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Feedback Assisted Transmission Subspace Tracking
for MIMO Systems

Brian Clarke BanisterMember, IEEEand James R. ZeidlgFellow, |IEEE

Abstract—This paper describes a feedback assisted stochastic This paper focuses on a signal processing approach for sub-
gradient algorithm for transmission tracking of the dominant space tracking, using a multimode extension of an algorithm

channel subspaces for multiple-input-multiple-output (MIMO)  yreviqusly introduced for MISO systems [5]. The proposed
communications systems. Subspace tracking is introduced

as a means of tracking multiple transmission weights, being adgptive approach is similar to Su_bSpace tracking algorithms
the MIMO generalization of beam steering in the familiar Which have been proposed for receive systems [14]-{16]. Given
multiple-input-single-output case. The subspace solution ap- that the principal spatial transmission modes are found and
proximates that of water filling (WF) in some cases, without the tracked by the algorithm, coding techniques can use the spatial
complete rate/power allocation required by WF. The gain of sub- - 3 4ag in conjunction with the more traditional time/frequency

space tracking in low rank systems is demonstrated, particularly, des i fi | 177). A i
in the case where the number of transmit antennas exceeds the M0des in a conventional manner (e.g., see [17]). A specific

number of receive antennas. Simulations of ergodic capacity show coding technique is evaluated as an example. In general,
the utility of both subspace tracking in general and of the specific however, the algorithm is not specific to any coding technique.

adaptation algorithm, and simulations of frame-error rates show  The algorithm maintains a set of transmission weight vectors,
the utility in a specific C_Od'ng example. _ _ where there are fewer weight vectors than transmit antennas.
~ Index Terms—Adaptive arrays, gradient methods, multiple- Each weight vector is applied to a corresponding space—time
input-multiple-output (MIMO) systems, transmitting antennas.  4e stream. Gaussian perturbation probing is transmitted to
the receiver, which generates feedback indicating a preferred di-

|. INTRODUCTION rection for this perturbation to be applied to the current weight

. vector set. This provides the transmitting unit with a coarse esti-

P;A‘CEE.TllME C?DINI? fSTCi fotr mﬁgty ﬁnhanlcemen}nate of the gradient of the power delivered to the receiver and is
ho i dmu '5 e-mpud—muflr;]e—o# pu I( ) c ‘f"nneifus’?%sed to update the transmission weight vectors. Gram—Schmidt

the independent modes of the channel-state matrix to effectivglyy, o rmajization is performed to maintain the orthonormality

obtain multiple spatial transmission pipes, giving an increagghe set of weight vectors. The first-order behavior of this ap-
in the effective transmission bandwidth and allowing f°{5r0ach is very similar to that described in [14].

greater bit rates. Most of the research into STC with multiple The situation which most explicitly benefits from tracking the

transmit antennas has focused on "blind” techniques, whef, inal modes is one where some of the available transmission
no knowledge of the forward channel state is available o t@anne| subspaces have null or near null response and, hence,
transmitter. These attain diversity with a single receive antengajiver no power to the receiver. This condition may occur due
[1] or multiplexing coding gain with multiple receive antennag, an jl-conditioned channel response. Such a channel response
[2]-{4]. There is also a substantial body of literature on theay he due to correlation from closely spaced antennas or may
subject of signal processing approaches for transmit adapigse from a poor scattering environment, as can occur even
tion in multiple-input—single-output (MISO) environmentsyith fading independent across all antennas [18]. The results
including closed loop techniques utilizing digital feedbackresented in this paper focus on the environment which pro-
[5]-{8]. While it has been clear from the basic capacity formulgides the most explicit subspace tracking gains, one where the
[9] that utilization by the transmitter of the channel state coulghannel components are independent and identically distributed
also be advantageous in MIMO space-time coded systerfis.d.) and there are fewer receive antennas than transmit an-
there is only a small body of literature on specific techniquesnnas (e.g., due to size or cost constraints). Simulations with
for attaining such knowledge in the MIMO case, particularly imwvo receive and either four or eight transmit antennas in a fading
frequency-division duplex (FDD) systems. Those works haesvironment show the effectiveness of this tracking algorithm in

focused on antenna selection algorithms [10]—[13]. attaining the potential gain over blind MIMO transmission, and
results for optimal water filling and perfect subspace tracking
Manuscript received May 1, 2002; revised November 1, 2002. are generated for comparison.
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simulation results for a specific coding example; Section VII The associated capacities then become

provides a discussion of implications for other environments.

min(Np,Ng) +
Cowr) = log, ( 2o 10
IIl. CAPACITY MOTIVATION FOR MIMO CHANNELS (WE) = 1; %2\ "Ny (10)
A. Capacity Formulae min(Ns,Ng)
EsAy
The desirability of a subspace tracking technique is demon- Cisty= », logy |1+ NN (11)
strated through simple capacity analysis. The MIMO system k=1
will have Nt transmission antennas and; receive antennas. min(Nz,Nk) Ec)
issi islt | C(piay = log, (14 22k 12
The number of tracked transmission subspace€disit is as- (Bld) = Z 082 + NpNo ) 12)
k=1

sumed thatVN;y > Ng, Ns < Nr. The channel frequency re-

sponse is assumed to be flat, so there is no temporal intersymb@bne Jimiting condition of some interest for WF is large signal

interference (1S1). The transmission is represented by\the 1
complex vectott, which is zero mean with autocorrelatidr.
The transmission energy per Nyquist symbol is giverfhy

&, = E(ttH)
tr(‘ﬁt) - ES.

