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ABSTRACT OF THE DISSERTATION

Two Models of Self-Interacting Dark Matter

by

Sarah Smolenski

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, June 2019

Dr. Jose Wudka, Chairperson

I explore two possible extensions to the standard model. The �rst is a simple addition,

including only one additional scalar particle with an exact U(1) symmetry, which allows the

dark boson to condense even when relativistic. The second model includes �ve new �elds

consisting of: two dark matter candidates; a mediator boson; heavy dark neutrinos; and a

heavy scalar.
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Chapter 1

Introduction

1.1 Background

1.1.1 Motivation

In 1933, Fritz Zwicky noted [30] an inconsistency between observations of galaxy motion

across the sky by Van Maanen [20] and Hubble's determination of the distance to same

galaxies [12]. When Zwicky used these values to calculate the total velocity of various

galaxies, he found unexpectedly large speeds. When he compared these speeds to those

calculated via the Virial theorem, he found that his calculated velocities were several orders

of magnitude larger than those allowed by energy considerations, assuming that all mass

in the galaxy cluster was made up of luminous matter. On the other hand, if the average

density of the Coma cluster was 400 times1 greater than observed then the expected galaxy

velocities would be possible. This is largely regarded as the �rst experimental evidence for

1Zwicky's estimation of the density of the cluster is over by roughly an order of magnitude due to his

use of the then-modern measurement value of the Hubble Parameter, which di�ers from today's value by

roughly one order of magnitude.
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dark matter.

In the decades since Zwicky's paper was published, we have collected a myriad of

evidence, all of which suggest that the universe contains several times more matter than

is visible or predicted by the Standard Model. Though Zwicky's analysis of the Coma

cluster was the �rst, other clusters followed rapidly and all exhibited the same high-velocity

behavior [28]. Spectra analysis of the Andromeda galaxy [1] revealed that the stars far from

the center were also moving with a much higher rotational velocity than should have been

possible from visible matter alone, which was later extended to even greater radii to the

same e�ect [25, 23]. This later analysis provides some of the most well-known evidence for

the theory of dark matter 1.1. Given that the majority of luminous matter lies within 10

kpc radii, rotational velocity was expected to drop o� as vrot ∼
√

GM
R . Instead, no drop-o�

was observed, and it appeared instead that the mass of most, if not all, galaxies increased

steadily with increasing radius [9].

Other observational evidence for the existence of missing matter came in the form

of X-ray emissions of early galaxies [4], which were observed to have luminous coronae

explainable by massive halos, and gravitational lensing around the bullet cluster [21], which

showed the gravitational mass distribution from two merging clusters distinct from their

luminous mass distribution (�g. 1.2). While other theories have attempted to explain one

or many of the discrepancies between Newtonian gravity and observation, none describe all

of the evidence so neatly as the theory of dark matter; that is to say, the theory that out

universe contains roughly �ve times more mass than the visible baryonic matter predicted

by our current theories of astroparticle physics.
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Figure 1.1: Reference [26]. Observed velocity of stars in Andromeda galaxy climbs sharply as
expected, but remains roughly constant rather than dropping o�, as predicted by Keplerian
physics.

Figure 1.2: While the visible matter is sparse and passes through without collision or
apparent interaction, gravitational lensing shows that the majority of the mass contained
in the clusters did, in fact, appear to collide and drag behind. The heatmap shows
the distribution of the gravitational mass and the green contours show the weak lensing
reconstruction.
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Figure 1.3: Simulations run by Nipoti and Binney. [21] show the �attening of dark matter
density pro�les over time, as produced by a repulsive self-interaction introduced only between
dark matter particles.

1.1.2 Empirical Evidence for Self-Interaction of Dark Matter

While dark matter has long been assumed to be inert, insofar as it does not appear to interact

with the Standard Model particles, save through gravity, more recent considerations suggest

that dark matter must have some form of self-interaction. If dark matter was subject only to

gravitational forces, we would expect to �nd that the distribution of mass in the dark matter

halo was 'cusp-shaped' near the center of the galaxy. That is to say, density of dark matter

should rise sharply near to galactic center due to gravitational attraction. We �nd this is not

the case at all. While dark matter density rises near the center of the galaxy, density curves

display a �attening or 'core-shaped' behavior close to r = 0. This is commonly known as

the Core vs Cusp problem. Simulations (�g. 1.3) show that this behavior is achievable by

introducing a repulsive force between dark matter particles. Thus, when the density is high

enough near the center of the galaxy, this repulsive force is able to balance the gravitational

attraction and prevent the cusp-shaped density pro�le.
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1.1.3 The Standard Model

The models proposed in this thesis stand as an extension to the Standard Model (SM)

of particle physics. While the SM does an extraordinary job of describing the physics of

baryonic matter, it o�ers no insight into the current mystery of dark matter. Countless

possibilities exist for modi�cations to the SM, but we require that the models discussed

herein comply with observables and, in the case where newly-proposed DM particles decay

to SM particles or vice versa, that enhancements to decay widths are small enough not to

interfere with known values.

The theories discussed below couple to the SM in various ways, and we will use

LSM to denote the standard model lagrangian as given by

LSM = − 1

4
BµνB

µν − 1

8
tr (WµνW

µν)− 1

2
tr (GµνG

µν)

+ (DµH)†DµH −m2
H

(
H†H − v2/2

)2
2v2

+

{
LLσ̄

µiDµLL + e†Rσ
µDµeR −

√
2

v
L†LHMeeR

}
+ h.c.

+ {Q†Lσ̄iDµQL + u†Rσ
µiDµuR + d†Rσ

µiDµdR

−
√

2

v

[
Q†LHMddR +D†LH̃MuuR

]
}+ h.c

(1.1)

where Bµν is the U(1) hypercharge gauge �eld, Wµν is the SU(2) isospin gauge �eld, Gµν is

the SU(3) color gauge �eld, LL andQL denotes the left-handed lepton and quark isodoublets,

respectively, and H is the Higgs doublet. This lagrangian can easily be modi�ed to include

similar terms for right-handed neutrinos, which have not been observed.
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1.2 Introduction

I have studied two di�erent potential models for self-interacting dark matter. The �rst model

is a simplistic model introducing only one new particle to modify the standard model: a

massive boson, which couples directly to itself to produce a self-interaction and interacts

with the standard model via a Higgs Portal. It should be noted that while we include a

self-interaction in this model, we did not consider the constraints on such a coupling that the

observed galaxy and cluster density pro�les would impose. Thus, while this model has the

potential to address the core-vs-cusp problem in future work, we do not consider this here.

This bosonic dark matter is unique in that it can form a Bose-Einstein condensate; this

condensing potential will a�ect the dark matter-standard model interaction cross section,

regrdless of whether or not a condensate exists in the universe.

The second model I consider here introduces a total of �ve new �elds. The dark

matter candidates are two fermions of (approximately) equal mass which have opposite

U(1)dark charge. The dark matter particles do not couples directly to the Standard Model.

Instead, I include a massive scalar particle which allows the dark matter to interact with

the Standard Model via one-loop interactions (to lowest order). Thus, the direct detection

cross section will be naturally small without any �ne tuning of the coupling constants. In

addition to these three �elds, I also introduce a dark photon, the U(1)dark vector boson,

which mediates the dark matter self-interactions, and three heavy, dark neutrinos, which

mix with the Standard Model neutrinos to produce the neutrino-portal coupling. This

model includes a (softly broken) dark Z2 symmetry, which prevents the dark photon from

mixing with the Standard Model photon. Strong constraints are placed on this model from

6



electroweak experiments, but a region of viable parameter space remains to be searched.

Furthermore, we consider the limits placed on this model from preventing the two dark

matter candidates from forming bound states, but it is worth nothing that these constraints

are likely too stringent and a more in-depth study of reasonable limits would bene�t the

model. We leave these calculations for a later publication.
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Chapter 2

Bose-Einstein Self-Interacting Dark

Matter

2.1 The Model

We consider a dark matter model that introduces a new (exact) U(1) symmetry under which

all standard model particles are singlets. In certain circumstances, this symmetry will allow a

Bose-Einstein condensate (BEc) of dark matter (DM) particles to form. This model includes

only one new DM particle: a single complex scalar labeled χ, which is invariant under the

the transformation:

χ→ eiαχ, (α = const.) (2.1)

which leads to the required conservation law. This exact symmetry means that the presence

or absence of a BEc depends entirely on the temperature and density of the gas; that is to

8



say, the condensate in this model is not limited to the non-relativistic regime. The conserved

dark charge of χ implies the existence of a non-zero chemical potential µ ≤ mχ, where the

condition µ = mχimplies the existence of a condensate.

A self-interaction of the form |χ|4 is introduced, which will have an e�ect on the

existence of a condensate in the early universe. The model has the following lagrangian:

L = |∂χ|2 −m2
χ|χ|2 −

1

2
λχ|χ|4 + ε|χ|2|φ|2 + LSM (2.2)

where φ is the standard model scalar isodoublet and LSM denotes the Standard Model

lagrangian. We will consider the mass region mχ ≥ 1GeV where the DM is WIMP-like, but

we will brie�y discuss the region mχ . 2×10−11eV where there will be a BEc in the present

epoch.

2.2 Cosmology with a Bose Gas

We model the early universe as containing both SM and DM particles, initially in equilibrium

with each other. That is, we assume that the rate of expansion of the universe is su�ciently

slow, such that at su�ciently early times both SM and DM gases will be in thermodynamic

equilibrium. We assume a �at, homogeneous, and isotropic universe. As the universe cools

and expands, decoupling will occur between the SM and DM systems, however, we assume

that λχ is large enough that the DM remains in thermodynamic equilibrium with itself

throughout. For the case where λχ = 0, the quantities under consideration are simply the

well-known expressions for an ideal Bose gas [24]. We assume that λχ is small enough that we

can describe our system as a perterbative expasion of the ideal gas case. For the discussion

9



below, we will ignore O(ε) contributions, assuming that ε is large enough to have allowed

equilibrium between the SM and dark sector in the very early universe, but is otherwise

much smaller than the dominant contributions in the range of parameters considered here:

mbe . mH and |ε| . λχ.

