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Abstract: The early diagnosis of certain fatal diseases is vital for preventing severe consequences and
contributes to a more effective treatment. Despite numerous conventional methods to realize this goal,
employing nanobiosensors is a novel approach that provides a fast and precise detection. Recently,
nanomaterials have been widely applied as biosensors with distinctive features. Graphite phase
carbon nitride (g-C3N4) is a two-dimensional (2D) carbon-based nanostructure that has received
attention in biosensing. Biocompatibility, biodegradability, semiconductivity, high photoluminescence
yield, low-cost synthesis, easy production process, antimicrobial activity, and high stability are
prominent properties that have rendered g-C3N4 a promising candidate to be used in electrochemical,
optical, and other kinds of biosensors. This review presents the g-C3N4 unique features, synthesis
methods, and g-C3N4-based nanomaterials. In addition, recent relevant studies on using g-C3N4 in
biosensors in regard to improving treatment pathways are reviewed.

Keywords: diagnosis; graphitic carbon nitride; biosensors; nanomaterials; antimicrobial activity
biomedical applications

1. Introduction

The early detection of the biomarkers of the diseases plays a significant role in their
treatment and control. It is essential to detect biomarkers associated with a disease early
and with the high precision for diagnosis, treatment, and prognosis of fatal diseases, such
as cancer, which causes a high mortality rate yearly, and neurodegenerative disorders [1–4].
There are some current conventional diagnostic methods, such as blood tests, imaging, and
biopsies, which can be expensive and time-consuming with low sensitivity. Moreover, they
require trained personnel, limiting their availability to low-income patients [3].

Today, biosensors are used for detection approaches, such as the high-resolution
imaging, fast detection, and monitoring of diseases. Biosensors consist of three main
components: recognition, signal transducer, and processor, designed to determine specific
biomolecules [5]. These biomolecules can be macromolecules, such as nucleic acid and
proteins, or small molecules, such as glucose. Various cancer biomarkers, such as BRCA1,
BRCA2, CA 15-3, and CA 125 for breast cancer and PSA for prostate cancer, can be detected
as well [6].

J. Funct. Biomater. 2022, 13, 204. https://doi.org/10.3390/jfb13040204 https://www.mdpi.com/journal/jfb

https://doi.org/10.3390/jfb13040204
https://doi.org/10.3390/jfb13040204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jfb
https://www.mdpi.com
https://orcid.org/0000-0002-8819-3649
https://orcid.org/0000-0002-1040-8558
https://orcid.org/0000-0003-4766-9214
https://orcid.org/0000-0001-7405-2354
https://doi.org/10.3390/jfb13040204
https://www.mdpi.com/journal/jfb
https://www.mdpi.com/article/10.3390/jfb13040204?type=check_update&version=1


J. Funct. Biomater. 2022, 13, 204 2 of 24

Nanotechnology has allowed advances in monitoring, diagnosis, prognosis, and
proposing effective treatments [7–16]. In this sense, biosensors based on nanomaterials
have accurate detection, efficient monitoring, and fast but reliable imaging [17,18]. The
physicochemical properties of nanomaterials, such as photoemission, high specific surface
leading to extra bioreceptor immobilization, as well as electrical and heat conductivities,
make them perfect candidates for biosensor construction [19–23]. Graphene/graphene
oxide, carbon quantum dots, gold nanoparticles, carbon nanotubes, porous carbon, and
fullerene are nanostructures that have been investigated as the biosensing platforms stud-
ied over the years [24–33]. Carbon nanostructure-based sensors are utilized due to their
potential to quench fluorescently-labeled probes [16–21]. Thus, developing a user-friendly
and highly sensitive biosensor is essential. Graphitic carbon nitride (g-C3N4) nanosheet is
another widely used carbon nanostructure to design biosensors [34–39]. g-C3N4 nanosheets
have high fluorescence quantum yield, superior chemical and thermal stability, are easy
to synthesize with low toxicity, and have a low price and high biocompatibility together
with unique photoelectrochemical and electroluminescent characteristics [40,41]. Fur-
thermore, the optical properties and conductivity of g-C3N4 have made it applicable in
optical and electrochemical biosensing approaches. For instance, sulfur-doped graphitic
carbon nanosheets (s-g-C3N4) as a dual (electrochemical and fluorescence) biosensing
platform were used for the detection of cancer biomarkers even at very low concentra-
tions (CA15-3) [42]. This review summarizes the properties and synthesis methods of
graphitic carbon nitride nanosheets, which make them highly suitable candidates for the
next generation of biosensors.

2. g-C3N4-Based Materials: Properties

g-C3N4 is a polymeric nanosheet with a graphene-like structure consisting of sp2

bonded carbon and nitrogen atoms with abundant amino groups on its surface and suitable
bandgap energy of 2.7 eV [43]. Thanks to the g-C3N4 electronic band structure with sp2

hybridization, it is considered a photon-harvesting semiconductor material that plays a
critical role in detecting biomolecules by photoelectrochemical (PEC) biosensors [44]. Due
to the presence of melamine in the π-conjugated nanosheets, g-C3N4 is fluorescent with
high photoluminescence quantum yield with high and minor absorption at 365 nm and
visible light region, respectively [45,46], which can be quenched by materials, such as
metal ions, nitrobenzene derivate, or biomolecules, such as heparin and sialic acid, which
allow its use as a fluorescent probe biosensor [47] with high photostability and no obvious
photobleaching under UV light excitation for 10 h [48]. Furthermore, the g-C3N4 ability to
convert light and electricity makes it a suitable option for electrochemiluminescence-based
and photoelectrochemistry-based biosensing [39]. Various precursors have been proposed
for g-C3N4 synthesis through thermal condensation. These compounds are rich in nitrogen
and contain a tri-s-triazine ring structure, such as dicyandiamide, urea, cyanamide, or
thiourea [49]. For instance, if cyanamide is selected as the precursor, thermal heating results
in dicyanamide, melamine, melem, and g-C3N, respectively.

