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Abstract

Some Contributions to Circular and Linear Statistics

by

Qianyu Jin

This dissertation focuses mainly on directional data in two dimensions, called “circu-

lar data,” because such two-dimensional directions can be represented as points on the

circumference of a unit circle. Such data, collected and analyzed by researchers in many

scientific fields, needs special modeling and analysis. The thesis contains several some-

what independent results on the circular models and their analysis. First, a goodness-

of-fit test for checking if a given dataset follows the wrapped stable distribution family

is presented based on the empirical characteristic function. Then two dissimilarity mea-

sures for comparing any pair of curves around the circle are introduced and their use

are explored in clustering such curves. This is followed by proving a result showing that

wrapping a convolution of any number of linear components, yields the convolution of

the corresponding wrapped distributions. Testing symmetry within the family of sine-

skewed von Mises distributions is considered and compared with an existing test. The

final result is a departure from the directional domain, and presents a Bayesian test for

the number of modes in a two-component Gaussian mixture.
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Chapter 1

Introduction

1.1 Introduction to Circular Data

Directional data deals with measurement of directions in two, three, or higher dimen-

sions, which are collected and analyzed by researchers in many scientific fields. Some

common examples of directional data are the directions in real world, such as those

dealing with bird migration, ocean currents, or magnetic pole direction of the earth.

Two-dimensional directions taken on the plane, can be represented as points on the

circumference of a unit circle and are referred to as circular data. In general, there are

two ways to represent circular data. A two-dimensional direction may be represented as

an angle on [0, 2π). However, to ensure the angles are meaningful and unique, one needs

to specify a zero direction and a sense of rotation i.e. whether we are measuring angles

going clockwise or counterclockwise. Alternatively, such circular data may be represented

as points on the circumference of the unit circle centered at the origin, or equivalently

as unit vectors within this coordinate system. Even here, to ensure the uniqueness of a

point and its vector representation, one needs to specify the directions of the axes of the

coordinate system.
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Introduction Chapter 1

Circular data, when represented by angles, have properties that are quite different

from linear data defined on the real line. For example, circular data has periodicity with

a period of 2π since rotating a direction by 2π results in the same direction. Another

point is that one can not order circular data by magnitude since they depend on the

choice of zero direction and the sense of rotation. Also the mean of a set of angles is

not computed by taking their arithmetic mean. A straightforward way to visualize the

circular mean is to convert circular data to unit vectors, then the circular mean is the

direction of the resultant or sum of all these unit vectors. The mean direction can be

undefined if all the unit vectors sum to a zero vector. Due to various unique properties

of circular data, we need to be careful when analyzing circular data and make sure the

correct methodology is used. See Jammalamadaka and SenGupta (2001) [20] for more

details.

1.2 Review of the Thesis

In Chapter 2, we present a goodness-of-fit test for wrapped stable distribution family,

where the test statistic is based on comparing the model-based characteristic function

with the empirical (data-based) characteristic function. We evaluate the proposed new

test with respect to other known tests for goodness-of-fit, including Kuiper’s Test and

Watson’s Test, via a simulation study with samples drawn from various alternative cir-

cular distribution families. An example of real-data application is also presented.

In Chapter 3, we introduce a hierarchical clustering procedure for periodic curves

around the circle, by approximating them as a mixture of an appropriate number of von

Mises (vM) distributions. We choose the L2 distance to measure dissimilarities between

such curves after deriving explicit formulae for the L2 distance. The dissimilarity matrix

is used as the basis upon which the clustering hierarchy is constructed. We illustrate the

2



Introduction Chapter 1

effectiveness of this clustering procedure with a simulation study, where the true clusters

are known, as well as a real data application where the true clusters are unknown.

In Chapter 4, we present some general results on wrapped distributions, which are

obtained by wrapping a linear distribution around a circle. It was shown earlier in

Jammalamadaka and Kozubowski (2017) [18] that wrapping a mixture distribution gives

the same result as mixing the corresponding wrapped components. We now show that a

similar result holds for convolutions viz. wrapping a convolution of any number of linear

components, yields the convolution of the corresponding wrapped distributions. As an

illustration, we use this approach for deriving a wrapped Quasi Lindley distribution, and

a convolution of two wrapped Quasi Lindley distributions.

In Chapter 5, we consider the family of sine-skewed von Mises (SvM) distributions,

which provides a generalization of the classical vM model, incorporating possible asym-

metry. Given a random sample from such a general family, we consider the problem of

testing for symmetry within this class. The powers of likelihood ratio test and an earlier

test proposed by Batschelet (1965) [5] are computed and compared.

Chapter 6 is a bit of departure from all the rest of the work on circular data, and

tackles a somewhat classical but not fully resolved problem of checking for the number of

modes in a two-component Gaussian mixture on the real line. We use a Bayesian approach

and the test statistic uses the Bayes Factor with the null hypothesis of unimodality versus

the alternative hypothesis representing bimodality. Value of the test statistic is computed

numerically using Markov Chain Monte Carlo method and a simulation study shows the

effectiveness of the test. We conclude with an application on a real dataset of adult

human heights.

3



Chapter 2

Goodness-of-Fit Test for Wrapped

Stable Distributions Based on the

Characteristic Function

2.1 Introduction

The Wrapped Stable (WS) distribution is one of the most flexible models for cir-

cular data. Specifically this four–parameter family of distributions includes symmetric

as well as asymmetric members, with varying tail features ranging from the medium–

tailed wrapped Normal distribution to the heavy–tailed wrapped Cauchy distribution,

and many others.

A convenient way to describe the WS distribution is by means of its characteristic

function (ChF) which is given by

Cϕ(r) =


eiµr−τ

γ |r|γ{1−iδsgn(r) tan(πγ/2)}, γ 6= 1,

eiµr−τ |r|{1+iδ 2
π

sgn(r) log |r|}, γ = 1,

(2.1)

4
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Chapter 2

where (µ, τ) are location and scale parameters, and (γ, δ) are shape and skewness param-

eters, respectively. We will write ϕ = (γ, δ, τ, µ) for the entire vector of parameters, with

the parameter space specified by (µ, τ) ∈ [0, 2π) × (0,∞) and (γ, δ) ∈ (0, 2] × [−1, 1].

The parameter γ is often called the characteristic exponent and regulates tail–behavior.

Specifically smaller values of γ progressively lead from lighter to heavier tails. On the

other hand δ is a skewness parameter, with δ = 0 corresponding to a distribution that

is symmetric, while with increasing |δ|, and as δ approaches +1 (resp. −1), the density

becomes asymmetric to the right (resp. to the left). In this connection note that as

γ → 2, the parameter δ loses its significance with γ = 2 rendering the wrapped Normal

distribution. The other well known member of WS distribution family is the wrapped

Cauchy distribution for (γ, δ) = (1, 0), which together with the wrapped Normal, is one

of the three isolated cases with a closed form density, with all other WS distributions

admitting only series representations of densities. See Jammalamadaka and SenGupta

(2001) [20], pp.44-48 for a brief discussion of these distributions for modeling circular

data.

In this chapter we suggest a class of Goodness-of-Fit (GoF) tests for the family of

WS distributions which utilizes the ChF of these distributions. Specifically let Θ be an

arbitrary circular random variable. Then on the basis of independent and identically dis-

tributed (i.i.d.) random samples ϑ1, ..., ϑn on Θ we are interested in testing the composite

null hypothesis,

H0 : Θ follows Sϕ, for some ϕ ∈ Φ, (2.2)

against general alternatives, where Sϕ = {S(·;ϕ), ϕ ∈ Φ} denotes the family of WS

distributions with cumulative distribution function S(·;ϕ) , and Φ stands for the corre-

sponding parameter space.

We note that the ChF of an arbitrary linear random variable at a given integer
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argument r is equal to the trigonometric moment of order r of the corresponding distri-

bution wrapped around the unit circle (see Prop. 2.1 in Jammalamadaka and SenGupta

(2001) [20]). The use of this tool for performing statistical inference in the circular con-

text has been hitherto mostly confined to the case of testing for uniformity or symmetry.

We refer to the early work of Beran (1969) [7], and to the more recent contributions

of Pycke (2010) [29] and Meintanis and Verdebout (2019) [26] and references therein.

This is despite the fact that earlier ChF–based GoF methods, for conventional (linear)

stable distributions for example, have proved to be more convenient to apply and to com-

pete well with other GoF methods; see Csörgő (1987) [9], Koutrouvelis and Meintanis

(1999) [22], Matsui and Takemura (2008) [23], Meintanis (2005) [24] and Meintanis et al.

(2015) [25].

The chapter is organized as follows. In Section 2.2 we introduce the new testing

method, while in Section 2.3 testing for the symmetric WS distribution against general

alternatives is studied in detail. In Section 2.4 the finite–sample properties of an appro-

priate resampling version of the test are illustrated by means of a Monte Carlo study.

In Section 2.5 we consider empirical applications, and finally we end in Section 2.6 with

conclusions and discussion.

2.2 Tests Based on the Characteristic Function

In order to test the null hypothesis H0 specified in (2.2) we propose to use a distance

metric between the ChF of the WS distribution and the empirical ChF based on the

data, defined by

Cn(r) =
1

n

n∑
j=1

eirϑj := αn(r) + iβn(r), i =
√
−1, (2.3)

6
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where

αn(r) =
1

n

n∑
j=1

cos(rϑj), βn(r) =
1

n

n∑
j=1

sin(rϑj), (2.4)

are the Cartesian coordinates of the empirical ChF. For integer r, αn(r) and βn(r) are

also called the empirical trigonometric moments.

In fact since for circular distributions the ChF needs to be evaluated only at the

integers (Jammalamadaka and SenGupta (2001),[20] §2.2), and taking into account the

symmetry property of the ChF and the empirical ChF, our test statistic is formulated

only on the basis of theoretical and empirical trigonometric moments. Specifically we

suggest to reject the null hypothesis H0 for large values of the test criterion

Tn,f = n
∑
r≥0

|Cn(r)− Cϕ̂(r)|2 f(r), (2.5)

where ϕ̂ is a suitable estimator of the parameter ϕ, and f(·) denotes a “weight function”

which we take to be a probability function over the non–negative integers.

By straightforward algebra we have from (2.5)

Tn,f = n
∑
r≥0

{
|Cn(r)|2 + |Cϕ̂(r)|2 − 2 (αn(r)αϕ̂(r) + βn(r)βϕ̂(r))

}
f(r), (2.6)

where αϕ(r) and βϕ(r) denote the population trigonometric moments of the WS distri-

bution, and |z|2 stands for the modulus of a complex number z.

7
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2.3 Tests for the Symmetric WS Distribution

2.3.1 The Test Criterion and Consistency

The case of testing for the symmetric wrapped stable (SWS) distributions is consider-

ably simpler. Specifically by proper location shift we can simply test the null hypothesis

that H(s)
0 : C ≡ Cγ,τ where CΘ(r) = E(eirΘ) is the ChF of Θ and Cγ,τ (·) denotes the ChF

of the zero–location SWS distribution that results from (2.1) by replacing ϕ by (γ, 0, τ, 0).

In fact the test statistic figuring in (2.5) may conveniently be reparameterized as

Tn,f = n
∑
r≥0

∣∣∣Ĉn(r)− %̂rγ̂
∣∣∣2 f(r), (2.7)

where Ĉn(r) is the empirical ChF resulting from (2.3) by replacing ϑj by

ϑ̂j = ϑj − µ̂, j = 1, ..., n,

and where γ̂, µ̂ and %̂ denote consistent estimators of the parameters γ, µ and % :=

exp{−τ γ}, respectively (discussed later in Section 2.3.3).

Before going any further, we will investigate the consistency of the test based on Tn,f

against all fixed alternative circular distributions. To this end assume that the estimator

ϕ̂(s) := (γ̂, %̂, µ̂) attains a strong probability limit, say ϕ
(s)
A := (γa, %a, µa), even under

alternatives. Also suppose that f(r) > 0.

Now from (2.7) write Tn,f = n∆
(s)
n,f and notice that

∣∣∣Ĉn(r)− %̂rγ̂
∣∣∣2 ≤ 4, so by invoking

Lebesgue’s theorem of dominated convergence we have

∆
(s)
n,f−→

∑
r≥0

∣∣e−iµarCΘ(r)− %a
rγa
∣∣2 f(r) := ∆f , a.s. as n→∞, (2.8)

8
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by means of the strong pointwise consistency of the empirical ChF (see Feuerverger and

Mureika, 1977 [13]). To proceed further recall the definition of the parameter % and

thus replace %a
rγa by Cγa,τa(r) = e−(τar)γa , where τa = (− log %a)1/γa . Clearly then ∆f is

positive, unless CΘ(r) = eiµar−(τar)γa , identically in r, which by the uniqueness of the ChF

would imply that Θ follows a SWS distribution indexed by ϕ
(s)
A , and leads to the strong

consistency of the test that rejects the null hypothesis H(s)
0 for large values of Tn,f .

2.3.2 Computations

Our point of departure for computations is Equation (2.6). In this connection recall

from the previous section that under the null hypothesis H(s)
0 , we have that βϕ(·) ≡ 0,

and hence the test criterion figuring in (2.6) reduces to

Tn,f = Σ1 + Σ2 − 2Σ3, (2.9)

with

Σ1 =
1

n

n∑
j,k=1

E1(ϑ̂j − ϑ̂k), (2.10)

Σ2 = nE2(γ̂, τ̂), (2.11)

and

Σ3 =
n∑
j=1

E3(ϑ̂j; γ̂, τ̂), (2.12)

where the series figuring in (2.10)-(2.12) are defined by

E1(θ) =
∑
r≥0

cos(θr)f(r),

9
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E2(γ, τ) =
∑
r≥0

e−2τγrγf(r),

and

E3(θ; γ, τ) =
∑
r≥0

cos(θr)e−τ
γrγf(r).

Now recall that f(r), r ≥ 0, is a probability function and therefore Ek, k = 1, 2, 3,

may be viewed as expectations of corresponding quantities taken with respect to the

probability mass function (PMF) f(r). Then after some extra manipulations it follows

that these three series may be written as

E1(θ) = Er[cos(θr)], (2.13)

E2(γ, τ) = ErEϑ[cos(21/γϑr)], (2.14)

and

E3(θ; γ, τ) =
1

2

{
ErEϑ[cos((ϑ− θ)r)] + ErEϑ[cos((ϑ+ θ)r)]

}
, (2.15)

where Er[·] and Eϑ[·] are meant as expectations taken with respect to the PMF f(r) and

with respect to the SWS distribution with parameter ϕ = (γ, 0, τ, 0), respectively.

While the expectations figuring in (2.13)–(2.15) are generally not easy to compute

analytically, they nevertheless allow for some simplification if the PMF f(r) correspond-

ing to the weights is properly chosen. Specifically letting f(r) be a Poisson distribution

with parameter λ, we have

E1(θ) := E1(θ;λ) = cos(λ sin θ)eλ(cos θ−1). (2.16)

Moreover since Ek, k = 2, 3, are absolutely convergent, by application of Fubini’s theorem

10
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we have ErEϑ(·) = EϑEr(·), so that the expectations in (2.14)–(2.15) may be Monte–Carlo

approximated by the quantities

E2,M(γ, τ) =
1

M

M∑
m=1

E1(21/γθm),

and

E3,M(θ; γ, τ) =
1

2

1

M

M∑
m=1

(E1(θm − θ) + E1(θm + θ)) ,

respectively, where M is a large positive integer, and θm, m = 1, ...,M , denote i.i.d.

observations from the SWS distribution with parameter ϕ = (γ, 0, τ, 0) .

