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Abstract 

 

Non-Diffusive Heat Conduction 

in Small Length and Short Time Scale 

 

by 

 

Fan Yang 

 

Doctor of Philosophy in Engineering  Mechanical Engineering  

 

University of California, Berkeley 

 

Professor Christopher Dames, Chair 

 

With the evolution of semiconductor technology toward nanometer size and gigahertz 

frequency, the traditional diffusive Fourier’s law of heat conduction can no longer be 

applied.  To engineer new methods for chip cooling or thermoelectric power generation, 

understanding the non-diffusive heat transfer in both the length and time domains is 

important.  In this dissertation, the phonon transport at nanometer lengths or gigahertz 

heating frequencies is investigated using the Boltzmann Transport Equation (BTE). 

 

Regarding length scale effects, a systematic theory of the phonon thermal conductivity 

accumulation function was developed to show which phonon mean free paths are 

important for heat transfer. I show that the nanostructure thermal conductivity can be 

obtained with only the bulk mean free path spectrum and nanostructure geometry as 

independent inputs.  This theory has been applied to nanowire and in-plane thin film 

systems.  In addition, the length scale effect on the effective conductivity in randomly 

oriented superlattice polycrystals, which are potential thermoelectric materials, has also 

been investigated. 

 

Regarding time scale effects, I derived an analytical solution to the BTE under the gray 

mean free time assumption, and extended the solution to the non-gray regime.  With this 

theory, I can explain the experiments measuring a heating frequency dependent thermal 

conductivity of semiconductor alloys.  I also build up a framework which can be used to 

extract a phonon accumulation function with respected to mean free time.  The 

similarities and differences of both length and time effects have also been compared and 

discussed. 
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Chapter 1  Background 

The energy problem becomes one of the most critical problems nowadays, as the 

world’s population is expected to increase from 7 billion today to 10 billion by 2100[1, 2].  

This increase and also the improvement of living standards demand more energy or new 

technology which has higher efficiency.  Waste heat recovery is one very important 

research area. For instance, for a car only 21.5% of the energy is used to move the car, 

while more than 30-37% of the energy loss goes to the exhaust gas[2]. Thus, if even only 

1% efficiency can be enhanced, the both economic and environmental effect would be 

enormous.  There is a great potential we can harvest the wasted heat energy.  

Thermoelectrics is one of the most attractive technology nowadays.  

 

With the rapid development of semiconductor technology in the past few decades, 

there are two main characteristics on both length and time scale.  One is that its size 

become smaller and smaller, as shown in regime two in Fig. 1.1, thus more and more 

chips on the same area would increases the power density even though the manufacturing 

cost would decrease.  On the other hand, when the clock becomes faster and faster, as 

shown in regime 3 in Fig. 1.1, more and more power would be consumed in a single 

transistor.  Thus the chips would be hotter and hotter[3].  In addition, in regimes 2 and 3, 

when the length or time is shorter than the characteristic length or time, ballistic effect 

would further decrease the thermal transport and reduce the capability to dissipate heat. 

Thus, this dissertation will mainly focus on the regime of 2 and 3, to understand the 

fundamentals of how the size and time would affect the thermal transport in the non-

diffusive (or ballistic) regime. 
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Figure 1.1 Heat conduction regime map. Our investigation regimes are in 2 and 3. 
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1.1 Thermoelectrics and the Applications 

The thermoelectric power generation device, as shown in Fig. 1.2, has many 

advantages compared to traditional devices.  It uses the thermoelectric effect to directly 

harvest the heat energy and convert it electricity.  There are no mechanical moving parts, 

which lead to much lower noise and longer lifetime.  Since it is a solid state device, there 

is no pump or compressor.  Thus, the device can be made much smaller.  In addition, it is 

made by semiconductor, which can be integrated into modern semiconductor technology 

naturally. Thus, it has the potential for massive production and cost reduction. 

 

R

TC

TH

P-type N-type

I

II

 

Figure 1.2 Schematic of thermoelectric power generator. The temperature gradient provides the 

driving source. 

 

Even though the thermoelectric energy converter has many advantages, the 

applications are still not very broad at present.  The major reason is the efficiency is still 

too low.  The efficiency of a thermoelectric material, n- or p-type semiconductor as 

shown in Fig. 1.2,  is determined by the figure of merit zT 
2

e ph

S
zT T



 



    (1.1) 

where S is the Seebeck coefficient,  is the electrical conductivity, e is the electrical 

thermal conductivity, and ph is the phonon thermal conductivity.  The optimized 

efficiency for the thermoelectric module is[4] 

max

1 1

1 /
Carnot

C H

zT

zT T T
 

 


 
   (1.2) 

where H C
Carnot

H

T T

T



  is the efficiency of the Carnot cycle, where TH is the high 

temperature and Tc is the low temperature of the device.  Figure 1.3 shows the 
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relationship between a zT value and max in Eq.(1.2).  Usually, considering cost of other 

power generation technologies, it requires the zT > 3 to make thermoelectrics competitive 

with them. 

 

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

 

 


m

ax

zT

 max

 Carnot 

TH=250C

TC=50C

 

Figure 1.3 Carnot efficiency and efficiency of thermoelectrics at different zT 

 

In the past two decades, the field of thermoelectrics gain much attention. In the 

early 1990s, Hicks and Dresselhaus[5-7] proposed that nanotechnology is one efficient 

way to enhance the zT. The proposal uses quantum confinement effects, which would 

provide a larger density of state gradient, thus improve the Seebeck coefficient to achieve 

high zT. A few years later, researchers found reducing the thermal conductivity is even 

more effective than enhancing the Seebeck effect. Thus, reducing thermal conductivity 

has gain a lot of attention.  

 

Different methods have been used to reduce the lattice thermal conductivity.  

Venkatasubramanian et al.[8] use the superlattice made by p-type Bi2Te3/Sb2Te3 and 

achieved zT = 2.2 in their device at room temperature.  Doping with heavy rare earth 

materials, which provide extra impurity scattering is also an effective way to reduce the 

thermal conductivity in InGaAs.  Kim et al.[9] use ErAs doping, and reduced the thermal 

conductivity a factor of 2 even below the alloy limit. 

 

On the nanostructure side, nanowire provides very effective way to confine the 

phonon mean free path.  It has been used on Si nanowire[10, 11], which reduce the 

thermal conductivity more than one order of magnitude with the reduction of the wire 

diameter.  The phonon boundary scattering is the most important scattering mechanism in 

these nanowires.  Hochbaum et al.[12] use the aqueous electroless etching method to 

make even rougher nanowire and reduce the thermal conductivity more than two order of 
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magnitude comparing to the bulk thermal conductivity at room temperature.  Similar 

work on silicon nanowires has also been published at the same time by Boukai et al.[13].  

To further reduce the thermal conductivity and understand the scattering mechanism of 

nanowire, especially the role of surface roughness, Kedar et al.[14, 15] made even 

rougher nanowires and investigated the relationship between the thermal conductivity and 

roughness power spectra. 

 

For bulk and larger scale energy harvesting, bulk materials are more desirable. 

Poudel et al.[16] found the bismuth antimony telluride bulk alloy, which is made by ball 

milling and hot press method, can produce bulk materials with zT = 1.2 at room 

temperature and 1.4 at 100C, which showed the possibility of commercialization of high 

efficiency thermoelectrics. Very recently,  Zhao et al. used layered SnSe to achieved very 

low lattice thermal conductivity at 0.23 W/m-K, and thus lead to achievement of the zT = 

2.6 0.3, which is the highest reported until now[17].  

 

1.2 Thermal Transport in Small Length Scale 

Since using nanostructures can reduce the lattice thermal conductivity, to 

fundamentally understand how the structure size affects the thermal conductivity 

becomes more and more important.  The key factor to compare with the nanostructure 

size is the mean free path. Thus, investigating which phonon mean free paths are 

important for heat conduction become an interesting topic recently.  Dames et al.[18] first 

proposed that there is a broad distribution of phonon mean free paths using the concept of 

thermal conductivity per mean free path. 

 

On the experimental side, there also are several important works reported recently. 

Siemens et al.[19] did the first quantitative measurement on transition from diffusive to 

ballistic thermal transport by using soft x-ray beams. They create 65-2000 nm wide 

nickel lines, which covers the average mean free path in sapphire, to observe the ballistic 

effect.  Because of these periodic metal lines, the light would interfere with each other 

after getting diffracted from different metal lines.  Thus, they can detect the dynamic 

temperature and measure the breaking down of Fourier’s law.  However, the problem of 

this method is the measurement system is complicated and expensive. 

 

On the thermal conductivity spectra measurement, Minnich et al.[20] first measured the 

mean free path accumulation function of natural Si using time domain thermoreflectance 

(TDTR). The basic idea of TDTR is to shine a high power laser on the sample to provide 

heat flux, and  use another lower power laser beam to detect the reflected signal, which is 

related to the temperature. By analyzing the reflected probe signal, one can obtain the 

thermal conductivity.  In their method, the modification is by controlling the laser beam 

size to recover the thermal conductivity accumulation function[20, 21].  They assume 

when the beam size is comparable to part of the long mean free path distribution, the 

phonons with mean free paths longer than the spot size would not be excited and would 

not contribute to heat conduction.  
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Very recently, Johnson et al.[22] using the thermal grating membrane measured the room 

temperature accumulation function of Si. The basic principle is two laser beams 

interfering with each other to create transient thermal grating on the suspended thin film 

structure. In regions where the beams interfere constructively the temperature will be 

high; while destructively the temperature will be low.  By analyzing the diffracted probe 

beam on the other side of the membrane, the thermal conductivity accumulation function 

can also be obtained. The membrane method has several advantages. It is a thin 

freestanding layer, thus there is no interface or contact with other materials. In addition, 

the width of the heater (and grating period) is easy to tune by changing the incident angle 

of the laser. The thickness of the membrane is usually thin, which make the heat 

conduction one dimensional and easy to analyze. 

 

These thermal conductivity accumulation measurement and also previous modeling[18] 

indicate there is a broad distribution.  To understand this distribution, it is still necessary 

to do a systematic investigation on the mean free path spectra.  For these different 

analytical bulk thermal conductivity models, which model is the most appropriate to 

extend to the nanoscale?  How the accumulation function can be used?  How the thermal 

conductivity is affected by the nanostructure?  There questions in the length scale are 

discussed in Chapter 3.  Comparison of different models has been made.  A convenient 

method of using bulk mean free path spectra to calculate effective thermal conductivity 

of a nanostructure has been obtained[23]. 

 

 

1.3 Thermal Transport in Short Time Scale 

For the phonon transport, in addition to the size effect at small length scale, there 

would also be time effect at short time scale.  This effect in short time scale is also called 

ballistic effect.  This effect becomes more and more important recently in the 

semiconductor industry with the increasing of the computer clock frequency, because it 

affects the heat dissipation.  The heat dissipation problems for the computer or cell phone 

chips become one of the greatest challenges.  For instance, the highest clock frequency is 

the IBM zEC12 at present (released in the middle of 2013) [24] [25], with the clock 

speed of 5.5 GHz, which corresponds to the time period of ~100 ps.  This period is 

comparable to the major phonon MFTs in semiconductor at room temperature[25].   

 

Similar to the size effect that decreasing the device size would decrease the 

apparent thermal conductivity, the faster clock would also decrease the apparent thermal 

conductivity.  However, for better power dissipation, it is necessary to have materials 

with high thermal conductivity.  Thus, it would be crucial to understand how heating 

frequency would affect the apparent thermal conductivity.  The main physics of the 

apparent thermal conductivity reduction is that when the characteristic time (heating 

period) is comparable or smaller than the phonon mean free time, which is the time 

between a phonon’s collisions, their contribution to the thermal conductivity would be 

greatly suppressed, because only part of the phonons can participate in the transport. 
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Experimentally, there are different works recently on how the heating frequency would 

affect the thermal transport.  Koh and Cahill[25] did the first modulation heating 

frequency dependent thermal conductivity measurement on single crystal and alloy 

materials.  They found semiconductor alloys, such as SiGe, InGaP, and InGaAs, have a 

frequency dependence.  They also use the method of TDTR.  Their interpretation of the 

data is based on the constraint of penetration depth[25] [26].  This penetration depth 

functions as a characteristic length scale which they compared to the phonon mean free 

paths.  Using the penetration depth, the time domain concept, heating frequency, has been 

transferred to length scale.  One of the greatest advantages of this method is that the 

penetration depth is tunable by modulating the heat source heating frequency.  The higher 

the frequency, the shorter the penetration depth.  When the penetration depth is 

comparable or smaller than some of the long mean free path phonons, the long mean free 

path phonons would get constrained.  Their corresponding contribution to the total 

thermal conductivity would also be reduced.  Thus, there would be a heating frequency 

dependent thermal conductivity. 

 

There are also other methods used to measure the heating frequency dependent 

thermal conductivity.  One of the examples is frequency domain thermoreflectance 

(FDTR)[27, 28], which has much lower cost comparing to time domain 

thermoreflectance (TDTR)[21].  In this setup, the continuous laser diode can be sufficient. 

The challenge of this method is to achieve high modulation frequency to make the 

penetration depth comparable to the mean free path.  The electro-optic modulator in the 

literature has a maximum of 200 MHz[26], which corresponds to the mean free path in 

the order of ~100 nm.  This is sufficient for some long mean free path materials, such as 

silicon or sapphire.  But, for very low mean free path materials, such as amorphous SiO2 

or silicon, this method is not sensitive to its mean free path range[26]. 

 

The heating frequency dependent apparent thermal conductivities are explained 

by the non-diffusive effect.  However, in the experiment discussed above, the apparent 

thermal conductivity is obtained by using the Fourier law based framework, which 

already fails when there has non-diffusive effect.  It is necessary to develop data analysis 

tools to explain the non-diffusive heat conduction.  It is also important to investigate how 

broad the phonon distributions are in the mean free time domain.  These topics are 

covered in Chapter 4. 

 

 

1.4 Thermal Transport at Cryogenic Temperature 

When temperature decreases to cryogenic temperature, such as the thermoelectric 

power generator in outer space[29], the phonon mean free path and mean free time both 

would be longer. Thus, part of the phonons would possibly transport ballistically.  Some 

criteria used to select thermoelectric materials may not be valid any more. For instance, 

in thermoelectrics, the high zT requires materials with low thermal conductivity . The 

common rule at room temperature or above would be using heavy atom semiconductors 
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which usually have low sound velocity, such as PbTe or Bi2Te3. However, at cryogenic 

temperature, as shown in this work, this material selection rule would be opposite 

comparing to the rule at high temperature. This can be explained by the phonon freeze-

out effect[30], which is discussed in Chapter 5. 

 

1.5 Organization of the Dissertation 

This dissertation considers the phonon transport in small length scale and short time 

scale using the Boltzmann transport equation. The ballistic effect on both scales are 

investigated. Low temperature thermal transport properties are also investigated.  

 

This dissertation is organized as follows: 

 

Chapter 2 investigates thermal conductivity of randomly oriented superlattice 

polycrystals using Boltzmann transport equation.  Both the in-plane and cross-plane 

thermal conductivities are obtained.  The effective thermal conductivity is obtained using 

a “correlational approximation”.  This theory is verified by finite element simulation. The 

theoretical results are compared with experiments from our collaborators. How different 

parameters would affect the thermal conductivity has also been investigated. 

 

Chapter 3 builds up a theory for phonon mean free path spectra for steady state heat 

conduction.  It is found the long mean free paths play a important role.  An integral 

transform framework is established to evaluate the nanostructure thermal conductivity.  

This framework has been used in the nanowire and in-plane thin film for case study.  

 

Chapter 4 discusses phonon transient behavior. The heating frequency dependent 

thermal conductivity has been investigated also by Boltzmann transport equation. A 

framework on how to measure the accumulation function with respect to mean free time 

has been discussed. An analogy of phonon transport in time domain and space domain 

has also been made.  

 

Chapter 5 discusses the thermal transport at the cryogenic low temperature. It 

discusses the thermal contact resistance crossover at cryogenic temperature. 

 

Finally, Chapter 6 summarizes the major work of this dissertation and proposes 

several future problems. 
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Chapter 2  Thermal Conductivity of Randomly Oriented 

Superlattice Polycrystal 

2.1 Introduction 

The main work of this chapter is based on our recent publication [Yang, Ikeda, 

Snyder, and Dames, Journal of Applied Physics 108, 034310 (2010)].[23] 

 

Controlling lattice thermal conductivity, especially by reducing it, has attracted 

great attention nowadays, because the reduction of thermal conductivity can improve the 

thermoelectric performance. There are various methods to achieve this goal, ranging from 

doping impurities to defect scattering, to bringing in interfaces or grains to increase 

boundary scattering. With the development of nanotechnology, the later one of using 

interfaces becomes more and more important. Different structures have been investigated 

by researchers, such as thin film, superlattice, nanowire, quantum dot, etc. The 

superlattice is one of the most important structures which introduced a series of interfaces 

and can effectively increase the phonon scattering at the interface[31, 32] to reduce the 

effective thermal conductivity in both the in-plane[33] and cross-plane[8] directions.  

 

Most superlattice structures were obtained using molecular beam epitaxy (MBE) 

or metal-organic chemical vapor deposition (MOCVD) [8, 33], because these methods 

can control the interface quality and layer thicknesses very precisely.  High quality 

superlattice structures have been used in various fields, such as light emitting diode, laser 

diode, and chip cooling device [34].  However, one of the major considerations of these 

methods is that they need complicated and expensive equipment, thus the sample cost 

would be very high and can not be easily scaled up for mass production.   

 

Therefore, much recent attention has been working toward the direction of low-

cost synthesis methods to create bulk-scale samples with internal nanostructures inside.  

These methods would usually dramatically reduce the synthesis cost and enhance the 

massive production with the cost of some degree of sample quality.  There are several 

materials systems that use this “nano-bulk” approach[35] to create nano grains in the bulk 

samples, such as hot pressed ball milled nano-powders (such as BixSb2-xTe3 system[16, 

36, 37]), complex crystal structures (such as skutterudites, clathrates, and Zintl phases) 

[29], or self-assembled composites (such as precipitates[38] or lamellae of PbTe/Sb2Te3. 

[Ref. [36])  One of the characteristics of these materials systems is that they are bulk 

samples but contain nano-grains.  For instance, the lamellae of the PbTe/Sb2Te3 system 

(Ref. [36]), which will be studied in this work, is made of numerous randomly-rotated 

superlattice grains with the period in order of ~100nm or above.  The thermal property 

would be very anisotropic in different directions of the superlattice due to the anisotropy 

of the materials[36].  However, on the macroscale it would be isotropic due to random 

orientation, as shown in Fig. 2.1(a).  This chapter will investigate the effective thermal 

conductivity eff. of randomly-rotated superlattice nano-grains. 
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This chapter will focus on the materials systems of self-assembled PbTe/Sb2Te3 

nano-composite[29, 36].  We built up a model, based on the Boltzmann transport 

equation, to evaluate the effective macroscopic thermal conductivity eff of bulk 

polycrystalline materials.  The model discussed the relationship between eff, in-plane x, 

and cross-plane z of the superlattice.  The validity of this relationship has been verified 

by the Finite Element Method (FEM).  With this verified general model, next goals are 

calculating the in-plane and cross-plane thermal conductivity separately using the BTE 

solution[31, 32, 39] with the gray assumption. The information needed for the in-plane 

and cross-plane thermal conductivity are shown in Fig. 2.2.  The sequence of calculating 

the thermal conductivity is also shown in Fig. 2.2. After obtaining the gray solution, we 

extend the gray solution to frequency dependent regime to include all phonons with 

different vibrational frequencies.  After building up the model, we investigate different 

effects, such as the interface smoothness, thickness, and temperature.  We also compare 

our model with experimental measurements from our collaborators, and discuss the 

underlying physics.  

x

z y




(a) (b)

T
T

 

Figure 2.1 (a) Schematic of a nano-bulk composite material made of randomly oriented superlattice 

grains with  the global coordinate system x’y’z’ and (b) a single superlattice grain with its local 

coordinate system xyz aligned to the superlattice planes. 

2.2 Effective Thermal Conductivity on the Macroscale 

2.2.1 General Theory 

This subchapter focuses on building up a relationship between the general 

effective thermal conductivity and elements of the thermal conductivity tensor.  We use 

the self-assembled PbTe/Sb2Te3 lamellar structures reported in Ref. [36] as an example.  

The superlattice grain size is in the order of m with superlattice period in several 

hundreds nm, but the bulk materials contain numerous of these grains.  For the 

orientation probability of the nano-grain, we assume each direction has the same 

opportunities.  Since these samples are self-assembled, the contact resistance between 

different grains would be small compared to the resistance between material A and B in 

Fig. 2.1(b), thus we neglect these contact resistances between different grains.  We also 

define the coordinate here.  For the local directions, we define a local coordinate system 

with the local z-axis aligned along the cross-plane direction of superlattice, and the local 
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x- and y-axes along in-plane of the superlattice (Fig. 2.1b). We also restrict our analysis 

to materials systems where the thermal transport properties in the local x and y directions 

are identical due to the symmetry. Thus, for the thermal conductivity tensor, K, within 

the grain, the elements in the x and y directions are the same. Thus, in the local coordinate 

system, the thermal conductivity tensor of a single grain can be expressed as 



















z

x

x







00

00

00

K .     (2.1) 

Here the element of x and y are the same, thus we use x replace the y in the 

whole chapter. Because of the symmetries, the diagonal elements are all zero in the local 

xyz coordinate system. Before we discuss the full theory of the nano-bulk system, we first 

consider two extreme cases, the thin polycrystalline film and the long wire, as shown in 

Section 2.2.2 and 2.2.3. 
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Figure 2.2 Flow chart of obtaining effective thermal conductivity for messy superlattice. 

 

2.2.2 Average Thermal Conductivity for a Thin Film 

We will discuss the thin polycrystalline film in this subchapter as shown in Fig. 

2.3(a). The polycrystalline film is made up of may grains, with same thickness, on the 

same plane, but each grain has different orientation. Both the top and bottom surface of 

the thin film are isothermal.  

 

The local heat flux through the thin film can be evaluated by 

TT  sKKq ˆ ,    (2.2) 

where T  is the temperature gradient vector, which has magnitude T  and points in the 

ŝ  direction, and q is the heat flux vector.  The 'ẑ  direction of global x’y’z’ coordinate 

system has also been defined using the ŝ . Thus, in the local coordinate, the ŝ  direction 

can be expressed as 
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























cos

sinsin

cossin

ŝ ,    (2.3) 

where  and  describe the rotation of the grain’s coordinate system away from the 

imposed T . 

T T
(b) Wire(a) Thin film

 

Figure 2.3 Schematics of (a) nano-grain thin film and (b) nano-grain wire. 

 

In the case of polycrystalline film, the top and bottom boundaries are isothermal.  

All the grains have the identical average temperature gradient T .  Thus, the key here is 

to evaluate the effective heat flux along the T  direction.  For a single grain, the average 

heat flux would be sq ˆnetq .  Consider the angular dependence of the heat flux, the net 

heat flux from top layer to the bottom layer would be   Tq zxnet   22 cossin .  

