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ABSTRACT OF THE DISSERTATION

Essays in the Causal Inference and Economic Forecasting Using Machine Learning

by

Ran Wang

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2020

Professor Tae-Hwy Lee, Co-Chairperson
Professor Aman Ullah, Co-Chairperson

This dissertation discusses the application of machine learning techniques on the

economic causal inference and forecasting.

In Chapter 2, we develop a new method, the L1-regularized soft decision tree, to

identify the relevant features for the heterogeneous treatment effect and confounding effect

under a very flexible nonlinear potential outcomes framework for causal inference. Com-

pared to other methods, we show that our approach can identify relevant factors without

the widely used assumption of additive nonlinearity. By embedding the debiased soft deci-

sion tree into the L1-based variable selection framework, we show that the L1-regularized

soft decision tree outperforms other variable selection methods such as lasso in nonlinear

settings.

Chapter 3 focuses on macroeconomic forecasting literature. This chapter intro-

duces unFEAR, an unsupervised feature extraction clustering method aimed at facilitating

crisis prediction tasks. We use unsupervised representation learning and a novel autoen-

coder method to extract from economic data information relevant to identify time-invariant

vi



non-overlapping clusters comprising observed crisis and non-crisis episodes. Each cluster

corresponds to a different economic regime characterized by an idiosyncratic crisis generat-

ing mechanism.

Chapters 4 and 5 summarize the literature of economic forecasting using two at-

tractive machine learning techniques. Chapter 4 focuses on the Bagging and Random

Forests methods. We explore Bagging, Random Forest, and their variants in various aspects

of theory and practice. We also discuss applications based on these methods in economic

forecasting and inference. Chapter 5 discusses Boosting. Boosting can estimate the vari-

ables of interest consistently under fairly general conditions given a large set of explanatory

variables. Boosting is fast and easy to implement, which makes it one of the most popular

machine learning algorithms in academia and industry.
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Chapter 1

Introduction

These years witness the dramatically fast development of data science and machine

learning techniques are widely introduced on the economic causal inference and forecasting.

On the one hand, there are many revised machine learning techniques emerging in the

classic economic causal inference literature for better statistical inference and prediction.

On the other hand, because machine learning can approximate unknown functions with

fewer assumptions than economic structure models, economists introduce these powerful

tools into economic forecasting and make very fruitful outcomes.

This dissertation aims to contribute to the theories and applications of machine

learning techniques into economics. In Chapter 2, we introduce the L1-regularized soft

decision tree to identify the relevant features for the heterogeneous treatment effect and

confounding effect under a very flexible nonlinear potential outcomes framework for causal

inference. We firstly discuss the L1-based variable selection framework in the nonlinear

regression situation with oracle properties. Then, we propose the debiased soft decision
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tree method and show its consistency and asymptotic normality. Next, we combine the L1-

based variable selection framework with the debiased soft decision tree to propose the L1-

regularized soft decision tree. By simulation studies, we show the importance of nonlinear

variable selection in the heterogeneous treatment literature and show that the L1-regularized

soft decision tree outperforms other variable selection methods.

Chapter 3 is a joint work with Jorge A. Chan-Lau. This chapter introduces un-

FEAR, an unsupervised feature extraction clustering method aimed at facilitating crisis pre-

diction tasks. We proposed a novel mode contrastive autoencoder extracts from economic

data information relevant to identify time-invariant non-overlapping clusters comprising ob-

served crisis and non-crisis episodes. Additionally, we illustrated that the common issues

of the macroeconomic data, like missing values and nonlinear time trends, can be resolved

by our proposed method.

Chapters 4 and Chapters 5 review the literature of economic forecasting using

Bagging and Boosting. Chapter 4 is a joint work with Tae-Hwy Lee and Aman Ullah. This

chapter focuses on the Bagging and Random Forests methods. We introduce theories of

Bagging, Random Forest, and their variants in various aspects of economic forecasting and

inference. Chapter 5 is a joint work with Jianghao Chu, Tae-Hwy Lee, and Aman Ullah.

Chapter 5 discusses Boosting, which can estimate the variables of interest consistently under

reasonably general conditions given a large set of explanatory variables. Boosting is fast

and easy to implement, making it one of the most popular machine learning algorithms in

academia and industry. Chapter 4 and Chapter 5 are published in the book Macroeconomic

Forecasting in the Era of Big Data: Theory and Practice by Springer.
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Chapter 2

Identifying Heterogeneous and

Confounding Effect via an

L1-Regularized Soft Decision Tree

2.1 Introduction

Causal inference is a widely discussed topic in statistics, computer science, and

many social sciences such as economics and politics. There are two main methods for

causal inference: the structural causal model (SCM), which focuses on the identification

of the causal structure [see Pearl (2009), Pearl (2018)], and the treatment effect model

[see Rubin and Imbens (2017)], which concentrates on the estimation and inference of the

treatment’s magnitude. In the economic literature, the treatment effect method is usually

the primary method for analyzing the causal effect in econometrics and applied economics.

3



In the setting of the classic random experiment, the potential outcomes framework is the

foundation of many causal inference methods in economic studies discussed by Rubin (1974).

To the observational data, propensity score matching [see Rosenbaum and Rubin (1983)] and

doubly robust estimators [see Lunceford and Davidian (2004)] are proposed and discussed

for the unbiased estimation of the treatment effect given the confounders.

Recently, machine learning techniques have been increasingly introduced into eco-

nomics [see Athey (2017), Athey and Imbens (2019)]. Because of the available large eco-

nomic datasets and low-cost computational resources, machine learning methods can ap-

proximate very complicated unknown functions and handle the high-dimensional inputs

issue [see Varian (2014)]. For example, Richardson et al (2018) applied random forest,

boosting, and neural network methods to economic nowcasting given a variety of covari-

ates. Additionally, to study the topics in econometrics, such as GMM and instrumental

variables, there has been an increasing number of new methods proposed by economists

based on classic machine learning algorithms for economic inference [see Lewis and Syrgka-

nis (2018), Hartford, Lewis, Leyton-Brown and Taddy (2016), Athey, Tibshirani and Wager

(2019)].

Early machine learning research in causal inference began in the 2000s. van der

Laan and Rubin (2006) proposed the targeted learning framework for causal effect estima-

tion. Chipman, George and McCulloch proposed Bayesian additive regression trees and

estimated the causal effect based on the posterior distribution generated by the model.

Athey and Imbens (2006) discussed an unbiased ML estimator, the honest tree, for test-

ing the treatment effect. Wager and Athey (2018) proposed causal forests (CF) for esti-

4



mating the heterogeneous treatment effect with unbiasedness and asymptotic normality.

Chernozhukov, Chetverikov, Demirer, Duflo, Hansen and Newey (2018) proposed double

machine learning (DML) based on the partially linear model, which shares the similar idea

with the residual-in-residual method discussed by Robinson (1988).

The recent developments in causal inference are mainly focusing on the treatment

effect estimation. Consider a dataset from a randomized control trial (RCT) experiment

with N samples. Sample i contains a treatment indicator Di ∈ {0, 1} and a response Y D
i is

a real number. The average treatment effect (ATE) τ is illustrated in

τ = E(Y 1)− E(Y 0). (2.1)

In Equation (2.1), Y 1, Y 0 are the responses corresponding to the treatment group

and control group. The RCT is often unsatisfied, especially for observational data. One

common case of violation of the RCT is confoundedness. There may exist one or more

common factors distorting the true dependence between the treatment D and response Y .

The partially linear regression (PLR) framework describes the issue:

Y = φ0D +my(C) + e,

P (D = 1) = md(C).

(2.2)

In Equation (2.2), Y is the outcome, e is a random error term where E(e|C,D) = 0,

D is a binary treatment with the structural parameter φ0, and C represents the confounders.

my(C) and md(C) are nonlinear functions.

5



Hypothetically, if confounders C are observable and accessible, we can directly re-

move their effects. Chernozhukov, Chetverikov, Demirer, Duflo, Hansen and Newey (2017)

proposed double machine learning (DML) based on the partially linear model. In the earily

years, Robinson (1988) discussed a residual-in-residual method discussed by which provides

a flexible estimator given many attributes. The two approaches share very similar inspira-

tion in that they approximate the nonlinear functions my(C) and md(C) via nonparametric

regression or machine learning methods.

In Equation (2.2), we assume all the features X as the confounders and assume

that the treatment effect is a constant τ = φ0. In contrast, the features X can lead to the

heterogeneous treatment effect such that the treatment effect φ0 is a function of attributes

X, φ0 = τ(X). Based on this assumption, we have the heterogeneous treatment effect

framework:

Y = m(D,X) + u,

P (D = 1) = e(X).

(2.3)

In Equation (2.3), Y is the outcome, u is a random error term where E(u|X,D) =

0, and D is a binary treatment, m(D,X) is a function for the outcomes. e(X) is the

propensity score. Thus, the heterogeneous treatment effect is τ(X) = m(1, X) −m(0, X).

All the features X are treated as heterogeneous factors H. Athey and Imbens (2016) was

the first paper to explore the application of decision tree in unbiased treatment effect. The

key to the honest tree is sample splitting. That is, one group of samples is selected to grow

a tree, and the other group is used for calculating the predicted value in each leaf. Wager

and Athey (2018) discussed the Causal Forest (CF) such that the heterogeneous treatment

6



effect is estimated consistently with asymptotic normality.

Precisely, the DML method estimates the unbiased treatment effect by choosing

all the factors as the confounders. The CF method considers all factors to estimate the

heterogeneous effect. Thus, how to choose the variables for heterogeneous effects and con-

founding effects is a crucial question. To solve this issue, we consider a generalized partially

linear regression framework (GPLR) in Equation (2.4).

Figure 2.1: Generalized Partially Linear Regression

YD(H,C) = mh(D,H) +mc(D,C) + u,

P (D = 1) = me(C, V ),

(2.4)

In Equation (2.4), Y is the outcome, u is a random error term where E(u|C,D,H) =

0, D is the treatment indicator, H, C and V represent the heterogeneous factors, con-

founders and instrumental variables. mh(D,H), mc(D,C) and me(C, V ) are nonlinear

functions. Figure 2.1 illustrates the structure of the generalized partially linear regression

framework.

7



In practice, the H, C and V are always contained in one variable set X with many

candidates. Hence, the core problem is to select H and C from one group of candidates X.

Belloni, Chernozhukov and Hansen (2013) discussed a related variable selection problem.

The authors implemented a Double-Lasso method on equations YD and D to identify the

relevant confounders C given many covariates. Then, the selected variables are combined to

determine the correct C. Luo and Spindler (2017) discussed an L2-boosting-based double

selection method for the similar settings of high-dimensional controls under linear or additive

linear settings. However, there are few researches discussing how to identify H and C when

the functional form of mh(D,H), mc(D,C) and me(C, V ) are unknown. Thus, based on

the generalized partially linear regression, we suggest the following procedure:

• Estimate propensity score e(C, V ) and identify the factors including confounders C

and instrumental variables V .

• Regress YD(H,C) on all the factors to select the confounders C and heterogeneous

factors H.

• Regress YD(H,C) on C to estimate mc(D,C).

• Estimate unbiased heterogeneous HTE τ(H) based on the selected variables for H.

The main contribution of this chapter is that we propose a new framework for

identifying the three factors without assuming the form of the three unknown functions.

Based on a generalized partially linear framework, we extend the Double Lasso estimator,

Double Machine Learning (DML) and Causal Forest (CF) and propose our L1-Regularized

Soft Decision Tree (L1 SDT), which can consistently identify the relevant attributes for

8



heterogeneous factors and confounders given a large number of covariates under a nonlinear

setting. Instead of choosing all the covariates in other methods, our method resolves the

issue of high-dimensionality by selecting the relevant variables for causal inference.

Our first contribution is that we construct the asymptotic properties of the soft

decision tree. Under assumptions, we show that the soft decision tree is equivalent to a

data-adaptive kernel regression with finite kernels and then can be unbiased to the true

unknown function asymptotically. To our knowledge, that is the first time to discuss the

related theories on the soft decision tree for inference instead of prediction. Compared

to other decision tree methods, the soft decision tree provides a differentiable function for

marginal analysis, which is essential in economic researches. More importantly, it supports

the consistent nonlinear variable selection procedure we proposed in this chapter.

The second contribution is that we extend the linear adaptive Lasso method to the

nonlinear scenario. We firstly discuss the traditional nonlinear variable selection methods

and indicate that the two sources of bias introduced by these methods. Next, we propose

a general framework for consistent nonlinear variable selection, inference and we also gen-

eralize the oracle properties in the linear case to our framework. Based on the framework,

we move forward to propose the L1-regularized soft decision tree and show that the L1-

regularized soft decision tree holds the oracle properties for consistently nonlinear variable

selection. Compared to other variable selection techniques, we need much weaker condi-

tions of the unknown function instead of the linear or additive nonlinear assumptions to

the functions.

This chapter is organized as follows. In Section 2.2, we introduce the L1-based
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nonlinear variable selection framework and discuss the possible issues about bias affecting

the consistency of variable selection. In Section 2.3, we introduce a debiased soft decision

tree with its asymptotic properties. In Section 2.4 and we introduce the consistent variable

selection via L1 regularized soft decision tree and show its oracle properties for nonlinear

variable selection. Then, we provide a simulation study for checking the performance in

Section 2.5. Finally, an empirical study on unemployment bonus insurance is given based

on our new method in Section 2.6. All proofs are gathered in Appendix A.

2.2 Nonlinear Variable Selection Framework

2.2.1 Variable Selection via L1 Penalty

Variable selection is an essential topic in statistics, economics, and other modeling

problems that suffer from the ultrahigh dimensional input space. In the linear variable

selection case, L1 regularization methods can simultaneously select essential variables.

We firstly define the data generating process for the following analysis. Given

the sample (yi, xi), i = 1, ..., N , where yi is a real number and xi = (x1,i, ..., xp,i) is a p

dimensional vector, we define that the data are generated from Equation

yi = E(yi|xi) + ui = f(xi) + ui. (2.5)

In Equation (2.5), f(x) is a unknown function and ui is a random error following

a distribution ui ∼ p(u).

Consider the linear regression model f(x) = βx. β̂OLS = (XTX)−1XTY is the

optimal estimator when all the settings of the simple linear regression are satisfied. However,
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if we assume that β is sparse, the OLS estimator is not optimal since it usually gives every

element a nonzero value. The Lasso method was introduced in Tibshirani (1996), which

suggests penalizing the L1 norm of coefficient vector β for variable selection. Thus, the new

loss function is

LLASSO =

N∑
i=1

(yi − βxi)2 + λ||β||1. (2.6)

Generally, consider the case when f(x) is an unknown function. We can regress y

on all x via a nonlinear regression f̂(X) such that

ŷ = f̂(x). (2.7)

Suppose only part of xsparse ⊆ x are relevant in the true data generating process

y = f(xsparse), we may introduce some irrelevant variables in the estimator. For example,

assume the true model is y = f(x) + u and x = (x1, x2) is a two dimensional vector. The

nonlinear regression model should be

y = f(x1, x2) + v. (2.8)

However, if the true data generating process is y = f(x1) + u, we cannot identify

the correct f(x). To select the relevant covariates given the unknown function f(x), a

natural way is to generalize the Lasso regression into the case when f(x) is unknown.

Back to the example in Equation (2.8) , if x2 is irrelevant with y, the partial

derivative ∂f(x1,x2)
∂x2

should be zero. Then, ∂f(x1,x2)
∂x1

= ∂f(x1)
∂x1

to any x1, x2. Thus, we can

select a variable by penalizing the norm of the first derivative of ∂f
∂x when the functions
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given by nonlinear regression methods are differentiable.

Lossf =
1

N

N∑
i=1

(yi − f(xi))
2 + λ

P∑
p=1

∣∣∣∣∣∣∣∣∂fp(x)

∂xp

∣∣∣∣∣∣∣∣
2

(2.9)

Equation (2.9) illustrates a nonlinear variable selection framework, where the

penalty term
∣∣∣∣∣∣∂fp(x)

∂xp

∣∣∣∣∣∣
2

is the L2 norm of the first derivative function

∣∣∣∣∣∣∣∣ ∂f∂xp
∣∣∣∣∣∣∣∣

2

=

√∫
xp

(
∂f

∂xp

)2

dxp. (2.10)

In the linear Lasso, the penalty term |β1|+ |β2|+ ...+ |βP | is a sum of the absolutes

of β. In the nonlinear Lasso in Equation (2.9), we substitute the absolute values to the L2

norms of partial derivative f ′ and new penalty term is ||f ′1||2 + ||f ′2||2 + ... + ||f ′P ||2. Since

we use L2 norm to measure the magnitude of f ′ and choose L1 to compare different norms,

this method is called “l1/l2” method [see Rosasco et al (2013)].

To calculate the ||f ′p||2 =
∣∣∣∣∣∣ ∂f∂xp ∣∣∣∣∣∣2 on sample, we can implement the discrete version

to approximate the L2 norm

∣∣∣∣∣∣∣∣ ∂f∂xp
∣∣∣∣∣∣∣∣

2

=

P∑
p=1

√√√√ 1

N

N∑
i=1

(
∂f

∂xp

∣∣∣∣
xp=xp,i

)2

. (2.11)

Many nonlinear regression methods assume the sparse additive formation f(x) =∑P
p=1 fp(xi,p) and the loss function in Equation (2.9) becomes:

Lossf =
1

N

N∑
i=1

(yi −
P∑
p=1

fp(xi,p))
2 + λ

P∑
p=1

∣∣∣∣∣∣∣∣∂fp(x)

∂xp

∣∣∣∣∣∣∣∣
2

. (2.12)

The nonlinear variable selection method based on loss function in Equation (2.12)

is also called the Component Selection and Smoothing Operator (COSSO) proposed by

12



Lin and Zhang (2006). The sparse additive formation is widely used for nonlinear variable

selection. However, the sparse additive assumption is one special and strong case for f(x)

and may not handle all the possibilities, especially the interaction term, x1x2, in f(x).

Thus, the sparse additive model-based nonlinear selection result may not have the same

consistent selection results in linear variable selection.

2.2.2 Consistent Nonlinear Variable Selection

Necessarily, the Lasso type variable selection method may not give the correct

subgroup of variables unless some essential conditions and assumptions are satisfied. Many

studies have explored the consistency of the Lasso type linear variable selection methods

[see Fan and Li (2001), Zou (2006)].

Given the Lasso regression in Equation (2.6), Zou (2006) introduces Lemma 1 and

Lemma 2 related to the variable selection properties.

Lemma 1 If λ/
√
N → λ0 ≥ 0, then lim supn P (β 6= 0|β ∈ A) ≤ c < 1, where A is the

ground truth set of the non-zero βs and c is a contant depending on the true model.

Lemma 2 If λ/N → 0 and λ/
√
N → ∞, then N

λ (β̂ − β) → arg min(V3), where V3(u) =

uTCu+
∑P

p=1 (upsign(βp)I(βp 6= 0) + |up|I(βp 6= 0)) and C is the covariance matrix of re-

gressor x.

Based on Lemma 1 and 2, the variable selection is not consistent if λ ∼ O(
√
N).

Also, when the λ increases faster than than
√
N but slower than N , the convergence rate of

β̂ is N
λ and it is slower than

√
N . In other words, the fast convergence rate and consistent

13



variable selection cannot hold for the same λ. Furthermore, Yuan and Lin (2005) derived

the necessary condition for the consistent variable selection.

Unfortunately, the issues become even worse in the nonlinear variable selection

situation. Considered the Lasso-based nonlinear variable selection in Equation (2.9). Since

the ground truth f0(x) is unknown, we may not know if the nonlinear approximator f(x; θ)

can correctly fit the true f(x) = E(y|x). If f(x; θ) is a inconsistent approximator to f0(x),

the norm of partial derivative ∂f(x;θ)
∂xp

would also be inconsistent and the related nonlinear

variable selection results are inconsistent.

Even though there exists a θ such that f(x; θ) = f0(x) = E(y|x) and ∂f(x;θ)
∂xp

=

∂f0(x)
∂xp

, the nonlinear variable selection framework may suffer from the low convergence rate

as same as the Lasso-based linear variable selection. Suppose |f(x; θ̂)− f0(x)| = Op(N
−α)

and 0 < α < 1/2. We can generalize the Lemma 2 to the nonlinear situation. Now we

need the λ/Nα →∞ and λ/N → 0 such that the nonlinear variable selection is consistent.

However, under these conditions, the rate of convergence is even slower than N−α <
√
N .

To resolve the two issues in the nonlinear variable selection, we need to bound the

first bias via constructing an unbiased and consistent nonlinear approximation E(f(x; θ̂))→

f0(x). Then, the slower convergence rate can be resolved by the idea of the Adaptive Lasso

method proposed by Zou (2006).

Definition 3 A variable selection estimator satisfies oracle properties if and only if the two

following conditions are satisfied:

• Consistency in variable selection: limn→∞ P (A∗n = A) = 1.

• Asymptotic normality:
√
n(β̂

∗(n)
A − β∗A) →d N(0,Σ), where A is a set including all
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the relevant variables and Σ is the covariance matrix for β̂
∗(n)
A .

Many variable selection methods were developed with oracle properties, such as

Adaptive Lasso proposed by Zou (2006) and SCAD introduced by Fan and Li (2001). The

main idea about these methods are similar: for different magnitudes of the coefficients, the

penalty terms can give different weights.

LADALASSO =
N∑
i=1

(yi − βxi)2 + λ
P∑
p=1

1

wp
|βp| (2.13)

Equation (2.13) illustrates the adaptive lassos loss function, where wp = ||β̂OLS ||γ .

Adaptive lasso gives a large penalty to the coefficient with a smaller estimated OLS value.

Zou (2006) proved that under some conditions on γ and λ, adaptive lasso could consistently

select correct variables. Thus, these oracle methods guarantee the variable selection and

asymptotic normality.

To our knowledge, consistent nonlinear variable selection and the related oracle

properties have not been widely discussed. However, this is a very important problem. In

linear model selection, we often select the best subgroup of variables and then regress on the

chosen variables, which is called post-selection analysis. The oracle properties can support

the analysis by guaranteeing the variable selection. In nonlinear variable selection, selecting

the correct variable is even more important in terms of the curse of dimensionality. Hence,

consistent variable selection can resolve this issue by identifying correct regressors.

In Equation (2.9), similar to the original lasso in the linear regression, there is no

guarantee that the L1-based nonlinear variable selection method can consistently retrieve

all the relevant variables. Thus, we introduce the adaptive L1 penalty term to the loss
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function and conclude the result in Proposition 4.

Proposition 4 Suppose the data generating process is y = f(x) + ε, where f(x) is a con-

tinuous function that can be consistently approximated by a function f(x; θ). θ is optimized

via the following regularized loss function in Equation (2.14).

Lossf =
1

N

N∑
i=1

(yi − f(xi; θ))
2 + λ

P∑
p=1

ŵp

∣∣∣∣∣∣∣∣∂f(x; θ)

∂xp

∣∣∣∣∣∣∣∣
2

. (2.14)

In Equation (2.14), ŵp = 1∣∣∣∣∣∣ ∂f̂∂xp ∣∣∣∣∣∣2γ . If |f(x; θ̂)− f(x)| ∼ Op(N−α) and there exists

λ and γ such that λ(N−α)
γ−1

2 → ∞ and λN−α → 0, the estimator f̂ = f(x; θ̂) has the

following oracle properties:

• Consistency in variable selection:

lim
n

P

(∣∣∣∣∣
∣∣∣∣∣ ∂f̂∂xp

∣∣∣∣∣
∣∣∣∣∣
2

6= 0

∣∣∣∣p ∈ A
)

= 1.

• Pointwise asymptotic normality:

f̂(x; θ)− f(x)√
V ar(f̂(x; θ))

→d N(0, 1).

The framework in Equation (2.15) provides a very flexible way for consistent non-

linear variable selection. Compared to other methods, our approach does not require strong

assumptions on the nonlinear function, such as the additive nonlinear form. More impor-

tantly, our approach can guarantee to select the most relevant variables when the sample size

goes to infinity. Finally, based on the penalty term, the flexibility of the nonlinear approx-
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imator is bounded via penalizing the derivative, which gives a more reasonable estimation

for the marginal change analysis, which is widely discussed in the economic literature.

2.3 Nonlinear Regression via a Soft Decision Tree

2.3.1 From Hard Decision Tree to Soft Decision Tree

The decision tree is a classical machine learning algorithm. The classification and

regression tree (CART), a revised decision tree method, has been widely used in data mining,

machine learning, and other related research fields1. Figure 2.2 illustrates the structure of

a decision tree with one layer.

Figure 2.2: The Structure of a Decision Tree with 1 Layer

The output of the decision tree in Figure 2.2 is

R = RLg(x) +RR(1− g(x)). (2.15)

1In this chapter, the name of the decision tree is equivalent to CART.
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In Equation (2.15), g(x) is a threshold function and it is usually an indicator

function:

R =


RL if gb(x) = 1

RR if gb(x) = 0.

(2.16)

In terms of g(x), the decision tree is “hard”. A decision tree can also be ”soft”

when g(x) has a continuous output as 0 < g(x) < 1. In the machine learning literature, the

logistic function g(x) = 1
1+exp(−(wT x+w0))

is usually selected to return a continuous output

from 0 to 1. Thus, the soft decision tree (SDT) returns the average output combining RL

and RR, as in Equation (2.18).

R = RLg(x) +RR(1− g(x)). (2.17)

Jordan and Jacob (1994) discussed the soft decision tree as a hierarchical mixture

of experts (HME) method for the first time. For the HME, we can designate the structure

of the tree and optimize the parameters via the expectation-maximization (EM) algorithm.

Figure 3 shows a two-level HME. The HME covers all the intuitions behind the

soft decision tree. First, this method considers regression as a recursive binary problem.

To any given space of variables X, each node splits the area into two subspaces. Second, it

introduces a soft gating function instead of a hard step function in the hard decision tree.

Finally, the soft decision tree designates the tree’s structure and then optimizes the tree’s

parameters. Since all the parameters are adjusted simultaneously, a soft decision tree often

outperforms a hard decision tree in many cases.
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Figure 2.3: A Graph of Hierarchical Mixture of Experts with Two Levels

In this chapter, we implement the Quasi-Most likelihood Estimation (QMLE) to

optimize the soft decision tree. According to the definition of the soft decision tree, Equation

(2.18) gives the probability of y given x and all the parameters w

P (y|x,w) =
S∑
s=1

∏
p→s

gp(x;wp)Ps(y|x). (2.18)

In Equation (2.18), S is the number of leaf nodes, p→ s represents all the internal

nodes (p = 1, 2, ...) on the path from the root node to the sth leaf node. Specifically, we

mainly focus on the conditional mean of distribution in Equation (2.18) and then define the

conditional mean as the output of a soft decision tree in Equation (2.19)

µtree(x) = E(y|x,w) =
S∑
s=1

∏
p→s

gp(x;wp)Es(y|x) (2.19)
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Equation (2.20) provides a compact form of Equation (2.19) where αs(xi) =∏
p→s gp(x;wp)

µtree(x) =

S∑
s=1

αs(xi)µs (2.20)

Simply, assume that ui follows a Gaussian distribution N(0, σ2) in the DGP yi =

f(xi) + ui. The final likelihood function in Equation is:

L(y|x;w, µ, σ) = −
N∑
i=1

1

2
logσ2 −

N∑
i=1

S∑
s=1

αs(xi)
(yi − µs)2

σ2
(2.21)

Since the optimal solution based on the likelihood function in Equation (2.21) does

not have a closed-form, the numerical methods are often considered. According to Jordan

and Jacob (1994), they optimized the soft decision tree via expectation-maximization (EM)

on the original likelihood function without normality assumption. In this chapter , we

optimize the parameters in Equation (2.21) via gradient descend. Additionally, since our

main task is variable selection based on penalty, we introduce a penalized log-likelihood

method from Fan and Li (2001) and generalize it into our L1 regularized soft decision tree.

We summarize this method in Proposition 5.

Proposition 5 Given the sample {yi, xi}, i = 1, ..., N with data generating process yi =

E(yi|xi)+ui = f(xi)+ui where ui ∼ N(0, σ2), define the L1 penalized MLE of soft decision

tree as

L(y|x;w, µ, σ)− λΩ = −
N∑
i=1

1

2
logσ2 −

N∑
i=1

S∑
s=1

αs(xi)
(yi − µs)2

σ2
− λΩ(µtree(x)), (2.22)
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where Ω(θ) =
∣∣∣∣∣∣∂µtree(x)

∂xp

∣∣∣∣∣∣
2

and

µtree(x) =
S∑
s=1

αs(xi)E(yi|xi;µs, σ2) =
S∑
s=1

αs(xi)µs.

Based on Proposition 5, we can optimize the penalized likelihood function of the

soft decision tree easily and it also supports the discussion about the asymptotic properties.

2.3.2 Soft Decision Tree as a Nonparametric Kernel Regression

Firstly, we show that the soft decision tree method is equivalent to nonparametric

kernel regression. Without loss of generalization, we set the leaf node fleaf (x) as a constant

µ for each leaf node. The formula for a soft decision tree is

µtree(x) =

S∑
s=1

(∏
p→s

g(x;wp)

)
× µs

=

S∑
s=1

(∏
p→s

1

1 + exp(−(wpx+ wp0))

)
× µs

=
S∑
s=1

(∏
p→s

1

1 + exp(−(wpx+ wp0))

)
× µs.

(2.23)

Proposition 6 For a soft decision tree µtree(x) =
∑S

s=1

(∏
p→s g(x;wp)

)
×µs. There exist

a equivalent nonparameteric regression with S kernels in Equation (2.24)

µtree(x) =
S∑
s=1

(∏
p→s

g(x;wp)

)
× µs

=

∑S
s=1K(x;βs, cs)µs∑S
s=1K(x;βs, cs)

.

(2.24)

We illustrate the Proposition 6 in an univariate regression case. Given µtree(x) =∑S
s=1

(∏
p→s g(x;wp)

)
× µs, rewrite the gate function g(x;wp, wp0) into Equation (2.25):

21



g(x;wp, wp0) =
1

1 + exp(−(wpx+ wp0))

=
exp(1/2(wpx+ wp0))

exp(−1/2(wpx+ wp0)) + exp(1/2(wpx+ wp0))
.

(2.25)

Next, let us consider another possible method for deriving the gate function. As-

sume we have a Gaussian kernel exp(−β(x− c0)2); a related gate function is

g(x;β, c) =
exp(−β(x− c0)2)

exp(−β(x− c0)2) + exp(−β(x− c1)2)
. (2.26)

In Equation 2.26, β, c0, c1 are parameters for the Gaussian kernel function. In-

tuitively, the gate function in (12) contains a pair of symmetric functions. Rewriting this

function, we have

g(x;β, c) =
exp(−β(x− c0)2)

exp(−β(x− c0)2) + exp(−β(x− c1)2)

=
exp(2β(c1/2 + c0/2)x+ βc2

1/2− βc2
0/2)

exp(−β(x− c0)2) + exp(−β(x− c1)2)

Let 2β(c1/2 + c0/2) = wp and βc2
1/2− βc2

0/2 = wp0, we have

g(x;β, c) =
exp(2β(c1/2 + c0/2)x+ βc2

1/2− βc2
0/2)

exp(−β(x− c0)2) + exp(−β(x− c1)2)

= g(x;wp, wp0)

(2.27)

Since a logistic function can be represented by two kernel functions with the same

window width β and symmetric centers c0, c1, a soft decision tree can be represented by a

nonparametric kernel regression function with finite kernels in Equation (2.24).
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Figure 2.4: The Connection between Soft Decision Tree and Kernel Regression

Figure (2.24) illustrates the connection between the soft decision tree and kernel

regression. Each split can generate two kernels, and the total number of kernels depends

on the number of leaf nodes. The center in each kernel µs is estimated. In the kernel

regression, the sample size determines the number of kernels, and each kernel is centered

on a sample. Thus, the two methods can share the similar asymptotic properties. However,

the soft decision tree can be more adaptive to the sample than the kernel regression since

it determines the position of the kernel on the distribution of samples.
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2.3.3 Asymptotic Properties of Soft Decision Trees

Based the Proposition 6, we can analyze the unbiasedness of the soft decision tree

based on mixture models with finite kernels. We present Theorem 7 to show the asymptotic

unbiasedness of the soft decision tree:

Theorem 7 Given the following assumptions satisfied

• The unknown function f0(x) is Lipschitz continuous:

d(f0(x)− f0(x′)) ≤ Dd(x− x′), (2.28)

where D is the Lipschitz constant, and d is a measure of distance.