With a Ng x Nt complex channel transfer matrid and
Ng x 1 zero-mean complex Gaussian noise veeiavith au-

tocorrelationNyI, the received vector is

r = Ht + n.

to noise ratio Ny — 0). Assuming the channel is of maximal
rank (given byNg, as will be attained in most realistic channel
conditions with probability 1), we have

E
lim (EoI — NoA 1)t = =%
Np—0 R

I 0
NrXNg . (13)
0 0

B. Discussion

It is immediately clear from (11) and (12) thatMs > Ng
and Ny > Ng, then a power gain of preciselyy/Ng is
attained for perfect subspace tracking over blind transmission.
The gain is attained because transmission of power into null

The Shannon capacity of the channel with this modulation i$, 5 el modes, where such power cannot be received by the

then given by [9]

1
C = log, (‘I + —HcI»tHHD
No

where|.| denotes the matrix determinant.

The singular value decomposition (SVD)Hfis defined as

H

1
= 2

= U
NrXNr NgrXNgr NrXNT Nt XNt

with unitary left-singular matridU, right-singular matrixy’ and
magnitude sorted singular valug¥ >(A = AH/2A1/2), where

A% is the largest singular value.

receiver, is avoided. Hence, the received power is increased
without sacrificing the multiplexing gain available from the
independent spatial modes. This is a reasonable downlink an-
tenna topology since the number of antennas at a data terminal
may be restricted by cost and/or space constraints.

The performance of perfect subspace tracking relative to WF
is less clear for the general case. However, from (13), we see
that the WF and subspace tracking solutions will be approxi-
mately the same in the case of large signal to noise ratio. Hence,
itis expected that in many practical situations subspace tracking
will provide the majority of the achievable adaptation gains. Nu-
merical results comparing the WF, subspace tracked and blind
approaches are presented in Section V, after the description of

With Gaussian signaling (maximizing entropy), we evaluathe specific adaptation algorithm.
three values for capacity: 1) water-filling (WF) capacity (the

optimal allocation); 2) perfect subspace tracked (PST) trans-
mission capacity; and 3) blind transmission (Bld) capacity (n
channel-state knowledge at transmitter). For these transmissi
strategies, the transmission vector autocorrelations are

®ywr) = V(EI — NoA™1) TV H

I1l. ALGORITHM DESCRIPTION
. nObjective and Adaptation Cost Function

This section describes the feedback adaptive algorithm for
transmission subspace tracking in a FDD system. The objective
of the algorithm is to track &1 x Ng complex weight ma-
trix W which maps aVs x 1 complex vectos of coded data

0 - . .
P (psT) = &V N5£N5 ] vH to the applied signals at the antenntas; Ws. The tracking
Ns 0 0 is attempting to extract the principal right-singular subspaces,
Es giving
® =—1
t(Bld) Ny
I H 1 0
where(.)T denotes that the positive entries are retained and the VIWWTYV = NS(X)NS ol (14)
negative entries are zeroed (note: far= 0, the entry is—oco
and becomes zero), and for Wy is determined such that Define the cost functiory

tr(EoI — NoA™ 1) = Es. 9)

J(k) = [HW(K)|[3 = tr (W (&)HTHW (K))  (15)
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description uses discrete time sampling; Nyquist pulse shaping
and a temporal I1SI free channel are assumed.

The transmission is comprised of three components, distin-
guishable at the receiver through utilization of any standard
multiplexing technique (e.g., code or time-division multiplex:
CDM or TDM): coded data modulation, a pilot transmission (for

Wt kj channel estimation at the receiver), and a perturbation probing
b AT ﬁ transmission (for feedback generation). The adaptation occurs
(unspecified; e.g. CDM, or TOM) through probing and feedback evevl Nyquist symbols; mea-
surement and feedback latency is ignored in this presentation.
Fig. 1. Diagram of the system with the gradient algorithm. The data modulation is given by thés x 1 code stream vector
s(i), which has an autocorrelation &f The weighting matrix
TABLE | translates this vector to the transmit antennas
ADAPTATION ALGORITHM SUMMARY E i
N [ LBs v .
Tnitialize: t(i) = NSW (LMJ) s(i). (17)
I : . . . ..
W(O)=["s3”s} (transmitter) The pilot modulation is ali-1's multiplied by alVs x 1 vector
_ spreading coveg,iot(i), which is transmitted with the same
P(0) =random realization of Gaussian (transmitter) \yejghting matrix as the data so that the channel experienced by
for k=1:00 the data transmission can be estimated at the receiver
estimate: (receiver) E oo i
. pilo .
Alk-1)=H(k-1)W(k-1) tpilot (1) = Ne w <{MJ> pilot (7). (18)
B(k-1)=H(k - 1)P(k -1 . o .
(k-0)=Hle-1plE-) The perturbation modulation is similar to that of the pilot: all
d(k—l)=sign(Re(N2§am,n*(k-l)-bm,n(k~l)D (receiver) +1's multiplied by alNg x 1 vector spreading Cove,e.: (),
m=l n=l which is translated to the transmit antennas withha x Ng
W(k)=G(W(k -1)+ Bd(k -1)P(k -1)) (transmitter)  test perturbation matri¥f. For each perturbation probing pe-
o , . riod the perturbation matri® is randomly generated with i.i.d.
P(k) =new random realization of Gaussian (transmitter)

zero-mean complex Gaussian elements with variance of two.

tpers (i) = /ﬁ;e;quﬁJ)gpm(i). (19)

