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Abstract

Posets, Polytopes, and Positroids

by

Anastasia Maria Chavez

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Lauren K. Williams, Chair

This dissertation explores questions about posets and polytopes through the lenses of
positroids and geometry. The introduction and study of positroids, a special class of ma-
troids, was pioneered by Postnikov in his study of the totally nonnegative Grassmannian and
has subsequently been applied to various fields such as cluster algebras, physics, and free
probability. Postnikov showed that positroids, the matroids realized by full rank k × n real
matrices whose maximal minors are nonnegative, are in bijection with several combinatorial
objects: Grassmann necklaces, decorated permutations, Le-diagrams and plabic graphs.

In the first chapter, following work of Skandera and Reed, we define the unit interval
positroid arising from a unit interval order poset via its associated antiadjacency matrix.
We give a simple description of the decorated permutation representation of a unit interval
positroid, and show it can be recovered from the Dyck path drawn on the associated antiad-
jacency matrix. We also describe the unit interval positroid cells in the totally nonnegative
Grassmannian and their adjacencies. Finally, we provide a new description of the f -vector
of posets.

The second chapter concerns the f -vector of a d-dimensional polytope P , which stores the
number of faces of each dimension. When P is a simplicial polytope the Dehn–Sommerville
relations condense the f -vector into the g-vector, which has length dd+1

2
e. Thus, to determine

the f -vector of P , we only need to know approximately half of its entries. This raises the
question: Which

(
dd+1

2
e
)
-subsets of the f -vector of a general simplicial polytope are sufficient

to determine the whole f -vector? We prove that the answer is given by the bases of the
Catalan matroid.

In the final chapter, we explore the combinatorial structure of Knuth equivalence graphs
Gλ. The vertices of Gλ are the permutations whose insertion tableau is a fixed tableau of
shape λ, and the edges are given by local Knuth moves on the permutations. The graph Gλ

is the 1-skeleton of a cubical complex Cλ, and one can ask whether it is CAT(0); this is a
desirable metric property that allows us to describe the combinatorial structure of Gλ very
explicitly. We prove that Cλ is CAT(0) if and only if λ is a hook.
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Chapter 1

Introduction

Welcome to my dissertation! Please, find a seat and get comfortable. Perhaps some paper,
a pencil, snacks, and a drink are in order if you plan to blow through this in one go. If not,
then may I suggest just a drink and snacks. Got some? Great, then here we go.

As advertised, this dissertation is an exploration of the following combinatorial topics:
posets, polytopes, and positroids. In particular, we follow a theme of viewing questions about
posets and polytopes through a combinatorial lens colored by positroids and geometry.

In Chapters 2 and 3, we address questions regarding posets and polytopes using the
theory of positroids. The introduction and study of positroids was established by Postnikov
[39] through the study of the totally nonnegative Grassmannian and has subsequently been
applied to various fields such as cluster algebras [46], Schubert calculus [29], electrical net-
works [33, 39], physics [7, 30], free probability [6], and total positivity [39]. A positroid can
be represented classically as the matroid of a full rank k × n real matrix whose maximal
minors are nonnegative. Postnikov proved positroids are in bijection with several other com-
binatorial objects: Grassmann necklaces, decorated permutations, Le-diagrams and plabic
graphs [39].

In Chapter 2, we use the various positroid representations and accompanying theory to
describe the positroid arising from unit interval order posets. Unit interval orders, earning
their name because they can be represented by relations on unit intervals, are characterized
by being simultaneously (3 + 1)-free and (2 + 2)-free. It was shown by Skandera and Reed
[47] that a unit interval order can be labeled so that the associated antiadjacency matrix
has nonnegative minors. By applying a lemma of Postnikov [39], we define the unit interval
positroid. We then provide a simple description of the decorated permutation representation
and show it can be recovered from a Dyck path drawn on the associated antiadjacency
matrix. We also describe the Le-diagram representation which determines the dimension
of the unit interval positroid cells in the totally nonnegative Grassmannian. Moreover, we
show adjacent unit interval positroid cells are determined easily from the associated decorated
permutations. Finally, we provide an interpretation of the f -vector of posets. This is joint
work with Felix Gotti [17].

The well-known g-theorem, conjectured by McMullen [35] and subsequently proven by
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Billera–Lee, and Stanley [10, 9, 51], provides a complete characterization of the f -vectors
of simplicial polytopes. By way of the Dehn–Sommerville relations, the f -vector of a d-
simplicial polytope can be reduced to the g-vector with length dd+1

2
e. This implies that if

one wishes to know all of the f -vector, one needs only to know about half of its entries. This
begs the following question: Which

(
dd+1

2
e
)
-subsets of the f -vector of a general simplical

polytope are sufficient to determine the whole f -vector? In Chapter 3 we address this
question by defining the Dehn–Sommerville matroid, whose bases are precisely the subsets
in question. We show the Dehn–Sommerville matroid is essentially isomorphic to the Catalan
matroid, proving the sufficient subsets of the f -vector desired are determined by the upstep
sets of Dyck paths. This is joint work with Nicole Yamzon [19].

Informally, a reconfigurable system is a collection of states with a set of reversible moves
that are used to navigate from one state to another. This system gives rise to a cubical
complex, and one might ask whether it exhibits a desirable geometric property called CAT(0).
Such CAT(0) cubical complexes were shown by Ardila–Owen–Sullivant [5] to be characterized
by partially ordered sets with inconsistent pairs. In Chapter 4 we explore the combinatorial
structure of reconfigurable systems generated by Knuth relations acting on permutations of
Sn. The 1-skeleton of the resulting cubical complex Cλ is known as a Knuth equivalence
graph Gλ, which is indexed by partitions λ of n. Our main result is that Cλ is a CAT(0)
cubical complex if and only if λ is a hook. This is joint work with John Guo [18].
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Chapter 2

Dyck Paths and Positroids from Unit
Interval Orders

2.1 Introduction

A unit interval order is a partially ordered set that captures the order relations among a
collection of unit intervals on the real line. Unit interval orders were introduced by Luce [32]
to axiomatize a class of utilities in the theory of preferences in economics. Since then they
have been systematically studied (see [20, 21, 22, 23, 47] and references therein). These
posets exhibit many interesting properties. For example, they can be characterized as the
posets that are simultaneously (3 + 1)-free and (2 + 2)-free. Moreover, it is well known that
the number of non-isomorphic unit interval orders on [n] equals 1

n+1

(
2n
n

)
, the n-th Catalan

number (see [20, Section 4] or [48, Exercise 2.180]).
Motivated by the desire to understand the f -vectors of various classes of posets, Skandera

and Reed [47] showed that one can label the elements of a unit interval order from 1 to n so
that its n×n antiadjacency matrix is totally nonnegative (i.e., has all its minors nonnegative)
and its zero entries form a right-justified Young diagram located strictly above the main
diagonal and anchored in the upper-right corner. The zero entries of such a matrix are
separated from the one entries by a Dyck path joining the upper-left corner to the lower-
right corner. Motivated by this observation, we call such matrices Dyck matrices. The Hasse
diagram and the antiadjacency (Dyck) matrix of a canonically labeled unit interval order
are shown in Figure 2.1.

On the other hand, it then follows from work of Postnikov [39] that n×n Dyck matrices
can be regarded as representing rank n positroids on the ground set [2n]. Positroids, which
are special matroids, were introduced and classified by Postnikov in his study of the totally
nonnegative part of the Grassmannian [39]. He showed that positroids are in bijection with
various interesting families of combinatorial objects, including decorated permutations and
Grassmann necklaces. Positroids and the nonnegative Grassmannian have been the subject
of a great deal of recent work, with connections and applications to cluster algebras [46],
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Figure 2.1: A unit interval order with a labeling that respects altitude on [6] and its antiad-
jacency matrix, which exhibits its Dyck path, i.e., the Dyck path separating its one entries
from its zero entries.

scattering amplitudes [7], soliton solutions to the KP equation [30], and free probability [6].
In this chapter we characterize the positroids that arise from unit interval orders, which

we call unit interval positroids. We show that the decorated permutations associated to
rank n unit interval positroids are 2n-cycles in bijection with Dyck paths of length 2n. The
following theorem is a formal statement of our main result.