Alternatively, since we have rapid convergence at least for γ ≥ 1, one can compute

the test statistic Tn,f given in (2.7) by means of direct numerical computation of only a

few terms of the series defining E2 and E3.

2.3.3 Estimation of Parameters

From Equation (2.7) it is clear that the test criterion requires prior estimation of

the stable distribution parameters. As estimators of the parameters (γ, %, µ) of a SWS

distribution we suggest the moment estimator given by the following equations (see §4.6

of Jammalamadaka and SenGupta (2001) [20]) :

µ̂ = arctan∗
(
βn(1)

αn(1)

)
, %̂ =

√
α2
n(1) + β2

n(1), γ̂ =
1

log 2
log

(
log(

√
α2
n(2) + β2

n(2))

log(
√
α2
n(1) + β2

n(1))

)
,

(2.17)

where αn(·), βn(·) are the trigonometric moments defined in (2.4), and arctan∗(·) denotes

the principal inverse of tan(·), which maps the tangent of an angle on [0, 2π) into the

correct quadrant.

We note that moment estimation of parameters yields an interesting limit for the test

11



Goodness-of-Fit Test for Wrapped Stable Distributions Based on the Characteristic Function
Chapter 2

statistic Tn,f figuring in (2.7). To this end notice that Cn(0) = C(0) = 1, and hence the

first term in Tn,f vanishes regardless of the distribution being tested and for any function

f(r) used as probability function. In addition the second term involves the quantity

|Ĉn(1) − %̂| which also vanishes on the account of the first two equations in (2.17) and

because β̂n(1) = 0. Then write Tn,λ for the criterion in (2.7) with f(r) being the Poisson

probability function with parameter λ, so that

Tn,λ = n e−λ
(∣∣∣Ĉn(2)− %̂2γ̂

∣∣∣2 λ2

2
+ o(λ2)

)
, λ→ 0,

which leads to

lim
λ→0

2Tn,λ
nλ2

=
∣∣∣Ĉn(2)− %̂2γ̂

∣∣∣2 := Tn,0. (2.18)

Clearly the limit statistic Tn,0 simply compares the trigonometric moment computed

from the sample with the trigonometric moment of the SWS distribution, both of order

r = 2. (In this connection note that Tn,0 vanishes as n→∞ under the null hypothesis).

On the other hand the test statistic Tn,λ employs an infinite weighted sum in which

the empirical trigonometric moments of all integer orders r ≥ 0 are accounted for, and

thus the probability function f(r) plays the role of a weight function. Consequently

if this function is decreasing with r (which is typically the case at least for large r),

f(r) downweights higher order trigonometric moments that are more prone to periodic

behavior; see for instance Epps (1993) [11].

2.4 Finite-Sample Comparisons

This section summarizes the results of a simulation study designed to evaluate the

performance of the proposed test and compare it with other existing tests. As com-

petitors we include the Kuiper’s test (K) and the Watson’s test (W) for which there

12



Goodness-of-Fit Test for Wrapped Stable Distributions Based on the Characteristic Function
Chapter 2

exist computationally convenient formulae (Jammalamadaka and SenGupta, [20] §7.2.1).

Specifically recall the notation S(·;ϕ) for the distribution function of the WS distribu-

tion, let Uj = S(ϑj; ϕ̂) and write U(j), j = 1, ..., n, for the corresponding order statistics.

Then we have

K = max
1≤j≤n

{
U(j) −

j − 1

n

}
+ max

1≤j≤n

{
j

n
− U(j)

}
.

W =
1

12n
+

n∑
j=1

((
U(j) −

2j − 1

2n

)
−
(
U − 1

2

))2

,

where U = n−1
∑n

j=1 Uj.

It is well known however that the null distribution of goodness–of–fit statistics such

as Tn,f , K and W, is complicated and depends on several unknown quantities. Therefore

here we implement all tests based on parametric bootstrap resampling, which is an au-

tomatic computer–based procedure for performing this task. Next we outline the steps

of the parametric bootstrap procedure within a fairly general setting of testing the null

hypothesis H0 in (2.2) by means of an arbitrary criterion T := T (ϑ1, . . . , ϑn). More

specifically write T̂ := T (ϑ1, . . . , ϑn; ϕ̂) for this test criterion involving the original obser-

vations as well as the resulting parameter estimate ϕ̂ := ϕ̂(ϑ1, ..., ϑn). Then parametric

bootstrap critical points are computed as follows:

(i) Generate i.i.d. observations, {ϑ∗j , 1 ≤ j ≤ n} from S(·; ϕ̂).

(ii) Using these observations obtain the bootstrap estimate ϕ̂∗ := ϕ̂(ϑ∗1, ..., ϑ
∗
n) of ϕ.

(iii) Calculate the bootstrap test statistic, say T ∗ := T (ϑ∗1, ..., ϑ
∗
n; ϕ̂∗).

(iv) Repeat steps (i) to (iii) a number of times, say B, and obtain {T ∗b }B
b=1.

(v) Calculate the critical point of a test of size α as the order (1−α) empirical quantile

T ∗1−α of T ∗(b), (b = 1, ...,B), where T ∗(1) ≤ T ∗(2) ≤ . . . ≤ T ∗(B), are the corresponding

order statistics.
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(vi) Reject the null hypothesis if T̂ > T ∗1−α.

As the parametric bootstrap is somewhat time–consuming, we employ instead its

warp–speed version under which for each Monte Carlo sample we draw just one boot-

strap resample and compute the test statistic for this resample. Then the critical point is

computed as in step (v) above as the (1−α) empirical quantile of T ∗(m), (m = 1, ...,MC),

where T ∗m is the bootstrap statistic resulting from the mth Monte Carlo sample and MC

denotes the number of Monte Carlo samples; see Giacomini et al. (2013) [15].

In this simulation study, we choose six distributions from the family of SWS distri-

bution (under the null hypothesis) and eight distributions from alternative hypotheses,

including: (i) von Mises (vM) distributions, (ii) 2-component mixtures of vM distribu-

tions, (iii) asymmetric WS (AWS) distributions, (iv) 2-component mixtures of a sym-

metric WS distribution with an AWS distribution, (v) generalized von Mises (GvM)

distributions (introduced by Gatto and Jammalamadaka, 2007 [14]). Table 2.1 displays

the parameters for these distributions and Figure 2.1 illustrates the density functions of

the alternative hypothesis distributions. The computations were carried out in R, utiliz-

ing CircStats package to generate random samples for WS and vM distributions. We

choose λ = 0.3, 0.5, 0.7, 0.9, with f(r) being the Poisson probability function with mean

λ, and write Tλ for our test statistic. The proportion of rejections of the null hypothesis

for each distribution is computed from applying the tests to MC=5,000 samples, with

the critical points estimated using the warp–speed method. The results for sample size

n = 100, 50 and n = 30 are summarized in Table 2.2, 2.3, and 2.4, respectively, at nomi-

nal level α = 0.05 and α = 0.10. On the basis of these simulations results we make the

following observations: (1) The empirical level of our test is close to the nominal level

for Null 1 (which is at the boundary of the parameter space), and Null 2, 3 and 6, while
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it is higher than α for Null 4 and 5. (This kind of inaccuracy was also observed in the

Monte Carlo results of Koutrouvelis and Meintanis, 1999 [22]). (2) The empirical power

of our test is high for Alt. 1, 2, 3, 6 and 8, while it is very low (almost indistinguishable

from level of the test) for Alt. 4 and 5. Intuitively, this is probably due to the fact that

distributions Alt. 4 and Alt. 5 are unimodal and symmetrical, and thus they can be

approximated sufficiently well by a SWS distribution. (3) Compared with our test, both

the Kuiper’s and the Watson’s tests exhibit lower percentage of rejection both under the

null as well as under alternatives, except for Null 1. Generally, these tests perform much

worse or no better than our test in most cases, with occasional exceptions like Null 4

with n = 100 and Alt. 3 with n = 30. In particular, for Alt. 8, both tests have almost no

power while our test has high power when the sample size is large. (4) The test statistic

Tλ is robust with respect to λ and thus the value of λ does not affect significantly the

empirical level/power of our test. In other testing situations though finding a good value

for λ turns out to be important; see for instance Allison and Santana (2015) [2] for more

details.
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Figure 2.1: Density functions under alternative hypotheses
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Table 2.1: Null and Alternative hypotheses used for data simulation
Null 1 SWS(2, 0.5, π)
Null 2 SWS(1, 0.5, π)
Null 3 SWS(1, 1, π)
Null 4 SWS(1.9, 1, π)
Null 5 SWS(1.75, 1, π)
Null 6 SWS(1.5, 1, π)
Alternative 1 0.8vM(π, 5) + 0.2vM(π/2, 5)
Alternative 2 0.65vM(π, 5) + 0.35vM(π/2, 5)
Alternative 3 0.5vM(π, 5) + 0.5vM(π/2, 5)
Alternative 4 (1/3)vM(π, 8) + (2/3)vM(π, 0.1)
Alternative 5 vM(π/2, 2)
Alternative 6 AWS(1.2,−1, 0.5, π)
Alternative 7 0.5WS(2, 0, 0.75, 0) + 0.5WS(1.5,−1, 0.5, π)
Alternative 8 GvM(π, 3π/4, 1, 5)
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Table 2.2: Observed proportion of rejection at nominal level α for 5000 Monte Carlo
samples of size n = 100. Tλ represents proposed test with Poisson(λ) weight.

Hypothesis α K W T0.3 T0.5 T0.7 T0.9 T1

Null 1 0.05 0.0490 0.0488 0.0540 0.0554 0.0590 0.0592 0.0606
0.10 0.0976 0.1070 0.1076 0.1078 0.1070 0.1080 0.1078

Null 2 0.05 0.0100 0.0136 0.0470 0.0468 0.0454 0.0446 0.0418
0.10 0.0378 0.0432 0.0962 0.0960 0.0940 0.0920 0.0924

Null 3 0.05 0.0080 0.0144 0.0332 0.0332 0.0312 0.0310 0.0310
0.10 0.0344 0.0414 0.0728 0.0714 0.0708 0.0672 0.0670

Null 4 0.05 0.0440 0.0594 0.1008 0.1008 0.0984 0.0980 0.0972
0.10 0.0922 0.1170 0.1834 0.1796 0.1754 0.1722 0.1688

Null 5 0.05 0.0314 0.0474 0.0926 0.0890 0.0872 0.0832 0.0838
0.10 0.0740 0.1016 0.1576 0.1558 0.1524 0.1478 0.1448

Null 6 0.05 0.0224 0.0308 0.0628 0.0624 0.0606 0.0582 0.0558
0.10 0.0620 0.0708 0.1122 0.1118 0.1106 0.1096 0.1082

Alt. 1 0.05 0.7288 0.9072 0.9842 0.9860 0.9868 0.9864 0.9862
0.10 0.8612 0.9588 0.9946 0.9952 0.9952 0.9944 0.9946

Alt. 2 0.05 0.9334 0.9868 0.9824 0.9862 0.9888 0.9898 0.9904
0.10 0.9720 0.9944 0.9944 0.9950 0.9958 0.9960 0.9962

Alt. 3 0.05 0.9104 0.9784 0.9554 0.9660 0.9704 0.9758 0.9762
0.10 0.9598 0.9918 0.9834 0.9874 0.9890 0.9904 0.9912

Alt. 4 0.05 0.0000 0.0004 0.0378 0.0356 0.0334 0.0328 0.0318
0.10 0.0028 0.0084 0.0904 0.0862 0.0824 0.0792 0.0772

Alt. 5 0.05 0.0394 0.0418 0.0474 0.0482 0.0464 0.0466 0.0448
0.10 0.0908 0.0892 0.0954 0.0954 0.0944 0.0950 0.0950

Alt. 6 0.05 0.2942 0.3170 0.6962 0.7148 0.7252 0.7298 0.7308
0.10 0.5256 0.5788 0.8158 0.8340 0.8416 0.8442 0.8436

Alt. 7 0.05 0.0026 0.0376 0.5182 0.4958 0.4736 0.4476 0.4366
0.10 0.0146 0.1096 0.6366 0.6152 0.6002 0.5828 0.5720

Alt. 8 0.05 0.0000 0.0002 0.9470 0.9332 0.9098 0.8722 0.8484
0.10 0.0002 0.0010 0.9816 0.9750 0.9672 0.9522 0.9430
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Table 2.3: Observed proportion of rejection at nominal level α for 5000 Monte Carlo
samples of size n = 50. Tλ represents proposed test with Poisson(λ) weight.

Hypothesis α K W T0.3 T0.5 T0.7 T0.9 T1

Null 1 0.05 0.0492 0.0528 0.0506 0.0478 0.0478 0.0490 0.0490
0.10 0.0930 0.0966 0.0992 0.1038 0.1074 0.1084 0.1070

Null 2 0.05 0.0048 0.0106 0.0346 0.0358 0.0356 0.0344 0.0336
0.10 0.0314 0.0382 0.0776 0.0756 0.0742 0.0766 0.0760

Null 3 0.05 0.0032 0.0078 0.0314 0.0308 0.0290 0.0276 0.0274
0.10 0.0180 0.0266 0.0706 0.0684 0.0650 0.0642 0.0636

Null 4 0.05 0.0146 0.0352 0.1104 0.1090 0.1060 0.1024 0.1026
0.10 0.0486 0.0804 0.1898 0.1848 0.1808 0.1754 0.1742

Null 5 0.05 0.0154 0.0292 0.0854 0.0838 0.0802 0.0774 0.0762
0.10 0.0462 0.0748 0.1520 0.1534 0.1516 0.1494 0.1480

Null 6 0.05 0.0094 0.0172 0.0634 0.0636 0.0632 0.0602 0.0584
0.10 0.0358 0.0456 0.1278 0.1246 0.1188 0.1156 0.1138

Alt. 1 0.05 0.2980 0.5064 0.7880 0.7864 0.7860 0.7790 0.7762
0.10 0.4702 0.6666 0.8756 0.8752 0.8770 0.8726 0.8666

Alt. 2 0.05 0.5884 0.7778 0.7698 0.7962 0.8134 0.8284 0.8312
0.10 0.7292 0.8654 0.8892 0.9008 0.9088 0.9098 0.9106

Alt. 3 0.05 0.5860 0.7630 0.6566 0.7036 0.7324 0.7516 0.7640
0.10 0.7248 0.8714 0.8170 0.8412 0.8594 0.8734 0.8758

Alt. 4 0.05 0.0010 0.0032 0.0494 0.0486 0.0452 0.0442 0.0422
0.10 0.0096 0.0158 0.0924 0.0902 0.0870 0.0842 0.0826

Alt. 5 0.05 0.0370 0.0342 0.0434 0.0422 0.0418 0.0380 0.0392
0.10 0.0834 0.0820 0.0884 0.0836 0.0860 0.0844 0.0838

Alt. 6 0.05 0.0378 0.0350 0.3272 0.3422 0.3434 0.3458 0.3476
0.10 0.1446 0.1362 0.4980 0.5080 0.5100 0.5184 0.5212

Alt. 7 0.05 0.0036 0.0120 0.2524 0.2406 0.2238 0.2128 0.2048
0.10 0.0190 0.0622 0.3958 0.3816 0.3670 0.3522 0.3424

Alt. 8 0.05 0.0000 0.0010 0.6582 0.5946 0.5378 0.4674 0.4234
0.10 0.0000 0.0046 0.7940 0.7544 0.7052 0.6556 0.6198
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Table 2.4: Observed proportion of rejection at nominal level α for 5000 Monte Carlo
samples of size n = 30. Tλ represents proposed test with Poisson(λ) weight.