The molecular structures of the g-C3N4 precursors and the corresponding tempera-
tures for their thermal condensation are depicted in Figure 1.
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Figure 1. (A) Various g-C3N4 precursors and the corresponding temperatures for their thermal con-
densation into g-C3N4-, adapted from reference [50] under the terms and conditions of the Creative 
Commons Attribution (CC BY) license. (B) g-C3N4 structure, adapted from reference [51] under the 
terms and conditions of the Creative Commons Attribution (CC BY) license. 
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rial inactivation [39]. Thus, the modification of this properties influences the production 
of reactive oxygen species, hence the antibacterial activity. The bactericidal rates of more 
than 99% have been successfully achieved for eight kinds of foodborne pathogenic bacte-
ria with 8 h incubation in the dark. Cell rupture caused by direct mechanical contact be-
tween g-C3N4 and cell membranes has been observed. Molecular dynamics simulations 
further indicated that the presence of large defects in g-C3N4 enhanced the electrostatic 
attraction between inherent pores and lipid heads, resulting in enhanced antibacterial ac-
tivity. 

The thermal and chemical stability of biosensors is crucial for long shelf lives. g-C3N4 
nanosheets show high thermal stability in the air (up to 600 °C) thanks to the graphitic 
graphene-like structure with sp2 bonds between carbon and nitrogen, providing high 
chemical stability [52]. g-C3N4 has low cytotoxicity and good biocompatibility due to its 
metal-free structure. Moreover, it has a low production cost, a simple synthesis process, a 
large specific surface area, easy functionalization, and increased penetration coefficient, 
allowing the efficient immobilization of molecules in the matrix for biosensing [53]. As g-
C3N4 materials are increasingly used in biomedicine, improving their biocompatibility 
and biodegradability properties is a necessity. Therefore, modifications are applied to en-
hance the biocompatibility, biodegradability, and further development of g-C3N4 materi-
als. For instance, Kang et al. showed that successfully inserting abundant disulfide bonds 
into g-C3N4 endowed more biodegradability and biocompatibility, boosting its applica-
tion in biomedical fields [54]. In another study that was recently conducted for glucose 

Figure 1. (A) Various g-C3N4 precursors and the corresponding temperatures for their thermal
condensation into g-C3N4-, adapted from reference [50] under the terms and conditions of the
Creative Commons Attribution (CC BY) license. (B) g-C3N4 structure, adapted from reference [51]
under the terms and conditions of the Creative Commons Attribution (CC BY) license.

In addition, g-C3N4 has been reported to display antimicrobial activity. A number of
parameters, including the g-C3N4 band gap, intermediate defect states, dispersed surface
area, absorbance in suspension, and charge separation influence its photocatalytic bacterial
inactivation [39]. Thus, the modification of this properties influences the production of
reactive oxygen species, hence the antibacterial activity. The bactericidal rates of more
than 99% have been successfully achieved for eight kinds of foodborne pathogenic bacteria
with 8 h incubation in the dark. Cell rupture caused by direct mechanical contact between
g-C3N4 and cell membranes has been observed. Molecular dynamics simulations further
indicated that the presence of large defects in g-C3N4 enhanced the electrostatic attraction
between inherent pores and lipid heads, resulting in enhanced antibacterial activity.

The thermal and chemical stability of biosensors is crucial for long shelf lives. g-C3N4
nanosheets show high thermal stability in the air (up to 600 ◦C) thanks to the graphitic
graphene-like structure with sp2 bonds between carbon and nitrogen, providing high
chemical stability [52]. g-C3N4 has low cytotoxicity and good biocompatibility due to its
metal-free structure. Moreover, it has a low production cost, a simple synthesis process,
a large specific surface area, easy functionalization, and increased penetration coefficient,
allowing the efficient immobilization of molecules in the matrix for biosensing [53]. As g-
C3N4 materials are increasingly used in biomedicine, improving their biocompatibility and
biodegradability properties is a necessity. Therefore, modifications are applied to enhance
the biocompatibility, biodegradability, and further development of g-C3N4 materials. For
instance, Kang et al. showed that successfully inserting abundant disulfide bonds into
g-C3N4 endowed more biodegradability and biocompatibility, boosting its application in
biomedical fields [54]. In another study that was recently conducted for glucose detection
in diabetic patients, the addition of metal co-catalysts (Fe(III), Cu(II)) to the structure
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via adsorption noticeably enhanced the sensitivity compared to the pristine g-C3N4 [55].
Thanks to its easy functionalization, g-C3N4 can be adapted to various targets with high
sensitivity. For instance, a platform based on proton-functionalized ultrathin g-C3N4
nanosheets with a positive charge has been developed for heparin (as a biomolecule with a
high negative charge) detection in human serum [56].

3. g-C3N4-Based Materials: Synthesis Methods
3.1. Synthesis of g-C3N4 Nanosheets

The classification of the synthesis methods based on the synthesis procedure can be
divided into bottom-up and top-down categories. The “bottom-up” approach generally
applies small-sized particles to assemble complex structures. However, the “top-down”
procedure is based on splitting large-sized and thick bulks into small particles and thin
nanosheets [57,58]. The bottom-up procedure includes ionic liquid, supramolecular pre-
assembly, and hydrothermal methods [58]. In the bottom-up approach, g-C3N4 sheets are
synthesized on a large scale via thermal polymerization (pyrolysis) or the carbonization of
small organic compounds (that contain hydroxyl, carboxyl, carbonyl, and primary amine
functional groups) [59], such as melamine, cyanimide, Dicyanamide, or urea [60]. Dante
et al. obtained g-C3N4 from the pyrolysis of melamine cyanurate at 650 ◦C for 50 min
(in the crucible with atmosphere condition), which was used for glucose sensing [55].
On the other hand, chemical exfoliation and ultrasonic exfoliation methods have been
utilized for the top-down approach. Chemical exfoliation is more common for large-scale
production due to its high efficiency and the easier tuning of the g-C3N4 structure [61]. For
example, Hatamie et al. used g-C3N4 as a label-free fluoro-sensor to analyze the amount of
metronidazole in biological fluids and drug samples. g-C3N4 ultrathin nanosheets were
synthesized in bulk via the thermal polymerization method from melamine, possessing a
highly π-conjugated structure at 600 ◦C. The exfoliation procedure was performed through
ultrasonication in water media [62].