Thus, in analogy to the heat conduction in isotropic form, we can obtain the effective 

thermal conductivity  

2 2sin cosnet
eff x z

q

T
       


.    (2.4) 

This keff is only for a single grain. When considering all the grains with random 

orientation in the thin film, each direction is equally distributed over the full solid angle 

. Thus, the effective thermal conductivity for the film would be 
4

2 1
, 3 3

0

1

4
eff film eff x zd



   


    .    (2.5) 

To make a comparison of this limiting case to the general effective thermal 

conductivity, we will rewrite this eff,film in a dimensionless form with respect to the 

thermal conductivity contrast parameter xzr  /  and characteristic thermal conductivity 

  3/12
zxchar   . Thus, the effective thermal conductivity of thin film in Eq.(2.5) can be 

expressed as 
3/2

3
13/1

3
2

, / rrcharfilmeff   .    (2.6) 
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2.2.3 Averaging Thermal Conductivity for a Long Wire 

In this subchapter, we will discuss another limit of nano-grains which all grains 

with the same size and along a long wire, as shown in Fig. 2.3(b).  Along the wire, the 

same heat flux would pass through each grain.  The temperature gradient of each grain 

would be different.  Thus, the temperature gradient T  would also be different. In this 

case, the heat flux q is the forcing and T  is the response to the heat flux.  Thus, the 

temperature gradient would be qsKqK ˆ11  T , where ŝ  refers to the direction of 

the average heat flux.  Using similar averaging rules as the thin film in previous 

subchapter, the temperature gradient components along the average heat flux direction 

would be   sqsK ˆˆ1  

net
T .  Considering the random orientation, after integrating over 

all solid angle  , we obtain the effective thermal conductivity of the long wire 

  11

3
11

3
2

,

  zxwireeff  .    (2.7) 

We also use the thermal conductivity contrast parameter xzr  /  and characteristic 

thermal conductivity   3/12
zxchar   , thus we can rewrite the eff,wire in a dimensionless 

form  

  13/2

3
13/1

3
2

, /
 rrcharwireeff  .   (2.8) 

 

2.2.4 Averaging Thermal Conductivity for Nano-bulk 

For the randomly oriented grain, Mityushov and Adamesku used a “correlational 

approximation” [40] and obtained a approximate solution, which has the form of 

3/1
2

9
2

3
23/2

3
1

,,
2

)1(
/ 






















 r

r

r
rcharMAbulkeff  .   (2.9) 

To the best of our knowledge, this expression is not known in the Western literature and 

no comparison of this method has been made.  In the chapter 2.2.5, we would verify it by 

our FEM simulation.  We will see that this method has a much better accuracy than 

limiting case discussion above and in literature[41, 42].  For instance, the upper bound 

effective bulk thermal conductivity from Adams et al.[42] that 
, , ,eff bulk UB eff film   or the 

lower bound from Schulgasser[43]  with the form of 






  13/2

2
1

,, 811/ rrcharLBbulkeff  .  

Finally, in this work, we would use the more general results from “correlational 

approximation” in Eq.(2.9). 

 

2.2.5 Numerical Analysis and Verification 

In this subchapter, we performed the FEM simulation, three-dimensional 

numerical simulations using COMSOL multiphysics, to verify the results of 

“correlational approximation”, the thin film limit, and long wire limit.  We summarize the 

details of the simulation in Table 2-1.  In the simulation, the size of each grain is 

expressed by Lx  Ly  Lz.  The number of grains in the sample is an array Nx  Ny  Nz. 

To mimic the conditions of thin film, wire, and bulk, we choose a flat, elongated, and 

cubic structure for each case, respectively.  With the configuration of the simulation 
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structure, the next input for the FEM is the boundary conditions.  We also listed them in 

Table 2-1.  For the thin film structure, since the lateral direction is infinite, we use a 

periodic boundary condition to represent this boundary condition.  In the other limit of 

long wire, due to the lateral confinement, heat would only flow in the wire direction, thus 

we would use the adiabatic condition as the lateral boundary condition.   

 

Table 2-1 Simulation structure, boundary conditions, and other input parameters used in FEM 

simulations. 

 Thin Film Thin Wire Nano-Bulk 

Grain Configuration (Nx 

Ny  Nz) 

6  6  1   1  1  20 4  4  4 (most runs) 

5  5  5 (several runs) 

Grain Size (Lx Ly  Lz) 10  10  0.1 1  1  10 1  1  1 

Boundary Conditions Constant T (z faces); 

Periodic (x and y faces) 

Constant T (z faces); 

Adiabatic (x and y 

faces) 

Periodic with fixed T 

difference (z faces); 

Periodic (x and y faces) 

Equation for comparison Eq. (2.6) Eq. (2.8) Eq. (2.9)  

 

With both the structure and boundary conditions, we can run the FEM simulation.  

The thermal conductivity tensor of the nano-grain is assigned randomly by the COMSOL 

Matlab interface.  We generated the random function as the thermal conductivity tensor 

in the Matlab and transfer it to COMSOL through the interface.  The tensor has the 

principal conductivity x and z (where x=y).  The grain has been rotated by any 

random angle.  This can be expressed by a randomly rotated matrix R in Ref. [44]. Thus, 

the thermal conductivity tensor of the grain finally has the tensor of KRR
T . 
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Figure 2.4 Averaging rules for the effective thermal conductivity of polycrystalline thin films, wires, 

and nano-bulk materials.  Points are from FEM simulations.  Green line is analytical result from 

Mityushov and Adamesku approximation.  Red and blue line are results of Thin film (Eq. 2.6) and 

nanowire (Eq. 2.8). The inset is typical FEM simulation of a 444 nano-bulk configuration. 
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The FEM results are shown in Fig. 2.4.  The x-axis is the thermal conductivity 

contrast parameter xzr  /  and the y-axis is the effective thermal conductivity 

normalized to characteristic thermal conductivity   3/12
zxchar   .  The numerical results 

verify that Eq. (2.6) and Eq. (2.8) are appropriate for thin film and long wire, even though 

large deviation happens at large r.  For thin films and wires, they have totally different 

trends.  If we fixed the characteristic thermal conductivity char, for the thin film, the 

larger thermal conductivity contrast parameter r, the larger eff.  Because all the nano-

grains are in parallel, probably the large z dominates the heat conduction at larger r.  For 

the wire, it is a opposite trend. Since heat need to pass through every grain, if the contrast 

parameter r is too large, some grains which have very small x would block the heat 

conduction, and greatly reduce the total effective thermal conductivity.  

 

The power law of the effective thermal conductivity have also been observed for 

thin film, wire, and nano-grain structure in Fig. 2.4. Both the power law of   
3/2/ rchareff   or 3/1/  rchareff   in both the limits of large and/or small r, have been 

observed.  For the thin film, which means parallel conductance, we have 3/2/ rchareff   

for r >> 1 and 3/1/  rchareff   for r <<1.  In the other limit of long wire, with in series of 

resistance, we would have 3/1r  (r >>1) and 3/2r  (r <<1).  For our randomly oriented 

nano-grain, both the analytical calculation and the FEM tends to show that the nano-grain 

behaviors as thin film.  Thus, the parallel conductance but not the series resistance is 

more suitable for interpretation of the effective thermal conductivity of the nano-grain. 

 

Figure 2.3 also shows the “correlational approximation” from Mityushov-

Adamesku (M-A) agrees with the FEM simulation the best for a wide range of r.  For 

r<0.01, the disagreement is approximately 8%.  Within r<10, the disagreement is very 

small within 10%. Even when r = 100, there disagreement is still within 35%.  We 

speculate this reduction of FEM simulation comparing to M-A is partially due to cubic 

grains arrayed in a cubic lattice assumption.  For the cubic structure, it can only interact 

with 6 of its neighbors.  However, a unit cell with different symmetry can have much 

more neighbors and have more interconnections.  For instance, the face-centered cubic 

lattice would have 2 neighboring grains. Thus, more interactions between the grain and 

its neighbors would increase the macroscopic effective thermal conductivity.  Thus, the 

cubic assumption in this FEM simulation would reduce the effective thermal conductivity. 

This reduction effect is expected to stronger at larger r, because when r is very large, the 

x and y two directions will tend to block the heat flow. Thus, only two interfaces are 

interacting with neighbors.  Thus, the disagreement is larger at larger r. 

 

2.3 Modeling in-plane and cross-plane conductivity of a single 

superlattice grain 

This section discusses the modeling of superlattice thermal conductivity.  In a 

superlattice, when the superlattice period length is comparable or even smaller than the 
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phonon mean free paths, the heat diffusion equation would fail.  Thus, the Boltzmann 

Transport Equation (BTE), which captures the ballistic effects, needs to be used.  The 

BTE method approximates the phonons as classical particles and neglects the possibility 

of coherent wave interference effects.  This assumption is appropriate for self-assembled 

materials considering the length scales here.  For instance, the thickness of period in this 

work is in the order of hundreds nanometers (283 nm as minimum for PbTe/Sb2Te3 

system), which is two orders of magnitude larger than the 1 nm typical phonon 

wavelengths, which is estimated from Debye temperature[18].)  In literature, there are 

solutions to BTE in both superlattice in-plane and cross-plane which are based on gray 

relaxation time assumption[31, 32, 39].  In this work, we use the in-plane solution and 

extend the gray solution in cross-plane direction. 

 

2.3.1 Approximating the Dispersion Relations 

For materials with more than one atom in the primitive unit cell, there are optical 

phonons. Since the dispersion of optical phonon is almost flat, the group velocity could 

be approximated as zero.  Thus, the optical phonon’s contribution would be neglected.  

For the acoustic phonons, the isotropic Born-von Karman dispersion is used [31, 45] 

0

0

sin
2

q

q


 

 
  

 
     (2.10) 

where q is the wavevector,   3/12
0 6 q is a cutoff wavevector, vs is the sound velocity,  

is the number of primitive unit cells per unit volume, and  /2 00 qvs  is a characteristic 

frequency.  This dispersion is also relatively simple, but it is more realistic than the 

Debye approximation because it captures the group velocities at the Brillouin zone edge, 

which are much smaller than the sound velocity.  In addition, the computational effort 

needed is much less than the exact phonon dispersion calculation[46]. This is especially 

useful when applied to complicated material system whose full dispersion relations are 

not known, because the acoustic dispersion is fully determined by the parameters density 

of primitive unit cells  and sound velocity vs. 

 

With the dispersion, we can obtain other thermal properties, such as density of 

states () and specific heat C().  We first consider the single polarization branch, the 

density of states is  
2

22

q

v
   , where v is the group velocity which is the slope of the 

dispersion, qv  / . It is also common to lump two transverse branches and one 

longitudinal branches into three identical one, with the average group velocity vavg().  

Thus, the total density of states is  
avgv

q
2

2

2

3


  .  For thermoelectric application, we 

are usually interested in the high temperature regime which is usually well above the 

Debye temperature D.  In this case, the effective sound velocity can be shown to be the 

arithmetic average of the three branches, TsLsavgs vvv ,3

2
,3

1
,  .  In addition, we can also 

obtain the volumetric specific heat per unit frequency C(ω) that  
f

C
T

 





where f 

is the Bose-Einstein distribution function and is the reduced Planck constant. 
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2.3.2 Phonon Scattering Mechanisms in Bulk 

The key to determine thermal conductivity is its scattering mechanisms, which 

here we describe by the phonon frequency dependent mean free path )(bulk . For the 

bulk materials, most common scatterings are the impurity scattering and phonon-phonon 

Umklapp scattering. These two scatterings are usually combined together using 

Matthiessen's rule [30] that 
111   umklimpbulk

     (2.11) 

The impurity scattering can be evaluated by a Rayleigh expression 
avgimp vA /4

1

1  , 

where the A1 is a fitting parameter obtained from fitting the bulk thermal conductivity.  It 

can also be evaluated by theory, which is affected by the mismatch of atoms’ weight, 

volume, and stress[47]. The Umklapp mean free paths are common expressed as[48] 

  avgumkl vTBTB //exp 2

2

1

1      (2.12) 

where B1 and B2 are fitting parameters, and T is the absolute temperature.  B2 can also be 

written D/const, where const is usually not too different from 3.[49]  In thermoelectrics, 

most heavy semiconductors have low Debye temperature.  For example, in this work we 

work on PbTe (D  136 K)[50] and Sb2Te3 (D  160 K)[50] at room temperature and 

above, which are both satisfy T>>D/3.  Thus, the exponential function  2exp /B T can 

be simplified as 1.  Furthermore, except very heavily doping, the impurity usually only 

play roles at very low temperature.  In our case (at >300 K), the main scattering is still the 

phonon-phonon Umklapp scattering.  Thus, the bulk mean free path can be simplified as 
1 1 2

1 /bulk umkl avgB T v         (2.13) 

Thus, in this case, only B1 needs to be obtained to calculate the bulk thermal conductivity. 

 

Since we already made several assumptions, it is necessary to check the validity 

of them. We check the Umklapp scattering expression in Eq. (2.13) by comparing the 

theoretical results of this expression with experimental data from literature of both 

PbTe[51, 52] and Bi2Te3.[53]  For PbTe, at high temperature of our interests, the 

experimental data is very well fitted with the power law 1T .  We can see from Fig. 2.5 

that the expression in Eq.(2.13) agreed very well with the experimental data for PbTe 

above room temperature.  This also means if lacking bulk experimental data for the 

fitting, a single experimental data point can be used to obtain the fitting parameter B1.  

This is essential for Sb2Te3 because we lack experimental data to determine the 

temperature dependent thermal conductivity in literature[54]. To further test the validity 

of this assumption, we use Bi2Te3 to test the model, since both Sb2Te3 and Bi2Te3 have 

the same crystal structure.  As we can see in the inset of Fig. 2.5, using Eq.(2.13), we find 

the single parameter fitting can also be applied to Bi2Te3 in both directions.  The values 

of the parameters in both the a-plane and c-axis directions  are summarized  in Table 2-2. 

 

Table 2-2 Properties for PbTe and Sb2Te3 at 300 K.  The adjustable parameters B1 for Sb2Te3 were 

fitted using the room temperature bulk phonon thermal conductivities ph,FL in Ref. [55].  Densities of 

primitive unit cells  are calculated using the lattice constant and crystal structure. The sound 
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velocities vs of Sb2Te3 are estimated from those of Bi2Te3 using the scaling arguments explained in 

Chapter 2.7. 

Parameters PbTe Sb2Te3  (a-plane) Sb2Te3  (c-axis) 

B1  (10-18 s/K) 6.2[[18]] 4.3 27.8 

Lattice constant (Å) 6.462[[50]] 4.25[[50]] 30.35[[50]] 

  (1028 m-3) 1.482 0.6329 0.6329 

vs  (m/s) 1730[[18]] 2333 2270 

Κph,FL at 300K (W/m-K) 2.0[[18]] 2.2[[55]] 0.34[[55]] 
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Figure 2.5 Theoretical thermal conductivity of PbTe using only the high-temperature Umklapp 

expression, as compared to experimental data from Greig in Ref. [51] and Devyatkova in Ref. [52].  

Above 80 K, the data and model follow a 
1T  relation almost perfectly.  Inset: Experimental data[53] 

for the thermal conductivity of Bi2Te3 in both c-axis and a-plane directions also follows a 
1T  relation 

around room temperature.  

 

2.3.3 Considerations for Anisotropic Constituent Materials  

This work only focuses on materials with the isotropic dispersion and group 

velocity.  This assumption has been used for many cubic materials, such as Si, Ge, PbTe, 

and most III-V semiconductor (GaAs etc), and good agreement has been shown in the 

literature.  However, for Sb2Te3, it is a hexagonal material with significant anisotropy in 

the ab-plane and c-axis direction.  In this work, we assume the c-axis direction is always 

along the cross-plane of the superlattice and ab-plane is on the same family of plane of 

the in-plane.  Thus, we can treat the ab-plane and c-axis independently.  When 

considering the cross-plane thermal conductivity, we use the c-axis effective sound 

velocity to fit the c-axis thermal conductivity to obtain the Sb2Te3 Umklapp parameter B1. 
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2.3.4 In-plane Thermal Conductivity x 

The in-plane thermal conductivity of superlattice has been investigated by Chen 

using Boltzmann transport equation[31]. It is found that when the period thickness 

decreases, the in-plane thermal conductivity of superlattice would be greatly decreased. 

An analytical solution to the BTE has been obtained with the expression 

   


dGppG
d

vC
dd

d
disi

i
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,0   (2.14) 

where i =1,2 represents the layer numbers, di is the layer thickness of the corresponding 

layer, ξi = di/Λbulk,i is the layer thickness normalized to the bulk mean free path, 0,m is 

maximum phonon frequency, p is the specularity parameter which captures the effects of 

the interfacial roughness, and Gsi and Gdi are dimensionless integral functions given in 

Ref. [31]. 

 

The specularity can be expressed by the root mean square surface roughness δ 

using p = exp(-16π2δ2/λ2), where λ is the phonon wavelength. This widely used 

expression is given in Ziman’s book [56] but there is contained an erroneous factor of . 

The correction is in Zhang’s book[57]. We did our own calculation, and confirmed 

Zhang’s observation.  The meaning of the specularity is the percentage of phonons which 

are reflected as perfect smooth surface.  For instance, if p = 1, all the phonons reflected 

specularly on the surface, as shown in Fig. 2.6(a).  If p = 0, all the phonons reflected 

diffusely, as shown in Fig. 2.6(b).  In this case, the surface is very rough compared to the 

phonon wavelength.  After the reflection, the phonons forget where they are from, thus 

the reflected phonon are isotropically distributed in all solid angle. 

 

(b) Diffuse(a) Specular
 

Figure 2.6 (a) Specular and (b) diffuse interfaces 

 

2.3.5 Cross Plane Thermal Conductivity z 

Great thermal conductivity reduction has also been experimentally observed in the 

superlattice cross plane[8, 58], which is caused by the interface scattering.  The 

Boltzmann transport equation has also been used to investigated the effects of these 

interfaces[32, 39].  For instance, in Ref. [32], Chen investigated different conditions for 

phonon scattering at the interface, such as elastic and inelastic scattering, and diffusive 

and specular interfaces.  He found the inelastic acoustic mismatch model (AMM) agrees 
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with the experiments better than other models for GaAs/AlAs and Si/Ge superlattice.  

Thus, we also use the inelastic AMM in this work. To reduce the computational effort, 

the gray relaxation time approximation is used first, which means the phonon frequency 

dependent relaxation time is assumed to be a constant.  We will also verify our gray 

model with literature Ref. [32], as the temperature profile shown in Fig. 2.7.  The 

temperature profiles agree with the literature calculation[32].  There are a few percent 

difference between my simulation and the data from literature[32].  Possible reason could 

be the errors from extracting data from Ref. [32].  Even though the gray relaxation time 

approximation provide great convenience for modeling, it would lead to over-prediction 

of the thermal conductivity as discussed before in nanowire system[59].  Thus, we extend 

the gray relaxation approximation to the phonon frequency dependent model.  

 

The frequency-dependent model breaks the dispersion into l small bands and each 

band is treated as gray model as Ref. [32].  The width of j-th band in the i-th layer (where 

i =1,2) will be expressed as ij and wavevector as qij = ij/v(ij), where v(ij), is the 

group velocity at ij.  Thus, within the frequency range of ij, we treat it using the gray 

model and obtain its specific heat, group velocity, and mean free path.  The volumetric 

specific heat for a single band within the frequency range of ij is  

T

Tf
C

ij
ijijijij






),(
)(


     (2.15) 

Next step is to solve the BTE in this small frequency range ij. The mean free path can 

still be expressed as Eq.(2.13) that 1 1 2

1 /bulk umkl ij avgB T v     .  Thus, the Boltzmann 

transport equation is[32] 
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coscossin   (2.16) 

This equation has the numerical solution as shown in Ref.[32].  The ij is the polar and ij  

is the azimuthal angle of local grain system as shown in Fig. 2.1(b).  The Iij is the phonon 

intensity in the i-th layer and the j-th frequency band and Ioij indicates the equilibrium 

phonon intensity with average over all directions (but not all frequency)[60].  Thus, after 

numerically solving Eq.(2.16), we can obtain the j-th frequency band’s contribution Δκzj 

to the total cross-plane thermal conductivity.  Thus, summing up all the small bands’ 

contribution, we obtain the cross-plane thermal conductivity 


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zjz

1

 .     (2.17) 

Since phonons have both the spatial and angular dependence, both dependencies 

need to be considered.  In the spatial domain across z direction, the temperature profile at 

the interface is sharper than the center of the layer.  Thus, we use the Gauss-Legendre 

method, which has much finer mesh at the edges of the two integration limits.  The 

challenge of the angular integration is that its mesh needs to match the inelastic acoustic 

mismatch model condition that[32] 
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In this integration of angle, we uniformly divide the mesh into m parts in the top layer.  

Then, using Eq.(2.18), we calculate the corresponding angle in the bottom layer, which is 

non-uniform.  In this layer, we use the trapezoidal integration to sum up all phonons’ 

contributions.  When the incident angles of some phonons are too large and reach total 

reflection, these phonons’ contribution to the total cross-plane thermal conductivity has 

been neglected since it can not transport from one layer to another. 
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Figure 2.7 Verification of the cross-plane thermal conductivity BTE solution, by comparison with the 

calculation from Chen’s Fig. 5(c) [32]. 

 

2.4 Numerical Results & Discussion 

With the theory developed in the previous section, we now can apply it to the 

PbTe/Sb2Te3 system and compare it with the experiments.  We will firstly obtain the in-

plane and cross-plane thermal conductivity of the superlattice, then we combine them 

together to obtain the total effective thermal conductivity eff of the bulk polycrystal 

made of randomly oriented superlattice grains.  With the eff, we will investigate the 

effect the period L, surface roughness, and temperature.  We also compare the gray model 

and frequency dependent model.  In all the cases, the PbTe/Sb2Te3 thickness ratio use the 

reference value from experiment [36] and is fixed at 1

2 2 3

2
7

PbTe

Sb Te

dd

d d
  . 

2.4.1 Effect of Period 

The period dependent thermal conductivities are shown in Fig. 2.8 for four 

different specularities. In each subfigure, the in-plane, cross-plane, and effective thermal 

conductivity obtained from the Mityushov-Adamesku averaging model are all shown.  

The cross plane thermal conductivity (red) is always lower than the in-plane (green) due 
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to strong interface scattering.  One reason is that we choose c-axis of Sb2Te3 ,which has 

lower thermal conductivity, to always be along the cross-plane direction.  
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Figure 2.8 Thermal conductivity as a function of period for four different values of the specularity 

parameter p, for a PbTe-Sb2Te3 nano-bulk system at T=300 K with thickness ratio PbTe:Sb2Te3 = 2:7.  

Solid lines: x and z are the in-plane and cross-plane values for a single superlattice grain, while eff 

is the value for a bulk polycrystal with randomly oriented grains.  Dashed lines: x,FL and z,FL are the 

classical Fourier-Law values for a single superlattice grain, neglecting phonon size effects. 

 

At large periods in micrometer level, both the in-plane and cross-plane thermal 

conductivity approach their own Fourier limit (as shown in dashed lines).  The Fourier 

limit for this in-plane arrangement is a parallel combination of two conductances so that  
1 2

1 2 1 2, 1, 2,+
d d

x FL FL FLd d d d
  

 
 ,    (2.19) 

where κ1,FL and κ2,FL are the bulk thermal conductivities for layers 1 and 2.  In the other 

direction of cross-plane, the thermal conductivity is a series of two resistances so that  
1 2

1 2 1 2

1 1 1

, 1, 2,

d d

z FL FL FLd d d d
    

 
  .    (2.20) 

From the numerical simulation verification in Chapter 2.2.5, we find heat transfer in 

randomly oriented superlattice can be understood largely as thermal conductances in 

parallel.  The in-plane thermal conductivity of superlattice is important because the heat 

would leak through the in-plane direction.  In Fig. 2.8, the thermal conductivity contrast 

parameter xzr  /  is within the range between 0.17 to 0.25.  This change is relatively 

small comparing to the scale of r we investigated in the FEM simulation in Fig. 2.4. We 

can also do the sensitivity check using the definition that 

 

ln( )

ln( )

effeffx

x eff x x
z z

S


   
 

   

 
  .     (2.21) 

For the Mityushov-Adamesku averaging model, we find the in-plane sensitivity is 
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Within the range of thermal conductivity contrast parameter 0.25r  , the in-plane 

sensitivity is 82.0
x

S   18.0   thusand 
z

S .  Thus, the in-plane thermal conductivity has 

4.6 times more sensitivity than the cross-plane thermal conductivity.  This means a 10% 

change of in-plane thermal conductivity would cause 8.2% change of eff; while a 10% 

change of cross-plane change would only cause 1.8% change of eff.  These results 

suggest controlling the in-plane thermal conductivity x is more important than cross-

plane thermal conductivity z , as referring to reducing the total thermal conductivity eff. 