We write the occupation numbers for χ and anti-χ as

n+
be =

(
e(E−µ)/T − 1

)−1
=
(
ex(
√
u2+1−$) − 1

)−1
; x =

mχ

T
, $ =

µ

mχ
(2.3)

n−be =
(
e(E+µ)/T − 1

)−1
=
(
ex(
√
u2+1+$) − 1

)−1
, (2.4)

where E =
√
p2 +m2

χ and u = |p|/mχ.

We de�ne

δ =
µ2 −m2

χ

λχ
, F = 2

∫
d3p

(2π)32E

[
n+
be + n−be

]
µ=mχ

, (2.5)

(see Appendix for further discussion) the phase transition line is given by

δ = F. (2.6)

If µ2 < m2
χ + λχF then no condensate will form. As expected, in the absence of

self-interaction (ie, λχ = 0), this reduces to the well-known result that a condensate will

exist if |µ| = mχ.

The conserved charge associated with the U(1) symmetry of the model is

qbe = q
(c)
be + q

(e)
be (2.7)
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qbe = q
(c)
be +m3

beνbe; νbe =

∫ ∞
0

duu2

2π2

(
n+
be − n

−
be

)
+O(λχ), (2.8)

where q(c, e)
be are the charge densities in the condensate and the excited states, respectively.

For conveniance we can assume q(c)
be ≥ 0 so that if there is a condensate, µ will be greater

than 0.

We write the entropy and energy densities of the Bose gas as

sbe = m3
χσbe; σbe =

∫ ∞
0

duu2

2π2

∑
n=n±be

[(1 + n) ln (1 + n)− n lnn] +O(λχ) (2.9)

ρbe = qbeµ+ Tsbe − Pbe

= mbeq
(c)
be +m4

berbe; rbe =

∫ ∞
0

duu2

2π2

√
u2 + 1

(
n+
be + n−be

)
+O(λχ).

(2.10)

Though we do not write out the O(λχ) corrections in this section, they are used

in the equations below and discussed further in the Appendix.

The corresponding energy and entropy densities from the Standard Model are given

by [17]

ρsm =
π2

30
T 4g∗(T ), ssm =

2π2

45
T 3g∗(T ), (2.11)

where

g∗(T ) '
∑
bosons

gi

(
Ti
T

)4

θ (T −mi) +
7

8

∑
fermions

gi

(
Ti
T

)4

θ(T −mi), (2.12)
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g∗s(T ) '
∑
bosons

gi

(
Ti
T

)3

θ(T −mi) +
7

8

∑
fermions

gi

(
Ti
T

)3

θ(T −mi), (2.13)

where gi is the number of internal degrees of freedom and Ti is the temperature

for each particle.

The Bose Einstein Condensate

When the SM and Bose gas are in equilibrium with each other, qbe/stot is conserved,

where stot = sSM + sbe. When they are not in equilibrium with each other, qbe/sSM and

sbe/ssm are separately conserved. Thus, regardless of whether they are in equilibrium with

each other,

Y =
qbe
stot

(2.14)

is conserved. A condensate will necessarily exist whenever Y > Y (e). That is, whenever the

total charge is greater than that contained in the excited states:

q
(c)
be 6= 0 if Y > Y (e) =

νbe
σbe + ssm/m3

be

|δ=F. (2.15)

Since ssm is positive and nonzero, we can write:

Y (e) <
νbe
σbe

∣∣∣∣
δ=F

<
νbe
σbe

∣∣∣∣
δ=F, T→0

=
ζ3/2

(5/2)ζ5/2
' 0.78 (2.16)

Then a condensate will form whenever the total charge is larger than the excited-

state charge:

12



Y < Y (e) < 0.78 (2.17)

Therefore, if Y > 0.78 there will always be a condensate. The behavior of Y (e)

for di�erent values of λχ and mχ are graphed in (�g. 2.1). We see that in the case of no

self-interaction, (that is, λχ = 0) at su�ciently early times or, equivalently, at su�ciently

high temperatures there will always be a condensate. However, when λχ 6= 0 , Y (e) has an

mχ dependent minimum, such that for certain values of Y it is possible that a condensate

will never form, regardless of temperature.

We note that Y (e) decreases for increasing temperature due to the temperature-

density exchange in the early universe. At su�ciently early times (or, equivalently, su�ciently

high temperatures) the density of the DM gas is necessarily high due to the small volume of

the universe. While the high temperature tends to destroy the condensate, the high density

tends to produce it and the volume e�ect wins out until su�ciently high density is acheived,

at which point the repulsive force from λχ dominates and Y (e) begins to increase again.

It is worth noting, though we do not include the calculations here, that the presence

of the chemical potential allows us to determine the relic abundance of the DM. We use this

to �x µ and guarantee that the relic abundance is in agreement with observation without

restricting other parameters.

2.2.1 Conditions for a BEc to exist at present

The Bose gas and SM will decouple at some decoupling temperature, which we

denote Td. For WIMP-like masses (mχ & 1GeV), the BE gas will be nonrelativistic at this

13



Figure 2.1: Plot of the Bose charge in the excited states per entropy when λχ = 0.5 (solid
curve) and λχ = 0 (dashed curves) and for two mass values: mχ = 10GeV (black curves) and
mχ = 10−12eV (grey curves). The horizontal dotted line corresponds to the upper bound.
We have assumed the Bose gas and SM have the same temperature. The discontinuities are
due to the step functions in eqn. (2.13) and x = mχ/T .

decoupling temperture; it follows, then, that the gas will be nonrelativistic at present. In

the nonrelativistic limit O(λχ) will be smaller than the O(T/mχ) corrections and can be

safely ignored (see eqn (A.20) and surrounding discussion in the Appendix). Then, using the

measured relic density and standard model entropy, and the fact that qbe/ssm is conserved,

we have

qbe
ssm
' 1

mχ

ρDM
ssm

=
0.4eV

mχ
(T < Td), (2.18)

where we have included the known value for the SM entropy at present along with ρDM =

mχqbe. After decoupling (ie T < Td), the left hand side is conserved.

A condensate will be present if

qbe(Td)

(mχTd)3/2
>

ζ3/2

(2π)3/2
' 0.166. (2.19)

which implies (using eqns (2.18) and (2.11) )

14



T
3/2
d

mχ5/2

g∗s(Td) >
1

1.06eV
(2.20)

⇒ mbe < 1.3keV (3σ) (2.21)

where we have used the fact that mbe > Td for a nonrelativistic gas and g∗s < 106.75.

We now consider the present epoch, denoting the temperture of the BE gas now

as Tnow. From the above, it follows that there will be a condensate in the present if

(
0.0215eV

mbe

)5/3

K > Tnow (2.22)

The conservations of the quantity sbe/snow allows us to obtain a relationship

between Tnow and Td, the temperature of the BE gas when it decoupled from the standard

model. We note, also, that in order for a BEc to exist at present, one must have existed at

decoupling. So we have

4.3K

g∗s(Td)1/3
=
√
TdTnow, (2.23)

where we have used eqn (2.10) and eqn (2.11). Combining this with eqn (2.22) and corrections

included in the Appendix,

(g∗s(Td)eV)2/3 Td &
( mχ

0.009eV

)5/3
K. (2.24)

Then, using the fact that mχ > Td,

9.5g∗s(Td)eV & mχ ⇒ mχ < 88eV, (2.25)
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so we �nd that a WIMP-like DM will be able to maintain a condensate at present, assuming

that the gas is uniformly distributed in the universe. However, if one includes the constraints

from Big Bang Nucleosynthesis and Large Scale Structure Formation, the constraints on

mχare much stronger.

2.3 Bose condensate in the small mass region

As noted above, a condensate can occur when the gas has sub-eV masses. In this

case, however, there are additional constraints stemming form the possible e�ects of such

light particles on large scale structure (LSS) formation and on big-bang nucleosynthesis

(BBN). In this section we will investigate the regions in parameter space allowed by these

constraints assuming that the gas is currently condensed; as noted above this ensures the

presence of a condensate in earlier times1.

For the small masses needed to ensure the presence of a BEc now (see below) the

condition H = Γ would require a coupling ε orders of magnitude above the perturbativity

limit, hence in this case the gas is decoupled from the SM during the BBN and LSS epochs.

LSS formation occurred at redshift zLSS ∼ 3400, when the matter-dominated era

began. To ensure that the Bose gas does not interfere with the formation of structure we

require it to be non-relativistic at that time; in addition, since we assume the presence

of a BEc at present, a BEc was also present at the LSS epoch. Then the conservation

of a3sbe gives, using the appendix, $a3x−3/2 =constant (a denotes the scale factor in the

Robertson-Walker metric); equivalently,

1At least as long as x > λχ > 8.8.
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Figure 2.2: Regions of the mχ−T and r−x planes where a non-relativistic Bose condensate
occurs consistent with the LSS constraint of eqn (2.27. On the left-hand graph the low-T
limit results from eqn (2.28, while the upper limit is due to eqn (2.27).

a2

x
|now =

a2

x
|LSS (2.26)

Since the gas must be non-relativistic during the LSS epoch, xLSS > 3 , so we have

xnow > 3.5× 107 (2.27)

In addition, the requirement that a BEc be present now implies

0.4eV

mbe
ssm|now >

(
m2
be

2πxnow

)3/2

ζ3/2 (2.28)

where we used the fact that the gas is currently non-relativistic.

The regions in the mχ − T and mchi − x planes allowed by eqns (2.27) and (2.28)

are given in Figure 2.2 (here T refers to the gas temperature). It is worth noting that if

these conditions occur at present, most of the gas will be in the condensate: using eqns

17



(2.18) and (2.27) the gas fraction in the excited states is given by

q
(e)
be

qbe
|now <

( mbe

1.82eV

)4
, (2.29)

which is negligible in view of the range of masses being here considered (see �gure 2.2.

We now turn to the BBN constraints. We write the contributions from the gas to

the energy density in the form of an e�ective number of neutrino species ∆Nν :

ρbe|BBN =
3

π2

7

4

(
4

11

)4/3

∆Nν T
4
γ ' 0.138∆Nν T

4
γ , (2.30)

where Tγ ' 0.06MeV denotes the photon temperature during BBN. Imposing the

relic-abundance constraint (2.18) we �nd, using eqns (2.10) and (2.8),

∆Nν = 7.2× 10−5 + 7.24
m4
χ

T 4
γ

[rbe(xBBN)− νbe(xBBN)]δ≥F . (2.31)

where rbe − νbe corresponds to the energy outside the condensate.