3.2. Synthesis of g-C3N4-Based Composites

g-C3N4 properties can be enhanced through its fabrication with other materials into
composites. In the modification techniques, metal loading is critical for increasing the
potential application of g-C3N4 biosensors due to outstanding electrochemical qualities.
Metal/g-C3N4 composites are produced with solvothermal treatment, photo-deposition,
precipitation, and thermal polymerization methods [63]. Generally, there are numerous
ways to prepare g-C3N4-based nanocomposites. The simple pyrolysis method, solution
(sonication) mixing, the hydrothermal method, the simple calcination method, the hydroly-
sis method, sol-gel, and microwave irradiation are some synthesis methods that have been
applied in the formation of nanocomposites based on g-C3N4- and have been utilized for
different applications [43]. The pyrolysis method is a common way to produce g-C3N4-
based composites in diagnosis applications where the mixture of the precursor of g-C3N4
and the other components is calcinated in a crucible for a while with a specific heating rate
and initial temperature to prepare the nanocomposite. Then, the product is cooled at 25 ◦C.
For example, a sensitive electrochemical sensor for dopamine detection was fabricated by
firstly preparing calcium stannate (CaSnO3) nanoparticles from CaCl2 and SnCl2.2H2O
via the hydrothermal method, then CaSnO3-gC3N4 nanohybrid was produced through
the pyrolysis of melamine, (NH4)2SO4, and CaSnO3 mixture at 550 ◦C in a crucible [64].
In another study for glucose detection, Cu(II)–Fe(III)-g-C3N4 was prepared through the
sonication method (2 h sonication of a suspension of 416 mg of g-C3N4 in a 20 mL aqueous
solution containing Cu(II) and Fe(III) ions), which led to the adsorption of ions on the
g-C3N4 structure [55]. A highly selective glucose-sensing (in human blood) biosensor based
on ultrathin g-C3N4 nanosheets doped with niobium (Nb) metal was synthesized by the
pyrolysis method from urea [65]. A biosensor for 4-nitrophenol detection was developed by
Vinoth et al. 4-nitrophenol is a very poisonous chemical compound released into the water
during the production of some drugs, dyes, and leather, posing human health at high risk.
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So, for 4-nitrophenol monitoring, the biosensor based on BaSnO3-g-C3N4 nanostructure
was synthesized by sonication method from prepared BaSnO3 and g-C3N4 [66].

4. g-C3N4-Based Biosensors
4.1. g-C3N4-Based Surface Plasmon Resonance (SPR) Biosensors

Surface plasmon resonance (SPR) sensing is a powerful probe of the interplays be-
tween protein–ligand, protein–DNA, protein–protein, and protein–membrane binding [67].
SPR biosensors are a very effective tool for measuring many biomarkers [68]. The main
advantages of these biosensors are their fast response and ability to detect various analytes
concurrently [69]. Moreover, among various new techniques available, SPR biosensors are
the best optical biosensors for label-free, fast, and in situ diagnosis of molecules [40]. SPR
is a physical optics phenomenon that can detect biomarkers because of the high sensitiv-
ity of surface plasmons to the dielectric medium [70]. In these biosensors, receptors are
immobilized on the metal surface, interacting with the analytes and leading to dielectric
alteration. This phenomenon affects the resonance condition of surface plasmons with
specific surface plasmon waves (SPWs), allowing the transmission of photon’s energy to
the surface plasmons at the resonance angle resulting in the decrease of the light reflectance
and thus the SPR curve [71]. Based on the characteristic of light, the SPR biosensors can
be categorized into angular, wavelength, or intensity-modulated systems [72–74]. The
Kretschmann configuration is the most recent version of SPR based on attenuated total
reflection [54]. At an angle, part of light energy is transmitted to the surface plasmon, and
the reflectance can be shown in the angular scanning.

The presence of adsorbed molecules on the biosensor surface varies the refractive
index, and the SPR angle is changed accordingly [75].

Two-dimensional (2D) materials with large surface areas, such as g-C3N4, can act as
the sensitive layers for SPR [40]. Duan et al. designed a surface plasmon resonance (SPR)
biosensor based on a 2D nanocomposite of g-C3N4 nanosheets and molybdenum disulfide
quantum dots (MoS2QDs), adorned with chitosan-stabilized Au nanoparticles (CS-AuNPs)
to detect prostate specific antigen (PSA) selectively. In this work, the MoS2QDs easily ag-
gregated and reduced the sensitivity, but as a support for MoS2QDs, the g-C3N4 nanosheets
improved the biosensing performance for PSA detection. Additionally, the MoS2QDs@
g-C3N4@ CS-AuNPs-based SPR aptasensor showed a very low limit of detection (LOD),
0.77 ng·mL−1, with good linearity range at PSA concentrations in the range of 1.0–250
ng·mL−1 [40].

4.2. g-C3N4-Based Electrochemical Biosensors

Electrochemical biosensors have been recognized as powerful diagnostic tests over
the past years thanks to their unique advantages, such as simplicity, high sensitivity, and
accuracy [76]. Three vital components are necessary to develop electrochemical biosensors:
(I) a bioreceptor to link with analyte, (II) an electrode, and (III) a read-out system [77]. An
electrochemical sensor requires a working reference and an auxiliary electrode; the working
electrode in the electrochemical biosensor acts as a transducer in the reaction between the
bioreceptor and the analyte. It generates a biological signal which changes into an electronic
signal and is processed with high sensitivity [78]. On the other hand, Ag/AgCl-based
reference electrode is kept at the site of the reaction to maintain a particular potential. The
auxiliary electrode links the electrolytic solution and must be conductive; thus, gold or
platinum are suitable candidates [79]. Some electrochemical methods for marker detection
include voltammetric techniques (cyclic, square wave, or stripping), impedimetric, and
amperometry. Of these techniques, cyclic voltammetry (CV) is preferred [77].