The spreading cover vectors are generated as uncorrelated so
that the pilot and perturbation transmissions can be recovered at

end

where||.||r is the Frobenius norm, and constrain the weight
matrix so that

wiw= 1 . (16) the receiver
NsXNS
kM+M-—1 kM+M—-1
It is shown in [14] that the maximization of subject to the Y Zpitot()8hi1ot (1) = > Bpert ()8l (1) = MT.
constraint (16) accomplishes the desired subspace tracking. i=kM i—kM

(20)

The data, pilot, and perturbation signals are all transmitted
_ o _ . _ from the same antennas. The multiplexing technique used to

The algorithm objective will be accomplished with a feedgistinguish these three signals at the receiver is important to the
back stochastic gradient algorithm adapted from [5] for thya| system design, but it is not relevant to this general intro-
multimodal adaptation required for subspace tracking. A blogff,ction to the algorithm and will not be considered here. In this
diagram of the system is shown in Fig. 1, and an algorithgpper, it is assumed that pilot and perturbation signals can be
summary is provided in Table I. The system utiliz¥s par- perfectly recovered by the receiver and their multiplexing re-
allel space-time coded transmission streams, where any jires an insignificant bandwidth, so that the capacity loss in-
technique can in principle be applied. Each of the transmissigfired by the multiplexing is negligible. This requires that the
streams is transmitted with a different antenna weightifgryard link bandwidth is much greater than the feedback rate.
vector, according to the column-orthogoré} x Ns weight  Together, the pilot and perturbation transmissions conSuviae
matrix W, where this matrix is tracked by the feedback a|gcbrthogonal time/frequency bases outidfavailablel where)

rithm such that its columns span the principal right-singulgg the ratio of frequency bandwidth to adaptation rate. Hence,

subspaces of the channel gain makixThe algorithm strategy the assumption i8Ns < M.

is to transmit a probing perturbation signal, with the receiver

generating feedback selecting the preferred sign to apply to théThe pilot and perturbation bandwidgh utili’zation can be incorporated _into the
bation i date 8. It will be shown that this results results as a bit rate loss fact(_cM — ZA'S)_/M (e.g., fgr a _:L-MHz bandwidth

Pertur a '9” iInanup - "> and 10 kb/s feedback the bit rate loss is 0.98). This still excludes the power

in the desired subspace tracking. For ease of presentation, uitieation.

B. Algorithm Operation
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The Nr x Nr channel gain matriH is assumed constant IV. ADAPTATION ANALYSIS
over the perturbation measurement and feedback interval, SO~ ¢ ..
. o ﬁs Definitions
that the composite channels formed by the combination of the _ _ ) )
physical channel and the transmission weight and perturbation!n this section, convergence will be considered wih

as seen by the receiver, are as follows: static and nonrandom (or taken as given). A tilde will be used
throughout to indicate projection into the right-singular spaces
NRéNs(k) =H(k)W (k) (21) of H. Hence, definingv as in (5)
k) =H(k)P(k). 22 37 _vH
NngNS( ) =H(k)P(k) (22) W=VIw (29)
E=VZE, (30)

Then, theNg x 1 received data signal vecteris

r(i)=H q i D 6(i)+n(i) ESA q i D (i) +n(i) For brevity, it will be convenient to definik) as
= i i)4n(i)=/ = — | ) s(i)+n(4).

Ng M 23) ,[3\/2 4 9
- J - tr (

With noise excluded, the pilot and perturbation are recoveredl(¥) = |IHEHW (k)|

|HEEW (k)| ~ N (1VH A 2YA '
perfectly at the receiver as W(k)TA W(k))

kM+M-—1 (3 1)
L H(k) tpitor (1) g, (i
M '%1 (k) Eoitor (1) Bpitor (1) B. Cost Function and Gradient Extraction
- Eoon This algorithm is operating to maximize the performance
=4/ %A(k‘) (24) metric.J defined above, and can be considered to be a steepest
kMM —1 S ascent implementation. The gradientfofvith respect tow is
1 N H
M Z H(k) tpert (Z) gpert (IL) VVV J(k) = 2HHHW(]C) (32)
i=kM
E Extending a result from [5], foP comprised of i.i.d. random
_ pert B(k) (25) . . . . .
~V NrNg . complex Gaussians with variance twice unity, the expected

. . . . value of the weight change prior to orthonormalization is the
Feedback is generated from the receiver using the pilot an ) ] ) .

i . . .scaled Frobenius normalized gradientbfvith respect tow
perturbation transmissions. The feedback selects which sign- :
T ) o ; see Appendix A).
direction is preferable, in terms of maximizing receive power,
as an update oW by P. That is, the binary feedback decision 2 HTHW (k)

d is determined as E(d(k) - P(k)) = ~ EAEW (R, (33)

d(k) :sign(Ali_I}iO(HA(k)+AB(k)||%— ||A(k)—AB(k)||%)> Then, with negligible estimation error in the receiver and re-
liable feedback, the weight matrix update prior to orthonormal-

Nr Ns . . .
:sign(Re( >3 amm*(k)-bm;n(k))) . (26) 'zationis
m=1n=1 W/ (k+1) = W(k) + b(k)HPHW (k) + SE(k)  (34)
The decision defined by (26) is binary encoded and provided as

feedback from the receiver to the transmitter. Since the maytereE is a zero-mean error matrix. The elementstbfay
nitude (in expectation) of the elements Bf are constrained be correlated due to the normalized gradient which is extracted

(having variance two), the adaptation parametirintroduced Tom £P to leaveE. The right-singular projection representa-
to capture the adaptation rate, with a largegiving faster but tion inthe update prior to orthonormalization is then a diagonal

noisier adaptation. Using the parameteto define the update Medification plus noise frori
step size the weight matrix update at the transmitter is given by W’(k +1) = (I+b(k)A) W(k) n ﬂE(k). (35)

!