 

2.4.2 Effect of Specularity 

The specularity dependent thermal conductivity is in Fig. 2.9. The diffuse 

interface always has lower thermal conductivity, because the rougher surface would 

scatter phonons more effectively.  The thermal conductivity is most sensitive at large 

specularity regime, especially at p > 0.8.  In this regime, the thermal conductivity 

dramatically changes with respect to p. For instance, for period of L=10 nm, there is a 

62% thermal conductivity reduction at p = 0.8 comparing to p = 1.  In addition, it can also 

be found that the short period L tends to be more sensitive to the specularity.  This is 

because the interface scattering play more role in the short L sample; while for the long L 

sample, the bulk materials thermal conductivity of PbTe and Sb2Te3 both contribute more 

to the total thermal conductivity, which are independent of specularity. 

 

In the limit case of p = 1, in both Fig. 2.8 and 2.9, we also find the thermal 

conductivity is not sufficient to recover the Fourier limit for of x,FL and z,FL., especially 

when the period is in the order of nanometer.  We think this is because the period is 

comparable to the mean free path, thus the Fourier limit would not be applied anymore.  

This effect in both the in-plane[31] and cross-plane[32] directions has also been reported 

before. 

 

2.4.3 Effect of Temperature 

Temperature dependent thermal conductivity is shown in Fig. 2.10.  The 

superlattice period is fixed at 10 nm.  For the specular interface with p = 1, the 

temperature dependence closely follows the 1T trend.  This means the Umklapp 

scattering in both PbTe and Sb2Te3 is the main scattering mechanism.  In the other limit 

of  p = 0, the diffuse interface, the temperature dependence is weaker.  The thermal 

conductivity reduces from 0.378 W/m-K to 0.288 W/m-K over the temperature range of 

300 to 500 K.  The temperature power law is about 52.0T .  This means at interface 

scattering, which is temperature independent, plays important role at p = 0. 
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Figure 2.9 Bulk effective thermal conductivity as a function of specularity for four different periods 

L, for a PbTe-Sb2Te3 nano-bulk system at T=300 K with thickness ratio PbTe : Sb2Te3 =2:7. 
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Figure 2.10 Bulk effective thermal conductivity as a function of temperature for four different values 

of the specularity p, for a PbTe-Sb2Te3 system with thickness ratio PbTe : Sb2Te3 =2:7 and fixed 

period L=10 nm.  The black dotted line is the bulk classical Fourier law value. 
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2.4.4 Comparison of Gray vs. Frequency Dependent Modeling. 

This subchapter discusses the difference between gray and frequency dependent 

models. Previous Boltzmann transport equation solutions of the superlattice transport[32, 

39] are based on gray media approximation. Here we consider the phonon frequency-

dependence and compare the difference in Fig. 2.11.  In the long superlattice limit, L , 

the interface scattering would be negligible compared to the phonon-phonon Umklapp 

scattering, so the thermal conductivity recovers the bulk limit for both the gray and 

frequency dependent models.  The specularity effect can also be neglected because of 

neglecting the interface scattering.  In the opposite limit of 0L , the boundary scattering 

dominates the scattering process.  For the same specularity, the difference between gray 

and frequency-dependent model also decreases with the reduction of L. 
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Figure 2.11 Comparison of present frequency-dependent model (solid lines) and traditional gray 

media model (dashed lines) for the period-dependence of the cross-plane superlattice thermal 

conductivity z.  The calculations are for a PbTe-Sb2Te3 superlattice system at T=300 K with 

thickness ratio PbTe : Sb2Te3 =2:7. 

 

In the moderate periods, the difference between the gray media model and 

frequency dependent model is the largest, as shown in Fig. 2.11, because the former fails 

to capture the broad distribution of phonon mean free path.  Similar phenomenon has also 

been observed in Si nanowires[59].  For instance, at p = 0 and L=200 nm, the reduction 

of thermal conductivity for gray model only is 6.6%, but 27% for the frequency-

dependent model.  The frequency-dependent model also has a broader transition regime 

between the gray limit and small-period limit.  This is also caused by the broad phonon 

distribution of phonon mean free path in the frequency-dependent model.  For a 

superlattice at specific period L, phonons with MFPs much larger than L would be 

affected much more than shorter MFP phonons.  Thus, this transition regime would be 
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broad.  For the gray model, all phonons are lumped into a single MFP lump.  When MFP 

lump is comparable to the superlattice period L, there would have a sharp transition.  

Thus, the gray model has narrower distribution than the frequency-dependent model. 

 

2.5 Comparison With Experiment 

The experiment of materials synthesis and properties measurement are done by 

our cooperators Dr. Ikeda and Prof. Snyder from Caltech[23].  Samples weighing 15-20 g 

with overall composition of “Pb2Sb6Te11“ compound (Pb10.5Sb31.6Te57.9) were prepared by 

injection molding with the 20 30 mm3 copper mold.  The Ref. 44 describes the 

details of this method.  The samples were cut to the size of 10 10 mm2 by diamond saw 

and the surface layer was removed. The final thickness is about 1.5 mm.  The samples 

were annealed under vacuum in fused silica tubes at temperature 573 K for 840 hours. 

The other samples were annealed at 673 K for 78 h and 150 h, or at 773 K for 1 h and 

126 h. 

 

The field emission-scanning electron microscope (Carl Zeiss LEO 1550 VP) 

equipped with backscattered (BSE) detector was used to measure the microstructure 

composition.  It is found the microstructure is essentially the same as previous results[36].  

The inter-lamellar spacing (period) and fraction transformed (Y) of the microstructure 

were analyzed using the image analysis program (Macscope, Mitani Corp.).  Details of 

the method to determine the period is in literature[61].  The analyzed results are listed in 

Table 2-3.  

 

Table 2-3 Fraction transformed (Y) and inter-lamellar spacing (period) of the samples used for lattice 

thermal conductivity measurements. 

Sample ID 

Annealing condition 

Y (%) 

Period (nm) 

T / K t / h Average 
Standard 

deviation 

1 573 840 100 283 76 

2 673 
78 99.7 536 155 

150 100 575 153 

3 773 
1 88.7 544 168 

126 100 1591 487 

 

The van der Pauw method is used to measure the electrical resistivity () as a 

function of temperature using a current of 10 mA.  The magnetic field of ~9500 G was 

used for Hall coefficient (RH) measurement in the same apparatus forwardly and 

backwardly.  The measured Hall coefficients (RH) were used to calculate the carrier 

concentration (n), by n = 1/RHe, assuming the scattering factor of 1.0 and only one type 

of carrier.  A flash diffusivity technique (LFA457, NETSZCH) is used to measure the 

thermal diffusivities at 300 K.  The thermal conductivities (tot) were evaluated using the 

relation tot = CP, where  is the measured thermal diffusivity,  is the measured 

density, and CP is the DuLong-Petit heat capacity per unit mass.  The electrical thermal 

conductivity was calculated using the Wiedemann-Franz law, el = LT/, where L=2.45 × 
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10-8 K-2 is the Lorenz number.  Thus, the lattice thermal conductivity is obtained by 

phtot  el as shown in Fig. 2.12.  The data of Pb2Sb6Te11 before annealing is also 

plotted in the figure.  The size of a single atomic unit cell of Pb2Sb6Te11 of 1.4 nm is also 

used as the equivalent period.  

 

The Fourier limit of both in-plane and cross-plane can be evaluated using the 

parameters in Table 2-2.  With these two limits, the effective thermal conductivity can be 

obtained using the Mityushov-Adamesku averaging model. We obtained the Fourier limit 

as eff,FL=eff(L)=1.43 W/m-K.  This result is lower than the experimental 

measurement showing above, for instance eff is about 3.87 W/m-K for period of L=1590 

nm PbTe/Sb2Te3.  The measurement also exceed bulk thermal conductivity of PbTe and 

Sb2Te3 in both directions.  There are two major factors which may have led to this 

disagreement.  One is from the modeling side. The Sb2Te3 values in Table 2-2 are from 

theoretical analysis from Ref. [55] rather than direct measurement.  The other is from 

experimental extraction of phonon’s contribution.  The Wiedemann-Franz law is applied 

to obtain the electronic thermal conductivity and Lorenz number is assumed known. The 

Lorenz number is only suitable for degenerate semiconductors with high doping 

concentration. The measured low Seebeck coefficient (30 µV/K)[36, 37] indicates this 

degenerate behavior is appropriate, however the carrier concentration observed by Hall 

effect[62] is still relatively low.  Thus, further work needs to be done to verify how well 

the Wiedemann-Franz law applied here.  In addition, the ambipolar effect[29, 63] could 

also be expected to be significant in these samples.  In this effect, the electron and hole 

pair contribute significant to the thermal conductivity , but not to electrical conductivity 

.  Thus, the measured ph is actually ph + ambipolar , which overestimated ph by 

ambipolar. 

 

To reduce the effect of bulk thermal conductivity, we normalized to the 

theoretical and experimental bulk values, respectively. For the theoretical calculation, the 

Fourier limit is eff(L)=eff,FL =1.43 W/m-K.  Thus, we normalize the theoretical 

thermal conductivity by using )(/)( LL effeff  .  For the experiment, the maximum 

period we have is L=1590 nm.  At this period, the theoretical thermal conductivity is 

about 88.6% (p=0) to 95.8% (p=0.95) of the Fourier limit.  We choose the average of 

92.2% and assume the ratio eff(1590)/eff() for experimental thermal conductivity is the 

same. Thus, we obtain experimental Fourier limit eff()4.21 W/m-K for the 

normalization.  

 

For the very short period sample, L=1.4 nm of metastable Pb2Te6Sb11 phase, even 

though the experiment and BTE theory agrees well, we still need to be very cautious to 

interpret these data.  Because at this length scale, the particle assumption of phonons for 

BTE theory may not be valid any more.  The wave effects[64, 65] may be significant in 

this length scales. 

 

The normalized effective thermal conductivity are shown in Fig. 2.12.  The 

smaller the period, the lower the phonon thermal conductivity.  The bound of specularity 

between p = 0 to p = 1 are also plotted.  For the experiment at L = ~500 nm, there has a 



27 

 

sudden change of thermal conductivity which may be caused by different surface 

interfaces.  Even though some of the sample points are outside this bound, the general 

qualitative trend is still consistent with the period dependence with the rougher interfaces 

(smaller p).  
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Figure 2.12 Comparison of normalized theoretical (lines) and measured (points) thermal conductivity 

at T=300 K.  The theoretical results are normalized as eff(L)/1.43 W/m-K and the experimental 

results as eff(L)/4.21 W/m-K. 
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Figure 2.13 Temperature dependence of normalized effective thermal conductivities for periods of 

287 nm, 577 nm and 1590 nm. All thermal conductivities are normalized as eff(T)/ eff(300 K). 
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Finally, we compare the temperature dependence of modeling and experimental 

results in Fig. 2.13. The thermal conductivities are normalized to their room temperature 

values.  As expected, when the period and specularity increase, the temperature 

dependence power law trends approaching the 1 T , which is phonon-phonon 

Umklapp scattering.  In the other limit of small period of L =287 nm, the interface 

scattering, which is temperature independent, plays a more important role.  Thus, the 

temperature dependent power law would be smaller.  Experimentally, we have the 

relationship of 61.0Teff , which has much smaller power law than the Umklapp 

scattering dominated 1T  . 

 

2.6 Conclusions 

Effective thermal conductivity of nano-bulk material made of randomly oriented 

superlattice grain PbTe/Sb2Te3 has been investigated by the frequency-dependent 

Boltzmann transport equation.  An average rule based on Mityushov and Adamesku’s[40] 

model has been used and verified by FEM simulations.  The sensitivity analysis of in-

plane and cross-plane shows the maximum value of (x, z) affects the effective thermal 

conductivity the most in this system. 

 

We extended previous gray model for the cross-plane direction to frequency-

dependent model.  This treatment captures the broad distribution of phonon mean free 

paths.  In addition, the numerical results also show the in plane thermal conductivity κx is 

4 to 5 times larger than cross-plane thermal conductivity κz.  Thus, reducing κx would be 

the major focus for reducing the effective thermal conductivity κeff in this PbTe/Sb2Te3 

system. 

  

The modeling results are also compared with experiment after normalizing to the 

thermal conductivity Fourier limit.  The temperature dependent power law indicates the 

scattering in the samples is between the Umklapp and boundary scattering. 

 

2.7 Appendix: Estimating the Sound Velocities of Sb2Te3 

The properties of Sb2Te3 are investigated using its close counterpart Bi2Te3, 

which has been extensively discussed in literature.  We evaluate the sound velocities of 

Sb2Te3 in this subchapter. 

 

From continuum elasticity, the sound velocity is expressed as /v C  where C 

is an elastic stiffness constant and  is the mass density.  For Bi2Te3 in the ab-plane, the 

longitudinal sound velocity vsL = /11C = 2884 m/s is calculated.  The two transverse 

sound velocities vsT1 =2170 m/s and vsT2 =1390 m/s can also be obtained[66].  Similar 

calculation can also be used in the c-axis of Bi2Te3, which can be obtained that vsL = 2539 

m/s and vsT1 = vsT2 = 1835 m/s.  After the averaging rule of the one longitudinal and two 
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transverse modes, the average sound velocity is  2,1,,3
1

, TsTsLsavgs vvvv  .  Thus, we can 

obtain 2147 m/s and 2070 m/s as the average sound velocity along the a-plane and c-axis 

directions, respectively. 

 

With the average velocity of Bi2Te3, we can evaluate its counterpart properties of 

Sb2Te3, because they have the exactly the same lattice structure.  Since the sound velocity 

is related to the lattice constant a, force constant β, and total mass of all atoms in one 

primitive unit cell M, by the expression Mavs /2 , we can obtain the sound velocity 

ratio as[30] 

32
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32

32

32

32

,

,

TeSb

TeBi

TeBi

TeSb

TeBis

TeSbs

M

M

a

a

v

v
 .      (2.23) 

We can obtain the velocity ratio are 1.096 and 1.086 for the a-plane and c-axis, 

respectively.  Thus, we calculate the sound velocity in these two directions as shown in 

Table 2-2. 
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Chapter 3  Mean Free Path Spectra as a Tool to Understand 

Thermal Conductivity in Bulk and Nanostructures 

3.1 Introduction 

This chapter is very closely based on our recent publication by Yang and Dames [Phys. 

Rev. B 87, 035437 (2007)].[67] 

 

The thermal conductivity of a nanostructured material can be greatly reduced 

compared to its bulk counterpart due to the increased scattering of energy carriers (e.g., 

phonons, electrons, photons, gas molecules) at the nanostructure surfaces, as in wires[10], 

films[68, 69], porous[70], and nanocrystalline[71] materials, etc.  Thermal transport in 

such nanostructured materials is relevant for a broad range of applications in energy 

conversion[72], sensors[73, 74], microelectronics[75], and lasers[76].  The key physics 

that determines the importance of this boundary scattering is the comparison between the 

characteristic length of the nanostructure and the bulk mean free paths (MFPs) of the 

energy carriers.  Thus it is very helpful to have a detailed quantitative understanding of 

which bulk MFPs are important in a given material. 

 

 The most common formulas for the bulk thermal conductivity are based on kinetic 

theory, which can be derived from the Boltzmann transport equation in the relaxation 

time approximation[4, 77]. The polarization- and frequency-dependence of the heat 

capacity, group velocity, and MFPs are readily accounted for using a summation and 

integration, respectively.  Recently, a new perspective expressing the thermal 

conductivity integral in terms of MFPs rather than frequency has been developed[18, 20, 

25, 78-84].  The main benefit of this MFP spectrum approach is that it quantifies the 

contribution of every MFP to the bulk thermal conductivity.  An equivalent concept is the 

thermal conductivity accumulation function, which is the normalized integral of this MFP 

spectrum.  The resulting distributions visually and intuitively show which ranges of 

MFPs are most important for thermal conductivity, information which is not readily 

apparent in the traditional and complementary approach of plotting the MFPs as functions 

of frequency. 

 

 Although the concept of a MFP spectrum applies to heat conduction by all types 

of energy carriers, most prior work has focused on calculations for phonons, including 

MFP distributions for analytical models[18, 79] and numerical results from molecular 

dynamics (MD) simulations[78] and first principles (1stP) calculations based on density 

functional theory[77, 81-83].  Measurements of portions of the phonon MFP distribution 

are also beginning to be reported for silicon[20] and several semiconductor alloys[25], 

although analyzing the raw data requires certain assumptions which, although plausible, 

have not yet been rigorously proven. 

 

 Here, we revisit the concept of the bulk MFP spectrum and show how it is also 

useful for understanding nanostructures.  This paper has three major objectives.  First, we 

rigorously re-derive the expressions for the bulk MFP distribution and thermal 
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conductivity accumulation function first given by Dames & Chen[18], identifying the 

major assumptions and restrictions, not all of which were noted previously.  Then we 

derive an integral transform which, given a bulk MFP distribution and a boundary 

scattering law, yields the thermal conductivity of a nanostructure as a function of its 

characteristic length.  As summarized in Fig. 3.1, this integral equation does not require 

any explicit knowledge of the carrier’s dispersion relation or frequency-dependent 

scattering laws, and thus represents a quantitative application of the MFP spectrum 

beyond its more common use for visualizing MFP distributions.  Finally, to demonstrate 

these concepts we present a detailed case study of the phonon thermal conductivity of 

bulk and nanostructured silicon, revealing major differences among the MFP spectra of 

three common analytical models (Callaway[85], Holland[86], and Born–von Karman-

Slack[18]), an MD simulation[78], and a 1stP calculation[82].   

 

 

 

Characteristic

Length  Lc

Type t of 

Nanostructure 

(Wire, Film, …)

Dispersion 

Relation  (q,s)

Bulk Scattering 

Mechanism 

bulk(q,s)

Bulk MFP Spectrum

K(bulk)  Eq. (3-4), 

or 

Accumulation Function

 (bulk)   Eq. (3-5)

Boundary Scattering Rule

nano / bulk=Bt(Lc ,bulk)

Eq. (3-9)

Bulk Thermal

Conductivity bulk

Eq. (3-3)

Nanostructure Thermal

Conductivity nano,t

(Wire, Film, …)

Eq. (3-10) or (3-12)

 

Figure 3.1 The framework of using a MFP spectrum (or equivalently, accumulation function) to 

model the thermal conductivity of an isotropic bulk material and a corresponding nanostructure.  

The multiple arrows at top-left suggest multiple polarizations s.  The other variables are defined in 

the main text.   

 

3.2 Theoretical Framework 

3.2.1 Bulk MFP Spectrum and Thermal Conductivity Accumulation Function  

Our starting point is the kinetic theory integral for the thermal conductivity of an 

isotropic bulk material, 





s

bulkbulk dCv
0

3
1  ,    (3.1) 

where C is the volumetric specific heat capacity per unit frequency, v is the group 

velocity, bulk is the bulk MFP,  is the frequency, and s indexes the polarizations.  The 

most important assumption of this work is that the dispersion relation and bulk MFPs are 

well-approximated as isotropic.  From symmetry considerations this assumption is exact 
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for gases (e.g. molecules, photons, free electrons), as well as electrons and phonons in 

amorphous materials.  In crystalline materials the dispersion relation of electrons and 

phonons depends on direction and a more general form[77] of Eq. (3.1) is appropriate, 

even if bulk itself is isotropic (as in crystals with cubic symmetries).  Nevertheless, such 

dispersion anisotropies are commonly neglected in models of the thermal conductivity 

that have been shown to agree well with experiments, in cubic crystals as well as non-

cubic crystals that are only weakly anisotropic[31, 85-89], and the present work is limited 

to materials where this isotropic approximation is acceptable.  Furthermore, to ensure that 

the only sub-continuum effects are due to boundary scattering and not ultrafast 

phenomena, the analysis is restricted to heat transfer problems that are steady, or if 

unsteady involve transients that are slow compared to the carrier relaxation times .  

 

To focus the theoretical framework on the bulk MFPs, we formally change the integration 

variable from  to bulk, obtaining  


 








 


s

bulk
bulk

bulkbulk d
d

d
Cv

0

1

3
1


 .  (3.2) 

The negative sign arises from swapping the limits of integration, because the dominant 

trend of dbulk/d is negative, and the final value of bulk will still be positive. 

 

 Physically, the change of variables in Eq. (3.2) can be understood as changing to a 

different labeling scheme for the energy carriers.  In general, four numbers are required to 

uniquely specify a carrier, for example, },,,{ sqqq zyx  or },,,{ sq  , where q is the 

wavevector of magnitude q and direction ),(   .  It is common to use the dispersion 

relation  s,q   to change the labeling scheme to },,,{ s .  The change of 

variables in Eq. (2) is equivalent but instead uses the bulk scattering function 

 sbulkbulk ,q  to get a },,,{ sbulk   scheme.  Then, with the key assumption that 

 s,q  and  sbulk ,q  are approximately isotropic, the labeling scheme reduces to 

simply },{ sbulk .  That is, every energy carrier is uniquely identified by its bulk MFP and 

polarization branch.   

 

 For fixed s, often bulk  is a smooth, monotonically decreasing function of .  In 

cases where ),( sbulk   is not monotonic in , the inverting function ),( sbulk  will be 

multivalued and there may appear to be an ambiguity in the },{ sbulk  labeling scheme.  

However this is easily remedied by breaking the offending polarization branch into 

piecewise monotonic sections and increasing the number of branches in the index list s 

accordingly.  This remedy of piecewise integration can also be used to avoid any 

singularities which arise at points where 0


d

d bulk . 

 

 Returning to Eq. (3.2), because the integrals converge we apply Fubini's theorem 

to exchange the orders of summation and integration and write  




 
0

bulkbulk dK ,    (3.3) 
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where 




 






 


s

bulk
bulk

d

d
CvK

1

3
1


   (3.4) 

is the thermal conductivity per MFP, with SI units (W/m2-K).  This function[18] is 

known as the MFP distribution or MFP spectrum for the bulk thermal conductivity.  By 

definition, the quantity bulkbulk dK  )(  represents the differential thermal conductivity 

due to those energy carriers with MFPs between bulk and bulk + dbulk.   

 

A complementary perspective is the thermal conductivity accumulation function, 

       


 



 

0

1
bulk

bulk

dK ,   (3.5) 

which represents the fraction of the total thermal conductivity due to carriers with MFPs 

less than .  Thus, the range 901.0 .bulk  , analogous to the 10% - 90% risetime of 

a signal on an oscilloscope, is one useful guideline to the range of bulk MFPs that are 

important for heat conduction in a given system: 80% of the thermal conductivity is 

carried by particles with MFPs in this range, with only 10% carried by MFPs shorter than 

0.1, and another 10% carried by MFPs longer than 0.9. 

 

Equations (3.4) and (3.5) are the first major results of this paper.  These equations 

quantify the range of MFPs that contribute to heat conduction, which traditionally was 

described mainly through a single lumped “gray” or effective MFP, 














 



s

bulkgray Cvd
0

3
1  .    (3.6) 

This is equivalent to a MFP distribution that is a Dirac delta function with weight bulk 

centered on gray.  Such a gray MFP model is a good approximation in systems where the 

real MFP distribution is narrow, including ideal gases[90] and free electron gases.  

However, in other systems with strongly frequency-dependent scattering, the 

distributions can be quite broad.  For example, as we shall discuss further in Section III, 

phonons in semiconductor crystals and alloys are generally believed to have MFP 

distributions typically spanning two or more orders of magnitude from 0.1 to 0.9 [18, 20, 

25, 78, 79, 82, 83]. 

 

3.2.2 An Integral Transform to Relate Bulk and Nanostructures  

We now shift attention from bulk to nanostructures, and make the common 

assumption that wave confinement effects are negligible.  This is generally appropriate as 

long as the structure’s characteristic length Lc is much larger than the thermal 

wavelengths of the energy carriers[18, 91, 92] and there is sufficient roughness or 

disorder to wash out any coherence effects.  Thus, the group velocity and spectral heat 

capacity in the nanostructure are identical to those in bulk, so the only effect of the 

nanostructuring is to reduce the effective MFP nano by scattering at boundaries and 

interfaces.  Thus the nanostructure thermal conductivity is commonly written[18, 45, 69, 

71, 93]  
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,      (3.7) 

where    ss bulknano ,,    and the subscript t indicates the “type” of geometry (such 

as a wire, film, etc.).  We again change variables from  to bulk and rearrange to obtain 
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s
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bulktnano d

d

d
Cv


 ,  (3.8) 

where the term in square brackets is exactly the bulk MFP spectrum K  from Eq. (3.4), 

an important feature we shall return to shortly.  Recall that physically this change of 

variables from  to bulk is equivalent to choosing to label each carrier by its polarization 

and bulk MFP, even though now that carrier’s MFP in the nanostructure is reduced to 

nano.  