In an electrochemical biosensor, an electrode is the main component for immobilizing
electron motion and biomolecules [80]. Nanomaterials have piqued attention due to their
unique electronic characteristics [81]. The carbon allotropes can be applied as electrodes
due to their effective electron transfer rate and high active surface area. Additionally, carbon
nanostructured materials are significant in research due to their unparalleled properties,
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such as chemical stability and good conductivity [82]. g-C3N4 is a polymeric semiconductor
with a specific structure and high stability, making it a good nanocomposite for electro-
chemical biosensors [83]. g-C3N4 is known as the most thermal stable allotrope of carbon
nitrides [84], which can be used in the diagnosis system based on its catalytic ability [85].
Due to the low electron conductivity of g-C3N4, it has been used with other materials to
enhance its surface conductivity. The g-C3N4 derivatives can electrically connect to the re-
dox center of biomolecules on the surface of the electrode. The electronic integration of the
g-C3N4 with various carbon types notably increases the surface area and conductivity [85].
The chemical exfoliation of bulk g-C3N4 has been used to develop g-C3N4 nanosheets for
the detection of neurotransmitters, such as dopamine (DA). Kathiresan et al. developed a
glassy carbon electrode (GCE) doped with bulk g-C3N4. The electrochemical activation of
bulk g-C3N4 was performed with a potential of 1.75 V in neutral pH conditions (pH 7.0). In
the electrode oxidation reaction, the two-electron process is followed by the transfer of two
protons, resulting in 5-HTquinoneimine. Figure 2 illustrates the redox reaction. Oxidation
leads to the transfer of protons to form 5-HTquinoneimine and the reduction occurs in the
quinone group on 5-HT quinoneimine [86].
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Figure 2. Activation of g-C3N4 on glassy carbon electrode and the redox reaction on the developed
electrochemical biosensor for serotonin (5-HT)-. Adapted from reference [86] under the terms and
conditions of the Creative Commons Attribution (CC BY) license.

Table 1 collects studies conducted on detecting various biomarkers using electrochem-
ical biosensors.

Table 1. Comparison of different biomarkers detection using electrochemical techniques.

Method Interface Biomarker LOD Dynamic Range Ref.

Electrochemistry IL-CNNS 2,4-Dichlorophenol 0.0062 µM 0.02–160 µM [87]

Electrochemistry Cu-Al2O3-g-C3N4-Pd amyloid β-protein 3.3 fg/mL 10 fg/mL–100
ng/mL [88]

Electrochemistry CeO2/g-C3N4
anti-depressant drug
Agomelatine (AG) 0.96 ng/mL 1–20 ng/mL [89]

Electrochemistry PEDOT/h-CN ascorbic acid (AA)
acetaminophen (AP)

1.51 µM
0.49 µM

4–20, 20–1800 µM
1–10, 10–50 µM [90]

Electrochemistry MoS2QDs@g-C3N4@CS-
AuNPs PSA 0.71 pg/mL - [40]

Electrochemistry mpg-C3N4
Avian Leukosis

Viruses 120 TCID50/mL - [91]

Electrochemistry MIP/g-C3N4/FTO bisphenol A 23 µmol L−1 5–200 µmol L−1 [92]

Electrochemistry Ag/g-C3N4 CA 19-9 1.2 mU mL−1 5.0 mU mL−1–50 U
mL−1 [93]
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Table 1. Cont.

Method Interface Biomarker LOD Dynamic Range Ref.

Electrochemistry Au/ g-C3N4
chronic lymphocytic

leukemia 20 pM 0.6 nM–6.4 nM [94]

Electrochemistry Au/mpg-C3N4 Cr(VI) 14 ppb 100–1000 ppb [95]

Electrochemistry g-C3N4/GO pesticide 8.3 nM 0.045–213 µM [96]

Electrochemistry g-C3N4-E-PEDOT acetaminophen 0.034 µM 0.01–2.0, 2.0–100
µM [97]

diasadiElectrochemistry C-g-C3N4 diphenylamine 0.009 µM 0.008–682 µM [98]

Electrochemistry g-C3N4/CuO dopamine 1 × 10−10 mol L−1 2 × 10−9–7.11 ×
10−5 mol L−1 [99]

Electrochemistry Ru0 /PANI@g-C3N4 Bisphenol-A 0.18 nM 0.01–1.1 µM [100]

Electrochemistry Co3O4/g-C3N4
environmental

phenolic hormones
3.3 × 10−9 mol

L−1
1.0 × 10−8–1.2 ×

10−5 mol L−1 [101]

Electrochemistry V2O5/g-C3N4/PVA folic acid 0.0017 µM 0.01–60 µM [102]

Electrochemistry VC/g-CN NSs Furazolidone 0.5 nM 0.004−141 µM [103]

Electrochemistry g-C3N4/MoO3 Furazolidone 1.4 nM 0.01–228 µM [104]

Electrochemistry g-C3N4@Au NPs galectin-3 25.0 fg mL−1 0.0001–20.0 ng
mL−1 [105]

Electrochemistry Pt2+@g-C3N4 glucose 10 µM 13–2000 µM [106]

Electrochemistry g-C3N4 glucose 5 µM 50 µM–2 mM [107]

Electrochemistry g-C3N4/Fe2O3-Cu glucose 0.3 µM 0.6 µM-2.0 mM [108]

Electrochemistry g-C3N4−CH Hg(II) 0.010 µmol L−1
1.00−80.0, µmol
L−1 0.100−5.00

µmol L−1
[109]