Wik +1) = W(k),+ p-dk) - P(k) @7t was observedin [14] that a gradient update with a form sim-

W(k+1) =G(W'(k+1)) (28) jlar2 to (34) and (35) with orthonormalization (28) alid= 0
where W’ denotes an intermediate computation prior thas the same formulation as the orthogonal iteration method
orthonormalization, and the matrix function( returns the Of eigendecomposition [19]. Hence, a gradient update with the
Gram-Schmidt column orthonormalization of the input matriorm of (35) will cause the weight matrix to converge to the prin-
e.g., @.) returns the unitar®Q matrix from a Gram-Schmidt Cipal right-singular subspaces Hr.
QR factorization. Other QR factorizations could be used, but
the Gram-Schmidt is assumed throughout and will be sefn
to have some desirable properties. This orthonormalizationThe first and second moments of the updated right-sin-
ensures that the transmission streams are orthogonal at gh&ar projected weight matrix prior to orthonormalization are

transmit antennas at all times, so that the weight vector
9 §The difference is that here the gradient update is Frobenius normalized. In

(columns OfW cannot CO”apse Into (_)verlapplng s_pa(_:es arlgntrast, in [14] there is no normalization, so that the update matrix multiplying
N transmission modes are indeed stimulated, satisfying (18\ is invariant.

Adaptation Update Moments
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straightforward to compute, applying (59), (61), and (62) fromeceiver to compensate for code stream crosstalk, and 2) the el-
Appendix A ements of the space—time code stream vegtar,, attain re-
- - ducing degrees strength and reliability for increading
E (W’(k + 1)|W(k))
_ (I+b(k)A)VV(k) (36) V. SIMULATION STUDY OF CAPACITY
E (W/H(k, )W/ (k + 1)|W(k)) A. Simulation Environment
S H % S H % 9 In order to demonstrate the general (coding independent)
- NW (k)VV~(k) + Qb(k)VY ()AW (k) + 26°NrT (37) properties of the applied algorithm, Monte Carlo simulation is
E (W’(k' + 1)WH (| + l)IW(k')) performed and several metrics are extracted. The algorithm is
N - . <y simulated as described above witfy = Nr = 2 and both
= W(k)W* (k) + b(k) (AW(k) WH (k) N7 = 4 and Ny = 8. Channel estimation at the receiver is
n W(k) VVH(k)A) + 232 NI (38) considered to be perfect for purposes of generating the feedback
and computing capacity, and pilot/perturbation multiplexing
bandwidth utilization is not considered. The feedback is
D. Convergence in Static Channel With Noiseless Update implemented without decision errors, afidvas varied to find
In considering the convergence properties, we approximage Pest value. The channel model is independent Raleigh-flat
perfect gradient estimation by settiiy= 0, which provides fading with time corre_lat|0n given by Jgkes model, and the
some insight to the adaptation process. With the removal of tH@PPIer frequencyi’p is configured relative to the feedback
error term, the update prior to orthonormalization (34) becomE&€ I'r, S0 that both are captured in the rafipz/Fip. The

a premultiplication of the weight matrix mean channel gain is captured|ir);
W(k+1)=VG((I+bk)A)VIW(k)). (39) |hl2 = 1/ E|h; ;]2 (42)

Because the Frobenius normalizing denominatob(i) is The mean gradient cost metric is evaluated as
dependent on the state of the weights (35), this formula must (k)
be iteratively computed in order to completely characterize the J=F ( > (43)
convergence. The convergence path of the weight matrix with Jopt (k)

the assumption of zero adaptation er(lr= 0) is derived in whereJ (k) is the time varying value of (15) andl,. (k) is the

Appendix B time varying value of (15) for perfect subspace tracking. In addi-
W(k) = tion, ergodic capacity values in units of bits/second/Hertz were
(ky=V . . . .
1 evaluated as the mean mutual information (for Gaussian sig-
G H I+ﬂ\/§ A VAW(0) | . naling at the transmitter) between the transmitted waveform and
et 7 |[AVEW (n)|| the received waveform for a transmission energy per Nyquist
(40) symbol of Es (energy summed over aNs code streams), ac-
R cording to (44). Appropriate reformulations were applied for
Noting that|| AW (k)| < \/tr(A2) then directly from (40) each system example (e.g., perfect weights, blind)

the convergence af to the;*" singular space over lesser spaces E
goes as follows. This result is similar to the conclusion of [14F = E <log2 <‘I + = H(k)w(k)WH(k)HH(k)’> .
except that the variable gradient scaling (Frobenius normaliza- NsNo 44)
tion) requires the use of a lower bound

These ergodic capacities were evaluated for single-input—
;.5 (k))| ’ﬁ 1+ b(n)A; singli—out;l)(ut (SISO) and sing]!e—input—m:Jltiplef—'outpqt (SIMC_))h
7|u?i7j(k)| ocnz0 —1+b(n)/\j benchmark conditions and for several configurations wit

MIMO channels withNg = 2 and with eitherNy = 4 or

k _ . - .
14 ﬂtr_%(AQ)\/g/\i Nr = 8. The test case labels and descriptions are given in
1< ] (41)

> Table II.

