome this problem, aggregating three
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or more days of trajectories in one hour period can preserve the utility of the dataset, but this

characteristic is highly dependent on the dataset.

Inherently perturbing origins and destinations can affect the meaning of the object. Although

DP-ANI maintains the same functional class of the OD links, it can cause a catastrophic change in

the individual trajectory that will affect the aggregated output. For example, when we perturb a

link to the other side of the highway, or to a one way road, that moved link must connect with the

rest of the trajectory. This may result in much longer routes and if the composition of the dataset

involves many of these type of perturbations, this will significantly change the total travel distances

of trajectories.

Finally, biases associated with fleet trajectories is a third consideration. Fleet trajectories should

be privatized as patterns related to the fleet’s business-model, however, this approach likely does not

solve the fleet privacy problem, as a fleet’s patterns may still be evident in the aggregated mobility

model. Ideally, it is better to work with an evenly distributed fleet and consumer trajectories in the

aggregated output to reflect the true travel patterns. Depending on the original dataset, removing

fleet trajectories and working only with consumer trajectories may result in a very sparse dataset.

This study used both fleet and consumer trajectories.

5.7.2. Open Research Directions. The DP-ANI model achieves an ideal level of privacy by

preserving the privacy of more than 75% of the privacy concerned ODs on three aggregation models

at around ε = 0.1 for the experimented San Francisco area. Regarding to the privacy level, it could

be interesting to test DP-ANI on a larger geographical region in order to define a proper ε range.

Future research will focus on generalizing the DP-ANI model to a broader range of aggregation

concepts with different levels of granularities, such as zone level or OD levels, in order to assess

confidentiality and applicability of the current approach. In addition, the computational cost of

data processing on large datasets will likely require novel computational methods. A recent trend is

to minimize centralized data collection and privatize the data at local or regional controller using

real-time localized DP models [208]. Forming trajectories with perturbed or privatized local GPS

locations may break the coherence of the trajectory and the usefulness of the trajectory. As such,

investigation into how this localized privacy model affects the aggregation and privatization methods

would be important.
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5.8. Conclusion

This paper presents a differentially-private, adaptive noise injection model for aggregated

trajectory networks that protect individual origin-destination locations. This method injects planar

Laplace noise to the individual origin-destination GPS points by considering the density of the

localized road networks. The actual perturbation distance for each GPS point is adjusted by

considering the localized link density and this selection is performed privately with the Adaptive

Thresholding method. After injecting noise into the GPS points, the location is matched to new

network links, and a new origin-destination privatized trajectory is generated and integrated into

the aggregated mobility road link network. We evaluated our differentially private mechanism for a

variety of variants and a k-anonymity-based privacy model.

This project uses an aggregation concept that generates a privatized, aggregated mobility

network for a specific regional dataset in San Francisco, CA. Future work will include extending

this investigation to different types of mobility data aggregation models while also addressing the

computational efficiency for large-scale datasets.
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CHAPTER 6

Differential Private Map matching

6.1. Introduction

The pervasive use of location tracking devices and navigation tools generate a huge amount

of spatio-temporal data associated with user mobility patterns. These collected user mobilities or

trajectory data can be used for variety of purposes, such as advertising, transportation analysis,

and personalized recommendation. However, mining such user movement information can reveal

sensitive information, hence posing a legitimate privacy threat. Recent studies show that anonymized

user trajectories are vulnerable to re-identification attacks even with just a few spatio-temporal

points [44].

There have been several proposed privacy mechanisms for trajectory datasets based on two

main concepts: indistinguishability and uninformativeness. The former approach via k-anonymity

ensures that every trajectory is similar to one another. On the other hand, uninformativeness is

achieved via differential privacy, where adversaries cannot retrieve extra information after accessing

the dataset [62]. While indistinguishability privacy is achieved through suppression or generalization

methods [78,211], uninformativeness privacy is, in general, achieved by perturbation and noise

injection [7,80,96,218]. However, the existing privacy methods result in high utility loss when

trajectory queries are performed on the protected mobility data due to several reasons, such as

unreasonable location sequences or geospatial mismatches.

Most techniques in the literature protect the privacy of individual user trajectories with respect

to other trajectory samples in database [20,96].

However, this approach cannot guarantee user privacy in low-density datasets. This paper

attempts to protect the privacy of every individual trajectory regardless of the rest of the data

by masking origin and destinations (OD) with noise injection and protecting travel paths with

randomized path selection. Another limitation of existing privacy-preserving methods is the higher
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mismatches of geospatial location sequences. Discretization of locations through grids or zones does

not consider practical implications of the ”private location”.

We propose to incorporate the road segment densities, which intrinsically imply population

densities, instead of grid or zone structures in designing our differential privacy mechanism.

Differential privacy (DP) provides statistical privacy protection by applying randomization

techniques to the database and masking the personalized identifiers [52]. DP assures that an

adversary with background knowledge about the dataset cannot extract private information from

the dataset. The goal of this work is to design a DP-based privacy mechanism with deterministic

constraints in order to have a lower bound for both location privacy and travel path privacy. The

proposed scheme outputs a set of privacy-preserved trajectories at the road segment level.

Injecting a fixed level of noise to all geo-spatial positioning (GPS) samples cannot guarantee the

privacy of locations. We have achieved promising results applying adaptive noise injection to origin

destinations conditioned on the travel intensities of the associated road segments to protect the

privacy of aggregated mobility networks [93].

In this study, we propose a two-stage differential privacy method for map-matching, called

DPMM, to protect the privacy of individual trajectories. First we apply adaptive noise injection to

OD locations. Second we match the GPS points to the road segments privately and select randomized

paths between selected road segments to generate private user trajectories. Our contributions are

listed below:

• We expanded our prior work [93] to protect user OD location privacy for individual

trajectories by injecting Planar Laplace noise to the user OD GPS points.

• We employ the exponential DP mechanism to randomize travel path construction to protect

individual user trajectories.

• Both the injected noise level and path selection are adapted based on link density of the

location and the functional category of the localized links.

• Our experimental evaluations show that our DPMM scheme can protect user location and

trajectory privacy while maintaining high utility by providing accurate query responses

compared to raw data.
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6.2. Background and Related Work

The privacy risk associated with trajectory datasets is at every level, including single location

sample, whole trajectory level, and set of trajectories (community) level. There are two privacy

concerns associated with user mobility data this paper addresses: location privacy and trajectory

privacy. Location privacy refers to protecting individual user’s true locations at any point in time.

On the other hand, trajectory privacy protects the knowledge of specific path or route (a sequence

of spatial-temporal samples) taken by a user [29, 43, 99]. Our goal is to apply DP to achieve

both location and trajectory privacy without compromising the utility of the dataset (in terms of

providing accurate response to a subset of fine-granularity queries).

Location Privacy: There are several DP-based location privacy studies in literature. One

way of achieving location privacy is perturbation by injecting controlled noise to the location

coordinates [7, 54]. Laplace noise [7] and circular noise methods [54] are the two well-known

perturbation-based location privacy models in DP community. Another approach for location

privacy is forming location grids with lower resolution depending on the density, then sampling

fake locations from the private grids [170,216]. Studies show that sampling fake locations cannot

guarantee hiding the true locations due to statistical data correlations [107]. Hence, for OD location

privacy, we employ adaptive noise injection methodology from [93] by considering the road segment

density with the Laplace noise mechanism presented in [7]. Neither of these prior studies protect

trajectory privacy.

We have previously introduced a location privacy mechanism for aggregated mobility datasets [93].

We propose selecting the magnitude of noise for ODs based on the road segment densities and the

functional category of roads to form an aggregated mobility network. The noise injection is only

applied to a subset of trajectory ODs if the road segment they belong to has less than a set density

threshold. This work applies the idea of the adaptive noise injection approach to all trajectory ODs.

Trajectory Privacy: Privacy-preserving trajectory data publishing has been studied in literature

extensively [107]. Compared to location privacy, trajectory privacy generally uses generative methods

instead of location perturbation. Prefix-tree and human mobility model extraction approaches are

the two main directions for trajectory privacy methods for DP. Researchers, in [34], apply DP with

a prefix-tree data structure to user trajectory datasets by injecting noise to the count queries. A
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case study extension of this work with a real public transportation dataset is presented in [35].

More recently, several synthetic trajectory generation methods based on prefix-tree data structures

with adaptive generalization approaches have been proposed [96,231].

Another line of synthetic trajectory generation is based on modeling human movements [80,148].

This approach extracts features from user trajectories and injects controlled noise to the mobility

distributions to make them private. However, human mobility characteristics are highly complicated,

and the model-based methods do not capture the real mobility dynamics all the time [151]. Recently,

synthetic data generation models with machine learning, especially deep learning, are attracting

attention for either lack of available data or privacy concerns [60,179]. Deep generative models-

based privacy mechanisms have been proposed in literature to extract human mobility features with

non-linear learners [75].

Instead of trajectory generation, several studies target different directions for the privacy of

mobility trajectories. For example, dummy location injection [136], location swapping in the mixed

zone [184], location generalization [125], and trajectory reconstruction [41] are some of the proposed

approaches for trajectory privacy.

Since dealing with location sequences is challenging in the continuous domain, proposed schemes

are generally in the discretized grid domain. However, having a grid-like discrete representation

cannot prevent geospatial mismatching. For instance, when a location is randomly sampled from a

grid where the road network is sparse, mostly generated sample points to a non-sense location. This

restriction practically results in higher utility loss. So instead, DPMM discretizes the locations to

road segments, resulting in more realistic trajectories.

6.3. Methodology Overview

Protecting personally identifiable information is crucial before publishing the user mobility data.

Differential privacy is a probabilistic approach that provides privacy through noise injection and/or

randomized selection. We propose a method for generating differentially private mobility trajectories

with map-matching, called DPMM, to protect personal identifiers. This section summarizes the

notations and definitions that are required for the proposed DPMM privacy model.
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6.3.1. Notations and Metrics. LetD(V,E) represent the road network as a weighted digraph,

where the set of nodes V correspond to a road intersection, the set of edges E to roads, and weights

that represent link metrics, such as length of the link or traffic volume. A link φ ∈ E connects

intersections u and v where specific link attributes, such as the number of lanes, and speed limit,

are stored in the link description. We have two sets of trajectories: GPS trajectories and link

trajectories. Let us define the GPS trajectories and then link trajectories:

1) GPS Trajectories: A sequence of GPS coordinates with l number of samples p ∈ T =

{p1,p2, ...,pl} form a GPS trajectory that reflects the continuous motion of the object. The set of

all GPS trajectories are Ψ where T ∈ Ψ.

2) Link Trajectories: Given m number of vehicles Φ ∈ Λ = {Φ1,Φ1, ...,Φm} on the road

network, each vehicle travels between ODs using an ordered link path generating a user travel

path known as a micro-graph Φi ∈ D. Every link trajectory has n number of links φ ∈ Φ =

{φ1, φ2, ..., φi, ..., φn} and Φ ⊂ E. The raw link trajectory is Λ and the privacy preserved link

trajectory is Σ. The goal of our research is to release the privacy preserved link trajectories using

the raw trajectories Λ→ Σ. Every link in network D(V,E) includes the road characteristics. Each

link φ is classified into one of five classes in terms of the capacity and functional role of the road,

called a functional class. Arterial roads have lower functional classes, rural streets have higher

functional classes. Next, we introduce the general concept of map matching algorithms.

3) Map-Matching: GPS coordinates are an estimate of a device’s location using satellite

broadcast information. However, these locations do not always represent the exact travel path due

to several intrinsic and environmental errors such as satellite geometry, signal blockage, tree cover,

or urban canyons [17]. Consequently, GPS locations may not match a link on the road network.

Map-matching generates an ordered set of road network links describing the user’s trajectory

considering the road network D(V,E) and GPS points [172].