• x follows a distribution with a finite support d(x− x′) ≤ dmax <∞, ∀x, x′.

If the parameters in K(x;βs, cs) and the parameter µs are estimated in two seperate

sub samples with N1 and N2 observations, to a soft decision tree µ̂tree(x) =
∑S
s=1 K(x;β̂s,ĉs)µ̂s∑S
s=1K(x;β̂s,ĉs)

where K(x;βs, cs) = e(−lgS2 (x−cs)TΣβ(x−cs))),the bias is bounded by

|f0(x)− E(f̂(x))| ≤ C∗√
lgS2 βmaxS

(1/2p−1/2)
� 1√

lgS2 βmaxS
(1/2p−1/2)

→ 0,

where C∗ = D√
2π

and D is the Lipchitz constant. p is the dimension of the input

x, βmax is the max eigenvalue of the weight matrix Σβ of input x.

Specifically, let βmax = S
lgS2

, we have

|f0(x)− E(f̂(x))| ≤ C∗√
lgS2

S
lgS2
S(1/2p−1/2)

� S−1/2p → 0, (2.29)
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We present proof in Appendix A. Based on Theorem 7, if S →∞ and S
N → 0 are

satisfied when N →∞, the bias of the soft decision tree is bounded.

Based on the results in Theorem 7, the soft decision tree can approximate any

Lipschitz continuous functions with finite D. Thus, we can conclude that the likelihood

function of the soft decision tree can approximate the actual likelihood function based on

the right data generating process such that E(L(θ̂))→ L(θ). Hence the asymptotic results

based on the actual likelihood function can be generalized to the soft decision tree.

The next questions is: can the QMLE-based soft decision tree estimator µ̂tree(x)

be consistent with the true f(x)? To solve it, we need to construct the asymptotic theory

of µ̂tree(x). Consider the soft decision tree model in Equation (2.30)

E(y|x) =

∑S
s=1K(x;βs, cs)µs∑S
s=1K(x;βs, cs)

=
S∑
s=1

αs(x)µs

(2.30)

The likelihood function is as follows:

L(y, x; θ) =

N∑
i=1

Logp

(
yi,

S∑
s=1

αs(xi)µs

)
=

N∑
i=1

Logp (yi, µtree(xi)) (2.31)

According to Kiefer and Wolfowitz (1956), the consistency of the nonparametric

MLE requires four conditions. Because of E(L(θ̂)) → L(θ), the likelihood function of soft

decision tree should share the same conditions of the true likelihood function. However,

the soft decision tree suffers from the label switching problem. Given an object function

f(x), there exists more than one set of parameters θ converging to the same function.
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Nevertheless, since the object is f(x) instead of the parameters, we can revise the parameters

to be locally identifiable, which means that at an open set of parameters around one optimal

local parameter, the parameters can be identified. Given the satisfying condition for MLE,

we can have Lemma 8.

Lemma 8 Assume the true likelihood function is L(y, x; θ). We implement the QMLE on

estimating θ and asymptotic normality on the parameters

√
N(θ̂ − θ∗) ∼ N(0,Σθ∗),

where θ∗ = E(θ̂), Σθ∗ = I−1(θ∗)E(S(θ∗)S(θ∗)′)I−1(θ∗). S(θ∗) is the score function

and I(θ) is the Fisher Information matrix.

In Theorem 7, we discuss the debiased procedure for the soft decision tree via

sample-splitting. To optimize the debiased soft decision tree, we need to consider a sample-

splitting MLE. Firstly, we split the N samples into two parts, N1 = wN and N2 = (1−w)N ,

where w ∈ (0, 1) is a weight for sample-splitting. Then, implement the MLE procedure on

optimizing the soft decision tree’s parameters with the first sample N1. Next, by fixing all

the parameters within the root node and intermediate nodes, we estimate all the parameters

on the leaf nodes µs via MLE on the second sample N2. Finally, combine the two parts

of parameters to construct the debiased soft decision tree. Theorem 9 illustrates that the

QMLE-based debiased soft decision tree estimator should be asymptotic normal distributed.

Theorem 9 Given the soft decision tree µtree(x; θ). If the θ is estimated via QMLE and has

the asymptotic normal distribution
√
n(θ̂− θ∗) ∼ N(0,Σθ∗), the soft decision tree estimator

is asymptotically distributed as
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(µ̂debiased tree(x; θ)− E(µ̂debiased tree(x; θ)))→ N(0, σ2
debiased tree(x)), (2.32)

where σ2
debiased tree(x) = 1

N J(x)′Σdebiased,θ∗J(x)→ O(pS
2

N ), S is the number of leaf

of the soft decision tree and p is the dimensioa of x.

Finally, we combine the Theorem 7 and tTheorem 9 to construct the asymptotic

normality of the debiased soft decision tree µ̂debiased,tree(x). Specifically, we need that the

convergence rate of bias is faster than the variance such that the µ̂debiased,tree(x) converges

to normal distribution centered at f(x). To sum up, we propose the Theorem 10.

Theorem 10 Given the number of leaf nodes S = Nα and 1
(1/p0+1) < α < 1, the asymptotic

normality of µ̂debiased tree(x) is

µ̂debiased tree(x)− f(x)

σdebiased tree(x)
→ N(0, 1) (2.33)

Theorem 9 and 10 are proved in Appendix A.

Additionally, we provide the standard error estimator:

σ̂debiased tree(x) =

√
1

N
Ĵ(x)′Σ̂debiased,θĴ(x),

where Σ̂debiased,θ = I(θ)−1Ê(S(θ)S(θ)′)I(θ)−1, S(θ) is the score function and I(θ)

is the information matrix.

2.4 Variable Selection via Soft Decision Tree

In the discussions of Section 3, we derived the nonlinear variable selection frame-

work with oracle properties. Section 4 illustrated the consistency and asymptotic normality
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of the debased soft decision tree. In Section 5, we introduce the debiased soft decision tree as

the nonlinear approximator and embed it into the adaptive L1-regularization log-likelihood

function in Equation (2.34).

−L(y, x;β, c)− λΩ(f) = −
N∑
i=1

1

2
logσ2 −

N∑
i=1

S∑
s=1

αs(xi)
(yi − µs)2

σ2
− λ

P∑
p=1

ŵp

∣∣∣∣∣∣∣∣∂f(x; θ)

∂xp

∣∣∣∣∣∣∣∣
2

(2.34)

In Equation (2.34),
∣∣∣∣∣∣∂f(x;θ)

∂xp

∣∣∣∣∣∣
2

=

√
1
N

∑N
i=1

(
∂f̂
∂xp
|x=xi

)2
and ŵp = 1

|| ∂f̂
∂xp
||2
γ . Specif-

ically, we set f(x) = µtree(x).

According to Proposition 4 and Theorem 10, we present Theorem 11 about con-

sistent nonlinear variable selection via a soft decision tree.

Theorem 11 Given the likelihood function of a soft decision tree µtree(x) with an adaptive

L1 penalty in Equation (2.34), if λ
(
pS2

N

)(γ−1)/2
→ ∞ and λ

(√
pS2

N

)
→ 0,we have the

following conclusions of oracle properties:

• P
(∣∣∣∣∣∣∂µtree(x)

∂xp

∣∣∣∣∣∣
2
6= 0 |p ∈ A

)
= 1.

• (µ̂tree(x)− f(x))→d N(0, σ2
tree(x)), where σ2

tree(x) ∼ O
(
pS2

N

)
.

The proof is showed in Appendix A.

Additionally, we provide the standard error estimator:

σ̂tree(x) =

√
1

N
Ĵ(x)′Σ̂θ̂,L1

Ĵ(x),
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where

Σ̂θ,L1 =

I(θ) + λ
∑
p

1

ŵp

∂2
∣∣∣∣∣∣∂µ̂tree(x,θ)∂xp

∣∣∣∣∣∣
2

∂θ∂θ′

−1

Ê(S(θ)S(θ)′)

×

I(θ) + λ
∑
p

1

ŵp

∂2
∣∣∣∣∣∣∂µ̂tree,θ(x)

∂xp

∣∣∣∣∣∣
2

∂θ∂θ′

−1

,

S(θ) is the score function and I(θ) is the information matrix.

2.5 Simulation Study

Based on the discussion from Section 2.2 to 2.4, we illustrate that the soft decision

tree can have the asymptotic property and the L1-regularized soft decision tree can con-

sistently identify the relevant variables. In this section, we implement several simulation

experiments to show the performance of the L1-regularized soft decision tree. In Section 6.1,

we explore the asymptotic properties of the soft decision tree by comparing the convergence

in different situations. In Section 6.2, we test the nonlinear variable selection outcomes

of the performance of the L1-regularized soft decision tree comparing with other methods.

Finally, we examine the results of the heterogeneous treatment effect estimation with or

without the variable selection procedures.

2.5.1 Simulation Results of the Asymptotic Properties

We explore the convergence of soft decision tree given a large sample size. Firstly,

we test the mean square error and average bias in 4 different data generating situations with

different sample sizes. The classic random forest method is introduced as the benchmark

for the comparison. We choose four data generating processes as follows
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• DGP1:

y = β0 + β1x1 + β2x2 + β3x3 + β4x1x2 + u.

• DGP2:

y = β0 + β1sin(x1) + β2x2 × exp(β3x1x2) + β4x
2
3 + u.

• DGP3:

y = β1I(x1 > 1) + β2I(x2 > 1) + β3I(x3 > 1) + β4I(x1 > 0)× I(x2 > 0) + u.

• DGP4:

y = β1I(x1 > 1)×x1+β2I(x2 > 1)×x2+β3I(x3 > 1)×x3+β4I(x1 > 0)×I(x2 > 0)+u.

where u ∼ N(0, 1). DGP 1 and 2 are continuous functions and DGP 3 and 4

are discrete functions. Also, we compare the soft decision tree (SDT) and random forests

(RF) when n = 500, n = 1000 and n = 5000. Additionally, we consider two situations. In

situation 1, we set the dimension of x = 3. In situation 2, we consider x = 30 but only the

first 3 variables are relevant. Table 2.1 and Table 2.2 give the simulation results.

Based on the simulation results in Table 2.1 and Table 2.2, firstly, we can conclude

that the SDT can beat RF in the first and second DGP. RF works better than SDT in the

DGP 3 and 4. These conclusions are reasonable since DGP 1 and 2 are smooth functions and

easily captured by SDT. At the same time, DGP 3 and 4 are discrete functions satisfying

the assumptions of RF. Additionally, to DGP 4, we notice that SDT works better and can

finally touch the comparable results as RF when n increases. Therefore, SDT can be more

adaptive than RF given more samples.
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Table 2.1: MSE and Bias of SDT and RF (p = 3)

MSE SDT (DGP 1) RF (DGP 1) SDT (DGP 2) RF (DGP 2)

n = 500 1.2474 5.4607 1.5491 4.5156

n = 1000 1.1660 4.9113 1.1819 3.5488

n = 5000 1.0520 5.0816 1.1735 3.5930

Bias SDT (DGP 1) RF (DGP 1) SDT (DGP 2) RF (DGP 2)

n = 500 0.7359 1.6850 0.9188 1.12485

n = 1000 0.8089 1.8771 0.8569 1.2747

n = 5000 0.7507 1.7793 0.8547 1.3098

MSE SDT (DGP 3) RF (DGP 3) SDT (DGP 4) RF (DGP 4)

n = 500 2.3396 1.3140 2.7985 1.6602

n = 1000 1.9739 1.2101 1.4776 1.3549

n = 5000 1.6010 0.9717 1.1552 1.1351

Bias SDT (DGP 3) RF (DGP 3) SDT (DGP 4) RF (DGP 4)

n = 500 0.8531 0.2420 1.0352 0.6464

n = 1000 1.1057 0.7762 0.8592 0.6180

n = 5000 0.9327 0.1090 1.0071 0.4295
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Table 2.2: MSE and Bias of SDT and RF (p = 30)

MSE SDT (DGP 1) RF (DGP 1) SDT (DGP 2) RF (DGP 2)

n = 500 1.6317 6.2609 5.1188 5.1840

n = 1000 1.3280 5.5948 1.5331 3.6131

n = 5000 1.0520 5.0816 1.4870 3.5930

Bias SDT (DGP 1) RF (DGP 1) SDT (DGP 2) RF (DGP 2)

n = 500 1.0668 1.9884 1.3797 1.6532

n = 1000 0.9418 1.7417 0.9723 1.4895

n = 5000 0.7507 1.7793 0.9698 1.3098

MSE SDT (DGP 3) RF (DGP 3) SDT (DGP 4) RF (DGP 4)

n = 500 8.7303 1.3323 8.5138 2.5808

n = 1000 7.5761 1.0084 7.9889 1.9482

n = 5000 3.6183 0.9717 7.1745 1.5959

Bias SDT (DGP 3) RF (DGP 3) SDT (DGP 4) RF (DGP 4)

n = 500 2.2951 0.9018 2.2220 1.2283

n = 1000 2.1093 0.7552 2.2635 1.1120

n = 5000 1.5707 0.7564 2.1588 0.9606

32



Then, to check the pointwise asymptotic distribution of SDT, we implement a

simulation study with DGP 1 and DGP3 and check the asymptotic distribution at x = 1.5

given n = 500, 5000. Figure 2.5 and Figure 2.6 illustrate the simulation results.

Figure 2.5: The Asymptotic Distribution of Soft Decision Tree (DGP1)

Figure 2.6: The Asymptotic Distribution of Soft Decision Tree (DGP3)

Based on the simulation results in Figure 2.5 and Figure 2.6, we can see that the

SDT is pointwise consistent and the asymptotic distributions converge to the actual values
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with a decreasing variance. Therefore, we conclude that the debiased SDT has the pointwise

asymptotic normality.

2.5.2 Simulation Results of the Nonlinear Variable Selection

In this section, we test the nonlinear variable performance of L1-regularized SDT.

In the first study, we choose lasso and adaptive lasso as our baseline methods. We compare

their variable selection results in two settings.

In the first study, we choose two data generating processes as follows:

• DGP1:

y = β0 + β1x1 + β2x2 + β3x3 + β4x1x2 + u.

• DGP2:

y = β0 + β1sin(x1) + β2x2 × exp(β3x1x2) + β4x
2
3 + u.

DGP 1 is simple, and DGP 2 is relatively complex. Specifically, we choose the

input variable with 30 dimensions, and only the first three dimensions are relevant. Then,

the sample size increases from 500 to 5000. Finally, we determine the hyperparameters λ

and γ via 10-fold cross-validation.

Table 2.3 shows the results of the variable selection based on the soft decision tree,

lasso, and adaptive lasso in the situation of DGP1. To the simple DGP 1, SDT works worse

than Lasso, and adaptive lasso when n is small. Since DGP 1 is very closed to the sparse

linear model, Lasso and Adaptive Lasso work very well in small samples. SDT can attach

the same performance of variable selection when n is large.
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Table 2.3: Variable Selection for Nonlinear Regression (DGP1)

P(βx 6= 0|x ∈ A) SDT Lasso Adaptive Lasso

n = 500 0.78 0.90 0.91

n = 1000 0.84 0.91 0.93

n = 5000 0.98 0.94 0.99

Table 2.4: Variable Selection for Nonlinear Regression (DGP2)

P(βx 6= 0|x ∈ A) SDT Lasso Adaptive Lasso

n = 500 0.53 0.68 0.78

n = 1000 0.78 0.70 0.79

n = 5000 0.97 0.70 0.81
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Table 2.4 shows the results of the variable selection based on the soft decision

tree, lasso, and adaptive lasso in the situation of DGP 2. To the complicated and highly

nonlinear DGP 2, the SDT method works better than other candidates and illustrates the

consistency when n increases. However, lasso and adaptive lasso do not work on the highly

nonlinear model.

2.5.3 Nonlinear Variable Selection in the Treatment Effect Model

In the second study, we compare their variable selection results in the partially

linear regression settings. We design the data generating process based on the generalized

partially linear regression:

• gh(D,H) = β1,Dsin(H1)+β2H2×H3+β3,Dexp(H3)(Heterogeneous function in the outcomes)

• gc(D,C) = α0,D+α1,D×exp(C1)+α2,D×C2(Confounding function in the outcomes)

• e(C, V ) = 1
1+exp(−k(C,V ))(Propensity Score)

• k(C, V ) = 1 + C1 × γ1C2 + γ2V1

• y(D,H,C) = gh(D,H) + gc(D,C) + u, u ∼ N(0, 1)(Outcomes)

For each regression, we choose the input dimension as 30, and the sample size is

5000.

Table 2.5 shows the results of the variable selection based on the generalized par-

tially linear regression. We can see that SDT works better than Lasso and adaptive Lasso

on both outcome model y(D,H,C) and propensity score model e(C, V ). Precisely, Lasso
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Table 2.5: Variable Selection for Generalized Partially Linear Regression (p = 30)

P(βx 6= 0|x ∈ A) SDT Lasso Adaptive Lasso

H 0.94 0.53 0.62

C 0.95 0.56 0.71

and adaptive Lasso work better on the propensity score model e(C, V ), which is simpler

than the outcome model y(D,H,C). This result is consistent with the conclusions from

Section 2.5.2.

2.5.4 Simulation Results of the Heterogenous Treatment Effect with Vari-

able Selection

In this section, we focus on the heterogeneous treatment effect estimation after

nonlinear variable selection. We compare the post-selection results of SDT to the benchmark

model, Causal Forests, by Athey and Wager (2018). We choose the following data generating

processes

• gh(D,H) = β1,Dsin(H1) + β2H2 ×H3 + β3,Dexp(H3)(Heterogeneous)

• e(C, V ) = 0.5(Constant Propensity Score)

• y(D,H) = gh(D,H) + u, u ∼ N(0, 1)(Outcomes)

The objective is estimating τ(H) = y(1, H)− y(0, H). The outcomes of the com-

parison are in Table 6. We show the bias at x = 1.5 and calculate the standard deviation

in the simulated samples.
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Table 2.6: Causal Forest and SDT with/without SDT variable selection (3/30 relevant
variables)

with SDT Varaible Selection without SDT Variable Selection

Causal Forest Bias (s.d.) Bias (s.d.)

n = 500 0.401 (0.691) 0.639 (0.926)

n = 1000 0.334 (0.556) 0.456 (0.736)

n = 5000 0.104 (0.346) 0.145 (0.509)

SDT Bias (s.d.) Bias (s.d.)

n = 500 0.201 (0.454) 1.249 (1.874)

n = 1000 0.147 (0.232) 0.513 (0.762)

n = 5000 0.051 (0.101) 0.221 (0.520)

In Table 2.6, we can see that both SDT and Causal Forest can converge to zero in

the bias with the decreasing standard deviations. Then, our SDT-based variable selection

method can largely increase the performance of convergence to Causal Forests and SDT.

Interestingly, we find that the SDT is more sensitive to the variable selection results than

the Causal Forest, especially in the small samples. We think the reason is that SDT is a

smooth approximator. Causal Forest is based on discrete decision trees, which is relatively

robust to the variable selection given the large samples.
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2.6 Empirical Analysis: the Effect of an Unemployment In-

surance Bonus on Unemployment Duration

In this example, we reanalyze the Pennsylvania Reemployment Bonus experiment

conducted by the US Department of Labor in the 1980s to test the incentive effects of

alternative compensation schemes for unemployment insurance (UI). This experiment was

previously studied by Bilias (2000) and Bilias and Koenker (2002). In these experiments,

UI claimants were randomly assigned either to a control group or one of five treatment

groups. In the control group, the standard rules of the UI system applied. Individuals in

the treatment groups were offered a cash bonus if they found a job within some prespecified

period (qualification period), provided that the job was retained for a specified duration.

The treatments differed in the level of the bonus, the length of the qualification period, and

whether the bonus declined over time in the qualification period; see Bilias and Koenker

(2002) for further details.

After cleaning the data and deleting all the irrelevant features, the sample size is

14,068. For the five treatment groups, we find that group 4 and group 6 are often combined

into one treatment group since they represent very similar treatments. We perform the

same processing so that our result is comparable to the results from other papers. For

the covariates, the input dimension is 33, including gender, age, sites, and dates of the

treatment and more.

Our main objective is to identify two groups of related attributes for heteroge-

neous effects and confounding effects. We compare the soft decision tree method with
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Table 2.7: Variables in the Unemployment Insurance Bonus Data

Variable Meaning

AGEGT54 Age ¿ 54 Indicator

AGEGT35 Age ¡ 35 Indicator

AT1,AT2,AT3 Attend workshop 1,2,3

BLACK Black Ethnic Indicator

HISPANIC Hispanic Ethnic Indicator

SEX Gender Indicator

JAN, FEB,...,DEC Month Indicators

BONUS Bonus Amount

SITE1,SITE2,...,SITE12 Location Indicators
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Table 2.8: Variable Selection for the Unemployment Insurance Bonus Data

Methods Heterogeneous Confounding

SDT JAN, FEB, ... ,DEC SITE 1, SITE 2, ... ,SITE 12

Lasso 0 SITE 1, SITE 2, ... ,SITE 12

Adaptive Lasso AUG, MAR SITE 1, SITE 2, ... ,SITE 12

Lasso and adaptive Lasso. Then, the 10-fold validation method is used to determine the

hyperparameters λ and γ. Our results are shown in Table 8.

Based on the selection result, we can see that the program’s location is highly

correlated with the treatment and outcome. Intuitively, geographic information can dis-

tort the treatment effect. Then, the month of the program determines the heterogeneous

treatment effect. The other factors are irrelevant since it is a random experiment. Notably,

even though the experiment is randomly applied, there are still some confounders that can

distort the randomness.

Additionally, the heterogeneous effect can be very significant and indicate that the

program’s time point is essential to the outcomes. More importantly, compared to the SDT

method, lasso and adaptive lasso work well in selecting the confounders. Nevertheless, both

linear approaches cannot identify essential factors for the heterogeneous treatment effect.

Thus, given the unknown functions for outcomes y and propensity score e(x), it is more

reasonable to use our nonlinear variable selection method than linear methods.
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2.7 Conclusions

In summary, this chapter proposed a L1-regularized soft decision tree, a new

method for identifying heterogeneous factors and confounders. In Section 2.2, we dis-

cuss a consistent variable selection framework in the situation of nonlinear regression. We

show that nonlinear variable selection can also feature the oracle properties under certain

conditions. In Section 2.3, we prove that the soft decision tree is equivalent to the ker-

nel regression and can approximate the unknown nonlinear function with consistency and

asymptotic normality. In Section 2.4, we show that the L1-regularized soft decision tree

can consistently identify the relevant variables. In Section 2.5 and Section 2.6, we find that

it works in the simulation data and empirical study. Because of the complexity of hetero-

geneous treatment effect and confounding effect, we think it is very important to select

important variables before estimating and inference on the heterogeneous effect. Hence,

L1-regularized soft decision tree provides a new way to identify the critical variables and it

can be applied in a variety of applications in nonlinear regression and causal inference.
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Chapter 3

Unsupervised Feature Extraction

Clustering for Crisis Prediction

3.1 Introduction

Economic crises inflict substantial damage to the economy. Long-term economic

costs, measured in terms of output foregone, are on average 5 percent for balance of pay-

ments crises; 10 percent for banking crises, and 15 percent for twin crises (Cerra and Saxena,

2008). Following a financial crisis, a country needs on average eight years to return to its

pre-crisis level of income (Reinhard and Rogoff, 2014). Societal costs are also staggering,

as average life expectancy declines, primary school enrollment drops, and infant mortality

increases (Alexander et al. 2009; van Dijk, 2013).

Macroprudential policy has an important role in crisis prevention and crisis miti-

gation. The policy effectiveness, however, hinges on whether the macroprudential tools can
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target the root causes of economic crises. Crisis prediction models, hence, need to support

macroprudential policy. By flagging in advance economic and financial conditions leading

to an economic crises, the models can guide policy actions aimed at reducing the crisis

likelihood.

This chapter proposes unFEAR, an unsupervised feature extraction clustering

method aimed at facilitating economic crisis prediction. The approach in unFEAR is quite

different from that in other machine learning-based crisis prediction models. The latter

adopt a supervised learning framework: at any time period, the models assign a crisis or no

crisis label to a country’s observed economic and financial predictor data based on whether

the observation was followed or not by a crisis n periods ahead.

The reliance on labeled data gives rise to the biased label problem. Briefly, two

countries characterized by similar economic and financial data may receive different labels

as only one of them experienced a crisis in the near term. A supervised learner would try to

separate both countries even though from a vulnerability perspective both countries belong

to the same class. We explain the biased label problem in detail below.

unFEAR avoids the biased label problem using unsupervised learning to find clus-

ters using information in the distribution of the economic and financial data. Rather than

working with the raw data unFEAR leverages on the use of autoencoders to reduce the

dimensionality of the original data set and generates time-invariant clusters using a novel

mode contrastive autoencoder. The crisis and non-crisis observations in a cluster do not

correspond to a specific time period, a finding that suggests that a time-invariant economic

regime and crisis generating mechanism characterizes each cluster.
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Once the clusters are identified it is possible to assess a country’s crisis vulnera-

bility at a given point in time. The simplest approach is to assign a country to its closest

neighboring cluster. The crisis vulnerability is then calculated as the empirical crisis fre-

quency in the cluster. A second approach, which is normally used in applied machine

learning work, is to fit separate supervised learning classifiers to each cluster.

Both approaches for measuring crisis vulnerability could help guide macropruden-

tial policy. Analysts could project the effect of policies on economic and financial funda-

mentals to determine whether a country may migrate to a safer or riskier cluster. Even

if a country’s cluster assignment does not change a supervised classifier estimated for the

cluster could help to assess whether policies may contribute to reduce or to increase crisis

risk.

This chapter is organized as follows: Section 3.2 offers a overview of the literature

on early warning and crisis prediction models and provides the needed background to under-

stand the differences between previous machine learning-based crisis prediction models and

the unFEAR method proposed here. Section 3.3 describes unFEAR in detail both at the

conceptual and technical level. To illustrate unFEAR capability, in Section 3.4, we apply

it to a group of advanced economies using a data set of economic and financial variables

covering the period 1980 - 2018. Crisis risk and crisis prediction is examined next, and the

concluding section examines possible extensions of unFEAR.
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3.2 Machine learning-based crisis prediction models

Work on crisis prediction models have largely side-stepped the use of the stan-

dard macroeconomic workhorse, the dynamic stochastic general equilibrium model (DSGE).

While useful for conducting policy experiments the models do not perform well for fore-

casting crisis events partly due to the fact that these events are out-of-equilibrium states.1

Unsurprisingly, most crisis prediction models are formulated as econometric and/or statis-

tical models where economic theory serves to narrow the selection of predictive variables,

or features.

The wave of speculative currency attacks on countries with fixed or pegged ex-

change rates experienced in the 1990s prompted the development of a first generation of

crisis prediction models, also known as early warning models. Examples of such models in-

clude Frankel and Rose (1996), Kaminsky et al. (1998), and Berg and Patillo (1999) among

others. Research on crisis prediction tapered off in the early 2000s as the Great Moderation

brought a large decline in macroeconomic volatility (Bernanke, 2004).

Research resumed in the aftermath of the Great Recession in 2008, an event not

foreseen by central banks, policy makers, and a majority of market participants. The

ensuing studies focus on the reassessment of existing models and on the development of more

accurate early warning systems. Example of such work include, among others, Babecky et

al. (2012), Chamon and Crowe (2013), Christofides et al. (2016), and Ahuja et al. (2017).

More recently there has been much interest in developing machine learning based

models for crisis prediction. The interest sparks from the success of machine learning

1See Stiglitz (2017) for a critique, and Christiano et al. (2018) for a rebuttal.
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models in prediction tasks in a vast range of knowledge domains outside economics. Recent

examples include Alessi et al. (2014), Holpainen and Sarlin (2017), Beutel et al. (2018),

Lang et al. (2018), and a number of studies conducted at the International Monetary Fund,

with models specialized to predict external crises, financial crises, and fiscal crises.

The machine learning models cited above are supervised learning models. First,

the set of explanatory variables (covariates or attributes) include observable economic and

financial variables. In some cases, economic theory guides the selection of variables. In

other cases, a large number of variables is included with the expectation that the machine

learning algorithm will sort out what variables matter the most for crisis prediction. A data

point is simply the set of attributes of a country at a given point in time.

Second, since the goal of the models is to predict crisis events, each data point is

labeled as a crisis (or non-crisis) point when a crisis occurs (or does not occur) n periods

ahead, that is, data points at time t serve to predict crisis and non-crisis events at time t+n.

In models developed for policy making purposes, n typically ranges from one to two years.

If the model flags a future crisis such relatively long prediction horizon leaves time for the

authorities to implement preventive or mitigating measures. Finally, crisis definitions and

the timing of the crisis are determined outside the model using expert domain knowledge.

3.2.1 Challenges in supervised learning crisis prediction models

Model estimation presents analysts with several challenges. First, despite the

widespread perception in the popular press that economic crises recur frequently, crises are

still rare events. Compared to non-crisis episodes, the number of non-crisis events largely

exceeds that of crisis events, raising the issue of imbalanced data (Kotsiantis et al. 2006).
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Second, the data sample includes as many countries as possible so that the learner

algorithm can observe a non-negligible number of crisis events. Many countries, however,

may lack observations for several of the attributes which raises the issue of missing data. One

solution is to include only attributes with complete observations at the cost of discarding

attributes containing useful information. Another solution is to eliminate observations for

which the set of attributes is incomplete, which may drastically reduce the number of crisis

observations and further worsen the imbalanced data problem. The third option, is to use

data imputation methods to complete the data set by assigning values to any missing data

observation, which raises the question on whether the imputed values truly represent the

missing data. A final option is to allow the classifier to learn a set of functions, each one

specialized to classify the data points using a subset of covariates.

Third, the set of attributes may include information extraneous for crisis predic-

tion, a likely situation when the number of covariates is large. Extraneous information

represents noise and makes model estimation more difficult. Adding to the model esti-

mation complications is that two or more covariates may be strongly dependent. While

covariate dependence may not harm the predictive ability of the model, it makes difficult

to evaluate a particular covariate importance to predict an economic crisis.