 

 There is a deep physical reason for choosing bulk as the independent variable in 

Eq. (3.8), rather than bulk, , q, wavelength , or indeed any other quantity.  The key is in 

the functional dependencies of the effective MFP nano.  nano obviously must depend on 

Lc and the type of nanostructure (wire, film, etc.).  More importantly, we recognize the 

very general result that nano transitions between bulk and strongly confined behaviors 

depending primarily on the comparison between Lc and bulk.  Therefore, the simplest, 

and also very common, situation is that nano is a function exclusively of Lc and bulk.  In 

this case, from basic considerations of dimensional analysis the functional relationship 

between these three length scales must be expressible in the form 

       KnBB tLt

bulk

nano

c

bulk 


 
.    (3.9) 

Here Bt is some function to be determined that depends only on the type of nanostructure 

and on the ratio bulk/Lc.  Note that this reasoning has nothing to do with Matthiessen’s 

rule, and that the ratio bulk/Lc is the Knudsen number, Kn. Examples of the  bulk

ct L
B


 for 

both thin film and wire are shown in Fig. 3.2. 

 

 Thus, out of all possible quantities to label an energy carrier, it is uniquely bulk 

that has the strongest physical connection to the processes of boundary scattering.  Indeed, 

for a wide variety of geometries the most common boundary scattering laws for nano can 

be written in the form of Eq. (3.9) without any other explicit dependence on polarization, 

group velocity, frequency, etc.  Examples include wires of arbitrary cross section[94-96], 

thin films both in-plane and cross-plane[97-100], porous media with arbitrary pore shapes 

and distributions[79], and simple models of grain boundary scattering.[16, 71, 101]  

Equation (9) will also result for the combined effect of scattering by bulk and surface 

mechanisms in single-phase structures with arbitrarily complicated geometries and with 

surface roughness, as long as all of the important energy carriers experience the same 

specularity, p, representing the probability of specular scattering[102].  Such a constant p 

approximation has been used for wires[102] and thin films[97, 98]. 
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 The most common breakdown of the functional form of Eq. (3.9) is when p varies 

substantially with the wavelength of the important energy carriers, as in the transition 

between specular and diffuse scattering for a surface of roughness  comparable to the 

thermal wavelengths[71, 102, 103]. In this case Eq. (3.9) could be generalized 

to ),( 
KnBt , although such scattering laws would no longer be compatible with the 

analysis in the remainder of this section.  If  is either much smaller or much greater than 

the thermal wavelengths, then p should be a constant for all important energy carriers, the 

wave nature again should be negligible, and the form of Eq. (3.9) recovered. 
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Figure 3.2 Two examples of the effect of Knudsen number on (a) nano, (b) the integral transform 

kernel Bt, and (c) its derivative 
bulk

t

d

dB


.  Quantities are non-dimensionalized by the nanostructure’s 

characteristic length Lc, taken as the nanowire diameter and film thickness, both of which are 

assumed diffuse. 

 

 Proceeding, we restrict the analysis to those many systems whose boundary 

scattering laws can be expressed in the form of Eq. (3.9), and assume the function 

 KnBt  is known.  In this case the nanostructure thermal conductivity in Eq. (3.8) 

becomes 




 
0

, bulkttnano dBK .   (3.10) 

 

 Equation (3.10) has a counterpart in terms of the accumulation function.  

Integrating Eq. (3.10) by parts and using Eq. (5) gives 

    









bulk

bulk

bulk

bulk
tbulkbulktbulkbulktnano dBB

0

0,  .  (3.11) 
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From the definition of accumulation, (bulk)=0 when bulk = 0.  Furthermore, Bt   0 as 

bulk   because in this limit boundary scattering always dominates regardless of the 

type of geometry, causing nano << bulk .  Thus Eq. (11) simplifies to 

 






0

, bulk

bulk

t
bulkbulktnano d

d

dB
 .   (3.12) 

 

As noted above, in the present work the boundary scattering function  
cbulkt

LB ,  is 

considered known[71, 94, 96, 97]with two specific examples given later in Section III(C) 

and (D) for a wire and film, respectively.  As with Eq. (2), the negative sign in Eq. (12) 

will be cancelled because the dominant trend of )( bulktB   at constant Lc must be of 

negative .
bulk

t

d

dB


  Two examples of this trend are shown in Fig. 3.2 for the simple cases of 

heat conduction along a round wire and in the plane of a film.  The exact expressions 

used for Bt are given later in Eqs. (16) and (17).  To obtain a consistent nondimensional 

representation of 
bulk

t

d

dB

  we normalize bulk in the denominator by Lc, yielding 
n

t

dK

dB
.  In the 

limit of very large structures, L c>> bulk, it is obvious that boundary scattering is 

negligible and thus nano  bulk, so Bt  1.  Conversely, in the limit of very strong 

boundary scattering, Lc<<bulk, clearly nano<<bulk and thus Bt must asymptote towards 

zero.  Therefore, Bt very generally decreases from 1 to 0 with increasing bulk, confirming 

that the dominant behavior of 
bulk

t

d

dB

  is negative. 

 

 Equations (10) and (12) are the second major result of this paper.  We recognize 

both as Fredholm integral equations of the first kind.  Equation (10) transforms the bulk 

MFP spectrum K(bulk) to the size-dependent nanostructure conductivity nano,t (Lc) by 

means of the kernel Bt.  Similarly, Eq. (12) transforms the bulk accumulation function 

(bulk) to nano,t (Lc) using the kernel 
bulk

t

d

dB

 .   

 

 The flowchart in Fig. 3.1 summarizes this approach.  We emphasize that the 

theoretical development so far is general and applies to all types of energy carriers, 

provided their bulk dispersion relations and bulk MFPs are approximately isotropic.  As a 

concrete example of the utility of this approach, consider the phonon thermal 

conductivity of silicon.  For bulk silicon some of the most accurate models are based on 

1stP calculations[77, 82, 83] or MD simulations[78] and thus lack any compact analytical 

form.  After making the isotropic approximation, the traditional way to extend such 

models to predict the thermal conductivity of, for example, a nanowire is based on Eq. (7).  

This requires detailed numerical information about twelve functions from the bulk model: 

the six dispersion branches ),( sq  and six scattering laws ),( sbulk  .  Here the key 

advantage of writing the kinetic theory integral in terms of MFPs rather than  becomes 

apparent: As shown in Fig. 3.1, Eqs. (10) or (12) require only a single numerical function 

from the bulk model, namely its MFP spectrum K or, equivalently, its accumulation 

function .  The information from the six dispersion branches and six scattering laws is 

not lost, but rather is collapsed into the bulk MFP spectrum [recall Eq. (4)] in exactly the 
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form needed for the nanostructure calculation.  Thus, if we can obtain the MFP spectrum 

or accumulation function of a bulk material  whether from an analytical solution[18, 79], 

numerical model[77, 78, 81-83], or experiments[20, 25]  given any boundary scattering 

law Eq. (9) we can also evaluate the thermal conductivity of the corresponding 

nanostructure. 

 

3.2.3 Comparison of MFP Spectrum and Accumulation Function Approaches  

We have seen that K and  are both equally valid for visualizing a bulk MFP 

spectrum as well as transforming it to a nanostructure’s thermal conductivity using Eqs. 

(10) or (12).  However, there are certain practical reasons to prefer  and Eq. (12).  First, 

for distributions that span more than one order of magnitude in bulk, the accumulation 

function is far more convenient for visualizing the breadth of the distribution because the 

ordinate is expressed directly as a fraction of the total thermal conductivity.  On the other 

hand, plots of K require mentally integrating the area under the curve, which is prone to 

misunderstanding if a logarithmic abscissa axis is required to cover a large range of bulk. 

 

The second reason why Eq. (12) may be preferred is related to numerical accuracy.  

Note that Eq. (12) involves the integral of K (namely, ) and the derivative of Bt; while 

Eq. (10) involves the derivative of  (namely, K) and the integral of 
bulk

t

d

dB

 .  Note also 

that the current numerical formulations[78, 79, 81-83] and experimental estimates[20, 25] 

of the MFP distribution arise most fundamentally from an accumulation perspective, 

(bulk), and thus the numerical differentiation to generate K is expected to introduce 

some numerical noise.  On the other hand, the expressions for Bt are always analytical, so 

generating 
bulk

t

d

dB

  should not introduce any additional noise.  Therefore, for numerical 

reasons the form of Eq. (12) is expected to be preferable to Eq. (10). 

 

3.2.4 Gray Approximation  

 The gray model is a common simple approximation where at any given 

temperature the bulk MFPs are all assumed to take the same “gray” value, gr.  Thus the 

thermal conductivity spectrum is a delta function, K=bulk(bulkgr) and the 

accumulation function  is a Heaviside step function, =H(bulkgr).  Applying either 

Eq. (10) or Eq. (12) shows that this leads to the nanostructure thermal conductivity 

       grtbulkLtbulkgrnano KnBB
c

gr  


,
,   (3.13) 

where Kngr is the Knudsen number of the gray medium. 

 

3.3 Case Study: Phonons in Si 

In this section we apply the above concepts to interpret six models of the phonon 

thermal conductivity of silicon: three analytical, one MD[78], one 1stP [82], and a simple 

gray model for comparison.  For the analytical models we use three of the most common: 

Callaway[85, 88, 93, 104], Holland[86], and Born-von Karman-Slack (BvKS)[31, 45].  
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Details of our implementation of these models are given in Chapter 3.5, including a 

modification of the Callaway model with an Umklapp scattering law appropriate for all 

temperatures.  Below we present the bulk MFP spectra of these six models, and apply the 

integral transform of Eq. (12) to calculate the corresponding size-dependent thermal 

conductivity of nanowires and thin films. 

 

3.3.1 Temperature Dependence of Bulk and Nanowire Thermal Conductivity  

For consistency we optimize the three analytical models to the same experimental 

data set for bulk silicon, from Holland[86, 105].  Thus the fit parameters for our Holland 

model are identical to those given in the original work[86], while the parameters for our 

Callaway and BvKS models are given in the Chapter 3.5.  As shown in Fig. 3.3, the three 

models all fit the experimental data very well.  To quantify this agreement we calculate 

the relative error between each model (model) and experiment (exp) in a root-mean-

square (rms) sense:  


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
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
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n

in 1

2

exp

expmodel1




 ,    (3.14) 

where n is the number of experimental data points.  As shown in Table 3-1, after 

optimizing their parameters the rms errors of these three bulk models are all less than 

10%, very good agreement considering they span 2.5 - 3 orders of magnitude in  and T.  

 

1 10 100 1000
10

100

1000

 Callaway

 Holland

 BvKS

 Expt: Holland; Glassbrenner & Slack.

 

T
h

er
m

al
 C

o
n

d
u

ct
iv

it
y

, 


b
u

lk
 [

W
/m

-K
]

Temperature, T [K]

Bulk Si

 

Figure 3.3 Comparison between three analytical models (lines) and experiment[86, 105] (points) for 

the thermal conductivity of bulk silicon. 

 

 Even though these models can be tuned to agree closely with each other and with 

experiments for bulk, the models’ internal physical assumptions about C, v, and bulk can 
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be quite different.  This begins to become apparent by comparing the three models’ 

predictions for nano(T) of a 115-nm-diameter Si nanowire[10], which tests the models’ 

assumptions about bulk while leaving C and v unchanged.  The calculation combines Eq. 

(3.12) with the boundary scattering rule given later in Eq. (3.16).   

 

 As shown in Fig. 3.4 and summarized in Table 3-1, for this nanowire the BvKS 

model agrees better with the measurements of Li et al. [10] than do the gray and other 

analytical models.  Figure 4 also reveals other insights.  For example, for nanowires at T 

above around 100 K the prediction of the modified Callaway model is substantially 

higher than that of the other models and the experiments.  This is because the Callaway 

model’s Debye dispersion overestimates the average phonon group velocities at moderate 

and large .  However, as shown in Fig. 3.3 the Callaway model still fits bulk(T) very 

well.  This is accomplished by using overly-small bulk to compensate for the overly-large 

Cv at moderate and high T.  This is also evident in the comparison of cutoff MFPs 

between the BvKS and Callaway models in Table 3-1, and will be discussed further 

below.  Thus, because at most T the Callaway model results in bulk that are too small, 

when applied to a nanostructure the Callaway model is too insensitive to further 

reductions in nano by boundary scattering, causing it to overpredict nano for a given Lc. 
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Figure 3.4 Comparison between models and experiment [Li et al.[10]] for the thermal conductivity of 

a silicon nanowire of diameter 115 nm.  The bulk data are from Refs. [86] and [105]. 

 

Table 3-1 Key parameters for the six models of bulk Si.  Details for the three analytical models are 

given in the Chapter 3.5.  The rms errors refer to the fits in Figs. (3) and (4).  The cutoff MFPs are 

defined in Eq. (5) and are evident graphically in Fig. 3.6(a).  The MD data is from Henry and 

Chen[78], the 1stP data was provided by Esfarjani[106] at 300 K using the same methods as Ref. [82], 
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and the gray MFP is calculated from Eq. (6) using a BvK dispersion.  Rms errors were not evaluated 

for the MD and 1stP models because their temperature dependence was not available.   

  
rms errors in (T),  
[%] 

Cutoff MFPs at 300 K,  [nm]  

  Bulk 
115 nm 

nanowire 
0.1 0.5 0.9 

“Bandwidth” 

0.9/0.1 

Callaway 

(modified) 
 9.2 50 30.1 134 3,530 117 

Holland  5.8 20 24.4 343 380 15.6 

BvKS  6.5 15 79.3 532 14 000 177 

MDa  - - 41.6 335 15 700 376 

1stPb  - - 42.8 547 >6 580 >154 

Gray  0 23 205 205 205 1 

 

3.3.2 Bulk MFP Spectra and Accumulation Functions 

To quantify the different models’ internal assumptions about bulk, we calculated 

their bulk MFP spectra and accumulation functions using Eqs. (4) and (5), shown in Fig. 

3.5 (a) and (b), respectively.  For comparison, this figure also shows MFP spectra from 

MD calculations by Henry & Chen[78] and from 1stP calculations by Esfarjani[106] at 

300 K, using the same 1stP method as in Ref. [82] at 277 K.  It is clear from Fig. 3.5(b) 

that the MFP spectra for several of the models extend far beyond 1 m, so this broad 

range is better visualized on the logarithmic MFP scale of Fig. 3.6 at (a) 300 K and (b) 

1000 K.  The gray MFPs were calculated using the BvKS model and Eq. (6), yielding 

gr=205 nm at 300 K and 44 nm at 1000 K. This gray MFP at 300 K is consistent with 

other gray calculations for Si [32, 107] which obtain values in the range from 260 to 300 

nm.  Figure 6 also shows how the MFP spectra are shifted towards shorter bulk at higher 

T, consistent with the increase in the phonon population (i.e., 1 Tumklapp , for T near 

and above TDebye.)   

 

Figures 3.5 and 3.6 reveal striking differences between the various MFP spectra.  

The models can be roughly grouped into those with broad distributions and those with 

tight distributions.  The first group comprises the Callaway, BvKS, MD, and 1stP models, 

whose distributions all span more than two orders of magnitude in “bandwidth” from 0.1 

to 0.9  (see also Table 3-1).  Within this group the Callaway model places more 

emphasis than the other models do on short MFPs.  An important feature of these models 

is their “long tails”: a substantial portion of the heat in bulk is conducted by MFPs much 

longer than the gray estimate of 205 nm.  Specifically, as summarized in Table 3-2, at 

300 K bulk MFPs larger than 1 m account for 19% of the heat conduction in the 

Callaway model, 31% in the MD results of Ref. [78], 39% in the BvKS model, and 46% 

of the heat in 1stP results of Ref. [106].  Even bulk MFPs longer than 10 m may not be 

completely negligible: the BvKS and MD calculations both attribute 12% of the 

conduction to such long MFPs.  The 1stP distribution likely also would assign over 10% 

of the heat conduction to MFPs larger than 10 m, though the exact value of  at 10 m 

is not available because that calculation stopped at 6.58 m (found to correspond to 0.86).  

If the 1stP calculation for the long-MFP tail is assumed to follow a simple scattering law 
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of the form 
n

bulk

   with known n, an analytical extrapolation function is available 

(Chapter 3.6).   
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Figure 3.5 (a) MFP spectra and (b) accumulation functions according to the six models described in 

the main text.  The MD calculation is from Henry & Chen[78] and the 1stP calculation is from 

Esfarjani et al.[82],[106] 
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Figure 3.6 Thermal conductivity accumulation functions for various models at (a) 300 K and (b) 1000 

K, using a logarithmic MFP scale. (a) represents a superset of Fig. 3.5(b).  See also Table 3-2.  The 
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MD calculation is from Henry & Chen[78]  and the 1stP calculation is from Esfarjani et al.,[82],[106] 

although the 1stP data was only available at 300 K and bulk  6.58 m. 

 

The second group of models, with tight distributions, comprises the gray and Holland 

models.  At 300 K in the Holland model of Si over 68% of the heat is carried by high 

frequency TA phonons, within the very narrow range of MFPs from 321 nm to 385 nm. 

The Holland distribution is even tighter at 1000 K as shown in Fig. 3.6(b), with more 

than 95% of the thermal conductivity contributed by phonons with MFPs from 98 nm to 

116 nm, very much like a gray model.  

 

Table 3-2 Fraction of thermal conductivity carried by phonons with MFPs longer than three selected 

values of bulk, in bulk Si at 300 K.  These points are a subset of Fig. 3.6(a).  N/A = not available. 

Model 
1 - (bulk), (%) 

bulk= 0.1 m bulk=1 m bulk=10m 

Callaway 

(modified) 
57 19 5.8 

Holland 82 5.6 2.3 

BvKS 86 39 12 

MD 72 31 12 

1stP 74 46 N/A 

Gray 100 0 0 

 

Among all six models presented here, considering their greater sophistication it is 

reasonable to expect that the MD[78] and 1stP[82, 106] models should be the best 

approximations of real Si.  It is noteworthy that these two accumulation functions are also 

consistent with results from another first principles calculation recently reported by Li et 

al.[83], which found 0.1=50 nm and 0.9=13,000 nm for Si at 300 K.  Among the other 

four models presented here, Tables 3-1 and 3-2 and Figs. 5 and 6 show that the BvKS 

results are closest to those from the MD and 1stP calculations, suggesting that among 

simple models the BvKS model should be more accurate than the gray, Holland, and 

modified Callaway models.   

 

3.3.3 Diameter Dependence of Thermal Conductivity for a Nanowire 

 

We now use the integral transform of Eq. (12) to calculate the thermal conductivity 

of nanowires according to the various bulk accumulation functions presented above in 

Fig 6(a).  For the geometry function Bwire, the exact analytical solution of the Boltzmann 

transport equation in the relaxation time approximation has been given by Dingle[96].  

Dingle’s result indeed is of the form of Eq. (9) making it appropriate for this framework, 

but here for convenience we use a more compact analytical expression for a diffuse 

cylindrical wire based on Matthiessen's rule,  
111   Dbulknano .    (3.15) 

It is readily shown that the errors in this approximation are never more than 6% 

compared to the exact result from Dingle[96].  Thus, for a diffuse nanowire Eq. (9) 

becomes  



43 

 

    1
1


 KnKnBwire

,    (3.16) 

where the Knudsen number is Kn = bulk/D.  

 

Although the nanowire thermal conductivity for the gray and analytical (Holland, 

BvKS, and modified Callaway) models could readily be calculated using the traditional 

integral over frequency, Eq. (7), here we use the integral transform, Eq. (12).  As is 

suggested in Fig. 3.1, we emphasize that the traditional approach of Eq. (7) requires 

knowledge of 12 functions from the bulk model (6 dispersion relations + 6 MFP 

functions, although the contribution of the optical modes’ 3 + 3 functions is often 

negligible).  On the other hand, the strength of Eq. (12) is that it requires only one 

function (the accumulation function, or equivalently the MFP spectrum), and thus we can 

proceed without any explicit knowledge of the dispersion relation or frequency-

dependent MFPs that are built into the MD[78] or 1stP results[82, 106] for .   

 

Figure 3.7 shows the calculated nanowire thermal conductivities at 300 K, normalized to 

the bulk thermal conductivity of 148 W/m-K[86].  The accumulation function from 

Esfarjani et al.[82, 106]. was only available for MFPs  6.58 m, at which point  = 0.86, 

whereas Eq. (12) requires integration out to bulk = .  Therefore, we evaluated 

nano(D) for both bounding limits, where for all bulk > 6.58 m  either jumps 

immediately to 1 or remains constant at 0.86.  For clarity Fig. 3.7 shows only the average 

of these two bounds.  For this 1stP result, the difference between the plotted curve and 

either bound is less than 0.8% of bulk for all D  1 m, and never exceeds 7% even for 

D . 

 

Figure 3.7 also shows that the transition from bulk to strong boundary scattering behavior 

spans a larger range of D for the Callaway, BvKS, MD, and 1stP models, as compared to 

the other two models.  This is because these four models all have similarly broad 

accumulation functions as seen from Table 3-1 and Fig. 3.5.  The Callaway curve in Fig. 

3.7 is shifted to smaller D than the BvKS, MD, and 1stP calculations, because the 

Callaway model places more emphasis on shorter MFPs (Figs. 5 and 6).  On the other 

hand, the Holland and gray models show a steeper transition from bulk to confined 

behavior, because both have much tighter MFP distributions that the other four models. 

 

Table 3-3 highlights the differences among the models’ predicted thermal conductivity 

reductions at three selected diameters.  For example, at D = 10 m the BvKS model 

predicts a reduction (17%) that is comparable to that of the MD (15%) and 1stP 

(18.24.0%) calculations, because these three models all have the “longest tails” in their 

MFP distributions [Fig. 3.6(a)].  On the other hand, at this same diameter the gray (2%) 

and Holland (6%) models predict substantially smaller thermal conductivity reductions, 

because of their tighter MFP distributions and emphasis on shorter bulk MFPs.   
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Figure 3.7 Normalized thermal conductivity nano(D)/bulk of silicon nanowires calculated using the 

integral transform of Eq. (12) and assuming diffuse boundary scattering.  See also Table 3-3.  The 

experimental data are from Li et al.[10]  As explained in the main text, the curve for the 1stP 

spectrum is an average of two bounding cases, with spread less than  0.8% of bulk for D  1 m. 

 

Table 3-3 Thermal conductivity reduction of silicon nanowires at 300 K compared with bulk, at three 

selected diameters.  These points are a subset of Fig. 3.7.  The range of values for the 1stP calculation 

reflect extreme bounds due to lack of information for  beyond bulk = 6.58 m (see text). 

Model 

Reduction compared to bulk, 

  bulknanobulk  / , [%] 

D = 0.1 m D = 1 m D = 10 m 

Callaway 

(modified) 
59 25 9 

Holland 75 36 6 

BvKS 77 43 17 

MD 69 36 15 

1stP 73.50.1 44.00.8 18.24.0 

Gray 67 17 2 

 

Comparing the model curves in Fig. 3.7 with the experiments of Li et al.[10] 

suggests that the modified Callaway model is not among the top choices.  However, 

additional measurements of larger diameter samples (e.g. D = 1 - 100 m) would be 

needed to discriminate among the other five models.  Also, none of these models can 

explain the measurement of the smallest diameter sample (22 nm), nor other recent 

reports of sub-Casimir thermal conductivity in Si nanowires[12, 13, 15]. Assuming that 

the MD and 1stP models are most likely to be correct for all diameters, inspection of Fig. 