puz( )\/; J B. Discussion

This shows that the first weight column vector converges to Tpe results of the sweep of for different frequency ratios

the first singular space, and the second weight vectorconverg%sB/FD are shown in Fig. 2 and Fig. 3. As expected, higher

to the second singular space (since the Gram-Schmidt projggigive feedback rates allow the use of a smaller adaptation pa-
it away from the first principal space), etc. Thus, upon convefzmeters. The optimal values of, those which maximizel
gence this algorithm not only tracks the desired subspace, iy these simulations are used for all subsequent simulations.
extracts the sorted right-singular spaces. This has two Majofrne average convergence transient behavior is shown in Fig. 4
implications when the algorithm has converged or nearly COgpg Fig. 5, where the mean absolute values of the entries of
verged: 1) there is a reduced need for a spatial equalizer at {he matrix A” A are shown for PST (weights are exactly the

SMatrix factorization is herein defined from the left sidff*_, A(i) = Principal right-singular vectors) and for the gradient feedback
AR I AG) (GFB) algorithm withFrg/Fp = 1000 and = 0.02. With
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TABLE I
SIMULATION LABELING AND DESCRIPTIONS
label description
SISO AWGN SISO system, Nr=Ng=1, with no fading (AWGN channel, baseline reference)
SISO Nr=Ng=1
SIMO Nr=1, Ng=2
WF Nr=4 or 8, Np=2. MIMO with perfect water filling
PST Nr=4 or 8, Ng=2. MIMO with perfect subspace tracking
Bld Nr=4 or 8, Ng=2. MIMO with blind transmission into all transmit subspaces
GFB Nr=4 or 8, Ng=2. MIMO with gradient feedback algorithm subspace tracking
i Tt U -1 T T
] FofFp= 100 — : =
D - Fg/Fp =400 Ll A A Aia A Al
o] = Fg/Fp=1000 A
< FFB/FD=4000 3k . A ............ ]
-4} .
o
3 .
'_::_5 L. A R R 4
3:: v V.
= _gk g ‘ : ]
—v——‘v—/‘a‘—"g( A G H
B O LTSS D v v WH'[AHA]1,1 i
: i v owt2:[A7A]),
R i X cross inter‘f:v[AHA]1 5
, ada kL ToesT |
: x - GFB
_9 i i i i i N n
1072 107" 10° 0 50 100 150 200 250 300 350 400
B time (feedback intervals)

Fig. 2. Cost function, med), for the gradient update, sweepifigand the

feedback frequency to Doppler frequency rafiy; = 2, Ny = 4.

Fig. 3. Cost function, medd ), for the gradient update, sweepifigand the
feedback frequency to Doppler frequency rafiy = 2, N-

PST, the mean result is constant, while GFB shows a conveede #1 with a matched filter (no equalization) scheme at the re-

& F_/F =100
o FofFp = 400
| 5 Feg/Fp = 1000
] 4 Fg/Fp = 4000

1

= 8.

Fig. 4. Convergence transient of power and cross talk.axis is

10 - log, o (E|[A™ A]; ;| /E(tr(HH))).
gradient feedback tracked weighfS{s / Fp = 1000, 3 = 0.02). Ng = 2,

Ny = 4.
0 T T T T T T T
2 SR o S P e 4
A ay A A A A A
-
4+ : 1
—~ A
[ -
=2 AR v A v
) SR I 1
< Y% N
T A - .
< v \ R v RVaREEEE T
-85 : A i
% N A wt 1:[A"A]
X X Vo owt2: [AHA]ZY2
% i :
107 X cross interf: [AHA]12 b
E  PST
. GFB
_12 i i L

50

i i i I
100 150 200 250 300 350

time (feedback intervals)

400

For perfect subspace weights or

Fig. 5. Convergence transient of power and cross tak.axis is

10 - log,, (E[[A* A]; ;|/E(tr(H7H))).
gradient feedback tracked weightS{z / Fp = 1000, 3 = 0.02). Nz = 2,

J\’YT = 8

gence time on the order of 100 feedback intervals. It is clear thegtiver is
with GFB the first weight tracks toward the dominant right-sin-
gular space, while the second weight tracks toward the second

right-singular space. The cross tefa? A]; » gives the cross-

SIR(s;) =

a3 [ATAR,

- |afa,|” B [AHA] o

For perfect subspace weights or

(45)

interference between the two received code streams; e.g., thExample, applying (45) to Fig. @V = 8) provides a steady
signal to cross-interference power ratio experienced by receivgdte SIRs;) = +13.2 dB and SIRs,) = +4.8 dB for GFB
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Fig. 6. Ergodic capacity (b/s/Hz) versus energy per Nyquist symbpl= 4. Fig.8. Ergodic capacity (b/s/Hz) versus energy per Nyquist synihpl= 8.

See Table II. See Table II.
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Fig. 7. Ergodic capacity (b/s/Hz) versus energy per/Bit, = 4. See Table Il. Fig. 9. Ergodic capacity (b/s/Hz) versus energy per/bit, = 8. See Table II.

(the cross interference is zero for PST). Hence, the cross intiire number of available orthogonal bases for transmission, and
ference is relatively small, and good performance could be gke Ns = 2 STC (whether subspace tracked or blind) doubles
pected with either no spatial equalizer [i.e., a simple matcheitie bits per power octave slope versus non space—time coded
filter (MF) receiver] or with a relatively simple linear [e.g., min-transmission. In the power limited region, the primary limita-
imum mean-square error (MMSE)] spatial equalizer. More cortien is the received power and extra orthogonal transmission
plicated equalization approaches such as successive cancébaes provide only small gain. The limiting values are summa-
tion (e.g., “BLAST" [2]), or iterative turbo equalization (e.g.,rized in Table Ill. With infinitesimal data rate one attains infinite
[20] and [21]) might not be expected to provide significant futime diversity for each code symbol and the fading SISO limit
ther gains in this case. MF and MMSE results are presentedaipproaches the well knowra1.59 dB E, /N, additive white
Section VI. Gaussian noise (AWGN) limit.