Hypothesis α K W T0.3 T0.5 T0.7 T0.9 T1

Null 1 0.05 0.0410 0.0490 0.0434 0.0472 0.0500 0.0498 0.0508
0.10 0.0928 0.0906 0.1060 0.1062 0.1036 0.1044 0.1016

Null 2 0.05 0.0036 0.0060 0.0326 0.0328 0.0298 0.0280 0.0290
0.10 0.0226 0.0314 0.0808 0.0796 0.0814 0.0762 0.0758

Null 3 0.05 0.0034 0.0074 0.0322 0.0330 0.0324 0.0306 0.0294
0.10 0.0206 0.0266 0.0818 0.0806 0.0778 0.0718 0.0720

Null 4 0.05 0.0054 0.0144 0.0838 0.0816 0.0772 0.0746 0.0738
0.10 0.0348 0.0524 0.1496 0.1484 0.1474 0.1426 0.1402

Null 5 0.05 0.0076 0.0158 0.0808 0.0792 0.0770 0.0760 0.0754
0.10 0.0328 0.0528 0.1462 0.1468 0.1410 0.1370 0.1366

Null 6 0.05 0.0052 0.0108 0.0606 0.0590 0.0560 0.0530 0.0524
0.10 0.0250 0.0386 0.1124 0.1098 0.1054 0.1042 0.1048

Alt. 1 0.05 0.0814 0.1570 0.4998 0.5120 0.5088 0.5040 0.4994
0.10 0.2314 0.3570 0.6342 0.6402 0.6384 0.6272 0.6240

Alt. 2 0.05 0.2622 0.4296 0.5218 0.5398 0.5588 0.5656 0.5724
0.10 0.4366 0.6104 0.6954 0.7150 0.7274 0.7288 0.7288

Alt. 3 0.05 0.2924 0.4466 0.3868 0.4352 0.4822 0.5088 0.5164
0.10 0.4696 0.6230 0.5976 0.6226 0.6424 0.6546 0.6608

Alt. 4 0.05 0.0030 0.0046 0.0560 0.0546 0.0518 0.0502 0.0474
0.10 0.0132 0.0216 0.1078 0.1052 0.1010 0.0990 0.0980

Alt. 5 0.05 0.0198 0.0182 0.0412 0.0400 0.0396 0.0394 0.0398
0.10 0.0658 0.0594 0.0912 0.0924 0.0888 0.0870 0.0866

Alt. 6 0.05 0.0154 0.0158 0.1774 0.1826 0.1832 0.1830 0.1840
0.10 0.0702 0.0660 0.3138 0.3146 0.3192 0.3224 0.3212

Alt. 7 0.05 0.0036 0.0094 0.1626 0.1542 0.1446 0.1358 0.1290
0.10 0.0220 0.0434 0.2606 0.2582 0.2502 0.2388 0.2320

Alt. 8 0.05 0.0000 0.0020 0.4076 0.3774 0.3432 0.2756 0.2512
0.10 0.0000 0.0058 0.5652 0.5356 0.4782 0.4268 0.4050

2.5 Real-Data Application

This section shows the application of our proposed test on a couple of real data sets.

Taylor and Burns (2016) [34] collected data sets for the radial distributions of mistletoes

and epiphytes from 5 different species, and discovered that they are highly directional
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and related to the availability of light and humidity. We consider two of their data sets:

Data set 1 consists of n = 67 observations on peraxilla colensoi and Data set 2 consists

of n = 65 observations on asplenium flaccidum. Figure 2.2 shows the histograms of two

data sets. The corresponding fitted symmetric WS distribution density functions are

shown in black lines. Table 2.5 gives the estimated parameters and p-values of the tests

for Data Set 1 and 2. At α = 0.05, all tests fail to reject the null hypothesis for Data Set

1 and reject the null hypothesis for Data Set 2.

Figure 2.2: Histograms of real data sets together with density functions of fitted
symmetric WS distributions

Table 2.5: Parameter estimates, and p-values of the tests for Data Sets 1 and 2
Data set Estimated Parameters K W C0.3 C0.5 C0.7 C0.9 C1

1 γ̂ = 1.32, τ̂ = 1.06, µ̂ = 5.78 0.502 0.586 0.316 0.344 0.370 0.412 0.434
2 γ̂ = 1.40, τ̂ = 0.79, µ̂ = 2.82 0.036 0.012 0.028 0.020 0.014 0.008 0.006

2.6 Discussion

We suggest a goodness–of–fit test for family of SWS distributions with unknown pa-

rameters. The proposed test statistic is based on the characteristic function of this family

which unlike the corresponding density may be written in closed form. Furthermore the

21



Goodness-of-Fit Test for Wrapped Stable Distributions Based on the Characteristic Function
Chapter 2

methods used for estimating the stable distribution parameters also utilize the charac-

teristic function, and thus avoid numerically complicated likelihood–based procedures.

The suggested test criterion, which is be expressed as a weighted L2–type distance be-

tween empirical trigonometric moments and the corresponding theoretical quantities, is

shown to be consistent against general alternatives. The findings of a Monte Carlo study

show that the new test criteria compete well with classical procedures, while a couple of

real–data examples further illustrate the applicability of the new procedures.

22



Chapter 3

Distance-Based Clustering for von

Mises Mixtures

3.1 Introduction

This chapter introduces a hierarchical clustering procedure for periodic curves around

a circle. Such curves are generated by measuring the thickness of the neuroretinal rim

(NRR) obtained in Optical Coherence Tomography (OCT). We develop a model-based

clustering by fitting a mixture of vM densities for each curve after proper scaling. Suppose

we have n such circular curves presented in a dataset. Our goal is to cluster these curves

based on the similarity of their underlying distributions. For doing this, we need to define

a metric measuring the distance between each pair of curves, and then use hierarchical

clustering method. The general steps would be:

1. Draw samples from the corresponding circular density of each curve that are ob-

tained by scaling the curve,

2. Estimate vM mixture distribution for each curve from its sample,
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3. Compute the dissimilarity or distance matrix between the estimated curves,

4. Apply a hierarchical clustering method to this distance matrix and obtain the

hierarchy of clusters,

5. Choose the proper number of clusters and group the curves accordingly.

Specifically, in Step 1 we choose to approximate each curve by a vM mixture due to

its flexibility. In fact, analogous to the result that any distribution on the real line

can be approximated by a normal mixture with countable number of components (see

Teicher(1960) [35] and Ferguson(1983) [12]), one may show that any circular distribution

can be approximated by a vM mixture with countable number of components.

In Step 2, we would like to use L2 distance, a widely used measure for the dissimilarity

between two curves. Section 3.2 and 3.3 will give the explicit form of L2 distance for vM

mixtures with arbitrary number of components.

3.2 L2 Distance Between Two vM Distributions

L2 distance is a metric for measuring the dissimilarity between two probability dis-

tributions. The definition of L2 distance for two circular distributions with probability

density functions (PDF) f(α) and g(α), where α ∈ [0, 2π), is presented as follows.

L2(f, g) =

∫ 2π

0

(f(α)− g(α))2dα (3.1)

When both f and g are vM distributions, the explicit form of their L2 distance can be

derived with the help of the following lemma.

Lemma 3.2.1 (See Jammalamadaka and SenGupta (2001) [20], p.40) For any two vM
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distributions f ∼ vM(µ1, κ1) and g ∼ vM(µ2, κ2),

∫ 2π

0

f(α)g(α)dα =
I0(κ)

2πI0(κ1)I0(κ2)
(3.2)

where

κ =
√
κ2

1 + κ2
2 + 2κ1κ2 cos(µ1 − µ2)

Proof: By following straightforward algebra,

∫ 2π

0

f(α)g(α)dα =
1

(2π)2I0(κ1)I0(κ2)

∫ 2π

0

eκ1 cos(α−µ1)+κ2 cos(α−µ2)dα

=
1

(2π)2I0(κ1)I0(κ2)

∫ 2π

0

e(κ1 cosµ1+κ2 cosµ2) cosα+(κ1 sinµ1+κ2 sinµ2) sinαdα

=
1

(2π)2I0(κ1)I0(κ2)

∫ 2π

0

eA cosα+B sinαdα

under reparameterization, where

A = κ1 cosµ1 + κ2 cosµ2,

B = κ1 sinµ1 + κ2 sinµ2.

We can rewrite them as A = κ cosµ,B = κ sinµ, where µ and κ are given by

µ = arctan
B

A
,

and

κ2 = A2 +B2
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= κ2
1 cos2 µ1 + κ2

2 cos2 µ2 + 2κ1κ2 cosµ1 cosµ2

+ κ2
1 sin2 µ1 + κ2

2 sin2 µ2 + 2κ1κ2 sinµ1 sinµ2

= κ2
1 + κ2

2 + 2κ1κ2 cos(µ1 − µ2).

Under this representation, there is

∫ 2π

0

f(α)g(α)dα =
1

(2π)2I0(κ1)I0(κ2)

∫ 2π

0

eκ cosµ cosα+κ sinµ sinαdα

=
1

(2π)2I0(κ1)I0(κ2)

∫ 2π

0

eκ cos(α−µ)dα

=
I0(κ)

2πI0(κ1)I0(κ2)
.

Proposition 3.2.1 (L2 distance between two vM distributions) For any two vM

distributions f ∼ vM(µ1, κ1) and g ∼ vM(µ2, κ2), the L2 distance is

L2(f, g) =
1

2π

(
I0(2κ1)

I0(κ1)2
+
I0(2κ2)

I0(κ2)2
− 2I0(κ)

I0(κ1)I0(κ2)

)
(3.3)

where

κ =
√
κ2

1 + κ2
2 + 2κ1κ2 cos(µ1 − µ2)

Proof: By Lemma 3.2.1,

∫ 2π

0

f 2(α)dα =
I0(
√
κ2

1 + κ2
1 + 2κ1κ1 cos(µ1 − µ1))

2πI0(κ1)I0(κ1)

=
I0(2κ1)

2π(I0(κ1))2
,
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and similarly,

∫ 2π

0

g2(α)dα =
I0(2κ2)

2π(I0(κ2))2
.

Thus,

L2(f, g) =

∫ 2π

0

(f(α)− g(α))2dα

=

∫ 2π

0

f 2(α)dα +

∫ 2π

0

g2(α)dα− 2

∫ 2π

0

f(α)g(α)dα

=
1

2π

(
I0(2κ1)

(I0(κ1))2
+

I0(2κ2)

(I0(κ2))2
− 2I0(κ)

I0(κ1)I0(κ2)

)

3.2.1 L2 Distance Between Two vM Mixtures

Now consider two vM mixtures, h1 and h2, with PDFs given by

h1(α) =
k∑
i=1

pifi(α), h2(α) =
l∑

j=1

qjgj(α), (3.4)

where fi and gj are vM PDFs and the mixture proportions satisfy the restriction
∑k

i=1 pi =∑l
j=1 qj = 1. Then, by definition, the L2 distance is

L2(h1, h2) =

∫ 2π

0

(
k∑
i=1

pifi(α)−
l∑

j=1

qjgj(α)

)2

dα

=
k∑
i=1

k∑
i′=1

pipi′

∫ 2π

0

fi(α)fi′(α)dα +
l∑

j=1

l∑
j′=1

qjqj′

∫ 2π

0

gj(α)gj′(α)dα

− 2
k∑
i=1

l∑
j=1

piqj

∫ 2π

0

fi(α)gj(α)dα. (3.5)
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And the integrals are computed using Lemma 3.2.1.

3.3 Another Dissimilarity Measure—Symmetric Kullback-

Liebler Divergence

We would like to compare the L2 distance with another dissimilarity measure—

Symmetric Kullback-Liebler (SKL) divergence. The SKL divergence is a symmetrized

version of the KL divergence. For two circular distributions with PDFs f and g, the KL

divergence is defined as

KL(f ||g) =

∫ 2π

0

log

(
f(α)

g(α)

)
f(α)dα.

KL divergence is not symmetric since in general KL(f ||g) 6= KL(g||f). This problem

can be rectified using the SKL divergence defined as

SKL(f, g) = KL(f ||g) +KL(g||f).

Wainwright (2019) [37] gives the explicit formula for SKL between two vM distri-

butions, and suggested a numerical method for computing the SKL between two vM

mixture. The results are presented as follows.

For any two vM distributions f ∼ vM(µ1, κ1) and g ∼ vM(µ2, κ2), the SKL diver-

gence is given by

SKL(f, g) = κ1A(κ1) + κ2A(κ2)− cos(µ1 − µ2) [κ2A(κ1) + κ1A(κ2)] . (3.6)
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And for any two vM mixtures h1, h2 defined in (3.4), the SKL divergence is given by

SKL(h1, h2) =

∫ 2π

0

log

(
h1(α)

h2(α)

)
h1(α)dα +

∫ 2π

0

log

(
h2(α)

h1(α)

)
h2(α)dα. (3.7)

In general (3.7) cannot be computed analytically and one may use numerical integra-

tion methods to evaluate these integrals quite accurately.

3.3.1 A Visual Comparison of the L2 and SKL Measures for vM

Distributions

Figure 3.1 and 3.2 illustrate the two measures side-by-side in terms of how they change

by varying |µ1 − µ2|, or κ2 − κ1, or both. Although the magnitudes of the two measures

are different—for instance, the SKL divergence is about 10 times the L2 distance for the

same pair of vM mixtures, yet they would provide comparable clustering results when

used as dissimilarity measurements, judging by the similarities in the shapes of the line

plots and 3D plots between the two.

3.4 Clustering Circular Curves—A Simulation Study

The simulation study aims at assessing the effectiveness of our proposed clustering

procedure, and will focus on two aspects: (1) whether the density estimates are accurate,

and (2) whether the clusters obtained using the samples can identify the similarities

between the true distributions that generated them.

3.4.1 Evaluating Estimations of the Curves

As explained in Section 3.1, we use vM mixtures to approximate the true circular

distributions. Parameter estimation for vM mixture can be accomplished in R using
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Figure 3.1: Top: L2 distance (left) and SKL distance (right) vs |µ1 − µ2|, for fixed
κ1, κ2. Bottom: L2 distance (left) and SKL distance (right) vs κ2 − κ1, for fixed
µ1 = µ2 = µ and κ1. Note that the y-axis scales are different for L2 and SKL
distance.

the movMF package developed by Hornik and Grün [17]. This package implements EM

algorithm variants to estimate parameters for mixture of von Mises-Fisher distribution, a

high-dimensional spherical distribution that reduces to vM mixture when the distribution

lies in R2. Note that this algorithm requires number of mixture components k to be

specified. For real data, k is often unknown, and our strategy is to fit the mixture model
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Figure 3.2: 3D plots for L2 distance (left) and SKL distance (right) vs |µ1 − µ2| and
κ2− κ1 for fixed κ1. Note that the color scales are different for L2 and SKL distance.

for a series of k values and select the one with minimum BIC value.