3.7 and Table 3-3 again suggests that among the four simpler models the BvKS model is 

likely to be most accurate.   
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3.3.4 Thickness Dependence of In-plane Thermal Conductivity for a Film 

As a second application of the integral transform of Eq. (12), we consider the in-

plane thermal conductivity of a film of thickness d and diffuse surfaces.  We again 

emphasize that this calculation uses only the geometry function and accumulation 

function for each model, and does not require explicit knowledge of any dispersion 

relation or scattering rule bulk(,s).  The geometry function Bfilm for this problem is 

readily obtained from the well-known solution of the Boltzmann transport equation by 

Fuchs and Sondheimer[97, 98], 

      1

5

1

38
3 4411   KnEKnEKnKnB film

,   (3.17) 

where En is the nth order exponential integral and here Kn = bulk/d.   

 

 The resulting thickness dependence of the film thermal conductivity is shown in 

Fig. 3.8.  Because of the scatter in the experimental data[69, 107, 108], it is not possible 

to assess which of the models is best.  Comparing the models to each other, the major 

trends are all qualitatively similar to those for the nanowire calculation in Fig. 3.7.  For 

example, the Holland and gray models again show a sharper transition in nano(D), due to 

their narrower distributions and emphasis on shorter MFPs.  Figure 8 also shows the 

importance of long MFP phonons in the BvKS, MD, and 1stP models: For a 10-m-thick 

film, the thermal conductivity reductions compared to bulk are 11% for BvKS, 10% for 

MD, and 135% for 1stP (bounding scenarios), but only 6% for Callaway, 3% for 

Holland, and less than 1% for the gray model.   
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Figure 3.8 Normalized in-plane thermal conductivity nano(d)/bulk of silicon thin films, using the 

integral transform of Eq. (12) and assuming diffuse boundary scattering.  The experimental data are 

from Refs. [69, 107, 108].  As with Fig. 3.7, the result for the 1stP spectrum is an average of two 

bounding cases. 
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3.3.5 Broadening of nano Compared to  

 Comparison of Fig. 3.6(a) with Figs. 7 and 8 suggests that the integral transform 

of Eq. (3.12) makes the nano(Lc) function even broader than the (bulk) function.  This is 

fundamentally due to the smoothing effect of the kernel[44],  whether 
bulk

t

d

dB


 (Eq. 3.12) or 

Bt (Eq. 3.10).  Focusing on the nanowire example, this broadening effect is more clearly 

seen in Fig. 3.9, which plots the accumulation functions and normalized conductivities 

together on the same axes.  We show the BvKS model as a representative of the family of 

broad-spectrum models (which includes Callaway, MD, and 1stP), and the gray model as 

a representative of the narrow-spectrum models (the other being Holland).  In close 

analogy to the definition of the cutoff MFPs  in Eq. (3.5), here we define cutoff 

diameters D such that 

 
bulk

βnano D
D




 

)(
 .    (3.18) 

For example, at D=D0.9, the nanowire thermal conductivity is reduced by 10% compared 

to bulk.  For the BvKS model of Si nanowires at 300 K, these cutoff diameters are 

D0.1=30 nm and D0.9=29,900 nm, with a “bandwidth” of D0.9/D0.1 = 997, over five times 

larger than the MFP bandwidth of 0.9/0.1=177 (Table 3-1).  For the gray model, the 

cutoff diameters are D0.1=24 nm and D0.9=1,890 nm, with a bandwidth of D0.9/D0.1=79.  

Clearly this represents a great deal of broadening as compared to the gray model’s delta-

function MFP spectrum (0.9/0.1=1).  A similar broadening effect was also reported in a 

1stP calculation for silicon and diamond nanowires[83]. 
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Figure 3.9 Comparison of the bulk accumulation function (dashed lines) and normalized nanowire 

thermal conductivity (solid lines) for gray (black) and BvKS (red) models.  As indicated by the 

arrows, for both models the nano(D) curves are substantially broadened as compared to the (bulk) 

curves. 
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This broadening effect is relevant for current experimental efforts to measure the 

MFP distribution[20, 25], which use a plausible though currently unproven postulate that 

a sharp cutoff condition can be used to estimate a MFP spectrum from the raw 

measurements.  Although those experiments[20, 25] are based on unsteady heating with 

varying frequency, here we consider the analogous postulate for a steady-state problem 

with varying Lc.  Consider a hypothetical silicon-like material with a gray MFP spectrum.  

As shown in Fig. 3.9, a set of size-dependent measurements of this material would be 

broadened to a bandwidth of D0.9/D0.1=79.  If this nano(D) dataset were then analyzed 

with a Koh & Cahill-type cutoff condition[20, 25], the estimated MFP spectrum would 

then also be broadened to 0.9/0.1=79, much larger than the true breadth 0.9/0.1=1.  A 

more sophisticated approach to estimating (bulk) from nano(D) would require careful 

use of inverse methods[84], although this is known to be challenging for Fredholm 

equations of the first kind with smoothing kernels, such as Eqs. (10) and (12).[44] 

 

 

3.4 Summary and Conclusions 

Expressions for the bulk MFP spectrum (Eq. (4)) and accumulation function (Eq. (5)) 

have been rigorously re-derived[18].  The key physical insight is to write the kinetic 

theory integral in terms of MFP rather than frequency. The major restrictions are the 

assumptions that wave confinement effects are negligible, the bulk dispersion relation 

and bulk MFPs are approximately isotropic, and any thermal transients are much slower 

than the carrier relaxation times.   

 

Extending this framework to nanostructures leads to the integral transform of Eq. 

(3.10).  The inputs to the transform are the bulk MFP spectrum and a geometry function 

for boundary scattering, and the output is the size-dependent thermal conductivity of the 

nanostructure.  Equation (3.12) is an equivalent transform in terms of the accumulation 

function, which may be preferred for practical reasons.  The most important feature of 

these transforms is that they require no summation over polarizations and no explicit 

knowledge of the energy carriers’ dispersion relation or bulk scattering rules.  Rather, the 

derivation shows that this information is already incorporated in the bulk MFP spectrum 

in exactly the form needed to evaluate the additional effects of boundary scattering.  This 

major simplification is not possible if the integrals are expressed in terms of other 

common quantities such as frequency, wavelength, or relaxation time.   

 

Thus, the framework of MFP spectra (or accumulation functions) has two major 

benefits: visualization of the important MFPs for bulk thermal conductivity, and 

quantitative evaluation of a nanostructure’s thermal conductivity given its bulk MFP 

spectrum.  Therefore it is hoped that future models of the bulk thermal conductivity will 

include at least one plot of the accumulation function[18, 20, 25, 78-83]. 

 

To demonstrate these benefits, this paper closes with a case study of six models for 

phonons in bulk silicon: three analytical[31, 85, 86], one gray, and two purely 
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numerical[78, 82].  Among the four simple models, the BvKS model is in closest 

agreement with the more sophisticated numerical results of Henry and Chen[78], Li et 

al.[83], and Esfarjani et al.[82, 106].  This suggests that the BvKS model should be 

preferred over the gray, Holland, and modified Callaway models for studies involving 

phonon boundary scattering[18, 31, 71].  However, further experimental studies of the 

MFP spectra[20, 25], coupled with rigorous theoretical interpretation, are also needed. 

 

3.5 Appendix A: Models of Si Thermal Conductivity 

Table 3-4 summarizes the dispersion relations and scattering rules for the three 

analytical models used in the main text.  These models ignore heat conduction by optical 

phonons and use simple functions to approximate the phonon dispersion and scattering 

rules for acoustic phonons.  We use the Holland model exactly as described in the 

original work[86], including the values of all fitting parameters, so it is not discussed 

further here.  Below we describe our implementation of the Callaway model[85] with a 

modified umklapp scattering law as well as a Born-von Karman-Slack (BvKS) model[31].   

 

Table 3-4 Summary of thermal conductivity models used in this paper. A, b, CU, and Pi are adjustable 

parameters. 

   Scattering Rates 

Model Dispersion 
Phonon 

branch 

Boundary 
1

B  

Impurity 
1

I  

Phonon-Phonon 
1

PP  

Callaway 

(modified) 
Debye Average bvg /  4A  

TCUTeP
/2   

Holland 
Piecewise 

linear 
TO bvg /  4A  

4TPT  

  TU bvg /  4A   
TkTU B

P  sinh/2
 

  L bvg /  4A  
32TPL  

BvKS BvK Average bvg /  4A  
TCUTeP

/2   

 

The Callaway model is based on a Debye dispersion relation for a single, triply-

degenerate phonon branch.  The Debye temperature D=530 K is calculated from 

  BsPD kvV //6
3/12   ,     (3.19) 

where VP=3.98  10-29 m-3 (Ref. [109]) is the volume of a primitive unit cell which 

contains 2 Si atoms and vs=6084 m/s (Ref.[45]) is an average sound velocity.  The 

original Callaway model[85] used an umklapp scattering rule with a lifetime proportional 

to T -3, which is not appropriate for temperatures near or above the Debye temperature 

where the behavior is close to T -1.  Therefore, to adapt this model to high temperatures 

we replace Callaway’s original umklapp scattering law with a common form[88, 104, 

110] 











T

C
TP U

PP exp21       (3.20) 
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where P and CU are fitting parameters.  For the natural silicon of interest in this work we 

neglect Callaway’s k2 correction term, which is only important for isotopically pure 

materials[86, 88, 93].  All other model parameters retain the same form as in the original 

paper[85].  We fit this modified Callaway model to the experimental data from 

Holland[86], yielding the fitting parameters shown in Table 3-5.   

 

The Born–von Karman-Slack (BvKS) model is based on the Born–von Karman 

dispersion,  maxmax 2/sin qq  , where qmax=1.141010 m-1is the Debye cutoff 

wavevector based on the number density of primitive unit cells.  The BvK dispersion 

includes the reduction of group velocity for wavevectors approaching the boundary of the 

first Brillouin zone[31, 45], although this rolloff is overestimated for LA modes in Si.  As 

with our implementation of the Callaway model, in this BvKS model we approximate the 

three acoustic branches with a single effective branch based on an average sound velocity 

of 6084 m/s, and use Eq. (3.20) for phonon-phonon scattering.  To the best of our 

knowledge this form of scattering time was first discussed by Slack[110], which is the 

reason we refer to this model as BvKS. 

 

Table 3-5 Scattering parameters used in the Callaway and BvKS models. 

 A (10-45 s3) P (10-19 sK-1) CU (K) b (mm) 

Callaway (modified) 2.73 2.73 173 5.7 

BvKS 2.54 1.53 144 5.7 

 

 

3.6 Appendix B: Analytical Accumulation Function for Long MFP 

Phonons 

 We present a convenient analytical form for the (bulk) function for phonons in 

the long MFP limit.  This is a straightforward generalization of unpublished results for 

the case of 2 umklapp scattering recently obtained independently by Cahill[111] and 

then Freedman & Malen[112].  The form below should prove useful for extrapolating 

numerical accumulation functions such as from first principle calculations,[82, 106] 

which are unable to directly calculate very long MFPs, as well as interpreting measured 

accumulation functions.     

 

 We consider a general scattering power law  
n

bulk A   ,     (3.21) 

where A may depend on T but not .  This form applies for most common bulk scattering 

mechanisms, including impurities (n=4), umklapp (n=2), Akheiser damping[113] (n=0 - 

2) and boundaries (n=0 or 1, Ref. [[71]]).  In a bulk sample usually n>0, and thus large 

MFPs correspond to small , justifying a Debye approximation for the long-MFP tail 

regardless of T.  Furthermore, for sufficiently small  it is always true that TkB , 

so it is convenient to approximate the Bose-Einstein function by 
TkBf  .  Focusing on a 
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single scattering mechanism with 30  n , applying this high-temperature Debye model 

to Eq. (2) yields 










  

DD

D

n
bulk

n
bulk

n

bulk dd

3
1

3

0

2



 ,   (3.22) 

where )( DbulkD   is the minimum MFP, e.g. at the Debye cutoff frequency.  This 

form diverges for 3n  in an infinite crystal, in which case we also allow for MFP 

truncation at some maximum length scale Lmax, much larger than D.   

 Continuing to the accumulation function (bulk) from Eq.(3.5), we consider four 

cases depending on the value of n.  For 30  n , as in umklapp scattering, 

 
n

D

bulk
bulk

3
1

1















    (3.23) 

The analogous result for n=0 is identical to the gray assumption discussed in the main 

text with Dgr  , so the accumulation is a Heaviside step function,  DbulkH  .  

Results for n=3 and n>3 are given in Table 3-6, where the last expression also assumes 

DbulkL max .  We note that results equivalent to Eq. (3.23) for n=2 were obtained 

previously by Cahill[111] and Freedman & Malen[112].   

 

Table 3-6 Analytical forms for the accumulation functions in the high-temperature Debye limit 

corresponding to Eq. (3.22), for different scattering exponents n. 

 n=0 0 < n< 3 
n = 3 

n > 3 

 bulk   DbulkH   
n

D

bulk

3
1

1















  

 
 D

Dbulk

L 



/ln

/ln

max

 

n

n
D

n
bulk

L

3
1

max

3
1

3
1






 

 

 

 To apply these analytical forms to extrapolate the numerical results[82, 106] of 

Fig. 3.6, we relax the derivation to require a pure power law only in the limit of small , 

while allowing arbitrary  bulk  for moderate and large Thus, Eq. (3.22) applies for 

all bulk beyond some threshold T defining the long tail regime, at which point the 

accumulation has the value )( TT  .  For example, this point (T,T) might be the 

longest MFP that was simulated numerically[82, 106] or measured experimentally[112].  

For compactness we define a remainder function r(bulk) = 1(bulk) to describe the 

thermal conductivity contribution beyond bulk.  Repeating the above analysis gives 

n

T

bulk
Trr

31













     (3.24) 

for Tbulk   and where TTr 1 .  Recognizing that the point  TT r,  is known, Eq. 

(3.24) shows that the long MFP tail will still have a clean analytical form even though the 

behavior for Tbulk   may be much more complicated.  Thus, if the power-law 
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exponent in the long-MFP regime is believed known or bounded, Eq. (3.24) should be 

useful for extrapolating an incomplete accumulation function[82, 106].  Equation (3.24) 

holds for 30  n , while the analogous derivations for other values of n are similarly 

straightforward. 

 Equation (3.24) also suggests convenient transformed axes for graphically 

identifying the dominant scattering exponent n from numerical and/or experimental data.  

In the long mean free path (i.e. low-frequency) limit, a plot of  rln  versus  bulkln  

should be a straight line with slope 
n
31 , for MFP ranges where n is approximately 

constant and 0<n<3.  Figure 3.10 gives an example of these transformed axes.  For T we 

choose the last available MFP from the 1stP calculation[82, 106], 6.58 m, and anchor all 

curves to this point as indicated by the solid black circle.  This calculation confirms that 

the long MFP tails of the Callaway[85], Holland[86], and BvKS[31, 45] models all 

collapse onto the same n=2 behavior, with a shape matching that obtained previously[111, 

112].  The MD results from Henry and Chen[78] have a slightly stronger exponent of n  

2.1 in this regime, while the 1stP results from Esfarjani et al.[82, 106] are less clear but 

also appear to have n of around 2.  Thus, the good agreement between all six curves of 

Fig. 3.10 in the long MFP regime confirms that Eqs. (3.23) and (3.24) should be a 

reliable basis for analytical extrapolation. 
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Figure 3.10 Remainder functions r(bulk) = 1(bulk) for different models in the long mean free path 

region for Si at 300 K.  All six curves are referenced to the same arbitrary tail point T=6.58 m. 
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Chapter 4  Heating Frequency Dependent Thermal 

Conductivity: an Analytical Solution From Diffusive to 

Ballistic Regime 

4.1 Introduction 

The diffusion process of Fourier’s law of heat conduction breaks down whenever the 

characteristic length or time scale of a problem is smaller than the energy carrier's mean 

free path (MFP) or mean free time (MFT, i.e. relaxation time), respectively.  

Understanding the corresponding MFP or MFT distributions is crucial for controlling the 

thermal conductivity in nanostructured materials[18, 20, 22] or ultrafast process[25, 114, 

115], and thus would help designing and optimizing a wide range of applications, such as 

heat dissipation and chip cooling[8, 34], thermoelectric energy conversion[12, 16], 

nanomedicine[116], etc.  Essentially all studies of the thermal conductivity accumulation 

function have used MFP as the independent variable of the accumulation, including both 

modeling [18, 67, 78, 79, 81-83] and experiments[20, 22, 25, 26, 117]. 

 

 One approach to measuring the accumulation function uses a heat source of small 

and variable size, to restrict the range of phonons which can fully participate in the heat 

conduction.  In this way Minnich et al. reported a direct measurements of the phonon 

accumulation function, using optical heat sources with sizes first in the range of tens of 

microns[20, 118] then tens of nanometers[119].  Based on a related steady-state solution 

to the Boltzmann transport equation (BTE)[120], a cutoff approximation was made that 

phonons with MFPs longer than the spot size were fully ballistic and contributed 

negligibly to heat conduction.  Thus, the measured apparent thermal conductivity was 

taken to represent the contribution of the phonons with MFP less than the spot size. 

 

 The other method used to obtain the accumulation function is to vary the heating 

frequency.  Koh and Cahill[25] first measured heating frequency dependent thermal 

conductivity and reported the thermal conductivity per MFP, the derivative of the 

accumulation function.  For several semiconductor alloys they found that the thermal 

conductivity measured by time domain thermoreflectance (TDTR) depended on heating 

frequency even at frequencies below 10 MHz.  Similar measurements were extended to 

higher heating frequency (200 MHz) electro-optic modulators for natural silicon by 

Regner et al. using frequency domain thermoreflectance (FDTR)[26].  In both 

approaches the thermal conductivity accumulation function was calculated using Koh and 

Cahill’s cutoff assumption that phonons with MFPs longer than the Fourier-law 

penetration depth would not conduct heat, evaluated using either the bulk[25] or 

frequency-dependent[26] thermal diffusivity. 

 

 The basis of using some form of truncated Fourier law has been widely used in 

the accumulation measurements and data interpretation[20, 25, 26, 117, 121, 122].  Since 

these experiments are specifically designed so that ballistic effects are significant over 

much of the measurement range, raising the question of whether the Fourier law is an 
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appropriate treatment for these measurements.  A quantitative assessment of Koh and 

Cahill's cutoff assumption[25] by comparison with a more rigorous analysis is still 

needed.  Thus, nondiffusive solution to the BTE has attracted great attention recently.  

There are numerical efforts on solving BTE to obtain the accumulation function.[84, 118, 

123]  Most recently, to deep understand the ballistic transport, there are also reports on 

analytical solutions.  Collins et al.[124] and Hua et al.[125] analytically solve the 

nondiffusive BTE with periodic spatial distribution condition.  Regner et al.[126] also 

obtained the analytical solution to BTE on both periodic heating planar and spherical 

heating sources.  With the solution, they investigated the penetration depth and heating 

source size effects and also the suppression function. 

 

 However, there still have no systematic work on directly converting the measured 

experimental quantities, such as surface temperature phase lag with respect to heat flux in 

FDTR[28] or temperature decay in TDTR[25], to the ballistic phonon properties, such as 

accumulation function, yet.  Thus, the present work uses the Boltzmann transport 

equation (BTE) to connect the macroscopic property of temperature phase lag to ballistic 

property of accumulation function.  A second challenge in the rigorous analysis of 

existing TDTR[20, 25] or FDTR[26] accumulation data is that the measurements 

potentially involve subcontinuum phenomena in both time scale (modulation frequency) 

and length scale (laser spot size).  Isolating the effects of each mechanism also needs to 

be explored.  Our previous work[67] gave a rigorous BTE framework for steady state 

problems where only length scale matters.  Here, we consider the complementary case 

where the subcontinuum phenomena arise purely from a periodic timescale effect, by 

using an infinite plane source to eliminate any spot size effects.  

 

 In this work, we build up a BTE-based framework to interpret the experimental 

quantities and bridge them to the ballistic properties, as shown in Fig.4.1.  We first obtain 

an analytical solution to the gray BTE with a planar heat source. Then, we extend this 

gray model to the non-gray regime, which helps explain the heating frequency dependent 

thermal conductivity observed for semiconductor alloys[25].  Then, we provide a BTE 

based data analysis scheme instead of Fourier law based scheme for thermal conductivity 

measurement, as shown in Fig. 4.1 with more discussion in Sec. IIC.  Finally, a virtual 

experiment is considered, which shows that for periodic planar heating the phonon 

accumulation is better recovered using a cutoff condition based on heater timescale rather 

than the apparent thermal penetration depth.  An approximation method of obtaining 

thermal conductivity accumulation function with respect to MFT is also introduced. 

 

4.2 Description of Model 

 Here we present the problem statement, outline the solution, and give the key 

theoretical results.  Derivation details are deferred to the Chapter 4.5 to 4.8.  Chapter 4.5 

describes the two-flux BTE solution; Chapter 4.6 gives the analytical solutions for 

temperature, heat flux, penetration depth, temperature to heat flux phase lag; Chapter 4.7 

describes the relationship between effective carrier velocities in one-dimensional (1D) 

and three-dimensional (3D) treatments; and Chapter 4.8 discussed the analytical solution 
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using the general form of 3D velocity treatment.  The solution to the BTE and the 

difference between different approximations are also discussed. 
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Figure 4.1 Conceptual comparison between Fourier[28] and BTE (this work) approaches for 

obtaining the phonon accumulation function from measured temperature phase lag data. 

 

4.2.1 Periodic Heating Problem and BTE 

 This work focuses on heat conduction in a semi-infinite solid with periodic plane-

source heating on the surface, especially when the heating frequency is high enough that 

ballistic effects cannot be neglected.  In current TDTR or FDTR experiments the fastest 

heating frequencies (~10 to 200 MHz,[25, 26, 117]) are still several orders of magnitude 

smaller than typical semiconductor phonon vibrational frequencies .  Thus, quantum 

wave effects should be negligible and phonon wave packets can be treated as particles, so 

that the BTE is applicable[60].  

 

 We start with the three dimensional BTE which is usually complicated and time 

consuming to solve for an arbitrary geometry.  However, due to the translational 

symmetry of the present planar heating problem as shown in Fig. 4.2, the problem would 

be greatly simplified into a problem in x-direction. 

 

 As refer to the one dimensional transport in x-direction, there are two types of 

pictures for the group velocity, as shown in Fig.4.3.  The simplest picture is assuming all 

the phonons transport in the same direction and with the same velocity v1D, as showing in 

Fig. 4.2(a).  Literature numerical simulations use this picture, especially in lattice 

Boltzmann transport equation (LBTE)[26], due to its greatly reduction of computational 

time (We also use this treatment in our LBTE in Sec. IIE).  However, the other more 

realistic picture is assuming phonon isotropically travel along all directions, as shown in 

Fig. 4.2 (b).  In this picture, the net heat flux of all phonons would still in one direction 
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due to symmetrical cancelation.  In this work, we will first develop the BTE solution 

framework using the first picture in Fig. 4.2(a) and also verify it by the numerical LBTE 

method.  Then, we will extend it to a more general picture in Fig. 4.2(b) and discuss their 

difference in the Chapter 4.8. 
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Figure 4.2 Schematic of two flux BTE model of a semi-infinite solid with a planar periodic heat 

source of angular frequency H.  Equilibrium temperature profile (solid purple) and temperature 

amplitude (dashed black) are also shown. 

 

 The Boltzmann transport equation is firstly solved using a gray assumption (all 

phonons have the same MFT).  Then, to allow for materials where the phonons have a 

broad distribution of MFTs,[18, 26, 67] the solution is extended to the non-gray regime in 

Sec. IIB using a similar method as Ref. [23]. To simplify the solution, we restrict the 

polarization to single-branch.[45, 67] Then, the three acoustic branches are lumped into a 

single one, good agreement with experiment for both bulk[85] and nanowire[45] in 

literature indicates this lumped approximation is a good evaluation. The optical modes 

are neglected due to their small group velocity.  The isotropic Born-von Karman (BvK) 

dispersion is also used[23].  