Theorem 2.4.4. A decorated permutation π represents a unit interval positroid on [2n] if
and only if π is a 2n-cycle (1 j1 . . . j2n−1) satisfying the following two conditions:

1. in the sequence (1, j1, . . . , j2n−1) the elements 1, . . . , n appear in increasing order while
the elements n+ 1, . . . , 2n appear in decreasing order;

2. for every 1 ≤ k ≤ 2n− 1, the set {1, j1, . . . , jk} contains at least as many elements of
the set {1, . . . , n} as elements of the set {n+ 1, . . . , 2n}.

In particular, there are 1
n+1

(
2n
n

)
unit interval positroids on [2n].

The decorated permutation associated to a unit interval positroid on [2n] naturally en-
codes a Dyck path of length 2n. Here we provide a recipe to read this decorated permutation
directly from the antiadjacency matrix of the unit interval order.

Theorem 2.1.1. Let P be a unit interval order on [n] whose labeling respects altitude and
A the antiadjacency matrix of P. If we number the n vertical steps of the Dyck path of A
from bottom to top in increasing order with {1, . . . , n} and the n horizontal steps from left
to right in increasing order with {n + 1, . . . , 2n}, then we obtain the decorated permutation
associated to the unit interval positroid induced by P by reading the Dyck path in northwest
direction.

Example 2.1.2. The vertical assignment on the left of Figure 2.2 shows a set I of unit
intervals along with unit interval order P on [5] whose labeling respects altitude describing
the order relations among the intervals in I (see Theorem 2.2.2). The vertical assignment
on the right illustrates the recipe given in Theorem 2.1.1 to read the decorated permutation
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π = (1, 2, 10, 3, 9, 4, 8, 7, 5, 6) associated to the unit interval positroid induced by P directly
from the antiadjacency matrix. Note that the decorated permutation π is a 10-cycle satisfying
conditions (1) and (2) of our main theorem. The solid and dashed arrows represent functions
that we will introduce later.

Figure 2.2: Following the solid mappings: unit interval representation I, its unit interval
order P , the antiadjacency matrix ϕ(P ), and the Dyck path of ϕ(P ) showing the decorated
permutation π = (1, 2, 10, 3, 9, 4, 8, 7, 5, 6).

This chapter is organized as follows. In Section 2.2 we establish the notation and present
the fundamental concepts and objects used. In Section 2.3, we introduce altitude respecting
labelings and altitude respecting interval representations of unit interval orders. Also, we use
altitude respecting labelings to exhibit an explicit bijection from the set of non-isomorphic
unit interval orders on [n] to the set of n × n Dyck matrices. Section 2.4 is dedicated
to the description of the unit interval positroids via their decorated permutations, which
yields the direct implication of the main theorem. In Section 2.5, we show how to read the
decorated permutation associated to a unit interval positroid from either an antiadjacency
matrix or an altitude respecting interval representation of the corresponding unit interval
order, which allows us to complete the proof of Theorem 2.4.4. In section 2.6, we describe
the positroid cells indexed by Le-diagrams associated to the unit interval positroids in the
totally nonnegative Grassmannian and prove they have dimension 2n − 1. In section 2.7
we describe when two unit interval positroid cells are adjacent. Finally, in section 2.8, we
interpret the f -vectors of naturally labeled posets in terms of special Dyck paths.

2.2 Background and Notation

For ease of notation, when (P,<P ) is a partially ordered set (poset for short), we just write
P , tacitly assuming that the order relation on P is to be denoted by the symbol <P . We
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assume all posets used henceforth to be finite.

Definition 2.2.1. A poset P is a unit interval order if there exists a bijective map i 7→
[qi, qi + 1] from P to a set S = {[qi, qi + 1] | 1 ≤ i ≤ n, qi ∈ R} of closed unit intervals of the
real line such that for distinct i, j ∈ P , i <P j if and only if qi + 1 < qj; that is, [qi, qi + 1] is
completely to the left of [qj, qj + 1]. We then say that S is an interval representation of P .

For each n ∈ N, we denote by Un the set of all non-isomorphic unit interval orders of
cardinality n. For nonnegative integers n and m, let n + m denote the poset which is the
disjoint sum of an n-element chain and an m-element chain. Let P and Q be two posets.
We say that Q is an induced subposet of P if there exists an injective map f : Q→ P such
that for all r, s ∈ Q one has r <Q s if and only if f(r) <P f(s). By contrast, P is a Q-free
poset if P does not contain any induced subposet isomorphic to Q. The following theorem
provides a useful characterization of the elements of Un.

Theorem 2.2.2. [44, Theorem 2.1] A poset is a unit interval order if and only if it is
simultaneously (3 + 1)-free and (2 + 2)-free.

If the poset P has cardinality n, then a bijective function ` : P → [n] is called an n-
labeling of P . We call P an n-labeled poset once it has been identified with [n] via `. The
n-labeled poset P is naturally labeled if i <P j implies that i < j as integers for all i, j ∈ P .

Example 2.2.3. The figure below depicts the 6-labeled unit interval order introduced in
Figure 2.1 with a corresponding interval representation.

Figure 2.3: A 6-labeled unit interval order and one of its interval representations.

Another useful way of representing an n-labeled unit interval order is through its anti-
adjacency matrix.

Definition 2.2.4. If P is an n-labeled poset, then the antiadjacency matrix of P is the n×n
binary matrix A = (ai,j) with ai,j = 0 if i <P j and ai,j = 0 otherwise.

Recall that a binary square matrix is said to be a Dyck matrix if its zero entries form a
right-justified Young diagram strictly above the main diagonal and anchored in the upper-
right corner. All minors of a Dyck matrix are nonnegative (see, for instance, [2]). We denote
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the set of all n × n Dyck matrices as Dn. As presented in [47], every unit interval order
P can be labeled to respect the altitude of P so that its antiadjacency matrix is a Dyck
matrix (details provided in Section 2.3). This yields a natural map ϕ : Un → Dn that is a
bijection (see Theorem 2.3.4). In particular, |Dn| is the n-th Catalan number, which can
also be deduced from the one-to-one correspondence between Dyck matrices and their Dyck
paths.

Let Mat≥0d,n denote the set of all full rank d× n real matrices with nonnegative maximal
minors. Given a totally nonnegative real n × n matrix A, there is a natural assignment
A 7→ φ(A), where φ(A) ∈ Mat≥0n,2n.

Lemma 2.2.5. [39, Lemma 3.9] 1 For an n× n real matrix A = (ai,j), consider the n× 2n
matrix B = φ(A), where




a1,1 . . . a1,n
...

. . .
...

an−1,1 . . . an−1,n
an,1 . . . an,n




φ7−→




1 . . . 0 0 (−1)n−1an,1 . . . (−1)n−1an,n
...

. . .
...

...
...

. . .
...

0 . . . 1 0 −a2,1 . . . −a2,n
0 . . . 0 1 a1,1 . . . a1,n


 .

Under this correspondence, ∆I,J(A) = ∆(n+1−[n]\I)∪(n+J)(B) for all I, J ⊆ [n] satisfying
|I| = |J | (here ∆I,J(A) is the minor of A determined by the rows I and columns J , and
∆K(B) is the maximal minor of B determined by columns K).

Using Lemma 2.2.5 and the aforementioned map ϕ : Un → Dn, we can assign via φ ◦ ϕ
a matrix of Mat≥0n,2n to each unit interval order of cardinality n. In turn, every real matrix

of Mat≥0n,2n gives rise to a positroid, a special representable matroid which has a very rich
combinatorial structure.

Matroids are combinatorial objects that abstract the notion of independence. We provide
the definition in terms of bases; there are several other equivalent axiomatic definitions
available. For a more complete study of matroids see Oxley [37].

Definition 2.2.6. A matroid M is a pair (E,B) consisting of a finite set E and a nonempty
collection of subsets B = B(M) of E, called the bases of M, that satisfy the following
properties:

(B1) B 6= ∅

(B2) (Basis exchange axiom) If B1, B2 ∈ B and b1 ∈ B1 − B2, then there exists an element
b2 ∈ B2 −B1 such that B1 − {b1} ∪ {b2} ∈ B.