The key capacity results are given in Fig. 6, Fig Ny = 4) In Fig. 6-Fig. 9 the PST case performs 3.01(dBr = 4) or
and Fig. 8, Fig. ANy = 8). These show the gains available5.02 dB(Nt = 8) better than the blind transmission approach.
from the use of STC with and without subspace tracking.a heln all cases, the gradient feedback algorithm provides an ergodic
axis transmitted energy per bit or energy per Nyquist symbol azepacity with significant gain over the blind transmission ap-
shown for mean single channel gdir-, so that the gain from proach. WithFrp/Fp = 10000 the GFB subspace tracking
directing more of the transmitted energy toward the receiveragmost performs, as well as PST. Even with feedback rates as
visible. The capacity curves can be divided into two generaw as Frp/Fp = 100 the GFB outperforms blind transmis-
regions: the “bandwidth limited” region highlighted by plot-sion, except at very high signal to noise ratios. It is worth noting
ting capacity versus energy per Nyquist symbol (Fig. 6, Fig. 8)) comparing these figures to Fig. 2 and Fig. 3 that the mean
and the “power limited” region highlighted by showing capacitynetric .J is a very good predictor of the performance of GFB
versus energy per bit (Fig. 7, Fig. 9). In the bandwidth limitecklative to PST in the power limited region, where the power
region of the curve, the primary limitation to channel capacity tsansfer (captured i) becomes the most critical aspect.
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TABLE Il
COMPARISONS IN THELIMITS

SISO | SIMO | MIMO MIMO GFB MIMO | MIMO

PST WF
Bld FrglFp=

in Ey-|h|,/No (dB

min Ex {h[2"/No (4B) 159 | 460 | 460 | 72| -92]-103| -1062 | -12.03
Cap. slope ((b/s/Hz)/3.01dB

ap. slope ( ) "o 1 2 2 | 2 2 2 2
(E5 —0)

Together, the capacity plots show the gains available by syilemented with diversity coding providing the uncorrelated
space tracking. Many systems will be interference limited, aticansmit vector assumed in (8). The code is rate 1/2, constraint
additional energy per bit is extra interference to other users. Thesgth 9 with octal generator polynomials (753, 561) and free
motivates operation in or near the “power limited” region oflistance 12. The coding was implemented as a block convolu-
the curve. In practice, this is a motivation to avoid higher ordéional code with 24 information bits and 8 tail bits (zeros), so
modulations [i.e., quadrature amplitude modulation (QAM)that the true code rate is 3/8. With SISO QPSK modulation, this
since the largel;, /N, required for reliable performance in-gives a data rate of 0.75 b/s/Hz. Wifls = 2 in the MIMO
creases the system wide interference. Following this reasonifigse two QPSK symbols are transmitted at a time and the
it could be desirable to use rate 1/2 or 1/4 codes with quatern&dje is 1.5 b/s/Hz. The simulations were run with uncorrelated
phase-shift keying (QPSK) or 8-PSK modulation. A QPSK rafgaussian entries ol with Jakes temporal correlation, with
1/2 code in a SISO AWGN channel gives 1 b/s/Hz and requirB¥ck static frequency flat fading constant over each frame (i.e.,
E,/Ny, = 0 dB for reliable reception, which is an excess biframe duration< 1/Fp).
energy of+1.59 dB. Applying a rate 1/2 code witNg = 2 The coding for the adaptive scheme performs a serial to par-
spatial channels gives 2 b/s/Hz, and the figures show clear gaii€! operation on pairs of QPSK symbols to provide two sym-
for GFB in this region versus blind transmission. It is also ifPols at a time as the code streanNo additional special struc-
teresting to note that in this region the gains for blind STC afére on the STC is applied. This simple approach is similar to
only 2.0dB(Ny = 4) or 2.3dB(Ny = 8) over standard coding that of [17], except for the adaptive weighting of the transmitted
with a single transmit antenna and two receive antennas (SIMGYyde streams.
and in the limit for low rate the extra transmit antennas provide For comparison, blind transmission is generated using diver-
no gain over the SIMO case. Hence, we see the motivation &ty STC. In theNr = 4 case, the scheme of [1] is used on
adopting some form of transmission adaptation scheme, wiHirst pair of QPSK symbols to generate the transmission for

subspace tracking forming perhaps the simplest general clas$\§F antennas and two time intervals, and the scheme is applied
appropriate adaptation. again for the second pair of symbols to generate transmission

for the remaining two antennas. Similarly, in thg- = 8 case,
VI. SIMULATION STUDY WITH CONVOLUTIONAL Coping  the scheme of [22] is used on a first quartet of QPSK symbols
) to generate the transmission for four antennas and four time in-

A. Environment tervals, and the scheme is applied again for the second quartet

In order to better illustrate the utility of the algorithm withof symbols to generate transmission for the remaining four an-
a realistic coding scheme, simulations have been performtednas. This is illustrated in (46) and (47), shown at the bottom
utilizing a simple example of convolutional coding and QPSIkf the page, where, are the serial QPSK symbols directly from
modulation. For comparison, a blind STC scheme is inthe encoder and QPSK modulator.

s (i) T osu S4i41  S4i42 54i43 v
T = . n . . | (blind, Ny = 4) (46)
[S 1+ 1)] | —Sait1” Sai”  —S4i43"  Saiy2
sTG) 17 1 s 58i41 58i42 5843 S8i+d  S8i45 58i+6 88i47
sT(i4+1) | |ssit1™  —ssi®  Ssi4s™  —Ssit2"  Ssits”  —Ssitd”  Ssit7” Ssite” (blind, Ny = 8)
sT(1+2)| = | ssit2 —Ssits  —Ssi 58i+1 58i46  —S8i+7  —58it+4 58i+5 N
sT(i+ 3) Lsgits™  sgiye™ —sgiv1™ —sSsi" Ssitr™ Sgiye”  —Sgi4s”  —Sgita”

(47)
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Fig. 10. Frame-error rat&7 = 4. See key Table II. Fig. 11. Frame-error ratéyr = 8. See key Table II.