Map-matching algorithms play an essential role for transportation engineers as part of trajectory

processing to minimize trajectory errors [31]. Since most GPS trajectories already require map-

matching as a pre-processing before using them in transportation applications, DPMM eases the

burden of map matching by generating privacy preserved link trajectories given raw GPS trajectories.
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6.3.2. Differential Privacy. Location privacy and path privacy are the two main notion of

privacy for trajectories in this work. We require that the output of a query statistically guarantees

the privacy of individual user locations independent of the background knowledge. Differential

privacy (DP) [53] guarantees that modifying the single input value has a negligible effect on the

output statistical query. In this section, we summarize the general definitions and metrics of DP

that are applicable to our problem.

We introduce the privacy concerning data X ∈ X as vehicular mobility information in query

q ∈ Q. The data holder wants a mechanism that hides the sensitive information and reports the

privacy preserved version of sensitive information using a randomized algorithm A : X×Q → D

where Q is the query space and D is the output space. DP promises that the algorithm A is

differentially private such that participation or removal of a record results in minimal changes to

the output of a query.

Let us first define the neighboring datasets:

Definition 9 (Neighboring Dataset). Considering two databases X and X′, if they differ by

only one element xi → xi
′ corresponding to a link trajectory, they are neighboring datasets.

The above definition formalizes the adjacent or neighboring dataset that plays a crucial role in

differential privacy.

Definition 10 (ε-Differential Privacy). Given for every neighboring sets d ⊂ D, a randomized

algorithm A is ε-differentially private if

(6.1) Pr(A(X) ∈ d) ≤ eεPr(A(X ′) ∈ d)

where ε is a positive real number and probability comes from the randomness of the algorithm.

Pr(A(X)∈d)
Pr(A(X′)∈d) is the privacy leakage risk for the randomized algorithm A.

ε-differential privacy is known as randomized response where adding or removing a single element

from the database results in a similar probability. The smaller value of ε represents higher privacy

guarantee and provides in-distinguishability.

An appropriate epsilon, in DP, is typically determined based on the sensitivity of the underlying

data. The definition of sensitivity is given in [52] as follows:
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Definition 11 (Sensitivity). For any query function f : D → Rn that maps the dataset D to

fixed sized real numbers, the sensitivity of f is defined as

(6.2) ∆f = max
X,X′

∥∥f(X)− f(X′)
∥∥

1

for all neighboring datasets X and X′.

Definition 12 (Composition). Let a set of randomized algorithms A1, ...,Ak that each Ai

satisfies εi-DP.

• Sequential Composition: Let A be another randomized mechanism that executes A1, ...,Ak

with independent randomness for each Ai, then A satisfies (
∑

i εi)-DP.

• Parallel Composition: Let dataset X is partitioned depterministically to different subsets

X1, ...,Xk and executing each Ai with a different disjoint set Xi satisfies maxi (εi)-DP.

• Post-processing a randomized algorithm A that satisfies ε-DP does not break or consume

any privacy budget.

Given the composition properties and total ε privacy budget, the proposed DPMM builds

different blocks carefully according to composition properties to achieve a DP satisfied randomized

algorithm A.

DP guarantees privacy for both numerical and non-numerical queries. While noise injection is

a leading method for numerical queries, exponential mechanism is a mainly used mechanism for

non-numerical queries [52,144].

Input perturbation and output perturbation are the two ways to implement DP. When we want

to achieve OD location privacy on trajectories, one way to do is through input perturbation, where

noise is injected into the GPS points. Using noise function L(ε, R), the GPS points are perturbed

based on the below definition.

Definition 13 (Laplace Mechanism). For any function f : D → Rn, the mechanism A gives

ε-DP as follows:

(6.3) A(D) = f(D) + Laplace(ε, R)
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Noise injection to the input can be done with different noise functions depending on the

application requirements. Section 6.4.2 describes the additive noise method in detail. By injecting

noise into the input GPS points, the method guarantees that the OD locations of trajectories are

differentially private.

For privacy on non-numerical queries, exponential mechanism selects an output from input

domain taking into consideration of a score function q(X, r) where r is the discrete output from the

domain. Exponential mechanism assigns higher probabilities for the higher score to incentivize the

higher utility outcomes.

Definition 14. [Exponential Mechanism] Let q : (X,R)→ R be a score function for a database

X and domain specific discrete outputs R, the algorithm A,

(6.4) A(D, q) =

{
return r ∈ R with probability ∝ exp

εq(D, r)

2∆q

}
satisfies ε-DP.

6.4. Private Map Matching

This section describes the components of the proposed DP-based map-matching algorithm for

trajectory privacy that generates synthetic link-level user trajectories. DPMM guarantees statistical

privacy protection for link trajectories with noisy ODs and randomized travel paths. Figure 6.1

shows the flowchart of our DPMM mechanism. We transform the point-wise GPS trajectories into

an ordered series of road network links and enforce privacy on trajectories with the road segment.

6.4.1. Trajectories with Waypoints. Trajectories are time-ordered sequential location sam-

ples, and the sampling rate varies depending on the device. Before private path construction, we

represent the trajectories with fewer GPS waypoints that retain the movement characteristics. This

waypoint approach only preserves the critical locations enough for movement representation by

removing insignificant locations. For example, in a higher sampling rate trajectory, sequential path

construction may result in redundant extra paths due to frequent path findings (see Section 6.4.4

for more details). Furthermore, the frequent path selection also consumes more privacy budget ε. In

summary, the waypoint representation enhances the path quality and decreases the computational

complexity by dealing with fewer location pairs.
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Figure 6.1. Differentially private link trajectory generation scheme.
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Figure 6.2. Trajectory Simplification

For a trajectory T , let n coordinates be p1, p2, ..., pn where every pi is represented with (xi, yi)

and n− 1 line segments be p1p2, ..., pn−1pn. Figure 6.2 shows a toy trajectory simplification example

from the original trajectory T to simplified trajectory T̃ . Original trajectory has 15 coordinate

points p1, p2, ..., p15. Using trajectory simplification, we can represent trajectory T with waypoints

p1, p4, p9, p12, p15, which allow us to find approximate paths between distant points. The first step

of the proposed DP mechanism is to represent trajectory with fewer waypoints.

In literature, there are several algorithms to decimate curves that are composed of line segments

as we have in trajectories. We consider non-parametric Ramer–Douglas–Peucker (RDP) algorithm

for representing higher sampling rate trajectories with sample waypoints [49]. RDP is a heuristic
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method that we attached to the DPMM to retain important GPS waypoints in the randomization

process and help generate more practical travel paths.

RDP recursively approximates the whole trajectory to fewer points representation starting from

p1pn line segment and an error bound σ, which also known as simplification error. RDP then

calculates distance offset of each point coordinate from p2 to pn−1 with perpendicular distance. Let

pk be the point with maximum of perpendicular distances from p1pn. If σk > σ, RDP splits the line

segment into two sub-segments p1pk and pkpn where σk is the offset distance from pk to p1pn. The

simplification continues recursively for p1pk and pkpn. The RDP terminates if σk ≤ σ or pipj is a

consecutive segment with j − i = 1. It worth mentioning that RDP only removes the unnecessary

middle points of trajectories by keeping the OD points in T̃ . The time complexity of RDP is O(n2).

6.4.2. Private Origin-Destinations. Traveling from one geographical location called the

origin to another geographical location called the destination is sensitive information that must be

protected. The map-matching algorithm infers the ordered set of road segments (links) using GPS

locations from the D(V,E) network and finds paths for each pair of user’s GPS points.

We recently propose an adaptive noise injection model for location privacy on aggregated

mobility networks in [93]. DPMM employs the previous noise injection methodology for trajectory

privacy on ODs. This method injects adaptive Planar Laplace noise to the GPS points before

matching them with an appropriate link to provide OD privacy on the map-matching algorithm.

The OD GPS points are obfuscated based on the network density with noise injection and they

are matched with a new link. The two key parameters used for noise sampling are ε and R. While ε

is responsible for the noise level, R is the distance parameter for moving the center of the noise in

the geospatial domain. The output of the noise function is a new randomized GPS location in the

same space.

Geo-indistinguishibility is one of the noise injection methods for hiding GPS locations [7]. The

Laplace noise is sampled from a bounded probability density function on polar coordinate systems

instead of Cartesian space as follows:

(6.5) Dε(r, θ) =
ε2

2π
re−εr
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Figure 6.3. Buffer range for determining link density

where r is the distance of x from x0, θ is the angle and ε2

2π is a normalization factor. While θ is

random uniformly drawn from [0, 2π), ε is direct user input and r is scaled with given radius R from

the input. We refer readers to the original study for the details of noise sampling [7].

The experimented geo-indistinguishability provides location privacy by adding controlled noise

L(ε, R) to the OD GPS points xi within a certain range R in order to mask the actual locations

using density based noise range selection method R.

Density-Aware Noise Injection: This section explains the density-aware structure of the noise

injection approach using Planar Laplace noise proposed in [7]. Randomly injecting noise without

considering the network’s density would not achieve the desired privacy level all the time. The

DPMM provides location privacy for trajectories even for outliers by selecting noise level adaptively

with respect to the link density of network D(V,E)
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Algorithm 5 Adaptive noise magnitude selection

1: Input h1 for the number of links in the buffer range
2: Input h2 for the number of links in the buffer range that belong to the same functional class
3: Input Z initial buffer range
4: LinkSet ← empty set
5: LinkSetFC ← empty set
6: while Size of LinkSet ≤ h1 or Size of LinkSetFC ≤ h2 do
7: Find the LinkSet links within buffer zone
8: Find the LinkSetFC links within buffer zone
9: Z+=10 meters

10: end while
11: R← 1

2Z
12: return R and LinkSetFC

The ODs of trajectories are the most vulnerable parts due to revealing users’ start and end

locations, such as home or office addresses. Therefore, providing privacy for ODs requires much

attention. In this work, we consider the link density around the OD of trajectories to define the

level of noise that needs to be injected. As we mentioned earlier, every link has functional class

information, and DPMM moves the GPS point to a place that matches a new link with the same

functional class of the original link.

Link density in the road network quantifies the populations in general. While central areas

have more streets and intersections, which implies more population, the rural places have fewer

road segment connections due to limited populations. Therefore, it is easier to provide privacy

for the people who live in central areas. On the other hand, it is hard for the rural areas since

location traces are unique in the outskirts of the communities. We define a density function for

noise injection as follows:

Definition 15. [Density Function] Given the ε value, radius R of the noise function L(ε, R) is

selected with respect to R = f(θ) where θ is the network density in terms of the number of links

(road segments).

For each trajectory, OD GPS points are perturbed with the noise injection model. The DPMM

adjusts the noise using the link density around the GPS point with respect to a cloaking region (see

Fig. 6.3). To do so, starting from an initial radius Z, the proposed mechanism increases the radius

Z until finding a certain number of links and the same functional class links. The number of all
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links, h1, and the number of the same functional class links, h2, are user-defined parameters based

on the geographical region and density of the network D(V,E). Sparse vs dense structured regions

or shapely vs end-to-end intersection-based network would require different hyperparameters. For

example, this project considers shapely road network, which divides the end-to-end intersection

road link to the small links based on the road curves and doing map-matching with a different road

network requires different h1 and h2 hyperparameters. Once the number of all links and the same

functional class links reach the thresholds h1 and h2, the center of the final radius Z, which satisfies

the two thresholds, is selected as the input for noise function L(ε, R) where R = 1
2Z. As the Laplace

noise is 2-dimensional, we select the half of distance value Z for this noise model and sample a GPS

point with given parameters (see Algorithm 5). After the noisy GPS point is returned from L(ε, R),

all the nodes belonging to the same function class links are selected as candidate nodes for path

construction.