3.2.2 The biased label problem and its unsupervised learning solution

Last but equally important, the biased label problem, may impair the predictive

ability of a supervised learning model. Figure 3.1 illustrates this problem. Figure 3.1 is a

simple two-dimensional representation of crisis and non-crisis points where there are only
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Figure 3.1: The biased label problem.

two features. Each point is represented by its features coordinates. The large circular

purple cluster contains all the non-crisis points and the red elliptical cluster all the crisis

points. A supervised learning classifier generates a separating hyperplane depicted as the

the green line. The hyperplane imposes a hard separation between the crisis and non-crisis

points. Ignoring the data points labels would yield a different separating hyperplane, one

that separates the large non-crisis cluster from the crisis cluster and the small non-crisis

cluster. The latter two clusters belong to a same class different from the non-crisis class.

This situation reflects the fact that in this example the information the features convey

cannot be used to discriminate properly between crisis and non-crisis labeled points.

The biased label problem is prevalent in policy crisis prediction models due to their

long forecasting horizon. Two data points sharing the same characteristics, i.e. two different

countries with the same economic fundamentals possibly measured at different times, may

suffered a different fate two years ahead as only one of them would experience a crisis. There

might be several explanations on why the countries’ fates were so different, none of which
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the features are able to capture. For instance, the lucky country may experience a favorable

commodity price movement that strengthens its fundamentals. Or economic policies may

have been put in place that prevented the crisis.2

This is a situation unsupervised learning could handle adequately. An unsuper-

vised learner, rather than forcing a hard separation between crisis and non-crisis points,

assigns countries with similar features or economic fundamentals to different clusters. The

crisis risk in the cluster corresponds roughly to the frequency of its crisis observations.

Hence, it becomes possible to rank clusters in terms of crisis risk and to assign a crisis fre-

quency to a data point even if the point label was not used to identify the cluster structure.

One natural interpretation is that clusters represent different economic regimes, each with

a different propensity to generate an economic crisis.

Mathematically a supervised classifier tries to estimate the conditional probability

distribution of the crisis/non-crisis label, y, conditional on the features, x, i.e. P (y|x). In

contrast, the unsupervised classifier attempts to learn the unconditional probability distri-

bution of the features, P (x). From a computational and estimation perspective, an added

advantage of the unsupervised classifier is that its estimation requires fewer data points (or

examples) than a supervised learner to produce a reliable cluster structure. Also, there is

no need to separate the available data into training, validation, and test sets.

It is also worth noting that adopting an unsupervised approach is consistent with

economic intuition since we expect, given current knowledge of crisis dynamics and the

partial information of economic and financial data, that in a group of countries with similar

2The biased label problem in crisis prediction is somewhat similar to the problem of label bias and
fairness: data points are falsely attributed to a certain class even if the features may not justify it. See for
instance, Jiang and Nachum (2019).
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economic fundamentals some may experience a crisis and others may not. Hence, on a first

pass, it makes sense to identify the clusters first using unsupervised learning and then to

fit a cluster-specific supervised classifiers.

3.3 unFEAR: Unsupervised Feature Extraction Clustering

for Crisis Prediction

Conceptually, unFEAR is a simple method:

• First, it performs feature engineering (also known as feature learning or representation

learning) to extract relevant information from the raw data set useful for clustering

analysis.

• Second, once an appropriate representation is built, unFEAR identifies separate clus-

ters and the corresponding data point assignments.

At first it may seem odd to perform feature engineering on the raw data since this

is not yet usual practice in econometrics. Figures 3.2 and 3.3 illustrate why this step is

necessary to obtain a suitable data representation. Namely:

• Raw data attributes do not generate separable clusters. The left panel in Figure 3.2

shows clusters obtained with K-means using annual data on data points comprising

75 attributes collected for 34 countries during the period 1970-2018. The raw data was

used without any pre-processing prior to the application of the clustering algorithm,

and the number of clusters was selected with a scree plot. The two-dimensional
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representation, generated using the t-SNE algorithm (van der Maaten and Hinton,

2008), shows that raw data attributes do not have enough discriminatory power.

• Raw data capture different time periods rather than different economic fundamentals,

i.e. the data exhibits time trends. The right panel in Figure 3.2 simply places time

labels, corresponding to different periods, over the data points without any attempt

to assign them to clusters. The time labeled data points overlap substantially with

the raw data-based clusters in the left panel of the figure (i.e. cluster 8 corresponds

to the most recent data points). Absent feature engineering, an unsupervised learner

may only pick data points in different time periods.

Figure 3.2: Raw data clusters: non-separability and time clustering

• Raw data tends to group data points corresponding to the same country. The left

panel in Figure 3.3 shows the data points colored by countries. While the cluster

structure remains badly defined, near neighbor points tend to correspond to the same

country. Reliance on the raw attributes may yield clusters with a majority of data
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points corresponding to the same country.

Figure 3.3: Raw data clusters: country bias and imbalanced data

• Raw data is imbalanced, i.e. few crisis observations. The right panel in Figure 3.3

shows the non-crisis points (in light blue) and the crisis points, which comprise 90

percent and 10 percent of the observations. An algorithm may find clusters biased to

reflect the distribution of the non-crisis observations.

• Missing data is a big issue. It is not uncommon to find several missing and incomplete

data points when putting together a common data set of economic and financial data

for a large panel of countries. In our data set, for all observed data points only five

variables do not have any missing value and for about two thirds of the variables (58),

missing values could be found as in as much as fifty percent of the data points.

To perform feature engineering step we use Auto Encoders, which are commonly

used in machine learning and deep learning, with a suitable loss function designed with the

purpose to to address the first three issues described above, i.e. lack of separability in the
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data points, time clustering, and country clustering. After some experimentation, we fall

back on the Synthetic Minority Over-sampling Technique (SMOTE) to address the data

imbalance issue (Chawla et al. 2002). The next section describes in detail the technical

details of the method.

The main tool in the feature engineering task is the Autoencoder. To understand

the logic behind it we first present its foundation, the multilayered network. Next we

examine how Autoencoders work using as an analogy principal components analysis. Once

the intuition is established it becomes straightforward to understand why autoencoders

serve to input missing data, to remove time clusters, and to identify the different data point

clusters.

3.3.1 Multilayer neural networks

The multi-layered neural network is the basic workhorse of deep learning methods

(Goodfellow, Bengio, and Courville, 2016). Figure 3.4 illustrates two neural networks.

The neural network in the left panel consists of three layers: the input layer, the

hidden layer, and the output layer. From the outside, only the input, x, and the final

output, y, are observed. The input layer collects the input, x, and feeds it to the hidden

layer, whose units transform the input into an intermediate output, h, via a function g1, i.e.

h = g1(x). The intermediate output is then fed to the output layer, which processes it and

produces the final output, y, using the function g2, i.e. y = g2(h). Allowing the functions

g1 and g2 to be non-linear allows the neural network to capture nonlinearities present in

the data. The number of units in the hidden layer is a hyperparameter which is tuned
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Figure 3.4: Two neural networks

(calibrated) using the data points.

It is possible to use multilayer networks, which contain several hidden layers instead

of a single hidden layer. For instance, the right panel shows a three layer network. In this

case, the output of the first hidden layer is the input of the second hidden layer. In turn, its

output serves as an input to the third layer, whose output is then fed to the output layer.

More generally, the transforming functions of the hidden layers can be specified recursively:

hl = gl(hl−1),

where l is the l-th hidden layer, and gl is a nonlinear transformation. Including several layers

enables a deep learning network to captures the dependence between the input data and

the output data in complex cases (Pascanu et al., 2014; Arora et al., 2018). Autoencoders

exploit this property to find data patterns, such as the joint probability distribution of the

attributes, which then serves to input missing data; and the time clustering information in

the data, which then allows removing time effects as explained later.
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3.3.2 Understanding autoencoders

To understand autoencoders it is useful to examine their conceptual similarity

with principal components analysis (PCA), a standard method for dimensionality reduction

widely applied in statistics as well as in finance and economics. PCA transforms the data

input from its original space into an orthogonal space via a projection matrix, or in other

words, it decomposes the data attributes along vectors (directions) orthogonal to each other

(upper panel, Figure 3.5). It is possible to go from the orthogonal space to the original space,

or reconstruct the inputs, if the projection matrix is known. To reduce the dimensionality

of the original data input, we only keep a few components of the orthogonal space provided

the retained components explain a substantial amount of the data total variance.

Figure 3.5: The analogy between principal components analysis and the autoencoder
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Functionally, the matrix P is an encoder, i.e, it encodes the data using a few

components and yields a low-dimensional representation, h. or the code in the transformed

space. The inverse of the matrix P , P−1, is a decoder, i.e. it decodes the coded, h, and

returns an approximation of x, x̃. Ideally, what we want is to encode the data to obtain

a good but simpler data representation while at the same time retain enough information

such that the data approximation in the original space is adequate. The process of encoding

and decoding the data yields the matrix P , which captures the relevant characteristics of

the data input.

The autoencoder generalizes the PCA coding and decoding function beyond linear

transformations and it comprises an encoder and a decoder, which are typically specified

as multilayer neural networks (bottom panel, Figure 5). The encoder learns a function,

gencoder by projecting the original input x onto h, with h contained in a lower dimensional

space:

h = gencoder(x).

We require the encoder to reduce the dimensionality of the data input in order to

simplify any subsequent classification or learning process applied to the encoded data. In

turn, the decoder learns the gdecoder function that enables the autoencoder to reconstruct

an approximation x̃ of the the original input x from the encoded representation h:

x̃ = gdecoder(h).

To find the best data representation, it is necessary to specify a loss function associated

with the reconstruction error, Lreconstruct(x, x̃):

Lreconstruct(x, x̃) = L(x, gdecoder(h)) = L(x, gdecoder(gencoder(x))).
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Optimization of the loss function yields the optimal encoder function gencoder(x) for the

nonlinear transformation. By using multilayer networks, the autoencoder easily performs

PCA when nonlinearities are present in the data. Stacking more layers and introducing

noise in the encoder and decoder functions enable autoencoders to deliver complex but

robust data transformations (Vincent et al., 2008 and 2010). We exploit the autoencoder

properties to perform missing data imputation.

3.3.3 Missing data imputation with autoencoders

Missing data imputation is often performed using one of the three following meth-

ods: replacing the missing value by a constant value, typically the median (median impu-

tation) or the mean (mean imputation); resampling from the empirical distribution of the

non-missing values; or exploiting the dependence among variables by regressing observed

values on other variables and replacing the missing data by the predictions of the regres-

sion equations, such as done in the multivariate imputation by chained equations (MICE)

method (Raghunathan et al., 2001, Van Buuren, 2007).

unFEAR introduces an autoencoder-based missing data imputation strategy using

the Mean Squared Error loss function (MSE) to measure the reconstruction error in Figure

3.6.

The use of the autoencoder builds on the assumption that all the attributes (vari-

ables) in a high dimensional data exhibit dependence. The dependence assumption typically

holds in reality especially for economic data. This fact enables the autoencoder strategy to

recover missing attribute values using the observed values of other attributes. It is worth
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Figure 3.6: Missing data imputation using an autoencoder

noting that the MICE also exploits the dependence assumption to justify regressing an at-

tribute on other attributes. Contrary to MICE, the autoenconder does not need to specify

whether an attribute with missing data can or cannot be used as a regressor. The autoen-

coder automatically assigns higher weights to attributes with more observations. Hence, the

autoencoder method is equivalent to a data driven MICE method, combining resampling

and dependence exploitation.3

The autoencoder missing data imputation method then reduces to:

• First, draw samples randomly from the non-missing data points.

• Second, train an autoencoder on the randomly drawn data sample.

• Third, use the estimated autoencoder to fill the missing data values.4

3A related method is the Markov Chain Monte Carlo variational autoencoder-based of Rezende et al.
(2015).

4The activation function of this autoencoder, as well as the others unFEAR uses, is an exponential linear
unit (ELUs) (Clevert et al., 2016). The convergence speed of ELUs outperforms that of rectified linear units
(ReLUs) (Klambauer et al., 2017).
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3.3.4 Removing time trends using autoencoders

Data exploration shows that the raw data exhibits time clusters or time trends,

i.e. data points in certain time periods tend to be close to each other. For low dimen-

sional data sets it is feasible to remove trends using univariate methods but they become

burdensome as the number of attributes increases.

unFEAR uses a Boosted Autoencoder to remove time trends. The procedure is

performed in several rounds. Each round starts with a trained autoencoder which allows

us to reconstruct the approximated data input, x̃. The resulting reconstruction error,

ri = xi − x̃i is then fed as an input for training a new autoencoder in the next round (see

Figure 3.7).

Figure 3.7: A Boosted Autoencoder
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Time trends, either linear or non-linear, characterize the variables in the data set.

The boosted autoencoder, in a first pass, learns to project the data input x onto a space

containing the time trends. Hence, the reconstruction error ri = xi − x̃i does not exhibit

a time trend but still retains other useful information contained in the data input. The

unsupervised clustering approach we review next exploits this information.

3.3.5 Unsupervised clustering using the mode constrastive autoncoder

This section introduces and explains the mode contrastive autoencoder, which is

the key element in the unFEAR. Raw data, as Figures 3.2 and 3.3 illustrate, are not suitable

for clustering analysis. A proper use of an autoencoder could enable us to find a feature

representation that facilitates separability. The feature representation should meet two

requirements:

• The transformed features should retain a substantial amount of the variation in the

original data set to remain informative.

• In the transformed space, the data points concentrate in to several separable clusters.

The first requirement is a common one in the construction of multilayer networks.

It forces the autoencoder to learn the best representation of the data that yields a low

reconstruction error. The second requirement is necessary since the first one, by itself, does

not ensure the autoencoder learns to separate the data into clusters.

Enforcing the first requirement needs the autoencoder to minimize a regularized

loss function that balances the reconstruction error and the need to group the data points in
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the transformed space into separate clusters. The regularized loss function, LAE is showed

in Equation (3.1):

LAE = Lreconstruct(x, x̃) + λLcluster(h, µ), (3.1)

where x collects all the data points (x1, . . . , xN ), Lreconstruct is the standard re-

construction error, λ is a weight tuning parameter, and Lcluster is the regularization term

forcing the autoencoder to separate the data into clusters using as inputs the output of the

encoder, h = gencoder(x), and the centroids of the clusters, µ = (µ1, . . . , µK).5

The regularized loss function induces the autoencoder to learn a encoder gencoder(x)

such that an original data point, xi, when transformed into the encoder output, hi =

gencoder(xi), can be assigned to a single cluster with centroid µc.

The specification of the regularization term is the key element in the unFEAR

method. To specify it, we follow an approach similar to the one van der Maaten and Hinton

(2008) used to derive their t-Distributed Stochastic Neighbor Embeddings method (t-SNE).

We start by specifying the conditional probability that the data point xi belongs to the c-th

cluster, P (µc|xi) (or equivalently, that the closer neighbor of the data point xi is the c-th

cluster) as:

P (µc|xi) =
(1 + ||µc − gencoder(xi)||2)−1∑

j=1,...,K(1 + ||µc − gencoder(xj)||2)−1
, (3.2)

where K, a hyperparameter, is the number of clusters and ||.||2 is the Euclidean

or L2 norm. Ideally, we want to assign the transformed data point hi = gencoder(xi) to a

5A more complex alternative to the use of a regularized loss function, as done here, is to use a denoising
autoencoder incorporating the cluster requirement into the reconstruction error. On denoising autoencoders,
see Alain and Bengio (2014).
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single cluster to ensure the clusters do not overlap and are separable. This implies that the

conditional probability distribution in Equation (3.2) should peak at a single value µc and

take low values, ideally zero, at other cluster centroids. In other words, we want P (µc|xi)

to be a one-peaked probability distribution as close as possible to a delta distribution.

This is equivalent to perform K-means clustering by maximizing the likelihood

function:

L(µ, g;x) =
K∏
c=1

N∏
i=1

P (µc|xi)P (xi ∈ cluster c) (3.3)

or its log-likelihood. The expectation-maximization algorithm of Dempster et al.

(1977) yields the following iterative procedure to maximize the log-likelihood:

E-step: given the centroids µ = (µ1, . . . , µK) and the encoder g, assign to data point xi

the cluster ci with the maximum log-probability value:

ci = arg max
ci∈(1,...,K)

log(P (µ|xi; g)),

where the conditional probability is given by Equation (3.2) and we have made explicit its

dependence on the encoder g.

M-step: given the cluster assignments for each data point, find the new centroid µc of

cluster c solving the minimization problem below:

µ, g = arg min
µ,g

(
−
∑
i

labeli � log(P (µ|xi; g))

)
, c = 1, . . . ,K.

where labeli = (I(xi ∈ cluster 1), I(xi ∈ cluster 2), ,̇I(xi ∈ cluster K)) is the one-

hot encoded label for xi, and I(xi ∈ cluster c) is the indicator function.

If follows naturally to set the Lcluster equal to (−
∑

i µc log(P (µc|xi))) since we

want the autoencoder to perform K-means clustering. The autoenconder, hence, is a mode
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contrastive autoencoder (MCAE) since it tries to separate the different modes of the clus-

ters.The mode contrastive loss function LMCAE is:

LMCAE = Lreconstruct(xi, x̃i) + λ

(
−

K∑
c=1

N∑
i=1

I(xi ∈ cluster c) log(P (µc|xi; g))

)
. (3.4)

Figure 3.8 illustrates the role of the loss function terms in the mode contrastive

autoencoder.

Figure 3.8: The Mode Contrastive Autoencoder

Minimizing the loss function in Equation (3.4) is possible using expectation max-

imization iteration for a given encoder g:

E-step: this step is similar to the E-step in the log-likelihood maximization. Given the

centroids µc, c = 1, . . .K, and the encoder g, assign each data point xi to a cluster ci with
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the maximum log-probability value:

ci = arg max
ci∈(1,...,K)

log(P (µc|xi; g)).

M-step: Find the new cluster centroids µc, c = 1, . . . ,K that minimize the loss function

LMCAE :

LMCAE = Lreconstruct(xi, x̃i) + λ

(
−
∑
c

∑
i

I(xi ∈ cluster c) log(P (µc|xi; g))

)
.

3.4 Application: Identification of Economic Crisis Clusters

This section illustrates the use of unFEAR to identify economic crisis clusters,

which in turn, could facilitate the task of crisis prediction. Predicting an economic crisis

in advance matters to policy makers and macro-strategists. The goal of the former group

is to put in place policy measures to prevent the crisis from realizing, and the goal of the

latter is to profit from the event by betting against falling asset prices.

3.4.1 Data

The data in the analysis covers 34 countries during the period 1970 - 2018 (Table

3.1).

The data comprises 1688 data points where each data point is a country-year

observation, with 75 attributes. The attributes are constructed using levels, differences,

and Hodrick-Prescott trends of the following variables:6

6A detailed description of the attributes is available upon request from the authors. Most variables
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Table 3.1: Country List

Australia Austria Belgium Canada Cyprus

Czech Republic Denmark Estonia Finland France

Germany Greece Hong Kong S.A.R Iceland Ireland

Israel Italy Japan Korea Luxembourg

Malta Netherlands New Zealand Norway Portugal

San Marino Singapore Slovakia Slovenia Spain

Sweden Switzerland United Kingdom United States

Global variables

• Oil prices

• 3-month U.S. Treasury bill rate, con-

stant maturity

• 10-year U.S. real interest rate

• Trade-weighted dollar currency index,

major currencies

Domestic economic variables

• GDP growth

• Output gap

• Inflation

• Reserves

• Total external debt

• Debt revenue

• Exports and Imports

• Capital flows

are available from public IMF databases and/or private data providers. Probabilities of default are
from the Credit Research Initiative at the Risk Managment Institute, National University of Singapore
(https://rmicri.org). Researchers can access PD data upon registration.
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• Exchange rate against the U.S. dollar

• Purchasing power parity

• Real exchange rate

• Terms of trade

• Fiscal balance

• Fiscal revenue

• Fiscal expenses

Domestic financial variables

• Probability of default, banking sector

• Probability of default, non-financial

sector

• Probability of default, non-bank finan-

cial sector

• Investment grade securities, share in

total stock of debt securities

• Long-term bond yields

• Stock prices

• Price to income ratio, housing sector

• Price to rent ratio, housing sector

• Aggregate bank capitalization ratio,

• Bank assets to GDP ratio

• Credit to GDP ratio

• Loan to deposit ratio, banking sector

• Short-term deposit rates

• Private sector indebtedness to GDP ra-

tio

• Financial access

• Financial efficiency in the financial sec-

tor

Other variables

• Natural disasters, material impact on GDP
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• Years elapsed since the end of a crisis

episode

• Cumulative number of years recorded

as a crisis episode since country entered

the database

A data point is labeled as a crisis if an economic crisis affects the country two years

after the data point is observed and recorded. The crisis labels correspond to one of each

of the following categories: external crisis, as defined in Basu et al. (2017); financial crisis,

as defined in Laeven and Valencia (2017); fiscal crisis, as defined in Medas et al. (2018);

and real sector crisis, as defined in Basu e et al. (2017). The crisis/no-crisis labels are not

used to find the economic crisis clusters to avoid the biased label problem. The labels are

used ex-post: once the clusters are identified and data points assigned to them, the labels

are disclosed to assess a cluster’s crisis frequency.

3.4.2 Feature representation with autoencoders

As explained earlier in Section 3.2 and illustrated in Figure 3.2 above, the infor-

mation conveyed by the data in a raw form does not generate clearly separable clusters

while tending to cluster data points in time periods, a trivial result. It is possible to achieve

a better feature representation using autoencoders, as shown below.

Removing time trends

To remove the time trends or effects we implement a standard autoencoder with

five dimensional hidden vectors h, which is trained using the original raw data input x.

The autoencoder residuals are obtained subtracting the reconstructed data, x̃, from x, i.e.

r = x − x̃. K-means clustering serves to assign the data point residuals, corresponding to
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country-year observations, to one of ten clusters, where the number of clusters is determined

using a scree plot. Figures 3.9 and 3.10 show the results.

Figure 3.9: Time detrended data clusters: K-mean clusters and time periods

Figure 3.10: Time detrended data clusters: country and crisis presence

The residuals obtained from the first pass of the autoencoder tend to cluster in

groups not clearly separable (Figure 3.9, left panel), except for one cluster (cluster 4, bottom

center of the figure). However, time clustering has mostly vanished (Figure 3.9, right panel).

We can also examine whether clusters group data points corresponding to the same country:
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the answer is negative as data clusters comprise data points from different countries (Figure

3.10, left panel). Similarly, the clusters do not seem to be mainly comprised by data points

corresponding to the same label (Figure 3.10, right panel).7

Balancing the data using SMOTE

After removing the time trend, it is necessary to address the imbalanced data

problem. In supervised learning imbalanced data could often produce inaccurate predic-

tions. While the problem is less severe in unsupervised learning since the learner does not

use the label information. In our setup, however, it is still the case that since the number

of data points labeled as no-crisis points is large, the learner may be biased to use mostly

these points to identify the clusters.

Figure 3.11: Time detrended balanced data: clusters and crisis/non-crisis observations

To resolve this issue we implement the SMOTE method to create synthetic crisis

data points and to improve the accuracy of the unsupervised learner when applied to crisis

7Class 0 corresponds to the no crisis label, class 1 to financial crisis, class 2 to a sudden stop crisis, class
3 to an exchange rate market pressure index event, class 4 to a real sector crisis, and class 5 to a fiscal crisis.
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prediction. Using SMOTE assumes that the feature distribution of data points labeled as

crisis, for all crisis labels, is very similar when contrasted with the features distribution of

data points labeled as non-crisis.

Figure 3.11, left panel, shows theK-means clusters obtained after applying SMOTE

to the time-detrended features, i.e. the residuals after applying the autoencoders to the raw

data. The cluster structure still suggests that there is scope for improving the feature repre-

sentation. Nevertheless, as the right panel shows, crisis-labeled data points start to separate

from the non-crisis labeled data points.

3.4.3 Clustering via Mode Contrastive Autoencoder (MCAE)

The standard autoencoder attempts to minimize a loss function proportional to

the difference between the original data points and the reconstructed data points without

regard for whether the residuals exhibit a multicluster structure. The mode contrastive

autoencoder presented in Section 3.3 is able to capture the data structure, by minimizing

the residuals, and to assign the data points to unique clusters, thanks to the inclusion of

a negative log-likelihood term associated with cluster assignments as shown in Equation

(3.4).

The number of clusters is a hyperparameter in the MCAE. In the absence of

specific selection rules in the clustering literature we apply the elbow method to the scree

plot of the mean squared distance between the data points and their centroid assignment

for different number of clusters. Figure 3.12 shows the scree plot obtained applying MCAE

for a number of clusters ranging from 2 to 20. We base our analysis on nine clusters since
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Figure 3.12: Scree plot for cluster selection

there are no substantial gains by adding more clusters.

Figure 3.13 illustrates the results obtained applying the 9-cluster MCAE to the

residuals obtained by the first pass of a standard autoencoder. The left panel shows nine

well differentiated clusters. Each cluster could be interpreted as a different economic regime.

Under the assumption of ergodicity, i.e. the past economic regimes are recurrent, we could

expect a current or future data point to belong to one of the clusters.

Recall that the MCAE does not use the labels when performing data reconstruction

and clustering assignment. When labels are applied, they reveal that the MCAE clusters

contain both crisis and non-crisis points coexist (Figure 3.13, right panel). This finding

indicates that there are no risk-free clusters but some are safer than others in terms of crisis

frequency. In addition, compared with raw data clusters, the MCAE clusters show a clear

separation between crisis and non-crisis data points.
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Figure 3.13: Mode Contrastive Autoencoder: clusters and crisis data points

Before discussing in more detail the crisis prediction task we assess whether some

important information may be missing after applying the MCAE. The assessment is based

on the distribution of the MCAE residuals. When viewed within the cluster structure

(Figure 3.14, left panel), some of the residuals still tend to aggregate into three small

separate clusters, suggesting MCAE may have missed some clustering information. When

viewed from the perspective of crisis and non-crisis labeled data points (Figure 3.14, right

panel), the spatial distribution of the residuals is very similar for both classes. These results

indicate that the unFEAR method is able to extract an appropriate feature representation

useful for identifying recurrent economic regimes and their crisis generating mechanisms.

3.4.4 Crisis risk measurement and crisis prediction

unFEAR, after learning an appropriate feature representation, produces clear and

well separated cluster, each characterizing one of ten possible crisis clusters (Figure 3.13,

right panel). For instance, the two larger clusters are safer, from a crisis realization per-

spective, than the smaller clusters since the number of crisis points is small relative to the
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Figure 3.14: Mode Contrastive Autoencoder: residuals

number of non-crisis points. We could consider a country has a low crisis risk if its data

point falls into any of these two clusters.

Table 3.2 summarizes the crisis frequencies of each cluster using two different mea-

sures. The empirical frequency is the ratio of observed crisis data points to the total number

of observed data points. The shadow frequency is the ratio of observed and synthetically

generated crisis data points to the total number of data points.

Crisis and non-crisis data points correspond to the number of data points, both observed and synthetic,

classified as crisis and non-crisis respectively. Empirical frequency is the ratio of the number of observed

crisis data points to the total number of observed data points, and the shadow empirical frequency is the

ratio of the number of observed crisis data points to the total number of data points.

From an empirical frequency perspective two clusters, clusters 1 and 3, are low

crisis risk clusters, in which 6 percent and 2 percent of the observed data points are crisis

observations. From the shadow crisis frequency perspective only cluster 1 can be charac-

terized as low crisis risk (12 percent). Tables 3.3 to 3.6 show the crisis observations in each

cluster and highlight that a country could experience several crisis types in the same year.

74



Table 3.2: Crisis clusters: empirical and shadow crisis frequencies

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Crisis data points 190 307 211 143 168

Non-crisis data points 24 452 14 1003 6

Empirical crisis frequency 43 6 61 2 71

Shadow crisis frequency 89 40 94 12 97

Cluster 5 Cluster 6 Cluster 7 Cluster 8

Crisis data points 232 120 94 74

Non-crisis data points 33 5 0 2

Empirical crisis frequency 30 71 100 85

Shadow crisis frequency 88 96 100 97
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Table 3.3: High empirical crisis frequency clusters

Cluster 0: non-crisis observations = 24, crisis observations = 190,

empirical crisis frequency = 43 percent, shadow crisis frequency = 89 percent

Year Country Class Year Country Class Year Country Class

1974 Greece 4 1981 Belgium 4 2008 Denmark 4

1974 Japan 4 1985 New Zealand 5 2008 Denmark 1

1977 Sweden 4 2001 Iceland 3 2008 Estonia 4

1978 Norway 4 2006 Slovenia 3 2008 Sweden 4

1979 New Zealand 4 2008 Sweden 1 2009 Spain 4

1981 Spain 4 2008 Estonia 5 2012 Spain 5

Cluster 2: non-crisis observations = 14, crisis observations = 211,

empirical crisis frequency = 61 percent, shadow crisis frequency = 94 percent

Year Country Class Year Country Class Year Country Class

1980 Korea 4 2002 Israel 3 2008 United States 4

1991 Slovakia 5 2007 United States 1 2009 Iceland 4

1991 Sweden 1 2008 Japan 4 2012 Cyprus 3

1991 Sweden 4 2008 Portugal 1 2012 Cyprus 4

1997 Korea 1 2008 Switzerland 1 2012 Cyprus 5

1997 Korea 3 2008 Netherlands 1 2012 Iceland 3

1997 Korea 5 2008 Germany 1

1998 Korea 4 2008 Belgium 1
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The cluster structure idenfied by unFEAR, and illustrated in Figure 3.13, serves as

the starting point for crisis risk measurement and crisis prediction. Specifically, a country’s

economic fundamentals place it in one of the clusters. The crisis frequency serves as a

measure of crisis risk and can be further decomposed by crisis type. As an example, suppose

a country is assigned to cluster 8. In this case, crisis risk is high since the empirical frequency

is 85 percent, which can be decomposed into financial crisis risk (24 percent or 2/7 of 85

percent), exchange market pressure crisis (24 percent), real sector crisis (24 percent) and

fiscal sector crisis (13 percent). The risk of simultaneous crises seems negligible.

We want to point here two other extensions not undertaken in this study. First,

the examination of crisis and non-crisis observations in a cluster could also serve to under-

stand why some countries may not experience a crisis despite sharing the same economic

fundamentals as crisis-affected countries. Second, Figure 3.13 shows that fitting supervised

classification models for each cluster is relatively straightforward compared with fitting a

global classification model on all the data set. unFEAR hence provides an adequate feature

representation which can improve the precision of the crisis prediction task. In a first stage

clusters are identified, and in a second stage, supervised learning models are fitted to each

cluster.