We would like to explore whether the algorithm can give desirable vM mixture esti-

mates in 4 simulated case studies. For each case study, two 2-component vM mixtures

and one 3-component vM mixture are selected as the true distributions, and 5 samples
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are generated from each distribution. The choices of parameters for true distributions

are given in Table 3.1. Case 1 contains vM mixtures that have equal mixture weights p,

moderately high κ’s, and with differences between µ’s that are large enough such that the

number of components k equals the number of modes. Cases 2, 3 and 4 are all variants of

Case 1. Case 2 has smaller κ′s, Case 3 has smaller µ differences such that its 2-component

vM mixtures is indeed unimodal, and Case 4 has unequal p’s and thus unequal heights

for each mode. These cases aim at showing how sample-based parameter estimation and

component selection results are affected by the underlying mixture distributions.

Figure 3.3 compares the estimated densities with the corresponding true densities.

In the grid of plots, the rows represent case studies and the columns represent the three

different vM mixture distributions within each case. In any particular plot, the black

dashed line is the true density, while the colored solid lines are the five associated esti-

mated densities. Case 1 shows good consistency between true and estimated densities,

except that the red curve in vM mixture 3 is too flat and only has k = 1 component.

Case 2 shows that smaller κ values can impair this consistency, as wrong k (number

of components) are often chosen. Case 3 shows that the selected k values match with

the number of modes, if not at their true values. Nevertheless, the true and estimated

density curves are consistent when it is not near the modes. Case 4 show that the esti-

mation procedure sometimes fails to identify those smaller modes, which correspond to

the components with smaller p’s.

From the results above we can summarize that, in general this algorithm gives better

parameter estimation results for vM mixture when (1) the concentration parameters of

vM components are large, (2) the mixing probabilities do not have a small value, and

(3) the number of modes match with the number of vM components since the modes are

well separated. Although if condition (3) is not met and the algorithm cannot recover

the correct number of mixing components, the estimated density curve is still reasonably
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Case Mixture Component µ (rad.) κ p

Case 1

vM-mix 1
f1(α;µ, κ) 0 4.0 0.5
f2(α;µ, κ) 2π/3 (≈ 2.09) 4.0 0.5

vM-mix 2
f1(α;µ, κ) π (≈ 3.14) 3.0 0.5
f2(α;µ, κ) 5π/3 (≈ 5.24) 3.0 0.5

vM-mix 3
f1(α;µ, κ) 0 5.0 0.333
f2(α;µ, κ) 2π/3 (≈ 2.09) 5.0 0.333
f3(α;µ, κ) 4π/3 (≈ 4.19) 5.0 0.333

Case 2

vM-mix 1
f1(α;µ, κ) 0 2.0 0.5
f2(α;µ, κ) 2π/3 (≈ 2.09) 2.0 0.5

vM-mix 2
f1(α;µ, κ) π (≈ 3.14) 2.0 0.5
f2(α;µ, κ) 5π/3 (≈ 5.24) 2.0 0.5

vM-mix 3
f1(α;µ, κ) 0 4.0 0.333
f2(α;µ, κ) 2π/3 (≈ 2.09) 4.0 0.333
f3(α;µ, κ) 4π/3 (≈ 4.19) 4.0 0.333

Case 3

vM-mix 1
f1(α;µ, κ) 0 4.0 0.5
f2(α;µ, κ) π/3 (≈ 1.05) 4.0 0.5

vM-mix 2
f1(α;µ, κ) π (≈ 3.14) 3.0 0.5
f2(α;µ, κ) 4π/3 (≈ 4.19) 3.0 0.5

vM-mix 3
f1(α;µ, κ) 0 5.0 0.333
f2(α;µ, κ) 2π/3 (≈ 2.09) 5.0 0.333
f3(α;µ, κ) 4π/3 (≈ 4.19) 5.0 0.333

Case 4

vM-mix 1
f1(α;µ, κ) 0 4.0 0.75
f2(α;µ, κ) 2π/3 (≈ 2.09) 4.0 0.25

vM-mix 2
f1(α;µ, κ) π (≈ 3.14) 3.0 0.25
f2(α;µ, κ) 5π/3 (≈ 5.24) 3.0 0.75

vM-mix 3
f1(α;µ, κ) 0 5.0 0.20
f2(α;µ, κ) 2π/3 (≈ 2.09) 5.0 0.60
f3(α;µ, κ) 4π/3 (≈ 4.19) 5.0 0.20

Table 3.1: Simulated Data Parameter Values
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Figure 3.3: Estimated Density Curves vs. True Density Curves. The three plots in
each row corresponds to the three vM mixtures in each case. Black dashed lines are
the true density curves and colored solid lines are estimated density curves.
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close to the true density curve.

3.4.2 Evaluation of Clustering Results

After estimating the vM mixture densities for each sample we are able to use formula

(3.5) to compute pairwise L2 distances and construct the distance matrix. Then a hier-

archical clustering method can be applied in order to build a hierarchy of clusters, which

can be represented by a dendrogram. Each level of the dendrogram shows the clustering

result for certain number of clusters.

In each case study, if our proposed clustering procedure is ideal, we should be able to

see a complete separation at 3 clusters, i.e. each of the 3 clusters should only contain the

samples generated from the same true density. Table 3.2 show that L2-based clustering

is able to recover the correct cluster membership for all the samples. Figure 3.4 display

row end dendrograms and heatmaps for these two clustering metrics. For Case 1, 3,

and 4, the between-cluster L2 distances are much larger than within-cluster L2 distances.

The heatmap patterns suggest that, for arbitrary samples denoted by A,B,C and D, the

distance L2(A,B) ≈ L2(C,D) as long as A, C are in the same cluster and B, D are in

the same cluster. For Case 2, the heatmap pattern is more fuzzy, mainly due to the less

desirable consistency between estimated and true density curves as discussed earlier.

vM-mix 1 vM-mix 2 vM-mix 3
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15

Case 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Case 2 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Case 3 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
Case 4 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Table 3.2: L2-based Cluster Membership
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Figure 3.4: L2 Clustering Heatmap (Simulated Data)

3.5 A Real-Data Application

The data of interest [30] contains periodic curves that measure the thickness of the

neuroretinal rim (NRR), which are made with Optical Coherence Tomography (OCT),

a non-invasive imaging technique that can generate high-resolution images of the retina,

retinal nerve fiber layer and optic nerve head. For each eye, the NRR is a ring-like region

between the margin of the optic disc and optic cup, and its center is the same as the
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center of the optic cup. The measurements of NRR thickness can be made at any angle

with respect to the center and thus form a continuous circular curve.

In the data set we use there are 100 NRR curves S(i), i = 1, ..., 100, each observed at

αj = (j − 1)π/90, j = 1, ..., 180, the 180 equally-spaced angles on [0, 2π). Suppose we

are interested in clustering the curves only based on their shape characteristics and not

their magnitudes, then we can scale each NRR curve to a circular density

f (i)(α) =
S(i)(α)∫ 2π

0
S(i)(α)dα

, α ∈ [0, 2π) (3.8)

and cluster these densities. The values of f (i) evaluated at all the αj’s can be approxi-

mated by the discrete scaled measurements

f̂ (i)(αj) =
S(i)(αj)∑180
j=1 S

(i)(αj)
, for j = 1, ..., 180 (3.9)

Our proposed clustering procedure requires samples from circular densities rather than

the density values around the circumference. Although random samples can be generated

based on the circular densities (3.9), we decide to artificially construct samples for better

accuracy. For each set of scaled measurements {f̂ (i)(αj)}180
j=1 we construct a sample of

size n by repeating the value αj for [nf̂ (i)(αj)] times in the sample, where [.] denotes

the rounding function. This method ensures the scaled measurement can be sufficiently

approximated by the empirical distribution of the artificially constructed sample when

the sample size is large. Figure 3.5 illustrates that the histogram of the constructed

sample for a randomly chosen NRR curve matches nicely with the corresponding scaled

measurement curve when n = 1000.
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Figure 3.5: Histogram of the constructed sample for a randomly chosen NRR curve.
The red line represents the scaled measurements. The sample size is n = 1000

By constructing the samples for all the scaled NRR curves and applying the L2-

based clustering procedure, the hierarchy of clusters is obtained and illustrated by the

dendrogram in Figure 3.6. To choose the proper number of clusters, we consider two

criterion—Average Silhouette Width (ASW) and Dunn Index (DI)— for evaluating the

goodness of clustering. ASW is a measurement for the similarity of each subject to its own

cluster compared to other clusters (see Rousseeu (1987) [31]), and DI is a measurement

that compares the within-cluster distances with the inter-cluster distances (see Dunn

(1974) [10]). A larger value for either criterion is an indication of better clustering. Figure

3.7 shows that among the number of clusters k = 2, 3, ..., 10, both criterion is maximized

when k = 3. Thus, the optimal clustering comes from cutting the dendrogram at 3

clusters, which are enclosed by red boxes in Figure 3.6.

Therefore, our conclusion is that under our proposed hierarchical clustering frame-

work, the NRR curves can most reasonably be clustered into three groups, based on the

similarity of the circular density the curves represent under proper scaling. It provides a
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foundation for Ophthalmologists to further research if the cluster assignment are related

to the other characteristics of the patients.

Figure 3.6: L2 clustering dendrogram for real data
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Figure 3.7: Averaged Silhouette Width (left) and Dunn Index (right) vs. number of clusters.
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Chapter 4

Some Properties of Wrapped

Distributions

4.1 Introduction

A circular distribution can be obtained by wrapping a linear distribution around a

unit circle, besides several other methods (See [20], Section 2.1.1). Such wrapped distribu-

tions enjoy some interesting properties. For instance Jammalamadaka and Kozubowski

(2017) [18] showed that the wrapped distribution obtained from a mixture of linear

components, is the same as the corresponding mixture of individually wrapped linear

components i.e. that mixing and wrapping commute. In this chapter, first in Section

4.2, we will show that a similar property holds in terms of convolutions viz. wrapping a

convolution of an arbitrary number of linear components corresponds to the convolution

of the corresponding wrapped distributions. Then using the property that mixtures and

wrapping commute, as shown in [18], we produce a Wrapped Quasi Lindley (WQL)

distribution which happens to be a mixture of two linear components, instead of working

with the original density of Quasi Lindley model. We will also show that the convolution
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and mixing also commutes, and will derive the convolution of WQL distributions as an

example.

4.2 The Commutative Property of Convolution and

Wrapping

We use X and Xw to denote the random variables that follow an arbitrary linear

distribution and its corresponding wrapped distribution, which is obtained by wrapping

X around a unit circle. By definition,

Xw = X mod 2π. (4.1)

Suppose fX(x) is the PDF of X, the PDF of Xw is given by

fwX(γ) =
+∞∑

k=−∞

fX(γ + 2πk), γ ∈ [0, 2π). (4.2)

The following theorem shows the commutative property of the two operations, namely

convoluting and wrapping.

Theorem 4.2.1 Suppose X and Y are two arbitrary r.v.s defined on the real line, then

wrapping their convolution is equivalent to the convolution of their corresponding wrapped

distributions, i.e.

(X + Y )w = Xw + Y w

Proof: The PDF of their convolution Z = X + Y is given by

fZ(z) =

∫ +∞

−∞
fX(x)fY (z − x)dx (4.3)
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By applying (4.2) to the equation above, we can write the PDF of wrapped Z as

fwZ (γ) =
+∞∑

k=−∞

∫ +∞

−∞
fX(x)fY (γ + 2kπ − x)dx (4.4)

=

∫ +∞

−∞

+∞∑
k=−∞

fY (γ + 2kπ − x)fX(x)dx (4.5)

=

∫ +∞

−∞
fwY (γ − x)fX(x)dx (4.6)

=
+∞∑
j=−∞

∫ 2π

0

fwY (γ − x− 2jπ)fX(x+ 2jπ)dx (4.7)

=
+∞∑
j=−∞

∫ 2π

0

fwY (γ − x)fX(x+ 2jπ)dx (4.8)

=

∫ 2π

0

+∞∑
j=−∞

fX(x+ 2jπ)fwY (γ − x)dx (4.9)

=

∫ 2π

0

fwX(x)fwY (γ − x)dx. (4.10)

Alternatively, this theorem can be proved using the ChF of the two random variables.

Proof: Still let Z = X + Y . Zw can be written as

Zw = Z mod 2π (4.11)

=

(
+∞∑

k=−∞

Z · I{2πk ≤ Z < 2π(k + 1)}

)
mod 2π (4.12)

=
+∞∑

k=−∞

(Z − 2πk) · I{2πk ≤ Z < 2π(k + 1)} (4.13)

According to Proposition 2.1 of Jammalamadaka and SenGupta (2001) [20], the ChF

of wrapped distribution, when evaluated at p ∈ Z, is identical to the ChF of unwrapped

distribution, i.e. φXw(p) = φX(p), φY w(p) = φY (p), and φZw(p) = φZ(p). With these and
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Eqn. (4.13), we are able to prove the ChF of (X + Y )w equals the ChF Xw + Y w, and

the details are as follows.

φ(X+Y )w(p) = φZw(p) (4.14)

= E[exp(ipZw)] (4.15)

= E

{
exp

[
ip

(
+∞∑

k=−∞

(Z − 2πk) · I{2πk ≤ Z < 2π(k + 1)}

)]}
(4.16)

= E

{
+∞∏

k=−∞

exp[ip(Z − 2πk)] · I{2πk ≤ Z < 2π(k + 1)}

}
(4.17)

= E

{
+∞∏

k=−∞

exp(ipZ) · I{2πk ≤ Z < 2π(k + 1)}

}
(4.18)

= E

{
exp

[
ipZ ·

(
+∞∑

k=−∞

I{2πk ≤ Z < 2π(k + 1)}

)]}
(4.19)

= E[exp(ipZ)] (4.20)

= φZ(p) (4.21)

= φX(p) · φY (p) (4.22)

= φXw(p) · φY w(p) (4.23)

= φXw+Y w(p) (4.24)

Since ChF uniquely determines the distribution if its PDF is continuous, it can be con-

cluded that (X + Y )w = Xw + Y w.

4.2.1 The Commutative Property of Mixing and Convoluting

First, consider the case where the convolution occurs between two distributions, each

of which is a 2-component mixture. Suppose the mixture distributions are represented by
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Z1 = pX1 +(1−p)X2 and Z2 = qY1 +(1−q)Y2, and we would like to find the distribution

of their convolution S = Z1 + Z2. By the definition of convolution,

fS(s) = (fZ1 ∗ fZ2)(s) =

∫
Ω

fZ1(t)fZ2(s− t)dt. (4.25)

Since Z1, Z2 are mixtures, their PDFs are given by

fZ1(z) = pfX1(z) + (1− p)fX2(z), (4.26)

fZ2(z) = qfY1(z) + (1− q)fY2(z). (4.27)

Then

fS(s) =

∫
Ω

[pfX1(t) + (1− p)fX2(t)][qfY1(s− t) + (1− q)fY2(s− t)]dt (4.28)

= pq

∫
Ω

fX1(t)fY1(s− t)dt+ p(1− q)
∫

Ω

fX1(t)fY2(s− t)dt

+ (1− p)q
∫

Ω

fX2(t)fY1(s− t)dt+ (1− p)(1− q)
∫

Ω

fX2(t)fY2(s− t)dt (4.29)

= pq(fX1 ∗ fY1)(s) + p(1− q)(fX1 ∗ fY2)(s)

+ (1− p)q(fX2 ∗ fY1)(s) + (1− p)(1− q)(fX2 ∗ fY2)(s) (4.30)

Therefore, S is a 4-component mixture. By induction, this result can be extended to

the convolution of an arbitrary number of distributions, each of which is a mixture of an

arbitrary number of components.
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4.3 Wrapped Quasi Lindley Distribution

The Quasi Lindley Distribution QLD(θ, α) is a two-parameter probability distribu-

tion defined on R+ and its PDF is given by

fQLD(x; θ, α) =
θ

α + 1
(α + θx)e−θx, x ∈ R+, (4.31)

where θ > 0 and α ≥ 0. See Shanker and Mishra (2013) [33]. The QLD has the following

mixture expression.