Electrochemistry g-C3N4 and
Hg(II)-imprinted polymer Hg(II) 0.018 nmol L−1 0.06–25 nmol L−1 [110]

Electrochemistry Pt /g-C3N4/
Polythiophene Hg2+ 0.009 nM 1–500 nM [111]

Electrochemistry Utg-C3N4 Hg(II) 0.023 µg/L 0.1–15.0 µg/L [112]

Electrochemistry g-C3N4-F127-Au NSs HSP90 2.67 µg/mL 3.5 µg/mL–2.43
mg/mL [113]

Electrochemistry Co3O4/g-C3N4 hydrazine 1 µM 5–1000 µM [114]

Electrochemistry S-g-C3N4/FTO hydrazine 0.06 µM 60 µM–475 µM [115]

Electrochemistry PANI/g-C3N4/AgNPs hydrazine 300 µM 5–300 mM [116]

Electrochemistry Cu/MnO2/g-C3N4 hydrogen peroxide 0.85 µM 10–20,000,
20,000–400,000 µM [117]

Electrochemistry Na,O-g-C3N4 hydrogen peroxide 0.05 µM 1 µM–50 µM [118]

Electrochemistry g-C3N4/HOPG hydrogen peroxide 0.12 µM 0.12–120 µM [119]

Electrochemistry rGO/g-C3N4 Pb(II) 1.07 × 10−12

mol/L
- [120]

Electrochemistry CsTi2NbO7@g-C3N4 nitrite 2.63 × 10−5 mol/L
0.0999–3.15

mmol/L [121]

Electrochemistry ZSO-gCN nitrobenzene 2.2 µM 30–100 µM [122]

Electrochemistry Ox-g-C3N4
Norovirus-Specific

DNA 100 fM - [123]
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Table 1. Cont.

Method Interface Biomarker LOD Dynamic Range Ref.

Electrochemistry g-CNNS ochratoxin A 0.073 nM - [124]

Electrochemistry AChE/CS/Pd
WLNCs/g-C3N4

acetylthiocholine
(ATCl) 0.67 nM 0.002–2.46 µM [125]

Electrochemistry g-C3N4 oxalic acid 0.75 × 10−6 mol
L−1

(1–1000) × 10−6

mol L−1 [126]

Electrochemistry g-C3N4/PEDOT-MeSH paracetamol 1 µM 0.4–1280 µM [127]

Electrochemistry g-C3N4 /CuO p-nonylphenol 1.2 × 10−8

mol·L−1
3.0 × 10−8–5.1 ×

10−6 mol·L−1 [128]

Electrochemistry HP5@AuNPs@g-C3N4 PSA 0.12 pg mL−1 0.0005–10.00 ng
mL−1 [129]

Electrochemistry AuNP/g-C3N4 PSA 5.2 pg mL−1 0.01–30 ng mL−1 [130]

Electrochemistry g-C3N4/NiO quercetin 0.002 µM 0.010–230 µM [131]

Electrochemistry Pt/g-C3N4/Polyaniline Hg2+ 0.014 nM 1–500 nM [132]

Electrochemistry Bi2Te3@g-C3N4 BNs ractopamine (RAC) 1.77 nM 0.015–456.4 µM [133]

Electrochemistry AuOct-PEI-C3N4 sulfamethazine 6.9 × 10−5

ng·mL−1
0.0001–100
ng·mL−1 [134]

4.3. g-C3N4-Based Photoelectrochemical (PEC) Biosensors

The photoelectrochemical (PEC) detection method is a hopeful technique for biological
assays [135], which is also a low-cost approach to transforming chemical energy into
electricity under a flash of light [136], and PEC biosensors have become prominent due
to their capability of biomolecules diagnosis. This method has had much consideration
because of its high sensitivity, simplicity, and fast response [137]. In the PEC diagnosis
system, light is used as an excitation source [138], allowing for a high sensitivity with
low background signals [136]. The PEC cell includes three main components: (a) a light-
harvesting semiconductor, (b) a metal electrocatalyst, and (c) adequate electrolytes among
the working electrode and auxiliary electrode to generate PEC signals using redox reaction.
Upon illumination, the redox reactions lead to a signal between the working and the
auxiliary electrodes [139].

PEC biosensors use wide bandgap semiconductors as photoactive materials [63],
changing optical energy to electrical and chemical energy [140]. g-C3N4 is a responsive
photocatalyst with a bandgap (2.7 eV) [141]. Additionally, one of the promising approaches
is a photocatalytic reaction which can absorb visible light [82]. g-C3N4, as an inorganic
polymeric semiconductor, possesses a graphite-like layer structure [142]. So, PEC biosensors
show advantages over electrochemical and optical biosensors with high sensitivity and low
cost. Hence research in the PEC biosensor for analyte detection has increased. Biomarkers
detected using photoelectrochemical biosensors are summarized in Table 2.

Table 2. Using photoelectrochemical (PEC) techniques for biomarkers detection.

Method Interface Biomarker LOD Dynamic Range Ref.

PEC
ZnO@CdTe nanocable
arrays/carboxylated

g-C3N4

Proprotein convertase
subtilisin/kexin type 6

(PCSK6)
2 pg/mL 10 pg/mL–20.0 ng/mL [143]

PEC ZnO/MoS2/g-C3N4

5-
hydroxymethylcytosine

(5hmC)
2.6 pM 0.01–200 nM [144]
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Table 2. Cont.

Method Interface Biomarker LOD Dynamic Range Ref.