3.5 Conclusions

Crisis prediction in policy making institutions benefits greatly from the increased

adoption of machine learning-based predictive models. One potential concern in supervised

learning-based models is the biased label problem: countries sharing similar weak economic
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Table 3.4: High empirical crisis frequency clusters (continued)

Cluster 4: non-crisis observations = 6, crisis observations = 168,

empirical crisis frequency = 71 percent, shadow crisis frequency = 97 percent

Year Country Class Year Country Class Year Country Class

1992 Israel 3 2008 Ireland 1 2011 Portugal 5

1998 Singapore 4 2008 Ireland 4 2011 Spain 3

2001 Singapore 4 2009 Netherlands 4 2011 Spain 4

2008 Iceland 1 2010 Ireland 3 2011 Cyprus 1

2008 Iceland 3 2010 Ireland 5

2008 Iceland 5 2011 Portugal 3

Cluster 5: non-crisis observations = 33, crisis observations = 232,

empirical crisis frequency = 30 percent, shadow crisis frequency = 88 percent

Year Country Class Year Country Class Year Country Class

1974 United Kingdom 4 2008 Greece 1 2009 Slovakia 4

1975 Italy 4 2008 Greece 4 2010 Greece 3

1980 United States 4 2009 Germany 4 2010 Greece 5

1980 United Kingdom 4 2009 Czech Republic 4 2012 Italy 4

1981 Greece 4 2009 Slovenia 4
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Table 3.5: High empirical crisis frequency clusters (continued)

Cluster 6: non-crisis observations = 5, crisis observations = 120,

empirical crisis frequency = 71 percent, shadow crisis frequency = 96 percent

Year Country Class Year Country Class Year Country Class

1980 Denmark 4 1993 Spain 4 2008 New Zealand 3

1990 Malta 3 1998 New Zealand 3 2008 New Zealand 4

1993 Sweden 3 2008 United Kingdom 3 2008 Korea 3

1993 Spain 3 2008 United Kingdom 4 2013 Japan 3

Notes: Crisis and non-crisis observations correspond to the number of data points, both observed and

synthetic, classified as crisis and non-crisis respectively. Country names in italic denote countries that

experienced multiple crises in the same year. Crises: financial (1), sudden stop (2), exchange rate market

pressure (3), real (4), fiscal (5).

fundamentals may or may not experience a future crisis due either to luck or policy actions.

The biased label problem is more severe the longer the prediction horizon is. The more

time elapses since when the prediction was made, the likelier that random events or policies

may alter the outcome.

Unsupervised learning methods can avoid the biased label problem and cluster

countries based on the similarity of their economic fundamentals. To this end, we introduced

a new unsupervised feature extraction clustering method, unFEAR, where a novel mode

contrastive autoencoder helped to idenfity observation clusters. Moreover, unFEAR can

handle time effects and missing data efficiently.

To illustrate unFEAR’s usefulness, we applied it to a sample of advanced economies.

The data points to the existence of eight different clusters we associate with economic
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Table 3.6: High empirical crisis frequency clusters (continued)

Cluster 7: non-crisis observations = 0, crisis observations = 94,

empirical crisis frequency = 100 percent, shadow crisis frequency = 100 percent

Year Country Class Year Country Class Year Country Class

1993 Italy 3 2008 France 1 2008 Italy 4

2008 Austria 1 2008 Italy 1

Cluster 8: non-crisis observations = 2, crisis observations = 74,

empirical crisis frequency = 85 percent, shadow crisis frequency = 97 percent

Year Country Class Year Country Class Year Country Class

1986 Norway 5 2008 Slovenia 1 2015 Norway 3

1992 Slovenia 1 2009 Norway 4

1998 Norway 3 2009 Canada 4

Notes: Crisis and non-crisis observations correspond to the number of data points, both observed and

synthetic, classified as crisis and non-crisis respectively. Country names in italic denote countries that

experienced multiple crises in the same year. Crises: financial (1), sudden stop (2), exchange rate market

pressure (3), real (4), fiscal (5).
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regimes, only one of which comprising most of the observations could be considered a low

risk. A country cluster assignment serve to assess its crisis risk, and the cluster per se

could serve as building blocks for simpler and more precise supervised learning-based crisis

prediction models.
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Chapter 4

Bootstrap Aggregating and

Random Forest in Economic

Forecasting

4.1 Introduction

The last 30 years witnessed the dramatic developments and applications of Bagging

and Random Forests. The core idea of Bagging is model averaging. Instead of choosing

one estimator, Bagging considers a set of estimators trained on the bootstrap samples and

then takes the average output of them, which is helpful in improving the robustness of an

estimator. In Random Forest, we grow a set of Decision Trees to construct a ‘forest’ to

balance the accuracy and robustness for forecasting. This chapter is organized as follows.

In Section 4.2 we introduce Bagging and some variants. Section 4.3 discuss Decision Trees

82



in details. In Section 4.4, we move to Random Forest which is one of the most attractive

machine learning algorithms combining Decision Trees and Bagging. Finally, in Section 4.5

and 4.6 several economic applications of Bagging and Random Forest are discussed. As we

mainly focus on the regression problems rather than classification problems, the response y

is a real number, unless otherwise mentioned.

4.2 Bootstrap Aggregating and Its Variants

Since the Bagging method combines many base functions in an additive form,

there are more than one strategies to construct the aggregating function. In this section,

we introduce the Bagging and its two variants, Subbaging and Bragging. We also discuss

the Out-of-Bag Error as an important way to measure the out-of-sample error for Bagging

methods.

4.2.1 Bootstrap Aggregating (Bagging)

The first Bagging algorithm was proposed in Breiman (1996). Given a sample and

an estimating method, he showed that Bagging can decrease the variance of an estimator

compared to the estimator running on the original sample only, which provides a way to

improve the robustness of a forecast.

Let us consider a sample {(y1, x1), ..., (yN , xN )}, where yi is the dependent variable

and xi is the p independent variables. Suppose the data generating process is y = E(y|x) +

u = f(x) + u where E(u|x) = 0 and V ar(u|x) = σ2. To estimate the unknown conditional

mean function of y given x, E(y|x) = f(x), we choose a function f̂(x) as an approximator,
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such as linear regression, polynomial regression or spline, via minimizing the L2 loss function

min
f̂

N∑
i=1

(
yi − f̂(xi)

)2
. (4.1)

A drawback of this method is that, if f̂(x) is a nonlinear function, the estimated

function f̂(x) may suffer from the over-fitting risk. Consider the Bias-Variance decomposi-

tion of Mean Square Error (MSE)

MSE = E(y − f̂(x))2

=
(
Ef̂(x)− f(x)

)2
+ V ar(f̂(x)) + V ar(u)

= Bias2 + V ariance+ σ2.

(4.2)

There are three components included in the MSE: the bias of f̂(x), the variance

of f̂(x), and σ2 = V ar(u) is the variance of the irreducible error. The bias and the variance

are determined by f̂(x). The more complex the forecast f̂(x) is, the lower its bias will be.

But a more complex f̂(x) may suffer from a larger variance. By minimizing the L2 loss

function, we often decrease the bias to get the “optimal” f̂(x). As a result, f̂(x) may not

be robust as it may result in much larger variance and thus a larger MSE. This is the over-

fitting risk. To resolve this problem, the variance of f̂(x) needs to be controlled. There are

several ways to control the variance, such as adding regularization term or adding random

noise. Bagging is an alternative way to control the variance of f̂(x) via model averaging.

The procedure of Bagging is as follows:

• Based on the sample, we generate bootstrap sample {(yb1, xb1), ..., (xbN , y
b
N )} via ran-

domly drawing with replacement, with b = 1, ..., B.
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• To each bootstrap sample, estimate f̂b(x) via minimizing the L2 loss function

min
f̂b(x)

N∑
i=1

(
ybi − f̂b(xbi)

)2
.

• Combine all the estimated forecasts f̂1(x), ..., f̂B(x) to construct a Bagging estimate

f̂(x)bagging =
1

B

B∑
b=1

f̂b(x).

Breiman (1996) proved that Bagging can make prediction more robust. Several

other papers have studied why/how Bagging works. Friedman and Hall (2007) showed that

Bagging could reduce the variance of the higher order terms but have no effect on the linear

term when a smooth estimator is decomposed. Buja and Stuetzle (2000a) showed that

Bagging could potentially improve the MSE based on second and higher order asymptotic

terms but do not have any effects on the first order linear term. Buja and Stuetzle (2000b)

also showed that Bagging could even increase the second order MSE terms. Bühlmann and

Yu (2002) studied in the Tree-based Bagging, which is a non-smooth and non-differentiable

estimator, and found that Bagging does improve the first order dominant variance term in

the MSE asymptotic terms. In summary, Bagging works with its main effects on variance

and it can make prediction more robust by decreasing the variance term.

4.2.2 Sub-sampling aggregating (Subagging)

The effectiveness of Bagging method is rooted in the Bootstrap method, the resam-

pling with replacement. Sub-sampling, as another resampling method without replacement,

can also be introduced to the same aggregating idea. Compared to the Bootstrap method,

the Sub-sampling method often provides a similar outcome without relatively heavy com-

85



putations and random sampling in Bootstrap. Theoretically, Sub-sampling needs weaker

assumptions than the Bootstrap method.

Comparing to the Bootstrap, Sub-sampling method needs extra parameters. Let d

be the number of sample points contained in each sub-sample. Since Sub-sampling method

draws samples without replacement from the original sample, the number of sub-sample

is M =
(
N
d

)
. Thus, instead of aggregating the base predictors based on Bootstrap, we

consider Sub-sampling Aggregating, or Subagging, which combines predictors trained

on samples from Sub-sampling.

The procedure of Subagging is as follows:

• Based on the sample, constructM =
(
N
d

)
different sub-samples {(ym1 , xm1 ), ..., (ymd , x

m
d )}

via randomly drawing M times without replacement, where m = 1, ...,M .

• To each sub-sample, estimate f̂m(x) via minimizing the L2 loss function

min
f̂m(x)

d∑
i=1

(
ymi − f̂m(xmi )

)2
.

• Combine all the estimated models f̂1(x), ..., f̂M (x) to construct a Subagging estimate

f̂(x)subagging =
1

M

M∑
m=1

f̂m(x).

Practically, we choose d = α × N where 0 < α < 1. There are several related

research papers considered the similar settings for d [see Buja and Stuetzle (2000a), Buja

and Stuetzle (2000b)]. Since the d is related to the computational cost, d = N/2 is widely

used in practice.
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4.2.3 Bootstrap robust aggregating (Bragging)

In Section 4.2.1 and 4.2.2, we discussed Bagging and Subagging that are based

on bootstrap samples and sub-sampling samples respectively. Although they are shown to

improve the robustness of a predictor, both of them are based on the mean for aggregation,

which may suffer from the problem of outliers. A common way to resolve the problem

of outliers is to use median instead of the mean. To construct an outlier-robust model

averaging estimator, a median-based Bagging method is discussed by Bühlmann (2004),

which is called Bootstrap Robust Aggregating or Bragging.

The procedure of Bragging is the following:

• Based on the sample, we generate bootstrap samples {(yb1, xb1), ..., (ybN , x
b
N )} via ran-

dom draws with replacement, with b = 1, ..., B.

• With each bootstrap sample, estimate f̂b(x) via minimizing the L2 loss function

min
f̂b(x)

N∑
i=1

(
ybi − f̂b(xbi)

)2
.

• Combine all the estimated models f̂1(x), ..., f̂B(x) to construct a Bragging estimate

f̂(x)bragging = median
(
f̂b(x); b = 1, ..., B

)
.

To sum up, instead of taking the mean (average) on the base predictors in Bagging,

Bragging takes the median of the base predictors. According to Bühlmann (2004), there

are some other robust estimators, like estimating f̂b(x) based on Huber’s estimator, but

Bragging works slightly better in practice.
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4.2.4 Out-of-Bag Error for Bagging

In Sections 4.2.1 to 4.2.3, we have discussed Bagging and its two variants. In the

Bootstrap-based methods like Bagging and Bragging, when we train f̂b(x) on the bootstrap

sample, there are many data points not selected by resampling with replacement with the

probability

P ((xi, yi) /∈ Bootb) =

(
1− 1

N

)N
→ e−1 ≈ 37%,

where Bootb is the bth bootstrap sample. There are roughly 37% of the original

sample points not included in the bth bootstrap sample. Actually, this is very useful since

it can be treated as a ‘test’ sample for checking the out-of-sample error for f̂b(x). The

sample group containing all the samples not included in the bth bootstrap sample is called

the Out-of-Bag sample or OOB sample. The error that the f̂b(x) has on the bth out-of-bag

sample is called the Out-of-Bag Error, which is equivalent to the error generated from the

real test set. Breiman (1996) discussed the OOB error in details.

The bth Out-of-Bag error is calculated by

êrrOOB,b =

∑N
i=1 I ((yi, xi) /∈ Bootb)× Loss(yi, f̂b(xi))∑N

i=1 I ((yi, xi) /∈ Bootb)

=
1

Nb

Nb∑
i=1

Loss
(
ybi,OOB, f̂b(x

b
i,OOB)

)
.

(4.3)

The procedure of implementing the Out-of-Bag Error is the following:

• Based on the sample, we generateB different bootstrap samples {(yb1, xb1), ..., (ybN , x
b
N )}

via randomly drawing with replacement.
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• To each bootstrap sample, estimate f̂b(x) via minimizing the Loss function

min
f̂b(x)

N∑
i=1

Loss
(
ybi − f̂b(xbi)

)
.

• Compare the bth bootstrap sample to the original sample to get the the bth Out-

of-Bag sample {(yb1,OOB, xb1,OOB), ..., (ybNb,OOB, x
b
Nb,OOB

)}, where Nb is the number of

data points for the bth Out-of-Bag sample.

• Calculate the Out-of-Bag error of f̂b(x) among all the Out-of-Bag samples

êrrOOB =
1

B

B∑
b=1

1

Nb

Nb∑
i=1

Loss
(
ybi,OOB, f̂b(x

b
i,OOB)

)
=

1

B

B∑
b=1

êrrOOB,b.

4.3 Decision Trees

Although many machine learning methods, like spline and neural networks, are in-

troduced as the base predictors in Bagging method, the most popular Bagging-based method

is the so-called Random Forest proposed by Breiman (2001). Random Forest has been ap-

plied to many studies and becomes an indispensable tool for data mining and knowledge

discovery. Intuitively, the main idea behind Random Forest is combining a large number

of decision trees into a big forest via Bagging. In this section, we concentrate on how to

construct the base learner, Decision Tree, for Random Forest. In Section 4.4, we discuss

the Random Forest in detail. Several effective variants of Random Forest are discussed in

detail in Section 4.5.
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4.3.1 The structure of a decision tree

The basic idea of the decision tree has a long history and has been used in many

areas including biology, computer science, and business. Biologists usually introduce a very

large tree chart to describe the structure of classes containing animals or plants; in computer

science, tree structure is a widely used data type or data structure with a root value and

sub-trees of children with a parent node, represented as a set of linked nodes; in business,

the decision tree is a usual structure choice for a flowchart that each internal node has a

series of questions based on input variables.

Figure 4.1: A Tree of Structured Data about Economic Books

Figure 4.1 gives an example of book data with the tree structure. Firstly, in

all kinds of books, we have economic books. Then, economic books contain books about
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macroeconomics, microeconomics, and others. If we concentrate on macroeconomic books,

it contains books about Real Business Cycle (RBC) theory, New Keynesian theory, etc.

Figure 4.2: The Components in a Decision Tree

First of all, let us explore the structure of the decision tree and clarify the names

of components in the decision tree. Figure 4.2 illustrates a decision tree with three layers.

We can see that there are 4 components in a decision tree: root nodes, internal nodes, leaf

nodes, and branches between every two layers. The root node is the beginning of a decision

tree. From the only one root node, there could be two or more branches connecting to the

internal nodes in the next layer. Each internal node is also called the parent node to the

connected nodes in the next layer. The nodes in the next layer are called child nodes or

sub-nodes. Also, every internal node contains a decision rule to decide how to connect to

its sub-nodes in the next layer. At the bottom, there are several leaf nodes. They are the

end of one decision tree and they represent different outputs for prediction. For example,

to a regression problem, each leaf node contains a continuous output. To a classification
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problem, each leaf node contains a discrete output corresponding to the labels of classes.

Intuitively, all the tree structure methods share the same intuition: the recursive

splitting. Given a node, we split it into several branches connecting to its sub-nodes in the

next layer. Then, to each sub-node, we split it again to get more sub-nodes in the next

layer until the end of the decision tree.

In data mining and machine learning, the decision tree is widely used as a learning

algorithm called Decision Tree Learning. We first construct the structure of a decision tree

structure. Each node contains a decision rule. To compute the prediction of a decision tree,

we feed the input to the root node and then propagate through all the layers to a leaf node,

which outputs the final prediction of the decision tree. We discuss this procedure in detail

via the following two examples.

Example 1: People’s health

Let us consider a classification problem about people’s health. Suppose a people’s

health Heal depends on two explanatory variables, weight W and height H. Health is a

binary variable with two potential outcomes: Heal = 1 means healthy and Heal = 0 means

not healthy. The function of Heal given H and W is

Heal = h(W,H).

Now suppose we can represent this function via several decision rules. Based on

our experience, to a people with a large height, it is not healthy if this people have a

relatively small weight; to a people with a small height, it is not healthy if this people have

a large weight. We can write down these rules:
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

Heal = 1 if H > 180 cm and W > 60 kg

Heal = 0 if H > 180 cm and W < 60 kg

Heal = 1 if H < 180 cm and W < 80 kg

Heal = 0 if H < 180 cm and W > 80 kg.

We first consider height H. Based on the outcome of H, there are different decision rules

for weight W . Thus, it is straightforward to construct a tree to encode this procedure.

Figure 4.3: A Tree of People’s Health

In Figure 4.3, the node containing H is the root node, which is the beginning of

the decision procedure. The node containing W is the internal node in the first layer. In the

second layer, there are four leaf nodes that give the final prediction of health. For example,

to a sample (H = 179cm, W = 60kg), according to the decision rule in the root node,

we choose the lower part of branches since 179 < 180. Then, since 60 < 80 based on the
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decision rule in the internal node, we go to the third leaf node and output Heal = 1 as the

prediction. This decision tree encodes the four decision rules into a hierarchical decision

procedure.

Example 2: Women’s wage

Another example is about the classic economic research: women’s wage. Suppose

women’s wage depends on two factors: education level Edu and working experience Expr.

Thus, this is a regression problem. The nonlinear function of women’s wage is

Wage = g(Edu,Expr).

If a woman has higher education level or a longer working experience, it is much possible

that woman have higher wage rate. As in Example 1, we suppose the nonlinear function g

can be represented by the following rules:



Wage = 50 if Expr > 10 years and Edu = college

Wage = 20 if Expr > 10 years and Edu 6= college

Wage = 10 if Expr < 10 years and Edu = college

Wage = 0 if Expr < 10 years and Edu 6= college.

In this case, we first consider the experience Expr. Based on it, we use different decision

rules for education Edu. This procedure can also be encoded into a decision tree.

Figure 4.4 illustrates the decision tree for predicting women’s wage. To a woman

who has 11 years of working experience with a college degree, it is more likely that she

has a higher wage rate. Thus the decision tree outcomes 50; if a woman has 3 years of
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Figure 4.4: A Tree of Woman’s Wage

working experience without a college degree, we expect the woman could have a hard time

in searching for her job. Thus, the decision tree reports 0.

4.3.2 Growing a decision tree for classification: ID3 and C4.5

In Section 4.3.1, we have discussed how a decision tree works. Given the correct

decision rules in the root and internal nodes and the outputs in the leaf nodes, the decision

tree can output the prediction we need. The next question is how to decide the decision

rules and values for all the nodes in a decision tree. This is related to the learning or growing

of a decision tree. There are more than 20 methods to grow a decision tree. In this chapter,

we only consider two very important methods. In this section, we discuss ID3 and C4.5

methods for the classification problem. In the Section 4.3.3 and 4.3.4, we will introduce the

Classification and Regression Tree (CART) method for the classification problem and the
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regression problem, respectively.

In the example 1 about weight, height and health, since there are two explanatory

variables, H and W , we can visualize the input space in a 2D plot. Figure 13.5 illustrates

all the data points {(Heal1,W1, H1), ..., (HealN ,WN , HN )} in a 2D plot. The horizontal

axis is the weight W and the vertical axis represents the height H. The red minus symbol

means Heal = 0 and the blue plus symbol represents Heal = 1.

Figure 4.5: Health Data in 2D Plot

Figure 4.5 illustrates the implementation of a decision tree in a 2D plot to predict

a person’s health. First of all, in level 1, the decision rule at the root node is Height > 180

or not. In the 2D plot, this rule could be represented as a decision stump which is

a horizontal line at H = 180cm. The decision stump splits the sample space into two
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sub-spaces that are corresponding to the two sub-nodes in level 1. The upper space is

corresponding to H > 180cm and the lower space represents H < 180cm.

Next, we have two sub-spaces in level two. To the upper spaces, we check the rule

at the right internal node, W > 60kg or not. This can be represented as another vertical

decision stump at W = 60kg to separate upper space to two sub-spaces. Similarly, to the

lower space, we also draw another vertical decision stump, which is corresponding to the

decision rule at the left internal node.

Finally, we designate the final output for each of the four sub-spaces that represent

the four leaf nodes. In classification problems, given a sub-space corresponding to a leaf

node, we consider the number of samples for each class and then choose the class with the

most number of samples as the output at this leaf node. For example, the upper left space

should predict Heal = 0, the upper right space is corresponding to Heal = 1. For the

regression problems, we often choose the average of all the samples at one sub-space as the

output of this leaf node.

To sum up, each node in a decision tree is corresponding to space or a sub-space.

The decision rule in each node is corresponding to a decision stump in this space. Then,

every leaf node computes its output based on the average outputs belonging to this leaf.

To grow a decision tree, there are two kinds of ‘parameters’ need to be figured out: the

positions of all the decision stumps corresponding to the non-leaf nodes and the outputs of

all the leaf nodes.

In decision tree learning, we often grow a decision tree from the root node to

leaf nodes. Also in each node, we usually choose only one variable for the decision stump.
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Thus, the decision stump should be orthogonal to the axis corresponding to the variable we

choose. At first, we decide that the optimal decision stump for the root node. Then, to two

internal nodes in layer 1, we figure out two optimal decision stumps. Then, we estimate the

outputs to four leaf nodes. In other words, decision tree learning is to hierarchically split

input space into sub-spaces. Comparing the two plots at the bottom of Figure 4.6, we can

see the procedure of hierarchical splitting for a decision tree learning.

To sum up, each node in a decision tree is corresponding to space or a sub-space.

The decision rule in each node is corresponding to a decision stump in this space. Then,

every leaf node computes its output based on the average outputs belonging to this leaf.

To grow a decision tree, there are two kinds of ‘parameters’ need to be figured out: the

positions of all the decision stumps corresponding to the non-leaf nodes and the outputs of

all the leaf nodes.

In decision tree learning, we often grow a decision tree from the root node to

leaf nodes. Also in each node, we usually choose only one variable for the decision stump.

Thus, the decision stump should be orthogonal to the axis corresponding to the variable we

choose. At first, we decide that the optimal decision stump for the root node. Then, to two

internal nodes in layer 1, we figure out two optimal decision stumps. Then, we estimate the

outputs to four leaf nodes. In other words, decision tree learning is to hierarchically split

input space into sub-spaces. Comparing the two plots at the bottom of Figure 13.6, we can

see the procedure of hierarchical splitting for a decision tree learning.

Thus, the core question is how to measure the goodness of a decision stump to

a node. An important measure of this problem is called impurity. To understand it, we
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consider two decision stumps for one sample set.

Figure 4.7 shows the different cases of the sub-spaces split by two decision stumps.

To the left panel, H is selected for the decision stump. In two sub-spaces, the samples have

two labels. To the right panel, W is selected. The left sub-space only contains samples

with label Heal = 0 and the right sub-space only contains samples with label Heal = 1.

Intuitively, we can say that the two sub-spaces in the left panel are impure compared to

the sub-spaces in the right panel. The sub-spaces in the right panel should have lower

impurity. Obviously, the decision stump in the right panel is better than the left panel

since it generates more pure sub-spaces.

Mathematically, the information entropy is a great measure of impurity. The more

labels of samples are contained in one sub-space, the higher entropy of the sub-space has. To

discuss the entropy-based tree growing clearly, we introduce a new definition: information

gain. The information or entropy for an input space S is

Info(S) = −
C∑
c=1

pclog2(pc), (4.4)

where C is the total number of classes or labels contained in space S. pc is the frequency

of samples for one class in the space S. It can be estimated by

pc =
1

NS

∑
xi∈S

I(yi = c), (4.5)

where NS is the total number of samples in space S. I(yi = c) is an indicator function

measuring the label yi is the cth class or not.

Suppose we choose D as a decision stump and it separates the space S into two
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sub-spaces. For example, if we choose D as x = 5, the two sub-spaces are corresponding to

x < 5 and x > 5. Then, we calculate the distinct entropies for two sub-spaces. Thus, if the

space S is separated into v different sub-spaces, the average entropy of S after splitting is

InfoD(S) =
v∑
j=1

NSj

NS
× Info(Sj), (4.6)

where v is the number of sub-spaces generated by D. To binary splitting, v = 2. Sj is the

jth sub-space and it satisfies: Si ∩ Sj = ø if i 6= j and
⋃
i Si = S. NSj and NS are the

number of samples contained in Sj and S.

Obviously, the information or entropy for space S changes before and after splitting

based on decision stump D. Thus, we define the information gain of D as

Gain(D) = Info(S)− InfoD(S). (4.7)

Example 3: Predicting economic growth

Consider an example of predicting economic growth G based on two factors: Infla-

tion Rate I and Net Export NX. Suppose G is a binary variable where G = 1 for expansion

and G = 0 for recession. Then, the growth G is an unknown function of the inflation rate

I and the Net Export NX

G = G(I,NX).

From the left panel in Figure 4.8, we can see the sample distribution of economic

growth G. For example, if there is high inflation rate I and high net export NX, we observe

the economic expansion where G = 1; if there are high inflation rate I but low net export
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NX, the economy will be in recession with G = 0.

Let us consider a decision tree with only the root node and two leaf nodes to fit

the samples. In the right panel, we choose D : I = 10% as the decision stump in the root

node. Thus, the space S is splitted into two sub-spaces S1 and S2. According to Equation

(4.4), the information to the original space S is

Info(S) = −
2∑
c=1

pclog2(pc)

= −(p1log2(p1) + p2log2(p2))

= −
(

4

8
log2

(
4

8

)
+

4

8
log2

(
4

8

))
= 1,

where class 1 is corresponding to G = 0 and class 2 to G = 1. And p1 = 4
8 means that there

are 4 samples with G = 0 out of 8 samples.

After splitting, the information to the sub-space S1 is

Info(S1) = −
2∑
c=1

pclog2(pc)

= −p1log2(p1) + 0

= −
(

2

2

)
log2

(
2

2

)
= 0.

The information to the sub-space S2 is
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Info(S2) = −
2∑
c=1

pclog2(pc)

= −(p1log2(p1) + p1log2(p1))

= −
(

2

6
log2

(
2

6

)
+

4

6
log2

(
4

6

))
= 0.92.

InfoD(S) =
v∑
j=1

NSj

NS
× Info(Sj)

=
NS1

NS
× Info(S1) +

NS2

NS
× Info(S2)

=
2

8
× 0 +

6

8
× 0.92

= 0.69.

After splitting, the information decreases from 1 to 0.69. According to Equation

(4.6), the information gain of D is

Gain(D) = Info(S)− InfoD(S) = 0.31.

To sum up, we can find the best decision stump to maximizing the information

gain such that the optimal decision stump can be found. From the root node, we repeat

finding the best decision stump to each internal node until stopped at the leaf nodes. This

method for tree growing is called ID3 introduced by Quinlan (1986).

Practically, the procedure of implementing the decision tree for classification based

on ID3 is the following:
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• Suppose the sample is {(y1, x1), ..., (yN , xN )} where yi ∈ (0, 1) and xi is a p dimen-

sional vector. To the first dimension, gather all the data orderly as x1,(i), ..., x1,(N).

• Search the parameter d1 respect to D1 : x1 = d1 through x1,(i) to x1,(N) such that

max
D1

Gain(D1) = max
D1

(Info(S)− InfoD1(S)) .

• Find the best D2 : x2 = d2, ..., Dp : xp = dp and then choose the optimal D such that

max
D

Gain(D) = max
D

(Info(S)− InfoD(S)) .

• Repeatedly run the splitting procedure until every node containing one label of y.

Finally, take the label of y from one leaf node as its output.

One problem this method suffer from is related to over-fitting. Suppose we have

N data points in space S. According to the rule that maximizing the information gain, we

can find that the optimal result is separating one sample into one sub-space such that the

entropy is zero in each sub-space. This is not a reasonable choice since it is not robust to

noise in the samples. To prevent that, we can introduce a revised version of information

gain from C4.5 method.

C4.5 introduces a measure for information represented via splitting, which is called

Splitting Information
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Split InfoD(S) = −
v∑
j=1

NSj

NS
× log2

NSj

NS
, (4.8)

where v = 2 for the binary splitting.

Obviously, this is an entropy based on the number of splitting or the number of

sub-spaces. The more the sub-spaces are, the higher the splitting information we will get.

To show this conclusion, let us go back to the economic growth case illustrated in Figure

4.9.

To the left case, the splitting information is computed based on Equation (4.8) as

Split InfoD(S) = −
v∑
j=1

NSj

NS
× log2

NSj

NS

= −
(
NS1

NS
× log2

NS1

NS
+
NS2

NS
× log2

NS2

NS

)
= −

(
2

8
× log2

2

8
+

6

8
× log2

6

8

)
= 0.81.

To the right case, the splitting information is

Split InfoD(S) = −
v∑
j=1

NSj

NS
× log2

NSj

NS

= −
(
NS1

NS
× log2

NS1

NS
+
NS2

NS
× log2

NS2

NS
+
NS3

NS
× log2

NS3

NS

)
= −

(
2

8
× log2

2

8
+

4

8
× log2

4

8
+

2

8
× log2

2

8

)
= 1.5.

Thus, when there are more sub-spaces, the splitting information increases. In
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other words, splitting information is the ‘cost’ for generating sub-spaces. Now, instead of

information gain, we can use a new measure called Gain Ratio(D)

Gain Ratio(D) =
Gain(D)

Split Info(D)
. (4.9)

When we generate more sub-spaces, the information gain increases but splitting information

is higher at the same time. Thus, to maximize the Gain Ratio of D, we can make great trade-

offs. This is the main idea of C4.5, an improved version of ID3 introduced by Quinlan(1994).

Summarizing, the procedure of implementing the decision tree for classification

based on C4.5 is the following:

• Suppose the sample is {(y1, x1), ..., (yN , xN )} where yi ∈ (0, 1) and xi is a p dimen-

sional vector. To the first dimension, gather all the data orderly as x1,(i), ..., x1,(N).

• Search the parameter d1 respect to D1 : x1 = d1 through x1,(i) to x1,(N) such that

max
D1

Gain Ratio(D1) = max
D1

(
Gain(D1)

Split Info(D1)

)
.

• Find the best D2 : x2 = d2, ..., Dp : xp = dp and then choose the optimal D such that

max
D

Gain Ratio(D) = max
D

(
Gain(D)

Split Info(D)

)
.

• Repeatedly run the splitting procedure until the Gain Ratio is less than 1. Finally,

take the most frequency label of y from one leaf node as its output.
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4.3.3 Growing a decision tree for classification: CART

In Section 4.3.2, we have discussed related methods about how to grow a tree based

on ID3 and C4.5 methods. In this section, we introduce another way to construct a decision

tree, the Classification and Regression Tree (CART), which not only features great

performance but very easy to implement in practice for both classification and regression

tasks.

The main difference between ID3, C4.5, and CART is the measure of information.

ID3 and C4.5 choose the entropy to construct the Information Gain and Gain Ratio. In

CART, we introduce a new measure for deciding the best decision stump called the Gini

Index or Gini Impurity. The definition of Gini Impurity is

Gini(S) =
M∑
j=1

pj(1− pj) = 1−
M∑
j=1

p2
j , (4.10)

where M is the number of classes in node spaces S and pj is the frequency of class j in

node space S. Intuitively, this is the variance of the binary distribution. That is, CART

chooses the variance as the impurity measure.