Proposition 4.3.1 A QLD can be expressed as a mixture of an exponential distribution

and a Gamma distribution i.e.

fQLD(x; θ, α) =
α

1 + α
fExp(x; θ) +

1

1 + α
fG(x; 2, θ), (4.32)

where fExp(x; θ) is the PDF of exponential distribution with rate parameter θ, and fG(x; 2, θ)

is the PDF of Gamma distribution with shape parameter equals 2 and rate parameter θ.

The Wrapped Quasi Lindley (WQL) distribution, denoted by WQL(θ, α), can be ob-

tained by wrapping QLD(θ, α) around a unit circle. Since QLD(θ, α) can be expressed

as a mixture of exponential and Gamma distributions, by exchanging the order of wrap-

ping and mixing, we can conclude that WQL is also a mixture of wrapped exponential

distribution and wrapped Gamma distribution.

Corollary 4.3.1 A WQL distribution can be expressed as a mixture of wrapped expo-

nential distribution and wrapped Gamma distribution.

fWQL(β; θ, α) =
α

1 + α
fWE(β; θ) +

1

1 + α
fWG(β; 2, θ), (4.33)
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where fWE(β; θ) is the PDF of wrapped exponential distribution with rate parameter θ,

and fWG(β; 2, θ) is the PDF of wrapped Gamma distribution with shape parameter equals

2 and rate parameter θ.

The mixture representation of the WQL distribution can be used to derive the following

result.

Corollary 4.3.2 The PDF of WQL(θ, α) is given by

fWQL(β; θ, α) =
θe−θβ

α + 1

(
α + θβ

1− e−2πθ
+

2πθe−2πθ

(1− e−2πθ)2

)
. (4.34)

Proof: From Jammalamadaka and Kozubowski (2004) [19], the PDF of WE(θ) is

fWE(β) =
θe−θβ

1− e−2πθ
, (4.35)

The WG distribution can be obtained from a mixture of truncated Gamma distributions.

The number of mixture components is equal to the shape parameter when it is an integer

(see Coelho (2007) [8]). Therefore, the PDF of WG(2, θ) is given by

fWG(β; 2, θ) = p0ftG0(β; 1, θ) + p1ftG1(β; 2, θ), (4.36)

where ftG0, ftG1 are the PDFs of truncated Gamma distributions tG(1, θ, [0, 2π)) and

tG(2, θ, [0, 2π)) and p0, p1 are mixing probabilities. The values of p0, p1 are given by

p0 = γ∗(1; 2πθ) · 2πθ

1!
· Φ∗(e−2πθ, 1)

= (1− e−2πθ) · 2πθ · e−2πθ

(1− e−2πθ)2

=
2πθe−2πθ

1− e−2πθ
, (4.37)
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p1 = 1− p0 =
1− e−2πθ − 2πθe−2πθ

1− e−2πθ
. (4.38)

The truncated Gamma distribution tG(k, θ, [0, 2π) is the Gamma distributionGamma(k, θ)

restricted on [0, 2π). Thus ftG0 and ftG1 are given by

ftG0(β; 1, θ) =
e−θβ∫ 2π

0
e−θβdβ

=
θe−θβ

1− e−2πθ
, (4.39)

ftG1(β; 2, θ) =
βe−θβ∫ 2π

0
βe−θβdβ

=
θ2βe−θβ

1− e−2πθ − 2πe−2πθ
. (4.40)

Therefore,

fWG(β; 2, θ) =
2πθe−2πθ

1− e−2πθ
· θe−θβ

1− e−2πθ
+

1− e−2πθ − 2πθe−2πθ

1− e−2πθ
· θ2βe−θβ

1− e−2πθ − 2πe−2πθ

=

[
2πθ2e−2πθ

(1− e−2πθ)2
+

θ2β

1− e−2πθ

]
e−θβ. (4.41)

Then Eqn. (4.33) becomes

fWQL(β; θ, α) =
α

1 + α
· θe−θβ

1− e−2πθ
+

1

1 + α
·
[

2πθ2e−2πθ

(1− e−2πθ)2
+

θ2β

1− e−2πθ

]
e−θβ

=
θe−θβ

α + 1

(
α + θβ

1− e−2πθ
+

2πθe−2πθ

(1− e−2πθ)2

)
. (4.42)

4.4 The Convolution of Two WQL Distributions

The distribution of the convolution of two independent WQL distributions with the

same shape parameters can be derived by using the commutative property of wrapping,

mixing and convoluting operations. The details are shown below.

Suppose X1 and X2 are two independent r.v.s with X1 ∼ QLD(θ, α1) and X2 ∼
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QLD(θ, α2). By wrapping X1 and X2 around a unit circle, we can generate Xw
1 and

Xw
2 , two independent circular r.v.s with Xw

1 ∼ WQL(θ, α1) and Xw
2 ∼ WQL(θ, α2). Let

S = X1 +X2 denote the convolution of X1 and X2. By exchanging the order of wrapping

and convolution, there is

Sw = (X1 +X2)w = Xw
1 +Xw

2 , (4.43)

i.e. the convolution of the two WQL r.v.s Xw
1 and Xw

2 can be obtained by wrapping S.

The distribution of S can be identified by the following corollary.

Corollary 4.4.1 The convolution of QLD(θ, α1) and QLD(θ, α2) is distributed as a

mixture of Gamma distributions

α1α2

(1 + α1)(1 + α2)
Gamma(2, θ)+

2α1 + 2α2

(1 + α1)(1 + α2)
Gamma(3, θ)+

1

(1 + α1)(1 + α2)
Gamma(4, θ),

(4.44)

where Gamma(k, θ) is the Gamma distribution with shape parameter k and rate param-

eter θ.

Proof: Based on (4.31) and the commutative property of mixing and convoluting,

fX1+X2(x) =

(
α1

1 + α1

fExp(x; θ) +
1

1 + α1

fG(x; 2, θ)

)
∗
(

α2

1 + α2

fExp(x; θ) +
1

1 + α2

fG(x; 2, θ)

)
=

α1α2

(1 + α1)(1 + α2)
fExp(x; θ) ∗ fExp(x; θ) +

2α1 + 2α2

(1 + α1)(1 + α2)
fExp(x; θ) ∗ fG(x; 2, θ)

+
1

(1 + α1)(1 + α2)
fG(x; 2, θ) ∗ fG(x; 2, θ). (4.45)

Since Exp(θ) is equivalent to Gamma(1, θ) and the convolution of Gamma distributions

follows the rule: Gamma(k1, θ) +Gamma(k2, θ) ∼ Gamma(k1 + k2, θ), the convolutions

49



Some Properties of Wrapped Distributions Chapter 4

in Eqn. (4.45) becomes

fExp(x; θ) ∗ fExp(x; θ) = fG(x; 2, θ) (4.46)

fExp(x; θ) ∗ fG(x; 2, θ) = fG(x; 3, θ) (4.47)

fG(x; 2, θ) ∗ fG(x; 2, θ) = fG(x; 4, θ) (4.48)

Thus expression (4.44) is verified.

By applying the wrapping operation to S, we can show that a similar result exists for

WQL convolution.

Corollary 4.4.2 The convolution of WQL(θ, α1) and WQL(θ, α2) is distributed as a

mixture of wrapped Gamma distributions

α1α2

(1 + α1)(1 + α2)
WG(2, θ) +

2α1 + 2α2

(1 + α1)(1 + α2)
WG(3, θ) +

1

(1 + α1)(1 + α2)
WG(4, θ),

(4.49)

where WG(k, θ) is the wrapped Gamma distribution with shape parameter k and rate

parameter θ.
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Chapter 5

Testing Symmetry in Sine-Skewed

von Mises Distributions

5.1 Sine-Skewed Circular Distribution

Umbach and Jammalamadaka (2009) [36] adapted the idea of Azzalini (2005) [3] for

linear distributions and proposed a class of asymmetric variations for any given circular

distribution. The proposed distribution class takes on the form described below.

Theorem 5.1.1 (Umbach and Jammalamadaka (2009) [36]) Suppose f and g are

circular densities defined on [−π, π) that are symmetric about 0 and G(θ) =
∫ θ
−π g(γ)dγ.

If w is an odd function with |w(θ)| ≤ π and periodic with w(θ) = w(θ + 2πk) for all

k ∈ Z. Then

f(θ|µ) = 2f(θ − µ)G(w(θ − µ)) (5.1)

is a circular density.

A sine-skewed circular distribution (studied in Abe and Pewsey (2011) [1]) is a special

case of above distribution class with G(θ) = (π + θ)/(2π) and w(θ) = λπ sin(θ). For any
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given circular distribution f0(θ) that is symmetrical around 0, its sine-skewed circular

distribution has the PDF

f(θ|µ, λ) = f0(θ − µ)[1 + λ sin(θ − µ)] (5.2)

where λ ∈ [−1, 1] is the skewness parameter.

The sine-skewed distribution is in general not symmetrical unless λ = 0, and is usually

unimodal if the initial distribution f0 is unimodal. Therefore it is an effective method to

obtain a asymmetrical variation of a given circular distribution. In this chapter we focus

on the sine-skewed vM (SvM) distribution, which assumes f0 is the PDF of vM(0, κ).

Then the PDF of SvM(µ, κ, λ) is given by

f(θ|µ, κ, λ) = f0(θ − µ|κ)[1 + λ sin(θ − µ)]

=
eκ cos(θ−µ)

2πI0(κ)
[1 + λ sin(θ − µ)] (5.3)

We use the following notations in this chapter: αp, βp are the p-th cosine and sine

moment and ap, bp are the p-th sample cosine and sine moments, ᾱp, β̄p, āp, b̄p are the

respective centered moments that are centered around mean µ or sample mean θ̄. ρ is

the mean resultant length and R̄ is the sample mean resultant length. arctan∗(·) is the

quadrant-specific inverse tangent that maps the tangent of an angle in [0, 2π) into the

correct quadrant. The formulae of these quantities are given by

αp = E(cos pθ), βp = E(cos pθ),

ᾱp = E{cos p(θ − µ)}, β̄p = E{sin p(θ − µ)},

ρ =
√
α2

1 + β2
1 =

√
ᾱ2

1 + β̄2
1
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ap =
1

n

n∑
i=1

cos pθi, bp =
1

n

n∑
i=1

sin pθi,

āp =
1

n

n∑
i=1

cos p(θi − θ̄), b̄p =
1

n

n∑
i=1

sin p(θi − θ̄),

θ̄ = arctan∗(b1/a1), R̄ =
√
a2

1 + b2
1.

Based on the vM trigonometric moment formulae given in Jammalamadaka and Sen-

Gupta [20] Section 2.2.4, it is easy to derive that for vM(µ, κ), the trigonometric moments

centered around µ are

ᾱvMp =
Ip(κ)

I0(κ)
, β̄vMp = 0 (5.4)

for any p ∈ Z. With this, the trigonometric moments of SvM can be deducted as follows.

Proposition 5.1.1 For SvM(µ, κ, λ), the trigonometric moments centered around µ are

given by

ᾱp =
Ip(κ)

I0(κ)
(5.5)

β̄p =
λ

2

Ip−1(κ)− Ip+1(κ)

I0(κ)
(5.6)

and the trigonometric moments are given by

αp =
Ip(κ)

I0(κ)
cos pµ− λ

2

Ip−1(κ)− Ip+1(κ)

I0(κ)
sin pµ (5.7)

βp =
λ

2

Ip−1(κ)− Ip+1(κ)

I0(κ)
cos pµ+

Ip(κ)

I0(κ)
sin pµ (5.8)
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Proof: For trigonometric moments centered around µ.

ᾱp =

∫ 2π

0

cos p(θ − µ)fSvM(θ)dθ

=

∫ 2π

0

cos p(θ − µ)[1 + λ sin(θ − µ)]fvM(θ)dθ

=

∫ 2π

0

cos p(θ − µ)fvM(θ)dθ + λ

∫ 2π

0

cos p(θ − µ) sin(θ − µ)fvM(θ)dθ

=

∫ 2π

0

cos p(θ − µ)fvM(θ)dθ + λ

∫ 2π

0

sin[(p+ 1)(θ − µ)]− sin[(p− 1)(θ − µ)]

2
fvM(θ)dθ

= ᾱvMp +
λ

2
(β̄vMp+1 − β̄vMp−1)

=
Ip(κ)

I0(κ)

β̄p =

∫ 2π

0

sin p(θ − µ)fSvM(θ)dθ

=

∫ 2π

0

sin p(θ − µ)[1 + λ sin(θ − µ)]fvM(θ)dθ

=

∫ 2π

0

sin p(θ − µ)fvM(θ)dθ + λ

∫ 2π

0

sin p(θ − µ) sin(θ − µ)fvM(θ)dθ

=

∫ 2π

0

sin p(θ − µ)fvM(θ)dθ + λ

∫ 2π

0

cos[(p− 1)(θ − µ)]− cos[(p+ 1)(θ − µ)]

2
fvM(θ)dθ

= β̄vMp +
λ

2
(ᾱvMp−1 − ᾱvMp+1)

=
λ

2

Ip−1(κ)− Ip+1(κ)

I0(κ)

Then, for (non-centered) trigonometric moments,

αp =

∫ 2π

0

cos p(θ − µ+ µ)fSvM(θ)dθ

=

∫ 2π

0

[cos p(θ − µ) cos pµ− sin p(θ − µ) sin pµ]fSvM(θ)dθ

= ᾱp cos pµ− β̄p sin pµ

βp =

∫ 2π

0

sin p(θ − µ+ µ)fSvM(θ)dθ
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=

∫ 2π

0

[sin p(θ − µ) cos pµ+ cos p(θ − µ) sin pµ]fSvM(θ)dθ

= β̄p cos pµ+ ᾱp sin pµ

Eqn. (5.7) and (5.8) are obtained by substituting ᾱp and β̄p in above equations with

Eqn. (5.5) and (5.6) respectively.

5.2 Tests for Circular Symmetry for Sine-skewed vM

Distribution

Let x1, ..., xn be a i.i.d. random sample of size n from SvM(µ, κ, λ). A test on whether

SvM(µ, κ, λ) is symmetrical can be formulated as testing H0 : λ = 0 against H1 : λ 6= 0.

Since SvM(µ, κ, 0) is equivalent to vM(µ, κ), the hypothesis can also be written as

H0 : f ∼ vM(µ, κ) for arbitrary µ ∈ [0, 2π) and κ > 0, and H1 : f ∼ SvM(µ, κ, λ)

for arbitrary µ ∈ [0, 2π), κ > 0 and λ ∈ [−1, 0) ∪ (0, 1].