Any two bases of M have the same size [37], which we denote by r(M) and call the rank
of M .

1There is a typo in the entries of the matrix B in [39, Lemma 3.9].
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Definition 2.2.7. For d, n ∈ N such that d ≤ n, let A ∈ Mat≥0d,n whose columns are denoted

by A1, . . . , An. The subsets B of [n] such that {Ab | b ∈ B} is a basis for Rd are the bases of
a matroid M(A). Such a matroid is called a positroid.

Each unit interval order P (labeled so that its antiadjacency matrix is a Dyck matrix) in-
duces a positroid via Lemma 2.2.5, namely, the positroid represented by the matrix φ(ϕ(P )).

Definition 2.2.8. A positroid on [2n] induced by a unit interval order is called unit interval
positroid.

We denote by Pn the set of all unit interval positroids on the ground set [2n]. The
function ρ ◦ φ ◦ ϕ : Un → Pn that sends a unit interval order to its unit interval positroid,
where ρ(B) is the positroid represented by B ∈ Mat≥0n,2n, plays a fundamental role in this
chapter. Indeed, we will end up proving that it is a bijection (see Theorem 2.5.4).

Several families of combinatorial objects, in bijection with positroids, were introduced
in [39] to study the totally nonnegative Grassmannian: decorated permutations, Grass-
mann necklaces, Le-diagrams, and plabic graphs. We use decorated permutations, obtained
from Grassmann necklaces, to provide a compact and elegant description of unit interval
positroids.

In the next definition subindices are considered modulo n.

Definition 2.2.9. Let d, n ∈ N such that d ≤ n. An n-tuple (I1, . . . , In) of d-subsets of
[n] is called a Grassmann necklace of type (d, n) if for every i ∈ [n] the following conditions
hold:

• i ∈ Ii implies Ii+1 = (Ii \ {i}) ∪ {j} for some j ∈ [n];

• i /∈ Ii implies Ii+1 = Ii.

For i ∈ [n], the total order <i on [n] defined by i <i · · · <i n <i 1 <i · · · <i i − 1
is called the shifted linear i-order. For a matroid M = ([n],B) of rank d, one can define
the sequence I(M) = (I1, . . . , In), where Ii is the lexicographically minimal ordered basis
of M with respect to the shifted linear i-order. It was proved in [39, Section 16] that
the sequence I(M) is a Grassmann necklace of type (d, n). We call I(M) the Grassmann
necklace associated to M . When M is a positroid we can recover M from its Grassmann
necklace (see, e.g., [36] and [39]).

For i ∈ [n], the Gale i-order on
(
[n]
d

)
with respect to <i is the partial order ≺i defined

in the following way. If S = {s1 <i · · · <i sd} ⊆ [n] and T = {t1 <i · · · <i td} ⊆ [n], then
S ≺i T if and only if sj <i tj for each j ∈ [d].

Theorem 2.2.10. [36, Theorem 6] For d, n ∈ N such that d ≤ n, let I = (I1, . . . , In) be a
Grassmann necklace of type (d, n). Then

B(I) =

{
B ∈

(
[n]

d

) ∣∣∣∣ Ij ≺j B for every j ∈ [n]

}
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is the collection of bases of a positroid M(I) = ([n],B(I)), where ≺i is the Gale i-order on(
[n]
d

)
. Moreover, M(I(M)) = M for all positroids M .

Therefore a natural bijection exists between positroids on [n] of rank d and Grassmann
necklaces of type (d, n). However, decorated permutations, also in one-to-one correspondence
with positroids, will provide a more succinct representation.

Definition 2.2.11. A decorated permutation of [n] is an element π ∈ Sn whose fixed points
j are marked either “clockwise”(denoted by π(j) = j) or “counterclockwise” (denoted by

π(j) = j).

A weak i-excedance of a decorated permutation π ∈ Sn is an index j ∈ [n] satisfying
j <i π(j) or π(j) = j. It is easy to see that the number of weak i-excedances does not
depend on i, so we just call it the number of weak excedances.

To every Grassmann necklace I = (I1, . . . , In) one can associate a decorated permutation
πI as follows:

• if Ii+1 = (Ii \ {i}) ∪ {j}, then πI(j) = i;

• if Ii+1 = Ii and i /∈ Ii, then πI(i) = i;

• if Ii+1 = Ii and i ∈ Ii, then πI(i) = i.

The assignment I 7→ πI defines a one-to-one correspondence between the set of Grassmann
necklaces of type (d, n) and the set of decorated permutations of [n] having exactly d weak
excedances.

Proposition 2.2.12. [6, Proposition 4.6] The map I 7→ πI is a bijection between the set
of Grassmann necklaces of type (d, n) and the set of decorated permutations of [n] having
exactly d weak excedances.

Definition 2.2.13. If P is a positroid and I is the Grassmann necklace associated to P ,
then we call πI the decorated permutation associated to P .

2.3 Labelings on Unit Interval Orders that Respect

Altitude

In this section we introduce the concept of a poset whose labeling respects altitude, and we
use it to exhibit an explicit bijection from the set Un of non-isomorphic unit interval orders
of cardinality n to the set Dn of n× n Dyck matrices.

Given a poset P and i ∈ P , we denote the order ideal and the dual order ideal of i by
Λi and Vi, respectively. The altitude of P is the map α : P → Z defined by i 7→ |Λi| − |Vi|.
An n-labeled poset P respects altitude, or is altitude respecting, if for all i, j ∈ P , then
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α(i) < α(j) implies i < j (as integers). Notice that every poset can be labeled by the set [n]
such that, as an n-labeled poset, it respects altitude.

Each altitude respecting n-labeled poset is, in particular, naturally labeled. The next
proposition characterizes altitude respecting n-labeled unit interval orders in terms of their
antiadjacency matrices.

Proposition 2.3.1. [47, Proposition 5] An n-labeled unit interval order is altitude respecting
if and only if its antiadjacency matrix is a Dyck matrix.

The above proposition indicates that the antiadjacency matrices of altitude respecting
[n]-labeled unit interval orders are quite special. In addition, altitude respecting [n]-labeled
unit interval orders have very convenient interval representations.

Proposition 2.3.2. Let P be an n-labeled unit interval order. Then the labeling of P respects
altitude if and only if there exists an interval representation {[qi, qi + 1] | 1 ≤ i ≤ n} of P
such that q1 < · · · < qn.

Proof. Let α : P → Z be the altitude map of P . For the forward implication, suppose that the
n-labeling of P is canonical. The existence of an interval representation of P is guaranteed by
Theorem 2.2.2. Among all interval representations of P , assume that {[qi, qi+1] | 1 ≤ i ≤ n}
gives the maximum m ∈ [n] such that q1 < · · · < qm. Suppose, by way of contradiction,
that m < n. The maximality of m implies that qm > qm+1. This, along with the fact that
α(m) ≤ α(m+ 1), ensures that qm ∈ (qm+1, qm+1 + 1). Similarly, qi + 1 /∈ (qm+1, qm) for any
i ∈ [n]; otherwise

α(m+ 1) = |Λm+1| − |Vm+1| < |Λm| − |Vm+1| ≤ |Λm| − |Vm| = α(m)

would contradict that the n-labeling of P respects altitude. An analogous argument guar-
antees that qi /∈ (qm+1 + 1, qm + 1) for any i ∈ [n].

Now take k to be the smallest integer in [m] such that qj > qm+1 for all j with k ≤ j ≤ m,
and take σ = (k, k+ 1, . . . ,m,m+ 1) ∈ Sn. We will show that S = {[pi, pi + 1] | 1 ≤ i ≤ n},
where pi = qσ(i), is an interval representation of P . Take i, j ∈ P such that i <P j. Since i
and j are comparable in P , at least one of them must be fixed by σ; say σ(i) = i. If σ(j) = j,
then pi + 1 = qi + 1 < qj = pj. Also, if σ(j) 6= j, then qi + 1 < qj ∈ (qm+1, qm). It follows
from qi + 1 < qm that pi + 1 = qi + 1 < qm+1 < qσ(j) = pj. The case of σ(j) = j can be
argued similarly. Thus, S is an interval representation of P . As q1 < · · · < qm, the definition
of k implies that p1 < · · · < pm+1, which contradicts the maximality of m. Hence m = n,
and the direct implication follows.