The limit −0.7 < ∆Nν < 0.4 shows that the �rst contribution to ∆Nν can be

ignored. Also, the LSS constraintmχ < 2×10−11 eV (see Fig. 2.2), implies (mχ/Tγ) . 10−62

, so that the second contribution to ∆Nν is also small except if the gas was ultra-relativistic

during BBN. In this case

∆Nν ' 4.76

(
mχ

TγxBBN

)4 [
1 +

5λχ
16π2

]
, xBBN � 1 , (2.32)

so the BBN constraint is signi�cant only in the extreme ultra-relativistic case where xBBN <

10−62 .
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Figure 2.3: Region in the xBBN − xnow plane consistent with the conservation laws, and with
the assumption that a BEc is currently present. We used the expressions in appendix () and
$ ssm|now = 2889.2/cm3, ssm|BBN = 4.82× 1028/cm3 and took λchi = 0.5. When λχ = 0 the
allowed region collapses to the bold dark line in the �gure.

To examine this possibility we �rst obtain in �gure 2.3 the regions in the $ xBBN −

xnow plane consistent with the fact that sbe/ssm and qbe/ssm are conserved, together with

the assumption that a BEc is currently present. The lower bound in this region corresponds

to xBBN ≥ 4.9/
√
xnow; using this, and the BBN constraint ∆Nν < 0.4 in eqn (2.32), we obtain

xnow < 1.1× 10125
( mχ

10−11eV

)−2
(

1− 5λbe
32π2

)
, (2.33)

To understand the gap that appears in �gure 2.3 consider the expressions in

Appendix: we write [λχC
2/(sm2

χ)]s
(c)
be (this de�nes s(e,c)

be ) and use $C2 = [qbe − q
(e)
be ]/mχ +

O(λχ) $; then, noting that s(c)
be � s

(c)
be q

(c)
be (which we veri�ed numerically), and using the fact

that sbe/ssm and qbe/ssm are constant, we �nd

[
s

(e)
be /ssm

]
BBN
−
[
s

(e)
be /ssm

]
now[

s
(c)
be

]
now
−
[
s

(c)
be

]
BBN

=
λχ

2m3
χ

qbe
ssm

>
λχ

2m3
χ

q
(c)
be e

ssm

∣∣∣∣∣
now

, (2.34)

where the inequality on the right-hand side imposes the constraint that a BEc is
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present now. The gap in �gure 2.3 corresponds to values of xBBN, now where the denominator

and numerator have opposite signs. For example, if the gas is non-relativistic during

nucleosynthesis,

1− ϑ (xnow/xBBN)
3/2

1−
√
xnow/xBBN

>
3λχ
40π

ζ2
3/2

ζ5/2

1

2πxnow
, ϑ =

ssm|now
ssm|BBN

' 6× 10−26 ; (2.35)

in this case the gap corresponds to $ log xnow & log xBBN & −16.8 + log xnow.

The parameter region where the gas exhibits a BEc now and satis�es both the LSS

and BBN constraints are determined by eqns (2.33), (2.27) and the allowed xBBN − xnow and

mχ − Tnow regions in �gures 2.2 and 2.3, respectively. It is worth noting that when λχ the

allowed region in the xBBN − xnow plane reduces to the dark line in �gure 2.3, in which case

the BBN constraint does not impose new restrictions.

It remains to see whether a gas satisfying eqn (2.27) can be in equilibrium with the

SM at an epoch earlier than that of BBN. Given the small range for mχ and the large values

of xnow , such equilibrium could have occurred only when the gas was ultra-relativistic,

in which environment the presence or absence of a condensate will have no e�ect. The

situation then reduces to that of a standard Higgs-portal model with DM masses in the

pico-eV range. Concerning direct detection experiments it is clear that for the very small

masses being considered in this section the cross sections will be negligible. We will not

consider these points further.
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2.4 Relic abundance

In obtaining the relic abundance we will follow an approximate method that will

not involve solving the Boltzmann equation. Instead we imagine the Bose gas and the

SM to be in equilibrium at some early time and describe their decoupling using the Kubo

formalism. As we see below, the BE gas will be non-relativistic, so that in this section the

O(λχ) corrections can be ignored (see appendix).

The total Hamiltonian for the system is of the form

H = Hsm +Hbe −H ′ , H ′ = −ε
∫
d3xOsmObe , (2.36)

where Osm = |φ|2 , Obe = |χ|2 and ε is the Higgs portal coupling. We �nd that the

temperature di�erence (and hence a lack of equilibrium) between the SM and Bose gas

obeys

ϑ̇+ 4Hϑ = −Γϑ ; ϑ = Tbe − Tsm , (2.37)

where H is the Hubble parameter. This expression is valid when ϑ� Tbe, sm, so the width Γ

can be evaluated at the (almost) common temperature T . We use this expression to de�ne

the temperature Td at which the SM and Bose gas decouple by the standard condition

T = Td ⇒ Γ = H . (2.38)

Explicitly we have

Γ =

(
1

cbe
+

1

csm

)
ε2G

T
, (2.39)

where cbe, csm denote the heat capacities per unit volume, T the common temperature, and

G =

∫ ∞
0

ds

∫ ∞
0

dt

∫
d3x

〈
OBE(−is,x)Ȯ(t,0)

〉〈
OSM (−is,x)ȮSM (t,0)

〉
. (2.40)
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An evaluation of G is given in the Appendix. The heat capacities are given by

csm =
4π2

30
T 3g∗s; (2.41)

c =

(
mbeT

2π

)3/2

×


(15/4)Li5/2(1) (BEc),

(15/4)Li5/2(z)− (9/4)[Li3/2(z)]2/Li1/2(z) (no BEc),

where Li denotes the Poly-logarithmic function, and z = exp[(µ−mχ)/T ].

2.5 Direct Detection

The experimentally interesting cross section of χ scattering o� a nucleon can be reduced to

ηχ→ ηχ where η is a neutral scalar with an e�ective interaction

Leff =
1

2
gη2|χ|2 (2.42)

provided we make appropriate choice of g. The nucleon spin multiplicative factor will be

included later.

We consider the general case where χ is a statistical ensemble, which may or may

not be partially condensed. The transition probability is then

Wi→f = |out 〈 f | i 〉in |
2 (2.43)

where the initial state is a spinless particle with momentum p, and a statistical system in

state I: |i >in= ain †p |0; I >= ain †p | 0 〉 | I 〉, where | 0 〉 denotes the vacuum for η. The �nal

state has an η of momentum q and the ensemble in �nal state F : out 〈 f | = aout †q | 0; F 〉 =
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aout †q | 0 〉 | F 〉 . We require that p 6= q, since we are looking for non-trivial interactions. By

the LSZ Reduction Forumla, we have

out < f |i >in= 〈 0; F |Θp,q | 0; I 〉 (2.44)

Θp,q =

∫
d4x d4x′e−ip·x+iq·x′(2x +m2)(2x′ +m2)

(
T
[
η(x) η(x′)

])
(2.45)

where T is the time-ordered operator and we have neglected the renormalization factor,

which will be one to lowest order.

We sum over the �nal states (F), and thermally average over initial states (I).

This gives:

〈Wi→f 〉 =

∫
d4x d4x′ d4y d4y′e−i(p·x−q·x′)ei(p·y−q·y′)(2x +m2)(2x′ +m2)

(2y +m2)(2y′ +m2)

〈
T
[
η(x0 − iβ,x)η(x′0 − iβ,x′)η(y0,y)η(y′0,y′)

]〉
β

(2.46)

where 〈...〉β indicates a thermal average at temperture 1/β. This can be evaluated using the

real-time formalism of �nite-temperature �eld theory [2], in particular, that complex times

are later than real ones. The optical theorem relates the thermal average to the cross section

as:

σ =
1

2qbe|p|

(
1

V

∫
p6=q

d3q

2Eq(2π)3
〈Wi→f 〉

)
(2.47)

where Eq is the energy of the outgoing η and V is the volume of space-time. To the lowest

order in g, in the absence of a condensate:
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〈Wi→f 〉 = g2

∫
d4k

(2π)4

[
D<(k + P )

]
ij

[
D>(k)

]
ij

; P = p− q. (2.48)

The propogators have been evaluated using �nite-temperature �eld theory and are

given in eqns (A.26) and (A.29). The integration yields

〈Wi→f 〉 =
g2f(−P0)

2πβP
ln

∣∣∣∣1 + n+
be(E−)

1 + n+
be(E+)

1 + n−be(E−)

1 + n−be(E+)

∣∣∣∣ (2.49)

where

E± =
1

2
|P|

√
1−

4m2
χ

P 2
∓ 1

2
P0 (2.50)

and

n±be(E) =
[
eβ(E∓µ) − 1

]−1
(2.51)

〈Wi→f 〉 '
g2

4π|P|β
e−βE−cosh (βµ) . (2.52)

The �nal approximation holds true in the non-relativistic regime and we have

approximated |p|2 − |q|2 � mη. The cross section in the non-relativistic limit is then

σ =

[
1√
πu
e−u

2
+

(
1 +

1

2u2

)
Erf (u)

]
σ0; u =

|p|
mH

√
mχ

2T
(2.53)

σ =

[
1 +

1

2u2
+O

(
u−5e−u

2
)]
σ0, (u→∞) (2.54)
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where σ0 is the standard zero-temperature non-relativistic cross section, and we have used

the fact that qbe is simply the number density

n = 2

(
mχT

2π

)3/2

e−βmχcosh (βu) (2.55)

in the non-relativistic limit.

This expression is identical to the case of χ scattering o� a nucleon, save for a

factor of 2m2
N where mN is the mass of the nucleon. The e�ective coupling g includes both

the Higgs portal coupling ε and the Higgs-nucleon coupling. In the zero-momentum-transfer

limit, this is simply

g =
εv

m2
H

gN−H (2.56)

where v is the SM vacuum expectation value and gN−H ' 0.0034 is the Higgs-nucleon

coupling [13, 27, 5].