 

v1D

(b)(a)

v

 

Figure 4.3 Schematics of one dimensional and three dimensional views of group velocities. (a) all 

phonons travel at the same direction to form a 1D transport. (b) All phonons travel isotropically in 

all directions with group velocity v, but the net momentum is one dimensional transport. 
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 Based on the single relaxation time (MFT) approximation, the one dimensional 

BTE for phonons in the x-direction has the form[4, 102] 
0f f f f

v
t x

   







  
 

 
,    (4.1) 

where f  is the phonon distribution function at phonon frequency , 
0f  is the 

equilibrium phonon distribution function, v is the group velocity,  = cos is the angle 

dependence (with respect to x-axis) of group velocity, and  is the phonon MFT.  In the 

first velocity picture in Fig. 4.2(a),  is a constant that  = 1 because all phonons travel in 

the same direction.  The more general picture in Fig. 4.2(b) is discussed in Chapter 4.8.   

 In the experiments, such as FDTR[26, 28], the semi-infinite material usually has a 

periodic heat flux boundary condition on the surface (x = 0), which also lead the 

temperature has the same period.  In this analysis, it is more convenient to obtain heat 

flux from temperature rather than reversely.  Thus, we use the temperature boundary 

condition in the forward direction to launch phonons at  

   0, exp HT x t T T i t

   ,   (4.2) 

where the superscript "+" means forward direction (later the superscript "" means 

backward direction), H is the heating frequency, T is the ambient temperature, and T 

is the amplitude of temperature variation which is the heating source in the forward 

direction and is much smaller than T.  Building on the boundary condition in Eq.(4.2), 

the BTE of Eq.(4.1) can be solved for the gray model, using two flux models, as detailed 

in Chapter 4.5 and 4.6.  The key results of this gray solutions are the equilibrium 

temperature  eqT x  and surface heat flux  " 0netq x  , given in Eqs. (4.43) and (4.46), 

respectively. 

 

 

4.2.2 Apparent Thermal Conductivity: Gray and Non-gray Model 

 Having obtained analytical expressions for the equilibrium temperature and heat 

flux on the surface of gray model in Chapter 4.6,  we define an apparent thermal 

conductivity as the amplitude ratio of heat flux to equilibrium temperature gradient,  

   
 

"

,

, ,

,
net H

T x teq

x

q x t

app gray Hk







 ,    (4.3) 

where the arguments x and t in  " , ,net Hq x t  and Teq(x,t) drops out with each other.  

Substituting Eqs.(4.42) and (4.45) into Eq.(4.3), the apparent thermal conductivity of 

gray model is obtained.  We expressed it as 

   ,app gray H t H gray Fourierk B k   ,   (4.4) 

where gray is gray MFT, kFourier is the Fourier limit of the bulk thermal conductivity, and 

Bt(H,gray) is the periodic heating effect term defined as  

 
2

2 2 2

1 2 cos 1

1 2 cos

d d

t H gray d d a b
B




   

  
 ,   (4.5) 
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where a, b, , and d are all only functions of Hgray and are defined and explained in 

Chapter 4.5.  The Bt function, here in the time scale, serve the similar function as the 

Kernel function in the length scale[67], as more detailed comparison showing in Table 4-

1.  The Kernel function is also called suppression function in other works[84, 123, 124, 

126].  Importantly, this Bt function depends only on Hgray and not on any other material 

properties, such as group velocity, as shown in Sec. IID.  For Hgray <<1, Bt(Hgray) 1 

which recovers the Fourier limit. 

 

 All of the discussion above is based on the gray MFT model.  However, in real 

materials the phonon MFPs (or MFTs) have a broad distribution, typically spanning two 

to three orders of magnitude at room temperature[18, 20, 26, 67, 78], and necessitating a 

non-gray model.  From kinetic theory, after making a simple change of variables we 

express the bulk thermal conductivity kbulk in terms of MFT as 

 
0

bulkk d   


  .    (4.6) 

Here K(bulk) is the thermal conductivity per MFT,  

   
1

21
13

d

D d

s

C v 

    
 



  ,   (4.7) 

where s represent the polarizations and C is the specific heat per phonon frequency, 

which is in close analogy to the thermal conductivity per MFP   bulk  in the length 

scale[18, 67]. 

 

 Next, to construct an apparent thermal conductivity for this non-gray model, the 

phonon population is broken into numerous bands , each of which is treated as gray 

using Eq.(4.4).  Summing up all the band-wise contributions[23] yields the apparent 

thermal conductivity 

   
1

21
13

0

effd

app H D d
k C v d





   
  




     (4.8) 

where eff is the effective MFT which depends on the heating frequency H and also 

phonon vibrational frequency .  Comparing Eqs. (4.8) and (4.4) reveals the convenient 

identity   eff

t HB




 
   , and finally the apparent thermal conductivity of the non-gray 

model simplifies to 

     
0

app H t Hk B d       


  .   (4.9) 

Equation (4.9) is one of the major results of this work.  It is a Fredholm integral equation 

of the first kind, and is closely related an analogous result for the steady-state size effect 

in a nanostructure [e.g., Eq. (10) of Ref.[67]]. The example for the  t HB    is shown in 

Fig. 4.4.  

 

Here the short timescale effect of periodic heating reduces eff and thus kapp, just as the 

small lengthscale effect of nanostructure boundary scattering[67] reduces eff and kapp.  

Thus, the physical meaning of Bt is to describe the strength of the periodic heating effect 



58 

 

in reducing kapp. as showing in Fig. 4.4(a).  At low heating frequencies, Bt = 1, there are 

no ballistic effects, the Fourier limit can be recovered.  While at higher frequencies Bt 

decreases indicating a stronger effect analogy between the present periodic heating 

problem in time scale and our previous work of MFP size problem in length scale, as it is 

given in Table 4-1.  The function of heating frequency fH acts the same as characteristic 

size, which are used to determine the kernel function of the integral transform.  The input 

function is the bulk property, the thermal conductivity per MFT or MFP.  When the 

kernel is determined, apparent thermal conductivity of any structure or at any frequency 

heating can be obtained.  More discussion of the Bt function is in Sec. 4.2.4. 
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Figure 4.4 (a) The Bt function with respect to H. (b) Accumulation function (H) at different 

heating frequencies H (note: (H) itself is independent of H. Here H is used to dimensionalize 

the x-axis, thus it scales x.) and integral transform kernel Bt/(H). The () is calculated for 

natural Si at 300 K (see text). The Bt function and Bt/(H) function depend only on the product 

H and are general to all materials. The circle, square, and diamond mean the corresponding 

values at the H when Bt =0.5, which has been used for MFT accumulation recovery in chapter 

4.2.4. 

 

 

4.2.3 Experimental Determination of kapp(H) From Phase Lag 

 Experimentally, the frequency-dependent thermal conductivity kapp(H) is usually 

eva4luated by analyzing the raw phase[28] and/or amplitude[21] of the surface 

temperature response caused by periodic surface heating.  In this work we consider the 

former.  A detailed example is presented below in Sec. I using a virtual experiment which 

is calculated as follows. 
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Table 4-1 Comparison of integral transform results for the small time scale effect (present work) and 

the small length scale effect[67].  Consistent with Ref.[67], bulk is the bulk MFP, Lc is the 

characteristic size, and eff is the effective MFP. 

 
Time scale effect 
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Input function 
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Extending the gray model in Eq.(4.45) to include non-gray phenomena, the total heat flux 

at the surface is 

     " 1
12

0

0, 1 exp expnet D Hq x t v C T d i i t d   


        (4.10) 

Similarly, for the equilibrium temperature at the surface, the non-gray extension of 

Eq.(ach) is 

 
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0,
D H

D

v C T d i i t d

eq
v C d

T x t T




  







    




  



.   (4.11) 

Thus, the phase lag surface(H) of the equilibrium temperature with respect to the heat 

flux at the surface is obtained from  

 

 

"

,

0,
exp ( )

0,

net

amp surface surface H

eq

q x t
R i

T x t T
 




    

,  (4.12) 

where both Ramp,surface and surface are real numbers which depend on H.  It is important to 

note that the physical origin of the phase lag in Eq. (4.12) is purely due to ballistic effects, 

whereas the phase lags reported in FDTR literature[26, 28] involve both ballistic and 

Fourier-law effects.  Those FDTR measurements use a small (~microns) spot size, and 

when the heating frequency fH increases the thermal penetration depth decreases, causing 

the classical heat diffusion problem to transition from a point source regime (small fH) to 

a plane source regime (large fH).  The corresponding phase lag thus increases from 0 to 

45 due to purely Fourier-law effects.  In addition, for larger fH ballistic effects also 

become important, causing the phase to roll off more quickly, the effects of which have 

been analyzed using modified Fourier-law models[26, 28].  In contrast, the present work 

considers a planar heat source, removing a length scale from the problem and ensuring 

that the classical solution exhibits a constant phase of 45 for all frequencies.  Thus, any 
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changes in phase from Eq. (4.12) correspond unambiguously to ballistic effects, which 

we analyze using a BTE rather than Fourier treatment.  

 Taking the phonon dispersion relation [and thus C() and v()] as known, Eqs. 

(4.10) to (4.12) show how to calculate surface(H) from Hbulk.  In experiment, it is 

natural to attempt the inverse problem: Given a set of measured phase lag data surface 

(H), what is the best estimate of bulk? Theoretically, it is possible to numerically solve 

the single integral inverse problem[44, 84], such as the Fredholm integral equation[44].  

However, due to measured heat flux and temperature are both integrated over all phonons 

in Eq.(4.12), the inverse problem would be the ratio of two integrals, which is nonlinear 

and complicated to solve.  Thus, instead of solving the general inverse problem, as shown 

in Fig. 4.1, we use the forward solution to obtain the best fit for a simple bulk function 

with a small number of adjustable parameters.  For example, assuming the phonon major 

scattering has a power law form 
1 n

bulk D   , fitting experimental surface (H) yields D 

and n.  If more mechanisms involve, Matthiessen's rule can be used to combine different 

scattering mechanisms.  Finally, intermediate quantities such as K(bulk) and kapp(H) can 

then be calculated from Eqs. (4.7) and (4.9), as shown in more detail in Sec. IIIC.  The 

key difference compared to traditional work[20, 25] is that here the subcontinuum effects 

seen in the measurements are analyzed self-consistently using a subcontinuum BTE 

solution rather than continuum Fourier's law. 

 

 

4.2.4 Thermal Conductivity Accumulation Function, (bulk) 

 With the detailed results from above, the phonons' broad distribution, previously 

described by thermal conductivity accumulation function with respect to MFP, can be 

explored.  In prior studies, this accumulation function was indirectly obtained by 

assuming phonons with MFPs longer than the characteristic size (heating laser spot 

size[20 ] or Fourier-law penetration depth[25, 26]) would not conduct heat.  In this work, 

however, for the periodic heating problem we find that analysis is more natural and 

rigorous for accumulation with respect to MFT rather than MFP.  Fundamentally this is 

because the key quantities in the BTE solution depend most directly on Hbulk.  In 

particular, for the planar source problem non-Fourier behavior is clearly due to the 

Bt(H) term [Eq. (4.5)].  This is physically expected because the forcing that results in 

sub-continuum behavior is fundamentally a timescale, the heater frequency H, and thus 

should be compared to another timescale representing the phonon properties, for which 

the most natural choice is bulk. 

 It is also possible to re-cast Bt in terms of length scales.  Previous work[25] 

implicitly did this by converting H to a Fourier-law penetration depth using 

Hp CkL /2 , and converting 
1bulk D bulkv   , so that 

2
1

2 bulk

D p

k

H bulk Cv L
 


 .  This last form 

may be considered less physically satisfying for several reasons: it involves a greater 

number of material parameters including some from the dispersion relation; it invokes 

Fourier-law concepts for a non-Fourier regime; and there is ambiguity about whether the 

k and C used should represent the full phonon population or only a subset thereof (e.g., 

acoustic or acoustic + optical modes, perhaps with some weighting to be determined).  In 
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contrast, expressing Bt directly as a function of 
bulkH  makes it a universal function 

which is general to any material.  Thus, for the heating frequency dependent 

measurement, we conclude that the accumulation function with respect to MFT is more 

suitable to capture the physics of the distribution of phonon scattering.  A more detailed 

comparison between MFT- and MFP-based analyses is given in Sec. IIIC. 

 

 Similar to thermal conductivity accumulation with respect to MFP[18, 67, 78], 

)(   , we introduce the thermal conductivity accumulation function with respect to 

MFT as 

   1

0
bulkk

d


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

   ,    (4.13) 

where A(A) represents the fraction of the total thermal conductivity contributed by 

phonons with MFTs less than  and kbulk is essentially the same as kFourier in bulk 

materials.  For investigating heating frequency H effect, we normalize the apparent 

thermal conductivity to Fourier limit kFourier.  After some manipulations and integrating 

by parts, the apparent thermal conductivity in Eq.(4.9) can be expressed as  

 
     

0

app H t

Fourier H

k dB

Hk d
d





  
  



   .   (4.14) 

Like Eq. (4.9), this Fredholm integral equation shows how to convert between the bulk 

MFT spectrum represented by A() and the apparent frequency-dependent thermal 

conductivity kapp(H), via the kernel Bt, and has an analogous counterpart for length-scale 

effects in steady state problems[67, 84]. 

 

 With Eq.(4.9) or (4.14), we can explain why the apparent thermal conductivity is 

dependent on heating frequency H intuitively, as shown in Fig. 4.4(b).  It is interesting 

to find that 
 

t

H

dB

d  
 , which is also independent of material, acting as a sampling window 

(red dashed curve).  For the fixed MFT , () function would shift in the higher 

heating frequency H direction when x-axis is transformed to H (such as from blue to 

black curve).  Since the thermal conductivity kapp(H) in Eq.(4.14) is the area under 

product of the two curves  A   and 
 

t

H

dB

d  
 , when heating frequency H increases, 

there has less overlap and k(H) decreases.  

 

 If we have the experimental kapp(H), whether we can reversibly recover the 

accumulation function () in Eq.(4.14) have also attract great attention recently[25, 26, 

84, 126]. Different numerical methods[44, 84] can be used to solve the inverse problem.  

To obtain a simpler analytical expression which still captures the main physics, we 

develop an approximation method here.  Referring to Fig. 4.4(a) we approximate Bt as a 

Heaviside step function,  

     1.73 0.28t H H HB H H f          .  (4.15) 

We elect to place the step edge at H=1.73 because that is where Bt =0.5, as indicated 

by the circle in Fig. 4.4(a).  Equation (4.15) makes the sampling window 
 

t

H

dB

d  
  a Dirac 

delta function, and thus from Eq. (4.14) 
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 
 app ck t

ck
t

    .    (4.16) 

where tc is the characteristic time which is approximated as 1.73 0.28

H Hc f
t


  .  This means 

with kapp(H), we can directly recover  ct  , the accumulation function with 

respect to MFT, without inverse integral transforms, numerical manipulation, or 

knowledge of the dispersion relation.  This approximation gives a good explanation for 

pure materials and alloys as detailed in Sec. IIIB. 

 A physical interpretation of Eq. (4.15) is that when phonons with 
ct  contribute 

nothing to heat conduction, while phonons with 
ct  contribute fully.  The 

approximation of Eq. (4.15) is somewhat similar in spirit to Koh and Cahill’s assumption 

that phonons with MFPs longer than the Fourier-law penetration depth do not contribute 

to the thermal conductivity[25].  However as noted above, for periodic heating it is more 

physical to define any cutoff condition in terms of the timescales rather than lengthscales. 

 

 

4.2.5 Numerical LBTE for Verification of Gray Model 

 To verify the analytical BTE solutions of our gray model across more than three 

decades of heating frequency we use a numerical method, the lattice Boltzmann transport 

equation method[127 ].  The essence of this method is to constrain the phonons by lattice 

site.  The time step t and space step x are related by x = v1Dt.  A detailed 

explanation can be found in Ref. [127 ].  We use 0.025gray as the space step x and 

20gray to approximate a semi-infinite domain.  This is sufficient because at even the 

lowest fH of interest (e.g. 2fHgray =10-2 which approaching diffusive limit), 20gray is 

still at least two times larger than the penetration depth.  The chosen simulation time is 
5

Hf
 which has been verified as long enough to eliminate the initial condition's effect and 

reach steady state conditions. 

 

 

4.3 Case Study: Si and SiGe  

 Silicon has been chosen as the main example in this work, because its bulk 

thermal properties are very well known which facilitates the modeling.  For the gray 

LBTE, to make a direct comparison with Regner et al.[26], we use the same parameters: 

a gray MFP of 41 nm, specific heat of 1.66106 J/m3-K, and sound velocity of 6733 m/s.  

For the non-gray model, the same dispersion, Born-von Karman dispersion, and the same 

scattering parameters are used as our previous work[67].  

 

4.3.1 Gray Model 

4.3.1.1 Equilibrium Temperature and Penetration Depth 

 The gray model equilibrium temperature profile is investigated in the Chapter 

4.6.1. The equilibrium temperature amplitude is expressed as 
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   
1

21
2

1 2 cos expeq

D gray

T x T b
T v

d d x





     which is derived from Eq.(4.42) and 1Dv  is 

the effective group velocity as discussed in Chapter 4.7. The spatial profile is compared 

to the Fourier limit as shown in Fig. 4.5.   
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Figure 4.5 Spatial distribution of the amplitude of normalized equilibrium temperature for three 

different heating frequencies Hgray.  The analytical BTE solution of Eq.(4.42) (blue solid line) is 

compared with the classical Fourier limit (black dashed line)[128 ]. The spatial location is normalized 

to the gray MFP gray, and the temperature amplitude to T, which is the temperature variation 

amplitude in the positive direction, the latter resulting in slip at higher frequencies. 

 

When the phonons have sufficient time to reach local equilibrium (Hgray<<1), the 

analytical solution approaches the Fourier limit (<1% difference for Hgray<104).  As 

Hgray becomes larger, the analytical solution deviates from this limit.  For instance, at 

the surface x = 0, the difference between BTE and Fourier solutions for the amplitude of 

equilibrium temperature oscillation ||Teq(x=0)T|| increases from 0.7% at Hgray=104 to 

6.8% at Hgray=102.  As seen in Fig. 4.6(a), for even larger Hgray the surface 

temperature amplitude of the BTE solution monotonically approaches half of the Fourier 

limit.  This surface temperature slip arises indicate the ballistic effect, because the 

amplitude of the backward flow T(x)T at the surface is much smaller than that of the 

forward flow T+(x)T, which is taken as a boundary condition:  See Chapter 4.6.1 in the 

high frequency regime.  Thus, after averaging, the equilibrium amplitude Teq(x)T is 

only half of the forward amplitude.  

 

 The ballistic effect of surface temperature at x = 0, which caused by periodic 

heating, is even more clear in Fig. 4.6.  When Hgray becomes larger, the analytical 

solutions deviate from the Fourier limits, and reach another limit of half.  The penetration 
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depth, which defines as the length when the temperature amplitude reaches e1 of the 

surface temperature, is  
1D grayv

p b
L


 .     (4.17) 

This BTE-based penetration depth Lp can be rewrote as in the form as penetration depth 

Fourier law limit Lp,F, as shown in Eq.(4.44) that 
1
2

,

H gray

p p F b
L L

 
 .    (4.18)  

This Lp has exactly the same form as Regner et al.[126] obtained using Milne-Eddington 

approximation.  After normalized to MFP 
gray  as shown in Fig. 4.6(b), /p grayL   

recovers the Fourier limit when Hgray<0.1, but deviates from it at higher Hgray and 

approaches a constant when Hgray>2.  The analytical solutions to surface temperature 

and penetration depth have both been verified by the LBTE results, as shown in Fig. 4.6 

by the black diamonds. 

 The penetration depth in 3D case has the same form as Eq.(4.17) except 1Dv  is 

replaced with 
3D gv v , which  is a coefficient dependents on the method as shown in 

Chapter 4.8 ( = 2/3 in our method.).  In this 3D case, if a phonon in the non x-direction 

travels one MFP, its contribution to the x-direction heat transport is only its projection 

onto the x-direction.  Thus, in the 3D model, the temperature would roll over faster with 

respect to heating frequency in Fig. 4.6(a) and the ratio of penetration depth to MFP 

would be smaller as shown in Fig. 4.6(b). 

 

4.3.1.2 Surface Heat Flux and Phase Lag 

 The surface heat flux for the gray BTE model is shown in Fig. 4.7(a), normalized 

to the Fourier limit " H

Fourier Fourierq k T



   and verified by LBTE simulations.  The BTE solution 

clearly converges to the Fourier result for small heater frequencies.  In the opposite limit 

of large Hgray, we find 
"

"

1

2

BTE

H grayFourier

q

q  
  from Eq.(4.46) in Chapter 4.6, which means 

Fourier’s law over-predicts the heat flux caused by a prescribed surface temperature 

oscillation.  This is equivalent to the BTE solution exhibiting a reduction in apparent 

thermal conductivity.  From Eq.(4.45) the heat flux amplitude in this large Hgray limit is 
" 1

12BTE Dq v C T  .  It is independent of MFT gray, which means ballistic transport.  Similar to 

the surface temperature, in the 3D case, the heat flux also rolls over faster than the 1D 

case with respect to Hgray. 

 

 The phase lag of the surface equilibrium temperature as compared to net surface 

heat flux is  2

2 sin1

1
tan

d

gray d

 


  , which is shown in Fig. 4.7(b).  For small Hgray the 

BTE solution of Eq.(4.48) correctly approaches the well-known Fourier limit for planar 

periodic heating,  = 45.  In the large Hgray limit, the heat transport gradually becomes 

ballistic and the phase lag decreases to zero.  In the 3D case, the phase lag are exactly the 

same as 1D BTE solution.  This is because the main difference between 3D and 1D 

model are only the velocities (in Fig. 4.3).  However, the phase lag 
gray  only dependents 

on  and d, which both are group velocity independent, as shown in Table 4-2 in Chapter 

4.5. 
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Figure 4.6 Heating frequency dependence of (a) the surface temperature amplitude and (b) 

penetration depth for the gray model.  The analytical BTE solutions (blue solid lines) for surface 

temperature from Eq.(4.42) and penetration depth from Eq.(4.44) are verified by numerical LBTE 

solutions (black diamonds).  The BTE solutions considering 3D velocity are included for comparison 

(black dot dashed lines).  The Fourier limits (dashed) are also shown for comparison at low heating 

frequency. 
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Figure 4.7 Heating frequency dependence of the gray BTE results for (a) the amplitude of surface 

heat flux, and (b) phase lag of the surface temperature compared to surface heat flux.  The analytical 

BTE solution of surface heat flux from Eq.(4.46) and phase lag from Eq.(4.48) (blue solid lines) are 

verified by a numerical LBTE solution (black diamonds).  The BTE solutions considering 3D velocity 
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are also discussed (black dot dashed lines).   The Fourier limits (dashed lines) are recovered at low 

heating frequency. 

 

4.3.1.3 Apparent Thermal Conductivity of Gray Model: Dependence on Heater 

Frequency or Penetration Depth 

 The H-dependent apparent thermal conductivity, which is defined in Eq.(4.4) by 

the gray model, is shown in Fig.4.8(a).  When H increases, kBTE/kFourier decreases 

monotonically from unity to zero.  We also applied the similar model on 3D case (as 

parameters discussed in Chapter 4.8).  Both the 1D and 3D gray model have the same 

heating frequency dependence of apparent thermal conductivity. 
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Figure 4.8 Normalized apparent thermal conductivity of Si at 300 K for the gray model, as functions 

of (a) heating frequency and (b) Fourier-law penetration depth.  The analytical BTE solutions of 

Eq.(4.4) (solid lines) and numerical LBTE results (black diamonds) are in excellent agreement with 

each other, and both recover the classical Fourier limit (dashed lines) for (a) low heating frequency 

and (b) large penetration depth.  In (b), the penetration depth is normalized to the gray MFP gray. 