Figure 4.10 illustrates the difference between Entropy and Gini Impurity. Given

x-axis as the proportion of sample belonging to one class, we can see that two curves are

very similar. Then, we have the new Gini Impurity after binary splitting

GiniD(S) =
NS1

NS
Gini(S1) +

NS2

NS
Gini(S2). (4.11)

where the NS , NS1 , NS2 are the numbers of sample points in space S, S1, S2 respectively.
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Similarly to the information gain in ID3, we consider the difference of Gini impurity as the

measure of goodness of decision stump

∆GiniD(S) = Gini(S)−GiniD(S). (4.12)

As we discuss in ID3 method, if we grow a decision tree via maximizing the information gain

in each node, it is the best choice that we split all the data points in one space such that

each subspace contains one sample point. ID3 and CART may suffer from this risk. C4.5

should be a better choice than ID3 and CART, but it has a fixed rule to prevent over-fitting

which cannot be adaptive to data.

To solve this problem, let us consider the total cost of growing a decision tree

Total Cost = Measure of F it+Measure of Complexity. (4.13)

The total cost contains two main parts: the measure of fit is related to the goodness of

the model, as the error rate in classification problem; the measure of complexity describes

the power of the model. To balance the two measures in growing a decision tree, we often

choose the following function as the objective:

L = Loss(yi, xi; tree) + λΩ(numbers of leaf nodes).

The first term is related to the loss of the decision tree. To classification problem, we can

use the error rate on the samples as the loss. The second term is a measure of complexity

based on the number of leaf nodes. Ω is an arbitrary function like the absolute function. λ

is a tuning parameter balancing the loss and the complexity. Many machine learning and
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regressions like Lasso and Ridge Regression follow this framework. Also, since the second

term penalizes on the number of leaf nodes, this is also called pruning a decision tree.

The procedure of implementing the decision tree for classification based on CART

is the following:

• Suppose the sample is {(y1, x1), ..., (yN , xN )} where yi ∈ {0, 1} and xi is a p dimen-

sional vector. To the first dimension, gather all the data orderly as x1,(i), ..., x1,(N).

• Search the parameter d1 respect to D1 : x1 = d1 through x1,(i) to x1,(N) such that

max
D1

∆GiniD1(S) = max
D1

(Gini(S)−GiniD1(S)) .

• Find the best D2 : x2 = d2, ..., Dp : xp = dp and then choose the optimal D such that

max
D

∆GiniD(S) = max
D

(Gini(S)−GiniD(S)) .

• Based on the new decision stump, calculate the error rate for the decision tree and

the total loss function

L = error rate(yi, xi; tree) + λΩ(numbers of leaf nodes).
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• Repeatedly run the splitting procedure until the total loss function starting to increase.

Finally, take the most frequency label of y from one leaf node as its output.

4.3.4 Growing a decision tree for regression: CART

The Information Gain and Gini Impurity are a very important measures when we

are implementing a classification problem. In economic research, we often consider more

regression problems with the continuous response. Thus, instead of the information gain,

we choose the variation to measure the goodness of a decision stump

V ariation(S) =
N∑
i=1

(yi − ȳ)2, (4.14)

where N is the number of data points belong to the space S. After several splitting, the

space S is separated into v sub-spaces S1, ..., Sv, we can define the average variance after

splitting the space S

V ariationD(S) =
1

v

v∑
j=1

V ariationj(S), (4.15)

where v is the number of the sub-spaces separated by D. Again, to binary splitting, we

have v = 2. Thus, we have a new information gain for regression method

Gain(D) = V ariation(S)− V ariationD(S). (4.16)

Based on the total cost in Equation (4.13), we choose the same formula for regres-

sion
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L = Loss(yi, xi; tree) + λΩ(numbers of leaf nodes),

where Loss(yi, xi; tree) is the L2 loss function.

Thus, the procedure of implementing the decision tree for regression based on

CART is the following:

• Suppose the sample is {(y1, x1), ..., (yN , xN )} where yi is a real value and xi is a p di-

mensional vector. To the first dimension, gather all the data orderly as x1,(i), ..., x1,(N).

• Search the parameter d1 respect to D1 : x1 = d1 through x1,(i) to x1,(N) such that

max
D1

Gain(D) = max
D1

(V ariation(S)− V ariationD1(S)) .

• Find the best D2 : x2 = d2, ..., Dp : xp = dp and then choose the optimal D such that

max
D

Gain(D) = max
D

(V ariation(S)− V ariationD(S)) .

• Based on the new decision stump, compute the loss for the decision tree and the total

loss function

L = Loss(yi, xi; tree) + λΩ(numbers of leaf nodes).
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• Repeatedly run the splitting procedure until the total loss function starting to increase.

Finally, take an average of y from one leaf node as its output.

4.3.5 Variable importance in a decision tree

In Sections 4.3.2 to 4.3.4, we discussed how to grow a decision tree. In this section,

we consider another problem: how to measure the importance of the variable.

In the procedure of growing a decision tree, each time we split one internal node

into two child nodes, one variable should be selected based on the information gain or

variation gain. Thus, for an important variable, the decision tree should choose it frequently

among all the internal nodes. Conversely, the variables may be selected just a few times if the

variables are not very important. To the jth variable, [31] defined a relative importance

as

I2
j =

T−1∑
t=1

e2
t I(v(t) = j), (4.17)

where T is the number of internal nodes (non-leaf nodes) in a decision tree, v(t)

is the variable selected by node t. et is the error improvement based on before and after

splitting the space via variable v(t). To regression task, it can be a gain of variation. To

classification problem, it is related to information gain of entropy or the difference of Gini

Impurity.

For example, let us consider a CART tree to a regression problem. Suppose we split

the tth node into two nodes based on variable j selected by the decision stump D. Then, we

can calculate the value of the information gain Gain(D) = V ariation(S)−V ariationD(S).
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This is the error improvement et. Thus, considering all the internal nodes, we compute all

the e2
t to get I2

j .

If variable j is very important, the error improvement should be very large and

I(v(t) = j) often equals to 1 since variable j is usually selected. As a result, the measure

I2
j is relatively large; conversely, it a variable is not very important, the error improvement

based on this variable cannot be so large, which leads to a small I2
j . After we growing a

decision tree on a training set, we often calculate it on the test set.

4.4 Random Forests

Random Forest is a combination of many decision trees based on Bagging. In

the first paper about Random Forest, Breiman (2001) discussed the theories behind the

Random Forest and compared Random Forest with other ensemble methods. From this

section, we start to discuss Random Forests in detail.

4.4.1 Constructing a random forest

As we discussed in Section 4.2, Bagging method can generate a lot of base learners

trained on bootstrap samples and then combine them to predict. If we consider combining

a set of unbiased estimators or predictors, Bagging works by decreasing the variances of the

predictors but keeping the means unaffected.

For example, let us consider B numbers of unbiased estimators f1, f2, ..., fB with

same variance σ2. If they are i.i.d, it is easy to show that the variance of average estimator

is
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V ar(g) = V ar

(
1

B

B∑
b=1

fb

)
=

1

B
σ2. (4.18)

But if the unbiased estimators are correlated, the variance of the average estimator is

V ar(g) =
1

B2
V ar

(
B∑
b=1

fb

)

=
1

B2

 B∑
b=1

V ar(fb) + 2
∑
b6=c

cov(fb, fc)


=

1

B2
(Bσ2 + (B2 −B)ρσ2)

= ρσ2 +
(1− ρ)

B
σ2,

(4.19)

where ρ is the correlation coefficient between two estimators.

The variance of average estimator depends on the number of base estimators and

the correlation between estimators. Even if we can decrease the second term to zero via

adding increasingly large numbers of estimators, the first term remains at the same level

if the estimators are not independent. Similarly, in Bagging, even if we can combine a lot

of predictors based on Bootstrap, the variance cannot keep decreasing if the predictors are

dependent with each other.

In practice, since most of the bootstrap sample are very similar, the decision trees

trained on these sample sets are often similar and highly correlated with others. Thus,

average estimators of similar decision trees can be more robust but do not perform much

better than a single decision tree. That is the reason why Bagging decision trees or other

base learners may not work so well in prediction.

Compare to Bagging decision trees, which only combines many trees based on

113



Bootstrap to decrease the second term (1−ρ)
B σ2, Random Forest also considers controlling

the first term ρσ2. To decrease the correlation between decision trees, Random Forest

introduces the so-called random subset projection or random feature projection

during growing a decision tree. That is, instead of applying all the variables in one tree,

each decision tree chooses only a subset of variables at each potential split in Random

Forest. Also, comparing to the classic decision tree, in Random Forest, decision trees are

not necessarily pruned by penalizing the number of leaf nodes but grow all the way to the

end. Random subset projection can significantly decrease the correlations between trees

since different trees grow on different sets of attributes, which leads to a smaller ρσ2. But

it could affect the second term (1−ρ)
B σ2 and the unbiasedness of decision trees since they

cannot predict dependent variables based on all the attributes. Thus, we need to select the

number of variables to select in each split to balance the first and the second term.

The procedure of constructing a Random Forest is the following:

• Generate B number of bootstrap sample sets.

• On each sample set, grow a decision tree all the way to the end.

• During growing a tree, randomly select m variables at each potential split (random

feature projection).

• Combine the B decision trees to a Random Forest. To regression, take the average

output among all the trees; to classification, consider the vote of all the trees.

We can choose the hyper-parameter m based on cross-validation but this is very

time-consuming when B is very large. Thus, to the classification task, m is often chosen as
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1 ≤ m ≤ √p; to regression task, we choose m as 1 ≤ m ≤ p/3, where p is the number of

variables. To the node size, for every decision tree, we grow it all the way to the end for

the classification task, while we grow to that every leaf node has no more than nmin = 5

sample inside for regression task.

4.4.2 Variable importance in a random forest

In Section 4.3.5, we discussed the relative importance I2
j to measure the importance

of a variable in a decision tree. Since Random Forest is a linear combination of decision

trees, we can introduce an average relative importance

I2
j =

1

B

B∑
b=1

I2
j (b), (4.20)

where I2
j (b) is the relative importance for the bth decision tree

I2
j (b) =

Tb−1∑
t=1

e2
t I(v(t)b = j). (4.21)

A drawback for this measure is that we need to check every node in a decision

tree. This is not very efficient if there is too many samples or large numbers of the decision

tree in a Random Forest.

Surprisingly, Random Forest provides a much simpler but very effective way to

measure the importance of variables via random permutation. That is, for one variable,

we perturb the samples by random permutation. For example, after constructing a Random

Forest, to the jth variable along all the samples xj = (xj,1, xj,2, ..., xj,i, ..., xj,N ), we randomly

rearrange all the x to generate a new series of samples x∗j = (x∗j,1, x
∗
j,2, ..., x

∗
j,i, ..., x

∗
j,N ) =
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(xj,2, xj,10, ..., xj,N−4, ..., xj,i+5), which is the original xj with random sample order. Then,

we test the Random Forest on that to get the error rate or mean square error under random

permutation. Intuitively, if one variable is not important, comparing the test error on the

original test sample, the test error on permutation test samples should not change a lot

since this variable may not usually be selected by the nodes in a decision tree. Given a test

set with Nt samples, the variable importance under random permutation is

V Ij =
1

B

B∑
b=1

1

Nt

Nt∑
i=1

Loss(yi, treeb(x1,i, ...., x
∗
j,i, ...))− Loss(yi, treeb(x1,i, ...., xj,i, ...))

=
1

B

B∑
b=1

1

Nt

Nt∑
i=1

∆Loss(yi, treeb(x1,i, ...., x
∗
j,i, ...)).

(4.22)

In practice, one way to estimate the test error is sample splitting. We split one

data set into a training set and a validation set and then estimate the test error on the

validation set. But this is not efficient because of the loss of samples. When we discussed

in Bagging in Section 4.2.4, in terms of Bootstrap sampling, all the Bagging methods could

leave about one third sample points untouched, that are the Out-of-Bag samples. Since

Random Forest is a Bagging method, we can use the OOB error as the test error. This is

a very efficient way to implement since each time we add a decision tree based on a new

bootstrap sample, we can test the variable importance on the new OOB samples.

Based on the OOB error, we redefine the measure of variable importance as
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V IOOBj =
1

B

B∑
b=1

1

Nb

Nb∑
i=1

(Loss(yi,OOB, treeb(x1,i,OOB, ...., x
∗
j,i,OOB, ...))

− Loss(yi,OOB, treeb(x1,i,OOB, ...., xj,i,OOB, ...; treeb)))

=
1

B

B∑
b=1

(
êrr∗OOB,b − êrrOOB,b

)
=

1

B

B∑
b=1

∆êrrOOB,b

(4.23)

where Nb is the sample size of the bth OOB sample.

The implementing procedure is the following:

• To bth bootstrap sample set, grow a decision tree.

• Find the sample point not contained in the sample set and construct the bth Out-of-

Bag sample set.

• Compute OOB error for the bth decision tree based on the OOB sample with and

without random permutation.

• Calculate V IOOBj to measure the jth variable importance.

One related topic is about the variable selection in Random Forest. Based on

the variable importance, we can compare the importance between two variables. Thus,

could we select relevant variables based on this measure? A simple way to implement is

designating a threshold value for variable importance and select the variables with high

importance only. But there is no theory about how to decide the threshold value such that

we can select relevant variables correctly. Strobl, Boulesteix, Kneib, Augustin and Zeileis
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(2008) and Janitza, Celik and Boulesteix (2016) considered the hypothesis testing to select

variables in Random Forest.

The last but not the least, the issue of variable dependence need to be considered

when we measure the variable importance via random permutation. For example, if we im-

plement a linear model by regressing the level of health on weight and height, the coefficient

on the weight could be very unstable if weight and height are highly correlated. Similarly,

in random forest, if two variables are correlated, we cannot get an accurate measure of

importance via random permuting on the variable. Strobl, Boulesteix, Zeileis and Hothorn

(2007) discussed the topics about the bias in random forest variable importance.

To resolve this issue, we need to check the dependence among all the variables.

Some methods like PCA could be introduced to decorrelate the variables, but they may

affect the interpretations of the variables. Strobl, Boulesteix, Kneib, Augustin and Zeileis

(2008) proposed a method called the conditional variable importance.

The implementing procedure is the following:

• Given variable xj , find a group of variables Z = {z1, z2, ..., } that are correlated with

xj .

• To the bth decision tree, find out all the internal nodes containing the variables in Z.

• Extract the cutpoints from the nodes and create a grid by means of bisecting the

sample space in each cutpoint.

• In this grid, permute the xj to compute the OOB accuracy. The OOB error of the

bth tree is the difference between OOB accuracy with and without permutation given
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Z.

• Consider the average of all the trees’ OOB error as the forest’s OOB error.

4.4.3 Random forest as the adaptive kernel functions

Now we start to discuss some related theories behind Random Forest to uncover

why Random Forest works. Basically, Random Forest or decision tree ensemble methods

can be seen as a local method. For example, it is easy to find that the predicted value of

a given data totally depends on the average of yi in one of the leaf node. In other words,

the predicted value only depends on a ‘neighborhood’ samples belong to the leaf node.

Similarly, Breiman (2000) showed that Random Forest which is grown using i.i.d random

vectors in the tree construction are equivalent to a kernel acting on the true margin.

Without loss of generality, let us consider a Random Forest with B decision trees

for a binary classification task. To one decision tree, suppose R as the area of one of leaf

node with the responses as R = +1 or R = −1. We have the labeling rule for R = +1 to

this leaf node

∫
R
P (+1|z)P (dz) ≥

∫
R
P (−1|z)P (dz), (4.24)

where z represents all the possible inputs inculded in the leaf node. Intuitively, by consid-

ering all the samples in R, if more samples with the label as +1, the response of R is +1.

Otherwise, we label the response of R as −1.

Based on Equation (4.24), we have the output +1 from a decision tree given an

input x when Equation (4.25) holds
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∫
Rx(θ)

P (1|z)P (dz) ≥
∫
Rx(θ)

P (−1|z)P (dz), (4.25)

where Rx(θ) is the area of the leaf node containing x and θ is the parameter of

the decision tree. Let D(z) = P (1|z)− P (−1|z), then Equation (4.25) can be written as

∫
Rx(θ)

D(z)P (dz) ≥ 0. (4.26)

According to Equation (4.26), the prediction of the bth decision tree is

ŷ =


1 if

∫
Rx(θb)

D(z)P (dz) ≥ 0

−1 if
∫
Rx(θb)

D(z)P (dz) ≤ 0.

Now let us introduce an indicator function I(x, z ∈ R(θb)) to represent the event z ∈ Rx(θb),

we have

ŷ =


1 if

∫
I(x, z ∈ R(θb))D(z)P (dz) ≥ 0

−1 if
∫
I(x, z ∈ R(θb))D(z)P (dz) ≤ 0.

Obviously, the indicator function I(x, z ∈ R(θb)) can be seen as a kernel weighted

function K(x, z). Also, this kernel function is not smooth since it only considers the sample

in the leaf node R(θb). Intuitively, it means that one decision tree can learn to construct a

distribution plot and then works via the ‘hard’ kernel weighting.

Let us consider a Random Forest. Compare to a single decision tree, Random

Forest contains B decision trees. Assume in bth decision tree, the number of leaf nodes is

Tb. Thus, we can derive a kernel function for Random Forest
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KRF (x, z) =
1

B

B∑
b=1

Tb∑
t=1

I(x, z ∈ Rt(θb)). (4.27)

This is a discrete kernel combining all the leaf nodes from B decision trees. Addi-

tionally, when B →∞, we have

KRF (x, z) =
1

B

B∑
b=1

Tb∑
t=1

I(x, z ∈ Rt(θb))

→ Pθ(x, z ∈ A(θ)),

(4.28)

where A(θ) is the area based on the Random Forest and it contains infinite number of leaf

nodes from infinite decision trees. When B → ∞, we can see that the kernel function will

converge to a probability measure. That is, the hard kernel function will be a smoother

kernel function when we have increasingly number of decision trees. Thus, the final output

for Random Forest in this case should be

ŷRF =


1 if

∫
KRF (x, z)D(z)P (dz) ≥ 0

−1 if
∫
KRF (x, z)D(z)P (dz) ≤ 0.

From another perspective, Lin and Jeon (2006) discussed Random Forest from

a point of view of K-Nearest Neighbor (KNN). To show the connection between Random

Forest and KNN, they proposed a new method called Potential Nearest Neighbor (PNN).

They also showed that Random Forest could be converted to an adaptive kernel smooth

method described by PNN.

To sum up, Random Forest not only combines a large number of decision trees to

reduce the variance of prediction like bagging, but also decreases the dependence among
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decision trees via random feature projection to get a much lower prediction error than

Bagging Decision Tree. Theoretically, Random Forest makes prediction via constructing an

adaptive kernel function. That is very similar to other local methods such as non-parametric

kernel method and KNN. Figure 4.11 illustrates the difference between Decision Tree and

KNN.

4.5 Recent Developments of Random Forest

As one of the most effective ensemble method in solving real-world issues, the

random forest also has many variants for different modeling tasks in statistics, data mining,

and econometrics literature. In this section, we introduce several attractive variants of

Random Forest.

4.5.1 Extremely randomized trees

For Bagging method, we discussed its effectiveness related to the variance of en-

semble model. According to Equation (4.19), we have

V ar(g) = ρσ2 +
(1− ρ)

B
σ2,

the variance is decomposed into two parts: the first term ρσ2 depends on the

correlation among base models and the second term (1−ρ)
B σ2 is related to the number of

base models.

Since we often combine a large number of base models, we can assume B goes

to infinity and the main part of the variance converges to ρσ2. Thus, bagging can largely
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decrease the second term.

Random Forest, besides controlling the second term via Bagging, also controls the

first term by decreasing the ρ via random feature projection simultaneously. Because of the

random feature projection, the decision tree suffers from a higher bias. It means that we

need to focus on decreasing correlations among decision trees such that the ensemble model

becomes more effective.

Random feature projection is not the only way to decrease the correlations. Geurts,

Pierre, Ernst and Wehenkel (2006) introduced another way to achieve the goal and derived a

new technique called the Extremely Randomized Trees (Extra-Trees). Compare to Random

Forest, Extra-Trees works on the original samples instead of bootstrap samples. More

importantly, Extra-Trees method generates the base decision tree via a more random way

to split sample space than the random feature projection in Random Forest.

The Extra-Trees splitting algorithm is the following:

• To a node space in decision tree, first choose K variables (x1, x2, ..., xK) among all

the p variables.

• To all K attributes, randomly choose a splitting point to each one of them via choosing

a uniform number from (xmin, xmax) belong to this node.

• Compare the criteria among all the random splitting point and choose the attribute

xk giving the best splitting outcome.

• Choose variable xk and the random splitting point as the final decision stump in this

node.

123



Table 4.1: A Summary of Three Ensemble Methods

Names Main Part of Variance Bootstrap Hyper-parameters

Bagging Decision Trees ρσ2 Yes B, nmin

Random Forest ρσ2 Yes B, m, nmin

Extremely Randomized Trees (1−ρ)
B σ2 No B, K, nmin

• Stop splitting when the number of sample points = nmin.

Practically, we set K =
√
p and nmin = 5 by default. But we can tune them based on the

cross-validation.

The key difference of constructing base decision trees between Random Forest and

Extra-Trees is the splitting rule for each node. In Random Forest, we choose m variables and

then find the optimal decision stump directly. But in Extra-Trees, we choose K variables

to randomly generate decision stump and then choose the ‘optimal’ decision stump. As a

consequence, randomly growing decision trees in extra-trees will be less dependent than the

trees in Random Forest, which leads to lower correlations ρ. Thus, even though Extra-Trees

do not introduce Bootstrap, it works well in many data mining and predicting tasks. This

idea about being ‘random’ is also used in many other machine learning algorithms such

as Extreme Learning Machine proposed by Huang, Zhu and Siew (2006) and Echo State

Networks designed by Jaeger (2001).

We summarize Bagging Decision Trees, Random Forest and Extremely Random-

ized Trees in Table 4.1.
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4.5.2 Soft decision tree and forest

Based on the previous discussion, we find that Random Forest and its variants

are based on the decision tree. The decision tree is growing via splitting the space into

optimal sub-spaces recursively and the function defined by a decision tree is a non-smooth

step function. The decision tree is naturally suitable for implementing the classification

problem because of the discrete outputs. Since most economic problems are related to the

regression problems, we could expect that the decision tree should be so large that it can

handle a smooth function ‘non-smoothly’.

To resolve this problem, we can consider a ‘soft’ decision tree instead of the ‘hard’

decision tree. Given a decision tree with only one root node and two leaf nodes, it can have

two possible outcomes

f(x) =


µ1 if g(x) > 0

µ2 if g(x) < 0,

where µ1 and µ2 are correspond to the first and second leaf nodes. g(x) is called gate

function. It decides which leaf node should be selected. We can also rewrite the formula

based on an indicator function

f(x) = µ1 × I(g(x) > 0) + µ2 × (1− I(g(x) > 0)) .

For example, in women wage case we have discussed, the decision stump is D : Expr = 10.

Given that, we can use a gate function g(Expr) = Expr − 10 to represent the decision

stump

125



f(Expr) = µ1 × I(g(Expr) > 0) + µ2 × (1− I(g(Expr) > 0)) . (4.29)

That is, if Expr > 10, we choose the first leaf node and Expr < 10 choose the

second one.

Generally, to the mth node, we can use a similar function to represent its output

Fm(x) = FLm(x)× I(gm(x) > 0) + FRm(x)× (1− I(gm(x) > 0)). (4.30)

If FLm(x) and FRm(x) are leaf nodes, we have FLm(x) = µL and FRm(x) = µR . If not, they

are corresponding to the child-nodes in the next layer FLm(x) = FLm+1(x). Because of the

indicator function, the Fm(x) is a step function with two outcomes, FLm(x) or FRm(x). It is

a hard decision tree.

In Equation (4.30), we can use a smooth gate function instead of the identity

function such that the decision tree is ‘soft’ and Fm(x) is a smooth function. Let us change

the indicator function I(h) to a logistic function L(h), we have

Fm(x) = FLm(x)× L(gm(x)) + FRm(x)× (1− L(gm(x))), (4.31)

where L(h) = 1
1+e−h

is a logistic function and gm(x) = βTx is a linear single index

function of input variables. In the soft decision tree, instead of selecting one from two child

nodes, a smooth Fm(x) is taking weighed average between FLm(x) and FRm(x). In Figure

4.12, we compare the hard decision tree with the soft decision tree.

Back to the women’s wage example, we choose L(g(Expr)) = 1
1+e−(Expr−10) . That

is, if Expr > 10, we consider the left node more and consider the right node more when
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Expr < 10.

Compared to the hard decision tree, the soft decision tree has many advantages:

• Since soft decision tree can represent any smooth function, it is more suitable to

handle the regression problem than the original decision tree. That may be the most

important advantage since economic research often cares more about the regression

problem, such as economic growth rate prediction and derivative estimation for partial

effect analysis.

• Soft decision tree contains a bunch of differentiable gate functions, which means we

can train all the parameters via the Expectation Maximization (EM) method very

quickly.

• In all the leaf nodes of a soft decision tree, we could not only choose a constant µ, but

consider more flexible methods, like the linear formula or even the neural networks.

• Because of its hierarchical structure, the soft decision tree is a local method as the

hard decision tree. Thus, it has similar theories and properties as other local methods

like kernel regression.

There are many research papers related to the soft version of the decision tree. This

first soft decision tree model is called Hierarchical Mixtures of Experts (HME) discussed

by Jordan and Jacob (1994). Instead of growing a decision tree via splitting recursively, in

the HME method, we first designate the structure of a soft decision tree, like the number

of layers, then optimize all the parameters in this tree.
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Consider a soft decision tree with S layers and one split in each node. Thus, the

number of total leaf nodes is 2S and the function of this soft decision tree is

fHME(x) =
2S∑

leaf=1

Pleaf (x)µleaf

=
2S∑

leaf=1

∏
p→leaf

Gp(x)µleaf ,

where p → leaf means all the gate functions contained in the nodes located on

the path to the sth leaf node. According to Equation (4.31), we have

Gp(x) = I(p = left)× L (gp(x)) + I(p = right)× (1− L (gp(x)))

It decides the gate function for each node on the path. µleaf represents the function in each

leaf, which could be a constant, a simple linear function or other nonlinear models.

For example, Figure 4.13 shows the structure of an HME with two layers. Let us

consider the path to the first leaf node p→ 1. The path starts from the root node in layer

0. Since the path chooses the left node, the node0, I(p = left) = 1 and G0(x) should be

G0(x) = I(0 = left)× L(g0(x)) + (1− I(0 = left))× (1− L(g0(x)))

= L(g0(x)).

Then, the path contains the node1 at layer 1 and then choose the left node, the leaf1. Thus,

G1(x) should be
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G1(x) = I(1 = left)× L(g00(x)) + (1− I(1 = left))× (1− L(g00(x)))

= L(g00(x)).

Thus, to Pleaf=1(x), we have

P1(x) =
∏
p→1

Gp(x) = G0(x)×G1(x)

= L(g0(x))× L(g00(x)).

(4.32)

Similarly, to the path to leaf 2, we have

P2(x) =
∏
p→2

Gp(x) = G0(x)×G1(x)

= L(g0(x))× (1− L(g00(x))).

(4.33)

Now we find that HME is similar to a mixture model since
∑

leaf Pleaf (x) = 1.

Suppose the µleaf is a parameter, like mean, of a distribution Pleaf (y|x). Then we have the

conditional probability of y given x

P (y|x) =

2S∑
leaf=1

∏
p→leaf

Gp(x)Pleaf (y|x)

=
2S∑

leaf=1

Pleaf (x)Pleaf (y|x).

Thus, we can have the log likelihood function of HME with unknown parameter β

L(y|x;β) =
N∑
i=1

logP (yi|xi;β)

=
N∑
i=1

log
2S∑

leaf=1

Pleaf (xi;β)Pleaf (yi|xi;β).
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To optimize the likelihood function, [90] considered a the Expectation-Maximization

(EM) to optimize it. The main idea behind EM is based on the so-called complete log like-

lihood function

Lc(y|x;β) =
N∑
i=1

2S∑
leaf=1

zleaf
∏

p→leaf
Gp(xi;β)Pleaf (yi|xi;β),

where zleaf are implicit variables that represent the indicators of leaf nodes. Take the

expectation of Lc(y|x;β), we have

Q(y|x;β) = Ez(Lc(y|x;β)) =

N∑
i=1

2S∑
leaf=1

E(zleaf )
∏

p→leaf
Gp(xi;β)Pleaf (yi|xi;β).

To E(zleaf ), we have

E(zleaf ) = P (zleaf = 1|y, x, β)

=
P (y|zleaf = 1, x, β)P (zleaf = 1|x, β)

P (y|x, β)

=

∏
p→leaf gp(x;β)P (y|x, β)∑S2

leaf=1

∏
→leaf gp(x;β)P (y|x, β)

.

We can see that Q(y|x;β) is the lower bound of L(y|x;β) because of Jensen’s Inequality. The

log-likelihood function L(y|x) is optimized if we can optimize the lower bound Q(y|x;β).

This is the key to the EM method.

To sum up, the training procedure for HME is as follows:

• Randomly initializes all the parameters β, then propagate forward the input to get

the distribution of xi.

• To each mini-batch, propagate forward all the x to the leaves to get the predicted

outputs. Then compute all the E(zi,leaf ) (E-step).
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• Optimize the expectation likelihood function Q(x, y;β) (M-step).

• Redo E-step and M-Step until that all the parameters converge.

One possible drawback to the soft decision tree method is that the HME could

lead to a long-time training process. More importantly, since HME needs a pre-determined

structure of a soft decision tree, it is not adaptive to data. To resolve this issue, another

way to implement soft decision trees was discussed by Irsoy, Yldz and Alpaydn (2012). The

authors introduced a new way to grow a soft decision tree. In each node, they used gradient

descent to find the optimal splitting line then compare the predicting outcome between the

two trees with and without the new splitting line to decide that this new node should be

added or not. Thus, this method can adaptively learn the structure of soft decision tree and

could be faster. Similarly to Random Forest, Yıldız,́Irsoy and Alpaydın (2016) constructed

an ensemble of soft decision trees via Bagging to explore the ensemble of soft decision trees.

4.6 Applications of Bagging and Random Forest in Economics

4.6.1 Bagging in economics

Recently, Bootstrap Aggregating is widely used in macroeconomic analysis and

forecasting. Panagiotelis, Athanasopoulos, Hyndman, Jiang and Vahid (2019) explored the

performance of the ensemble a large number of predictors in predicting macroeconomic

series data in Australia. Precisely, they compared Bagging LARS with Dynamic Factor

Model, Ridge Regression, LARS, and Bayesian VAR respectively on GDP growth, CPI

inflation and IBR (the interbank overnight cash rate equivalent to the Federal funds rate
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in the US). They found that Bagging method can help in more accurate forecasting.

As discussed in this chapter, Bagging has been proved to be effective to improve

on unstable forecast. Theoretical and empirical works using classification, regression trees,

variable selection in linear and non-linear regression have shown that bagging can gener-

ate substantial prediction gain. However, most of the existing literature on bagging has

been limited to the cross sectional circumstances with symmetric cost functions. Lee and

Yang (2006) extend the application of bagging to time series settings with asymmetric cost

functions, particularly for predicting signs and quantiles. They use quantile predictions to

construct a binary predictor and the majority-voted bagging binary prediction, and show

that bagging may improve the binary prediction. For empirical application, they presented

results using monthly S&P500 and NASDAQ stock index returns.