Conversely, note that if {[qi, qi + 1] | 1 ≤ i ≤ n} is an interval representation of P
satisfying that q1 < · · · < qn, then for every m ∈ [n − 1], we have |Λm| ≤ |Λm+1| and
|Vm| ≥ |Vm+1|, so

α(m) = |Λm| − |Vm| ≤ |Λm+1| − |Vm+1| = α(m+ 1),

which means that the labeling of P respects altitude.
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If P is an altitude respecting n-labeled unit interval order, and I = {[qi, qi+1] | 1 ≤ i ≤ n}
is an interval representation of P satisfying q1 < · · · < qn, then we say that I is a altitude
respecting interval representation of P .

Note that the image (as a multiset) of the altitude map does not depend on the labels
but only on the isomorphism class of a poset. On the other hand, the altitude map αP of
an altitude respecting n-labeled unit interval order P satisfies αP (1) ≤ · · · ≤ αP (n). Thus,
if Q is an altitude respecting n-labeled unit interval order isomorphic to P , then

(αP (1), . . . , αP (n)) = (αQ(1), . . . , αQ(n)), (2.1)

where αQ is the altitude map of Q. Let AP and AQ be the antiadjacency matrices of P and
Q, respectively. As αP (1) = αQ(1), the first rows of AP and AQ are equal. Since the number
of zeros in the i-th column (resp., i-th row) of AP is precisely |Vi(P )−1| (resp., |Λi(P )|−1),
and similar statement holds for Q, the next lemma follows immediately by using (2.1) and
induction on the row index of AP and AQ.

Lemma 2.3.3. If two altitude respecting labeled unit interval orders are isomorphic, then
they have the same antiadjacency matrix.

Now we can define a map ϕ : Un → Dn, by assigning to each unit interval order its anti-
adjacency matrix with respect to any of its altitude respecting labelings. By Lemma 2.3.3,
this map is well defined.

Theorem 2.3.4. [47] For each natural n, the map ϕ : Un → Dn is a bijection.

Proof. Since |Un| = |Dn| = 1
n+1

(
2n
n

)
, it suffices to argue that ϕ is surjective. We proceed

by induction on n. The case n = 1 is immediate as |U1| = |D1| = 1. Suppose that
surjectivity holds for every k ≤ n and, to check that ϕ : Un+1 → Dn+1 is surjective, take
D = (di,j) ∈ Dn+1. Let D′ be the submatrix of D consisting of the first n columns and
the first n rows. As D′ is an n × n Dyck matrix, there is an altitude respecting n-labeled
unit interval order P ′ whose antiadjacency matrix is D′. Define P to be the (n+ 1)-labeled
poset obtained by adding an element labeled by n+ 1 to P ′ with exactly the following order
relations: i <P n + 1 if and only if either i = n + 1 or di,n+1 = 0. Note that n + 1 is a
maximal element in P and that the antiadjacency matrix of P is precisely D.

We are done once we check that P is unit interval order with an altitude respecting
labeling. Since αP (1) ≤ · · · ≤ αP (n + 1), the labeling of P respects altitude. We now show
P is a unit interval order. Because P ′ happens to be a unit interval order, it suffices to check
that for any i, j, k ∈ [n] none of the posets
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is an induced subposet of P . The first and the second subposets in the above figure cannot
be induced because j <P n + 1 for every non-maximal element j of P ′. Let Q denote the
third subposet shown above. If k <P n + 1, then Q cannot be induced. Suppose then that
k is not comparable with n + 1 in P . In this case, k is maximal in P . As j is not maximal
in P and the labeling of P is canonical, i < j < k as integers. Since i <P j, one has that
di,j = 0 and so di,k = 0. Thus, i <P k, which implies that Q is not an induced subposet of
P . Hence P is an altitude respecting (n+1)-labeled unit interval order, which concludes the
proof.

2.4 Description of Unit Interval Positroids

We will now describe the decorated permutation associated to a unit interval positroid.
Throughout this section A is an n × n Dyck matrix and B = (bi,j) = φ(A) is as in
Lemma 2.2.5. We will consider the indices of the columns of B modulo 2n. Furthermore,
let P be the unit interval positroid represented by B, and let IP and π−1 be the Grassmann
necklace and the decorated permutation, respectively, associated to P .

Lemma 2.4.1. For 1 < i ≤ 2n, the i-th entry of IP does not contain i− 1.

Proof. It is not hard to verify that every matrix resulting from removing one column from
B still has rank n. As the matrix obtained by removing the (i − 1)-th column from B has
rank n, it contains n linearly independent columns. Therefore the lemma follows directly
from the <i-minimality of Ii ∈ IP .

For the remainder of this section let Bj denote the j-th column of B. As a direct
consequence of Lemma 2.4.1, we have that π (and therefore π−1) does not fix any point.
As a result, the next lemma immediately follows from the way π−1 is produced from the
Grassmann necklace IP (see the end of Section 2.2).

Lemma 2.4.2. For i ∈ {1, . . . , 2n}, π(i) equals the minimum j ∈ [2n] with respect to the
i-order such that Bi ∈ span(Bi+1, . . . , Bj).

The set of principal indices of B is the subset of {n+ 1, . . . , 2n} defined by

J = {j ∈ {n+ 1, . . . , 2n} | Bj 6= Bj−1}.

We associate to B the weight map ω : {n + 1, . . . , 2n} → [n] defined by ω(j) = max{i |
bi,j 6= 0}; more explicitly, we obtain that ω(j) = # of nonzero entries in column j of B.
Since the last row of the antiadjacency matrix A has all its entries equal to 1, the map ω is
well defined. We now give an explicit expression of π and then provide a description of the
decorated permutation of a unit interval positriod.
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A =

1 0 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1

1 1 1 1 1







φ(A) =

1 0 0 0 0 1 1 1 1 1

0 1 0 0 0 −1 −1 −1 −1 −1

0 0 1 0 0 1 1 1 1 0

0 0 0 1 0 −1 −1 −1 0 0

0 0 0 0 1 1 0 0 0 0







J = {6, 7, 9, 10}

ω(6) = 5

ω(7) = ω(3) = 4

ω(9) = 3

ω(10) = 2.

i 1 2 3 4 5 6 7 8 9 10
π(i) 6 1 10 9 7 5 8 4 3 2
Case 1 2 3 3 3 5 4 5 5 5

Figure 2.4: A Dyck matrix A with its associated unit interval positroid φ(A). The set J and
values ω(i) are used to determine π(i), by the indicated case, for all i.

Proposition 2.4.3. For i ∈ {1, . . . , 2n},

π(i) =





n+ 1 if i = 1
i− 1 if 1 < i ≤ n and ω(j) 6= i− 1 for all j ∈ J
j if 1 < i ≤ n and ω(j) = i− 1 for j ∈ J
i+ 1 if n < i < 2n and i+ 1 /∈ J
ω(i) if n < i and either i = 2n or i+ 1 ∈ J

is the inverse of the decorated permutation π−1 of a unit interval positroid.

Proof. We prove each case in the order presented above. Refer to Figure 2.4 for an example
of how to calculate J , ω(i), and what case is used to determine π(i) for every i.

Case 1: This follows immediately from Lemma 2.4.2.
Case 2: Assume 1 < i ≤ n. Suppose that ω(j) 6= i− 1 for every j ∈ J . Since Ii ∈ IP is

Gale-least, then i, . . . , n ∈ Ii. Note i − 1 6∈ Ii by Lemma 2.4.1. Since no j ∈ J has weight
i− 1, the (i− 1)-th and i-th rows of the maximal submatrix of B determined by the column
index set {n + 1, . . . , 2n} are equal. Consequently, π(i) = i − 1; otherwise the associated
maximal submatrix of B determined by Ii would have the i-th and (i+ 1)-th rows identical.
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Case 3: Suppose that 1 < i ≤ n such that ω(j) = i − 1 for some j ∈ J (note that j
is unique). As before, i, . . . , n + 1 ∈ Ii (because i > 1). Each column Bk, for n < k ≤ 2n
such that ω(k) = i− 1, is a linear combination of the columns Bi, . . . , Bn+1. Therefore such
indices k are not in Ii. By Lemma 2.4.1, it follows that i − 1 6∈ Ii. Thus, π(i) = j, where
j ∈ [2n] satisfies that ω(j) = i − 1; otherwise the (i − 1)-th row of the submatrix of B
determined by I(i+1) would be full of zeros. Since I(i+1) is Gale-least, we have that j ∈ J .