6.4.3. Candidate Nodes. To construct the path of a trajectory using the network D(V,E),

map-matching first needs to have candidate nodes for each GPS point. However, due to geospatial

constraints, selecting a single candidate node given the GPS point does not guarantee to match

with the correct node. For instance, if the GPS is close to a one-way road and a two-way street

with a similar distance, the GPS point may belong to both. Selecting the best node depends on the

direction and the next GPS point. To mitigate the geospatial constraints, we propose to choose

a set of candidate nodes to find paths. Besides, selecting a travel path randomly using multiple

candidate paths increases the privacy (see Section 6.3.2).

While we select candidate nodes for OD GPS points from the same functional class links using

threshold h2, for waypoints, we find candidate nodes from all the links using the threshold h1.

For every waypoint, we follow the same cloaking-region approach we followed for noise injection

to find candidate nodes (see Fig. 6.3). However, we do not restrict candidate links to have the

same functional class criteria for waypoints to increase the randomization in the path construction.

The cloaking region method takes the following inputs for each waypoint from T̃ : threshold h1 for

searching the number of links, initial radius Z, and road network D(V,E). The output is h1 number

of links, and the nodes that belongs to those links are collected as a candidate node-set. Candidate

nodes for each waypoint are stored in separate containers. For our experiments, we prefer to use
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the same threshold h1 for ODs and waypoints. Still, the parameters can be adjusted depending

on the geographical region and network D(V,E) structure. Algorithm 6 summarises the candidate

node selection.

Algorithm 6 Candidate node selection

1: Input h1 for the number of links in the buffer range
2: Input Z initial buffer range LinkSet ← empty set
3: while Size of LinkSet ≤ h1 do
4: Find the LinkSet links within buffer zone Z
5: Z+=10 meters
6: end while
7: return Candidate Nodes from LinkSet

6.4.4. Private Paths. A user’s travel path could allow an adversary to infer further information

about the user’s identity by linking other available information to the user path. For instance,

the adversary may know several locations of a user, such as home or office location and specific

automatic toll booths that the user passed through. If a path matches with known locations, the

adversary may identify the user. Since locations are sensitive and easy to link with user identities,

minimizing the actual travel paths of a user reduces the risk of re-identification by adversaries.

Instead of revealing the true path of a trajectory, randomizing the paths in the same trajectory

direction using waypoints limits the true travel path while providing similar travel within the same

vicinity.

DPMM selects the travel routes for the sequence of waypoints randomly to construct privacy-

preserving paths. First, for a simplified trajectory T̃ , the proposed method finds candidate paths

between waypoints using the candidate node-set, which is constructed using Algorithm 6. Then,

since we do not intend to find the shortest path, we implement A∗ path finding algorithm with the

euclidean distance between nodes as heuristics [85]. A∗ algorithm combines the Dijkstra shortest

path algorithm with greedy search methods [46] and finds reasonable paths by using heuristics to

guide the path finding direction.

For every pair of points pi and pj in T̃ , candidate paths are stored with the corresponding

travel distance. The proposed DPMM selects a travel path randomly with probability proportional

to the travel distance. The shorter travel distance has a higher chance of being traveled by the

user. Therefore, the selection mechanism assigns a higher probability to the shorter travel distance
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path. To achieve this, we inversely normalized the distances between 0 and 1. Then, we select

the path privately using DP exponential mechanism. Note that our model’s sensitivity ∆p is 1

because maximum travel distance is always bounded to 1 due to normalization. DPMM follows

this procedure sequentially, and the final private link trajectory protects the user travel paths along

with OD privacy.

6.4.5. Travel Path Adjustment. The network used for map-matching is a directed graph.

Depending on the road traffic direction, network D(V,E) has separate links for incoming and

outgoing links. Randomized path selection sometimes may result in unreasonable travel paths that

go reverse and make a u-turn or o-turn reaching the same node visited before. We remove the travel

loops after private path selection to prevent redundant paths taken by the private map-matching.

Our experimental analysis shows that the loops on raw trajectories are less than 1% in our dataset;

removing the loops after private path selection decreases utility loss. Note that the ε-DP privacy

guarantee still holds with post-processing.

6.4.6. Complete Trajectory Construction. The proposed private map-matching algorithm

combines noise injection and private selection DP methods, as we discussed in separate sections

above. Algorithm 7 summarizes the privacy protection mechanism. First, the algorithm creates a

waypoints trajectory T̃ by keeping the OD as it is. Next, it injects the proposed adaptive Laplace

noise to the OD GPS points and forms candidate nodes from the same functional class links.

The third step of the proposed algorithm finds candidate nodes for every waypoint in T̃ . In the

fourth step, the proposed mechanism finds candidate paths between every consecutive node-set

using A∗ routing algorithm. Then, it selects paths privately from the candidate paths using the

exponential-DP method. Finally, it connects selected candidate paths and removes the travel loops.

The algorithm terminates after generating all the private link trajectories from GPS trajectories.

6.5. System Analysis

6.5.1. Differential Privacy Analysis. The DPMM distributes the privacy budget ε evenly

to the sub-processes while guaranteeing ε-DP. Representing the raw GPS trajectory with s + 1

waypoints including ODs results in s paths that needs to be private. Total ε budget divided to εi for

OD noise injection and number of waypoints such that
∑2+s

i=1 εi. While OD noise injection provides
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Algorithm 7 Privacy Preserving Map-Matching

1: Input Λ,Ψ, D(V,E),
2: h1 for number of links in the buffer range,
3: h2 for number of same functional class links in the buffer range,
4: Z initial buffer range
5: for T ∈ Ψ do
6: Build waypoints trajectory T̃ from T using RDP
7: for p ∈ T̃ do
8: if p is Origin or Destination then
9: Select R and BufferSetFC using Algorithm 5

10: Inject adaptive noise to the GPS point p using L(ε, R)
11: Form candidate nodes set from BufferSetFC links
12: else
13: Form candidate nodes from Algorithm 6
14: end if
15: end for
16: Find candidate paths with A∗ for candidate nodes
17: Select private paths with exponential-DP mechanism
18: Connect privately selected paths
19: Remove the node loops as in Section 6.4.5
20: Build the noisy link matched trajectory with connected links
21: end for
22: return Noisy link trajectories Σ

privacy with the property of parallel composition, private path construction provides privacy with

sequential composition. Post-processing on map-matched trajectories, such as removing the travel

loops, does not violate the ε-DP privacy.

The smaller value of ε represents higher privacy and indistinguishability, whereas higher ε

gives more accuracy to the output trajectory. Due to the geospatial and temporal nature of user

movements, it is also essential to preserve the accuracy of the generated trajectories while achieving

a reasonable privacy guarantee. The data owner can adjust the privacy budget with respect to the

sensitivity for both OD and path privacy. If the data owner wants to hide the ODs more, he/she

can select a smaller ε value for noise injection to the ODs, which increases the perturbation. The

same analogy can be applied to path privacy too. In summary, we left privacy budged distribution

to the data owner, and this aspect is out of the scope of this work.

6.5.2. Attack Resilience.

Outlier Leakage. A trajectory may have OD points that are unique in a sense and reveal

vulnerable information about user identity [80]. Threat on outlier trajectories mainly applies to
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rural areas, such as travel between a hospital and a farmhouse. Injecting the same noise magnitude

to all GPS points cannot provide privacy for every GPS point. Moving GPS points slightly can

provide privacy in central locations. However, repositioning locations in an outlier area at the same

level as in central areas may not offer the same privacy. The proposed privacy mechanism deals

with outlier trajectory ODs by perturbing them adaptively with respect to road segment density.

Partial Sniffing. An adversary may have access to a sub-trajectory of a user that participated in

the trajectory dataset through physical tracking or social networking. Then, an adversary may try

to infer the rest of the user travel that passes through the locations in the sub-trajectory. Let a

user’s sub-trajectory Tsub be known by the adversary; there is a high chance to reveal the user’s

rest of the travel if the adversary can find a matching T from trajectory database [80]. DPMM

prevents adversaries from making such inferences with two concepts: OD privacy and path privacy.

For example, a true trajectory may travel from a local street to a hospital. When an adversary gets

access to a partial trajectory Tsub of user trajectory T , he/she may try to infer the home address

and the purpose of the travel. However, since the proposed privacy mechanism does not disclose the

true ODs and travel path, the adversary cannot correctly identify the user information from the

privacy preserved trajectory Tp ∈ Σ.

6.6. Evaluation

6.6.1. Dataset Description. This project uses a real-world dataset collected in the San

Francisco Bay area in California with fleet and consumer GPS trajectories. We process one day

one hour of trajectories (between 1 pm and 2 pm) from the city of San Francisco. In total, the

experiments apply DPMM to 833 user trajectories. The dataset is created from various location-

sharing applications and GPS tracking devices. When the tracking device is active, location (lat,

lon), speed, and heading are collected along with a unique device identifier. Trajectories have varying

sampling rates due to being collected from different sources. However, most of the trajectories have

sampling rates of less than 1-minute.

6.6.2. Comparisons to Alternate Approaches. We compared the proposed privacy mech-

anism with two well-known DP-based private trajectory generators: AdaTrace [80], and DPT [96].

While AdaTrace generates synthetic trajectories by learning the mobility patterns, DPT constructs
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Figure 6.4. Comparison of different ε values and the change of OD-links for different
for 1 hour period of trajectories between 1pm and 2pm.

prefix-tree to generate private user trajectories. We acquired the original implementations from

respective authors. Both AdaTrace and DPT models generate synthetic GPS trajectories instead of

link trajectories. For a fair comparison between the proposed DPMM and benchmark models, we

applied map matching to AdaTrace’s and DPT’s GPS trajectories to generate equivalent link-level

trajectories for our analysis. This is referred to as DP-free version of our map-matching algorithm.

The utility is closely related to the size of the database for benchmark AdaTrace [80] and

DPT [96] models. However, the utility for DPMM is bounded by the density of the road network.

Therefore, to achieve better utility for the benchmark models, we trained their respective implemen-

tations with a whole day of trajectories within the region. The total number of GPS trajectories for

one day in San Francisco city in our database is 9249.

Along with other studies in the literature, we also compare DPMM method with different

variants:
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(a) DPMM vs original link trajectories (b) DPMM vs GPS trajectories

Figure 6.5. Performance of DPMM is compared with the different ε values with
respect to original link and GPS trajectories.

• DPMM-No-WP: This version performs the same privacy mechanism for OD while

selecting paths from trajectory T without waypoint sampling and not experimenting

trajectory post-processing (removing the loops).

• DPMM-A*-WP: Based on DPMM-No-WP, DPMM-A*-Way adds waypoint sampling to

base model in order to provide more privacy and less utility loss. This version does not

perform trajectory post-processing (removing the loops).

• DPMM-D-WP: Following the DPMM-A*-Way, this method uses Dijkstra path finding

algorithm instead of A∗. Dijkstra guarantees to find the shortest path while A∗ does not.

6.6.3. Utility Metrics. We have chosen utility metrics commonly used in transportation

studies including individual trajectory level and aggregated level queries. In this section, we explain

the importance of the utility metrics and present some use-case examples as we define the metrics.

The goal is to have a higher similarity in the utility metrics between original and privacy-preserved

trajectories given the same level of privacy protection.

Individual Utility Metrics: Mobility trajectories are complicated, and evaluating the quality of

privacy-preserved trajectories with aggregated statistics alone is not sufficient. For example, the OD

Similarity metric for AdaTrace when compared to original trajectories (Table 6.1) indicates high

level of OD similarity between the two. However, their respective actual trajectories show distinct
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differences (as shown in Figure 8(a)). Since the proposed DPMM perturbs only the OD GPS points,

its distortion on the trajectory and geographical mismatch is limited.

(a) DPMM vs original link trajectories (b) DPMM vs GPS trajectories

Figure 6.6. Performance of DPMM is compared with different methods with respect
to original link and GPS trajectories on ε = 1.0.