Inoue and Kilian (2008) considered the Bagging method in forecasting economic

time series of US CPI data. They explored how the Bagging may be adapted to application

involving dynamic linear multiple regression for the inflation forecasting. And then they

compare several models’ performances, including correlated regressor models, factor models

and shrinkage estimation of regressor models (with LASSO) with or without Bagging. Their

empirical evidence showed that Bagging can achieve large reductions in prediction mean

squared error, even in challenging applications such as inflation forecasting.

Lee, Tu and Ullah (2014), Lee, Tu and Ullah (2015) and Hillebrand, Lee and

Medeiros (2014) consider parametric, nonparametric, and semiparametric predictive re-

gression models for financial returns subject to various hard-thresholding constraints using

indicator functions. The purpose is to incorporate various economic constraints that are
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implied from economic theory or common priors such as monotonicity or positivity of the

regression functions. They use bagging to smooth the hard-thresholding constraints to

reduce the variance of the estimators. They show the usefulness of bagging when such

economic constraints are imposed in estimation and forecasting, by deriving asymptotic

properties of the bagging constrained estimators and forecasts. The advantages of the bag-

ging constrained estimators and forecasts are also demonstrated by extensive Monte Carlo

simulations. Applications to predicting financial equity premium are taken for empirical

illustrations, which show imposing constraints and bagging can mitigate the chance of mak-

ing large size forecast errors and bagging can make these constrained forecasts even more

robust.

Jin, Su and Ullah (2014) propose a revised version of bagging as a forecast com-

bination method for the out-of-sample forecasts in time series models. The revised version

explicitly takes into account the dependence in time series data and can be used to justify

the validity of bagging in the reduction of mean squared forecast error when compared with

the unbagged forecasts. Their Monte Carlo simulations show that their method works quite

well and outperforms the traditional one-step-ahead linear forecast as well as the nonpara-

metric forecast in general, especially when the in-sample estimation period is small. They

also find that the bagging forecasts based on misspecified linear models may work as ef-

fectively as those based on nonparametric models, suggesting the robustification property

of bagging method in terms of out-of-sample forecasts. They then re-examine forecasting

powers of predictive variables suggested in the literature to forecast the excess returns or

equity premium and find that, consistent with Welch and Goyal (2008), the historical aver-
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age excess stock return forecasts may beat other predictor variables in the literature when

they apply traditional one-step linear forecast and the nonparametric forecasting methods.

However, when using the bagging method or the revised version, which help to improve the

mean squared forecast error for unstable predictors, the predictive variables have a better

forecasting power than the historical average excess stock return forecasts.

Audrino and Medeiros (2011) proposed a new method called smooth transition

tree. They found that the leading indicators for inflation and real activity are the most

relevant predictors in characterizing the multiple regimes’ structure. They also provided

empirical evidence of the model in forecasting the first two conditional moments when it is

used in connection with Bagging.

Hirano and Wright (2017) considered forecasting with uncertainty about the choice

of predictor variables and compare the performances of model selection methods under Rao-

Blackwell theorem and Bagging respectively. They investigated the distributional proper-

ties of a number of different schemes for model choice and parameter estimation: in-sample

model selection using the Akaike Information Criterion, out-of-sample model selection, and

splitting the data into sub-samples for model selection and parameter estimation. They

examined how Bagging affected the local asymptotic risk of the estimators and their as-

sociated forecasts. In their numerical study, they found that for many values of the local

parameter, the out-of-sample and split-sample schemes performed poorly if implemented

in a conventional way. But they performed well if implemented in conjunction with model

selection methods under Rao-Blackwell theorem or Bagging.
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4.6.2 Random forest in economics

To introduce Random Forest into economic research, many economic and statistic

researchers studied in extending the theory of random forest not only for forecasting but

for inference.

In the literature of economic inference, Biau, Devroye and Gabor (2008) discussed

the consistency of Random Forest in the context of additive regression models, which sheds

light on the forest-based statistical inference. Wager and Athey (2008) studied in the

application of random forest in economic research. They proposed the Causal Forest, an

unbiased random forest method for estimating and testing the heterogeneous treatment

effect. They first showed that classic Random Forest cannot have unbiasedness because

of Bagging. Then, they proposed the Causal Forest which combines a bunch of unbiased

Honest Tree based on Sub-sampling aggregating. They also showed that Causal Forest is

unbiased and has asymptotic normality under some assumptions. Finally, they discussed

the importance and advantage of Causal Forest in applications to economic causal inference.

To the application of economic forecasting, Hothorn and Zeileis (2017) discussed

a new Random Forest method, the Transformation Forest. Based on a parametric family

of distributions characterized by their transformation function, they proposed a dedicated

novel transformation tree and transformation forest as an adaptive local likelihood esti-

mator of conditional distribution functions, which are available for inference procedures.

In macroeconomic forecasting, Random Forest is applied in Euro area GDP forecasting

[see Biau and D’Elia (2011)] and financial volatility forecasting [see Luong and Dokuchaev

(2018)]. Finally, Fischer, Krauss and Treichel (2018) assess and compare the time series
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forecasting performance of several machine learning algorithms such as Gradient Boosting

Decision Trees, Neural Networks, Logistic Regression, Random Forest and so on in a sim-

ulation study. Nyman and Ormerod (2016) explore the potential of Random Forest for

forecasting the economic recession on the quarterly data over 1970Q2 to 1990Q2.

4.7 Conclusion

In this chapter, we discuss the Bagging method and Random Forest. In Section

4.2 we begin with introducing Bagging and its variants, the Subbaging and Bragging. In

Section 4.3, we introduce Decision Tree, which provides the foundation of the Random

Forest. In Section 4.4, we introduce the related theories about Random Forest and its

important variants like Extreme Random Trees and Soft Decision Tree. In Section 4.5

and 4.6 we discussed many applications of Bagging and Random Forest in macroeconomic

forecasting and economic causal inference.
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Figure 4.6: Grow a Tree for Health Data
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Figure 4.7: Sub-spaces Generated by Decision Stumps

Figure 4.8: Plots for Economic Growth Data

138



Figure 4.9: Grow a Tree for Economic Growth Prediction

Figure 4.10: Entropy (blue) and Gini Impurity (red)
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Figure 4.11: 2D Plot of Decision Tree and KNN

Figure 4.12: Hard Decision Tree and Soft Decision Tree
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Figure 4.13: Hierarchical Mixtures of Experts
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Chapter 5

Boosting in the Economic

Forecasting

5.1 Introduction

The term Boosting originates from the so-called hypothesis boosting problem in

the distribution-free or probably approximately correct model of learning. In this model,

the learner produces a classifier based on random samples from an unknown data generating

process. Samples are chosen according to a fixed but unknown and arbitrary distribution on

the population. The learner’s task is to find a classifier that correctly classifies new samples

from the data generating process as positive or negative examples. A weak learner produces

classifiers that perform only slightly better than random guessing. A strong learner, on the

other hand, produces classifiers that can achieve arbitrarily high accuracy given enough

samples from the data generating process.
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In a seminal paper, Schapire (1990) addresses the problem of improving the accu-

racy of a class of classifiers that perform only slightly better than random guessing. The

paper shows the existence of a weak learner implies the existence of a strong learner and

vice versa. A boosting algorithm is then proposed to convert a weak learner into a strong

learner. The algorithm uses filtering to modify the distribution of samples in such a way as

to force the weak learning algorithm to focus on the harder-to-learn parts of the distribution.

Not long after the relation between weak learners and strong learners are revealed,

Freund and Schapire (1997) propose the Adaptive Boost (AdaBoost) for binary classifica-

tion. AdaBoost performs incredibly well in practice and stimulates the invention of boosting

algorithms for multi-class classifications. On the other hand, researchers try to explain the

success of AdaBoost in a more theoretical way, e.g. Friedman, Hastie and Tibshirani (2000),

Bartlett, Jordan and McAuliffe (2006), Bartlett and Traskin (2007). Further understanding

of the theory behind the success of boosting algorithms in turn triggers a bloom of Boost-

ing algorithm with better statistical properties, e.g. Friedman (2001), Bühlmann and Yu

(2003), Mease, Wyner and Buja (2007).

Boosting is undoubtedly the most popular machine learning algorithm in the on-

line data science platform such as Kaggle. It is efficient and easy to implement. There are

numerous packages in Python and R which implement Boosting algorithms in one way or

another, e.g. XBoost. In the following sections, we will introduce the AdaBoost as well

as other Boosting algorithms in detail together with examples to help the readers better

understand the algorithms and statistical properties of the Boosting methods.

This chapter is organized as follows. Section 5.1 provides an overview on the
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origination and development of Boosting. Sections 5.2 and 5.3 are an introduction of Ad-

aBoost which is the first practically feasible Boosting algorithm with its variants. Section

5.4 introduces a Boosting algorithm for linear regressions, namely L2Boosting. Section 5.5

gives a generalization of the above mentioned algorithms which is called Gradient Boosting

Machine. Section 5.6 gives more variants of Boosting, e.g. Boosting for nonlinear models.

Section 5.7 provides applications of the Boosting algorithms in macroeconomic studies.

5.2 AdaBoost

The first widely used Boosting algorithm is AdaBoost which solves binary classifi-

cation problems with great success. A large number of important variables in economics are

binary. For example, whether the economy is going into expansion or recession, whether an

individual is participating in the labor force, whether a bond is going to default, and etc.

Let

π (x) ≡ Pr (y = 1|x) ,

so that y takes value 1 with probability π (x) and −1 with probability 1− π (x). The goal

of the researchers is to predict the unknown value of y given known information on x.

5.2.1 AdaBoost algorithm

This section introduces the AdaBoost algorithm of Freund and Schapire (1997).

The algorithm of AdaBoost is shown in Algorithm 12.

Let y be the binary class taking a value in {−1, 1} that we wish to predict. Let

fm (x) be the weak learner (weak classifier) for the binary target y that we fit to predict
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using the high-dimensional covariates x in the mth iteration. Let errm denote the error rate

of the weak learner fm (x), and Ew (·) denote the weighted expectation (to be defined below)

of the variable in the parenthesis with weight w. Note that the error rate Ew
[
1(y 6=fm(x))

]
is estimated by errm =

∑n
i=1wi1(yi 6=fm(xi)) with the weight wi given by step 2(d) from

the previous iteration. n is the number of observations. The symbol 1(·) is the indicator

function which takes the value 1 if a logical condition inside the parenthesis is satisfied and

takes the value 0 otherwise. The symbol sign(z) = 1 if z > 0, sign(z) = −1 if z < 0, and

hence sign(z) = 1(z>0) − 1(z<0).

Algorithm 12 1. Start with weights wi = 1
n , i = 1, . . . , n.

2. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the classifier fmj(xij) ∈ {−1, 1} using weights wi on the training data.

ii. Compute errmj =
∑n

i=1wi1(yi 6=fmj(xji)).

(b) Find ĵm = arg minj errmj

(c) Compute cm = log
(

1−errm,ĵm
errm,ĵm

)
.

(d) Set wi ← wi exp[cm1(yi 6=fm,ĵm (xĵm,i))
], i = 1, . . . , n, and normalize so that

∑n
i=1wi =

1.

3. Output the binary classifier sign[FM (x)] and the class probability prediction π̂(x) =

eFM (x)

eFM (x)+e−FM (x) where FM (x) =
∑M

m=1 cmfm,ĵm(xĵm).

Note that the presented version of Discrete AdaBoost in Algorithm 12 as well

as Real AdaBoost (RAB), LogitBoost (LB) and Gentle AdaBoost (GAB) which will be
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introduced later in the next section are different from their original version when they were

first introduced. The original version of these algorithms only output the class label. In this

chapter, we follow the idea of Mease, Wyner and Buja (2007) and modified the algorithms

to output both the class label and the probability prediction. The probability prediction is

attained using

π̂(x) =
eFM (x)

eFM (x) + e−FM (x)
,

where FM (x) is the sum of weak learners in the algorithms.

The only hyperparameter, i.e. the user specified parameter, in the AdaBoost

as well as other Boosting algorithms is the number of iterations, M . It is also known

as the stopping rule and is commonly chosen by cross-validation as well as information

criterion such as AICc in Bühlmann and Yu (2003). The choice of the stopping rule is

embedded in most implementation of AdaBoost and should not be a concern for most

users. Interesting readers could check Hastie, Tibshirani and Friedman (2009) for more

details of cross-validation.

The most widely used weak learner is the classification tree. The simplest classi-

fication tree, the stump, takes the following functional form

f (xj , a) =


1 xj > a

−1 xj < a,

where the parameter a is found by minimizing the error rate

min
a

n∑
i=1

wi1 (yi 6= f (xji, a)) .

The other functional form of the stump can be shown as exchanging the greater and smaller
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sign in the previous from

f (xj , a) =


1 xj < a

−1 xj > a,

where the parameter a is found by minimizing the same error rate.

5.2.2 AdaBoost: statistical view

After AdaBoost is invented and shown to be successful, numerous papers have

attempted to explain the effectiveness of the AdaBoost algorithm. In an influential paper,

Friedman, Hastie and Tibshirani (2000) show that AdaBoost builds an additive logistic

regression model

FM (x) =

M∑
m=1

cmfm (x)

via Newton-like updates for minimizing the exponential loss

J (F ) = E
(
e−yF (x)

∣∣∣x) .
We hereby show the above statement using the greedy method to minimize the exponential

loss function iteratively as in Friedman, Hastie and Tibshirani (2000).

After m iterations, the current classifier is denoted as Fm (x) =
∑m

s=1 csfs (x).

In the next iteration, we are seeking an update cm+1fm+1 (x) for the function fitted from

previous iterations Fm (x). The updated classifier would take the form

Fm+1 (x) = Fm (x) + cm+1fm+1 (x) .
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The loss for Fm+1 (x) will be

J (Fm+1 (x)) = J (Fm (x) + cm+1fm+1 (x))

= E
[
e−y(Fm(x)+cm+1fm+1(x))

]
. (5.1)

Expand w.r.t. fm+1 (x)

J (Fm+1 (x)) ≈ E
[
e−yFm(x)

(
1− ycm+1fm+1 (x) +

y2c2
m+1f

2
m+1 (x)

2

)]
= E

[
e−yFm(x)

(
1− ycm+1fm+1 (x) +

c2
m+1

2

)]
.

The last equality holds since y ∈ {−1, 1} , fm+1 (x) ∈ {−1, 1}, and y2 = f2
m+1 (x) = 1.

fm+1 (x) only appears in the second term in the parenthesis, so minimizing the loss function

(5.1) w.r.t. fm+1 (x) is equivalent to maximizing the second term in the parenthesis which

results in the following conditional expectation

max
f

E
[
e−yFm(x)ycm+1fm+1 (x) |x

]
.

For any c > 0 (we will prove this later), we can omit cm+1 in the above objective function

max
f

E
[
e−yFm(x)yfm+1 (x) |x

]
.

To compare it with the Discrete AdaBoost algorithm, here we define weight w =

w (y,x) = e−yFm(x). Later we will see that this weight w is equivalent to that shown in

the Discrete AdaBoost algorithm. So the above optimization can be seen as maximizing a

weighted conditional expectation

max
f

Ew [yfm+1 (x) |x] , (5.2)
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where Ew (y|x) := E(wy|x)
E(w|x) refers to a weighted conditional expectation. Note that (5.2) can

be re-written as

Ew [yfm+1 (x) |x]

= Pw (y = 1|x) fm+1 (x)− Pw (y = −1|x) fm+1 (x)

= [Pw (y = 1|x)− Pw (y = −1|x)] fm+1 (x)

= Ew (y|x) fm+1 (x) ,

where Pw (y|x) = E(w|y,x)P (y|x)
E(w|x) . Solve the maximization problem (5.2). Since fm+1 (x) only

takes 1 or −1, it should be positive whenever Ew (y|x) is positive and −1 whenever Ew (y|x)

is negative. The solution for fm+1 (x) is

fm+1 (x) =


1 Ew (y|x) > 0

−1 otherwise.

Next, we minimize the loss function (5.1) w.r.t. cm+1

cm+1 = arg min
cm+1

Ew

(
e−cm+1yfm+1(x)

)
,

where

Ew

(
e−cm+1yfm+1(x)

)
= Pw (y = fm+1 (x)) e−cm+1 + Pw (y 6= fm+1 (x)) ecm+1 .

The first order condition is

∂Ew
(
e−cyfm+1(x)

)
∂cm+1

= −Pw (y = fm+1 (x)) e−cm+1 + Pw (y 6= fm+1 (x)) ecm+1 .

Let

∂Ew
(
e−cm+1yfm+1(x)

)
∂cm+1

= 0,
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and thus we have

Pw (y = fm+1 (x)) e−cm+1 = Pw (y 6= fm+1 (x)) ecm+1 .

Solving for cm+1, we obtain

cm+1 =
1

2
log

Pw (y = fm+1 (x))

Pw (y 6= fm+1 (x))
=

1

2
log

(
1− errm+1

errm+1

)
,

where errm+1 = Pw (y 6= fm+1 (x)) is the error rate of fm+1 (x). Note that cm+1 > 0 as

long as the error rate is smaller than 50%. Our assumption cm+1 > 0 holds for any learner

that is better than random guessing.

Now we have finished the steps of one iteration and can get our updated classifier

by

Fm+1 (x)← Fm (x) +

(
1

2
log

(
1− errm+1

errm+1

))
fm+1 (x) .

Note that in the next iteration, the weight we defined wm+1 will be

wm+1 = e−yFm+1(x) = e−y(Fm(x)+cm+1fm+1(x)) = wm × e−cm+1fm+1(x)y.

Since −yfm+1 (x) = 2× 1{y 6=fm+1(x)} − 1, the update is equivalent to

wm+1 = wm × e
(

log
(

1−errm+1
errm+1

)
1[y 6=fm+1(x)]

)
= wm ×

(
1− errm+1

errm+1

)1[y 6=fm+1(x)]
.

Thus the function and weight update are of an identical form to those used in

AdaBoost. AdaBoost could do better than any single weak classifier since it iteratively

minimizes the loss function via a Newton-like procedure.

Interestingly, the function F (x) from minimizing the exponential loss is the same

150



as maximizing a logistic log-likelihood. Let

J (F (x)) = E
[
E
(
e−yF (x)

∣∣∣x)]
= E

[
P (y = 1|x) e−F (x) + P (y = −1|x) eF (x)

]
.

Taking derivative w.r.t. F (x) and making it equal to zero, we obtain

∂E
(
e−yF (x)|x

)
∂F (x)

= −P (y = 1|x) e−F (x) + P (y = −1|x) eF (x) = 0.

Therefore,

F ∗ (x) =
1

2
log

[
P (y = 1|x)

P (y = −1|x)

]
.

Moreover, if the true probability is

P (y = 1|x) =
e2F (x)

1 + e2F (x)
,

for Y = y+1
2 , the log-likelihood is

E (logL|x) = E
[

2Y F (x)− log
(

1 + e2F (x)
)∣∣∣x] .

The solution F ∗ (x) that maximizes the log-likelihood must equal the F (x) in the true

model P (y = 1|x) = e2F (x)

1+e2F (x) . Hence,

e2F ∗(x) = P (y = 1|x)
(

1 + e2F ∗(x)
)

e2F ∗(x) =
P (y = 1|x)

1− P (y = 1|x)

F ∗ (x) =
1

2
log

[
P (y = 1|x)

P (y = −1|x)

]
.

AdaBoost that minimizes the exponential loss yields the same solution as the logistic re-

gression that maximizes the logistic log-likelihood.
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From the above, we can see that AdaBoost gives high weights to and thus, focuses

on the samples that are not correctly classified by the previous weak learners. This is

exactly what Schapire (1990) referred to as filtering in Section 5.1.

5.3 Extensions to AdaBoost Algorithms

In this section, we introduce three extensions of (Discrete) AdaBoost (DAB) which

is shown in Algorithm 12: namely, Real AdaBoost (RAB), LogitBoost (LB) and Gentle

AdaBoost (GAB). We discuss how some aspects of the DAB may be modified to yield

RAB, LB and GAB. In the previous section, we learned that Discrete AdaBoost minimizes

an exponential loss via iteratively adding a binary weaker learner to the pool of weak

learners. The addition of a new weak learner can be seen as taking a step on the direction

that loss function descents in the Newton method. There are two major ways to extend the

idea of Discrete AdaBoost. One focuses on making the minimization method more efficient

by adding a more flexible weak learner. The other is to use different loss functions that

may lead to better results. Next, we give an introduction to three extensions of Discrete

AdaBoost.

5.3.1 Real AdaBoost

Real AdaBoost that Friedman, Hastie and Tibshirani (2000) propose focuses solely

on improving the minimization procedure of Discrete AdaBoost. In Real AdaBoost, the

weak learners are continuous comparing to Discrete AdaBoost where the weak learners

are binary (discrete). Real AdaBoost is minimizing the exponential loss with continuous
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updates where Discrete AdaBoost minimizes the exponential loss with discrete updates.

Hence, Real AdaBoost is more flexible with the step size and direction of the minimization

and minimizes the exponential loss faster and more accurately. However, Real AdaBoost

also imposes restriction that the classifier must produces a probability prediction which

reduces the flexibility of the model. As pointed out in the numerical examples by Chu, Lee

and Ullah (2018), Real AdaBoost may achieve a larger in-sample training error due to the

flexibility of its model. On the other hand, this also reduces the chance of over-fitting and

would in the end achieve a smaller out-of-sample test error. Algorithm 13 illustrates the

procedure of Real AdaBoost.

Algorithm 13 1. Start with weights wi = 1
n , i = 1, . . . , n.

2. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the classifier to obtain a class probability estimate pm(xj) = P̂w(y =

1|xj) ∈ [0, 1] using weights wi on the training data.

ii. Let fmj(xj) = 1
2 log

pm(xj)
1−pm(xj)

.

iii. Compute errmj =
∑n

i=1wi1(yi 6=sign(fmj(xji))).

(b) Find ĵm = arg minj errmj .

(c) Set wi ← wi exp [−yifm,ĵm(xĵm,i)], i = 1, . . . , n, and normalize so that
∑n

i=1wi =

1.

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) = eFM (x)

eFM (x)+e−FM (x)

where FM (x) =
∑M

m=1 fm(x).
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5.3.2 LogitBoost

Friedman, Hastie and Tibshirani (2000) also propose LogitBoost by minimizing

the Bernoulli log-likelihood via an adaptive Newton algorithm for fitting an additive logis-

tic regression model. LogitBoost extends Discrete AdaBoost in two ways. First, it uses the

Bernoulli log-likelihood instead of the exponential loss function as a loss function. Further-

more, it updates the classifier by adding a linear model instead of a binary weak learner.

In LogitBoost, continuous weak learner is used similarly to Real AdaBoost. How-

ever, LogitBoost specifies the use of a linear weak learner while Real AdaBoost allows any

weak learner that returns a probability between zero and one. A more fundamental differ-

ence here is that LogitBoost uses the Bernoulli log-likelihood as a loss function instead of

the exponential loss. Hence, LogitBoost is more similar to logistic regression than Discrete

AdaBoost and Real AdaBoost. As pointed out in the numerical examples by Chu, Lee and

Ullah (2018), LogitBoost has the smallest in-sample training error but the largest out-of-

sample test error. This implies that while LogitBoost is the most flexible of the four, it

suffers the most from over-fitting. Algorithm 14 illustrates the procedure of LogitBoost.

Algorithm 14 1. Start with weights wi = 1
n , i = 1, . . . , n, F (x) = 0 and probability

estimates p(xi) = 1
2 .

2. For m = 1 to M

(a) Compute the working response and weights

zi =
y∗i − p(xi)

p(xi)(1− p(xi))

wi = p(xi)(1− p(xi))
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(b) For j = 1 to k (for each variable)

i. Fit the function fmj(xji) by a weighted least-squares regression of zi to xji

using weights wi on the training data.

ii. Compute errmj = 1 − R2
mj where R2

mj is the coefficient of determination

from the weighted least-squares regression.

(c) Find ĵm = arg minj errmj

(d) Update F (x)← F (x) + 1
2fm,ĵ(xĵ) and p(x)← eF (x)

eF (x)+e−F (x) .

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) = eFM (x)

eFM (x)+e−FM (x)

where FM (x) =
∑M

m=1 fm,ĵm(xĵm).

5.3.3 Gentle AdaBoost

In Friedman, Hastie and Tibshirani (2000), Gentle AdaBoost extends Discrete

AdaBoost in the sense that it allows each weak learner to be a linear model. This is similar

to LogitBoost and more flexible than Discrete AdaBoost and Real AdaBoost. However, it

is closer to Discrete AdaBoost and Real AdaBoost than LogitBoost in the sense that Gentle

AdaBoost, Discrete AdaBoost and Real AdaBoost all minimize the exponential loss while

LogitBoost minimizes the Bernoulli log-likelihood. On the other hand, Gentle AdaBoost

is more similar to Real AdaBoost than Discrete AdaBoost since the weak learners are

continuous and there is no need to find an optimal step size for each iteration because

the weak learner is already optimal. As pointed out in the numerical examples by Chu,

Lee and Ullah (2018), Gentle Boost often lies between Real AdaBoost and LogitBoost in

terms of in-sample training error and out-of-sample test error. Algorithm 15 illustrates the
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procedure of Gentle AdaBoost.

Algorithm 15 1. Start with weights wi = 1
n , i = 1, . . . , n.

2. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the regression function fmj(xji) by weighted least-squares of yi on xji

using weights wi on the training data.

ii. Compute errmj = 1 − R2
mj where R2

mj is the coefficient of determination

from the weighted least-squares regression.

(b) Find ĵm = arg minj errmj

(c) Set wi ← wi exp[−yifm,ĵm(xĵm,i)], i = 1, . . . , n, and normalize so that
∑n

i=1wi =

1.

3. Output the classifier sign[FM (x)] and the class probability prediction π̂(x) = eFM (x)

eFM (x)+e−FM (x)

where FM (x) =
∑M

m=1 fm,ĵm(xĵm).

5.4 L2Boosting

In addition to classification, the idea of boosting can also be applied to regressions.

Bühlmann and Yu (2003) propose L2Boosting that builds a linear model by minimizing

the L2 loss. Bühlmann (2006) further proved the consistency of L2Boosting in terms of

predictions. L2Boosting is the simplest and perhaps most instructive Boosting algorithm

for economists and econometricians. It is very useful for regression, in particular in the

presence of high-dimensional explanatory variables.
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We consider a simple linear regression

y = xβ + u,

where y is the dependent variable, x is the independent variable and u ∼ N(0, 1). Note

that the number of independent variables x could be high-dimensional, i.e. the number of

independent variables in x can be larger than the number of observations.

This model, in the low dimension case, can be estimated by the ordinary least

squares. We minimize the sum of squared errors

L =
n∑
i=1

(yi − ŷi)2,

where

ŷi = xiβ̂.

The solution to the problem is

β̂ = (X′X)−1X′y.

The residual from the previous problem is

ûi = yi − ŷi.

In the high-dimension case, the ordinary least squares method falls down because the matrix

(X′X) is not invertible. Hence, we need to use a modified least squares method to get over

the high-dimension problem.

The basic idea of L2Boosting is to use only one explanatory variable at a time.

Since the number of variables p is larger than the length of the sample period n, the matrix

X′X is not invertible. However, if we use only one variable in one particular iteration,
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the matrix x′jxj is a scalar and thus invertible. In order to exploit the information in the

explanatory variables, in the following iterations, we can use other explanatory variables

to fit the residuals which are the unexplained part from previous iterations. L2Boosting

can be seen as iteratively use the least squares technique to explain the residuals from the

previous least squares regressions. In the L2Boosting algorithm, we use the least squares

technique to fit the dependent variable y with only one independent variable xj . Then,

we iteratively take the residual from the previous regression as the new dependent variable

y and fit the new dependent variable with, again, only one independent variable xj . The

detailed description of L2Boosting is listed in Algorithm 16.

Algorithm 16 1. Start with yi from the training data.

2. For m = 1 to M

(a) For j = 1 to k (for each variable)

i. Fit the regression function yi = βm,0,j + βm,jxji + ui by least-squares of yi

on xji.

ii. Compute errmj = 1 − R2
mj where R2

mj is the coefficient of determination

from the least-squares regression.

(b) Find ĵm = arg minj errmj

(c) Set yi ← yi − β̂m,0,ĵm − β̂m,ĵmxĵm,i, i = 1, . . . , n.

3. Output the final regression model FM (x) =
∑M

m=1 βm,0,ĵm + β̂m,ĵmxĵm.
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5.5 Gradient Boosting

This section discusses the Gradient Boosting Machine first introduced by Fried-

man (2001). Breiman (2004) shows that the AdaBoost algorithm can be represented as

a steepest descent algorithm in function space which we call functional gradient descent

(FGD). Friedman, Hastie and Tibshirani (2000) and Friedman (2001) then developed a

more general, statistical framework which yields a direct interpretation of boosting as a

method for function estimation. In their terminology, it is a ‘stage-wise, additive modeling’

approach. Gradient Boosting is a generalization of AdaBoost and L2Boosting. AdaBoost

is a version of Gradient Boosting that uses the exponential loss and L2Boosting is a version

of Gradient Boosting that uses the L2 loss.

The Functional Gradient Descent minimizes the risk function R(F ) at each x

directly with respect to F (x). In each iteration m, like in gradient descent, we look for a

pair of optimal direction fm(x) and step size cm. The optimal direction at x is the direction

that the loss function R(F ) decreases the fastest. Hence, the optimal direction

fm(x) = Ey

[
−∂L(y, F (x))

∂F (x)

∣∣∣∣x]
F (x)=Fm−1(x)

.

The optimal step size cm can be found given fm(x) by a line search

cm = arg min
cm

Ey,xL(y, Fm−1(x) + cmfm(x)).

Next, we update the estimated function F (x) by

Fm(x) = Fm−1(x) + cmfm(x).

Thus, we complete one iteration of Gradient Boosting. In practice, the stopping

iteration, which is the main tuning parameter, can be determined via cross-validation or
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some information criteria. The choice of step size c is of minor importance, as long as it is

‘small’, such as c = 0.1. A smaller value of c typically requires a larger number of boosting

iterations and thus more computing time, while the predictive accuracy will be better and

tend to over-fit less likely. The algorithm of Gradient Boosting is shown in Algorithm 17.

Algorithm 17 1. Start with F0(x) = arg minconst
∑n

i=1 L(yi, const).

2. For m = 1 to M

(a) calculate the pseudo-residuals rmi = −
[
∂L(yi,F (xi))
∂F (xi)

]
F (x)=Fm−1(x)

, i = 1, . . . , n.

(b) fm(x) = arg minfm(x)

∑N
i=1(rmi − fm(xi))

2.

(c) cm = arg minc
∑N

i=1 L(yi, Fm−1(xi) + cmfm(xi)).

(d) Fm(x) = Fm−1(x) + cmfm(x).

3. Output FM (x) =
∑M

m=1 cmfm(x).

In theory, any fitting criterion that estimates the conditional expectation could be

used to fit the negative gradient at step 1(a). In Gradient Boosting, the negative gradient is

also called ‘pseudo-residuals’ rmi and Gradient Boosting fits this residuals in each iteration.