PEC CuO-g-C3N4 aflatoxin B1 6.8 pg mL−1 0.01 ng mL−1–1 µg
mL−1 [145]

PEC TiO2/g-C3N4 alkaline phosphatase 0.03 U/L - [146]

PEC g-C3N4 chloramphenicol 0.22 pM 1 pM–100 nM [147]

PEC g-C3N4/TiO2
ascorbic acid alkaline

phosphatase
0.3 nM

0.1 mU/L
1 nM–10 µM

0.3 mU/L–1 U/L [148]

PEC AuNPs/g-C3N4 avian viruses 85 TCID50/mL - [149]

PEC Zn 0.1 Cd 0.9S/g-C3N4
Carcinoembryonic

Antigen 1.4 pg·mL−1 0.005 ng·mL−1–20
ng·mL−1 [150]

PEC g-C3N4/CuInS2
Carcinoembryonic

Antigen 5.2 pg mL−1 0.02−40 ng mL−1 [151]

PEC g-C3N4/CdSe Carcinoembryonic
Antigen 0.21 ng mL−1 10 ng mL−1–100 µg

mL−1 [152]

PEC ZnO NDs@g-C3N4 QDs CCRF-CEM cell 20 cell/mL 20–20,000 cell/mL [153]

PEC Ag2CrO4/g-C3N4/GO chloramphenicol 0.29 pM 0.5 pM–50 nM [154]

PEC P-g-C3N4-WS2 5- formylcytosine 3.8 pM 0.01–200 nM [155]

PEC g-C3N4/Ti3C2 ciprofloxacin 0.13 nM 0.4–1000 nM [156]

PEC Cu-BTC MOF/g-C3N4 glyphosate 1.3 × 10−13 mol
L−1

1.0 × 10−12–1.0 × 10−8

mol L−1 and 1.0 ×
10−8–1.0× 10−3 mol L−1

[157]

PEC g-C3N4@CdS QDs Hg2+ 12 nM 20–550 nM [158]

PEC TiO2/g-C3N4/ graphene dopamine 0.02 µM 0.1 to 50 µM [159]

PEC GOx|g-C3N4-TiO2|ITO glucose oxidase 0.01 mM 0.05–16 mM [160]

PEC
GOx-β-Gal@Au

NPs-g-C3N4-
MnO2-TiO2/ITO

Glucose and Lactose 0.23 mM 0.008–2.50 mM [161]

PEC g-C3N4/ZnIn2S4 glucose 0.28 µM 1–10,000 µM [162]

PEC utg-C3N4/WO3/ITO glucose 0.0001 mM 0.01–7.12 mM [163]

PEC Mn3(BTC)2/g-C3N4/TiO2 H2O2 0.001 µM 0.003–10 µM [164]

PEC g-C3N4/P3HT H2O2 0.38 µM 1.0–800 µM [165]

PEC g-C3N4/CdS quantum dots methylated RNA 3.53 pM 0.01-10 nM [166]

PEC g-C3N4/CdS quantum dots DNA MTase 0.316 U/mL 1–80 U/mL [167]

PEC cg-C3N4 Metronidazole 0.005 µM 0.01–100 µM [168]

PEC Au/CeO2/g-C3N4 Microcystin-LR 0.01 pM 0.05–105 pM [169]

PEC MoS2/g-C3N4/black TiO2 microRNA 0.13 fM 0.5 fM–5000 fM [170]

PEC CdS@g-C3N4 MicroRNA 0.05 fM 0.1 fM–1.0 nM [171]

PEC g-C3N4-MoS2@CdS:Mn myoglobin 0.42 pg mL−1 1.0 pg mL−1–50 ng
mL−1 [172]

PEC PPy/g-C3N4/WO3 IOPCs Oxytetracycline (OTC( 0.004 nM 0.01–5 nM [173]

PEC g-C3N4/WO3 IOPCs Oxytetracycline (OTC( 0.12 nM 1 nM–230 nM [174]

For instance, Li et al. developed a PEC biosensor based on coral-like g-C3N4 nanos-
tructures to detect the metronidazole biomarker. Although metronidazole is a common
antibacterial drug, it causes carcinogenic and genotoxic issues. Hence, the sensitive and
facile detection of metronidazole’s residues in typical oral medicine samples is an effective
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approach in health care. According to the results, coral-like g-C3N4 nanostructures in the
biosensor platform boosted the facility of signal amplification in the PEC sensing [168].
In the other study, Mao et al. applied the photosensitive CuO-g-C3N4 nanostructures as
an efficient photocathode in the PEC sensing of aflatoxin B1 (as a food contaminator and
class 1 carcinogen). The conjugation of CuO to g-C3N4 efficiently extended the optical
absorption toward the visible region. The CuO-g-C3N4 nanocomposite enhanced the PEC
signaling for the sensitive detection of aflatoxin B1 [145].

4.4. g-C3N4-Based Fluorescent Biosensors

Fluorescent biosensors have been used in biological assays, owing to their high sensi-
tivity, simple readout systems, lower response time, and visualization [175]. Fluorescent
biosensors possess a specific ability to monitor biological cell targets [176,177]. Fluorescence
spectroscopy has been widely applied to determine cancer and heavy metal ions [178,179].
Accordingly, the important advantages of this type of biosensor are that it is non-invasive,
its capability to use fluorescence intensity, and its fluorescence lifetime. Additionally, using
fluorescent nanomaterials, biomarker diagnosis can be highly selective and sensitive [180].
Fluorescent biosensors function by absorbing electromagnetic radiation, which is absorbed
by fluorophores or fluorescently labeled molecules. Fluorescent biosensors can be divided
into four types according to the signal-producing technique, including FRET (Forster Reso-
nance Energy Transfer), FLIM (Fluorescence Lifetime Imaging), FI (Fluorescence Intensity
and its change), and FCS (Fluorescence Correlation Spectroscopy) [181]. The fluorescence
biosensors have a single signal for detection and can easily be disturbed by environmental
and instrumental conditions [182]. In luminescence, light is produced by excitation without
increasing the temperature. Fluorescence is a type of luminescence that occurs over a short
period and is created by electromagnetic excitation [183]. Moreover, in fluorescence, the
time interval between absorption and emission is short [184]. Figure 3 shows the various
schemes of fluorescent reagent-less protein-based biosensors [185].
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Figure 3. Different schemes of fluorescent reagent-less protein-based biosensors. Single-fluorophore-
based biosensors: Change in conformation (A) or target interaction (B) changes the environment
of fluorophore. Two-fluorophore-based biosensors: In between two different fluorophores, FRET
is recorded (fluorescent proteins) (C), or by breaking the stack of two fluorescent dyes which are
identical (D). Modular design-based biosensors: a part in the merged system with the recognition
element can interact with either the target bound (E) or the target-free state (F) so that when the target
binds, the signal is transduced, Reproduced from Ref. [185] under the terms and conditions of the
Creative Commons Attribution (CC BY) license.
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Nanomaterials have introduced an attractive method of developing low-cost and
portable fluorescent devices [186]. In recent decades, a new group of 2D nanomaterials has
attracted research attention. g-C3N4 nanosheets supply an iterating choice for bioimaging
and bioprobes applications [187,188]. Additionally, the N-contain structure for the g-C3N4
nanosheet provides the potency for coordination with proton or metal ions [189]. The
mentioned unique characteristics of g-C3N4 nanosheets make this useful for developing
fluorescent biosensors or bioprobes. Table 3 shows some of the developed fluorescent
biosensors for detecting different biomarkers.