We evaluate the utility of the proposed DPMM model at the individual trajectory level with

different variants of the DPMM mechanisms. The relative trip length change of the link trajectories

before and after applying DPMM is proposed as a utility metric in this study. Without DPMM, the

base map-matching algorithm matches the GPS points with the nearest links and connects such links

with the shortest path algorithms. Using the same relative change formulation, we compared the

change of the privacy preserved trajectories with clean link trajectories and GPS trajectories. The

trip length of the GPS trajectories is calculated using the euclidean distance between the sequence

of the GPS points.

Aggregated Utility Metrics: Spacial density analysis plays a key role in understanding human

mobility [86]. Our first aggregated utility metric, mainly used for graph data, is the query error

that quantifies the error in the characteristics of most visited places. Minimizing the query error

makes output privatized data more useful [34,80,217]. For this metric, 500 road links are sampled

uniformly across all regions from the network D(V,E). Then, the normalized absolute difference

between the number of real and synthetic trajectories passing through each link is computed by the

following:
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(6.6) error(Q(Σ)) =
|Q(Ψ)−Q(Σ)|
max {Q(Ψ), s}

,

where Q(Ψ) and Q(Σ) are the number of trajectories that pass the certain links for the set of original

trajectories vs privacy preserved trajectories, respectively, and s is sanity bound for mitigating the

effect of the extremely small selective queries. We specified the sanity bound s as 1% of the users.

The travel characteristics of moving objects, such as personal vehicles and public transportation

for spatio-temporal analysis can provide valuable insights for transportation analysts [169,183].

The second aggregated utility metrics measures the similarity of the OD distributions, called OD

Similarity. This metric evaluates how much the overall characteristics are preserved in terms of OD

links. Jensen-Shannon divergence (JSD) is a well-known similarity metric mainly used for measuring

the similarity of two probability distributions [131]. We employ JSD for OD similarity.

The third metric measures the changes of the Vehicle Miles Traveled (VMT), which can be

useful for different purposes, such as ride-sharing [97] and land use [182], for link trajectories,

called VMT Change. Link count refers to the number of times a link occurs on the aggregated link

trajectory network. The last utility metric compares link count distribution between original and

privacy preserved link trajectories.

6.6.4. Numerical Results. We evaluate the performance of DPMM with benchmark studies

and other DPMM variants from two different aspects: change in the privacy preserved trajectories

at the individual level and aggregated level. When we apply the DPMM method to the trajectory

database, depending on the privacy level ε, the utility varies in terms of the privatized OD link

ratio and trip lengths. In addition, the experiments quantify the query similarity metrics at an

aggregated level with respect to other trajectory privacy methods and compare the results with

other studies in the literature. We use a range of ε values between 0.05 and 20 to evaluate the

performance of the DPMM. The ε values are selected to reflect the lower and upper limits of the

impact of the DPMM privacy mechanism.

Individual Trajectory-level Analysis: Regardless of the other user’s movements, every OD link

may have privacy concerns, and matching an OD with a different link hides the true end location of

the user. We inspect the fraction of OD links that are different from the original raw trajectory
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after the proposed noise injection, which we refer to as the privatized link ratio. Depending on the

noise level and the road network density D(V,E), DPMM may still match the links with the same

link after the noise injection. To quantify the privacy of our method, we inspect the privatized link

ratio over the total number of OD links with respect to different ε values. For 833 trajectories, we

have 1666 OD links. Fig. 6.4 shows the performance of DPMM in terms of OD privacy. The goal of

the proposed mechanism is to move OD links to different links. Therefore the output is expected to

have higher ratios for the lower level of ε. The highest level of the privatized link ratio is observed

with the lowest ε = 0.05 with an average of 98.7%.

Next, Figure 6.5 quantifies the absolute trip length change with different ε values at the trajectory

level. Figure 5(a) and Figure 5(b) illustrate the comparison of DPMM link trajectories with original

link trajectories and GPS trajectories, respectively. The goal is to retain higher utility with a lower

ε value. The lowest value of ε = 0.05 generates the highest dissimilarity between privacy-preserved

DPMM link trajectories and original link and GPS trajectories. The distortion in DPMM link

trajectories is sensitive to the geographical region, road link density, and the link functional class.

The average trip length change varies between 89% and 30% for original link trajectories and

between 107% and 27% for GPS trajectories on different ε values. For instance, for ε = 1, the

absolute average distortion on trip lengths is 36.8% and 38.1% for original link trajectories and

GPS trajectories, respectively. Since the sequence of GPS trajectories do not reflect the actual trip

length, having a higher trip length error regarding link trajectory is expected. Increasing the ε noise

value decreases distortion and the level of privacy that DPMM guarantees.

(a) DPMM (b) AdaTrace (c) DPT

Figure 6.7. Link count densities on aggregated network level for DPMM with
baseline comparisons using ε = 1
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The last individual-level utility metric compares the proposed DPMM with other variants in

terms of the change in the trajectory trip length (see Figure 6.6). The ε is selected as 1.0 for this

part of the experiments. Figure 6(a) and Figure 6(b) illustrates the change in the trip length of

different DPMM variants where DPMM outperforms the others with the lowest mean difference.

The results clearly show the impact of the trajectory sampling from T to T̃ and removing the loop

in the trips regarding the utility with the same privacy level. Another interesting observation is

that the Dijkstra algorithm has very close similarity with A∗ routing algorithm. While A∗ does

not guarantee the shortest path, the Dijkstra algorithm guarantees to find the shortest path. Since

the users do not take the shortest path all the time, selecting a candidate path using A∗ routing

algorithm is a more reasonable choice due to the unpredictability of user behaviors.

Aggregate-level Analysis: Table 6.1 presents the aggregated utility results of different metrics

for ε = 1.0. The proposed DPMM performs better for all metrics due to its ability to handle each

trajectory separately. On the other hand, AdaTrace and DPT achieve varying performance on

different metrics. While DPT outperforms the AdaTrace in terms of the most visited places (Query

Error) and origin-destination densities (OD Similarity), AdaTrace produces more similar trajectories

to proposed DPMM in terms of the trip length, as shown with the VMT Change statistics. In

summary, the DPMM succeeds in keeping the trajectory patterns in the same region while hiding

true OD locations and travel paths. Therefore, the results in Table 6.1 reflect the superiority of the

proposed algorithm.

Next, we evaluate the proposed DPMM and benchmarks with original link trajectories in terms

of link count distribution to understand how link counts changes as a function of privacy. Figure

6.7 shows the link count distribution with respect to the original trajectories for different privacy

Table 6.1. Comparison of the aggregated utility metrics with benchmark studies
for ε = 1. The lower value is the better for Querry Error and OD Similarity metrics.
For VMT Error, value closer to zero is better. The bold and green results show the
best performance and the second best performance, respectively.

DPMM AdaTrace DPT
Query Error 0.146 0.353 0.264

OD Similarity 0.065 0.081 0.068
VMT Change −0.072 0.164 −0.641
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mechanism with ε = 1, the ideal privacy level. The results illustrate that DPMM preserves the link

densities compared to baseline models AdaTrace and DPT.

Finally, we compare the spatial densities of the benchmark models with the original trajectories

using the same number of samples. Figure 6.8 shows the visual representation of spatial densities for

the raw GPS points, AdaTrace [80] and DPT [96]. The population densities and major routes are

clearly observed in raw GPS distributions. However, AdaTrace and DPT has some sort of density

awareness while missing the major routes. Note that since AdaTrace and DPT do not consider

geospatial constraints, resulting trajectories are sampled in traffic-free areas such as city-parks

and national-preserve areas. Compared to these baselines, the proposed DPMM model provides

privacy-protected trajectories at the road network level that prevents to have such unrealistic

trajectories.

6.7. Conclusion

In this paper, we present a differentially-private map-matching algorithm for the privacy of

mobility trajectories. Proposed mechanism protects individual OD locations with adaptive noise

injection model and travel paths with exponential DP method. The DPMM injects planar Laplace

noise to the individual OD GPS points by considering the density of the localized road network and

the functional class of the links. The actual perturbation level for each GPS point is adjusted by

(a) AdaTrace (b) DPT (c) Original Trajectories

Figure 6.8. Visual representation of the original trajectories vs privacy preserved
trajectory densities for benchmark models. Proposed DPMM does not produce GPS
trajectories, hence, it does not have visual comparison with benchmarks.
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considering the localized link density. Next, proposed DPMM uses a waypoint sampling method for

constructing travel paths privately. We evaluate our DPMM method for a variety of noise levels

by comparing it with several comparative privacy models at individual trajectory and aggregated

statistics.

The advantage over the literature of DPMM does not rely on population density with respect

to other samples in the database, rather it considers link density in the road network. Due to

map-matching, DPMM prevent geographical mismatches with the road structures which is a common

problem for other baseline models. While this project provides OD location privacy with travel path

privacy for individual user trajectories, DPMM does not guarantee the generation of the repeated

trajectories due to the randomized nature of the mechanism. This resulting distortion is a form

of the utility trade-off. Future work will include extending this investigation to different types of

mobility datasets while also addressing the aforementioned limitations.
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CHAPTER 7

MobilityGPT: Enhanced Human Mobility Modeling with a GPT

model

7.1. Introduction

The widespread integration of location-based services and smart GPS devices, such as smart-

phones and watches, has made continuous monitoring of human mobility both desirable and feasible.

These technologies capture diverse and detailed human movement information, with mobility trajec-

tories representing the finest granularity of individual-level mobility characteristics. Such trajectories

are crucial in various applications, including mobility modeling, commercial business analysis, and

disease spread control [30,190].

Despite increasing demand for human mobility trajectory datasets, numerous challenges hinder

their access and distribution [115]. First, these datasets are typically collected by private companies

Figure 7.1. Generative models that do not incorporate mobility characteristics
struggle to capture human mobility patterns accurately.
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or government agencies, hence presenting privacy concerns due to the potential disclosure of an

individual’s sensitive lifestyle patterns (e.g., home or office addresses and points of interest). Legal

implications, such as those outlined in the California Data Privacy Act and GDPR, highlight the

importance of carefully handling spatiotemporal traces. Second, datasets owned by companies may

expose proprietary business models and are often inaccessible for research purposes [204]. Lastly,

publicly available datasets often lack diversity or quality, with gaps in data points and intrinsic

noise that significantly reduce their utility. These limitations impede the progress of urban planning

or transportation research [139]. Therefore, it is imperative to establish alternative trajectory data

sources that are both high-quality and accessible for research purposes.

Current generative models designed for human mobility exhibit multiple drawbacks: they fail to

capture the sequential mobility characteristics, often lack the continuity of generated trajectories,

and do not consistently adhere to geospatial constraints. Approaches based on GANs [74] and

VAEs [114] structure data in a tabular format, which, unfortunately, fails to preserve the inherent

correlations among locations. Models like LSTMs, and sequential GANs [225] struggle to maintain

the smooth continuity of locations and capture realistic human mobility characteristics. A further

limitation of these methods lies in the elevated mismatches observed in geospatial location sequences.

In short, a successful generative model for trajectory datasets should precisely grasp the intrinsic

spatial-temporal behaviors.

Large language models (LLM), such as GPT (Generative Pre-trained Transformer), offer a

robust foundation for sequence generation tasks and can be refined through fine-tuning to cater to

distinct objectives. Trajectories and sentences share several similarities that make GPTs a promising

approach for trajectory generation. Both consist of ordered sets of elements chosen from finite

pools (road links and words, respectively). They exhibit semantic or spatio-temporal relationships,

adhering to distinct rule systems such as language rules for sentences and geographical constraints

for trajectories. Due to these parallels, the techniques developed for natural language processing

can be adapted to model and generate realistic trajectories. [152] Besides, the gravity model holds

significance in human mobility modeling as it provides a structured framework for estimating and

understanding the flow of interactions between different locations [238]. Using gravity as part of

human mobility modeling could bring further advantages to synthetic trajectory generation tasks.
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In this study, we leverage the power of GPT for synthetic trajectory generation. However,

directly training GPT on mobility data without geospatial insights would generate unrealistic

sequences. To generate more realistic synthetic trajectories, we introduced several innovative

methods, including (1) gravity-aware sampling, which incorporates gravity modeling of trajectory

data into training updates, and (2) the use of road connectivity matrix (RCM) masking to eliminate

disconnected location sequences from logits (see Figure 7.1). Pretraining GPT models on trajectory

data captures the general sequence characteristics in an unstructured manner. We, furthermore,

proposed an automated fine-tuning pipeline that improves the trajectory quality by leveraging

transportation-specific metrics to evaluate and optimize the generated sequences without relying on

human labeling. Our multi-objective framework, MobilityGPT, not only extends the application of

GPT models to human mobility modeling but also collectively enhances the model’s capacity to

capture intricate patterns and adhere to realistic geospatial constraints (e.g., trajectories consist of

road segments that are indeed connected).