5.5.1 Gradient boosting decision tree

Gradient Boosting Decision Tree (GBDT) or Boosting Tree is one of the most im-

portant methods for implementing nonlinear models in data mining, statistics, and econo-

metrics. According to the results of data mining tasks at the data mining challenges plat-

form, Kaggle, most of the competitors choose Boosting Tree as their basic technique to

model the data for predicting tasks.
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Obviously, Gradient Boosting Decision Tree combines the decision tree and gradi-

ent boosting method. The gradient boosting is the gradient descent in functional space,

fm+1(x) = fm(x) + λm

(
∂L

∂f

)
m

,

where m is the number of iteration, L is the loss function we need to optimize, λm

is the learning rate. In each round, we find the best direction −
(
∂L
∂f

)
m

to minimize the

loss function. In gradient boosting, we can use some simple function to find out the best

direction. That is, we use some functions to fit the ‘pseudo-residuals’ of the loss function.

In AdaBoost, we often use the decision stump, a line or hyperplane orthogonal to only one

axis, to fit the residual. In the Boosting Tree, we choose a decision tree to handle this task.

Also, the decision stump could be seen as a decision tree with one root node and two leaf

nodes. Thus, the Boosting Tree is a natural way to generalize Gradient Boosting.

Basically, the Boosting Tree learns an additive function, which is similar to other

aggregating methods like Random Forest. But the decision trees are grown very differently

among these methods. In the Boosting Tree, a new decision tree is growing based on the

‘error’ from the decision tree which grew in the last iteration. The updating rule comes

from Gradient Boosting method and we will dive into the details later.

Suppose we need to implement a regression problem given samples (yi, xi), i =

1, ..., n. If we choose the square loss function, the ‘pseudo-residual’ should be rmi =

−
(
∂L
∂f

)
m

= −
(
∂(y−f)2

∂f

)
m

= 2(y − fm). The algorithm of Gradient Boosting Decision

Tree is shown in Algorithm 18.

Algorithm 18 1. Initially, estimate the first residual via r0
i = −2(yi − ȳ) = −2(yi −
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f1(xi)).

2. For m = 1 to M

(a) Based on new samples (rmi , xi), i = 1, ..., n, fit a regression tree hm(x).

(b) Let fm+1(x) = fm(x) + λmhm(x), then, λm = arg minλ L(y, fm(x) + λhm(x)).

(c) Update fm+1(x) via fm+1(x) = fm(x) + λmhm(x).

(d) Calculate the new residual rm+1
i = −2(yi− fm+1(xi)), then update the new sam-

ples as (rm+1
i , xi), i = 1, ....

3. Output the Gradient Boosting Decision Tree FM (x) =
∑M

m=1 λmfm(x).

According to Algorithm 18, the main difference between Gradient Boosting and

Boosting Tree is at step 1(a). In Boosting Tree, we use a decision tree to fit the ‘residual’

or the negative gradient. In other words, Boosting Tree implement the Functional Gradient

Descent by following the functional gradient learned by the decision tree.

Additionally, to implement Gradient Boosting Decision Tree, we need to choose

several hyperparameters: (1) N , the number of terminal nodes in trees; (2) M , the number

of iterations in the boosting procedure.

Firstly, N , the number of terminal nodes in trees, controls the maximum allowed

level of interaction between variables in the model. With N = 2 (decision stumps), no

interaction between variables is allowed. With N = 3, the model may include effects of the

interaction between up to two variables, and so on. Hastie, Tibshirani and Friedman (2009)

comment that typically 4 < N < 8 work well for boosting and results are fairly insensitive

to the choice of N in this range, N = 2 is insufficient for many applications, and N > 10 is

162



unlikely to be required. Figure 5.1 shows the test error curves corresponding to the different

number of nodes in Boosting Tree. We can see that Boosting with decision stumps provides

the best test error. When the number of nodes increases, the final test error increases,

especially in boosting with trees containing 100 nodes. Thus, practically, we often choose

4 < N < 8. Secondly, the number of iterations M is related to the regularization method

in Boosting Tree. We discuss the M in Section 5.5.2 in details.

Figure 5.1: Illustration of Gradient Boosting Decision Trees with Different Nodes (green:
decision stump; red line: tree with 10 leaf nodes; blue: tree with 100 leaf nodes)

5.5.2 Regularization

By following the discussion above, the Gradient Boosting Decision Trees method

contains more trees when M is larger. A further issue is related to over-fitting. That is,
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when there are increasingly large numbers of decision trees, Boosting Tree can fit any data

with zero training error, which leads to a bad test error on new samples. To prevent the

model from over-fitting, we will introduce two ways to resolve this issue.

Early stopping

A simple way to resolve this issue is to control the number of iterations M in

the Boosting Trees. Basically, we can treat M as a hyper-parameter during the training

procedure of Boosting Trees. Cross-Validation is an effective way to select hyperparameters

including M . Since Boosting Trees method is equivalent to the steepest gradient descent

in functional space, selecting the optimal M means that this steepest gradient descent will

stop at the Mth iteration.

Shrinkage method

The second way to resolve the problem of over-fitting is shrinkage. That is, we

add a shrinkage parameter during the training process. Let us consider the original formula

for updating Boosting Trees:

fm+1(x) = fm(x) + λmhm(x). (5.3)

In the Boosting Trees, we first fit hm(x) based on a decision tree. Then, we optimize λm

for the best step size. Thus, we can shrink the step size by adding a shrinkage parameter ν:

fm+1(x) = fm(x) + νλmhm(x). (5.4)
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Obviously, if we set ν = 1, Equation (5.4) is equivalent to Equation (5.3). Sup-

pose we set 0 ≤ ν ≤ 1, it can shrink the optimal step size λm to νλm, which leads to a

slower optimization. In other words, comparing to the original Boosting Tree, Shrinkage

Boosting Tree learns the unknown function slower but more precise in each iteration. As

a consequence, to a given ν < 1, we need more steps M to minimize the error. Figure 5.2

shows this consequence. To a binary classification problem, we consider two measures: the

test set deviations, which is the negative binomial log-likelihood loss on the test set, and

the test set misclassification error. In the left and right panels, we can see that, with the

shrinkage parameter less than 1, Boosting Tree typically need more iterations to converge

but it can hit a better prediction result. Friedma (2001) found that a smaller ν will lead to

a larger optimal M but the test errors in the new datasets are often better than the original

Boosting Tree. Although large M may need more computational resources, this method

may be inexpensive because of the faster computers.

5.5.3 Variable importance

After training Boosting Tree, the next question is to identify the variable impor-

tance. Practically, we often train boosting tree on a dataset with a large number of variables

and we are interested in finding important variables for analysis.

Generally, this is also an important topic in tree-based models like Random Forest

discussed in Chapter 4. Since Boosting Tree method is also an additive trees aggregating,

we can use I2
j to measure the importance of a variable j:
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Figure 5.2: Gradient Boosting Decision Tree (6 leaf nodes) with Different Shrinkage Pa-
rameters (blue: Shrinkage ν = 0.6; red: No shrinkage)

I2
j =

1

M

M∑
m=1

I2
j (m),

and I2
j (m) is the importance of variable j for the mth decision tree:

I2
j (m) =

Tm−1∑
t=1

e2
t I(v(t)m = j),

where Tm is the number of internal nodes (non-leaf nodes) in the mth decision tree, v(t)m

is the variable selected by node t, and et is the error improvement based on before and after

splitting the space via variable v(t)m.

In Random Forest or Bagging Decision Tree method, we can measure the variable

importance based on the so-called Out-of-Bag errors. In Boosting Tree, since there are no

Out-of-Bag samples, we can only use I2
j . In practice, OOB-based method and I2

j method

often provide similar results and I2
j works very well especially when M is very large.
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Let us consider an example about the relative importance of variables for predicting

spam mail via Boosting Trees. The input variable x could be a vector of counts of the

keywords or symbols in one email. The response y is a binary variable (Spam, Not Spam).

We regress y on x via Boosting Tree and then calculate the variable importance for each

word or symbol. On one hand, the most important keywords and symbols may be ‘!’,

‘$’, ‘free’, that is related to money and free; on the other hand, the keywords like ‘3d’,

‘addresses’ and ‘labs’ are not very important since they are relatively neutral. Practically,

the variable importance measure often provides a result consistent with common sense.

5.6 Recent Topics in Boosting

In this section, we will focus on four attractive contributions of Boosting in recent

years. First of all, we introduce two methods that are related to Boosting in time series and

volatility models respectively. They are relevant topics in macroeconomic forecasting. The

third method is called Boosting with Momentum (BOOM), which is a generalized version

of Gradient Boosting and is more robust than the Gradient Boosting. The fourth method is

called Multi-Layered Gradient Boosting Decision Tree, which is a deep learning method via

non-differentiable Boosting Tree and shed light on representation learning in tabular data.

5.6.1 Boosting in nonlinear time series models

In macroeconomic forecasting, nonlinear time series models are widely used in the

last 40 years. For example, Tong and Lim (1980) discuss the Threshold Autoregressive

(TAR) model to describe the time dependence when the time series is higher or lower than
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a threshold value. Chan and Tong (1986) propose the Smooth Transition Autoregressive

(STAR) model to catch the nonlinear time dependence changing continuously between two

states over time. Basically, nonlinear time series models not only perform better than linear

time series models but also provide a clear way to analyze the nonlinear dependence among

time series data.

Although nonlinear time series models are successful in macroeconomic time series

modeling, we also need to consider their assumptions and model settings so that they can

work for time series modeling. Unfortunately, in the era of big data, they cannot handle

the large datasets since they often contain more complicated time dependence and higher

dimensional variables along time that does not satisfy the assumptions. Essentially, the

Boosting method provides an effective and consistent way to handle the time series modeling

among big datasets especially with relatively fewer assumptions required.

Robinzonov, Tutz and Hothorn (2010) discuss the details of Boosting for nonlinear

time series models. Suppose we have a bunch of time series dataset

zt = (yt−1, ..., yt−p, x1,t−1, ..., xq,t−1, ..., x1,t−p, ..., xq,t−p) = (yt−1, ..., yt−p,xt−1, ...,xt−p)

as a (q + 1)p dimensional vector, where zt is the information set at time t, y is a

series of endogenous variable with lags of p and (xt−1, ...,xt−p) is a q dimensional vector

series with lags of p. Consider a nonlinear time series model for the conditional mean of yt:

E(yt|zt) = F (zt) = F (yt−1, ..., yt−p, x1,t−1, ..., xq,t−1, ..., x1,t−p, ..., xq,t−p),

where F (zt) is an unknown nonlinear function. Chen and Tsay (1993) discuss an additive
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form of F (zt) for nonlinear time series modeling, which is called Nonlinear Additive Auto

Regressive with exogenous variables (NAARX):

E(yt|zt) = F (zt)

=

p∑
i=1

fi(yt−i) +

p∑
i=1

f1,i(x1,t−i) + ...+

p∑
i=1

fq,i(xq,t−i)

=

p∑
i=1

fi(yt−i) +

q∑
j=1

p∑
i=1

fj,i(xj,t−i).

To optimize the best F (zt) given data, we need to minimize the loss function:

F̂ (zt) = arg min
F (zt)

1

T

T∑
t=1

L(yt, F (zt)).

For example, we can use L2 loss function L(yt, F (zt)) = 1
2(yt − F (zt))

2. If we consider a

parametric function F (zt, β), we can have the following loss function:

β̂ = arg min
β

1

T

T∑
t=1

L(yt, F (zt;β)).

Since the true function of E(y|z) has the additive form, the solution to the opti-

mization problem should be represented by a sum over a bunch of estimated functions. In

Boosting, we can use M different weak learner to implement:

F (zt; β̂
M ) =

M∑
m=0

νh(zt; γ̂
m),

where ν is a shrinkage parameter for preventing over-fitting. Similar to original gradient

boosting, in each iteration, we can generate a ‘pseudo residual’ term rm(zt) which is:
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rm(zt) = − ∂L(yt, F )

∂F

∣∣∣∣
F=F (zt;β̂m−1)

.

Thus, we can optimize γ̂m based on the loss function:

γ̂m = arg min
γ

T∑
t=1

L(rm(zt), h(zt; γ)).

After that, we update the F (zt; β̂
m) as:

F (zt; β̂
m) = F (zt; β̂

m−1) + νh(zt; γ̂
m).

Now go back to the NAARX model. Since each function f only contains one variable, yt−i

or xj,t−i, we can construct same additive form via L2 Boosting. That is, in each iteration,

we only choose one variable from the whole vector zt = (yt−1, ..., yt−p, ..., xq,t−1, ..., xq,t−p)

and then fit a weak learner. This is called Component-wise Boosting.

Robinzonov, Tutz and Hothorn (2010) discussed two methods of component-wise

boosting with different weak learners: linear weak learner and P-Spline weak learner. The

first method is called component-wise linear weak learner. For this method, we choose a

linear function with one variable of zt as a weak learner in each iteration. The algorithm of

Component-wise Boosting with linear weak learner is shown in 19.

Algorithm 19 1. Start with yt from training data.

2. For m = 1 to M

(a) For j = 1 to (1 + q)p (for each variable)
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i. Fit the regression function yt = βm,0,j + βm,jzj,t + ut by least-squares of yt

on zj,t on the training data.

ii. Compute errmj = 1−R2
mj from the weighted least-squares regression.

(b) Find ĵm = arg minj errmj.

(c) Set yt ← yt − β̂m,0,ĵm − β̂m,ĵmzt,ĵm, t = 1, . . . , T .

3. Output the final regression model FM (z) =
∑M

m=1 βm,0,ĵm + β̂m,ĵmzĵm.

Obviously, this method only provides a linear solution like an Autoregressive model

with exogenous variables (ARX). We can also consider more complicated weak learner such

that the nonlinear components could be caught. In the paper, P-Spline with B base learners

is considered as the weak learner. The algorithm of Component-wise Boosting with P-Spline

weak learner is shown in Algorithm 20.

Algorithm 20 1. Start with yt from training data.

2. For m = 1 to M

(a) For j = 1 to (1 + q)p (for each variable)

i. Fit the P-Spline with B Base learners ŷt = Splinem(zj,t) by regressing yt on

zj,t on the training data.

ii. Compute errmj = 1−R2
mj from the P-Spline regression.

(b) Find ĵm = arg minj errmj.

(c) Set yi ← yt − ŷt, t = 1, . . . , T .

3. Output the final regression model FM (z) =
∑M

m=1 Splinem(zĵm).
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5.6.2 Boosting in volatility models

Similarly to Boosting in nonlinear time series models for the mean, it is possi-

ble to consider Boosting in volatility models, like GARCH. Audrino and Bühlmann (2003)

discussed volatility estimation via functional gradient descent for high-dimensional finan-

cial time series. Mat́ıas, Febrero-Bande, González-Manteiga and Reboredo (2010) compare

Boost-GARCH with other methods, like neural networks GARCH.

Let us begin with the classic GARCH(p, q) model by Bollerslev (1986):

yt = µ+ et, t = 1, ..., T

et ∼ N(0, ht)

ht = c+

p∑
i=1

αie
2
t−i +

q∑
j=1

βjht−j .

We can implement a Maximum Likelihood Estimation (MLE) method to estimate all the

coefficients. Generally, consider a nonlinear formula of the volatility function ht:

ht = g(e2
t−1, ..., e

2
t−p, ht−1, ...., ht−q) = g(E2

t , Ht),

where E2
t = (e2

t−1, ..., e
2
t−p) and Ht = (ht−1, ...., ht−q). Similarly to NAARX model, we can

consider a additive form of the function g:

ht =

M∑
m=1

gm(E2
t , Ht).

For simplicity, let p = q = 1, we have:
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ht =
M∑
m=1

gm(e2
t−1, ht−1).

Thus, we can use L2 Boosting to approximate the formula above. Since we use MLE to

estimate the original GARCH model, for Boost-GARCH, we can also introduce the likeli-

hood function for calculating the ‘pseudo residual’ rt,m instead of using the loss function.

Finally, Boost-GARCH can fit an additive nonlinear formula as the estimation of ht:

ĥt =

M∑
m=1

fm(e2
t−1, ht−1)

The algorithm of Boost-GARCH (1, 1) is shown in Algorithm 21.

Algorithm 21 1. Start with estimating a linear GARCH (1,1) model:

yt = µ+ et, t = 1, ..., T

et ∼ N(0, ht)

ht = c+ α1e
2
t−1 + β1ht−1

2. Getting the µ̂, ĥt−1,0

3. For m = 1 to M

(a) Calculate the residual:

e2
t,m = (yt − µ̂)2,

r(ht,m) = −
(
∂L

∂ht

)
m

=
1

2

(
(yt − µ̂)2

ĥ2
t,m

− 1

ĥt,m

)
,

where L = −
∑

i
1
2 log ht −

∑
i

(yi−µ)2

2ht
.

(b) Fit a nonlinear base learner ŷt = fm(e2
t−1, ht−1) by regressing r(h)t,m on e2

t−1, ĥt−1,m.
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(c) Set ĥt,m ← ĥt,m−1 + fm(e2
t−1, ĥt−1,m).

4. Output the final regression model ĥt = ̂GARCH(1, 1) +
∑M

m=1 fm(e2
t−1, ht−1).

5.6.3 Boosting with momentum (BOOM)

In Section 5.5, we show that Gradient Boosting can be represented as a steepest

gradient descent in functional space. In the optimization literature, gradient descent is

widely discussed on its properties. First, gradient descent is easily revised for many opti-

mization problems. Second, gradient descent often finds out good solutions no matter the

optimization problem is convex or nonconvex.

But gradient descent also suffers from some drawbacks. Let us consider the plots

of loss surface in Figure 5.3. Suppose the loss surface is convex. Obviously, gradient descent

should converge to the global minimum eventually. But what we can see in the panel (a) is

that the gradient descent converges very slow and the path of gradient descent is a zig-zag

path. Thus, original gradient descent may spend a long time on converging to the optimal

solution. Furthermore, the convergence is worse in a non-convex optimization problem.

Figure 5.3: Gradient Descent without and with Momentum
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To resolve this issue, a very practical way is to conside ‘momentum’ term to the

gradient descent updating rule:

θm+1 = θm − λVm,

Vm = Vm−1 + ν

(
∂L

∂θ

)
m

,

where θm is the parameter we want to optimize at mth iteration, Vm is the momentum term

with another corresponding updating rule.

In the original gradient descent method, we have Vm =
(
∂L
∂θ

)
m

. In (m + 1)th

iteration, the parameter θm+1 is updated by following the gradient
(
∂L
∂θ

)
m

only. But when we

consider momentum term, the parameter θm is updated by following the updating direction

in previous iteration Vm−1 and the gradient
(
∂L
∂θ

)
m

together. Intuitively, this is just like the

effect of momentum in physics. When a ball is rolling down from the top, even though it

comes to a flat surface, it keeps rolling for a while because of momentum.

Panel (b) in Figure 5.3 illustrates the difference between Gradient Descent without

and with Momentum. Comparing to the path of convergence in the panel (a), if we consider

momentum in gradient descent, the path becomes better and spends less time on moving

to the optimal solution which is shown in panel (b).

As the generalized version of gradient descent in function space, gradient boosting

may also suffer from the same problem when the loss surface is complicated. Thus, a

natural way to improve the gradient boosting method is considering the momentum term

in its updating rule. Mukherjee, Canini, Frongillo and Singer (2013) discuss a general

analysis of a fusion of Nesterov’s accelerated gradient with parallel coordinate descent.
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The resulting algorithm is called Boosting with Momentum (BOOM). Namely, BOOM

retains the momentum and convergence properties of the accelerated gradient method while

taking into account the curvature of the objective function. They also show that BOOM is

especially effective in large scale learning problems. Algorithm 22 provides the procedure

of BOOM via Boosting Tree.

Algorithm 22 1. Initially, estimate the first residual via r0
i = −2(yi − ȳ) = −2(yi −

f1(xi)).

2. For m = 1 to M

(a) Based on new samples (rmi , xi), i = 1, ..., n, fit a regression tree hm(x).

(b) Let Vm = Vm−1 + λmhm(x).

(c) Let fm+1(x) = fm(x) + νVm, then optimize λm via λm = arg minλ L(y, fm(x) +

νVm) = arg minλ L(y, fm(x) + ν(Vm−1 + λhm(x))).

(d) Update fm+1(x) via fm+1(x) = fm(x) + νVm.

(e) Calculate the new residual rm+1
i = −2(yi− fm+1(xi)), then update the new sam-

ples as (rm+1
i , xi), i = 1, ..., n.

3. Output the Gradient Boosting Decision Tree FM (x) =
∑M

m=1 νVm.

The main difference between Boosting with Momentum and ordinary Boosting

Tree is a step to update Vm. Also, we have one more hyperparameter to decide ν, which

decides the fraction of gradient information saved for next iteration updating of fm(x).

Practically, we set 0.5 < ν < 0.9 but it is more reasonable to tune ν via cross-validation.
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This method can be generalized to Stochastic Gradient Boosting discussed by

Friedman (2002). Algorithm 23 shows the procedure of BOOM via Stochastic Gradient

Boosting Tree.

Algorithm 23 1. Initially, randomly select a subset of the samples (yi, xi), i = 1, ..., ns,

where 0 < ns < n.

2. Estimate the first residual via r0
i = −2(yi − ȳ) = −2(yi − f1(xi)).

3. For m = 1 to M .

(a) Based on new samples (rmi , xi), i = 1, ..., ns, fit a regression tree hm(x).

(b) Let Vm = Vm−1 + λmhm(x).

(c) Let fm+1(x) = fm(x) + νVm, then optimize λm via λm = arg minλ L(y, fm(x) +

νVm) = arg minλ L(y, fm(x) + ν(Vm−1 + λhm(x))).

(d) Update fm+1(x) via fm+1(x) = fm(x) + νVm.

(e) Calculate the new residual rm+1
i = −2(yi− fm+1(xi)), then update the new sam-

ples as (rm+1
i , xi), i = 1, ..., ns.

4. Output the Gradient Boosting Decision Tree FM (x) =
∑M

m=1 νVm.

There some differences between BOOM with Boosting Tree and Stochastic Boost-

ing Tree. In Boosting Tree, we use all the n samples to update the decision tree in each

iteration. But Stochastic Boosting Tree randomly selects ns
n fraction of samples to grow

a decision tree in each iteration. When the sample size n is increasingly large, selecting a

subset of samples could be a better and more efficient way to implement the Boosting Tree

algorithm.
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5.6.4 Multi-layered gradient boosting decision tree

Last 10 years witnessed the dramatic development in the fields about deep learning,

which mainly focus on distilling hierarchical features via multi-layered neural networks

automatically. From 2006 deep learning methods have changed so many areas like computer

vision and natural language processing.

The multi-layered representation is the key ingredient of deep neural networks.

Thus, the combination of multi-layered representation and Boosting Tree are expected in

handling very complicated tabular data analysis tasks. But there are few research papers

exploring multi-layered representation via non-differentiable models, like Boosted Decision

Tree. That is, the gradient-based optimization method which is always used in train-

ing multi-layered neural networks cannot be introduced in training multi-layered Boosting

methods.

Feng, Yu and Zhou (2018) explored one way to construct Multi-Layered Gradient

Boosting Decision Tree (mGBDT) with an explicit emphasis on exploring the ability to learn

hierarchical representations by stacking several layers of regression GBDTs. The model can

be jointly trained by a variant of target propagation across layers, without the need to

derive back-propagation or to require differentiability.

Figure 5.4 provides the structure of a Multi-Layered Gradient Boosting Decision

Tree. Fm,m = 1, ...,M are the M layers of a mGBDT. Similar to the multi-layered neural

networks, the input o0 is transformed to o1, ..., oM via F1, ..., FM . Then, the final output

oM is the prediction of the target variable y. But all the Fm are constructed via gradient

boosting decision tree, we cannot training them via back-propagation method used in train-
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Figure 5.4: Illustration of Multi-Layered Gradient Boosting Decision Tree

ing multi-layered neural networks. Feng, Yu and Zhou (2018) introduced another group of

functions Gm,m = 1, ...,M and corresponding variables zm,m = 1, ...,M .

Intuitively, the group of functionGm are introduced for achieving back-propagation

algorithm in non-differentiable Boosting Tree. To train Multi-layered Gradient Boosting

Decision Tree, firstly, we use ‘forward propagation’ method to calculate all the om,m =

1, ...,M . Secondly, to (om), Gm are trained to reconstruct om via optimizing the loss function

L(om, Gm(Fm(om))). That is, we train Gm to learn ‘back-propagation’. Then, after training

all the Gm,m = 1, ...,M , we can do ‘back-propagation’ to generate zm,m = 1, ...,M , that

represents the information to each layer. Next, to the pairs of (zm, zm−1), we train Fm to

optimize another loss function L(zm, Fm(zm−1)). Finally, we can update all the Fm and Gm

via Boosting Tree method. Algorithm 24 shows the procedure of Multi-Layered Gradient

Boosting Decision Tree.

Algorithm 24 1. Input: Number of layers M , layer dimension dm, samples (yi, xi), i =

1, ..., n. Loss function L. Hyper-parameters α, γ, K1, K2, T , σ2.
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2. Initially, set F 0
m = Initialize(M,dm),m = 1, ...,M ;

3. For t = 1 to T

(a) Propagate the o0 to calculate om = F (om−1),m = 1, ...,M

(b) ztM = oM − α∂L(y,oM )
∂oM

(c) For m = M to 2

i. Gtm = Gt−1
m

ii. onoisem−1 = om−1 + ε, ε ∼ N(0, diag(σ2))

iii. Linvm = L(onoisem , Gtm(F t−1
m (onoisem )))

iv. for k = 1 to K1

A. rk = − ∂Linvm
∂Gtm(F t−1

m (onoisem ))

B. Fit a decision tree hk to rk

C. Gtm = Gtm + γhk

v. zm−1 = Gtm(zm)

(d) For m = 1 to M

i. F tm = F t−1
m

ii. Lm = L(ztm, F
t
m(om−1)) using gradient boosting decision tree

iii. for k = 1 to K2

A. rk = − ∂Lm
∂F tj (om)

B. Fit a decision tree hk to rk

C. F tm = F tm + γhk

iv. om = F tm(om−1)
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4. Output the trained multi-layered gradient boosting decision tree.

Feng, Yu and Zhou (2018) suggested to optimize Linv = L(onoisem , Gtm(F t−1
m (onoisem )))

instead of Linvm = L(om, G
t
m(F t−1

m (om))) to make the training of Gm more robust. Also, the

authors found that the multi-layered gradient boosting decision tree is very robust to most

hyper parameters. Without fine-tuning the parameters, this method can achieve very at-

tractive results.

Furthermore, consider the noisy loss function from the perspective of minimizing

the reconstruction error, this process could be seen as an encoding-decoding process. First,

in each layer Fm encodes the input via a nonlinear transform. Then, Gm learns how to

decode the transformed output back to the original input. This is similar to the Auto En-

coder method in deep learning. Thus, we can also use the Multi-layered Gradient Boosting

Decision Tree to do encoding-decoding, which shed a light on implementing unsupervised

learning tasks in the tabular data in economics.

5.7 Boosting in Macroeconomics and Finance

Boosting methods are widely used in classification and regression. Gradient Boost-

ing implemented in the packages, like XGBoost and LightGBM, is a very popular algorithm

among data science competitions and industrial applications. In this section, we discuss

four applications of boosting algorithms in macroeconomics.
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5.7.1 Boosting in predicting recessions

Ng (2014) uses boosting to predict recessions 3, 6, and 12 months ahead. Boosting

is used to screen as many as 1,500 potentially relevant predictors consisting of 132 real and

financial time series and their lags. The sample period is 1961:12011:12. In this application,

boosting is used to select relevant predictors from a set of potential predictors as well as

probability estimation and prediction of the recessions. In particular, the analysis uses

the Bernoulli loss function as implemented in the GBM package of Ridgeway (2007). The

package returns the class probability instead of classifications. For recession analysis, the

probability estimate is interesting in its own right, and the flexibility to choose a threshold

other than one-half is convenient.

5.7.2 Boosting diffusion indices

Bai and Ng (2009) use boosting to select and estimate the predictors in factoraug-

mented autoregressions. In their application, boosting is used to make 12 months ahead

of forecast on inflation, the change in Federal Funds rate, the growth rate of industrial

production, the growth rate of employment, and the unemployment rate. A sample period

from 1960:1 to 2003:12 was used for a total of 132 times series. They use two boosting

algorithms, namely L2Boosting and Block Boosting.

5.7.3 Boosting with Markov-switching

Adam, Mayr and Kneib (2017) propose a novel class of flexible latent-state time

series regression models called Markov-switching generalized additive models for location,

scale, and shape. In contrast to conventional Markov-switching regression models, the
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presented methodology allows users to model different state-dependent parameters of the

response distribution - not only the mean, but also variance, skewness and kurtosis param-

eters - as potentially smooth functions of a given set of explanatory variables. The authors

also propose an estimation approach based on the EM algorithm using the gradient boosting

framework to prevent over-fitting while simultaneously performing variable selection. The

feasibility of the suggested approach is assessed in simulation experiments and illustrated

in a real-data setting, where the authors model the conditional distribution of the daily

average price of energy in Spain over time.

5.7.4 Boosting in financial modeling

Rossi and Timmermann (2015) construct a new procedure for estimating the co-

variance risk measure in ICAPM model. First, one or more economic activity indices are

extracted from macroeconomic and financial variables for estimating the covariance matrix.

Second, given realized covariance matrix as the covariance matrix measure, Boosting Re-

gression Tree is applied in projecting realized covariance matrix on the indices extracted in

the first step. Lastly, predictions of the covariance matrix are made based on the nonlinear

function approximated by Boosting Regression Tree and applied into the analysis of ICAPM

method.

5.8 Conclusion

In this chapter, we focus on Boosting method. We start with an introduction of the

well known AdaBoost. Several variants of AdaBoost, like Real AdaBoost, LogitBoost and
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Gentle AdaBoost are also discussed. Then, we consider in regression problem and introduce

L2 Boosting. Next, Gradient Boosting and Gradient Boosting Decision Tree are discussed

in theory and practice. Then, we introduce the several variants of Gradient Boosting such as

Component-wise Boosting and Boost-GARCH for nonlinear time series modeling, Boosting

with Momentum and multi-layered Boosting Tree. Finally, we discuss several applications

of Boosting in macroeconomic forecasting and financial modeling.
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Chapter 6

Conclusions

The development of data science and machine learning techniques provides power-

ful tools for economic and econometric researches. Economists can deeply explore and study

the individual’s actions, market equilibrium, and economic crises. Given that, our works

focus on using machine learning in economics and we try to resolve the related applica-

tions’ issues from the perspective of theory and practice. In Chapter 2, we introduce a new

nonlinear variable selection method, L1-regularized soft decision tree (SDT), for resolving

the nonlinear factor selection in the causal treatment effect framework. We also discuss the

oracle properties in the nonlinear regression, which guarantees consistent variable selection.

Based on the chosen variables, most nonlinear regression can provide a higher convergence

rate and more precise estimation results. Our method can support the econometric and

empirical economic researches under the unknown regression functions. In Chapter 3, we

explore the unsupervised learning method in the literature of economic crisis forecasting.

We propose a new Mode Constrastive Auto Encoder (MCAE) method for detecting the

185



clustering distribution and extracting the features of high-dimensional regressors x. Addi-

tionally, MCAE can resolve the issue of missing values by Auto Encoder (AE) and time

trends by Boosted Auto Encoder (BAE) in the high dimensional time series data. When the

target economic variables y are noisy or ambiguous, our method provides a new perspective

for understanding the reason behind the crisis and makes the crisis forecasting more robust.