5.2.1 Likelihood Ratio Test

A likelihood ratio test has the test statistic

Λn = −2

(
sup

(µ,κ,λ)∈Ω0

l(µ, κ, λ|θ1, ..., θn)− sup
(µ,κ,λ)∈Ω

l(µ, κ, λ|θ1, ..., θn)

)
(5.9)

where

l(µ, κ, λ|θ1, ..., θn) =
n∑
i=1

log f(θi|µ, κ, λ)

is the log-likelihood function of the observations. Ω0 = [0, 2π) × (0,+∞) × {0} and

Ω = [0, 2π) × (0,+∞) × [−1, 1] represent the parameter space for (µ, κ, λ) restricted

under H0 and without restriction, respectively.
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The test statistic follows χ2
1 asymptotically with n approaches +∞. Therefore, the

test rejects H0 at level α when Λn > χ2
1(α

2
), the upper α

2
quantile of χ2

1.

5.2.2 Batschelet’s Test

b̄2 is a measure of circular skewness proposed by Batschelet (1965) [5]. When the

underlying circular distribution has non-zero mean resultant length ρ and its µ exists

and unique, Pewsey (2002) [28] gives the asymptotic mean and variance of b̄2:

E(b̄2) = β̄2 +
1

n

(
− β̄3

ρ
− β̄2

ρ2
+

2ᾱ2β̄2

ρ4

)
+O(n−3/2) (5.10)

var(β̄2) =
1

n

[
1− ᾱ4

2
− 2ᾱ2 − β̄2

2 +
2ᾱ2

ρ

{
ᾱ3 +

ᾱ2(1− ᾱ2)

ρ

}]
+O(n−3/2) (5.11)

Thus the asymptotic distribution of b̄2 as n→∞ is

b̄2 − E(b̄2)√
var(b̄2)

D−→ N(0, 1) (5.12)

where the higher order terms of E(b̄2) and var(β̄2) are omitted.

The distribution under H0 is vM(µ, κ) and the trigonometric moments formula (5.4)

apply. Then (5.10), (5.11) becomes

E(b̄vM2 ) = 0 (5.13)

var(β̄vM2 ) =
1

n

[
1− ᾱvM4

2
− 2ᾱvM2 +

2ᾱvM2

ᾱvM1

{
ᾱvM3 +

ᾱvM2 (1− ᾱvM2 )

ᾱvM1

}]
=

1

n

[
I0(κ)− I4(κ)

2I0(κ)
− 2

I2(κ)

I0(κ)
+

2I2(κ)

I1(κ)

{
I3(κ)

I0(κ)
+
I2(κ)(1− I2(κ))

I1(κ)I0(κ)

}]
(5.14)
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The test based on b̄2 has the test statistic

Bn =
b̄2√

var(b̄vM2 )
(5.15)

At level α, the test should reject the null hypothesis when Bn > zα/2

5.2.3 Power Comparison with Simulated Data

To compare the powers of the likelihood ratio test and Batschelet’s test, a simulation

study is conducted on samples from distribution SvM(µ = π, κ = 1, λ), where λ take on

the values of 0, 0.1, 0.2, ..., 1. For each distribution, 1000 samples of size n = 50, 100 or

200 are drawn and the two tests are applied to each sample. The empirical power of a

test is computed by the proportion of times the test is rejected at significance level 0.05.

The power curves are displayed in Figure 5.1. In each graph, the red curve corresponds to

Batschelet’s test and the black curve corresponds to likelihood ratio test. The horizontal

dashed line indicates the power of the tests, which is α = 0.05. It can be observed from

the graphs that, when λ = 0, i.e. under the null hypothesis of symmetry, the level of

likelihood ratio test is less than α while the level of Batschelet’s test is almost identical

to α. The power of the likelihood ratio test start to exceed that of Batschelet’s test

around λ = 0.5 and the difference between the two continue to grow as λ gets larger.

For n = 200, the power of likelihood ratio test almost reaches 1 when λ reaches the

maximum value of 1. For n = 100 and 50, the maximum power of the likelihood ratio

test are close to 0.8 and 0.5, respectively. Therefore, the likelihood ratio test is in general

more powerful than Batschelet’s test when the SvM alternative is considered.
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Figure 5.1: Power of likelihood ratio test and Batschelet’s test with SvM as alternative
distributions. Red curve represents likelihood ratio test and black curve represents
Batschelet’s test.

58



Chapter 6

A Bayesian Test for the Number of

Modes in a Gaussian Mixture

6.1 Introduction

In this chapter we start with an investigation as to when a mixture of two Gaussian

distributions is unimodal or bimodal. Certain subspace of the parameter space leads

to unimodality of the mixture, and using Bayesian arguments, we find the posterior

probability of the unimodality for a given data set, and the Bayes factor.

6.2 Mixture of Two Gaussian Distributions

A two-component mixture of Gaussian distributions N(µ1, σ
2
1) and N(µ2, σ

2
2) has the

form pN(µ1, σ
2
1) + (1− p)N(µ2, σ

2
2), with the PDF

f(x|µ1, µ2, σ
2
1, σ

2
2, p) = pf1(x|µ1, σ

2
1) + (1− p)f2(x|µ2, σ

2
2),
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where f1 and f2 are the PDFs of N(µ1, σ
2
1) and N(µ2, σ

2
2). The parameter vector

(µ1, µ2, σ
2
1, σ

2
2, p) lies in the parameter space, Ω = R×R×R+×R+×(0, 1). Depending on

different parameter values, such a Gaussian mixture can be either unimodal or bimodal,

so that the parameter space can be partitioned into two disjoint parts: an Ω0 where the

mixture distribution is unimodal and an Ω1 where it is bimodal.

The necessary and sufficient conditions for determining whether a certain parameter

vector gives unimodal or bimodal distribution has not yet been fully explored for the

general 2-component Gaussian mixture. However, for the special case where σ2
1 = σ2

2 =

σ2, the conditions have been discussed in Behboodian (1970) [6], which are given in the

theorem below.

Theorem 6.2.1 (Behboodian (1970) [6]) The 2-component Gaussian mixture with

equal variances pN(µ1, σ
2) + (1 − p)N(µ2, σ

2) is unimodal if and only if either of the

following conditions is satisfied:

(a) D2 ≤ 1,

(b) D2 > 1 and | log p
1−p | ≥ 2 log(D −

√
D2 − 1) + 2D

√
D2 − 1,

where D = |µ1−µ2|
2σ

.

Let θ = (µ1, µ2, σ
2, p) denote the parameter vector and the subspace corresponding

to unimodality by Ω0, and its complement where the PDF becomes bimodal, by Ω1.

A visual illustration of the boundary between Ω0 and Ω1 is given in Figure 6.2. For

any given σ value, Ω1 is the region on the right of the colored line (borderline) while Ω0

is the region on the left.
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Figure 6.1: The borderline separating Ω0 and Ω1, the unimodal and bimodal param-
eter space for pN(µ1, σ

2) + (1− p)N(µ2, σ
2).

6.3 A Bayesian Test Procedure

For a sample from a two-component Gaussian mixture with equal variances with

unknown parameters, suppose we want to test for the unimodality of the underlying dis-

tribution. A parametric likelihood ratio test was proposed and studied in Holzmann and

Vollmer (2008) [16]. Alternatively, in this section we introduce a Bayesian test procedure

similar to what Jammalamadaka and Basu [4] proposed for two-component von Mises

mixture.
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Let X = (X1, X2, ..., Xn) be i.i.d. random variables from the Gaussian mixture with

PDF

f(x|θ) = pf1(x|µ1, σ
2) + (1− p)f2(x|µ2, σ

2), (6.1)

where f1, f2 are the PDFs of N(µ1, σ
2), N(µ1, σ

2), and x = (x1, x2, ..., xn) is a random

sample for X. Suppose a Bayesian test is to be performed for testing H0 : θ ∈ Ω0 vs.

H1 : θ ∈ Ω1. Let π(θ) denote the joint prior on θ. We compute the joint posterior of θ as

π(θ|x) and proceed with the following steps.

1. Set up priors for each parameter µ1, µ2, σ, p, and compute the joint prior π(θ) as

well as joint posterior π(θ|x)

2. Calculate prior probability of unimodality

P(H0) =

∫
Ω0

π(θ)dθ

using Monte Carlo method, and then the prior probability of bimodality is given

by P(H1) = 1− P(H0).

3. Calculate posterior probability of unimodality

P(H0|x) =

∫
Ω0

π(θ|x)dθ

using Gibbs sampling and Monte Carlo method, and posterior probability of bi-

modality is given by P(H1|x) = 1− P(H0|x).

62



A Bayesian Test for the Number of Modes in a Gaussian Mixture Chapter 6

4. Calculate the Bayes factor

B10 =
P(H1|x)P(H0)

P(H0|x)P(H1)
,

then compare it with the suggested scale for interpretation as in Kass and Raftery

[21].

6.4 Monte Carlo Method for Sampling from Prior

and Posterior Distributions

6.4.1 Prior and Posterior Distributions for 2-component Gaus-

sian Mixture

The first step in performing a Bayesian test is to set up priors for all parameters in

the 2-component Gaussian mixture and compute the corresponding conditional posterior.

Ideally, one would like to use conjugate priors so that the conditional posteriors are in

the same family as the priors and have nice analytical forms. This task is made possible

by considering the following framework called indicator Gaussian mixture model.

Suppose x = (x1, ..., xn) is an i.i.d random sample of size n from the Gaussian mixture

(6.1). Each observation can be interpreted as being drawn from f1 with probability p

and being drawn from f2 with probability 1− p. Define the indicators

zi = I{xi is drawn from f1},
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for i = 1, ..., n, then there are

1− zi = I{xi is drawn from f2},

In general, z = (z1, ..., zn) is not observable. However, conditionally given z, the condi-

tional distribution of x on z is

f(x|z, θ) =
n∏
i=1

[f1(xi)]
zi · [f2(xi)]

1−zi .

Using the fact that the mixture parameter is p, zi|θ ∼ Bernoulli(p) for i = 1, ..., n, and

the joint distribution of x, z is

f(x, z|θ) =
n∏
i=1

[pf1(xi)]
zi · [(1− p)f2(xi)]

1−zi . (6.2)

This setup expresses the joint distribution as a product, and we chose appropriate

conjugate priors as follows:

σ2 ∼ InverseGamma(
ν

2
,
s2

2
), (6.3)

µ1|σ2 ∼ N(ξ1,
σ2

m1

), (6.4)

µ2|σ2 ∼ N(ξ2,
σ2

m2

), (6.5)

p ∼ Uniform(0, 1), (6.6)

where p is independent of µ1, µ2, or σ2; and m1,m2, ξ1, ξ2, ν, s
2 are predetermined hyper-

parameters.

Theorem 6.4.1 Given the sample joint distribution 6.2 and the priors defined in (6.3)–
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(6.6), the conditional posterior distributions are given by

σ2|x, z ∼ InverseGamma

(
n+ ν

2
,
s2 +

∑n
i=1 x

2
i +m1ξ

2
1 +m2ξ

2
2 − C1 − C2

2

)
, (6.7)

µ1|σ2,x, z ∼ N

(∑n
i=1 zixi +m1ξ1∑n
i=1 zi +m1

,
σ2∑n

i=1 zi +m1

)
, (6.8)

µ2|σ2,x, z ∼ N

(∑n
i=1(1− zi)xi +m2ξ2

n−
∑n

i=1 zi +m2

,
σ2

n−
∑n

i=1 zi +m2

)
, (6.9)

p|x, z ∼ Beta

(
n∑
i=1

zi + 1, n−
n∑
i=1

zi + 1

)
. (6.10)

where

C1 =
(
∑n

i=1 zixi +m1ξ1)2

m1 +
∑n

i=1 zi
,

C2 =
(
∑n

i=1(1− zi)xi +m2ξ2)2

m2 + n−
∑n

i=1 zi
.

Proof: Using the notation π(·) to denote the joint prior and π(·|x, z) to denote the

joint posterior. The joint posterior is given by

π(θ|x, z) =
f(x, z|θ)π(θ)∫

Ω
f(x, z|θ)π(θ)dθ

(6.11)

where π(θ) is the joint prior. Further decomposition of the joint prior and joint posterior

distributions are given by

π(θ) = π(µ1|σ2) · π(µ2|σ2) · π(σ2) · π(p),

π(θ|x, z) = π(µ1|σ2,x, z) · π(µ2|σ2,x, z) · π(σ2|x, z) · π(p|x, z).

Therefore, the conditional posterior of a single parameter can be obtained by integrating

the joint posterior with respect to other parameters over their respective parameter space.
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For example,

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

π(θ|x, z)dµ1dµ2d(σ2) =

∫ +∞

−∞
π(µ1|σ2,x, z)dµ1 ·

∫ +∞

−∞
π(µ2|σ2,x, z)dµ2

·
∫ +∞

0

π(σ2|x, z)d(σ2) · π(p|x, z)

= π(p|x, z)

Since the denominator of (6.11) is only a normalizing constant, we have

π(µ1|σ2,x, z) · π(µ2|σ2,x, z) · π(σ2|x, z) · π(p|x, z) ∝ f(x, z|θ)π(θ),

meaning that the conditional posterior distributions can be found by decomposing f(x, z|θ)π(θ)

into a product of kernels for µ1, µ2, σ
2, p, each kernel corresponds to a distribution family.

The details of this operation are shown below.

f(x, z|θ)π(θ) = f(x, z|θ) · π(µ1|σ2) · π(µ2|σ2) · π(σ2) · π(p)

= p
∑n
i=1 zi

(
1√
2πσ

)∑n
i=1 zi

exp

{
− 1

2σ2

n∑
i=1

zi(xi − µ1)2

}

· (1− p)
∑n
i=1(1−zi)

(
1√
2πσ

)∑n
i=1(1−zi)

exp

{
− 1

2σ2

n∑
i=1

(1− zi)(xi − µ2)2

}

·
√
m1√
2πσ

exp
{
−m1

2σ2
(µ1 − ξ1)2

}
·
√
m2√
2πσ

exp
{
−m2

2σ2
(µ2 − ξ2)2

}
· (s2/2)ν/2

Γ(ν/2)
(σ2)−ν/2−1 exp

{
− s2

2σ2

}
· 1

∝ T1(µ1, σ
2) · T2(µ2, σ

2) · T3(σ2) · T4(p)
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Where T1 through T4 are the kernels for each parameter and have the following forms:

T1(µ1, σ
2) =

1

σ
exp

{
− 1

2σ2

[
n∑
i=1

zi(xi − µ1)2 +m1(µ1 − ξ1)2

]}

∝ 1

σ
exp

{
− 1

2σ2

[(
n∑
i=1

zi +m1

)
µ2

1 − 2

(
n∑
i=1

zixi +m1ξ1

)
µ1 + C1

]}

∝ N

(∑n
i=1 zixi +m1ξ1∑n
i=1 zi +m1

,
σ2∑n

i=1 zi +m1

)
T2(µ2, σ

2) =
1

σ
exp

{
− 1

2σ2

[
n∑
i=1

(1− zi)(xi − µ2)2 +m2(µ2 − ξ2)2

]}

∝ 1

σ
exp

{
− 1

2σ2

[(
n−

n∑
i=1

zi +m2

)
µ2

2 − 2

(
n∑
i=1

(1− zi)xi +m2ξ2

)
µ2 + C2

]}

∝ N

(∑n
i=1(1− zi)xi +m2ξ2

n−
∑n

i=1 zi +m2

,
σ2

n−
∑n

i=1 zi +m2

)
T3(σ2) = (σ2)−

n+ν
2
−1 exp

{
−s

2 +
∑n

i=1 x
2
i +m1ξ

2
1 +m2ξ

2
2 − C1 − C2

2σ2

}
∝ InverseGamma

(
n+ ν

2
,
s2 +

∑n
i=1 x

2
i +m1ξ

2
1 +m2ξ

2
2 − C1 − C2

2

)
T4(p) = p

∑n
i=1 zi(1− p)

∑n
i=1(1−zi)

∝ Beta

(
n∑
i=1

zi + 1, n−
n∑
i=1

zi + 1

)

where

C1 =
(
∑n

i=1 zixi +m1ξ1)2

m1 +
∑n

i=1 zi
,

C2 =
(
∑n

i=1(1− zi)xi +m2ξ2)2

m2 + n−
∑n

i=1 zi
.