For WIMP-range masses, that is mχ ≥ 1GeV , the present temperature of the DM

gas is small, so we can make the following approximation

σ =
ε2

8πm2
χ

(
mχ/mN

1 + mχ/mN

gN−HvmN

m2
H

)2(
1 + r2 Tbe

mχv2

)
; r =

mH

mχ
(2.57)

σ ' 6.93× 10−34

(
ε

1 + mχ/mN

)2(
1 +

m3
N

m3
χ

Tbe
600K

)
cm2 (2.58)

where v ' 10−3 is the relative velocity of the DM with respect to the nucleon. The

temperature correction will be very small, since Tbe, the temperature of the BE gas at

the present, is very small.
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Figure 2.4: Left: the curves give the direct-detection cross section eqn (2.58) for (lower
to upper curves, respectively) log ε = -6, -4.5, -3, -0.5, 1 with the shaded region denoting
the region excluded by the XENON and CDMSLite experiments. Right: the shaded area
denotes the region of the mχ − ε plane excluded by the direct-detection.

A comparison of our parameter space to the experimental constraints from XENON

[7] and CDMSLite [6], which give the strongest constraints on this model, can be seen in �g.

2.4. That is to say, we can �x µ to satisfy relic abundance constraints (not discussed here),

provided that the parameters are permitted by direct-detection constraints.

So far we have assumed that no condensate is present. In the case where a nucleon

scatters o� a system made up of both BEc and gas, the result must be solved numerically,

but can be shown to give the above expression in the limit where the condensate goes to

zero. However, without external considerations (ie, potential gravitational e�ects within

galaxies), we �nd that mχ must be well below the WIMP mass range in order to maintain a

condensate in the present epoch. Nevertheless, for completeness, we include the calculation

of the cross section in the case when a condensate exists.

In this case, we write the complex �eld χ in the presence of a condensate as

χ → [(A1 + C) + iA2] /
√

2 and follow a similar process to that above. To lowest order, we

obtain
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〈Wi→f 〉β = C2

∫
d4x d4y e−i(p−q)·(x−y) 〈TC [A1 (t− iβ,x)A1(y)]〉β

+
1

4

∫
d4x d4y e−i(p−q)·(x−y){

〈
TC
[
A2 (t− iβ,x)A2(y)

]〉
β

−
〈
A2
〉2

β
},

(2.59)

where, as before, we have assumed that p 6= q. Using eqns (A.26) and (A.29), we

�nd

1

V
〈Wi→f 〉 = C2D>

11(P )|µ=mχ +
g2Tf(−P0)

2π|P |
ln

∣∣∣∣1 + n+
be(E−)

1 + n+
be(E+)

1 + n−be(E−)

1 + n−be(E+)

∣∣∣∣
µ=mχ

, (2.60)

where n±be are de�ned in eq (2.51) and E± in eqn (2.50). Then the total cross

section is given by

σ = σ(1) + σ(2) (2.61)

σ(1) =
q

(c)
be

2mχ|p|qbe

∫ ′
d3q

2Eq(2π)3
D>

11(P )|µ=mχ ; Eq =
√
q2 +m2

η, (2.62)

σ(2) =
1

2qbe|p|

∫ ′
d3q

2Eq(2π)3

g2Tf(−P0)

2π|P |
ln

∣∣∣∣1 + n+
be(E−)

1 + n+
be(E+)

1 + n−be(E−)

1 + n−be(E+)

∣∣∣∣
µ=mχ

, (2.63)

where Eq is the energy of the outgoing η, qbe is merely the number density of the

Bose gas particles since we are working in the non-relaticistic limit, and we used q(c)
be = mχC

2

as the number density in the condensate. The prime on the integral indicates that we exclude

the forward scattering p = q region.
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For mη 6= mχ in the non-relativistic limit,

σ(1) = − Tn0/n

32πmχp2
ln |f (−E−) f (E+)| ; E± =

2mχp
2

m2
χ +m2

η ± 2mχĒp
, (2.64)

where Ēp =
√
m2
be + p2 and f is given in eqn (A.29). In general σ(1) is not

positive de�nite, but in the case where T → 0, it reduces to the standard result σ(1) →

[16π(mχ +mη)
2]−1 and is greater than 0 for all parameters of interest.

Evaluating the expression for σ(2) is more complex. Using the non-relativistic

expression for E±

E± = mχ +
1

8mχ|P |2

[
|P |2 ∓ mχ

mη
(p2 − q2)

]2

(2.65)

and de�ning new integration variables

w =
|P |
|p|

, z =
1

w

(
|q|2

|p|2
− 1

)
mη

mβ
, (2.66)

we �nd

σ(2) =
T |p|

256π3qbemχ

∫ ∞
0

dww

∫ (w+2)mχ/mη

(w−2)mχ/mη

dz

exp {4lwz} − 1

× ln

∣∣∣∣∣∣
1− exp

{
−l (w + z)2

}
1− exp {−l(w − z)2}

∣∣∣∣∣∣ ,
(2.67)

where l = β|p|2/(8mχ). In general, this is not analytically solveable; for moderate

values of l it must be solved numerically, but for l→∞ it reduces to eqn (2.58).
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Chapter 3

Neutrino Portal Self-Interacting Dark

Matter

3.1 The Model

We apply a slight variation to the neutrino portal dark matter model [10] to include self-

interaction. The original model contains one heavy dark scalar Φ and one fermion Ψ . Since

we take mΦ > mΨ, the Φ will all decay to Ψ, leaving onlyΨ in the present epoch as the dark

matter candidate. The dark sector interacts with the Standard Model via a new mediator

fermion F , which mixes with the SM neutrino. Provided that we require mΨ . 35GeV and

F & O(200GeV), the model is consistent with current experimental limits.

We extend the model by adding a U(1)dark gauge symmetry with vector boson, V ,

which couples to Ψ. To prevent the V from mixing with the SM photon, we also include

a dark Z2 symmetry under which V is odd and all SM particles are even. Furthermore,
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we introduce one new fermion and replace Ψ → Ψ1, Ψ2. Under the Z2 symmetry, the

lagrangian is invariant for:

Ψ1 →Ψ2

Φ→Φ∗

V →− V

The symmetry therefore requires that Ψ1 and Ψ2 have the same mass and couplings

and implies that V is stable. The latter produces con�icts with experimental constrains,

which we address below. We therefore require that the Z2 symmetry be softly broken. To

do this, we introduce a mass splitting, µ, between Ψ1,2.

L = Ψ̄1(i /D1 −m1)Ψ1 + Ψ̄2(i /D2 −m2)Ψ2 + |DΦ|2 − 1

2
mΦ|Φ|2 −

1

4
λ|Φ|4

− 1

4
VµνV

µν +
1

2
m2
v(Vµ −

1

mV
∂µσ)2 + F̄(i/∂ −mF )F − (l̄Y (ν)F φ̃+ h.c.)

− z((Ψ̄1ΦF + Ψ̄2Φ∗F) + h.c.)− λx|Φ|2|φ|2

(3.1)

Where D1,2 = ∂ ± igV is the covariant derivative, m1,2 = mΨ ± µ, and φ is the

SM scalar isodoublet. We have given V mass via the Stuckelberg mechanism with σ as the

Stuckelberg �eld, and we assume that mV > mΨ, which we will justify later. F carries a

family index, indicating 3 �elds, and therefore mF and Y (ν) are both 3 × 3 matrices while

z is a 3× 1 coupling vector. For simpli�cation, we assume that all z are real.

After spontaneous symmetry breaking in the standard model, the lagrangian will

contain mixing terms between the left-handed neutrino and F . We label the mass eigenstates

as nL and N for the massless, left-handed fermions and the fermions of mass O(mF ),
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respectively, and identify nL with the standard model neutrinos. To simplify the model, we

assume that N are degenerate with mass mN . The relationship between gauge �elds and

mass eigenstates is given by:

F = CNL + SnL +NR (3.2)

ν = V †PMNS(CnL − SNL) (3.3)

where VPMNS is the PMNS matrix and C and S are diagonal 3× 3 matrices, which satisfy

C2 + S2 = 1. (3.4)

3.2 DM self-interactions:

We consider all possibilities for interaction between two Ψi particles (note that we exclude

Ψ̄Ψ interactions, since in the the modern universe we expect most Ψ̄ particles to have

annihilated away, thus leaving these interactions insigni�cant, and we furthermore neglect µ

and assume Ψ1 and Ψ2 are degenerate). In other words, we consider ΨiΨj → ΨiΨj for both

i = j and i 6= j. The �rst is the same case as Moller scattering with a massive photon (�g

3.1); since the photon is massive, we can integrate this to �nd the total velocity-dependent

cross section in the nonrelativistic limit:
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σeq(v) =
g4

16m2m2
V πv

2(2 + v2)2a
(
m2
V + b

) (
2m2

V + b
)

{2b
(
2m2

V + b
) [

2m4
V + 2m4

Ψ(2 + 4v2 + v4)2 + c
]

+ 4m2
V

(
m2
V + b

) [
2m4

V + 4m4
Ψ(1 + 4v2 + v4) + c

]
ln

[
m2
V

m2
V + b

]
}

(3.5)

a = (4 + v2); b = m2
Ψv

2a; c = m2
V

(
8m2

Ψ + 3b
)

(3.6)

Similarly, we can �nd the interaction cross section for Ψ1 scattering o� of Ψ2:

σneq(v) =
g4

32m2
Ψπb(2 + v2)2

{
4b(2m4

V + 2m4
Ψ(2 + 4v2 + v4)2 + c)

m2
V (m2

V + b)

+ 8(m2
V +m2

Ψ(2 + v2)2)ln

[
m2
V

m2
V + b

]
}

(3.7)

where the subscript eq or neq indicates i = j or i 6= j, respectively. When mΨ � mV

and the relative velocity is small, these interactions will satisfy the SIDM requirements to

reproduce core-shaped density distributions within galaxies. Since Ψ1,2 have approximately

equivalent masses and identical couplings, each will have the same abundance, making up

half of the observed relic abundance. Furthermore, the total ΨiΨj → ΨiΨj cross section

will simply be the average of σeq and σneq.

Experimental limits are placed on the self-interaction cross section from core v.

cusp data in galaxies and clusters. These two average values of σ(v) (for galaxies and

clusters, respectively) allow us to solve for mV (mΨ) and g(mΨ):

mV =
mΨ

443
; g =

(mΨ

63

)3/4
(3.8)
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Figure 3.1:

We do not include the dark photon in the self-interaction limit, though it is massive,

for reasons discussed below. These expressions for mV and g have signi�cant errors, which

we esitmate using [29]:

443→ (116, 1557) 64GeV→ (17, 225)GeV. (3.9)

For numerical purposes, we assume the values in eqn (3.8) are uncertain up to a factor of 3.