Table 3. Fluorescent techniques developed for various biomarkers.

Method Interface Biomarker LOD Dynamic Range Ref.

Fluorescent
S-Doped g-C3N4
Pinhole Porous

Nanosheets
Ag+ 57 nM 0 to 1000 nM [190]

Fluorescent g-C3N4 ascorbic acid 5.3nM 0–26.67 nM [191]

Fluorescent mpg-C3N4 Au3+ 1.1 µM - [192]

Fluorescent g-C3N4 chromium (VI) 0.15 µM 0.6 µM–300 µM [193]

Fluorescent g-C3N4
CN−

Cr2O7
2−

1.5 µM
18 nM

-
- [194]

Fluorescent g-C3N4 copper(II) 8 pM 0.01–0.4 nM [195]

Fluorescent g-C3N4 cytochrome C 2.6 nM 16–140 nM [196]

Fluorescent g-C3N4
Ag+

S2−
4.2 nM
3.5 nM

0–40 nmol /L
0–30 nmol/L [197]

Fluorescent g-C3N4
nanosheets/chromogenic glutathione 0.01 µM 0.05 M L−1–1.0 M L−1 [198]

Fluorescent g-C3N4 dopamine 0.017 µM 0–20 µM [199]

Fluorescent WS-g-
C3N4@AuNCs

Fe2+

Cu2+
1.73 nmol L−1

3.63 nmol L−1 - [200]

Fluorescent Fe-g-CNO Fluoride Ions 1 × 10−6 M - [201]

Fluorescent g-C3N4@CuMOFs glucose 59 nM 0.1–22 µM [202]

Fluorescent g-C3N4−MnO2 Glutathione 0.2 µM - [203]

Fluorescent g-C3N4 Hemin 0.15 µM 0.5–25 µM [204]

Fluorescent g-C3N4 H2O2 0.07 µM 0.1–100 µM [205]

Fluorescent g-C3N4–Dopa laccase activity 2 U L−1 0–430 U L−1 [206]

Fluorescent g-C3N4 metronidazole 0.008 µg ml−1 0.01–0.10 µg ml−1 [62]

Fluorescent Fe3O4/g-
C3N4/HKUST-1 ochratoxin A 2.57 ng/mL 5.0–160.0 ng/mL [207]

Hatamie et al. applied g-C3N4 nanosheets to develop a label-free bioassay system for
diagnosing metronidazole in biological fluids. The switch-off green fluorescence biosen-
sor provided rapid sensing with a linear detection range from 0.01 to 0.10 µg mL−1 [62].
Dopamine is a neurotransmitter with substantial biological functions in neuroendocrine
regulations, and its abnormal content in the human serum leads to Parkinson’s and
Alzheimer’s disease. Lv et al. investigated the g-C3N4 nanofibers in the fluorescent
probe for dopamine sensing. It provided a sensitive detection platform with a limit of
detection (LOD) lower than 17 nM [199].
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4.5. g-C3N4-Based Electrochemiluminescent (ECL) Biosensors

Over the past several decades, many studies on electrochemiluminescence (ECL)
biosensors have been conducted in various fields, such as chemical analysis and clinical
diagnostics or food analysis. Electrochemiluminescence, or electrochemical chemilumines-
cence, is the light emission produced from molecular types by an electron transfer process.
Additionally, ECL is triggered by an electrochemical reaction of the luminophores on an
electrode surface. Moreover, the significant advantages of ECL are its high sensitivity
and selectivity. In ECL biosensors, electrochemically generated intermediates endure an
extremely exergonic reaction to turn out into an electronically excited state. ECL-based
biosensors utilize specific biological diagnosis elements, such as enzymes, antibodies, ap-
tamers, peptides, and proteins to selectively recognize a particular analyte and generate
an ECL signal [208]. The basis of the method is on diagnosis interaction among biological
cognizance elements and the corresponding targets by ECL release alterations. Accord-
ingly, two main components are needed in standard ECL detection: ECL active types and
biological cognizance elements.

Depending on the reaction that induces the ECL signal emission, there are several
sensing systems for medical applications.

In systems that are based on the chemical reactions of the luminophores and co-
reactants, the chemical reaction between the luminophore and the co-reactant and is used
for detecting diverse biomarkers.

The second type is systems that involve the co-reaction accelerator-involved reactions.
In these systems, the reaction mixture is mixed with co-reaction accelerators. These acceler-
ators are involved in generating electrochemiluminescent reactions in terms of facilitating
the ECL reaction rate of co-reactant to produce several intermediates.

In systems that incorporate resonance energy transfer (RET) reactions, instead of using
only one luminophore, the signal is emitted via two different emitters by incorporating
a RET.