Our contributions can be summarized as follows:

• We propose an LLM-inspired MobilityGPT human mobility modeling approach incorporat-

ing multiple unique features with a geospatially aware pretraining method and automated

fine-tuning approach without human feedback.

• While gravity-aware sampling trains a generative model with respect to Origin-Destination

(OD) pair-gravity values, the next sequence prediction is conditioned on the RCM that

preserves the continuity of the generated trajectories.

• We propose a novel method for constructing a preference dataset to fine-tune MobilityGPT

using reinforcement learning, enhancing the similarity of generated trajectories in terms of

travel length.

• Through comprehensive experimental analysis using real datasets, we demonstrated that

the proposed methods can generate trajectories with high fidelity while preserving essential

statistical and semantic properties of human mobility.
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7.2. Related Work

Generating synthetic mobility trajectories from real data is a promising approach for protecting

sensitive information [109]. Traditional model-based methods, such as those parameterizing human

mobility, have limitations due to the complexity of mobility characteristics. Early data-driven

approaches, employing techniques like gravity models and decision trees [105,165], face challenges

in capturing sequential transitions between locations. In contrast, model-free techniques, particularly

generative machine learning models, have gained traction for their ability to learn from data without

external input parameters [12]. Such generative models have been explored for human mobility

modeling using various data representations, including grids in tabular format [158], image-like

trajectory modeling [24], and sequential grid format [60]. However, these models exhibit limitations

in generating trajectories that accurately capture geospatial complexity.

One promising generative model direction relies on GPS sampling. Due to mismatches, the

LSTM-based trajectory generation model cannot provide continuous motion of human mobility in

diverse geospatial areas [179]. A similar continuous GPS trajectory generation method with a U-Net

neural network using Diffusion models is proposed in [236]. Another generative direction with ML

for mobility trajectories is employing two-stage training methods [106,137,210]. A recent GAN-

based model, relying on road links with the A∗ path-finding algorithm between regions employing

two-stage GANs, has shown promise in identifying diverse paths for specified origin-destination

pairs [106]. However, it falls short in generating synthetic trajectories, as the generation process

initiates with an origin-destination pair from testing trajectories. Finally, sequential GAN methods

have also been employed for mobility modeling with different variants [60,225]. Unlike previous

methods, MobilityGPT leverages the auto-regressive GPT model for trajectory generation, enabling

a comprehensive exploration of spatial and temporal distributions with high-quality outputs by

incorporating road links into sequence modeling.

The GPT models, developed by [174], transformed the field of Natural Language Processing

(NLP) with transformer’s capabilities. GPT, with its pre-training on diverse language data,

demonstrated remarkable proficiency in understanding and generating coherent sequences to support

various NLP tasks. The transformer-based GPT concept has been applied to diverse applications,

from vision [33], music [11] to network data [113]. In addition, researchers have made great progress
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on various fine-tuning models for enhancing the GPT model capabilities [21,122,230]. However,

these fine-tuning models mainly rely on human feedback that evaluates the quality of the generated

sequences. This study proposes a geospatially-aware GPT model, MobilityGPT, with an innovative

fine-tuning approach for generating synthetic mobility trajectories.

7.3. Preliminaries

7.3.1. Discretization with Map-Matching. Let D(V,E) represent the road network as a

weighted digraph, where the set of nodes V correspond to road intersection, set of edges E to roads,

and weights representing link metrics, such as length of the link or traffic volume. There are two

sets of trajectories: GPS trajectories and link trajectories.

1) GPS trajectories: A sequence of GPS coordinates with l number of samples x ∈ G =

{x1,x2, ...,xl} forms a GPS trajectory that reflects the continuous motion of the object. The set of

all GPS trajectories are Ψ where G ∈ Ψ.

2) Link trajectories: Given the s number of vehicles on the road network, each vehicle travels

between origins and destinations using an ordered link path generating a user travel path known as a

micro-graph Φ ∈ D. Every link trajectory has n number of links φ ∈ Φ = {φ1, φ2, ..., φn} and Φ ⊂ E.

The set of trajectories is the corpus of all link trajectories with s users Φ ∈ Λ = {Φ1,Φ2, ...,Φs}.

The map-matching process is crucial in refining GPS coordinates, which provide an approximate

device location but may not consistently represent the exact travel path due to various errors.

Map-matching generates an ordered set of road network links describing the user’s trajectory after

accounting for the underlying road network D(V,E) and GPS points [172]. Addressing location

sequences in the continuous domain is challenging in conventional human mobility modeling, often

resorting to a discretized grid domain. However, this grid-like representation does not entirely

eliminate geospatial mismatching risks. To overcome this, our MobilityGPT model discretizes

locations into road segments with map-matching, resulting in more meaningful and realistic generated

trajectories.

7.3.2. Problem Definition. In an urban setting, a generative model is tasked with learning

the intrinsic mobility characteristics from a provided set of link trajectories, Φ ∈ Λ = {Φ1,Φ2, ...,Φs}.

The objective is to generate synthetic trajectories that closely resemble the training trajectories
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in terms of various utility metrics, thereby capturing and reproducing the key features of mobility

present in the input data.

Figure 7.2. Overview. The proposed MobilityGPT framework employs Generative
Pretrained Transformer (GPT) architectures and self-adaptive reinforcement learn-
ing (RL) fine-tuning methods within a human mobility-aware training pipeline for
synthetic trajectory generation. The process involves three steps: 1) Pretraining the
GPT model with a gravity model and road connectivity matrix, 2) Constructing a
trajectory-driven reward model, and 3) Fine-tuning the MobilityGPT pre-trained
model using RL policy optimization methods with the trained reward model providing
valuable feedback.

7.4. Mobility Modeling with Generative Transformers

This section describes the components of the proposed MobilityGPT for generating synthetic

high-fidelity trajectories. MobilityGPT achieves this through a multi-objective training pipeline.

Figure 7.2 illustrates the framework of our MobilityGPT mechanism, which can be divided into two

parts: pretraining for learning sequence characteristics and fine-tuning for enhancing the quality of

generated trajectories. The pretraining stage (Step 1 in Figure 7.2) learns the mobility modeling on

the road-link sequences using the gravity of training data and RCM. The fine-tuning stage (Steps 2

and 3 in Figure 7.2) aims to improve the similarity of synthetic trajectories to the training trajectory

samples in terms of travel length.

7.4.1. Generative Transformers. Recent breakthroughs in NLP have proven that trans-

former architectures are remarkably effective in processing word sequences. We have found that

trajectory sequences, representing the spatiotemporal movements of individuals or objects, share
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similarities with sentences across four key dimensions: sequential dependencies, spatial relationships,

contextual embeddings, and variable-length sequences. First, trajectory sequences exhibit sequential

dependencies similar to sentences, where the order of locations matters. Additionally, trajectories

involve spatial relationships between locations, just as words in a sentence convey semantic rela-

tionships. Furthermore, trajectory sequences, like sentences, can have variable lengths. Finally,

trajectories benefit from contextual embeddings that consider the entire sequence, similar to the

contextual understanding of words in sentences.

Given these strong similarities with trajectories and word sequences, two key elements of

transformers, self-attention mechanism, and autoregressive generation, empower MobilityGPT to

handle sequential data efficiently. Self-attention mechanism captures the long-range dependencies

and weighs the importance of each location in the context of the entire trajectory, enabling the

modeling of sequential dependencies. Besides, autoregressive sequence generation involves predicting

one element at a time based on the context of preceding elements, contributing to the model’s

ability to generate coherent and contextually relevant trajectories.

The self-attention mechanism computes a weighted sum of values V based on attention scores A

assigned to each element in the input sequence:

(7.1) Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
· V

where Q, K, and V represent the query, key, and value matrices, respectively. The softmax operation

normalizes the attention scores, and dk is the dimensionality of the key vectors. The weighted sum

is then used as the output of the self-attention mechanism.

In an autoregressive nature of transformers, the probability of predicting the next element yt in

the sequence given the context Y<t is computed using the chain rule of probability:

(7.2) P (yt|Y<t) = P (y1) · P (y2|y1) · . . . · P (yt|yt−1)

By formulating human mobility trajectories as a sequence generation task with road links from

D(V,E), transformer-based models can be applied to generate realistic and contextually relevant

synthetic trajectories given the real trajectories. The tokenization of road links, combined with the

125



self-attention mechanism, enables the model to capture spatial dependencies and generate coherent

and meaningful sequences of road links. Next, we explain our unique tokenizer modeling.

7.4.2. Tokenizer Modeling. Tokenization, the breakdown of sequences into smaller units or

tokens, is a key step in preparing raw data for transformer models. This process enables transformers

to efficiently process and understand the hierarchical structure, relationships, and semantic meaning

within the data. The influence of tokenization extends to trajectory sequences, where tokens

represent locations or spatiotemporal points. Transformers, utilizing attention mechanisms, assign

weights to tokens, enabling the model to focus on relevant trajectory segments during predictions.

In MobilityGPT, tokens symbolize locations in terms of road links, and the contextual embeddings

derived from tokenization contribute to generating embeddings that consider the holistic context of

the entire trajectory.

For MobilityGPT, we introduce a tokenization approach to enhance the model’s capabilities.

Specifically, we incorporate an “end of trajectory” token, denoted as <EOT>, which is appended to

each trajectory during training. Given a trajectory sequence φ ∈ Φ = {φ1, φ2, ..., φn} in terms of

road links, where φi denotes the i-th token in the trajectory. The tokenization process is defined as

follows:

Φtokenized = {φ1, φ2, ..., φn, <EOT>}(7.3)

This inclusion of <EOT> serves a dual purpose. First, it acts as a sentinel token to signify the

end of a trajectory. This is expressed as if φi = <EOT>, then trajectory i + 1 begins. The model

leverages this information to capture the distinct OD points of each trajectory effectively. Second,

this tokenization allows for generating diverse and randomized trajectory sequences.

Utilizing this tokenization strategy is integral to our model’s ability to capture spatial patterns,

differentiate between trajectories, and generate realistic sequences with varied ODs. This formulation

contributes to the robustness and versatility of our trajectory generation approach.

7.4.3. Map Understanding with Gravity Model and Road Connectivity Matrix.

Transformer-based models excel in capturing sequential information within long data sequences.

However, human mobility modeling presents distinct challenges, necessitating a comprehensive
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understanding of geographical attributes and constraints. For instance, the sequence of links does

not include some hidden attributes of human mobility, such as regional mobility flows (traveling

from eastbound of city to west), traffic rules (must right-turn, no U-turn), and trip length. We

have developed two innovative methods to overcome these challenges: the Gravity Model and the

Road Connectivity Matrix (RCM). The Gravity Model enhances the transformer’s capability to

understand the mobility flow patterns between regions, providing a context of spatial importance.

Together, RCM allows the transformer to learn the complex structure of the road network D(V,E).

These strategies collectively train the transformer with an understanding of geospatial information

without needing auxiliary data.