Chapter 4 and Chapter 5 focus on the economic forecasting using the Bagging

and Boosting methods and provide a reference to economic researchers when using machine

learning methods. Chapter 4 firstly introduces the Bootstrap Averaging (Bagging) with its

variants, such as Subagging and Bragging. Next, we present the Decision Tree and discuss

one of the most popular tree-based machine learning techniques, the Random Forest. Then,

we introduce several variants of Random Forests, including Extreme Random Trees and Soft

Decision Tree. Finally, we explore several applications of economic forecasting and inference

using Random Forests and its variants. Chapter 5 firstly explore the Boosting algorithm and

its variants, including AdaBoost, Real AdaBoost, LogitBoost, and Gentle AdaBoost. Then,

the definitions of Gradient Boosting and L2 Boosting are introduced. Next, we explore

some recent developments of Boosting, including Boost-GARCH, Boosting with Momentum

(BOOM), and multi-layered Gradient Boosting Decision Tree (mGBDT). Finally, we discuss

several applications of Boosting in macroeconomic forecasting and financial modeling.

186



Bibliography

[1] Timo Adam, Andreas Mayr, and Thomas Kneib. Gradient boosting in Markov-
switching generalized additive models for location, scale and shape. 2017.

[2] Ashvin Ahuja, Kevin Wiseman, and Murtaza H Syed. Assessing country risk —
selected approaches. IMF Technical Notes and Manuals 17/08, 2017.

[3] Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from
the data-generating distribution. Journal of Machine Learning Research, (15):3743—
3773, 2014.

[4] Lucia Alessi, Antonio Antunes, Jan Babecky, Simon Baltussen, Markus Behn, Di-
ana Bonfim, Oliver Bush, Carsten Detken, Jon Frost, Rodrigo Guimaraes, Tomas
Havranek, Mark Joy, Karlo Kauko, Jakub Mateju, Nuno Monteiro, Benjamin Neudor-
fer, Tuomas A. Peltonen, Marek Rusnak, Paulo Manuel Marques Rodrigues, Willem
Schudel, Michael Sigmund, Hanno Stremmel, Katerina Smidkova, Ruben van Tilburg,
Borek Vasicek, and Diana Zigraiova. Comparing different early warning systems: re-
sults from a horse race competition among members of the Macro-prudential Research
Network. Mimeo, 2014.

[5] Marcus Alexander, Matthew Harding, and Carlos Lamarche. The human cost of
economic crises. SIEPR Working Paper, pages 08–029, 2008.

[6] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understand-
ing Deep Neural Networks with Rectified Linear Units. International Conference on
Learning Representations, 2018.

[7] Susan Athey. The Impact of Machine Learning on Economics, The Economics of
Artificial Intelligence: An Agenda. University of Chicago Press, 2019.

[8] Susan Athey and Guido Imbens. Recursive Partitioning for Heterogeneous Causal
Effects. Proceedings of the National Academy of Sciences of the United States of
America, 113(27):7353–7360, 2016.

[9] Susan Athey and Guido W. Imbens. Machine Learning Methods Economists Should
Know About. arXiv, 2019.

187



[10] Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized Random Forests. An-
nals of Statistics, 47(2):1179–1203, 2019.
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[35] Peter Bühlmann and Bin Yu. Analyzing Bagging. Annals of Statistics, 30(4):927–961,
2002.
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Appendix A

Appendix for Chapter 2

A.1 Proof for Theorem 7

Since we show that the soft decision tree µ̂tree(x) is equalvalent to a mixture model.

Now assume we have a estimated mixture model with S components (kernels):

f̂(x) =

∑S
s=1K(x; β̂s, ĉs)µ̂s∑S
s=1K(x; β̂s, ĉs)

.

And the expectation is

E(f̂(x)) = f(x) =

∑S
s=1K(x;βs, cs)µs∑S
s=1K(x;βs, cs)

.

First, consider a simple case where βs = β:
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f(x) =

∑S
s=1K(x;βs, cs)µs∑S
s=1K(x;βs, cs)

=

∑S
s=1 exp(−lgS2 β(x− cs)2)µs∑S
s=1 exp(−lgS2 β(x− cs)2)

=

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
)
µs

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
)

We can see that the kernel is similar to a Gaussian kernel with bandwidth h =

1/
√
lgS2 β.

Now, consider the bound of the bias:

|f0(x)− E(f̂(x))|

= |f0(x)− f(x)|

=

∣∣∣∣∣∣∣∣∣∣
f0(x)−

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
)
µs

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
)
∣∣∣∣∣∣∣∣∣∣

=

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
)
µs

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
) |f0(x)− µs|

In the original soft decision tree, µs is treated as a parameter to estimate. In

our paper, we introduce the definition honesty from Wager and Athey (2018). We first

randomly seperate the sample N into two equal sub samples N1 = N2 = N
2 . Then, after

using the first sub sample to estimate βs and cs, the second sub sample can be used for

estimate the µs such that µs = E(µ̂(cs)) = f0(cs).
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Specifically, we estimate µs via a kernel regression. For example, using the expo-

nential kernel function estimated in the soft decision tree:

µ̂s(cs) =

∑N/2
i=1 K(xi;βs, cs)yi∑N/2
i=1 K(xi;βs, cs)

= f0(cs) + ε.

where K(xi;βs, cs) = exp

(
−
(

xi−cs
1/
√
lgS2 β

)2
)

.

Similar to the nonparameteric kernel method, it is easily to show that it converge

to the true known function f0(x). The reason we choose this kernel function is related to

the MLE method. We will show that in the Appendix A.2.

Plugging it into the previous equation, we have:

=

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
)

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
) |f0(x)− µ̂s|

=

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
)

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
) |f0(x)− f0(cs)− ε|

=

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
)

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
) |f0(x)− f0(cs)|+ ε

The next assumption we need is the so-called Lipschitz continuity. That is, we

assume the target function f0(x) is changing slowly given finite support of x. That is, a

Lipschitz continuous function is limited in how fast it can change:
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|f0(x)− f0(x′)| ≤ D|x− x′|

Thus, our previous equation can be rewritten as follows:

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
)

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
) |f0(x)− f0(cs)|+ ε

≤

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
)

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
) |x− cs|+ ε

= (a) + ε

Let us focus on part (a):

(a) = D

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
)

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
) |x− cs|

= D

exp

(
−
(

x−c1
1/
√
lgS2 β

)2
)

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
) |x− c1|+ ...+D

exp

(
−
(

x−cS
1/
√
lgS2 β

)2
)

∑S
s=1 exp

(
−
(

x−cs
1/
√
lgS2 β

)2
) |x− cS |

Let ds = |x− cs|, we have

(a) = D

exp

(
−
(

d1

1/
√
lgS2 β

)2
)

∑S
s=1 exp

(
−
(

ds
1/
√
lgS2 β

)2
)d1 + ...+D

exp

(
−
(

dS
1/
√
lgS2 β

)2
)

∑S
s=1 exp

(
−
(

ds
1/
√
lgS2 β

)2
)dS
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For the first component

exp

−( d1

1/
√
lgS2 β

)2


∑S
s=1 exp

−( ds

1/
√
lgS2 β

)2
d1, let d1∗ = d1/(1/

√
lgS2 β) we

have:

=
1√
lgS2 β

exp
(
− (d1∗)

2
)

∑S
s=1 exp

(
− (ds∗)

2
)d1∗ (A.1)

To 1∑S
s=1 exp(−(ds∗)

2)
, we have

∑S
s=1 e

(
− (ds∗)

2
)
→ S

∫
exp−(x)2

dx =
√

2πS when

S →∞. Hense,

=
1√
lgS2 β

exp
(
− (d1∗)

2
)

√
2πS

d1∗

≤ C

S
√
lgS2 β

where C = 1√
2π

is a constant. To part (a), we have

(a) = D

exp

(
−
(

d1

1/
√
lgS2 β

)2
)

∑S
s=1 exp

(
−
(

ds
1/
√
lgS2 β

)2
)d1 + ...+D

exp

(
−
(

dS
1/
√
lgS2 β

)2
)

∑S
s=1 exp

(
−
(

ds
1/
√
lgS2 β

)2
)dS

≤ S × C

S
√
lgS2 β

=
C√
lgS2 β

Since S →∞, it is guaranteed that:

(a) ≤ C√
lgS2 β

� lgS2 β
−1/2 → 0
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Next, the second bias term ε is equivalent to the bias term in a nonparametric

kernel regression with bandwidth h =
√
lgS2 β. Thus, the second term has a convergence

rate same as part (a).

Finally, we have the following conclusion. When S →∞:

|f0(x)− E(f̂(x))| ≤ C√
lgS2 β

� lgS2 β
−1/2 → 0

Specifically, let β = S
lgSs

, we have:

|f0(x)− E(f̂(x))| ≤ C√
lgS2 β

=
C√
lgS2

S
lgSs

� S−1/2 → 0

For the multivariable case, assume x is a p dimensional input vector. In the soft

decision tree, we can choose a different kernel function:

e(−lgS2 (x−cs)TΣβ(x−cs)))

where Σβ is a symmetric weighted matrix. Assume that each dimension of x is

independent, we can simplify the kernel function as follows:

e(−lgS2 (x−cs)TΣβ lg
S
2 (x−cs)))

=e(−lgS2 (x−cs)TV ΛβV
T lgS2 (x−cs))),
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where Λβ =



β1

β2

. . .

βp


containing p eigenvalues and V is an orthonomal

matrix. Thus, let V T (x− cs) = (x− cs)V , we have:

e(−lgS2 (x−cs)TV ΛβV
T (x−cs)))

=e(−lgS2
∑p
k=1 βk(xk−cks)2

V )

The bias term should be as follows:

|f0(x)− E(f̂(x))| =
∑S

s=1 e
(−lgS2

∑p
k=1 βk(xk−cks)2

V ))∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))
E |f0(x)− µ̂s|

=

∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))
E |f0(x)− f0(cs)|+ ε

Considering the first term, according to the multivariate Lipchitz continuity, we

choose the L2 norm as the metric. The bias becomes:
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|f0(x)− E(f̂(x))| =
∑S

s=1 e
(−lgS2

∑p
k=1 βk(xk−cks)2

V ))∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))
E |f0(x)− f0(cs)|

=

∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))
dL2(x, cs)

=

∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))

√√√√ p∑
k=1

(xk − cks)2

=

∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))

√
(x− ck)T (x− cs)

=

∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))

√
(x− ck)TV V T (x− cs)

=

∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))

√
(V T (x− ck))TV T (x− cs)

=

∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))∑S
s=1 e

(−lgS2
∑p
k=1 βk(xk−cks)2

V ))

√√√√ p∑
k=1

(xk − cks)2
V

=

∑S
s=1 e

(−lgS2
∑p
k=1 βk(dks)

2
V ))∑S

s=1 e
(−lgS2

∑p
k=1 βk(dks)

2
V ))

√√√√ p∑
k=1

(dks)
2
V

Let dks∗V =
√
βkdksV , we have:

|f0(x)− E(f̂(x))| =
∑S

s=1 e
(−lgS2

∑p
k=1(dks∗)

2
V ))∑S

s=1 e
(−lgS2

∑p
k=1(dks∗)

2
V ))

√√√√ p∑
k=1

1

βk
(dks∗)

2
V

≤
∑S

s=1 e
(−lgS2

∑p
k=1(dks∗)

2
V ))∑S

s=1 e
(−lgS2

∑p
k=1(dks∗)

2
V ))

√√√√ 1

βmax

p∑
k=1

(dks∗)
2
V

=
1

βmax

∑S
s=1 e

(−lgS2
∑p
k=1(dks∗)

2
V ))∑S

s=1 e
(−lgS2

∑p
k=1(dks∗)

2
V ))

√√√√ p∑
k=1

(dks∗)
2
V

=
1√

lgS2 βmax

∑S
s=1 e

(−lgS2
∑p
k=1(dks∗)

2
V ))∑S

s=1 e
(−lgS2

∑p
k=1(dks∗)

2
V ))

√√√√lgS2

p∑
k=1

(dks∗)
2
V

(A.2)

Comparing the final result in Equation (A.1) with Equation (A.2), we find that

the two results are the same. Thus, we can obtain a consistent result for the multiple case:
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|f0(x)− E(f̂(x))| ≤ C∗√
lgS2 βmaxS

(1/2p−1/2)
� 1√

lgS2 βmaxS
(1/2p−1/2)

→ 0,

where βmax is the max eigenvalue of Σβ and C∗ = D√
2π

. Let βmax = S
lgS2

, we have

|f0(x)− E(f̂(x))| ≤ C∗√
lgS2

S
lgS2
S(1/2p−1/2)

� S−1/2p → 0,

A.2 Proof for Theorem 9

Given the normal soft decision tree µtree(x; θ). If the θ is estimated via QMLE

and has the asymptotic normal distribution
√
n(θ̂ − θ∗) ∼ N(0,Σθ∗), the soft decision tree

estimator is asymptotically distributed as:

(µ̂tree(x; θ)− E(µ̂tree(x; θ)))→ N(0, σ2
tree(x)),

where σ2
tree(x) = 1

N J(x)′Σθ∗J(x) = 1
N

(
∂µ(x)
∂θ1

· · · ∂µ(x)
∂θm

)

σ2

1 · · · σ1m

...
. . .

...

σm1 · · · σ2
m


However, to sample-splitting soft decision tree, the parameters are estimated on

two seperate samples. Thus, the corresponding asymptotic distribution is:

(µ̂debiased tree(x)− E(µ(x)))→ N(0, σ2
debiased tree(x)),

where σ2
debiased tree(x) = J(x)′Σθ∗J(x)

206



=

(
∂µ(x)
∂θ1

· · · ∂µ(x)
∂θm

)



1
wN σ

2
1 · · · 1

wN σ1,m1 0 · · · 0

...
. . .

...
...

. . .
...

1
wN σm1,1 · · · 1

wN σ
2
m1

0 · · · 0

0 · · · 0 1
(1−w)N σ

2
m1+1 · · · 1

(1−w)N σm1+1,m

...
. . .

...
...

. . .
...

0 · · · 0 1
(1−w)N σm,m1+1 · · · 1

(1−w)N σ
2
m



=
1

wN

(
∂µ(x)
∂θ1

· · · ∂µ(x)
∂θm1

)


σ2
1 · · · σ1,m1

...
. . .

...

σm1,1 · · · σ2
m1,m1




∂µ(x)
∂θ1

...

∂µ(x)
∂θm1



+
1

(1− w)N

(
∂µ(x)
∂θm1+1

· · · ∂µ(x)
∂θm

)


σ2
m1+1 · · · σm1+1,m

...
. . .

...

σm,m1+1 · · · σ2
m




∂µ(x)
∂θm1+1

...

∂µ(x)
∂θm



=
1

N

(
σ2

1(x)

w
+
σ2

2(x)

1− w

)
Thus, the optimal weight w should depend on the two variances. To be sim-

ple, let w = 1/2, the variance of the debiased soft decision tree is σ2
debiased tree(x) =

2
N

(
σ2

1(x) + σ2
2(x)

)
. Precisely, based on the µtree =

∑S
s=1 e

(−logS2 (x−cs)TΣβ(x−cs))
µs∑S

s=1 e
(−logS2 (x−cs)TΣβ(x−cs))

, the up-

per bounds of the two variances are σ2
1(x) < O(lgS2 βmaxpS) and σ2

2(x) < O(lgS2 βmaxS).

Hence,

σ2
debiased tree(x) ∼ 2

N
×O(lgS2 βmaxpS) = O

(
lgS2 βmaxpS

N

)
.
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where S is the number of leaf of the soft decision tree. Let βmax = S
lgS2

, we have

σ2
debiased tree(x) ∼ 2

N
×O(pS2) = O

(
pS2

N

)
.

A.3 Proof for Theorem 10

Based on the bounded bias from Theorem 7 and asymptotic distribution in The-

orem 9, we can derive the consistency of soft decision tree via Chebyshev’s inequality:

P (|µ̂tree(x)− f(x)| ≥ ε) ≤ E(µ̂tree(x)− f(x))2

ε2

=
1

ε2
((E(µ̂tree(x))− f(x))2 + V ar(µ̂tree(x)))

∼ O(S−1/p) +O

(
pS2

N

)
→ 0

(A.3)

Let S = Nα, we have

P (|µ̂tree(x)− f(x)| ≥ ε) ∼ O(N−α/p) +O(
pN2α

N
)

∼ O(N−α/p) +O(pN2α−1)

(A.4)

The convergence rate is optimal when two terms have same convergence rate.

Thus, when p = p0, the condition of optimal convergence is:

− α/p0 = 2α− 1

α/p0 + 2α = 1

α∗ =
1

(1/p0 + 2)

208



Thus, the optimal convergence rate is O(N
− 1

1+2p0 ). Next, we can get

µ̂debiased tree(x)− f(x)√
V ar(µ̂debiased tree(x))

=
µ̂debiased tree(x)− E(µ̂debiased tree(x))√

V ar(µ̂debiased tree(x))
+
E(µ̂debiased tree(x))− f(x)√

V ar(µ̂debiased tree(x))

→ µ̂tree(x)− f(x)

σdebiased tree(x)
=
µ̂debiased tree(x)− E(µ̂debiased tree(x))

σdebiased tree(x)
+
E(µ̂debiased tree(x))− f(x)

σdebiased tree(x)

∼ N(0, 1) +
O(N−α/2p0)

O(
√
p0N (2α−1)/2)

= N(0, 1) +O(N−α/2p0−(2α−1)/2)

= N(0, 1) +O(N−(α/2p0+α+1/2))

= N(0, 1) +O(N−(α(1/2p0+1)+1/2))

Thus, given 1
1/p0+2 < α < 1, the asymptotic bias term E(µ̂debiased tree(x))−f(x)

σdebiased tree(x) =

O(N−(α(1/2p0+1)+1/2))→ 0 and then the asymptotic normality of µ̂tree(x) is:

µ̂debiased tree(x)− f(x)

σdebiased tree(x)
→ N(0, 1) (A.5)

A.4 Proof for Theorem 11

Based on our previous discussions, we have the following conclusions:

Based on our previous discussion, we have the following conclusions:

1 the bias of µ̂tree(x) is

|E(µ̂tree(x))− f(x)| < O(S−1/2p)

2 the asymptotic distribution of µ̂tree(x)is:
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µ̂tree(x)− E(µ̂tree(x))√
V ar(µ̂tree(x))

→ N(0, 1)

where V ar(µ̂tree(x))→ O(pS
2

N )

Take Taylor expension on the bias:

|E(µ̂tree(x)− f(x)| = |µ∗tree(x)− f(x)|

= |µ∗tree(x; θ0) + (θ∗ − θ0)T
µ∗tree
θ
− f(x)|

= |(θ∗ − θ0)T
∂µ∗tree
∂θ
|θ̃0 | < O(S−1/2p).

where we assume that there exists a θ0 such that µ∗tree(x; θ0) = f(x) and θ̃0 ∈

(θ∗, θ0). Thus, the norm of the vector of bias β = θ∗ − θ0 = E(θ̂) − θ0 should also be

bounded by O(S−1/p).

Thus, to the parameter estimator θ̂, we have:

1 the bias β = θ∗ − θ0 satisfies:

|(θ∗ − θ0)T
∂µ∗tree
∂θ
|θ0 | = βT

∂µ∗tree
∂θ
|θ̃0 < O(S−1/p)

2 the asymptotic distribution of θ̂is:

√
N(θ̂ − E(θ̂)) ∼ N(0,Σθ)

First, let us consider the estimator of the L2 norm of the first derivative || ∂f̂∂xp ||
2
2 =

1
N

∑N
i=1

(
∂f̂
∂xp
|x=xi

)2
. Based on the asymptotic normality of the estimator of SDT’s param-

eters
√
N(θ̂ − E(θ̂)) ∼ N(0,Σθ), we can obtain:

1 Asymptotic distribution:
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(
f̂ ′p|i − E(f̂ ′p|i)

)
√
V ar(f̂ ′p|i)

∼ N(0, 1)

2 Bias β:

∣∣∣f ′p|i − E(f̂ ′p|i)
∣∣∣ = βTJ(f ′p,θ|i) < O(S−1/2p).

where f ′p|i = ( ∂f∂xp |x=xi), V ar(f̂
′
p|i) = 1

N J(f ′p|i,θ)
TΣθJ(f ′p|i,θ)→ O(pS

2

N ) and J(f ′p,θ|i) =

∂f ′p|i)
∂θ .

To || ∂f̂∂xp
2
||22, we have:

1 Asymptotic distribution:

f̂ ′p|i ∼ N
(
E(f̂ ′p|i), V ar(f̂ ′p|i)

)

N∑
i=1

f̂ ′p|i
2

V ar(f̂ ′p|i)
∼ nonχ2

where nonχ2 is an non central Chi square distribution. Thus we have:

E

 N∑
i=1

f̂ ′p|i
2

V ar(f̂ ′p|i)

 = N +
N∑
i=1

E2(f̂ ′p|i)

V ar(f̂ ′p|i)
.

E

(
1

N

N∑
i=1

f̂ ′p|i
2

)
= ¯V ar(f̂ ′p) +

1

N

N∑
i=1

E2(f̂ ′p|i).

V ar

 N∑
i=1

f̂ ′p|i
2

V ar(f̂ ′p|i)

 = 2N + 4
N∑
i=1

E2(f̂ ′p|i)

V ar(f̂ ′p|i)
.
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V ar

(
1

N

N∑
i=1

f̂ ′p|i
2

)
= 2 ¯V ar

2
(f̂ ′p) +

4 ¯V ar(f̂ ′p)

N

N∑
i=1

E2(f̂ ′p|i).

To sum up, we know that 1
N

∑N
i=1 f̂

′
p|i

2
− E

(
1
N

∑N
i=1 f̂

′
p|i

2
)
∼ OP (pS

2

N ).

2 Bias β(f ′p):

∣∣∣∣f ′p2|i − E(f̂ ′p|i
2
)

∣∣∣∣ = βTJ(f ′′2θ )

∣∣∣∣∣∑
i

f ′p
2|i −

∑
i

E(f̂ ′p|i
2
)

∣∣∣∣∣ =
∑
i

βTJ(f ′′2θ|i)

∣∣∣∣∣ 1

N

∑
i

f ′p
2|i − E

(
1

N

N∑
i=1

f̂ ′p|i
2

)∣∣∣∣∣ = βT J̄(f ′′2θ )

which means

∣∣∣∣ 1
N

∑
i f
′
p

2|i − E
(

1
N

∑N
i=1 f̂

′
p|i

2
)∣∣∣∣ < O(S−1/2p)

Now, we consider the penalized most likelihood function:

LR = L(y, x; θ)− λRλ(f ′) (A.6)

where L(y, x; θ) =
∑N

i=1 Log
∑2

s=1 αs(xi; θ)Ps(yi|xi; θ) and

Rλ(f ′) =

P∑
p=1

√
1
N

∑N
i=1

(
∂f
∂xp
|x=xi

)2

√
1
N

∑N
i=1

(
∂f̂
∂xp
|x=xi

)2
γ =

P∑
p=1

RPλ (f ′)

By Taylor’s expansion, we have:
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LR(y, x; θ) = L(y, x; θ)− λRλ(f ′)

= L(y, x; θ0) + (θ − θ0)T
∂L

∂θ
|θ0 + 1/2(θ − θ0)T

∂L2

∂θ∂θT
|θ0(θ − θ0)− λRλ(f ′)

(A.7)

Additionally, we set θ = θ0 + u√
N

+ β√
N

, where β is a bias vector. Then, plug θ in:

−LR(y, x; θ) + LR(y, x; θ0) = −(θ − θ0)T
∂L

∂θ
|θ0 − 1/2(θ − θ0)T

∂L2

∂θ∂θT
|θ0(θ − θ0)

= Part(1) + Part(2)

(A.8)

For Part(1), we have:

Part(1) = −(θ − θ0)T
∂L

∂θ
|θ0 − 1/2(θ − θ0)T

∂L2

∂θ∂θT
|θ0(θ − θ0)

= −(u/
√
N + β/

√
N)T

∂L

∂θ
|θ0 − 1/2(u/

√
N + β/

√
N)T

∂L2

∂θ∂θT
|θ0(u/

√
N + β/

√
N)

= −(u/
√
N)T

∂L

∂θ
|θ0 − (β/

√
N)T

∂L

∂θ
|θ0

− 1/2(u/
√
N)T

∂L2

∂θ∂θT
|θ0(u/

√
N) + 1/2(u/

√
N)T

∂L2

∂θ∂θT
|θ0(β/

√
N)

+ 1/2(β/
√
N)T

∂L2

∂θ∂θT
|θ0(u/

√
N)− 1/2(β/

√
N)T

∂L2

∂θ∂θT
|θ0(β/

√
N)

(A.9)

We found that ∂L
∂θ |θ0 is the score function of the log-likelihood function and that

∂L2

∂θ∂θT
|θ0 is the negative fisher information matrix. Thus, since 1√

n
∂L
∂θ |θ0 → N(0, I(θ)) and

1
n

∂L2

∂θ∂θT
|θ0 → I(θ), we have:
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Part(1) = −(u/
√
N)T

∂L

∂θ
|θ0 − (β/

√
N)T

∂L

∂θ
|θ0

− 1/2(u/
√
N)T

∂L2

∂θ∂θT
|θ0(u/

√
N) + 1/2(u/

√
N)T

∂L2

∂θ∂θT
|θ0(β/

√
N)

+ 1/2(β/
√
N)T

∂L2

∂θ∂θT
|θ0(u/

√
N)− 1/2(β/

√
N)T

∂L2

∂θ∂θT
|θ0(β/

√
N)

→ −uTW − βTW + 1/2uT I(θ)u− 1/2uT I(θ)β − 1/2βT I(θ)u+ 1/2βT I(θ)β

(A.10)

where W ∼ N(0, I(θ)). Then, part(1) takes the maximum value when u =

I(θ)−1W + β → N(0, I(θ)−1) when β → 0.

For Part(2), let 1
N

∑
i f̂
′
p

2|i = 1
N

∑
i f
′
p

2|i +
Uf
pS2

N

+
βf
pS2

N

since

√
V ar( 1

N

∑
i f̂
′
p

2|i) ∼

O
(
pS2

N

)
we have:

λ
(
RPλ (f ′)−RPλ (f ′)0

)
= λ


√

1
N

∑
i f̂
′
p

2|i(√
1
N

∑
i f̂
′2
p|i
)γ −

√
1
N

∑
i f
′
p

2|i(√
1
N

∑
i f̂
′2
p|i
)γ


= λ


√

1
N

∑
i f
′
p

2|i +
Uf

4pS2

N

+
βf

4pS2

N(√
1
N

∑
i f̂
′2
p|i
)γ −

√
1
N

∑
i f
′
p

2|i(√
1
N

∑
i f̂
′2
p|i
)γ


=
λ(√

1
N

∑
i f̂
′2
p|i
)γ
(√

1

N

∑
i

f ′p
2|i +

Uf
4pS2

N

+
βf

4pS2

N

−
√

1

N

∑
i

f ′p
2|i

)
(A.11)

Considering different cases, we have:
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=



λ(√
1
N

∑
i f̂
′2
p|i
)γ√ Uf

σ(f) +
βf
σ(f) →

λ

(
pS2

N

)γ/2
√
pS2

N

→∞ if :
√

1
n

∑
i f
′
p

2|i = 0

0 if :
√

1
n

∑
i f
′
p

2|i = 0

λ(√
1
N

∑
i f̂
′2
p|i
)γ
(
Uf
σ(f)

+
βf
σ(f)

)
2
√
f̃p

→ λ
√

pS2

N → 0 if :
√

1
n

∑
i f
′
p

2|i 6= 0

(A.12)

where f̃p ∈ ( 1
N

∑
i f
′
p

2|i +
Uf
σ(f) +

βf
σ(f) ,

1
N

∑
i f
′
p

2|i).

Now, considering LR(y, x; θ)− LR(y, x; θ0), we have:

−LR(y, x; θ) + LR(y, x; θ0) = −(θ − θ0)T
∂L

∂θ
|θ0 − 1/2(θ − θ0)T

∂L2

∂θ∂θT
|θ0(θ − θ0)

= −uTW − βTW + 1/2uT I(θ)u− 1/2uT I(θ)β

− 1/2βT I(θ)u+ 1/2βT I(θ)β + Part(2)

(A.13)

Let Vn(u) = −LR(y, x; θ) + LR(y, x; θ0), and we have:

V (u) =


−uTW − βTW + uT I(θ)u/2− uT I(θ)β/2− βT I(θ)u/2 + βT I(θ)β/2 if :6= 0

∞ otherwise

(A.14)

By Slutskys theorem, we have Vn(u)→ V (u). Thus, we have:

û→ I(θ)−1W + β

Intuitively, when f ′p = 0 is satisfied, the variable should not belong to the true

variable set A. For the true function f(x1, ..., xp−1), not only the first derivative f ′p should

be zero, but the derivative of f ′p for parameter θ: f ′′p,θ should also be zero, which means

f(x) does not contain anything about xp and any parameters θ are not related to f ′p.
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In summary, we have approved the part of asymptotic normality:

f̂(x)− f(x)√
V ar(f̂(x))

∼ N(0, 1)

where V ar(f̂(x)) = Jθ(x)TΣθ∗Jθ(x) ∼ O
(
pS2

N

)
.

Next, we consider the consistency of variable selection.

From the asymptotic result, we can obtain:

P (f̂ ′p 6= 0|p ∈ A)→ 1

Thus, these variables should satisfy the following:

∂L

∂θs
= λ

P∑
p=1

1(√
1
N

∑
i f̂
′
p|2i

)γ 1
N

∑N
i=1 f̂

′
p|if̂ ′′p,θs |i√

1
N

∑N
i=1 f̂

′
p|2i

where f̂ ′′p,θs |i =
∂̂f ′p|i
∂θs

.

Previously, we showed that

(
f̂ ′p|i − f ′p|i)

)
√
V ar(f̂ ′p|i)

→ N(0, 1)

Similarly, it is obvious to have the asymptotic result for f̂ ′′p,θs |i:

( ̂f ′′p,θs |i − f ′′p,θs |i))√
V ar( ̂f ′′p,θs |i) → N(0, 1)

In terms of
√
V ar( ̂f ′′p,θs |i) ∼ O

(
pS2

N

)
and

√
V ar( ̂f ′′p,θs |i) ∼ O

(
pS2

N

)
, it is simply

to show that f̂ ′p|i ∼ Op
(√

pS2

N

)
and ̂f ′′p,θs |i ∼ Op(√pS2

N

)
. Thus, we can have:
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1

N

N∑
i=1

f̂ ′p|if̂ ′′p,θs |i ∼ Op
(
pS2

N

)
.

Combined with
λ

(
pS2

N

)γ/2
√(

pS2

N

) →∞, since f̂ ′p = 0, we have:

P∑
p=1

λ(√
1
N

∑
i f̂
′
p|2i

)γ 1
N

∑N
i=1 f̂

′
p|if̂ ′′p,θs |i√

1
N

∑N
i=1 f̂

′
p|2i

→
λ
(
pS2

N

)γ/2
√(

pS2

N

) →∞.

Since ∂L
∂θs
→ 0, we can see that:

P (f̂ ′p = 0|p ∈ A) = P

− ∂L∂θs =

P∑
p=1

λ(√
1
N

∑
i f̂
′
p|2i

)γ 1
N

∑N
i=1 f̂

′
p|if̂ ′′p,θs |i√

1
N

∑N
i=1 f̂

′
p|2i

→ 0

The oracle properties are proved.
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