Case 4: Let i ∈ {n + 1, . . . , 2n − 1}. If i + 1 /∈ J , i.e., Bi = Bi+1, then {Bi, Bi+1} is
linearly dependent. It follows from Lemma 2.4.2 that π(i) = i+ 1.

Case 5: For n < i, assume either i = 2n or i + 1 ∈ J . Suppose first that i < 2n. Then
Bi+1 results from replacing m (m > 0) of the last nonzero entries of Bi by zeros. Since
i + 1 ∈ J, then i, i + 1 ∈ Ii. Notice the columns Bi, Bi+1, Bω(i+1)+1, . . . , Bω(i) are linearly
dependent, implying not all indices ω(i + 1) + 1, . . . , ω(i) can be in Ii. On the other hand,
at most one index in ω(i+ 1) + 1, . . . , ω(i) is missing from Ii; this is because the submatrix
of B determined by the row-index set {ω(i + 1) + 1, . . . , ω(i)} and the column-index set
{n + 1, . . . , 2n} has rank 1. By the i-order of Ii, ω(i) 6∈ Ii. Thus, π(i) = ω(i); this is the
only way to avoid having all zero entries in the ω(i)-th row of the maximal submatrix whose
columns are indicated by Ii. A similar argument holds for i = 2n, provided that we extend
the domain of ω to [2n+ 1] and set ω(2n+ 1) = 0.

In the following section we prove Theorem 2.5.1 which describes the decorated permu-
tation of a unit interval positroid by showing it can be read directly from the associated
antiadjacency matrix. Once this is established, the following characterization of decorated
permutations of unit interval positroids follows immediately.

Theorem 2.4.4. The decorated permutation π−1 of a unit interval positroid is a 2n-cycle
(1 j1 . . . j2n−1) satisfying the conditions:

1. the elements 1, . . . , n appear in increasing order while the elements n+1, . . . , 2n appear
in decreasing order;

2. for every 1 ≤ k ≤ 2n− 1, the set {1, j1, . . . , jk} contains at least as many elements of
the set {1, . . . , n} as elements of the set {n+ 1, . . . , 2n}.

2.5 A Direct Way to Read The Unit Interval

Positroid

Throughout this section, let P be an altitude preserving n-labeled unit interval order with
antiadjacency matrix A. Also, let I = {[qi, qi + 1] | 1 ≤ i ≤ n} be an altitude preserving
interval representation of P (i.e., q1 < · · · < qn); Proposition 2.3.2 ensures the existence of
such an interval representation. In this section we describe a way to obtain the decorated
permutation associated to the unit interval positroid induced by P directly from either A
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or I. Such a description will reveal that the function ρ ◦ φ ◦ ϕ : Un → Pn introduced in
Section 2.2 is a bijection (Theorem 2.5.4).

The north and east borders of the Young diagram formed by the nonzero entries of A
give a path of length 2n that we call the Dyck path of A. Let B = (In|A′) = φ(A), where φ
is the map introduced in Lemma 2.2.5. Let us call the inverted path of A the path consisting
of the south and east borders of the Young diagram formed by the nonzero entries of A′.
Example 2.5.2 sheds light upon the statement of the next theorem, which describes a way
to find the decorated permutation associated to the unit interval positroid induced by P
directly from A.

Theorem 2.5.1. Label the n vertical steps of the Dyck path of A from bottom to top in
increasing order with {1, . . . , n} and the n horizontal steps from left to right in increasing
order with {n + 1, . . . , 2n}. Then the decorated permutation associated to the unit interval
positroid induced by P is obtained by reading the Dyck path in the northwest direction.

Proof. Let π−1 be the decorated permutation associated to the unit interval positroid induced
by P . Label the n vertical steps of the inverted path of P from top to bottom in increasing
order using the label set [n], and we label the n horizontal steps from left to right in increasing
order using the label set {n+ 1, . . . , 2n} (see Example 2.5.2). Proving the theorem amounts
to showing that we can obtain π (the inverse of the decorated permutation) by reading the
inverted path in the northeast direction. Let (s1, s2, . . . , s2n) be the finite sequence obtained
by reading the inverted path in northeast direction. Since the first step of the inverted path
is horizontal and the last step of the inverted path is vertical, s1 = n+ 1 and s2n = 1. Thus,
it suffices to check that π(sk) = sk+1 for k = 1, . . . , 2n− 1.

Suppose that the k-th step of the inverted path is horizontal, and so located right below
the last nonzero entry of the sk-th column of B. If the (k+1)-th step is also horizontal, then
sk + 1 6∈ J , so Case 4 of Proposition 2.4.3 gives π(sk) = sk + 1 = sk+1. On the other hand,
if the (k + 1)-th step is vertical, then sk = 2n or sk + 1 is in the set of principal indices J of
B, so Case 5 gives π(sk) = ω(sk), the number of vertical steps from the top to sk, namely,
sk+1. Hence π(sk) = sk+1.

Assume that the k-th step of the inverted path is vertical. This implies that 1 ≤ sk ≤ n.
If the (k+ 1)-th step is also vertical, then sk+1 = sk− 1. Because steps k and k+ 1 are both
vertical, A′ does not contain any column with weight sk − 1. Thus, we are in Case 2 and
π(sk) = sk − 1 = sk+1. Finally, if the (k + 1)-th step is horizontal, sk − 1 = ω(sk+1) where
Sk+1 ∈ J , so case 3 gives π(sk) = sk+1.

Example 2.5.2. Figure 2.5 displays the antiadjacency matrix A of the altitude respecting
5-labeled unit interval order P introduced in Example 2.1.2 and the matrix φ(A). Both
show their respective Dyck and inverted path, which encodes the decorated permutation
π = (1, 2, 10, 3, 9, 4, 8, 7, 5, 6) associated to the positroid induced by P .

As a consequence of Theorem 2.5.1, we can deduce that the map ρ ◦ φ ◦ ϕ : Un → Pn,
where ρ, φ, and ϕ are as defined in Section 2.2 and Section 2.3, is indeed a bijection.
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0

1
I
5

0

Figure 2.5: Dyck matrix A and its image φ(A) exhibiting the decorated permutation π along
their Dyck path and inverted path, respectively.

Lemma 2.5.3. The set of 2n-cycles (1 j1 . . . j2n−1) satisfying conditions (1) and (2) of
Theorem 2.4.4 is in bijection with the set of Dyck paths of length 2n.

Proof. We can assign a Dyck path D of length 2n to the 2n-cycle (1 = j0 j1 . . . j2n−1)
by thinking of the entries ji ∈ {1, . . . , n} as ascending steps of D and the entries ji ∈
{n + 1, . . . , 2n} as descending steps of D. The fact that such an assignment yields the
desired bijection is straightforward.

Corollary 2.5.4. The map ρ ◦ φ ◦ ϕ : Un → Pn is a bijection.

Corollary 2.5.5. The number of unit interval positroids on the ground set [2n] equals the
n-th Catalan number.

We conclude this section by describing how to decode the decorated permutation as-
sociated to the unit interval positroid induced by P directly from its altitude respecting
representation I. Labeling the left and right endpoints of the intervals [qi, qi + 1] ∈ I by −
and +, respectively, we obtain a 2n-tuple consisting of pluses and minuses by reading from
the real line the labels of the endpoints of all such intervals. On the other hand, we can have
another plus-minus 2n-tuple if we replace the horizontal and vertical steps of the Dyck path
of A by − and +, respectively, and then read it in southeast direction as indicated in the
following example.

Example 2.5.6. The figure below shows the antiadjacency matrix of the altitude respecting
5-labeled unit interval order P showed in Example 2.1.2 and an altitude respecting interval
representation of P , both encoding the plus-minus 10-tuple (−,+,−,−,+,−,+,−,+,+), as
described in the previous paragraph.