1) Gravity model. We first discretize the geospatial area into a grid of different regions,

denoted as r ∈ R. We calculate the weight of each region, RegionW(rx), as the number of trajectories

that either start or end in that particular region rx. Next, we calculate the gravity value to quantify

the traffic flow between regions for each trajectory that travels between origin and destination

regions denoted as rx and ry. The Gravity model is defined as:

(7.4) Gravity(rx, ry) =
RegionW(rx)× RegionW(ry)

d2(rx, ry)

Here, d2(rx, ry) represents the square of the euclidian distance between regions rx and ry. This

formulation is based on the principle that the interaction between two regions is directly proportional

to the product of their respective weights and inversely proportional to the square of the distance

between them. During training, as shown in Figure 7.2, a gravity-aware sampler selects a trajectory

sequence Φ = {φ1, φ2, ..., φn} based on the weight Gravity(rx, ry), where φ1 ∈ rx and φn ∈ ry.

2) Road connectivity matrix. The clarity of road connectivity is often diminished when

using GPS trajectories compared to traditional 2D maps. This is because, in some instances, roads

that appear connected on a map might not be so in reality due to physical barriers or design

differences, such as one-way streets and pedestrian zones. To mitigate this issue, we propose a

method to precisely extract road connectivities from real-world data and incorporate this information

into the training process of MobilityGPT. To achieve this, we define the Road Connectivity Matrix
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(RCM) based on the links from link trajectories, denoted as Φ:

(7.5) RCφx,φy =



1 if (φx, φy) is a consecutive pair in Φ,

or

if φx or φy is in the last row/column,

0 otherwise.

RCM effectively represents the connectivity between different road links. If two links, φx and φy,

are directly connected in the real world, their corresponding element in RCM is set to 1; otherwise,

it is set to 0. Additionally, one row and one column, both filled with 1s, are added to the matrix to

facilitate the generation of <EOT>. Specifically, the last linear layer of the transformer, denoted as

F , is adjusted by the RCM prior to the softmax activation function:

(7.6) F ′ = F ·RC

(7.7) Softmax(F ′) =
eF

′∑
eF ′

this integration is visualized in Figure 7.2, showing how the RCM modifies the output of the

transformer’s last linear layer. By multiplying F with the RCM, we ensure that only the connections

between actually connected roads are considered. This process filters out any inaccuracies in road

connectivity that might have been introduced by GPS data, thus enabling the model to have a more

accurate understanding of the actual road network.

7.4.4. Reinforcement learning from trajectory feedback (RLTF). Fine-tuning is essen-

tial for sequence generative models [228]. Pre-trained transformer architectures provide a foundation,

but fine-tuning customizes models to specific objectives, such as similarity of trajectories, enabling

them to learn complex patterns and nuances. This process is particularly vital in applications

like human mobility, where capturing intricate movement patterns is crucial. Preference datasets

are crucial for fine-tuning, allowing domain knowledge and critique to be integrated into training.

Building on this, we propose a novel approach to construct a trajectory-aware preference dataset

that combines established fine-tuning strategies with a new preference feedback dataset - all without
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Figure 7.3. The scheme of fine-tuning dataset generation for Reinforcement Learn-
ing from Trajectory Feedback

requiring human labeling. This enables the model to self-improve based on its output feedback,

minimizing human intervention and addressing scalability and bias challenges [159].

Reinforcement learning has proven to be a powerful approach for capturing the long-term

dependencies and spatiotemporal characteristics inherent in human mobility modeling, owing to the

complexity of this task [180]. The proposed approach, incorporating our novel preference dataset

with reinforcement learning, termed Reinforcement Learning from Trajectory Feedback (RLTF),

in an automated feedback process, involves several key steps. First, a reward dataset is created

by pairing prompts (partial trajectories) with compilations (complete trajectories generated by

the model) and assigning scores based on the similarity of the compilation lengths to the original

trajectory lengths (see Figure 7.3). This reward dataset is then utilized to train a reward model U

through supervised learning. Subsequently, the trained reward model U is employed to fine-tune the

MobilityGPT model through a Proximal Policy Optimization (PPO) policy π, effectively leveraging

reinforcement learning without requiring human feedback.

Preference dataset construction for RLTF. Instead of relying on human feedback in fine-

tuning of MobilityGPT, we propose using quantitative metrics to construct the preference dataset.

Given a partial trajectory prompt, we generate two complete trajectories and assess their similarity

to the actual trajectory by assigning a trajectory similarity score based on the relative lengths of

the generated and reference trajectories from the training set. This score measures how well the
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generated trajectories match the characteristics, particularly length, of the training data, serving as

a proxy for human preference without requiring human labeling.

The process, as described in Figure 7.3, begins with a full trajectory Φ = φ1, φ2, . . . , φn of

length L(Φ). The first m road-links Φ′0 = φ1, φ2, . . . , φm serve as a prompt for MobilityGPT

to predict two possible continuations: Φ′1 = φm+1, . . . , φk and Φ′2 = φm+1, . . . , φz. These are

concatenated with Φ′0 to form two complete trajectories, evaluated using Γ1 = |L(Φ)− L(Φ′0 + Φ′2)|

and Γ2 = |L(Φ) − L(Φ′0 + Φ′1)|. The trajectory with lower Γ is labeled Φchosen, and the other

Φrejected, forming a preference dataset for RLTF. By leveraging this proximity-based metric, we

eliminate the need for human labeling, streamlining the dataset creation process and potentially

mitigating biases introduced by human subjectivity.

Reward model training. A Reward (preference) Model U is trained using the proposed

preference dataset to predict the probability that a given trajectory is chosen over a rejected

alternative. The loss function is formulated as follows:

(7.8) − log(σ(U(Φchosen)−U(Φrejected)))

The goal of the loss function is to maximize the probability that the chosen trajectory has a higher

score, thereby encouraging the model to assign a larger difference between Φchosen and Φrejected.

As the training progresses, the model becomes more capable of recognizing the characteristics of

trajectories that align with the preferred trip length.

Fine-tuning with reinforcement learning. Given the pre-trained MobilityGPT model and

supervised trained reward model, we train an RL policy that optimizes the MobilityGPT model for

generating higher-quality synthetic trajectories. Since policy learning relies on the reward that policy

receives from the environment, the reward model provides feedback for RL policy optimization. We

followed a general policy optimization method as in [237]. The RL agent learns a fine-tuning policy

π, which is optimized with the well-known Proximal Policy Optimization (PPO) method [185]. The

reward of policy π consists of two terms: reward model logits given the prompt Φ′p and compilation

Φ′c pair received from the MobilityGPT as U(Φ′p,Φ
′
c) and policy shift constraint in terms of the KL
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divergence given the baseline policy π. The full reward can be represented as follows:

(7.9) R(Φ′p,Φ
′
c) = U(Φ′p,Φ

′
c)− β log

(
πPPO
θ′ (Φ′c|Φ′p)
πbase(Φ′c|Φ′p)

)
.

It is worth emphasizing that the neural network architecture of the reward model U can be

simplified to enhance efficiency and interpretability. Moreover, there is the option to incorporate an

online fine-tuning stage, where the policy π and the reward model U are periodically re-trained.

However, in our experimental assessments, we did not delve into the performance of the retraining

process. This aspect and the formal exploration of privacy-preserving ML models are left for future

research endeavors.

Table 7.1. Comparison of the utility metrics with benchmark studies. Bold and
underlined results show the best and second-best results, respectively. For all metrics,
lower values indicate better performance. While query error relies on normalized error
rates for most visited places, other metrics use the Jensen-Shannon distributional
divergence statistic.

Porto-Taxi BJ-Taxi

Methods Query E. OD Trip L. Radius Gravity Query E. OD Trip L. Radius Gravity

SeqGAN 0.138 0.116 0.220 0.191 0.326 0.063 0.296 0.162 0.275 0.120

LSTM-TrajGAN 0.234 0.254 0.435 0.425 0.277 0.078 0.182 0.398 0.365 0.219

TS-TrajGen 0.309 0.120 0.161 0.115 0.248 0.277 0.105 0.570 0.485 0.336

DiffTraj 0.267 0.177 0.126 0.123 0.252 0.074 0.146 0.158 0.123 0.114

MobilityGPT 0.144 0.114 0.124 0.107 0.225 0.066 0.099 0.123 0.102 0.105

7.5. Experiments

MobilityGPT’s effectiveness is validated through extensive experiments on real-world datasets

against recent benchmarks. We will release our codes and data upon acceptance.

7.5.1. Experimental setup. 1) Dataset description. We have used two datasets of GPS

trajectories from taxi drivers in Porto, Portugal, and Beijing, China. The Porto dataset has a

sampling period of 15 seconds, whereas the Beijing dataset has a sampling period of 1 minute.

Both datasets have been preprocessed and map-matched by [106] to remove any errors. The Porto

dataset contains 695, 085 unique trips on 11, 095 road links, and the Beijing dataset contains 956, 070

trajectories on 40, 306 road links.
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7.5.2. Benchmark models. We performed experiments on original implementation hyperpa-

rameters for all benchmark models using their publicly available source codes. We experimented

with similar structured generative models with our proposed MobilityGPT model, including discrete

and continuous structure formats.

• SeqGAN [225]: SeqGAN is a state-of-the-art sequential generative model that trains

trajectories in discrete sequences with RL policy gradient methods using Monte Carlo

sampling.

• LSTM-TrajGAN [179]: This is a tabular LSTM model by learning the normalized GPS

location divergences with respect to the center of the dataset.

• TS-TrajGen [106]: TS-TrajGen is a method based on GANs that incorporates a modified

A∗ path search algorithm. This adjustment ensures spatial continuity in the generated

data. Additionally, the method includes topological constraints to align the generated

trajectories with existing road networks, ensuring road matching. TS-TrajGen requires

fixed OD pairs as inputs. We use OD pairs from the real training set as inputs during

inference.

• DiffTraj [236]: is the most recent and promising generative model for mobility trajectories.

DiffTraj employs a diffusion model in the U-Net structure for generating GPS trajectories.

7.5.3. Evalaution metrics. To evaluate the performance of the generative models, we need a

proper comparison metric with a wide range of mobility characteristics that quantifies the quality

of generated trajectories given the real trajectories. In this project, we employed four well-known

comparison metrics from literature [80,86] in addition to our proposed gravity and connectivity

utility metrics. These metrics have been widely used for the utility of synthetic mobility data

generation models [90,236].

Query Error: The query error, mainly used for evaluating data synthesis algorithms, is a

popular metric for synthetic data generation models. We use spatial counting queries in the form of

“the number of trajectories passing through a certain road-link”. Given road network D(V,E), we

uniformly sampled 500 road links from the road network. Then, the normalized absolute difference

between the number of real and synthetic trajectories passing through each of these links is computed
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by the following:

(7.10) QE(f(Σ)) =
|f(Ψ)− f(Σ)|
max {f(Ψ), s}

,

where f(Ψ) and f(Σ) stand for the query outcome from the original and synthetic trajectories,

respectively, and s is sanity bound for mitigating the effect of the extremely small selective queries.

We specified the sanity bound s as 1% of the users.

Apart from the query error, the main utility metrics inspect the distributional similarities for

synthetic trajectories with respect to real trajectories that train the generative model. Jensen-

Shannon divergence (JSD) is a well-known similarity metric mainly used for measuring the similarity

of two probability distributions [131]. We employ JSD for several human mobility characteristics.

We can look at overall distributions of the generated trajectories Λgen and real trajectories

Λreal, and JSD can provide a summary statistic for a pair of distributions. These are the main

distributions we extract from the Λgen and Λreal:

• OD: This metric evaluates the origin-destination similarity between two datasets for the

overall characteristics preserved in terms of OD links.

• Trip Length: This metric considers the travel distances of trajectories by using the total

length of link trajectories.

• Radius: In human mobility patterns, the spatial range of daily movements is an important

metric. We examined the user’s radius of gyration within the controlled road network area.

• Gravity: The gravity summary metric examines the impact of the gravity sampling model

that was introduced for MobilityGPT at high-level mobility patterns with the same JSD

method.