3.3 Decay of the V

In the absence of the Z2 symmetry breaking, the massive dark photon presents something of

a problem. Once it decouples from the Ψ, its abundance is �xed since the V would have no

mechanism by which to decay. Furthermore, it has no tree-level self-interactions, which adds

complications both to abundance and core v cusp restrictions. Furthermore, given that the

V is light, we encounter con�icts with both Big Bang Nucleosynthesis (BBN) constraints

and large scale structure formation [16, 19].

One possible solution is the ensure that V can decay into SM particles with some

small cross section. There is such a decay in our model (�g. 3.2) at one loop, but vanishes
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Figure 3.2: Graphs responsible for a non-zero decay width for the V .

if the Ψs are degenerate. To rememdy this, we choose to softly break our Z2 symmetry by

adding to the lagrangian a term of the form:

− µΨ̄1Ψ1 + µΨ̄2Ψ2 (3.10)

Then we calculate the decay width, assuming mΨ � mV , when all external

momenta are zero.

Γ(V → n̄LnL) =
mV

6π

{
g

16π2

[
f

(
m1

mΦ

)
− f

(
m2

mΦ

)]}2 (
zS2z†

)2
(3.11)

f(x) =
1

4

(
x2 + 1

x2 − 1

)
−
(

x2

x2 − 1

)2

lnx (3.12)

Experimental limits on this decay width are very soft; provided that the lifetime of

V > 1s, the V s will decay rapidly enough to not contribute to the relic density or interfere

with BBN or structure formation. This corresponds to a mass di�erencem1−m2 & 0.1MeV .
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3.4 Bound States

The inclusion of an interaction between oppositely-charged Ψ1,2 particles opens up the

possibility that Ψ1,2 will form bound states. In the regime where this occurs, the core

v cusp problem reappears; since the self-interaction would be screened, we expect the cusp-

shaped density pro�le to reappear. In order to circumvent this problem, we consider the

region of parameter space where a bound state does not form.

In the nonrelativistic case, Ψ1,2 experience a Yukawa interaction of the form

VNR =
g2

4π

3−mV r

r
, (3.13)

which will provide potential energy ∼ g2mV
4π . To prevent a bound state from forming, the

potential energy must be smaller than the kinetic energy (∼ m2
V

mΨ
). Therefore, we require

g2mV
4π <

m2
V

mΨ
. Utilizing the limits on mV and g acquired above, we �nd

0.595
g2

4π
<
mV

mΨ
(3.14)

⇒ mΨ < 8.4GeV (3.15)

which is uncertain up to a factor of ∼ 6. For the numeric calculations below, we use mΨ <

10GeV. That is, in order to circumvent the issue of bound states causing screened self-

interaction among DM particles, Ψ1,2 must have mass less than O(10GeV). It is intersting

to note that this preferred region of parameter space may well be hidden below the neutrino

�oor, which rises up below ∼ O(10GeV).
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3.5 Electroweak Constraints

Due to the mixing of the Standard Model neutrino with the fermionic mediators,

F , the invisible decay of the Z and the Higgs, andW -mediated decays provide constraints on

our model parameters. Below, we discuss constraints from these three processes individually.

3.5.1 Z invisible Decay

The addition of singlet Dirac fermionsN to the SM generates non-universal, though

�avor diagonal, neutrino (n) couplings to the Z proportional to C2. The invisible Z → nn

width will be proportional to tr(C2); since experimental results indicate [3] Γ(Z → inv) =

499.0 ± 1.5MeV , we will have stringent bounds on our parameters. The e�ective coupling

between Ψi and Z in our model will be of the form ψ̄1 /Z(a + bγ5)ψ2, where ψ is a fermion,

so we �nd

Γ(Z → ψ1ψ2) =
(|a|2 + |b|2)mZ

24π

×
[
2− r1z − r2z − (r1z − r2z)

2 − 6
|a|2 − |b|2

|a|2 + |b|2
√
r1zr2z

]√
λ(1, r1z, r2z)

(3.16)

where λ(u, v w) = u2 + v2 + w2 − 2uv − 2vw − 2wu and rab is the squared mass ratio of

particles a and b, rab = m2
a/m

2
b . We take N to be degenerate and obtain

Γ(Z → nn) = Γ0tr{C4}, Γ0 =

(
g

2cosθW

)2 mZ

24π
(3.17)

Γ(Z → NN) = Γ0tr{S4}(1− rNZ)
√

1− 4rNZθ(1− 4rNZ) (3.18)
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Γ(Z → Nn) = Γ0tr{C2S2}(2 + rNZ)(1− rNZ)2θ(1− rNZ) (3.19)

Current experimental limits require that

∣∣∣∣ Γ(Z → inv)

ΓSM (Z → inv)
− 1

∣∣∣∣ < 0.0093. (3.20)

In terms of our parameters, this indicates

1

3
[−tr

{
S2
(
1 + C2

)}
+ tr

{
S4
}

(1− rNZ)
√

1− 4rNZθ(1− 4rNZ)

+ tr
{
C2S2

}
(2 + rNZ)(1− rNZ)2θ(1− rNZ)] < 0.0093.

(3.21)

3.5.2 H invisible decays

A general coupling of the form ψ̄1(a+ bγ5)ψ2H + h.c. gives

Γ(H → ψ1ψ2) =

√
λ(m2

H ,m
2
1,m

2
2)

8πm3
H

[
(|a|2 + |b|2)

(
m2
H −m2

1 −m2
2

)
− 2

(
|a|2 − |b|2

)
m1m2

]
(3.22)

from which we can obtain:

Γ(H → Ψ̄Ψ) =
mHε

2
H

8π
(1− 4rΨH)3/2θ(1− rΨH), (3.23)

Γ(H → nN) =
m3
H

4πv2
H

[rNH(1− rNH)tr
{
S2C2

}
θ(1− rNH)

+
1

2
(1− 4rNH)3/2tr

{
S4
}
θ(1− 4rNH)],

(3.24)
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Γ(H → ΦΦ) =

(
v2
Hλx

)
16πmH

√
1− 4rΦHθ(1− 4rΦH), (3.25)

the �rst of which is negligible due to the ε2H prefactor.

From experimental constraints, we can then write

4.89× 10−4 > |rNH(1− rNH)tr
{
S2C2

}
θ(1− rNH) +

1

2
(1

− 4rNH)3/2tr
{
S2
}
θ(1− 4rNH) + 1.93λ2

x

√
1− 4rΦHθ(1− rΦH)|.

(3.26)

3.5.3 W-mediated decays

Due to mixing with the SM neutrino, W boson interactions with charged leptons

are also changed. The vertex involving a charged lepton eLr and a neutrino mass eigenstate

nLs, where we have used r and s as �avor indices, gains a factor of
(
V †PMNSC

)
rs
. Assuming

mN > mτ ,

Γ(lr → lsν̄ν) ' (1−∆r −∆s)ΓSM (lr → lsν̄ν); ∆r =
(
V †PMNSS

2VPMNS

)
rr
> 0. (3.27)

We de�ne Ru→X = B(u→ X)/BSM (u→ X)− 1. For the decays of interest:

Rτ→µνν̄ ' BSM (τ → eνν̄)∆e − [1−BSM (τ → µνν̄)] ∆µ⇒ |0.8223∆µ − 0.1958∆e| ≤ 0.0069

(3.28)

Reνν̄ ' BSM (τ → µνν̄)∆µ − [1−BSM (τ → eνν̄)] ∆e⇒ |0.1777∆µ − 0.8042∆e| ≤ 0.0067

(3.29)
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Rπ→µν ' BSM (π → eν)(∆µ −∆e)⇒ |∆µ −∆e| ≤ 0.010 (3.30)

to 3σ.

3.6 Muon anomalous magnetic moment

The newNNW vertices, and the C factors for the nnW vertices generate contribution

to the anomalous magnetic moment of the muon, aµ. Using the results of [18] it is straightforward

to see that

∆aµ =
GFm

2
µ√

2 8π2
∆µ [F (rNW)− F (0)] , (3.31)

where ∆µ = ∆r=2 is de�ned in eqn (3.27) and

F (w) =

∫ 1

0
dx

2x2(1 + x) + x(1− x)(2− x)w − x2(x− 1)k

kx2 + (1− k)x+ (1− x)w
; k =

(
mµ

mW

)2

, (3.32)

'
∫ 1

0
dx

2x2(1 + x) + x(1− x)(2− x)w

x+ (1− x)w
(3.33)

so that

F (w)− F (0) ' 10− 33w + 45w2 − 4w3

6(1− w)3
+

3w3 lnw

(1− w)4
− 5

3
, (3.34)

and this ranges from 0 when w = 0 to −1 when w →∞. Then

|∆aµ| ≤
GFm

2
µ√

2 8π2
∆µ = 1.17× 10−9∆µ . (3.35)
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The constraints derived form W -mediated decays require ∆µ . 10−2 so |∆aµ| .

10−11, while the current error is (±5.4 ± 3.3) × 10−10. The anomalous magnetic moment

limits do not produce a competitive bound now, but may do so with the upgraded Fermilab

experiment.

3.7 Direct Detection

We calculate the scattering cross section for a Ψi scattering o� a nucleon. The cross section

receives contribution from both the Higgs and the Z Boson. The relevant e�ective operators

are (in the small momentum transfer limit):

L(Z)
DM−n,p =

√
2GF

[
Ψ̄γµ(εLPL + εRPR)Ψ

] [
p̄Jµp p+ n̄Jµnn

]
+O(q2) (3.36)

L(H)
DM−n,p = GH [p̄p+ n̄n] Ψ̄Ψ +O(q2); GH = −0.011εH

m2
H

(3.37)

The nucleon currents, Jµn,p, are given by

J µp =
1

2

[(
1− 4sin2θw

)
γµ + gA

(
γµ − 2mN q

µ

m2
pi + q2

)
γ5

]
(3.38)

J µn = −1

2

[
γµ + gA

(
γµ − 2mN q

µ

m2
pi + q2

)
γ5

]
(3.39)

where mN is the nucleon mass and q is the momentum transfer.