For systems that incorporate an enzyme reaction-based signal amplification, binding
events between target analytes and probe DNAs initiate. High sensitivity and extension
of the dynamic range of the modulation are some of the benefits of these systems [209].
Figure 4 represents the metioned types of ECL biosensors based on the reactions leading to
ECL signal emission.
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g-C3N4 has a large surface area, and this carbon-based material can enable more
sites to sequester charge carriers. Additionally, g-C3N4 has high electron conductivity,
and they can successfully separate and then transfer charge carriers [208]. Some of the
electrochemiluminescent biosensors are represented in Table 4.

Table 4. (ECL) methods for different biomarkers.

Method Interface Biomarker LOD Dynamic Range Ref.

ECL Au-g-C3N4 NHs alpha fetoprotein 0.0005 ng mL−1 0.001–5 ng mL−1 [210]

ECL g-C3N4
amyloid β

peptides 3.25 fM 10 fM–0.1 µM [211]

ECL g-C3N4@Au NPs coated Pd
NPs@NH2-MIL-53

amyloid β

peptides 3.4 fg·mL−1 10 fg·mL−1–50 ng·mL−1 [212]

ECL Fe3O4@g-C3N4 CA125 0.4 mU·mL−1 0.001–5 U·mL−1 [213]

ECL Ag-doped g-C3N4 concanavalin A 0.0003 ng·mL−1 0.001–50 ng·mL−1 [214]

ECL g-C3N4 tyramine 1.79 nmol L−1 1 × 10−8 −1 ×
10−3 mol L−1 [215]

ECL C-g-C3N4/CuO dopamine 8.2 nM 10 nM–1 mM [216]

ECL g-C3N4 NSs–PTCA dopamine 2.4 pM 6.0 pM–30.0 nM [217]

ECL AuNF@g-C3N4–PAN dopamine 1.7 × 10−9 M 5.0 × 10−9–1.6 × 10−6 M [218]

ECL g-C3N4 NSs-rGO/S2O8
2− folic acid 62 pM 0.1–90 nM [219]

ECL ZnO@g-C3N4 fipronil 1.5 nmol L−1 5–1000 nmol L−1 [220]

ECL Au-g-C3N4
Nuclear

factor-kappa B 5.8 pM - [221]

ECL g-C3N4 nanosheets and
Ag-PAMAM-luminol HL-60 cancer cells 150 cells 200–9000 cells·mL−1 [222]

ECL C- g-C3N4 insulin 33 fg·mL−1 0.1 pg·mL−1–20.0 ng·mL−1 [223]

ECL C60/g-C3N4 NS melamine 1.3 × 10−13 M 2.7 × 10−11–1.9 × 10−8 M [188]

ECL g-C3N4/K2S2O8
methotrexate

(MTX) 0.27 pM 1 pM–10 µM [224]

ECL g-C3N4@AuNPs miRNAs 0.3 fM 1 fM–10 pM [225]

ECL Ce-MOF@g-C3N4/Au
N-terminal
pro-B-type

natriuretic peptide
3.59 pg mL−1 0.005–20 ng mL−1 [226]

ECL g-C3N4 NSs Pyrophosphate Ion 75 pM 2.0–800 nM [227]

ECL AuNPs/g-C3N4

squamous cell
carcinoma antigen

(SCCA)
0.4 pg·mL−1 0.001–10 ng·mL−1 [228]

ECL Lum-AuNPs@g-C3N4 tumor exosomes 39 particles µL−1 - [229]

ECL g-C3N4
NS/TEA/Cu@Cu2O microRNA-21 48 aM - [230]

ECL g-C3N4/PDDA/CdSe VEGF165 0.68 pg mL−1 2 pg mL−1–2 ng mL−1 [231]

Wu et al. developed an ECL immunosensor to detect the cancer biomarker CA125;
nevertheless, its relatively low concentration in human body fluids limits the conventional
methods. The disposable and label-free biosensor provided a sensitive detection via ECL
emission when multifunctional g-C3N4 captures the CA125 tumor marker in the range
from 0.001 to 5 U/mL, with a LOD of 0.4 mU/mL [213]. Wang et al. proposed a novel
ECL bioassay system for detecting the HL-60 cancer cells based on g-C3N4 nanosheets
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and Ag–PAMAM–luminol nanocomposites (Ag–PAMAM–luminol NCs), where g-C3N4
nanosheets were applied as a reductive–oxidative ECL emitter. The overlapping of the ECL
spectrum of g-C3N4 nanosheets and the adsorption spectrum of Ag nanoparticles as well
as luminol oxidative–reductive ECL emissions simultaneously contributing to the sensitive
detection of the HL-60 cancer cells, with 150 cells as the limit of detection [222].

5. Conclusions and Future Perspectives

The early diagnosis of diseases is the best way to improve the treatment prognosis and
decrease the side effects of illnesses. Biosensors based on nanomaterials are efficient for this
approach due to the high and rapid sensitivity in diagnosing the target molecules that arises
from the specific properties of nanomaterials. In recent years, the nanosheets of g-C3N4 and
their derivatives have attracted a lot of interest owed to their outstanding optical properties
(high photoluminescence yield), high surface area, electrical conductivity, antimicrobial
activity, and good thermal and chemical stability. Several simple and high-yield methods
have been used to synthesize g-C3N4-based materials, such as the pyrolysis of low-cost
materials, including melamine and urea. C3N4-based materials have also been used in
various biosensors (SPR, EC, PCL), which demonstrates that they are promising candidates
in this field. Moreover, g-C3N4-based biosensors show high and rapid sensitivity for
detecting diseases, such as cancer; other targets in biological samples; or even the detection
of pollutants. Thus, g-C3N4 is a new carbon-based 2D nanomaterial for biosensing, and it is
expected that in the near future, g-C3N4-based biosensors will be improved in order to be
more sensitive in diagnosis and functionalized in order to have more selectivity to attach
the receptors. We anticipate that further research will be conducted on addressing the
intrinsic shortcomings attributed to g-C3N4, including poor specific surface area, limited
light absorption range, and poor dispersibility in organic and aqueous media.
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