Connectivity: The connectivity metric quantifies the percentage of trajectories that are

fully connected from origin to destination, owing to the RCM that samples the next road link

conditioned on the connected road links, thereby capturing the underlying road network topology

and connectivity patterns.

7.5.4. Model Details. MobilityGPT utilizes a minimal version of the standard decoder-only

transformer architecture [175], built upon the minimal GPT implementation from [110]. Table 7.2
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Table 7.2. Model and training parameters utilized in MobilityGPT

Parameter Value
N. layers 6
N. heads 4

N embeddings 64
Batch size 64

Learning rate 1e-5
Training size 80%

Test size 20%
Training steps 3000

Block size (Porto) 300
Block size (Beijing) 60

Max. Traj. length (Porto) 278
Max. Traj. length (Beijing) 60

summarizes the important model and training parameters employed in this work. Since the Porto

and Beijing datasets exhibit different trajectory lengths and characteristics, we utilize distinct block

sizes for training and maximum trajectory lengths for synthetic trajectory generation. However, we

employ the same set of hyperparameters across both datasets for all training stages, including the

reward model and PPO training.

7.5.5. Comparison with benchmark generative methods. Table 7.1 summarizes the

performance of MobilityGPT and benchmark models. We sampled 5000 random trajectories from

the test set and generated same number of synthetic trajectories. The results show the significant

advantage of MobilityGPT over existing state-of-the-art models for trajectory generation. Across

both Porto-Taxi and BJ-Taxi, MobilityGPT consistently outperforms all baseline models, achieving

the best or second-best performance on multiple utility metrics.

Notably, MobilityGPT demonstrates up to 24.07% improvement over the second-best model

in modeling trip lengths and up to 17.07% improvement in capturing spatial radius on BJ-Taxi.

Additionally, it exhibits up to 9.27% improvement in capturing gravity patterns on Porto-Taxi.

MobilityGPT excels in accurately modeling intricate characteristics of individual trajectories, such

as spatial and temporal patterns, by effectively capturing the relationships between locations and

trajectories, addressing a significant limitation of previous approaches. Its remarkable performance

in modeling OD distributions highlights its capability to capture underlying patterns governing

traffic flow and human mobility. Overall, MobilityGPT’s superior performance across multiple
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metrics highlights its effectiveness as a comprehensive and powerful trajectory generation model,

positioning it as a valuable tool for applications in transportation, urban planning, and mobility

analysis.

The primary objective of mobility generative models is to produce trajectories that closely

resemble the original data by capturing the overall mobility characteristics, rather than generating

exact replicas. Figure 7.4 depicts the spatial densities generated by baseline methods for Porto

City. While all the maps demonstrate that the generated trajectories accurately capture the city’s

geographic profiles, MobilityGPT has a clear representation of geospatial density in the generated

trajectories compared to the original test trajectories. Clearly, MobilityGPT produces trajectories

that closely resemble the originals both in urban areas and the outskirts of the city, surpassing other

methods significantly.

7.5.6. Ablation study. As MobilityGPT incorporates three distinct contributions to the

standard GPT model for comprehensively capturing human mobility patterns – the gravity model,

RCM, and RL fine-tuning (RLTF) – we performed experiments using different variants of these

models, evaluated using three comparison metrics as shown in Table 7.3a. On average, with the

additional components of MobilityGPT, we observe a 7.4% improvement in trajectory similarities

in terms of ODs and a 19.5% improvement over trip length similarities. Furthermore, without

the RCM, MobilityGPT fails to preserve connectivity in the generated trajectories. RCM ensures

connectivity by conditioning the generation of the next link on connected links, effectively capturing

the spatial constraints inherent in human mobility patterns.

We compare different fine-tuning methods with our proposed preference dataset construction

approach: supervised fine-tuning (SFT) and direct preference optimization (DPO) [177] and

summarized their performance in Table 7.3b. We found that RLTF is effective for capturing the

complexity of mobility modeling and outperforms other fine-tuning strategies.

An additional ablation study on the Beijing dataset, shown in Table 7.4, investigated the

impact of MobilityGPT’s key components. Similar to the Porto dataset, the ablation study on the

Beijing dataset exhibits the synergistic effects of MobilityGPT’s novel components – RCM, Gravity

Model, and RLTF fine-tuning – in accurately modeling diverse mobility characteristics, boosting
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Table 7.3. Ablation study shows the influence of (a) removing each component on
the performance of MobilityGPT and (b) on different methods for fine-tuning.

RCM Gravity Model RLTF OD Trip L. Conn.
7 7 7 0.123 0.154 0.87
7 3 7 0.122 0.146 0.83
3 7 7 0.120 0.147 1.0
3 3 7 0.114 0.140 1.0
3 3 3 0.114 0.124 1.0

(a)

SFT DPO RLTF OD Trip Length
3 0.116 0.171

3 0.115 0.163
3 0.114 0.124

(b)

(a) Original Trajectories (b) MobilityGPT (c) TS-TrajGen

(d) SeqGAN (e) LSTM-TrajGAN (f) DiffTraj

Figure 7.4. Visual representation of the geospatial density of different methods.
MobilityGPT exhibits the highest similarity to the original trajectories.

performance on key metrics like OD and Trip Length while the connectivity priors ensure accurate

capture of network-level patterns.

Table 7.4. Ablation on Beijing dataset study for different components of MobilityGPT.

RCM Gravity Model RLTF OD Trip Length Connectivity
7 7 7 0.102 0.201 0.330
7 3 7 0.103 0.151 0.367
3 7 7 0.093 0.145 1.0
3 3 7 0.099 0.131 1.0
3 3 3 0.099 0.123 1.0

7.5.7. Effect of temperature on MobilityGPT inferencing. The temperature parameter

in LLMs, including MobilityGPT, influences the randomness in generating outputs. At lower

temperatures, the model behavior is more deterministic, often selecting the most likely next token.

As the temperature increases, the model introduces greater randomness, leading to a diverse array

of outputs.
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Interestingly, as illustrated in Figure 7.5, MobilityGPT demonstrates a clear trend: its perfor-

mance tends to increase with higher temperature settings. This observation suggests that mobility

data generation can benefit from the randomness of GPT-like models.

7.5.8. Tokenizer Modeling. In the development of the MobilityGPT tokenizer model, we

explore the use of specific tokens to mark the start (<BOT>) and end (<EOT>) of trajectories. Our

aim is to assess how these tokens affect the model’s performance in human mobility modeling,

particularly for sequential trajectory data. Our findings reveal a key insight: using the <EOT>

token alone significantly improves performance. This result indicates that emphasizing the end of

a trajectory is more beneficial than marking its beginning with a separate token for our mobility

modeling task. The effectiveness of the <EOT> token emphasizes the importance of nuanced data

representation and the need for task-specific tokenization strategies in sequential data generation

with transformer models. An ablation study, detailed in Table 7.5, compares single and dual-token

approaches using various metrics. This study shows that using a single token type outperforms

the dual-token method in the MobilityGPT workflow, highlighting the advantages of customized

tokenization.

7.5.9. Computational Demand. Evaluating computational demand is essential for ensuring

the practical feasibility, scalability, and environmental sustainability of generative models. To

facilitate a fair comparison, we trained all benchmark models and MobilityGPT on the same

computational resources, utilizing an NVIDIA TITAN RTX GPU with 24GB memory, and the

Figure 7.5. Performance of MobilityGPT under different temperature settings.
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Table 7.5. Ablation study on the effectness of <EOT>.

<BOT> <EOT> OD Trip Length Radius Gravity

3 3 0.110 0.151 0.128 0.235

7 3 0.114 0.124 0.107 0.225

results are depicted in Table 7.6. MobilityGPT balances model size and efficiency: 5.5M params,

lower than TS-TrajGen (23.2M & 7.6M) but higher than LSTM-TrajGAN (100k). Its ∼5hr runtime

outperforms TS-TrajGen (> 200hr) and DiffTraj (48 − 60hr) by an order of magnitude, despite

LSTM-TrajGAN’s 30min− 1hr efficiency at the cost of poor predictive performance.

Table 7.6. Computational performance of different models vs MobilityGPT

N param Total running time

Model BJ Porto BJ Porto

SeqGAN 2.6M 800 ∼ 12hr ∼ 5hr

LSTM-TrajGAN 100k 100k ∼ 30mins ∼ 1hr

TS-TrajGen 23.2M 7.6M > 200hr > 200hr

DiffTraj 15.7M 15.7M ∼ 48hr ∼ 60hr

MobilityGPT 5.5M 5.5M ∼ 5hr ∼ 5hr

MobilityGPT achieves a compelling balance between model capacity and scalability through its

moderate size and computational efficiency. Despite having fewer parameters than some benchmarks,

MobilityGPT achieves state-of-the-art performance across datasets, requiring substantially less

time and resources. Unlike LSTM-TrajGAN, which trades off predictive accuracy for efficiency,

MobilityGPT demonstrates the feasibility of combining high performance and practical efficiency

within a single model. This makes MobilityGPT a promising choice for practical deployments where

both predictive power and computational feasibility are essential.

7.6. Conclusion

This paper presents a GPT-based generative method for modeling human mobility characteristics.

The proposed mechanism considers a multi-objective learning method with pre-training and fine-

tuning stages. MobilityGPT pre-training leverages the understanding of human mobility using the
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string self-attention structures by conditioning the trajectory sampling with gravity model and

sequence sampling with road connectivity matrix. To further enhance the MobilityGPT capabilities

for generating similar trajectories to real trajectories, we propose a fine-tuning strategy that does

not require a human assessment. The novel fine-tuning method trains a reward using the trajectory

trip length and employs the reward model as an import to the RL policy gradient method. The

experiments validate the effectiveness of the proposed MobilityGPT approach for generating realistic

mobility trajectories from real trajectory samples by comparing with four state-of-the-art models.

Limitation: MobilityGPT achieves state-of-the-art results while handling road network con-

straints, but lacks formal privacy guarantees for synthetic trajectories. Future directions involve

improving generalizability and incorporating practical privacy assurances.
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CHAPTER 8

Conclusion and Future Work

In this thesis, we study a complete solution for an AI-based ITS controller, TSC. For the the

performance of RL-TSCs, we proposed a constrained optimization-based RL-TSC model constraining

on maximum green time for fairness and maximum fuel consumption for air quality. Regarding

security, adversarial attacks with a detection mechanism on RL-TSCs are presented as an example

controller mechanism. In addition to that, the thesis introduces differential privacy-based data

sensitization algorithms for individual trajectories and aggregated mobility datasets. This chapter

presents our ongoing and future work in two sections. First, since we discussed the security of

DRL-TSCs with literature review in Chapter 4, here, we only discuss the future research directions.

Next, we introduce a synthetic trajectory generation model for mobility datasets using generative

machine learning methods, including a detailed literature review and future research directions.

8.1. Multi-objective Constrained Reinforcement Learning for TSCs

TSCs have an essential role in managing the traffic flow in urban areas. However, rule-based

existing TSCs cannot respond well to heavy and dynamic traffic conditions. There have been

several attempts to optimize the TSCs with different methods [214]. We have shown in Chapter 2

and Chapter 3 that multi-objective RL with constraints has promising performance on city-level

multi-intersection TSC scenarios in terms of lowering traffic congestion and fuel consumption. In

Chapter 2, we investigate the effectiveness of learning-based TSCs in reducing fuel consumption

and emissions compared to conventional TSCs while also being fair for different traffic directions.

The findings highlight a correlation between emissions, fuel consumption, and waiting times. While

learning-based TSCs perform well in some scenarios, they may be outperformed by other controllers,

such as the max pressure traffic controller. We then, in Chapter 3, introduce a novel approach

using a constrained multi-objective RL model, aiming to improve fairness and air quality in traffic

scheduling. Experimental results show reduced travel times, lower CO2 emissions, and fairer traffic
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scheduling with the proposed model compared to state-of-the-art TSCs. While TSCs can improve

traffic efficiency with RL, the performance of joint control of the learning-based TSCs and connected

automated vehicle (CAV) is an open research direction.