Lemma 2.5.7. Let an = (a1, . . . , a2n) and bn = (b1, . . . , b2n) be the 2n-tuples with entries in
{+,−} obtained by labeling the steps of the Dyck path of A and the endpoints of all intervals
in I, respectively, in the way described above. Then an = bn.

Proof. Let us proceed by induction on the cardinality n of P . When n = 1, both a1 and
b1 are equal to (−,+) and so a1 = b1. Suppose now that the statement of the lemma is
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1

0

Figure 2.6: Dyck matrix and altitude respecting interval representation of P encoding the
10-tuple (−,+,−,−,+,−,+,−,+,+).

true for every altitude respecting n-labeled unit interval order, and assume that P is a unit
interval order with an altitude respecting labeling by [n+1] with antiadjacency matrix A and
altitude respecting interval representation I. Set m = |Λn+1| − 1. By Proposition 2.3.1, the
poset P\{n+ 1} is a unit interval order with an altitude respecting labeling by [n]; therefore
its associated plus-minus 2n-tuples a′n and b′n are equal. Observe, in addition, that bn+1 can
be recovered from b′n by inserting the − corresponding to the left endpoint of qn+1 (labeled
by 2n+ 2) in the position m+n+ 1 (there are n left interval endpoints and m right interval
endpoints to the left of qm+1 in I) and adding the + corresponding to the right endpoint
of qn+1 (labeled by 1) at the end. On the other hand, an+1 can be recovered from a′n by
inserting the − corresponding to the rightmost horizontal step of the Dyck path of A in the
position m+n+1 (there are n horizontal steps and m vertical steps before the last horizontal
step of the Dyck path) and placing the + corresponding to the vertical step labeled by 1 in
the last position. Hence an+1 = bn+1, and the lemma follows by induction.

As a consequence of Theorem 2.5.1 and Lemma 2.5.7, one may read the decorated per-
mutation associated to the unit interval positroid induced by P directly from I.

Corollary 2.5.8. Labeling the left and right endpoints of the intervals [qi, qi + 1] by n + i
and n + 1 − i, respectively, we obtain the decorated permutation associated to the positroid
induced by P by reading the label set {1, . . . , 2n} from the real line from right to left.

Proof. By Lemma 2.5.7, the 2n-tuple resulting from reading the set {1, . . . , 2n} as indicated
in Corollary 2.5.8 equals the 2n-tuple resulting from reading the same set from the Dyck
path of A in northwest direction, as described in Theorem 2.5.1. Hence the corollary follows
immediately from Theorem 2.5.1.

Example 2.5.9. The diagram in Figure 2.7 illustrates how to label the endpoints of an
altitude respecting interval representation of the 6-labeled unit interval order P shown in
Figure 2.1. By reading the labels from the real line (from right to left) one can obtain
the decorated permutation π = (1, 12, 2, 3, 11, 10, 4, 5, 9, 6, 8, 7) associated to the positroid
induced by P .
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Figure 2.7: Decorated permutation π encoded in a canonical interval representation of P .

2.6 The Totally Nonnegative Grassmannian and

Le-diagrams

The space of all k-dimensional subspaces of Rn is called the real Grassmannian Grk,n. An
element of Grk,n can classically be viewed as a full rank k × n matrix modulo left multipli-
cation by nonsingular k × k matrices. The totally nonnegative Grassmannian Gr+k,n is the
restriction of Grk,n to the space of full-rank k×n matrices with nonnegative maximal minors.
Postnikov constructed a stratification of Gr+k,n into positroid cells, or strata [39]. The cells
are in bijection with several families of combinatorial objects, including Grassmann neck-
laces, decorated permutations and Le-diagrams [39]. Many properties, such as cell dimension
and cell adjacency, can be described in terms of these objects. In this section we prove the
dimension of each unit interval positroid cell of a unit interval positroid of rank n is equal
to 2n− 1 via Le-diagrams. We address cell adjacency in Section 2.7.

The Totally Nonnegative Grassmannian and Positroid Cells

By definition an element of Grk,n is not uniquely represented. In particular, two k × n
matrices can represent an element of Grk,n if and only if one can be obtained from the other
by row operations. In order to describe Postnikov’s positroid stratification, we introduce the
Plücker embedding. Let

(
[n]
k

)
be the set of all k-element subsets of [n]. For I ∈

(
[n]
k

)
, define

the Plücker coordinate ∆I(A) to be the maximal minor of the column set I in the k×n matrix

A. Then the Plücker embedding Grk,n ↪→ RP(nk)−1, induced by the map A 7→ (∆I(A)) for I

ranging over
(
[n]
k

)
, realizes the Grassmannian as a subset of the projective space RP(nk)−1.

A stratification of Grk,n can be given in terms of matroids, called the matroid stratifica-
tion, or Gelfand-Serganova stratification. This naturally leads to a definition of the positroid
stratification. Given an element A ∈ Grk,n, there is an associated matroid MA = ([n],B)

whose bases are the k-subsets B ⊂
(
[n]
k

)
such that ∆I(A) 6= 0 for I ∈ B.

Definition 2.6.1. For B ⊂
(
[n]
k

)
, letM = ([n],B) be a matroid. Define the matroid stratum

SM to be
SM = {A ∈ Grk,n | ∆I(A) 6= 0 if and only if I ∈ B}.
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Remark 2.6.2. The matroids M with nonempty strata SM are called realizable over R.

Recall Mat≥0k,n is the space of real k × n matrices of rank k with nonnegative maximal

minors, and consider the group GL+
k of k× k real matrices with positive determinant. Then

the totally nonnegative Grassmannian of k-dimensional subspaces in Rn is defined to be the
quotient Gr+k,n = GL+

k \Mat≥0k,n.

A cellular decomposition of Gr+k,n is achieved by specifying which maximal minors are
strictly positive and which are equal to zero [39]. This is Postnikov’s positroid stratification,
defined as follows. Recall IM denotes the Grassmann necklace of type (k, n) of a given
positroid M.

Definition 2.6.3. Let I = {I1, . . . , In} be a Grassmann necklace of type (k, n). Define the
positroid stratum SI to be

SI = {A ∈ Gr+k,n | I(A) = I}.

Le-diagrams

We consider a description of the cellular decomposition of Gr+k,n in terms of the associated
Le-diagrams [6].

Definition 2.6.4. Fix d and n. For any partition λ, let Yλ denote the Young diagram
associated to λ. A L-diagram (or Le-diagram) L of shape λ and type (d, n) is a Young
diagram Yλ contained in a d × (n − d) rectangle, whose boxes are filled with 0s and +s in
such a way that the L-property is satisfied: there is no 0 which has a + above it in the same
column and a + to its left in the same row. See Figure 2.8 for an example of a L-diagram.

0 0 0 
0 0 0 0 

0 0 0 
0 0 0 

0 0 0 

Figure 2.8: A Le-diagram of shape (55) and type (5, 10).

Lemma 2.6.5. [6] The following algorithm is a bijection between L-diagrams of type (d, n)
and decorated permutations on n letters with d weak excedences.
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(1) Replace each + in the L-diagram L with an elbow joint

1

, and each 0 in L with a

cross

1

.

(2) Note that the south and east border of Yλ gives rise to a length-n path from the northeast
corner to the southwest corner of the d× (n− d) rectangle. Label the edges of this path
with the numbers 1 through n.

(3) Now label the edges of the north and west border of Yλ so that opposite horizontal edges
and opposite vertical edges have the same label.

(4) View the resulting “pipe dream” as a permutation π ∈ Sn, by following the “pipes”:
from the northwest border to the southeast border of the Young diagram. If the pipe
originating at label i ends at label j, we define π(i) = j.

(5) If π(j) = j and j labels two horizontal (respectively, vertical) edges of Yλ, then π(j) := j

(respectively, π(j) := j).

Figure 2.9 shows how to recover the decorated permutation (1, 10, 2, 3, 9, 4, 8, 5, 7, 6) from
the L-diagram of Figure 2.8.