In the non-relativistic limit, the e�ective lagrangian becomes
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Lnucleon−DM |NR = 4GH1Ψ1N

+
√

2GF (εR + εL) {
[
−2sin2θw +

(
1− 2sin2θw

)
τ3

]
1Ψ1N

+ τ3

[
sΨ � sN − 4

(q � sΨ) (q � sN )

m2
π + q2

](
εR − εL
εR + εL

)
gA}

(3.40)

where τ3 is 1 for protons and -1 for neutrons, sΨ,N are the spin operators for the DM and

nucleons, respectively. The DM-nucleus cross section is then calculated using the procedure

detailed in [8], and is found to be:

σN =
(mN/mN )2

16π(mN +mΨ)2

{κ2
[
(1 + b)2 F

(p,p)
M + (1− b)2 F

(n,n)
M + 2 (1− b)2 F

(p,n)
M

]
+

K2
(
Q2 − 2Q+ 3

)
12[

F
(p,p)
Σ′′ + F

(n,n)
Σ′′ − 2F

(p,n)
Σ′′ + 2

(
F

(p,p)
Σ′ + F

(n,n)
Σ′ − 2F

(p,n)
Σ′

)]
}

(3.41)

we use mN to denote the nuclear mass and

κ =
√

2GFmΨmN

[
2 (εL + εR) sin2θw − 2

√
2
GH
GF

]
, Q =

4|q|2

|q|2 +m2
π

, (3.42)

K =
Gf (εR − εL)mΨmN√

2
gA, b =

1− 2sin2θw√
8GH/ [(εL + εR)GF ]− 2sin2θw

(3.43)

From this, we can acquire the DM-nucleon cross section:

σN =

(
mN
mN

)2(mΨ +mN
mΨ +mN

)2 1

A2
σN (3.44)
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where A is the atomic number.

For systems made up of multiple isotopes, I, with abundances αI , F
(N,N ′)
X →I

F
(N,N ′)
X and

1

A2
F

(N,N ′)
X →

∑
I

αI
A2
I

IF
(N,N ′)
X = f

(N,N ′)
X (3.45)

so that, with the following de�nitions

f1 = f
(p,p)
M + f

(n,n)
M + 2f

(p,n)
M (3.46)

f2 = f
(p,p)
M − f (n,n)

M (3.47)

f3 = f
(p,p)
M + f

(n,n)
M − 2f

(p,n)
M (3.48)

f4 =
(
f

(p,p)
Σ′′ + f

(n,n)
Σ′′ − 2f

(p,n)
Σ′′

)
+
(
f

(p,p)
Σ′ + f

(n,n)
Σ′ − 2f

(p,n)
Σ′

)
(3.49)

we can write the DM-nucleon cross section as

σN =
1

16π2 (mN +mΨ)2

[(
f1 + 2bf2 + b2f3

)
κ2 +

K2
(
Q2 − 2Q+ 3

)
12

f4

]
. (3.50)

The suppression of the spin-dependent contribution, which is given by the term

proportional to K2, with respect to the spin-independent contribution, which is given by the

term proportional to κ2, is due to the fact that f1 � f4.
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3.8 Relic Abundance

The two dark matter candidates, Ψ1 and Ψ2 have approximately equal mass and

couplings with the V . Their interactions will allow them to remain in equilibrium with each

other even after the dark sector has decoupled from the SM. As such, we take their respective

abundances to be the same and perform the relevant calculation for one Ψi abundance

only. We label ρΨ = 1
2ρ1 = 1

2ρ2. The interactions of interest are Ψ̄1Ψ1 → n̄LnL and

Ψ1Ψ2 → nLnL, both of which have the same cross section, and Ψ̄Ψ → V V . With this in

mind, we use only one neutrino cross section in the calculation below and include a factor

of 2 in the �nal result.

We follow the usual perscription for calculating abundance with the Boltzmann

Equation:

dnΨ

dt
+ 3HnΨ = σ0

[
n2

Ψ −
(
n

(eq)
Ψ

)2
]

(3.51)

where nΨrefers to the number density for Ψ and

σ0 =
1

2
〈σv〉Ψ̄Ψ→nn +

1

4
〈σv〉Ψ̄Ψ→V V (3.52)

The relevant cross sections contain only diagram each (t-channel Φ exchange and

t-channel Ψ exchange, respectively), illustrated in �g. 3.3, which we calculate to be:

σΨ̄1Ψ1→n̄LnL =
(zS2zT)2

64πsβπ

[
1 + 2y(1 + y)− β2

Ψ

(1 + y)2 − β2
Ψ

+
y

βΨ
ln

(
1− βΨ + y

1 + βΨ − y

)]
(3.53)
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σΨ̄Ψ→V V =
g4

8πs

βV
βΨ

[
sm2

Ψ + 4
(
m4
V − 2m2

Vm
2
Ψ − 2m4

Ψ

)
sm2

Ψ +mV

(
m2
V − 4m2

Ψ

)
+

4
(
m2
V +m2

Ψ

)
sβV βΨ

ln

∣∣∣∣1 + β2
V + 2βΨβV

1 + β2
V − 2βΨβV

∣∣∣∣]
(3.54)

where

y =
2(m2

Φ −m2
Ψ)

s
; βi =

√
1−

4m2
i

s
. (3.55)

Given that other constraints require our DM mass be small, that ismΨ < mH , mZ ,

we will have no resonant contributions to this cross section and can use the usual approximations

[17]. Thus we �nd

〈σv〉Ψ̄1Ψ1→nn '
(
zS2zT

)2
32π(rΦΨ + 1)2m2

Ψ

= σ0 (3.56)

〈σv〉Ψ̄Ψ→V V '
g4

16πm2
Ψ

(3.57)

where all neutrino �nal states have been summed over and we take mΨ � mV . Then we

�nd the combined cross section (eqn (3.52)) to be:

σ0 =
g4 +

[
zSzT/ (rΨΦ + 1)

]2
64πm2

Ψ

(3.58)

Using the standard freeze-out approximation [17], the relic abundance is given by:

ΩΨh
2 =

1.07× 109

GeV

xf
g∗sξ

; ξ =
MPlσ0√

g∗
. (3.59)

We have used MPl to denote the Planck mass, g∗s, g∗ to denote the relativistic degrees of

freedom associated with the entropy and energy density, respectively, and
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Figure 3.3: t-channel Ψ decays to nn and V V .

xf =
mΨ

Tf
= ln (0.076mΨξ)−

1

2
ln [ln (0.076mΨξ)] , (3.60)

with Tf being the freeze-out temperature. Comparing this expression for ΩΨ with the result

from CMB data obtained by the Planck experiment:

ΩPlanckh
2 = 0.1186± 0.006 (3σ). (3.61)

The case where S = 0 (the no mixing limit) is excluded by this constraint. We also note

that a su�ciently large value of g will lead to DM under-abundane.

3.9 Numerical Results

The model as detailed has ten parameters of interest: z (3), mN , mΨ, mΦ, λx (4) and S

(3). For simplicity we have assumed that the z are real and that the N are degenerate. We

consider the region of parameter space given by
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Figure 3.4: Projections of the allowed parameter region, (a) in the mΨ −mΦ plane, (b) the
λχ−mΦ plane, (c) in the mΨ−〈 z 〉 plane (where 〈 z 〉 = |z|/

√
3), and (d) in the mΨ−〈mix 〉

plane, where 〈mix 〉 is de�ned in eq (112). The unevenness in the curves are due to numerical
inaccuracies.

0.5GeV ≤ mΨ ≤ 10GeV, min {1.1mΨ, mΨ + 2GeV} ≤ mΦ < 500GeV, (3.62)

2GeV ≤ mN ≤ 1.5TeV, |λx| ≤ π, |Si| < 1, |zi|2 ≤ 10 (i = 1, 2, 3). (3.63)

A full scan over this region would be cumbersome and prohibitively time-consuming.

Instead, we use a publicly-available optimization package [22] to obtain the allowed parameter

space, given by the constrains above. We visualize the projections in the mΨ −mΦ plane,

the mΨ − 〈 z 〉 = |z|/
√

3 plane, and the mΨ − 〈mix 〉 plane, where

〈mix 〉 =
∑
|zi|2S2

i (3.64)

and the results are given in (�g. 3.4). These projections show the constrains of interest; other
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Figure 3.5: Experimental limits on the direct detection cross section σ. The upper curves are
obtained, from left to right, from the CRESST, CDMS, PandaX and Xenon1T experiments,
and the expected sensitivity limit for the superCDMS experiment; the coherent neutrino
scattering regions are calculated for Xe (left) and Ge (right). For illustration we also include
the cross sections corresponding to a selection of points on the boundary of the allowed region
of parameter space, on the upper and lower boundaries of Fig. ()(a) (green points), of Fig.
()(c) (red points), and of Fig. ()(d) (blue points).

planes (ie mΨ −mN , and mΨ − λx) reveal that the full region within the above constraints

is allowed and satis�ed by some combination of the other parameters.

In Fig. 3.5 we plot the values of the direct-detection cross sections for a selection

of points on or close to the boundary of the allowed region of parameter space. The points

are chosen only to illustrate that there is a region of parameter space within the sensitivity

reach of SuperCDMS, but that this experiment cannot exclude the model; it is also worth

noting that a (di�erent) region of parameter space will correspond to cross sections above

the coherent neutrino scattering `�oor'. Both these regions are signi�cant in size: restricting

the model to either (or both) would not require �ne tuning.
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Chapter 4

Conclusions

In this thesis, we have considered two separate models of dark matter, both of which include

some minor extensions to the Standard Model in the form of a dark sector, which interacts

with itself. In the �rst model, the dark sector consists of a complex scalar with an exact

dark U(1) symmetry. We investigated the possibility of a Bose einstein condensate forming

in association with this precisely conserved charge and showed that, at su�ciently early

times, the self-interaction among the scalar particles provides a repulsive force to balance

the increasing early-universe density of the gas. In other words, in the absence of a self-

interaction (λχ = 0), there will always be a condensate at su�ciently early times in the

universe. However, when a self-interaction is introduced, a condensate will only form if the

charge per unit entropy is above a mχ and λχ dependent minimum. At present times, we

showed that a condensate will only persist if the dark matter mass is within the pico-eV

range.

The direct-detection limits on this model are restrictive, allowing only small ε
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and/or small mχ (�g. 2.4). Even so, this range is extended from the traditional Higgs-

portal model [7, 6] due to the existence of a chemical potential, which can be adjusted to

satisfy the relic abundance constraints. We do not discuss indirect detection constraints, as

these will be the same as the case of the usual Higgs-portal models.