In both blind transmission schemes the QPSK symbol ratedistortion from MMSE degrades the performance relative to MF
again two independent symbols per Nyquist interval. The useropre than the minimization of crosstalk from MMSE improves
four or eight transmit antennas with the diversity STC providedbe performance.
diversity enhancement over simply using two transmit antennas;The simulation results show the gains of the tracking algo-
so that reliability is improved but the capacity enhancementiighm and illustrate that the application of this algorithm may in
small. fact simplify the implementation of the receiver, since the need

The performance was evaluated with either a MF or a MMSBr equalization is minimized.
linear symbol estimator providing the symbols to the decoder.

For the blind cases, the MF and MMSE approaches are straight- VIl. CLOSING DISCUSSION

forward extensions of those described in [1] and [22]; MMSE The numerical results presented have focused on a channel

requires combining over the twaVr = 4) or four (N = 8) h ; O :
received time samples of the STC. For the adaptive transmiss{on dition with explicitly limited ran.k. In systems with e_qual
bers of antennas at the receiver and the transmitter the

systems (PST and GFB), the symbol estimates which are QP . T X
demodulated and Viterbi decoded are generated as (time ing§ anel rank is not explicitly limited and will generally be full

omitted for A) rank.. In such _situa@ions the gain from a transmitter subspace
tracking algorithm is less clear. The tradeoff of blind trans-
§(i) = AHr(4) (PST,GFB:MB (48) mission versus subspace tracked transmission Wigh< Np
o -1 becomes a matter of optimizing the tradeoff of “bandwidth”
§(i) =AH <V5AAH + NoI> r(i) (orthogonal bases per second) versus the delivered power. That

is, by concentrating the transmitted power into the right-sin-
gular spaces with the largest gain, the subspace tracking
algorithm can increase the received SNR while losing effective
B. Discussion coding bandwidth. This provides gains for systems operating
in the power-limited region or with large spatial correlation.
With the Gram—Schmidt orthonormalization step the distinct
ht-singular vectors of the channel are extracted. This was
ggwn in Section VI to provide “preequalization” and reduce
need for equalization at the receiver. In an unusual case of
= Nr this vector extraction is achieved without extracting
subspace. With equal power allocation the result would be
increase in ergodic capacity over blind STC, but a practical
ormance increase due to the preequalization.

(PST, GFB: MMSH.  (49)

The FER simulation results are seen in Fig.(10r = 4)
and Fig. 11(Nr = 8). We see that the MMSE receiver pro- .
vides much better performance than the MF receiver in the blifl
transmission cases: this transmission scheme suffers from c
stream spatial crosstalk. The use of extra antennas (more t
the two required to support the coding and data rate) has attai
a diversity gain, but the lack of power gain (available throug%
subspace tracking) and the code-stream cross talk degradaﬂg
with suboptimal linear equalization have hindered the perfo‘?-er
mance. However, this is not true for the GFB cases; with the
GFB approach the transmission adaptation tends to extract not
just the dominant subspace but to separate the individual rightThe benefits of transmission tracking of dominant channel
singular spaces, which minimizes code stream crosstalk at gudspaces for communications in low rank MIMO channel con-
receiver. Hence, in the slower GFB tracking cagésg/Fp = ditions have been described, particularly for the specific case
1000), where the right singular spaces are not entirely separatedhere the number of receive antennas is less than the number
the MMSE performance is only slightly better than with the MFof transmit antennas. A specific feedback stochastic gradient
However, with Frg/Fp = 10000 the MF receiver actually algorithm for transmission adaptation has been introduced.
outperforms the MMSE receiver. Here, the symbol weightingumerical results showed that the adaptive algorithm performs

VIIl. CONCLUSION
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well, with results approaching perfect subspace tracking for E(EE™) = 2Np -1 — EHHHWWHHHH (61)
feedback rates on the order of 1000 to 10 000 times the channel T T ||HHHW||%

Doppler frequency. In systems with fewer receive than transmit o WHHEHHIHW
antennas, the subspace tracking approach was shown to provide E(EPE) =2Ng-1- = 5 . (62)
significant capacity and performance power gainsVaf/ Ny T |[HFHEW|

over blind space-time coded transmission. The performance

approaches that of water filling in many cases. APPENDIX B

CONVERGENCE INSTATIC CHANNEL WITH NOISELESSUPDATE
APPENDIX A

UPDATE STOCHASTIC GRADIENT ESTIMATE The iterative update of the algorithm utilizes the Gram—

Schmidt procedure to maintain the orthogonality of the column
A. Vector Gradient Extraction vectors of W. The expectation of the gradient based update
yields a matrix premultiplication oW prior to the Gram—
Schmidt orthogonalization, so that if this premultiplying matrix
is invariant the update takes the form of the Gram—-Schmidt QR
iteration, which can be used perform an eigendecomposition of

z =signRe(pg)) - p (50) the premultiplying matrix [19]. With the assumption that the

e =z — E(z). (51) radient estimation error matrix is zero, this appendix derives

the convergence path of this QR adaptation, a result found in

Then, from [5] the decision is characterized by the followingeither [19] nor [14].