Since each unit interval positroid can be represented by a L-diagram L, it follows imme-
diately that each unit interval positroid cell in Gr+n,2n can be indexed by L. Let |L| equal
the number of +s of the L-diagram. Postnikov proved that the positroid cell indexed by L
has dimension |L| [39, Theorem 4.6]. We show that the unit interval positroid cells in Gr+n,2n
have dimension 2n− 1. To this end, we now describe the L-diagram associated with a unit
interval positroid.

1

2

3

4

5

678910	

5

4

3

2

1

10	 9 8 7 5

Figure 2.9: A pipe dream on the Le-diagram in Figure 2.8 to recover the decorated permu-
tation (1, 10, 2, 3, 9, 4, 8, 5, 7, 6).

Theorem 2.6.6. The n× n L-diagram representation of a unit interval positroid P of rank
n with its associated Dyck path D is as follows:
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• On a Young diagram of shape (nn), draw the Dyck path D of length 2n from the SE-
corner to the NW-corner that stays below the diagonal.

• Place +s in the right most column and in the boxes immediately above every horizontal
step of the Dyck path.

• Fill the remaining boxes with 0s.

Recall Proposition 2.4.3 which explicitly describes the decorated permutation of a unit
interval positroid. It is enough to establish that the L-diagram constructed in Theorem 2.6.6
produces the decorated permutation (equivalently its inverse) of a unit interval positroid.
With this established, Postnikov’s bijection implies the L-diagram is unique.

Proof. Given a diagram L as constructed above, we first show that it satisfies the L-property,
then we show it produces the decorated permutation of a unit intrval positroid.

To prove L is a L-diagram, assume on the contrary that the L-property is not satisfied.
Then there is a 0 with a + above it in the same column and to its left in the same row. This
implies there must be a south step in the path drawn on the diagram contradicting it is a
Dyck path (a Dyck path from the SE corner to the NW corner staying below the diagonal
consists only of west and north steps). Thus L is a L-diagram.

To prove L produces decorated permutation π−1 associated to a unit interval positroid,
we show that the decorated permutation given by the pipe dream satisfies Proposition 2.4.3.

Apply Lemma 2.6.5 to form the associated pipe dream. To utilize Proposition 2.4.3 we
must determine π, the inverse of the decorated permutation. Thus, we will read the pipe
dream beginning from the east and south border.

Note that the position of a box in the L-diagram is given by the edge labels. Thus (i, j)
in the diagram corresponds to row with edge label i and column with edge label j.

Case 1: i = 1. By construction, 1 is adjacent to an elbow joint that leads directly to
the edge labeled n+ 1. Thus π(1) = n+ 1.

Case 2: 1 < i ≤ n and ω(j) 6= i− 1 for all j ∈ J . A path leaving i first travels through
an elbow joint to row i− 1 such that ω(j) = i− 1. Without a column j, this implies row i
contains all crosses to the left of the first elbow joint. Thus the path ends at edge label i−1.

Case 3: i ≤ n where ω(j) = i− 1 for j ∈ J . Since i < n, the path beginning at i passes
through two vertically adjacent elbow joints to position (i − 1, i + 2). Since ω(j) = i − 1
there must be an elbow joint in position (ω(j), j). Also, j ∈ J means this will be the first
elbow joint the path meets after its initial steps. Since column j has only crosses in all other
positions, the path must travel north to edge label j.

Case 4: n < i < 2n and i+1 6∈ J . This implies that i and i+1 are consecutive horizontal
steps in the Dyck path, so the elbow joints in each column are adjacent. Thus the path from
i moves up through any crosses, follows the elbow joint in column i to the elbow joint in
column i+ 1 then continues up through the crosses to end at edge label i+ 1.

Case 5: i > n and either i = 2n or i+ 1 ∈ J . If i = 2n, then ω(i) determines where the
second to last step in the Dyck path occurs. Thus, an elbow joint exists in position (ω(i), 2n)
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and crosses in all other entries of the column. Thus the path leading from 2n must travel
up through the elbow joint to end at edge label ω(i).

If i + 1 ∈ J , then there is an elbow joint in the column of i at position (ω(i), i) with a
cross in all entries to its left. Thus, the path leaving i will head up through crosses until it
meets the elbow then heads left through the remaining crosses and ends at position ω(i).

This establishes that the set of L-diagrams is in bijection with the set of decorated
permutation representations of unit interval positroids, as desired.

Corollary 2.6.7. Every unit interval positroid cell in Gr+n,2n has dimension 2n− 1.

Proof. This follows immediately from Theorem 2.6.6 since the L-diagram L indexing each
unit interval positroid cell has |L| = 2n− 1.

2.7 Adjacent Unit Interval Positroid Cells

In this section we describe when two unit interval order positroid cells are adjacent in terms
of the associated decorated permutations.

One may view the set of positroid cells as a graded poset with a simple cover relation.
One cell covers another if the closure of the first contains the second. Moreover, the rank of
a cell is just its dimension. We may also use decorated permutations to describe the cover
relations, which we define next.

1
2

3

4

5
6

7

8

9

10 

Figure 2.10: A chord diagram of the decorated permutation (1, 10, 2, 3, 9, 4, 8, 5, 7, 6).

A decorated permutation can be represented as a chord diagram in the following way.
Place n equally spaced points around a circle and label them from 1 to n in clockwise order.
If π(i) = j then this is represented by a directed arrow, or chord, from i to j. If π(i) = i then
we draw a chord from i to i (i.e. a loop), and orient it either clockwise or counterclockwise,
according to its decoration.

We call a pair of chords in a chord diagram that intersect inside the circle or on its
boundary a crossing. Referring to π1 in Figure 2.11, when there are no other chords from
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Arc(C,A) to Arc(B,D) then the crossing is called a simple crossing. A degenerate simple
crossing occurs on the boundary. A simple alignment is a pair of chords that do not cross
and there are no other chords from Arc(C,A) to Arc(B,D). Denote a simple alignment as
(A,B)||(C,D) when chord A,B is aligned with chord C,D, as illustrated by π2 in Figure
2.11.

A 

C 

B 

D 

A 

C 

B 

D 

π1 π2

Figure 2.11: Cover relation for chord diagram representations of decorated permutations π1
and π2, illustrating a simple crossing and a simple alignment respectively.

We can now define a partial order on the set of decorated permutations. For two decorated
permutations π1 and π2 of the same size n, we say that π1 covers π2 if the chord diagram
of π1 contains a pair of chords that forms a simple crossing and the chord diagram of π2 is
obtained by changing them to the pair of chords that forms a simple alignment.

We say two positroids (or positroid cells) are adjacent if, as elements in the graded poset,
they cover the same element. That is, π1 and π2 are adjacent if there exists π3 such that
π1 and π2 both cover π3. See Figures 2.11 and 2.12 for illustrations of the different cover
relations for chord diagram representations of positroid cells.

We now give a condition on the decorated permutations for when two unit interval
positroids are adjacent.

Theorem 2.7.1. Let P1 and P2 be rank n unit interval positroids and π1 and π2 their respec-
tive decorated permutations. Then P1 and P2 are adjacent if there exists i ∈ [2n]\{1, n+ 1}
such that when i is removed from the cycle notation of π1 and π2 the resulting cycles are
equal.

Proof. To prove the forward direction, assume P1 and P2 are adjacent unit interval positroids.
By Lemma 2.5.3 the associated decorated permutations π1 and π2 are cycles of length 2n and
have no fixed points. It follows that their respective chord diagrams, Cπ1 and Cπ2 , always
have a directed edge from n+1 to 1 and the only nondegenerate simple crossings occur along
this edge.

We will now argue that any two unit interval positroid cells are adjacent only via a
degenerate crossing. By way of contradiction, assume that π1 and π2 both cover π3 via
a simple crossing. Say Cπ1 contains the simple crossing of chords j1, i1 and n, 1, and Cπ2



CHAPTER 2. POSITROIDS FROM UNIT INTERVAL ORDERS 24

A = B 

C D 

A = B 

C D 

A 

C = D 

B 

C = D 

A B 

A = B 

C = D 

B 

C = D 

A = B 

Figure 2.12: Degenerate covering relations

contains the simple crossing of chords j2, i2 and n, 1, where 1 < i2 < j1 < n < j2 < i1. See
Figure 2.13 for an illustration of this construction.