8.1.1. Future Work. The planning and control of CAVs have demonstrated promise in various

scenarios [103], including CAV platooning, mixed traffic scenarios involving CAVs and human-driven

vehicles (HDVs), and CAVs interacting with traffic infrastructures like on-ramps [135] and traffic

intersections [193]. To manage these components—CAVs and TSCs—in extensive traffic settings,

several approaches can be employed, including centralized, decentralized, or mixed-control strategies,

each offering its unique advantages and limitations.

Since CAVs and TSCs are structured independently, it is challenging to control them jointly

in a stochastic environment. Using only mathematical optimization methods leads to higher

computational inefficiency, centralized control, or lower performance, decentralized control where

the computational costs are minimized. Focusing on a mixed hierarchical control approach with

predictive control strategy for CAVs and TSCs, utilizing a reinforcement learning-based policy

for TSCs can be a promising research direction. To bridge the gap between CAV control and

learning-based TSCs, we will study eco-driving strategies with joint control of CAVs and RL-TSCs.

A model-based RL model with a predictive horizon can be integrated with classic optimization-based

control methods that cooperatively control CAVs and TSCs. Different traffic scenratios including

single intersection and multi-intersection traffic environments with multi-agent RL models, can be a

promising research direction.

8.2. Adversarial Attacks and Detection models on RL-TSC

The DRL-TSC agent expects to receive data from the same distribution with it is trained.

However, the input data to the DRL agent might be from an unknown distribution with malicious

intention or without malicious intent, such as measurement noise. While unintentional noise can still

harm the DRL agent, carefully crafted intentional out-of-distribution samples affect the performance

of DRL vastly. The authors in [140] observe similar conclusions for a CartPole game controlled

with DRL as we have proved in Chapter 3.
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Adversarial samples generally target the DRL in the test phase from the DNNs representing the

DRL agent’s policy. Most of the adversarial attacks on DNNs apply to the DRL-TSCs, but the

success rate of attacks differs by the attack model, and it requires experimental evaluation. There

are several challenges of detecting adversarial examples in DNN-based learning models. First, since

adversarial samples are generated by some optimization models instead of random perturbation,

it is hard to define a proper boundary between adversarial samples and clean samples. Second,

the anomalies depend on the data type; therefore, the success rate of detection models is highly

correlated with the data type [26].

There are different defense techniques for DNNs when adversarial attacks target the DRL to

mislead the DRL agent to improper actions. The detectors in the literature can be classified in

different groups as supervised and unsupervised. The supervised detectors consider specific attack

models. On the other hand, unsupervised, more generalized, defense mechanisms are not limited by

specific attack strategies. In this research, we are working on more realistic defense models that can

detect unknown attacks in the implementation (test) phase of DRL.

8.2.1. Future Work. We presented an overview of the defense models of DNNs in Chapter 4

with a proposed detection mechanism using a sequential statistical detector. As a result, we can

further improve the performance of anomaly detectors. This section discusses several future research

directions with several baseline models in the literature.

Defense models against adversarial attacks in the implementation (test) phase can be achieved

in two approaches:

• Attach an additional detection module to the learning agent, thereby keep the learning

model unchanged.

• Design a defense mechanism on the learning model by either estimating the parameter

changes on the learning model itself or modifying it for robust classification.

8.2.1.1. External Adversarial Input Detection. External adversarial input detection models

require an additional detection module that checks the input data before it is fed into the DNNs.

Two leading works on this group of defense models are presented in [146], which identifies the

adversarial samples using PCA, and [79], compares the distribution of samples with training set to

identify the adversaries.
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Our preliminary results indicate that external detectors such as sequential models are powerful

tools for detecting adversarial attacks on DRL-TSCs by detecting an average of 98% adversaries

with minimal detection delay.

DRL-TSC controller is a real-time system where a detector needs to detect adversaries timely to

prevent the impact of such attacks on traffic. The state information collected from the environment

is a time sequence traffic condition. Recurrent neural networks (RNN) capture the dynamics of time

sequences. Hence, detecting adversarial state sequences with RNNs would give convincing results.

We will explore RNN-based sequential models for detecting DRL adversarial attacks on TSCs.

8.2.1.2. Internal Defense. Building a defense model using the intrinsic properties of the learning

model has two research directions: (i) detects and rejects the adversarial samples [22], (ii) provides a

robust classifier [164,205]. While most mechanisms try to identify adversarial samples and mitigate

the effect of adversarial samples, in the second approach, the defense mechanism does not explicitly

identify the adversaries; instead, the learning model selects correct action even when the input is

perturbed. In this research, our focus is on designing a detection module using the DRL features.

Multiple research papers detect the adversarial samples by observing the DNN weights or

activation functions, especially on image datasets [72,142,147,233]. Recently a framework for

detecting adversarial samples on DNN classifiers is presented in [178] where authors focus on

test-time detection of anomalous inputs to a DNN classifier using multiple layer class conditional

representations. Another recent study provides a defense mechanism that includes robustness to the

DNN classifier by proposed training and adversarial sample detection with K+1 classification for K

classes [188].

The data structure in DRL-TSC is different, and state samples are timely traffic information that

allows DRL-TSC agents to select optimum actions to minimize the traffic delay. As the DRL-TSC

agent receives time series state, statistical properties of DNN policy change over time. Although

the policy of DRL agents is DNNs, there are still several differences between DRLs and DNNs.

First, DRL models have more diverse inputs than DNN-based classifiers. Accordingly, it is hard to

find correct boundaries for DRL when using highly dynamic environments such as TSCs. Second,

DRL agents generally have a limited number of actions, which are the output of DNNs. However,

DNN classifiers, in general, have more output classes. We plan to integrate the DRL properties
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with DNNs to design statistical anomaly detectors that provide a robust learner for DRL-TSCs. In

addition, we will explore whether having a limited number of DNN outputs (actions) provide clear

boundaries for inputs.

8.2.1.3. Adversarial Attacks on Different TSC Configurations. The performance of DRL models

is highly dependent on an accurate and concrete state definition. Therefore, there are many different

state representations used for DRL-TSCs. We can classify the state representations in three main

groups: raw RGM images, discrete traffic state encoding (DTSE), and feature-based vectors. The

previous experiments show that adversarial attacks are highly data-dependent [26]. In Chapter 3,

we demonstrated 8 attack configurations: FGSM, JSMA attack models, single-DQN vs. MA2C

DRL models, black-box vs. white-box attack settings. For in-depth adversarial attack analysis, we

plan to launch adversarial attacks for many state representations in different configurations and

design proper defense mechanisms for a broader area of adversarial attacks. We also would like to

explore such adversarial attacks on larger-scale real road networks like the San Francisco downtown

network. Using larger and realistic TSC networks, we will understand if adversarial attacks will

cause much more severe network-level impact, e.g., massive congestion.

8.3. Differential Privacy for Mobility Dataset

This project comprises two parts that focus on enhancing privacy in mobility data. Chapter 5

introduces a differentially-private adaptive noise injection model for aggregated trajectory networks,

protecting individual origin-destination (OD) locations. It perturbs GPS points using planar Laplace

noise, with perturbation distances adjusted based on localized road network density using sparse

vector technique. This selection is performed in a private manner using the Adaptive Thresholding

method. In Chapter 6, we present a differentially-private map-matching (DPMM) algorithm that

protects OD locations and travel paths. Similar to the first part, it employs planar Laplace noise

injection, but it also considers the density of localized road networks and the functional class of

the road links. The level of perturbation for each GPS point is adjusted based on the localized

link density. The DPMM algorithm utilizes a waypoint sampling method for privately constructing

travel paths. Both parts offer enhanced privacy for mobility data and outperform other models,

particularly in preventing geographical mismatches with road structures.
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8.3.1. Future Work. The widespread adoption of location-based services and smart GPS

devices (smartphones/watches) make continuous monitoring of human mobility both desirable and

feasible. Such mobility data can enable different smart urban planning and CAV driver safety

applications. Several mobility data exchange platforms exist, e.g., Open Mobility Foundation1 or

Mobility Dataspace2. However, such spatiotemporal traces can reveal private lifestyle patterns (e.g.,

home/office addresses, points of interest). Removing personal identifiers from the dataset does not

adequately provide privacy because attackers can still re-identify users [50]. These privacy concerns

inhibit free sharing of mobility or CAVs data across multiple entities. In this project, we plan

to incorporate differential privacy and generative machine learning (such as GPT) techniques to

sanitize raw datasets and generate synthetic mobility data that retain key movement characteristics

or driving behavior from raw data. We have previously applied differential privacy methods to

preserve the privacy of mobility datasets [90, 93] and proposed synthetic data generation tools

with GPTs. We plan to build on our past success to generate synthetic mobility data with formal

DP guarantees. Our target mobility data includes individual locations/trajectories and aggregated

mobility datasets. The expected outcome is a foundational building block for a data exchange

platform to enable privacy-preserving sharing of mobility datasets.

Our proposed project focuses on synthetic mobility data generation, which addresses two

challenges: privacy concerns and a lack of publicly available mobility/CAVs data. One way to deal

with data privacy is to generate synthetic data that exhibit similar characteristics as real data but

is deprived of personally identifiable information. While several privacy-preserving techniques exist

for aggregated mobility datasets, producing synthetic mobility datasets at the individual level is

still a challenge. As of today, we still do not have well-proven methods for generating realistic

mobility trajectories with proven privacy guarantees. Differential privacy (DP) is a statistical

privacy-preserving technique [52] that is designed to minimize the leakage of information about

individuals, while still preserving the characteristic patterns in the data. Differentially private

machine learning provides formal privacy guarantee to the ML applications. However, applying

existing models to synthetic trajectory generation is not practical due to the unique constraints

of mobility datasets. At the individual level, each synthetic trajectory should maintain realistic

1https://www.openmobilityfoundation.org/
2https://mobility-dataspace.eu/
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mobility patterns and follow real-world conditions such as traffic rules (i.e., respect common sense

knowledge).

CAV research (especially in automating perception tasks) can face limited progress due to

insufficient training data. Since existing publicly available datasets [36, 123, 167] are not rich

enough for large-scale evaluations, researchers resort to simulating realistic human trajectories with

generative models. AI/ML-based generative model is a promising approach for generating synthetic

datasets, which has been explored for text, image, and video generations. Although there are several

attempts at mobility data generation, their capabilities are limited to specific data types.
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[109] A. Kapp, J. Hansmeyer, and H. Mihaljević, Generative models for synthetic urban mobility data: A

systematic literature review, ACM Computing Surveys, 56 (2023), pp. 1–37.

[110] A. Karpathy, mingpt. https://github.com/karpathy/minGPT. Accessed: May 17th 2024.

[111] G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias, Differentially private event sequences over

infinite streams, Proceedings of the VLDB Endowment, 7 (2014), pp. 1155–1166.

[112] M. A. Khamis and W. Gomaa, Adaptive multi-objective reinforcement learning with hybrid exploration for traffic

signal control based on cooperative multi-agent framework, Engineering Applications of Artificial Intelligence, 29

(2014), pp. 134–151.

[113] D. K. Kholgh and P. Kostakos, Pac-gpt: A novel approach to generating synthetic network traffic with gpt-3,

IEEE Access, (2023).

[114] D. P. Kingma and M. Welling, Auto-encoding variational bayes, arXiv preprint arXiv:1312.6114, (2013).

[115] X. Kong, Q. Chen, M. Hou, H. Wang, and F. Xia, Mobility trajectory generation: a survey, Artificial

Intelligence Review, 56 (2023), pp. 3057–3098.

[116] J. Kos and D. Song, Delving into adversarial attacks on deep policies, arXiv preprint arXiv:1705.06452, (2017).
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