Define g as a non-random complex vector, apdas a
zero-mean complex Gaussian vector with autocorrelabn
Define the decision vecter and error vectoe as follows:

first and second moments: Define the orthogonal projector matrix Bg.) and the vector
D) normalization function as )
g
E(z) =/~ Tell (52) anl
E(eet) =21 - = . : 53 a
o) =2 g 9 NG@) = 2 (64

This result is mapped to the current system as follows, with

Then, the Gram-Schmidt column orthonormalizati®n=
A andB from (21) and (22)

G(A) of a matrixA comprised of column vectoes, is defined

Nr Ns by
Z = sign| Re amn’  bmon -P 54
’ ( (mz=:1nz::1 ’ ‘ )) >4 B=[b; by ..]=G(A) (65)
n—1
The decision summation is given by b, =N ((H P(b,;)) a,,,) ] (66)
Ngr Ng Ngr Ng N i=1
SN amn (M) ba(m) =3 Y (Z h*m,iw*i,n) With projection into the right-singular spaces, from (35) and
m=1n=1 m=1n=1 \i=1 (31) the premultiplying matrix of the noiseless update is defined
Nr Nr Ns by the diagonal matriD (%) as follows:
X A b jpim | = Z > WHHH], jpjn.  (55) 5 A
j=1 j=1n=1 Dk)=I+0 7. (67)
. ™AW
If we let the vectorp be the result of stacking the columns F

of the matrixP and the vectog be the result of stacking the Tp¢ right-singular space projected math¥ (29) is com-
columns of the matriHHZ HW, then (55) translates to posed of column vectord, W, ... Wy, . We base the proof

Nr Ns upon the induction of Lemma 1a, noting that for= 1 the
SN tmn” bmn =g"p. (56) relationship (71) holds trivially so that the induction has a valid
m=1n=1 foundation. Note that the intermediate vector normalization is

Noting that forP with i.i.d. entries of variance two and arbi-OMitted, as the scaling can be applied at any time without mod-

trary non-random matri ifying the result. L o
Theorem 1:If the matrix W (k) is constructed by iterating

E(P D PH) —2tr(D)I G7) 2 matrix premultiplication by Hermitian symmetriD (k)
Nz xNr followed by Gram—Schmidt column orthonormalization. (G

" B where @Q.) returns the Q-matrix of a Gram—-Schmidt QR
E (P NS[X)NSP> =2tr(D)I (58) decomposition, as follows:
then, (52) and (53) give W(k) =G (D(k ~ )Wk — 1)) . (68)
2 HEHW Then
E(Z) (59)

=\ ErEW], v —a( (TTom) - w
E=7-EZ) (60) W G((H)D( )> W(O)) 9
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(P (3010 ) DGt = 1y (k= s (= Dk~ 1) (TT P i)

(i p) 15 Dk 1)
= wit (= DG = 1) ('T1 P (94(0) ) DUk = 13— 1)
n—1

= (H P (vNVi(k-))> -D(k—1). (75)
=1

Lemma 1a: If the recursion (70) defines a new column vector This leaves theth projection to be proved. Replacing, (k)
setw,, (k) from the prior set,,(k — 1) through premultiplica- with the right-hand side of (70), utilizing the idempotency of
tion by a Hermitian symmetric matri®(k — 1), and the prop- the projectors, and performing algebraic simplification, this is
erty (71) holds, relating the first — 1 projectors of the old and shown in (75), at the top of the page. Q.E.D.
new sets, as follows: Proof of Theorem 1:Equation (68), in terms of the indi-
vidual column vectorsv,, (k) of W(k), is

n—1
Wy (k) =N ((H P (viq(k))) D(k — 1)W,(k — 1)) .

= (76)
o1 1 From (68) and the definition of the Gram—-Schmidt orthonor-
(H P (‘;Vi(k.))> D(k—1) H P (wi(k — 1)) malization the vectow,,(k — 1) can be replaced, giving

e W (k) = N ((H ’ <v~vq:<k>>> D(k - 1)
= (H P (\Tvi(k))) D(k—1) (71) n—1
i=1 N ((H P (w;(k — 1))) D(k —2)w,(k — 2))) - (77)

wherei — — indicates that the index is decremented in order
to be consistent with the leftward matrix factorization, then the From Lemma 1a. this is
property (70) extends to the® vector of the new set as given ’
in (72)

w, (k) = (1:[ P(vh(k))) D(k-1)

X W, (k — 1) (70)

n " wn(k) =N ((HP(M(k—))) D(k—1)D(k - 2)
(l;llP (v%(k))) D(k—1) (1;[11) (wi(k — 1))) = i (k— 2)). 8

n . Applying this inductively fork — 3,k — 4, ...0 yields
= ([P (wi(%)) | D(E - 1). (72) - o
i=1
wa(k) =N P (w;(k D(i) | w,(0
Proof of Lemma 1a:The projectors are generated from or- (k) ((E 3l D) (21;[1 ( )) ( )>
thogonal vectorsv,, from (70), so that the order of the projec- k—1
tors can be interchanged. Therefore =G <<H D(i)) vvn(o)> (79)
1 n i=1
[T P witk)) =[P (wi(k)). (73) Q.E.D.
i=n =1
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