 

 Because of the emphasis on MFPs in this field, it is common to transform H to a 

corresponding Fourier-law penetration depth using 2

,
low

Hp KCL



 , where the subscript KC 

denotes the Koh & Cahill treatment[25] and low is the thermal diffusivity in the limit of 

low heating frequency, e.g., the classical bulk value.  In Koh & Cahill’s approach[25], 

Lp,KC acts as a cutoff threshold such that phonons with bulk MFPs longer than Lp,KC do 

not contribute at all to heat conduction.  Regner et al.[26] used a very similar cutoff 

conduction except that the critical penetration depth was defined using the apparent 

thermal diffusivity, namely,  2

,
H

H

f

p RegnerL



  where now (fH) itself depends on heater 

frequency through ( )app Hk f .  In the low-frequency limit, 
pKCpRegnerp LLL  ,,

 where the 
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latter is the e1 penetration depth for the BTE solution given in Eq. (4.44); while at high 

frequency 
pKCpRegnerp LLL  ,,

.  To facilitate comparisons with the LBTE results of 

Regner et al.[26], Fig. 4.8(b) plots our results in terms of 
RegnerpL ,

.  The comparison shows 

excellent agreement between our analytical and LBTE solutions over the entire Lp range.  

Furthermore, it is reassuring that these results for kBTE also exhibit very good agreement 

with the LBTE results of Regner et al.[26] even though the two approaches began with 

different surface forcing conditions (prescribed T+ in our case; prescribed q in Ref.[26]).  

Figure4.8(b) does exhibit some minor disagreement (~2.7 %) in the transition regime 

although the reasons for this are not known. 

 

4.3.2 Non-gray Model: Heating Frequency Dependent Thermal Conductivity 

To account for the typically broad distribution of phonon mean free paths[18, 20, 78] 

we incorporated the phonon MFP distribution in Eq.(4.8) and obtained non-gray kapp(fH) 

as shown in Fig. 4.9.  The non-gray model captures the characteristic of the long MFP tail, 

which results in a stronger heating frequency dependence than in the gray model.  

Although the measurements by Koh & Cahill[25] of natural Si did not exhibit any clear 

fH effect, that experiment was limited to fH =10 MHz, which according to the calculations 

of Fig. 4.9 corresponds to a reduction by less than 3% which likely is difficult to observe 

above experimental noise. 

 

However, Koh and Cahill observed strongly fH-dependent kapp for several alloys, 

such as an undoped Si0.4Ge0.6 film of thickness 6 m.  For comparison with the present 

non-gray model, we normalize those measurements using a bulk reference value for 

undoped Si0.4Ge0.6 of k  8.3 W/m-K[129].  To model the Si0.4Ge0.6 we use the virtual 

crystal approximation  introduced by Abeles[47] and using the BvK dispersion[67], based 

on the averaged density of primitive unit cells of 2.31028 m-3 and sound velocity of 4630 

m/s.  The main scattering mechanism in Si0.4Ge0.6 is impurity scattering.  The impurity 

scattering coefficient Aimpurity=6.710-42 s3 obtained by fitting to the bulk thermal 

conductivity k = 8.3 W/m-K.  The resulting kapp(fH) for the alloy is calculated from Eq. 

(4.9) and shown in Fig. 4.9 (red line).  Comparing the non-gray results for Si and 

Si0.4Ge0.6 reveals the important fact that the kapp suppression occurs at much lower 

frequencies in the alloy single crystal than in the pure single crystal.  For example, at fH = 

10 MHz, the reduction is only 2.7% for Si but 25% for Si0.4Ge0.6.  This indicates that 

phonons with MFTs large compared to 1

Hf  play a more important role in the alloy than 

in the pure crystal.   

Figure 4.9 also compares our Si0.4Ge0.6 calculation with the corresponding 

experimental data from Ref. [25].  The measurements have the same general trend show 

an even stronger fH effect.  There are several possible reasons for the discrepancy.  Due to 

the very broad MFP distribution expected for SiGe[18, 79] the film thickness of 6 m 

may cause additional suppression of the apparent thermal conductivity in the experiment, 

which is not captured in the present calculation for a semi-infinite substrate.  A similar 

size-effect reduction may arise from the finite Gaussian beam radii used in the 

experiment (6.5-15 m), whereas the model deals with an infinite plane source.  

Although these calculations cannot be directly compared to Koh and Cahill’s 
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measurement[25], the results still are important because they give a rigorous BTE 

explanation of the strong fH effect on kapp in semiconductor alloys even when fH is orders 

of magnitude lower than the dominant thermal phonon frequencies (~10 MHz compared 

to ~THz).   
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Figure 4.9 Heating frequency dependence of thermal conductivity for Si (black dashed line) and 

Si0.4Ge0.6 (red solid line) for the non-gray BTE model described in the text.  The measurements[25] 

(points) of Si0.4Ge0.6 and Si are also included for comparison. 

 

4.3.3 Measuring Accumulation Function (bulk): a Virtual Experiment 

In Fig. 4.10 we consider a virtual experiment to measure the accumulation function 

using the phase difference between surface heat flux and temperature.  We will still start 

from the heating frequency fH dependent thermal conductivity kapp(fH) in Fig. 4.9 (non-

gray model).  Then, we transform it to apparent penetration dependent Lp,Regner or 

characteristic time tc dependent thermal conductivity as shown in Fig. 4.10(b) and (c) 

(solid lines).  In Fig. 4.10(b), the penetration depth dependent thermal conductivity 

kapp(Lp,Regner) /kFourier (red curve) does not match the accumulation function with respect to 

MFP (dashed curve).  However, in Fig. 4.10(c), the kapp(tc) /kFourier and MFT 

accumulation function (bulk) has much better agreement(compare solid and dashed 

curves), where the characteristic time tc is related to heating frequency by 0.28

Hc f
t  , as 

discussed in Sec. IID.  Thus, the MFT dependent thermal conductivity is used to 

construct the accumulation function with respect to MFT. 

This construction can be understood from the x-axis of the accumulation function.  In 

the time domain in Fig. 4.10(c), the characteristic time tc and MFT  are the axis.  As we 

discussed in Fig. 4.4(a), the kernel function Bt acting as a sampling function, thus it cuts 

the phonon with MFT  longer than the characteristic time tc.  The physical meaning is 
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that phonon with MFT  longer than tc would not conduct heat.  Thus, fH is directly 

related to cutoff MFT and the measured apparent thermal conductivity can be directly 

used to probe the thermal conductivity distribution over MFT.  This means the result of 

approximation method in Eq.(4.16) can be used to probe accumulation function over 

MFT. 

However, in the length domain in Fig. 4.10(b), the accumulation function with 

respect to MFP (bulk) and normalized penetration depth dependent apparent thermal 

conductivity does not agree with each other.  Let’s first consider Koh and Cahill’s 

definition that 2 1
,




 low

H H
p KC f

L .  However, the MFP 1

Hbulk f   .  Thus, the MFP 

bulk and Lp,KC have different power law with respect to heating frequency fH.  Then, we 

consider the apparent penetration depth  2

,
H

H

f

p RegnerL



  by Regner et al.[26] with the 

thermal diffusivity ( fH) also depends on heating frequency fH.  This treatment make 

apparent penetration depth Lp,Regner also have the same heat frequency fH dependence 

(which means the width of the solid and dashed curves in Fig. 4.10(b) are about the 

same.).  However, the heating frequency dependent thermal conductivity kapp(Lp,Regner) 

/kFourier still cannot recover the accumulation function (bulk).  Possible reason may be 

caused by using the macroscopic concept, such as the thermal diffusivity (fH) which 

included all the phonons with different MFPs, to describe the microscope concept cutoff 

MFP.  
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Figure 4.10 (a) Heating frequency dependent phase lag (black solid line) and phase lag with 2 error 

by the virtual experiment (empty circle) (b) Penetration depth dependent thermal conductivity using 

bulk MFT calculated by Matthiessen's rule combining different scattering mechanisms(red solid line) 

and using fitted MFT in virtual experiment (empty circle), and accumulation function with respect 

MFP (black dashed line) (3) Characteristic time tc dependent thermal conductivity by calculation 

(blue solid) and virtual experiment fitting (empty circle), and expected actual accumulation function 

with respect to MFT (black dashed). 

 

To explain how this work can be used for experiment and how heating frequency fH 

dependent thermal conductivity can be used to construct accumulation function (bulk) 

with respect to MFT, we also did a virtual experiment measuring the temperature phase 

lag as shown in Fig. 4.10(a).  Since measurement always has error bars, we randomize 

the phase lag with 2 degree of error to represent the measurement error.  From this 
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heating frequency dependent phase lag as the measured data, we can proceed to obtain 

the apparent thermal conductivity, as the flow chart shown in Fig. 4.1.  We first fit this 

phase lag with a general bulk MFT 
1 n

bulk D    by the least square fitting and find 

D=1.43310-19 s3 and m=1.995.  We expect D and m to be 1.52810-19 s3 and 2, 

respectively, which the fitting agrees.  The power m2 means umklapp scattering 

dominates for Si at 300 K.  With this MFT, we obtain the heating frequency dependent 

thermal conductivity k(fH) by using Eq.(4.9), as shown by the void circles in Fig. 4.10(b) 

and (c). 

 

4.4 Summary and Conclusions 

An analytical solution to the BTE for the periodic plane-source heating problem has 

been obtained based on the gray MFT model.  This model has been verified by our LBTE 

simulations and also the LBTE from recent literature[26].  The BTE solution has also 

been extended to non-gray MFT regime with the BvK dispersion.  This model give a 

quantitatively derivation to construct accumulation function with respect to MTF from 

heating frequency dependent thermal conductivity.  It is found that the time scale 

description is better than the length scale description to describe the frequency dependent 

thermal conductivity.  The fundamental reason for this reduction is that phonons with 

MFT longer than characteristic time do not conduct heat.  The time scale description is 

cleaner than length scale description because it does not introduce other macroscopic 

properties such as diffusivity.  This theory has been applied to Si and SiGe and it agrees 

with experiments that SiGe is heating frequency dependent but Si is negligible dependent.  

This theory has also been applied to a virtual experiment which fitting the temperature 

and surface heat flux phase lag to obtain the general form of MFT, then reconstruct the 

characteristic time dependent thermal conductivity.  It agrees very well with the 

accumulation function with respect to MFT in three to four order of magnitude range of 

time, which verified our approximation method in Eq.(4.16) for thermal accumulation 

function with respect to MFT. 

 

4.5 Appendix A: Analytical Solutions to BTE in Forward and Backward 

Direction 

This appendix describes the solution of the BTE, Eq. (4.1).  Rather than directly 

solving for the distribution function, it is usually to make the analogy to thermal radiation 

and use phonon intensity[130].  Thus, the phonon intensity per unit time, per unit area, 

per phonon frequency, and per unit solid angle is 

 ,s

s

I v D f    ,    (4.19) 

where s represents the polarizations and D() is the density of states of the s-th branch.  

To simplify the solution, we restrict the polarization to single-branch.  The three acoustic 

branches are lumped into a single one.  Good agreement with experiment for both 

bulk[85] and nanowire[45] in literature indicates this lumped approximation is a good 
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evaluation.  The optical modes are neglected.  They don't contribute much to the thermal 

conductivity due to their small group velocity.  Thus, the BTE in Eq.(4.1) in the case of 

Fig. 4.3(a) is recast into the form of 
0

1D

I I I I
v

t x

   



  
 

 
    (4.20) 

where 1 3

v

Dv   is the effective group velocity in the x-direction and 
0I  is the 

equilibrium phonon intensity.  Strictly, this equilibrium flux includes all phonon 

frequencies and considers phonon interactions between different phonon frequencies[60, 

131].  This is trivial for the gray MFT solution since there is only one  to consider.  

However, in the general non-gray case the BTE can only be solved numerically, using 

techniques such as Monte Carlo[131], discrete ordinates[132], finite volumes[133], or the 

LBTE method[26].  On the other hand, analytical solutions have great advantages for 

understanding the essential physics and reducing computational time cost.  To facilitate 

such an analytical solution for the general non-gray case, we assume that the true 
0I  

integral can be approximated adequately by a simpler form whereby phonons with the 

same frequency reach their own equilibrium.  This approach has been used previously[60, 

124], and the resulting “frequency-integrated gray-medium” treatment was found to yield 

surprisingly good agreement with a numerical solution of the full non-gray BTE for Si 

and PbSe.[124]  With the governing equation in Eq.(4.20) and periodic heating boundary 

conditions described in the next subsection, the BTE is analytically solvable. 

 The above Eq.(4.20) can be solve by different approximation methods, such as 

two flux (or Schuster-Schwarzschild) model or Milne-Eddington model[134], that both 

assuming the phonon intensity is isotropic but different over the forward and backward 

directions[134] respectively (Their difference are discussed in Chapter 4.8.).  We 

multiply Eq.(4.20) by angle dependent term  and integrate it over forward or backward 

hemispheres of solid angle.  Thus, the BTE in Eq.(4.20) separates into two coupled 

equations with respect to forward flux q
 and backward flux q

.  In the one 

dimentional  transport in Fig. 4.3(a),  = 1.  We will first study this case and discuss the 

general case of Fig. 4.3(b) in Chapter 4.8.  In the forward direction, the Eq.(4.20) of gray 

model is expressed as 
0

1 .D

gray

q q q q
v

t x 

    
 

 
   (4.21)

 

where the equilibrium flux 
0q  couples the forward and backward fluxes and is 

simplified as 

 0 1
2

.q q q       (4.22) 

The counterpart equation in the backward direction has the same form except with q


 

instead of q


.  With the forward and backward heat flux, the net heat flux is convenient 

to be expressed as 

 " , .netq x t q q        (4.23) 
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Substituting Eq. (4.22) into Eq. (4.21), after some algebraic manipulation a pair of 

equations for the forward and backward direction are obtained,  
2 2

2

12 2
0gray gray D

q q q
v

t t x
 

    
  

  
    (4.24) 

and 
2 2

2

12 2
0gray gray D

q q q
v

t t x
 

    
  

  
.   (4.25) 

For the boundary conditions, a sinusoidal temperature boundary condition is used in the 

positive direction at x = 0, as shown in Eq.(4.2).  Since the domain is semi-infinite, deep 

inside the body the distribution must return to the equilibrium intensity corresponding to 

the ambient temperature, namely 

    , ,T x t T x t T 

    .   (4.26) 

To transform these T boundary conditions to corresponding constraints on q


and q


, 

we linearize the response.  The temperature oscillations of the heat source are limited to 

T<<T, which is typical in the measurements[20, 25, 28, 118]. In this case, the 

temperature variation is a linear response to the heat flux variation in the each direction, 

such as 
1 1

1 12 2D Ddq v CdT v dU    ,    (4.27) 

where C is the volumetric specific heat and U is the volumetric energy density.  The 

factor of 
2
1  arises from only integrating over half of the hemisphere.  Using Eq. (4.27), 

both temperature boundary conditions from Eqs.(4.2) and (4.26) are transformed to 

energy flux boundary conditions.   

 

4.5.1 Dimensionless Analysis and Forward Direction Solution With Gray MFT 

 For convenience we non-dimensionalize the governing equations (4.24) and 

(4.25) and boundary conditions (4.2) and (4.26).  We define the dimensionless time as 

gray

t


  , location as 
1D gray

x
v 

  , and forward energy flux as 

       
   

   

,
, ,

0, 0

q x t q x
Q Q x t

q x t q x
 

 

 

 

  
 

    
,  (4.28) 

with a similar result for grayQ
 after substituting q q  , except keep the denominator 

 0, 0q x t   term the same.  At x, from Eqs. (4.26) and (4.27) we have 

   , ,q x t q x t q 

    , and governing Eq. (4.24) simplifies to  

2 2

2 2
0

Q Q Q

  

    
  

  
.    (4.29) 

Applying Eqs. (4.27) and (4.28) to Eqs. (4.2) and (4.26), we obtain the boundary 

conditions  

   0, exp H grayQ i          (4.30) 
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and  

 , 0Q     .    (4.31) 

 Now the governing Eq. (4.29), which is hyperbolic telegraph type, can be solved 

by a standard Laplace transform method.  After taking the Laplace transform of 

Eqs.(4.29)-(4.31) with respect to time, the resulting ordinary differential equation in  is 

readily solved, and finally an inverse Laplace transform used to obtain the time domain 

solution.  During the inverse transform, the singularity problem is overcome using the 

Cauchy integral theorem[135 ]. Finally, we obtain the dimensionless temperature in the 

forward direction as 

     , exp expgray H grayQ b i ia          ,   (4.32) 

where a and b are purely real and are given in Table 4-2. 

 

4.5.2 Solution in the Backward Direction with Gray MFT 

Beginning from Eq.(4.25), the backward-direction counterpart of Eq.(4.29) is 
2 2

2 2
0

Q Q Q

  

    
  

  
    (4.33) 

However, there is only one obvious boundary condition that  

 , 0Q x t   .      (4.34) 

At x=0, the heat flux in the negative direction is a depth-integrated response to the 

positive direction heat flux, which is not specified in advance (recall that for convenience 

our boundary condition at x=0 was defined purely in terms of Q+).  Without one more 

boundary condition it would appear that we cannot solve Eq.(4.33).  However, since the 

form of the governing equations in the forward and backward directions are exactly the 

same, we seek a solution of Eq. (4.33) with the same form as Eq.(4.32) while allowing 

for different amplitude and phase,  

     , exp exp H grayQ x t d b i ia          .  (4.35) 

Here d is the amplitude coefficient and  is the phase shift, which are determined by 

energy conservation as follows.  Since there is no heat generation in the material, it must 

always be true that  

" 0net

U
q

t


   


,    (4.36) 

where the phonon energy density in one dimensional transport in Fig. 4.3(a) is 

1D

q q
U

v

 
  .    (4.37) 

Substituting the forward and backward solutions into Eq.(4.36), for the real part we 

obtain  

     

   

cos sin sin

sin cos cos 0

H gray H gray H

H gray H

a d a db t

b d a db t

      

    

     
 

     
 

,
  (4.38)
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where the coefficients a, b, , and d are all only functions of Hgray.  Since Eq (4.38) is 

valid at any time, the coefficients of sin(Ht) and cos(Ht) must both be zero.  Thus, we 

obtain  

H gray

b
a

d
 

      (4.39) 

and  

cos b
a

  .     (4.40) 

as given in Table 4-2. 

 

 

4.6 Appendix B: Analytical Solution of Temperature and Heat Flux to 

Gray Model 

 Using the positive and negative solution of flux from the previous appendix, we 

now obtain the equilibrium temperature, penetration depth, net heat flux, phase lag on the 

surface, and apparent thermal conductivity.  

 

Table 4-2 Key coefficients of the analytical BTE solution, including simplified limiting forms in low- 

and high-frequency limits. These expressions are derived from gray gray, but they can also be 

extended to non-gray regime with  as shown in Sec. IIB.  For convenience to use it in the non-gray 

model, we express the MFT as . 

Coefficient Low H limit High H limit 

 
2

2
1H

H Ha  

         2 2 2
1H H H       
 

 1

8H H
H

 


   
 

   

 
2

2
1H

H Hb  

          2 2 2
1H H H       
   

 
2

1 1 1
2 216 H  
   

cos b
a

 
 

1 1H     
1

4
0

H  
  

sin 2b  
 

2 0H      
2

1

8
1 1

H  
     

H

b
a

d
 


 

1 2 1H     
1

4
0

H  
  

 

4.6.1 Temperature and Penetration Depth 

The equilibrium temperature is obtained by conserving the total energy density[45].  

From the linear response of Eq. (4.27) the equilibrium temperature is expressed as 

   , ,eq eqU x t U C T x t T 
     .    (4.41) 

Thus, the amplitude of the equilibrium temperature oscillation is 

   
1

21
2

1 2 cos expeq

D gray

T x T b
T v

d d x





    ,  (4.42) 
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where the time dependent term  
1

exp
D gray

a
H v

i t ix


  goes to one when we calculate the 

amplitude.  To facilitate comparisons with the Fourier limit, it is convenient to re-cast this 

result in terms of the thermal diffusivity  by using 
2 21
1 3D gray g grayv v    , 

 

2

21
2 2

1 2 cos expeq H

H gray

T x T b
T

d d x
 








 
    

 
.  (4.43) 

Equation (4.43) also directly gives the thermal penetration depth, Lp,  
1 1
2 22

,

H gray H gray

Hp p Fb b
L L

   


  ,   (4.44) 

where 
2

, Hp FL 


 is the Fourier limit of penetration depth.  Various limits of the BTE 

solution are shown in Table 4-3 and serve as useful checks, such as verifying that the low 

H limit recovers the classical Fourier solution. 

 

Table 4-3 Low- and high-frequency limits for various key results of the gray BTE model. 

  Low H limit High H limit 

Temperature amplitude 
 ,eqT x T

T

 

   2
exp Hx




   1

2 2
exp x


  

Penetration depth pL  2
, Hp FL 

  2 2 gray    

Surface heat flux amplitude 
"

"

net

Fourier

q

q  
1 

1

2 H  
 

Phase lag gray
 4


 0 

Apparent thermal conductivity ,app grayk
 

Fourierk  
Fourier

H

k

   

 

 

4.6.2 Heat Flux 

 The net heat flux is calculated by Eq. (4.23).  At the surface, x=0, the heat flux 

amplitude is 

 " 21
12

1 2 cosnet Dq v C T d d     .   (4.45) 

Normalized surface heat flux to its Fourier limit we find 

 2"

"

1 2 cos1
2

net

H grayFourier

d dq

q



 

 
 ,    (4.46) 

which correctly reduces to unity in the low Hgray limit, as shown in Table 4-3. 

 

4.6.3 Phase Lag 

For thermal conductivity experiments, measuring the phase lag between surface 

temperature and heat flux is more practical than measuring the temperature or heat flux 
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amplitude directly, because the phase lag is less sensitive than amplitude to intensity 

instabilities[28].  Thus, the phase lag between the surface temperature and heat flux can 

be measured with higher accuracy.  To extract the phase lag, we express the ratio of 

Eqs.(acl) and (aci) as a complex function with the purely real amplitude R and phase lag 

gray, 

 

 
 

"

,

,
exp

,

net

amp gray gray

eq

q x t
R i

T x t T







.   (4.47) 

The time t and space x related term are all cancelled. Substituting for  " ,netq x t  and 

 ,eqT x t , the phase lag is found to be  

  2

2 sin
tan

1
gray

d

d


  


    (4.48)

 
The Fourier result is again recovered in the low Hgray limit, as shown in Table 4-3. 

 

 

4.7 Appendix C: Relationship Between 3D and 1D Group Velocity 

We consider the relationship between the 1D velocity v1D and the actual group 

velocity v in this Appendix.  The present work uses a periodic heat source in the y-z 

plane.  Due to the translational symmetry of the heating surface and the fact that the 

material’s dispersion relation is isotropic, the net heat flow must propagate normal to the 

y-z plane (i.e., along the x-axis), suggesting a 1D treatment.  However, the constituent 

phonons still travel in all 4 steradians, so some care is required in converting their actual 

group velocities to an equivalent 1D velocity v1D.  In the 3D phonon dispersion, all 

phonons of frequency  travel with a group velocity of magnitude v.  It is well 

established that when scattering is dominated by momentum-conserving processes, the 

equivalent 1D velocity of an energy wave is simply 1
1 3Dv v .Ref.([136, 137])  In ideal 

gases this gives the relationship between the thermal velocity and sound velocity[136].  

In solids and liquids at low temperature the phenomenon is known as second sound[138, 

139], where it has been studied by theories[140-142] and experiments in helium[143], 

NaF[144, 145], NaI[145], SiTiO3 (Ref. [146]), etc.  More fundamentally, this 
3

1
 factor 

can also be understood as a consequence of collisions randomizing the directions of the 

velocity vectors[136], resulting in the effective 1D velocity v1D for energy propagation. 

This velocity relation can also be verified by comparing the equilibrium temperature 

in Eq.(4.42) (or surface heat flux) at low heating frequency H with the Fourier limit.  

The Fourier limit of temperature amplitude is 
   ,

2
expeq H

T x t T

T
x








  .  Comparing 

with our 1D model in Eq.(4.42), we can obtain their relation that 
1

1 3grayDv v


  . 
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4.8 Appendix D: Relationship Between General 3D and 1D Velocity 

Model 

This appendix extends the BTE solution from 1D velocity v1D in Fig. 4.3(a) to a more 

general case in Fig. 4.3(b). The difference of several approximation methods, such 

Schuster-Schwarzschild method, Milne-Eddington method, and our method are also 

discussed.   