The distributions that correspond to the 4 kernels are the conditional posterior distribu-

tions for each parameter, which correspond to Eqn. (6.7)–(6.10).
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6.4.2 Computation of the Prior Probabilities of Unimodality

and Bimodality

After setting up the priors and finding the conditional posteriors, the next step is

to calculate the prior probability of unimodality and bimodality. To calculate the prior

probability of unimodality

P(H0) =

∫
Ω0

π(θ)dθ,

one need to integrate the joint priors over the unimodal parameter space. Since the

criterion determining the boundary of Ω0 is complicated, it is difficult to find an analytical

solution to the integral. Instead, a Monte Carlo method is employed to get its value

numerically.

Algorithm 1 (Monte Carlo method for calculating prior probabilities) To nu-

merically compute the prior probability of unimodality and bimodality—P(H0) and P(H1)—

these steps are followed.

1. Determine the values for prior hyperparameters m1,m2, ξ1, ξ2, ν, s
2.

2. Generate N parameter vectors θ(1), ..., θ(N) from prior distributions (6.3)–(6.6).

The order of parameter generation is σ2 → µ1 → µ2 → p.

3. For each θ(i), i = 1, ..., N , check if it belongs in Ω0 using the conditions in Theorem

6.2.1 and obtain the values of indicators I
{
θ(i) ∈ Ω0

}
.

4. Compute P(H0) = 1
N

∑N
i=1 I

{
θ(i) ∈ Ω0

}
and P(H1) = 1− P(H0).
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6.4.3 Computation of the Posterior Probabilities of Unimodal-

ity and Bimodality

Similar to P(H0), the posterior probability of unimodality

P(H0|x) =

∫
Ω0

π(θ|x)dθ

needs to be computed numerically using Monte Carlo method. The conditional posteriors

given in Theorem 6.4.1 are conditional on latent variables z that are not observable from

the samples. To mitigate this problem, we would like to treat z as unknown parameters

and use Gibbs sampling method to generate samples from θ and z simultaneously.

Algorithm 2 (Gibbs sampling) To generate θ and z from conditional distributions,

follow these steps:

1. Set up initial values θ(0). Then, at the k-th iteration,

2. Generate z(k) from f(z(k)|θ(i−1),x).

3. Generate θ(k) from π(θ(k)|x, z(k)).

4. Repeat Step 2 and 3 for a total of N times until convergence.

To find the conditional distribution of step 2 in Algorithm 2, we have the following

results.

Lemma 6.4.1 The conditional distribution of each zi in z is given by

zi|θ, xi ∼ Bernoulli

(
pf1(xi|µ1, σ

2)

pf1(xi|µ1, σ2) + (1− p)f2(xi|µ2, σ2)

)
.
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Proof: From (6.1) and (6.2) and since xi’s are i.i.d.,

f(z|θ,x) =
f(x, z|θ)
f(x|θ)

=

∏n
i=1 [pf1(xi|µ1, σ

2)]zi · [(1− p)f2(xi|µ1, σ
2)]1−zi∏n

i=1 [pf1(xi|µ1, σ2) + (1− p)f2(xi|µ2, σ2)]

=
n∏
i=1

P zi
i (1− Pi)1−zi

where each

Pi =
pf1(xi|µ1, σ

2)

pf1(xi|µ1, σ2) + (1− p)f2(xi|µ2, σ2)

Since each zi is only dependent on xi, and xi’s are independent, zi’s are independent of

each other as well. It is easy to see

f(zi|θ, xi) = P zi
i (1− Pi)1−zi

for zi ∈ {0, 1}, i = 1, ..., n. This is the PMF of Bernoulli(Pi).

Given the Gibbs sampling procedure, the Monte Carlo calculation is outlined below.

Algorithm 3 (Monte Carlo method for posteriors) To numerically compute the pos-

terior probability of unimodality and bimodality—P(H0|x) and P(H1|x)—these steps are

followed.

1. Generate N parameter vectors θ(1), ..., θ(N) for conditional posterior distributions

(6.7) - (6.10) by utilizing Gibbs sampling procedure in Algorithm 2. The order of

parameter generation is σ2 → µ1 → µ2 → p.

2. Make sure the Markov chain generated in Step 1 is convergent after a burn-in period

of length K.
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3. For each θ(i), i = K + 1, ..., N , check if it belongs in Ω0 using the conditions in

Theorem 6.2.1 and obtain the values of indicators I
{
θ(i) ∈ Ω0

}
4. Compute P(H0|x) = 1

N−K
∑N

i=K+1 I
{
θ(i) ∈ Ω0

}
and P(H1|x) = 1− P(H0|x).

Remark: A mixture distribution has two equivalent parameter representations, namely

(µ1, µ2, σ
2, p) and (µ2, µ1, σ

2, 1−p). To differentiate between these two parameterizations

and uniquely define the mixture, we restrict p ∈ (0, 0.5], so that the prior of p becomes

p ∼ Uniform(0, 0.5] (6.12)

and the conditional posterior of p becomes

p|x, z ∼ Beta

(
n∑
i=1

zi + 1, n−
n∑
i=1

zi + 1

)
restricted on (0, 0.5]. (6.13)

Note that when p = 0.5 the two parameterizations become the same.

6.4.4 Judging the Bayes Factor

Kass and Raftery (1995) [21] discuss the Bayes factor for testing H1 against H0 which

is defined as

B10 =
posterior odds

prior odds
=

P(H1|x)P(H0)

P(H0|x)P(H1)
. (6.14)

It is used as a summary of the evidence provided by data in favor of H1 against H0. In

general, larger value of Bayes factor indicates stronger evidence in favor of H1. Kass and

Raftery (1995) [21] suggest using Table 6.1 as a reasonable scale for interpreting B10 and

log10(B10) values. Although not shown in the table, it should be noted that 0 < B10 < 1

(or equivalently log10B10 < 0) indicates no evidence against H0 at all.
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log10B10 B10 Evidence against H0

0 to 1/2 1 to 3.2 Not worth more than a bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive

Table 6.1: Suggested scale for interpreting B10 and log10(B10) values

6.5 A Simulation Study

To perform simulation studies for the Bayesian test procedure proposed above, first

we select 2 sets of Gaussian mixture distributions to generate data. Each set of distribu-

tions contains 7 distributions, among which µ1, σ
2 and p are fixed and µ2 are different,

resulting in parameter combinations from both unimodal and bimodal parameter space.

The actual parameter values and their corresponding modality are presented in Table

6.2. The mixing probabilities are even for distributions from the first set and uneven

for distributions from the second set. Figure 6.2 shows the density plots for mixture

distribution within each set. It is clear that as µ2 moves away from µ1, the density curve

gradually changes from being unimodal to being bimodal.

µ1 σ2 p µ2 modality

Distribution Set 1 1.0 4 0.5
4.0, 4.5, 5.0 unimodal
5.5, 6.0, 6.5, 7.0 bimodal

Distribution Set 2 1.0 4 0.2
5.0, 5.5, 6.0, 6.5 unimodal
7.0, 7.5, 8.0 bimodal

Table 6.2: Choice of parameters for simulated data.

For each distribution in the two distribution sets, we generate 50 samples of size

n = 25 and 50 samples of size n = 50, then conduct Bayesian test for each sample

assuming the same prior hyperparameter values (ν = 4, ξ1 = 0, ξ2 = 10, s2 = 30,m1 = 10

and m2 = 10). The Bayes factors are obtained by running Algorithms 1 and 3 with

N = 100000 and burn-in period of 20000 and plugging their results into (6.14). Restricted
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Figure 6.2: Density plots for Gaussian mixtures in Distribution Set 1 and 2, respectively.

prior (6.12) and conditional posterior (6.13) for p are used to avoid identifiability issues in

θ simulation. The initial values of the parameters are µ1 = 0, µ2 = 10, σ2 = 100, p = 0.5

in posterior simulation for all samples.

Figure 6.3 displays the Bayes factors in boxplots for each of the µ2 values. The plots

in the same row correspond to the same sample sizes and the plots in the same column

correspond to the same distribution set. Table 6.3 and 6.4 show the proportion of times

that the Bayes factor exceeds 3.2. From these figures and tables, we see that (i) within

each distribution set, the Bayes factor is more likely to have larger values when µ2 is

larger; (ii) given a certain bimodal distribution, the Bayes factor is more likely to have

larger values when n is larger. Both these observations (i) and (ii) show that the Bayes

factor is more likely to have larger values when there is a stronger evidence that the

sample came from a bimodal distribution.

To illustrate the properties of the Markov chain generated in simulation of posterior

distributions, an example Markov chain that corresponds to a sample from Distribution
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Figure 6.3: Boxplots for Bayes factors for different µ2 values.

µ2 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Distribution Set 1, n = 25 0.00 0.00 0.00 0.00 0.06 0.12 0.18
Distribution Set 1, n = 50 0.00 0.02 0.00 0.00 0.06 0.20 0.46

Table 6.3: Proportion of times that Bayes factors > 3.2 for Distribution Set 1.
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µ2 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Distribution Set 2, n = 25 0.00 0.00 0.00 0.02 0.02 0.14 0.20
Distribution Set 2, n = 50 0.00 0.00 0.00 0.00 0.06 0.16 0.44

Table 6.4: Proportion of times that Bayes factors > 3.2 for Distribution Set 2.

Figure 6.4: Path plot and ACF plot for each parameter in a Markov chain in posterior
simulation. The sample is from Distribution Set 1, µ2 = 8, n = 50.
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Set 1, µ2 = 8, n = 50 is selected, and its path plot and ACF plot for each parameter are

shown in Figure 6.4. Note that only the last 10000 iterations are plotted in the path plot

and only the iterations after the burn-in period (> 20000) are used to compute the ACFs.

It can be seen that the paths of p and σ2 are able to traverse a wide range within their

parameter space and there is no sign of identifiability issue for µ1 and µ2. The number

of lags required for ACFs to diminish is pretty large (≈ 30) for all parameters.

6.6 Real Data Application—Adult Height Data

In this section we present an application of the modality test on human heights data.

There have been discussions on whether the combination of men and women heights will

give a unimodal or bimodal distribution, for example see Schilling et al. (2002) [32].

To investigate this problem, we source the data from 2013–2014 National Health and

Nutrition Examination Survey (NHANES). NHANES [27] is a program of studies that

aim at assessing the health and nutritional status of adults and children in the United

States, and it is conducted by National Center for Health Statistics (NCHS), a part of

the Centers for Disease Control and Prevention (CDC). To select the data for testing,

we took the variables of gender and age from the Demographic Variables and Sample

Weights dataset with the measurement of standing height in centimeters from the Body

Measures dataset, matched the records on the unique identifier (respondent sequence

number), and filtered out the records with age less than 18 or have any missing values.

An overview of the filtered dataset is given in Table 6.5 and the histogram is shown in

Figure 6.5. Although male and female adult heights have significantly different standard

deviations, we would still assume they are the same when applying the Bayesian test.

The data indicates that the sample distribution of adult heights is unimodal when

modeled by a Gaussian mixture model p̂N(µ̂1, σ̂
2) + (1 − p̂)N(µ̂2, σ̂

2) where the mix-
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# of records % of records Average height (cm) SD of height (cm)
Overall 5857 100% 167.09 7.508 (pooled)
Male 2795 48.07% 173.13 7.834
Female 3062 51.9% 159.67 7.194

Table 6.5: Overview of NHANE 2013–2014 adult standing height data

Prior hyperparameters Prior bimodal prob. Bayes factor
Conclusion

ξ1 ξ2 σ2 m1 m2 ν P(H0) B10

Setting 1

150 180 400 10 10

8 0.1663 2.24× 10−5 Unimodal
Setting 2 5 0.4175 1.79× 10−5 Unimodal
Setting 3 3 0.6129 7.71× 10−5 Unimodal
Setting 4 1.5 0.8710 2.53× 10−4 Unimodal

Table 6.6: Prior parameters and Bayes factor results for NHANE 2013–2014 adult
height data

ing components are estimated from male and female heights data. The histogram also

supports this claim. However, are we going to reach the same conclusion without the

information about respondents’ gender? To check this, we performed the Bayesian test

with N = 100000 Markov chain iterations and a burn-in period of 20000 under several

different choices of prior distribution parameters. Table 6.6 shows that the Bayes factor

is close to 0 in all cases, strongly suggesting the underlying distribution is unimodal.