The second model we have considered is more complex and introduces a more

varied dark sector, consisting of a massive scalar Φ, two near-degenerate fermions Ψ1,2, which

interact strongly via a U(1)dark symmetry and associated gauge boson V . The fermions,

Ψ1,2 have opposite U(1)dark charge and serve as the dark matter candidates for this model.

We have also introduced a (softly broken) Z2 symmetry to suppress mixing of the V with

SM photons but still allow the V to decay into neutrinos. The lifetime for this decay is short

enough so as not to interfere with relic abundance, LSS formation, or core v cusp limits.

This model is a modi�cation of a previously considered model, and it preserves the naturally

small DM-SM interaction cross sections.

Experimental limits on the direct-detection cross section come from core v. cusp

data provide restrictions on the strong coupling and mV . We acquire an upper bound,

mΨ . 10GeV, on the dark matter mass due to out requirement that Ψ1 and Ψ2 do not

form bound states, since this would produce screened interactions and, therefore, di�culties

satisfying the core v. cusp limits. Though the bound state issue might also be circumvented

by requiring that the dark matter temperature is above the ionization energy of the Ψ1 and

Ψ2 bound states, we do not do this because any such temperature e�ects will be masked by

the large uncertainties in the cross section limits.

The DM-nucleon cross section in this model is a one-loop process and therefore
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naturally suppressed. Thus, direct-detection does not provide strong limits on this model.

Furthermore, the data on neutrino oscillations is not precise enough to produce signi�cant

restrictions; similarly, the limits from muon anomalous magnetic moment do not constrain

our parameter space further. The most distinct direct-detection signature would thus come

from the ΨiΨi → νν process, which would produce a monochromatic neutrino line from

both the sun and galactic halo. However, current experiments do not possess the sensitivity

to detect such a signal.
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Appendix A

Appendix

A.1 Thermodynamics of a Bose Gas

The Lagrangian for dark Bose gase (excluding interactions with the Standard Model) is

given by

L = |∂χ|2 −m2|χ|2 − 1

2
λχ|χ|4. (A.1)

As usual, we write the complex �eld χ as χ = (A1 + iA2)/
√

2, so that the

Hamiltonian and total conserved charge Qbe are

H =

∫
d3x

[
1

2
π2 +

1

2
|∇A|2 + V

]
, Qbe = −

∫
d3x(A1π2 −A2π1), (A.2)

where πi is the canonical momentum conjugate to Ai.

If a condensate is to form then A1 → A1 + C. We lose no generality in making

this substitution; in the absence of a condensate we will simply have C → 0. Then we use
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the Matsubara formalism of �nite-temperature �eld theory [14] and obtain the pressure as

given by [15, 11]

Pbe =
µ2 −m2

χ

2
C2 +

2

3

∫
dp̃ p2F+ +

1

8
λχC

4 − λχ
(

1

2
C2 +

∫
dp̃F+

)2

+O(λ2
χ), (A.3)

to O(λχ), where we have used

F± =
1

eβ(E−µ) − 1
± 1

eβ(E+µ) − 1
; F̄± = F±|µ=mχ , (A.4)

dp̃ =
d3p

(2π)32E
; E =

√
p2 +m2

χ. (A.5)

The Standard Model coupling, ε|φ|2|χ|2, which we have thus far neglected, will

introduce and additional contribution

∆Pbe = −εFH
(

1

2
C2 +

∫
dp̃F+

)
; FH =

m2
H

π2

∫ ∞
0

dα
sinh2α

e(mH/T ) coshα − 1
, (A.6)

where FH comes from the φsymmetry breaking FH → v2 + FH/4. When mH > mχ, as we

assume for this paper, this term is subdominant.

Before proceeding we remark on the type of perturbative expansion we will use:

we assume that C is independent of λχ, and µ to have a λχ dependence; we believe this to

be reasonable because, for example, the condition for the presence of a BEc when λχ = 0 is

µ = mχ, and becomes µ > mχ when λbe 6= 0 (see below) that naturally leads to a relation

of the form µ = mχ +O(λχ).
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The zero-momentum component C is determined by the condition that it minimizes

the thermodynamic potential −Pbe(C, µ, T ):

∂Pbe
∂C

= λχC

{
δ − F− 1

2
C2

}
+O(λ2

χ), (A.7)

where (F̄± are de�ned in (A.4))

µ2 = m2
χ + λχδ; F = 2

∫
dp̃F̄+. (A.8)

So there are two cases:

1. δ < F: then there's a single extremum, ,C = 0 which is a maximum and corresponds

to the stable state; there is no BEc.

2. δ > F : then there are two extrema: C = 0 which is now a minimum, and does not

correspond to the stable state, and

C2 = 2(δ − F) +O(λχ), (A.9)

which is a maximum and corresponds to the stable (BEc) con�guration.

The transition occurs when δ = F; approximating F ' F(mχ = 0) we �nd that the critical

temperature is

T 2
C '

6

λχ
(µ2 −m2

χ), (A.10)

which is a known result [15, 11].

From Pbe we �nd the expressions for the charge density qbe and entropy density sbe

to O(λχ):
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• δ < F :

Pbe =
2

3

∫
dp̃p2F+ − λχ

(∫
dp̃F+

)2

(A.11)

qbe =

∫
d3p

(2π)3
F̄− +

4λχF
m

(
m

4

∫
d3p

(2π)3

F̄+ − F̄−
p2

+

∫
dp̃
E +m/2

E +m
F̄+

)
, (A.12)

sbe =

∫
d3p

(
1− λbe

2F
p2

)∑
±

[(
n±be + 1

)
ln
(
n±be + 1

)
− n±belnn

±
χ

]
µ=mχ

(A.13)

where K2 = 4
∫
dp̃F+.

• δ = F :

Pbe =
2

3

∫
dp̃ p2F̄+ −

1

4
λχF

(
F− 2

m

∫
d3pF̄−

)
, (A.14)

qbe =

∫
d3p

(2π)3
F̄− +

4λχF
m

(
m

4

∫
d3p

(2π)3

F̄+ − F̄−
p2

+

∫
dp̃
E +m/2

E +m
F̄+

)
, (A.15)

sbe =

∫
d3p

(
1− λχ

2F
p2

)∑
±

[(
n±be + 1

)
ln
(
n±be + 1

)
− n±belnn

±
be

]
µ=mχ

+
λbeF
T

∫
dp̃

{
E2 + p2

p2

(
F̄− − F̄+

)
+

3E2 +mE −m2

m(E +m)
F̄−
}
.

(A.16)

• δ > F :

Pbe =
2

3

∫
dp̃p2F̄+ −

1

4
λχ

[
F2 − C4

2
− C2 + 2F

m

∫
d3pF̄−

]
, (A.17)

qbe = q
(c)
be +

∫
d3p

(2π)3
F̄− +O(λχ), (A.18)

sbe =

∫
d3p

(
1− λχ

2
(
C2 + F

)
p2

)∑
±

[(
n±be + 1

)
ln
(
n±be + 1

)
− n±belnn

±
be

]
µ=mχ

+
λχ
(
F + C2/2

)
T

∫
dp̃

{
E2 + p2

p2

(
F̄− − F̄+

)
+

3E2 +mE −m2

m(E +m)
F̄−
}
.

(A.19)

with q(c)
be = mbeC

2 + O(λχ). The O(λχ) corrections to qbe in the BEc phase are

obtained from the O(λ2
be) terms in Pbe, fortunately these are not needed.
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Figure A.1: Plot of the critical density function of T for λχ = 0 (light gray), 0.1, (dark
gray), and 0.5 (black).

The curvature of the thermodynamic potential −Pbe(C, µ, T ) at C = 0 equals

λχ(F− δ) ' λχT 2/6 +m2
χ− µ2 for large T (see eqn (refeq:20)). In this regime the radiative

corrections oppose the formation of a condensate; if this is indicative of the exact result,

the condensate will disappear as T → ∞. The behavior of the critical density (qbe at the

transition) is given in �g. A.1 which also illustrates the e�ects of the O(λχT
2) contributions.

When the volume V is constant and the total charge in the system is Qbe the

behavior of the condensate as a function of T can be obtained using standard arguments;

the results are illustrated in �g. A.2 where the critical temperature TC is de�ned by requiring

qbe = Qbe/V when δ = F.

In the non-relativistic limit (x� 1) the O(λχ) can be ignored in the phase where

there is no condensate. To see this, consider, for example the expression for Pbe:

Pbe =
m4
χ

π2x2

[
cosh(βµ)K2(x) +

cosh(2βµ)

4
K2(2x)− λbecosh2(βµ)

4π2
K2

1 (x) + ...

]
, (A.20)
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Figure A.2: Plot of the condensate density q(c)
be as a function of T for constant volume and

λχ = 0 (light gray), 0.1 (dark gray), and 0.5 (black), when the critical temperature (see
text) TC = 10mχ. When TC � mχ the O(λχ) e�ects are negligible.

which shows that the leading O(λχ) corrections are smaller than the subdominant O(λ0
χ)

contributions. This behavior is reproduced in all thermodynamic quantities in when x� 1

and there is no BEc.

We also need the behavior of the thermodynamic quantities at the transition (when

δ = F) in the ultra-relativistic (x� 1) and non-relativistic (x� 1) limits:

x� 1 : Pbe =
π2m4

χ

45x4

[
1 +

15λχ
16π2

]
+ ...

qbe =
m3
χ

3x2

[
1− 3x

π2 +
λχ

12x2

(
1− 3

π2xlnx
)

+ ...
]

sbe =
4π2m3

χ

45x3

[
1 +

5λχ
16π2

]
+ ...

ρbe =
π2m4

χ

15x4

[
1 +

5λχ
16π2

]
+ ...

x� 1 : Pbe =
m4
χζ5/2

(2π)3/2x5/2

[
1 +

ζ7/2
ζ5/2

15
8x + ...

]
+ λχ

m4
χζ

2
3/2

(2πx)3 + ...

qbe =
m3
beζ3/2

(2πx)3/2

[
1 +

ζ5/2
ζ3/2

15
8x + ...

]
+

3λχm3
χζ

2
3/2

2(2πx)3 + ...
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sbe =
5m3

χζ5/2
2(2πx)3/2

[
1 +

ζ7/2
ζ5/2

21
8x + ...

]
+

9λχm3
χζ3/2ζ5/2

128π3x3 + ...