Similarly to Chapter 4.5, we can also obtain the governing equation in the form of 

phonon intensity 
0I I I I

v
t x

   







  
 

 
.    (4.49) 

The key difference to solve the Eq.(4.49) is to deal with the angle dependence velocity 

v , which is usually treated by multiplying a moment term of  of different orders and 

integrate the equation over the solid angle.  We also use the same assumption that the 

radiative intensity is isotropic but different over the forward and backward 

directions[134].  With this assumption, the governing equation in Eq.(4.49) can be 

simplified.  Here, we states a general method, by firstly multiply the Eq. (4.19) by m-th 

order of moments m , and then integrate over the half solid angles, which is expressed in 

the forward direction that 
1

0

2 mq I d      .     (4.50) 

The 2 is from integrating over the azimuthal angle.  If m=0 and separating the directions 

between forward and backward, it is the Schuster-Schwarzschild approximation[134].   If 

both the m=0 and m=1 are used and integrate over full solid angle, it is the Milne-

Eddington approximation[126, 134].  Since we are more interested in the heat flux, it is 

convenient to obtain the heat flux by choosing m = 1 and separating the forward and 

backward directions fluxes.  The heat flux in the forward direction is the first order of 

moment (m = 1) that 
1

0

2q I d      .    (4.51) 

Thus, the BTE in the forward direction is recast into the form that 
0

,
q q q q

v
t x

   







    
 

 
    (4.52) 

where  is a coefficient dependents on the order of moment used (=2/3 here for m=1).  

If we replace the v by effect 3D group velocity 3Dv v , the Eq.(4.52) is exact the 

same type as Eq.(4.21).  Thus, the solution to Eq.(da5) would have the same form except 

a coefficient difference.  In the backward direction, we also use the first law of 

thermodynamics in Eq.(4.36), which introduced a coefficient  when considering the 

solid angle integration that 

   

,

, ,

x

Q x t Q x t
U

v

 






 

 ,     (4.53) 
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where 2  .  We can also solve the BTE in the negative direction using the same 

method in Chapter 4.5 and obtain the amplitude d3D and phase shift 3D that 

 
3 2 2 2

2
tan H

D

H

b

a b

 


 


 
   (4.54) 

and  

 3
2 sin cos

D

H

b
d

a b   
 

 
   (4.55) 

These general expressions can also be applied to the 1D case as we discussed before.  

When  = 1 and  = 1, they can exactly recover the 1D solution as shown in the Chapter 

4.5 and 4.6.  The general expression for temperature in Eq.(4.42), surface heat flux in 

Eq.(4.45), phase lag in Eq.(4.48), and apparent thermal conductivity in Eq.(4.4) are all 

have the same forms except replace the 1D quantities 1Dv , 1D, and d1D with 3D quantities 

that 3Dv v , 3D , and d3D.  All the other parameters are the same. 
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Chapter 5  Thermal Boundary Conductance Crossover at 

Cryogenic Temperature 

5.1 Introduction  

In thermoelectrics, high figure of merit requires low thermal conductivity .  In 

kinetic theory, the thermal conductivity = Cv/3, where C is the heat capacity per unit 

volume, v is the group velocity, and  is the mean free path. At temperature comparable 

or higher than the Debye temperature, C is a constant at Dulong-Petit limit. In 

nanostructure, such as nanowire or superlattice,  can be treated as constant due to 

boundary scattering.  Thus, it would lead to Cvv. Thus, the smaller v, the lower . 

That’s why good thermoelectric materials usually have low group velocity, such as 

Bi2Te3 and PbTe etc.  However, at cryogenic temperature, heat capacity is proportional to  

v-3 due to phonon freeze out effect[30]. This would lead to an opposite trend, v-2 which 

means the higher v, the lower . Thus, higher group velocity materials are preferred for 

thermoelectrics at cryogenic temperature[147], which is opposite compared to the high 

temperature criteria. Thus, for nanostructure, there is a crossover for thermal conductivity. 
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Figure 5.1 The temperature dependence of thermal boundary conductance between different metals 

and sapphire, by pico-second optics technique.  Data from Ref. [148]. 

 

Since the thermal boundary conductance is also proportional to Cv,(Ref.[149]) the 

crossover phenomena also exists in thermal boundary conductance (TBC), as shown in 
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Fig. 5.1. Thus, the criteria of choosing higher group velocity materials at low temperature 

still holds. In the thin film or superlattice device, we only consider the TBC at cryogenic 

temperatures, because TBC dominates the total thermal resistance. For instance, at 10 K, 

the thermal resistance of 300nm GaAs is less than 0.02% of the resistance of the GaAs 

interface with Au. 

 

To experimentally verify this criterion, considering the convenience of materials 

growth and resources we have, we use the AlxGa1-xAs thin film structure. In 

literature[148], this phenomenon can also be observed if we extract data of different 

materials from literatures and plot them in the same figure, as shown in Fig. 5.1. The 

TBC for Pb/sapphire (Pb: low sound velocity at 710 m/s) and Al/sapphire interface (Al: 

high sound velocity at 3130 m/s) has a crossover when temperature changes, which 

verified the criteria that high group velocity materials have lower TBC at cryogenic 

temperature. 

 

5.2 Sample Design and Structure 

The structure and dimensional parameters are shown in Fig. 5.2. The AlxGa1-xAs thin 

films, which are from our cooperators from Research Triangle Institute, are grown on 

GaAs substrate by metal organic chemical vapor deposition (MOCVD).   

 

GaAs Substrate

330 nm AlAs or  AlxGa1-xAs film 

Insulator:  100 nm GaAs

~550 nm  Au/Cr Heater, width 7 m

 

Figure 5.2 Schematic of the film structure 

 

On top of the film, another layer of intrinsic GaAs with the thickness of 100 nm is 

also grown to provide electric insulation.  We choose GaAs because we want the 

interfaces on top and underneath the film to be the same.  Thus, if we measure the total 

thermal boundary resistance, it would be twice of single GaAs/AlxGa1-xAs interface (we 

assume GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs interfaces have the same TBC).  Finally, 

a 6 mm7 m 500 nm gold heater line is evaporated on the GaAs insulating layer and 

patterned by photolithography.  The heater line width is about 16 times larger than the 
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sum of the film and insulating layer thickness, which makes sure that heat transfer is one 

dimensional inside the film.  The length 6 mm is also longer than usual which make the 

voltage large enough for measurement at cryogenic temperature, because the resistance 

would decrease dramatically when temperature decreases.  The copper wires are used to 

connect to Au pads and sockets.  The Au pads side uses the silver conductive epoxy and 

sockets side uses soldering.  The sample is mounted and connected to Gifford-McMahon 

closed helium cycle cryostat with the potential capability cool down to 1.7 K.  However,  

due to some equipment problems and self-heating effects of the heater line, we only 

obtained a stable operation temperature at 33 K (minimum 16 K).  The large current 45 

mA is used to create a measurable temperature variation on the heater line due to high 

thermal conductivity of sample and low electrical resistivity of heater line.  Thus, larger 

heat is generated inside the cryostat which increases the temperature. 

 

 

5.3 Measurement Method  

The thermal boundary conductance/thermal contact resistance is measured by a 

virtual differential 3 method[150].  The contact resistance here can be measured by 3 

method because the contact resistance dominates the whole resistance, especially at 

cryogenic temperature.  We firstly have a brief introduction of the 3 method and setup 

of this measurement. Then, we discuss the design and structure of the samples.  Finally, 

we discuss the measurement and follow up with a data analysis.  

5.3.1 Introduction to 3 Method  

 

The 3 method is one of the major thermal conductivity measurement methods in the 

frequency-domain, which can be applied to measure bulk materials[151] and thin 

films[150].  This method has great advantages comparing to other traditional methods, 

such as 

 It is a small current measurement. And, the temperature variation is usually less 

than 1 K.  

 It is a non-steady state method, with variable probe depth. Controlling the heating 

frequency can be used to probe different sample thickness. 

 It is fast measurement method compared to steady state method which 

temperature stabilization is usually very long.  

 It is a very accurate method. This is because the input Joule heat can be very 

accurately controlled by modern electronics. The thermal conductivity is 

determined by the slope of 3 voltage, as shown in Fig. 5.3, and can be fitted 

very accurately. 

 

Some drawbacks compared to other methods are that it needs microfabrication to 

obtain the heater sensor, as shown in Fig. 5.2, the 60 mm7 m 500 nm gold heater line.  

This method also needs electrical insulation between the heater line to the sample.  For 

electrically conductive samples, a electrical insulation layer is needed, such as the 100 

nm intrinsic GaAs layer in Fig. 5.2. 
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5.3.2 Measurement System 

In the system, we use a lock-in amplifier’s internal sinusoidal voltage source to 

drive the circuit.  To obtain the small V3 signal from large V1 signal (usually the V3 

signal is about three orders of magnitude smaller than V1), we use a voltage subtraction 

circuit[152].  We add a precision resistance with the same resistance in series with the 

sample resistance. Then, we subtract the precision voltage from the sample voltage to 

cancel the 1 voltage. Because the precision resistance has a much lower temperature 

coefficient of resistance, its 3rd harmonic voltage would be several orders of magnitude 

lower than the V3  of the sample. Thus, the leftover of the 3rd harmonic voltage V3 

after subtraction is the 3rd harmonic voltage of the sample, 

 

In this measurement, both the 1 and 3 voltages across the sample and the 

precision resistance are measured using a lock-in amplifier (Stanford Research Systems 

SR850). The voltage difference across the two ends of the sample is converted to a single 

output by AD524 amplifier chip (similarly for the precision resistor). The precision 

resistance uses the GenRad 1433 Series decade box, with resolution 0.01.  Its 

temperature coefficient of resistivity is about 20 ppm/C, much smaller than the 

sample’s TCR of around 3000 ppm/oC.  The time constant of 1 second is used for all the 

measurement (with frequency higher than 100 Hz).  These settings were chosen to reduce 

the random noise and improve the signal to noise ratio. The data acquisition software is a 

home made LABVIEW program. 

 

5.3.3 Data Analysis method 

The main data processing uses the method from Ref. [150].  The total temperature 

difference across both the thin film and substrate Ttotal is obtained by the calibrated 

heater line resistance, as shown in Fig. 5.4.  With the heat capacity[153] at the same 

temperature, we can theoretically obtain the temperature difference Tsub across the 

substrate (blue line in Fig. 5.3) which is the measurement of Al0.84Ga0.16As film at 48 K.  

The temperature difference across the substrate Tsub can be calculated from [150] 

 

 

2

2 2 20

sin
sub

xbP
T dx

l xb x q



 


    (5.1) 

where P is the power per unit length generated by the heating line, l is the length of the 

heater line and b is its half width, 2iq 


 , and  is the thermal diffusivity.  The slope 

of Tsub can be used to measure the thermal conductivity of the substrate.  Both the Ttotal  

and Tsub of a AlGaAs film is shown in Fig. 5.3. They are parallel to each other, which 

means the temperature difference between the heater line and the top of the substrate is 

heating frequency independent. If we only linear fit the Ttotal, from the slope, we can 

also obtain the thermal conductivity of the substrate GaAs[150]. 

 

With both the  Ttotal  and Tsub, the temperature difference across the thin film 

Tfilm is the subtraction of Tsub from Ttotal.  Because the total Joule heating power is 
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controlled by the heating current (which can be precisely controlled by the input current 

or voltage source) we can finally obtain the total thermal boundary conductance by 

film

q
G

T



, where q  is the heat flux across heat line unit area. 
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Figure 5.3 Measured temperature difference between the Au heater line and environment (red) and 

calculated temperature difference across the GaAs substrate for Al0.84Ga0.16As thin film at 48 K. 
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Figure 5.4 Temperature coefficient of resistance calibration for gold heater line, and Bloch-

Grüneisen fitting. 
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The heating frequency is chosen between 500 to 10,000 Hz for testing to find the 

suitable frequency range.  The penetration depth pL 


 ,where  is the thermal 

diffusivity and  is the heating frequency, is checked make sure it is smaller than the 

thickness of the sample. Even lower frequency (<500 Hz) is not used because the 

penetration depth is larger than the total sample thickness at the cryogenic temperatures.  

The current passed through the heater line is around 45 mA.  The relationship between 

the V3 and I1 is checked by tuning the current. A relation of 3

3 1V I   is obtained 

which means our measurement is in a proper range[152].  Since a voltage source is used, 

to improve the accuracy, a correction factor can be used to correct the error caused by the 

voltage source[152]. We did not apply this correction factor in the analysis because the 

resistance of the sample is much smaller than the resistance of the rest of the circuit. 

 

In the measurement, one of the practical issues is the fact that heater line electrical 

resistance is not linear with respect to temperature any more when temperature is less 

than 50 K, because phonons are freezing out at these low temperatures. Thus, as shown in 

Fig.5.4 (blue line), we use the Bloch-Grüneisen fitting to fit the non-linear region, and 

obtain the new temperature coefficient of resistance. This method can be extended to 

temperature even close to 10 K or even lower for Au heater line[154]. 

 

5.4 Results and Discussion 

We have measured thermal boundary conductance of three samples, with the film 

layer of AlAs, Al0.84Ga0.16As, and Al0.72Ga0.28As. A temperature dependent TBC has also 

been obtained. 

5.4.1 Substrate thermal conductivity and setup verification 

The temperature dependences of substrate GaAs thermal conductivity of all 

samples are shown in Fig. 5.5. The substrate thermal conductivity is obtained using 

Eq.(5.1). This measurement is also used as verification for the 3 system. The measured 

substrate thermal conductivities of different samples agree with each other and also agree 

with the literature[155] within  9% at temperature greater than 50 K.  For even lower 

temperature, since the 3 voltage slope in Fig. 5.4 is smaller, the error bar would be 

larger and reaches 14%.  However, since Tsub takes less and less contribution to Ttotal at 

lower temperature (for instance, at 48 K, Tsub is only about 15% of Ttotal), the substrate 

thermal conductivity would affect the TBC measurement less at low temperature. 

 

There is one practical issue on the actual temperature of the sample. It needs to be 

carefully considered, especially in the case of cryogenic temperature. The temperature on 

the cryostat temperature controller is not actual temperature of the heater line. The 

difference could be as large as more than 10 K at cryogenic temperature. This 

temperature difference is caused by the heater line self-heating. Thus, a temperature 

calibration process is needed. During the measurement, the cryostat temperature is 

controlled by the Lakeshore331 temperature controller. However, the temperature 

showing on the controller is the temperature of the Si diode sensor, but not the 
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temperature of the sample.  There still has some space in distance between them. Thus, 

some temperature difference arises which cannot be neglected at very low 

temperature[71]. The temperature on Lakeshore331 is only used for temperature 

stabilization and controlling, but not the actual temperature of the sample. The actual 

sample’s temperature is obtained by using the Au heater line as the thermometer. We first 

calibrate the resistance of the heater line, using a four probe method, by using very small 

current (0.5 mA) to make sure the Joule heat is small and would not cause measureable 

temperature rise. In the 3 measurement with current in order of 45 mA, the electrical 

resistance is measured and the temperature is obtained by comparing with calibrated 

resistance data.  

 

10 100

Temperature (K)

10

Su
b

st
ra

te
 T

h
e

rm
al

 C
o

n
d

u
ct

iv
it

y 
(W

/m
-K

)

1000

100

1000

AlAs film

Al0.84Ga0.16As film

Al0.72Ga0.28As

Handbook

 

Figure 5.5 Measured GaAs substrate thermal conductivity for samples with three different films, and 

the comparison with GaAs literature[156]. 

 

5.4.2 Thermal boundary conductance crossover 

The temperature dependence of total thermal boundary conductance is showing in Fig. 

5.6. The measured thermal boundary conductance is actually all the contributions from 

the Au heater line to the substrate top surface. Comparing the width of heater line (7m) 

to the thickness of the film (330 nm), the transport can be treated as one dimensional. The 

heat conduction can be treated as one dimensional. Considering thermal conductance of 

the 100nm GaAs insulator layer and 330nm film layer, they are orders of magnitude 

larger than the thermal boundary conductance at low temperature, the measured 

conductance is only the sum of GaAs/film and film/substrate conductance.  

 

From Fig. 5.6, we can observe the trend of thermal boundary conductance crossover. 

The high group velocity material AlAs would have lower TBC at low temperature, but 
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higher TBC at higher temperature. Among different phonon modes, the transverse mode 

play more important role for TBC[149].  The transverse mode sound velocity of AlAs 

and GaAs in [100] direction are 3960 and 3340 m/s, respectively[157].  AlAs has higher 

group velocity than the Al0.84Ga0.16As and Al0.72Ga0.28As, thus the high temperature 

region TBC of the AlAs/GaAs film would be highest as shown in Fig. 5.6. When the 

temperature decreases, decreasing slope of AlAs/GaAs film would be larger than the 

other two films due to AlAs's relatively high group velocity.  We don’t reach the 

crossover temperature yet since our cryostat could not achieve low enough temperature, 

such as 10 K. (We only reached stable measurements at a cryostat stage temperature of 

33 K. Considering the self-heating, the sample’s actual temperature is around 40 K)  

However, the trend toward the crossover is clear for all three of them. In addition, at 

lower temperature, the crossover trend would be stronger than we observed at higher 

temperature region. As it is shown in Fig. 5.1, for Al/sapphire interface with higher group 

velocity, it decreases much faster than other lower group velocity interfaces at low 

temperature.  Thus, in our case, we believe the decreasing rate TBC of AlAs film at lower 

temperature would be faster than other film and there would be a crossover at around 10 

K. 
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Figure 5.6 Temperature dependence of total thermal boundary conductance for AsAs, Al0.84Ga0.16As, 

and Al0.72Ga0.28As  film. 

 

The other conclusion is the limited effect of alloy composition.  Comparing the 

film of Al0.84Ga0.16As and Al0.72Ga0.28As in Fig. 5.6, even though the Ga concentration of 

Al0.72Ga0.28As is almost doubled, its effect on the TBC is very limited.  This is because 

change composition Ga from 16% to 28% only make limited change to group velocity. 
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5.5 Conclusion 

We observed the thermal boundary conductance crossover trend at the 

AlAs/GaAs and AlGaAs/GaAs interfaces. The crossover temperature is lower than 40 K. 

The measurement system is verified by comparing the GaAs substrate thermal 

conductivity with literature. For the semiconductor alloy, it is found that the alloy effect 

is limited for the Al0.84Ga0.16As and Al0.72Ga0.28As system. 
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Chapter 6  Summary and Future Work 

6.1 Summary 

This dissertation has made contributions toward better understanding of the 

nanoscale heat transfer in both theory and experiment.  The major contributions of this 

work are summarized below: 

 

Chapter 2 established a model for the effective thermal conductivity of 

polycrystalline materials made of randomly oriented PbTe/Sb2Te3 superlattices. The 

Boltzmann transport equation is used to evaluate the in plane and cross plane thermal 

conductivity.  The gray model is first established and compared with literature method.  

By breaking the dispersion into small frequency bands and treating each band using gray 

model, the effective thermal conductivity in both in-plane and cross-plane can be 

obtained in the non-gray regime (phonon with different vibrational frequency would be 

considered.)  The model has been used to investigate effects of thickness of superlattice 

period, specularity of the interface, and temperature. The results show the in-plane 

thermal conductivity is more influential than the cross-plane thermal conductivity.  The 

modeling results are also compared with temperature dependent experimental 

measurements by our collaborators for superlattice period between 287 nm to 1590 nm.  

The temperature range is between 300 K to 500 K. The results also suggest with the 

increasing of annealing temperature, the surface turns to be more smooth and the 

specularity would be higher.   

 

Chapter 3 dealt with thermal transport in the length scale. It gives a rigorous and 

systematic investigation of thermal conductivity accumulation function and mean free 

path spectrum of bulk materials. The changing of perspective from phonon vibrational 

frequency to phonon mean free path gave a more intuitive view of which phonons are 

important for heat conduction.  This chapter also discussed how the heat conduction is 

affected by the boundary scattering, which is usually introduced by the size effect.  Then, 

using the size dependent apparent thermal conductivity, it is possible to obtain the 

phonon accumulation function.  

 

In Chapter 3 we also provide a general integral transform to obtain the effective 

thermal conductivity. In this integral transform, one input is the thermal conductivity per 

MFP (or accumulation function) which is only related the bulk properties; the other input 

is the boundary scattering term, which is related to the geometry, surface roughness etc. 

 

Chapter 4 dealt with thermal transport in the time domain, especially at high 

heating frequency regime.  We investigate the apparent thermal conductivity using the 

Boltzmann transport equation and obtain an analytical solution under gray assumption.  

Then, we extend the gray solution to non-gray regime using the similar method in 

Chapter 2.  With this solution, we establish a framework for the experimental data 

analysis which covers both the diffusive and ballistic transport  regime.  Traditionally, all 

the thermal conductivity measurement data analysis uses the Fourier's law.  However, at 
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high heating frequency in the ballistic regime, the Fourier law would not work anymore.  

This work provides a tool which can be used for data analysis in the ballistic regime.  In 

addition, this work also discussed the difference between accumulation function with 

respect to mean free time and mean free path.  We did a virtual experiment which showed 

that the perspective of mean free time is more suitable than mean free path to describe the 

distribution of phonons.   

 

Chapter 5 investigated the thermal transport at the cryogenic low temperature. At 

high temperature, the larger group velocity materials tends to have high thermal 

conductivity and thermal conductance tends to be high. However, when the temperature 

decreases, the larger group velocity materials have lower thermal conductivity, which is 

opposite to the high temperature phenomenon.  Its trend is verified by the experiment. 

The thermal contact resistance crossover is measured and discussed. 

 

6.2 Future Work 

In this section, this dissertation listed several possible research directions which 

may be worthy for future work. 

 

(A) BTE solution considering the transducer layer 

In this dissertation, the data analysis scheme in Chapter 4 does not include the transducer 

layer for the pump probe method. This layer is required for effective transfer of light to 

heat as the heating source. In addition, for metals such as Au or Al, their reflectivities are 

well studied and are easy for calibration. In this work, considering the goal of explaining 

the heating frequency dependent thermal conductivity and simplicity, we didn’t include 

the transducer layer. In practice, this layer is necessary to be included.  

 

In the future, more comprehensive models need to include this thin metal layer. Since the 

electron relaxation time of metal is much shorter than sample phonon relaxation time, the 

process in metal transducer layer can be treated as by the lumped model. The transfer 

matrix in the transducer layer can be obtained. Thus, combining it with the matrix of the 

sample, the practical BTE solution can be obtained. 

 

(B) BTE solution with both the size and time confinement  

This work discussed size (Chapter 3) and time confinement (Chapter 4), separately. In 

practical measurement using pump probe method, there are both confinement from 

modulation frequency and laser beam size. Developing the BTE based theory on both the 

size and time confinement are also needed. 

 

(C) Mean free time accumulation function measurement 

The mean free path accumulation function measurement has attracted great attention. As 

discussed in Chapter 4, the accumulation function with respect to mean free path and 

time are different. The later has no experimental investigation yet. Further investigation 

on the time domain would be important in the future. The experimental comparison of 

both accumulations would be interesting. 



90 

 

 

(D) 3 omega measurement at cryogenic temperature 

At cryogenic temperature, the temperature coefficient of resistance (TCR) become small 

even approaching zero, which fails the slope method of traditional 3 method.  One 

method we already used in Chapter 5 to deal with this difficulty is using other fitting 

method to numerically obtain the TCR, such as the Bloch–Grüneisen formula for 

metal[154], which can be more accurate to include different types of scattering 

mechanisms, not only the phonon-electron Umklapp scattering at high temperature.  

Another method is to use heater line material with larger TCR at low temperature[158]. 

Some examples can be ZrNx, Si doped with Nb, and doped Ge[158].  We can also use the 

Kondo effect of magnetic impurity scattering.  The materials can be chosen as Rh-Fe 

alloy, which has observable but negative dR/dT.  The selection of a appropriate TCR 

material is important at cryogenic temperature measurement.  
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