Figure 6.6 shows the path plot for and the ACF plot for the posterior Markov chain after

the burn-in period. It can be seen that the parameters simulated from the posterior dis-

tribution converge and the number of lags for autocorrelation to diminish can be 10–30

for different parameters.
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Figure 6.5: Histogram of NHANE 2013–2014 adult standing height data. The dashed
line represents kernel density estimation of the histogram
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Figure 6.6: Path plot and ACF plot for testing NHANE 2013–2014 adult height data.
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Appendix A

Some Computer Programs

A.1 Code for Testing for Symmetric WS Distribu-

tion (Chapter 2)

require(circular)

### 1. Functions for symmetric wrapped stable distribution

# 1.1 Generate symmetric wrapped stable r.v. with shift

# rwrpstab is a function in package "circular"

rwrpstab.sym = function(n, gamma, tau, mu){

(rwrpstab(n, gamma, 0, tau) + mu)%%(2*pi)

}

# 1.2 Compute PDF of symmetric wrapped stable

# The infinite sum in wrapped stable PDF is approximated by a finite sum.

# den.n.term is the number of summands used in the finite sum

dwrpstab.sym = function(x, gamma, tau, mu, den.n.term = 100){

summand.part1.vec = exp(-(tau*(1:den.n.term))ˆgamma)

summand.part2.mat = outer(1:den.n.term, x - mu, function(x, y){cos(x * y
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)})

return(c((summand.part1.vec %*% summand.part2.mat + 0.5)/pi))

}

# 1.3 Compute CDF of symmetric wrapped stable

pwrpstab.sym = function(q, gamma, tau, mu, den.n.term = 100){

den.fun = function(x){

dwrpstab.sym(x, gamma = gamma, tau = tau, mu = mu, den.n.term = den.n.

term)

}

F.fun = function(x){

integrate(den.fun, 0, min(x, (2 * pi)), stop.on.error = FALSE)$value

}

return(sapply(q, F.fun))

}

# 1.4 Estimate parameters for wrapped stable sample

# gamma.min.val sets a lower bound for estimated values of parameter gamma;

if gamma is too small there will be numerical problem

wrpstab.param.est = function(dat, gamma.min.val = 0.1){

mu = (atan2(mean(sin(dat)), mean(cos(dat))))%%(2*pi)

theta.hat = dat - mu

R1 = sqrt(mean(cos(theta.hat))ˆ2 + mean(sin(theta.hat))ˆ2)

R2 = sqrt(mean(cos(2 * theta.hat))ˆ2 + mean(sin(2 * theta.hat))ˆ2)

gamma = log(log(R2)/log(R1)) / log(2)

gamma = max(min(gamma, 2), gamma.min.val)

tau = (-log(R1))ˆ(1/gamma)
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return(list(gamma = gamma, tau = tau, mu = mu, rho = R1))

}

### 2. Functions for ChF-based goodness-of-fit test

# 2.1 These functions computes Epsilon_1, _2 and _3 for test statistic

# Infinite sums in Epsilon_2 and _3 are approximated by finite sums with

number of summands specified by n.terms

test.stat.Eps1 = function(theta, lambda){

cos(lambda * sin(theta)) * exp(lambda * (cos(theta) - 1))

}

test.stat.Eps2 = function(gamma, tau, lambda, n.terms = 20){

sum(exp(-2 * (tau * (0:(n.terms - 1)))ˆgamma) * dpois(0:(n.terms - 1),

lambda))

}

test.stat.Eps3 = function(theta, gamma, tau, lambda, n.terms = 20){

sum(cos(theta * (0:(n.terms - 1))) * exp(-(tau * (0:(n.terms - 1)))ˆgamma

) * dpois(0:(n.terms - 1), lambda))

}

# 2.2 Compute test statistic (denoted by T)

# If the estimated parameters are known, they can be supplies as a list (

gamma, tau, mu, rho) to argument param.est

T.test.stat = function(dat, lambda, n.terms = 20, param.est = NULL){

n = length(dat)

theta.hat = dat - (atan2(mean(sin(dat)), mean(cos(dat))))%%(2*pi)

if(is.null(param.est)){

param = wrpstab.param.est(dat)

} else {

param = param.est
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}

Sigma1 = sum(sapply(outer(theta.hat, theta.hat, "-"), test.stat.Eps1,

lambda = lambda))/n

Sigma2 = n * test.stat.Eps2(param$gamma, param$tau, lambda, n.terms)

Sigma3 = sum(sapply(theta.hat, test.stat.Eps3, gamma = param$gamma, tau =

param$tau, lambda = lambda, n.terms = n.terms))

return(Sigma1 + Sigma2 - 2 * Sigma3)

}

### 3. Functions for other goodness-of-fit tests (Kuiper, Watson)

# 3.1 Kuiper test

kuiper.test.stat = function(dat){

n = length(dat)

sorted.dat = sort(dat)

return(max(sorted.dat - (0:(n-1))/n, (1:n)/n - sorted.dat))

}

# 3.2 Watson test

watson.test.stat = function(dat){

n = length(dat)

sorted.dat = sort(dat)

return(1/12/n + sum((sorted.dat - (2*(1:n)-1)/2/n - (atan2(mean(sin(

sorted.dat)), mean(cos(sorted.dat))))%%(2*pi) + 1/2)ˆ2))

}

# 3.3 This function computes the test statistics for both tests.

# If the estimated parameters are known, they can be supplied as a list (

gamma, tau, mu, rho) to argument param.est

kuiper.and.watson.test.stat = function(dat, param.est = NULL){

n = length(dat)
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if(is.null(param.est)){

param = wrpstab.param.est(dat)

} else {

param = param.est

}

sorted.U = pwrpstab.sym(sort(dat), param$gamma, param$tau, param$mu)

K = max(sorted.U - (0:(n-1))/n, (1:n)/n - sorted.U)

W = 1/12/n + sum((sorted.U - (2*(1:n)-1)/2/n - (atan2(mean(sin(sorted.U))

, mean(cos(sorted.U))))%%(2*pi) + 1/2)ˆ2)

return(c(K = K, W = W))

}

### 4. Main function for computing (1 - power) for all tests

# 4.1 This function computes (1 - power) of these 7 tests: our test with 5

different lambda values (0.3, 0.5, 0.7, 0.9, 1),

#Kuiper, and Watson’s test.

# B is the number of of times each test are performed. (Also the sample

size for wrap-speed bootstrapping)

get.all.test.results = function(dat, B = 100, n.terms = 20){

param = wrpstab.param.est(dat)

T.1 = T.test.stat(dat, lambda = 0.3, n.terms = n.terms, param.est = param

)

T.2 = T.test.stat(dat, lambda = 0.5, n.terms = n.terms, param.est = param

)

T.3 = T.test.stat(dat, lambda = 0.7, n.terms = n.terms, param.est = param

)

T.4 = T.test.stat(dat, lambda = 0.9, n.terms = n.terms, param.est = param

)

T.5 = T.test.stat(dat, lambda = 1, n.terms = n.terms, param.est = param)

K.and.W = kuiper.and.watson.test.stat(dat, param.est = param)
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K = c(K.and.W["K"])

W = c(K.and.W["W"])

n = length(dat)

bs.sample = matrix(rwrpstab.sym(B*n, param$gamma, param$tau, param$mu), B

, n)

T.bs.test.stat1 = apply(bs.sample, 1, T.test.stat, lambda = 0.3, n.terms

= n.terms)

T.bs.test.stat2 = apply(bs.sample, 1, T.test.stat, lambda = 0.5, n.terms

= n.terms)

T.bs.test.stat3 = apply(bs.sample, 1, T.test.stat, lambda = 0.7, n.terms

= n.terms)

T.bs.test.stat4 = apply(bs.sample, 1, T.test.stat, lambda = 0.9, n.terms

= n.terms)

T.bs.test.stat5 = apply(bs.sample, 1, T.test.stat, lambda = 1, n.terms =

n.terms)

kuiper.and.watson.bs.test.stat = apply(bs.sample, 1, kuiper.and.watson.

test.stat)

kuiper.bs.test.stat = kuiper.and.watson.bs.test.stat["K", ]

watson.bs.test.stat = kuiper.and.watson.bs.test.stat["W", ]

return(c(T1.p = sum(T.bs.test.stat1 < T.1), T2.p = sum(T.bs.test.stat2 <

T.2), T3.p = sum(T.bs.test.stat3 < T.3),

T4.p = sum(T.bs.test.stat4 < T.4), T5.p = sum(T.bs.test.stat5 < T.5),

K.p = sum(kuiper.bs.test.stat < K), W.p = sum(watson.bs.test.stat < W))

/ B)

}

# 4.2 This function applies all tests to each of the dataset in the dat.

list
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test.procedure = function(dat.list, B = 100, n.terms = 20){

p.mat = matrix(NA, length(dat.list), 7)

for(i in 1:length(dat.list)){

p.mat[i,] = get.all.test.results(arb.data.list[[i]], B = B, n.terms = n

.terms)

}

return(p.mat)

}

### 5. Test using real data

# Read data

# arb.data.list is the list of all dataset we want to test.

arb.data.list = ...

# Compute (1-power) for all tests from real data

arb.p.res = test.procedure(arb.data.list, 500)

# Print power of the tests

1 - arb.p.res

A.2 Code for Bayesian Test for Unimodality of Gaus-

sian Mixture (Chapter 6)

### 1. Functions for certain distribution families used in prior or

posterior distributions

# 1.1 Sample from inverse Gamma

rinvgamma = function (n, shape, scale = 1){

return(1/rgamma(n = n, shape = shape, rate = scale))

}

86



Some Computer Programs Chapter A

# 1.2 Compute PDF of inverse Gamma

dinvgamma = function (x, shape, scale = 1)

{

return(scaleˆshape/gamma(shape)*xˆ(-shape-1)*exp(-scale/x))

}

# 1.3 Find the maximum of beta distribution within interval (0,0.5]

# Parameters a, b must be > 1

# This function is used in

beta.trunc.max = function(a, b){

if(a < 1 || b < 1) stop ("Beta distribution parameters are not greater

than 1.\n")

beta.mode = (a - 1) / (a + b - 2)

return(dbeta(min(beta.mode, 0.5), a, b))

}

# 1.4 Sampling for truncated beta distribution (defined on (0,0.5])

rbeta.trunc = function(a, b){

maxi = beta.trunc.max(a, b)

while(1){

x = runif(1, 0, 0.5)

d = runif(1, 0, maxi)

if(d <= dbeta(x, a, b)) return(x)

}

}

### 2. Functions for 2-component Gaussian mixture

# 2.1 Check if a 2-component Gaussian mixture is bimodal for given

parameter values, return a string outcome

check.bimodal = function(mu10, mu20, sigsq0, pi0){

D0<-abs((mu10-mu20)/2/sqrt(sigsq0))
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Dsq0<-D0ˆ2

if (Dsq0 > 1){

if (abs(log(pi0/(1-pi0))) < 2 * log (D0 - sqrt(Dsq0 - 1)) + 2 * D0 *

sqrt(Dsq0 - 1)){

return("bimodal")

} else {

return("unimodal")

}

} else {

return("unimodal")

}

}

# Check if a 2-component Gaussian mixture is bimodal for given parameter

values, return a boolean outcome.

# 2.2 The parameters can be vectors if multiply combinations of parameters

are to be checked

check.bimodal.binary = function(mu10, mu20, sigsq0, pi0){

D0<-abs((mu10-mu20)/2/sqrt(sigsq0))

Dsq0<-D0ˆ2

return((Dsq0 > 1) & (abs(log(pi0/(1-pi0))) < 2 * log (D0 - sqrt(pmax(Dsq0

- 1, 0))) + 2 * D0 * sqrt(pmax(Dsq0 - 1, 0))) )

}

# 2.3 Sample from Gaussian mixture for given parameter values

generate.sample = function(n, mu10, mu20, sigsq0, pi0){

indic<-rbinom(n,1,pi0)

sampl.1<-rnorm(n,mu10,sqrt(sigsq0))

sampl.2<-rnorm(n,mu20,sqrt(sigsq0))

return(ifelse(indic, sampl.1, sampl.2))

}
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### 3. Generate Markov chains for prior and posterior distributions

# 3.1 Gibbs sampler for prior distribution for given hyperparameter values

# iter.max is the number of iterations

gibbs.prior = function(v, ssq, ksi1, ksi2, m1, m2, iter.max = 1e5){

pi.v = mu1.v = mu2.v = sigsq.v = rep(0, iter.max)

iter = 1

while(iter <= iter.max){

pi = runif(1, 0, 0.5)

sigsq = rinvgamma(1, v/2, ssq/2)

mu1 = rnorm(1,ksi1,sqrt(sigsq/m1))

mu2 = rnorm(1,ksi2,sqrt(sigsq/m2))

pi.v[iter] = pi

sigsq.v[iter] = sigsq

mu1.v[iter] = mu1

mu2.v[iter] = mu2

iter = iter + 1

}

return(data.frame(pi = pi.v, mu1 = mu1.v, mu2 = mu2.v, sigsq = sigsq.v))

}

# 3.2 MCMC for posterior distribution

# The arguments mu1, mu2, sigsq, pi should be supplied the initial values

for these parameters

MCMC.posterior = function(sampl, ssq, ksi1, ksi2, m1, m2, mu1, mu2, sigsq,

pi, iter.max = 1e5){

sampl.ssq <- sum(samplˆ2)
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pi.v = mu1.v = mu2.v = sigsq.v = rep(0, iter.max)

sig = sqrt(sigsq)

n = length(sampl)

iter = 1

while(iter <= iter.max){

#vector of parameters of Bernoulli for z2

pz <- pi * dnorm(sampl,mu1,sig) / ((1 - pi) * dnorm(sampl,mu2,sig) + pi

* dnorm(sampl,mu1,sig))

z1 <- sapply(1:n, function(i){rbinom(1,1,pz[i])})

z1.sum <- sum(z1) #number of samples from N(mu2, sigma)

z2 <- 1 - z1 #vector of z1

z2.sum <- sum(z2)

z1sampl.sum <- sum (z1 * sampl)

z2sampl.sum <- sum (z2 * sampl)

# pi has to be <= 0.5

pi = rbeta.trunc(z1.sum+1, z2.sum+1)

#Calculate second parameter of invgamma (posterior of sigsq)

invg.para2 <- (ssq + sampl.ssq + m1 * ksi1ˆ2 + m2 * ksi2ˆ2

- (z1sampl.sum + m1 * ksi1)ˆ2 / (m1 + z1.sum)

- (z2sampl.sum + m2 * ksi2)ˆ2 / (m2 + z2.sum)) / 2

sigsq <- rinvgamma(1, (n + v)/2, invg.para2)

sig <- sqrt(sigsq)

mu1.mu <- (z1sampl.sum + m1 * ksi1)/(z1.sum + m1)

mu1.sigsq <- sigsq / (z1.sum + m1)

mu2.mu <- (z2sampl.sum + m2 * ksi2)/(z2.sum + m2)
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mu2.sigsq <- sigsq / (z2.sum + m2)

mu1 <- rnorm(1,mu1.mu,sqrt(mu1.sigsq))

mu2 <- rnorm(1,mu2.mu,sqrt(mu2.sigsq))

pi.v[iter] = pi

sigsq.v[iter] = sigsq

mu1.v[iter] = mu1

mu2.v[iter] = mu2

iter = iter + 1

}

return(data.frame(pi = pi.v, mu1 = mu1.v, mu2 = mu2.v, sigsq = sigsq.v))

}

### 4. Compute probability of bimodality

# 4.1 Calculate P(bimodal) for prior

calculate.bimod.prior = function(v, ssq, ksi1, ksi2, m1, m2, len = 1e5){

gbs.prior = gibbs.prior(v, ssq, ksi1, ksi2, m1, m2, iter.max = len)

is.bimod.prior = check.bimodal.binary(gbs.prior$mu1, gbs.prior$mu2, gbs.

prior$sigsq, gbs.prior$pi)

return(mean(is.bimod.prior))

}

# 4.2 Calculate P(bimodal | data) for posterior

calculate.bimod.post = function(MCMC.sampl, burn.in.prop = 0.2){

size2 = nrow(MCMC.sampl)

gbs.post = MCMC.sampl[(floor(burn.in.prop * size2)+1):size2,]

is.bimod.post = check.bimodal.binary(gbs.post$mu1, gbs.post$mu2, gbs.

post$sigsq, gbs.post$pi)
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return(mean(is.bimod.post))

}

### 5. Real data application

# Read real data

height_dat = ...

n = length(height_dat)

# Set hyperparameters for the prior, and the number of iterations

v = 5

ksi1 = 150

ksi2 = 180

ssq = 400

m1 = 10

m2 = 10

iter.max0 = 1e5

# Calculate P(bimodal) for prior distribution

prior.prob = calculate.bimod.prior(v, ssq, ksi1, ksi2, m1, m2, len = iter.

max0)

# Generate Markov chain for posterior distribution

height_dat.gibbs = MCMC.posterior(sampl = height_dat, ssq, ksi1, ksi2, m1,

m2,

mu1 = 140, mu2 = 180, sigsq = 100, pi = 0.5, iter.max = iter.

max0)

# Calculate P(bimodal | data) for posterior distribution

height_dat.post.prob = calculate.bimod.post(height_dat.gibbs)

# Calculate Bayes factor
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height_dat.Bayes.factor = height_dat.post.prob / (1 - height_dat.post.prob

) * (1-prior.prob) / prior.prob

print(height_dat.Bayes.factor)
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