ρbe =
m4
beζ3/2

(2πx)3/2

[
1 +

ζ5/2
ζ3/2

27
8x + ...

]
+

λχm4
χζ

2
3/2

(2πx)3 + ...

where ρbe is the energy density.

In particular, for small x,

xmin =

√
λχ
12

+
3λχ
8π2

+ ... (A.21)

The above minimum occurs when the O(λχ) corrections to qbe are of the same size

as the O(λ0
χ) contributions, so the validity of the expressions for such values of x should

be examined. The leading expression for qbe is ∝
∫
d3pF̄− and behaves as x−2, instead of

x−3 as might be expected on dimensional grounds; such a suppression is not present in the

O(λχ) corrections. We argue that a reasonable estimate of the region where perturbation

theory is valid is obtained by comparing the O(λχ) corrections to qbe with a quantity that

does not exhibit the above suppression, such as
∫
d3pF̄+. Using this we obtain

∫
d3p

(2π)3
F̄+ >

m3
χλχ

36x4

(
1− 3

π2
xlnx+ ...

)
⇒ x

1− (3/π2)xlnx
>
λχ
8.8

(A.22)

as specifying the lowest value of x for which our perturbative expressions are trustworthy.

Since xmin satis�es this condition, the expression for qbe/sbe can be trusted near the minimum.

A.1.1 χ Propogator

The �nite-temperature real-time formalism can be used to derive the Feynman

rules and propogator from the above Hamiltonian and total charge operators. We de�ne, as

per the conventions of LeBellac [2]
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D>
ij(x− x

′) =
〈
Ai(x)Aj(x

′)
〉
β
, D<

ij(x− x
′) =

〈
Aj(x

′)Ai(x)
〉
β
, (A.23)

where

〈...〉β =
tr
{
e−βH ...

}
tr {e−βH}

. (A.24)

Then if,

ρij(k) = D>
ij(k)−D<

ij(k); D≷ij(k) =

∫
d4x e+ik·xD≷ij(x), (A.25)

we have

D<
ij(k) = f(k0)ρij(k), D>

ij(k) = −f(−k0)ρij(k); f(k0) =
(
ek0β − 1

)−1
. (A.26)

From which we can calculate

ρ(k) = 2πε(k0)

[
δ(ω2 − Ω2

+)− δ(ω2 − Ω2
−)

Ω2
+ − Ω2

−

]
R(k), (A.27)

R(k) =

 k2 + µ−m2 − λχC2/2 −2iµk0

2iµk0 k2 + µ2 −m2 − 3λχC
2/2

 . (A.28)

When µ = 0, this reduces to the expected form. For this paper we will only need

expressions with precision up to O(λχ):

ρ(k)|λχ=0 = π
∑
s=±1

(1± τ2)ε(k0 ∓ µ)δ((k0 ∓ µ)2 − Ē2
k), (A.29)
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where Ēk =
√
m2
χ + k2. This expression will be valid in the presence or absence

of a condenate, when µ = mχ or otherwise.

During the period when the SM and the Bose gas are in thermal equilibrium, we

must consider the resonant contribution, which can occur for mH = 2mbe. To account for

this, we make the following substitution in D≷H

2πδ(p2 −m2
H)→ 2ΓHmH

(p2 −m2
H)2 + (ΓHmH)2

, (A.30)

where ΓH is the Higgs width.

A.1.2 Evaluation of G

In the presence of a condensate we write χ = [(A1 + C) + iA2]/
√

2, where A1,2

denote the �elds and C the condensate amplitude. We also assume that decoupling occurs

below the electroweak phase transition so that |φ|2 = (v+h)2/2, where v is the SM vacuum

expectation value, and h the Higgs �eld. We �nd, after an appropriate renormalization,

GBEc =

[
v2C2G2−2 +

1

4
C2G2−4 +

1

4
v2G4−2 +

1

16
G4−4

]
µ=mχ

, (A.31)

where

G2−2 =

∫ β

0
ds

∫ ∞
0

dt

∫
d3x〈A1(−is,x)

dA1(t, z)

dt
〉〈h(−is,x)

dh(t, z)

dt
〉 , (A.32)

G2−4 =

∫ β

0
ds

∫ ∞
0

dt

∫
d3x〈A1(−is,x)

dA1(t, z)

dt
〉〈h2(−is,x)

dh2(t, z)

dt
〉 , (A.33)

G4−2 =

∫ β

0
ds

∫ ∞
0

dt

∫
d3x〈A2(−is,x)

dA2(t, z)

dt
〉〈h(−is,x)

dh(t, z)

dt
〉 , (A.34)

G4−4 =

∫ β

0
ds

∫ ∞
0

dt

∫
d3x〈A2(−is,x)

dA2(t, z)

dt
〉〈h2(−is,x)

dh2(t, z)

dt
〉 . (A.35)
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In the absence of a condensate we have

GBEc =
1

4
v2G4−2 +

1

16
G4−4 , (A.36)

(GBEc denotes the expression for G in the absence of a condensate) evaluated at a chemical

potential |µ| < mχ.

We evaluate theGn−m using the standard Feynman rules for the real-time formalism

of �nite-temperature �eld theory and the propagators derived above. The calculation is

straightforward but tedious; to simplify the expressions we use the following shortcuts:

E = Ek, E′ = Ek′, Ē = Ēq, Ē′ = Ēq′,

nH = nH(Ek), n′H = nH(Ek′), n±be = n±be(Ēq), n±be′ = n±be(Ēq′),

(A.37)

and

dk̃ =
d3k

2Ek(2π)3
, dq̃ =

d3q

2Ēq(2π)3
; (A.38)

where

Ek =
√
m2
H + k2 , Ēq =

√
m2
χ + q2 ; n

(±)
be (Ē) =

[
eβ(Ē∓µ) − 1

]−1
, (A.39)

and mH denotes the Higgs mass.

Then the Gn−m (for arbitrary µ) are given by

• G4−4

� G4−4 = 16πβ
∫
dk̃dk̃′dq̃d̃′(2π)3 δ(3)(k + k′ + q + q′)G4−4 ;

� G4−4 = 1
2(1 + ntH)(1 + n′tH)n+

tben
−
tbe′ δ(E + E′ − Ē − Ē′) (E + E′)2

� +1
2(1 + n+

tbe)(1 + n−tbe′)ntHn
′
tH δ(E + E′ − Ē − Ē′) (E + E′)2

� +(1 + ntH)(1 + n+
tbe)n

′
tHn

+
tbe′ δ(E + Ē − E′ − Ē′) (E − E′)2
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� +(1 + ntH)(1 + n−tbe)n
′
tHn

−
tbe′ δ(E + Ē − E′ − Ē′) (E − E′)2 ,

where the 4 terms represent the processes hh↔ χχ†, hχ→ hχ, and hχ† → hχ† respectively;

the factors of 1/2 are due to Bose statistics.

• G2−4

� G2−4 = 2πβ
∫
dk̃dk̃′dq̃(2π)3δ(3)(k + k′ + q)G2−4 ;

� G2−4 = 1
2(1 + ntH) (1 + n′tH)n−tbe δ(E + E′ − Ē −mχ) (E + E′)2

� +1
2(1 + n−tbe)ntHn

′
tH δ(E + E′ − Ē −mχ) (E + E′)2

� +(1 + ntH)n′tHn
+
tbe δ(E +mχ − E′ − Ē) (E − E′)2

� +(1 + ntH)(1 + n+
tbe)n

′
tH δ(E + Ē − E′ −mχ) (E − E′)2 ,

these 4 terms represent the processes hh ↔ Cχ† and hC ↔ hχ, where C corresponds to

a particle in the condensate (mass mχ and zero momentum); the factors of 1/2 are due to

Bose statistics.

• G4−2

� G2−4 = 4πβ
∫
dk̃dq̃dq̃′(2π)3δ(3)(k + q + q′)G4−2 ;

� G4−2 =
[
(1 + n+

tbe)(1 + n−tbe′)ntH + (1 + ntH) n+
tbe n

−
tbe′
]
E2δ(Ē + Ē′ − E) ,

these 2 terms represent the processes h↔ χχ†.

• G2−2

� G2−2 = 1
2πβ

∫
dk̃dq̃(2π)3δ(3)(k + q)G2−2 ;

� G2−2 =
[
(1 + ntH)n−tbe + (1 + n−tbe)ntH(E)

]
E2δ(E −mχ − Ē) ,
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these 2 terms represent the processes h↔ Cχ†.

In the non-relativistic limit, where mχ, mtH � T we �nd1

G
(NR)
2−2

∣∣∣
µ=mχ

' mtH

r
√

(2π)3x

2uΓ e
−2x

u2
Γ + (r2 − 4)2

; (A.40)

G
(NR)
2−4

∣∣∣
µ=mχ

'
(mtH

2πrx

)3
[
2r2x2ρK1(ρ) + ζ3

(
(r + 1)2

4r

)]
e−rx ; (A.41)

G
(NR)
4−2 '

(mH

2π

)3 4

x2r3

[
e−rx

√
π
(rx

2

)3
(
r2

4
− 1

)
θ(r − 2) +

Li3/2(z)

z

2uΓ e
−2x

u2
Γ + (r2 − 4)2

]
;

(A.42)

G
(NR)
4−4 '

1

16

m5
H

r3(1 + r)7/2

(
2

πx

)9/2

e−rx
(
z +

1

z
e−2x

)
, (A.43)

where K1, ζ3 and Li denote the usual Bessel, zeta and Poly-logarithmic functions,

and we de�ned

r =
mtH

m χ
, ρ =

4r|r − 1|x√
2(r2 + 1)

, uΓ = r2 Γsm
mtH

, z = eβ(µ−mχ) . (A.44)

Before continuing it is worth pointing out a slight di�erence between the expression

for Γ derived above and the corresponding expression usually found in the literature: the

calculated Γ describes the energy transfer between the SM and the Bose gas, which leads

to the (E ± E′)2 factors. As a result Γ has a factor ∼ (mass/T )2 compared to the usual

expressions, which determine the change in the DM particle number. Because of this the

1G2−2, 2−4 contribute only when there is condensate, so we evaluate then them only for µ = mχ; the

expressions for G4−2, 4−4 are valid for all µ.
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decoupling temperature will be somewhat higher than usual; this di�erence, however, is not

signi�cant given that the criterion is not sharply de�ned.
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