Applying the cover relation to the respective crossings, we see that Cπ3 must contain
two pairs of alignments: (i1, b)||(a, j1) and (i2, b)||(a, j2). But, as seen in Figure 2.13, neither
alignment is simple. This implies the crossings in π1 and π2 were not simple, a contradiction.

By the above argument we have that the adjacent unit interval positroid cells π1 and π2
both cover a decorated permutation π3 via a degenerate cover relation. This implies π3 is the
product of a fixed point (k) and a 2n−1 cycle with the following description. The fixed point
k has decoration π3(k) = k̄ for 1 < k < n+ 1 and π3(k) = k for n+ 1 < k ≤ 2k. The 2n− 1
cycle is the cycle produced by removing k from the cycle notation of π1 (and equivalently
by removing k from the cycle notation of π2). Note the decoration follows immediately from
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1 

j1 
n 

i1 

1 

i2 

n 
j2 

1 

i2 

j1 
n 

j2 

i1 

π1 π2 

π3 

Figure 2.13: Chord diagrams π1 and π2 fail to be adjacent because their crossings are not
simple.

the fact that the decorated permutation representation of a unit interval positroid is a Dyck
path. Since the 2n− 1 cycle of π3 can be generated from either π1 or π2 in the same way, we
have that the cycles resulting from removing k from π1 and from π2 are equal, as desired.

See Figure 2.14 for an example of two adjacent unit interval positroid cells and the cells
they simultaneously cover. Figure 2.15 is a complete diagram of all adjacencies for unit
interval positroids of rank 3.

Typically chord diagram (equivalently decorated permutation) representations of positroid
cells are illustrated via their Hasse diagram. Given the adjacencies among unit interval
positroid cells can be described so nicely, we believe the complex structure formed by this
subset of positroid cells may have an interesting description. A proposed problem stemming
from Theorem 2.7.1 explores this structure.

Problem 2.7.2. Describe the subcomplex of the totally nonnegative Grassmannian formed
by unit interval positroids and their closures, where a k-face represents a set of unit interval
positroid cells that intersect in codimension k.
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1 
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6 

1 
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3 
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6 

1 

2 

3 
4 

5 

6 

(12654)3 (12354)6 

(123654) 

1 

2 

3 
4 

5 

6 

(126354) 

Figure 2.14: Two adjacent unit interval positroid cells in Gr3,6(R) and the positroid cells
they simultaneously cover.
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2.8 An Interpretation of the f-vector of a Poset

In hopes of a more thorough understanding of the f -vectors of (3 + 1)-free posets, Skandera
and Reed in [47] posed the following open problem: characterize the f -vectors of unit interval
orders. To this aim, we provide a combinatorial interpretation for the f -vector of any
naturally labeled poset in terms of its antiadjacency matrix. Throughout this section, P is
assumed to be a naturally labeled poset of cardinality n with antiadjacency matrix AP =
(ai,j).

Definition 2.8.1. The f -vector of P is the sequence f = (f0, f1, . . . , fn−1), where fk is the
number of k-element chains of P .

We wish to interpret the k-element chains of P in terms of some special Dyck paths inside
AP . To do this, define a bounce Dyck path of AP to be a Dyck path drawn inside AP that
has its endpoints on the main diagonal, all its peaks in positions (i, j) such that ai,j = 0,
and it must return to the main diagonal between peaks. Figure 2.16 illustrates an example
of a bounce Dyck path with three peaks.

1 1 0 0 0 0 0

1 1 0 1 1 0 0

1 1 1 1 1 0 0

1 1 1 1 0 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 1 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

1 1 0 0 0 0 0

1 1 0 1 1 0 0

1 1 1 1 1 0 0

1 1 1 1 0 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 1 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

1 1 0 0 0 0 0

1 1 0 1 1 0 0

1 1 1 1 1 0 0

1 1 1 1 0 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 1 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

1 1 0 0 0 0 0

1 1 0 1 1 0 0

1 1 1 1 1 0 0

1 1 1 1 0 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 1 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

5

Figure 2.16: A bounce Dyck path with three peaks inside the antiadjacency matrix of the
poset displayed in Figure 2.17.

Theorem 2.8.2. The entries of the f -vector of a naturally labeled poset P are

fk =

{
n for k = 0

# of bounce Dyck paths of AP with k peaks for k ≥ 1
,

where AP is the associated antiadjacency matrix.

Proof. To each k-element chain c : i1 <P · · · <P ik+1 we can assign a bounce Dyck path vc
with k peaks as follows: the j-th peak begins at (ij, ij), heads east to (ij, ij+1), and then
heads south to (ij+1, ij+1). To see that vc is, indeed, a bounce Dyck path, it suffices to notice
that as ij <P ij+1 for each j = 1, . . . , k, every peak of vc occurs at a zero entry of AP . On the
other hand, suppose that v is a bounce Dyck path with k peaks, namely (i1, i

′
1), . . . , (ik, i

′
k).

As v is a bounce Dyck path, every valley of v is supported on the main diagonal, which
means that i′j = ij+1 for each j = 1, . . . , k. Setting ik+1 = i′k, we obtain that v = vc, where c
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is the k-element chain i1 <P · · · <P ik+1. Thus, we have established a bijection that yields
the theorem.

Remark: Theorem 2.8.2 holds for any naturally labeled poset P , so in particular, it provides
an interpretation of the f -vector of any unit interval order.

Example 2.8.3. Consider the naturally labeled poset P , which is not a unit interval order,
depicted in Figure 2.17. Then the f -vector of P is

f = (7, 12, 8, 2, 0, 0, 0).

Examples of bounce Dyck paths realized on AP are shown in Figure 2.18. Note that since
P is not a unit interval order then AP is not a Dyck matrix.

1

3

4

2

5

6

7

7

Figure 2.17: Naturally 7-labeled poset.
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Figure 2.18: Bounce Dyck paths inside AP with one, two, and three peaks.
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Chapter 3

Dehn–Sommerville Relations and the
Catalan Matroid

3.1 Introduction

One of the most important achievements of the theory of polytopes is the g-theorem, con-
jectured by McMullen [35] and subsequently proven by Billera–Lee, and Stanley [10, 9, 51],
which provides a complete characterization of the f -vectors of simplicial polytopes. The goal
of this chapter is to further contribute to our understanding of those f -vectors.

The Dehn–Sommerville relations condense the f -vector of a simplicial d-dimensional poly-
tope into the g-vector, which has length dd+1

2
e. This raises the question: Which (dd+1

2
e)-

subsets of the f -vector of a general simplicial polytope are sufficient to determine all d
entries of the f -vector? Define a Dehn–Sommerville basis to be a minimal subset S such
that {fi−2 | i ∈ S} determines the entire f -vector for any simplicial polytope.

For example, via the g-theorem one can check that f(P1) = (1, 8, 27, 38, 19) and f(P2) =
(1, 9, 28, 38, 19) are f -vectors of two different simplicial 4-polytopes. Therefore the entries
f(P ) = (1, ∗, ∗, 38, 19) do not determine a simplicial f -vector uniquely, and {1, 4, 5} is not a
Dehn–Sommerville basis in dimension 4.

In this chapter we prove the following theorem.

Theorem 3.3.1. The Dehn–Sommerville bases of dimension 2n are precisely the upstep sets
of the Dyck paths of length 2(n+ 1).

Dehn–Sommerville bases of dimension 2n− 1 have a similar description.
The chapter is organized as follows. In Section 3.2 we define the Dehn–Sommerville ma-

trix, and the Catalan matroid defined by Ardila [3] and Bonin–de Mier–Noy [16]. In Section
3.3 we prove our main theorem. In Section 3.4 we establish several positroid representations
of the Dehn–Sommerville matroid. This chapter is joint work with Nicole Yamzon [19].
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3.2 Matroids and the Dehn–Sommerville matrix

Matroids

Recall the definition of a matroid given in Section 2.2. A key example is the matroid M(A)
of a matrix A. Let A be a d× n matrix of rank d over a field K. Denote the columns of A
by a1, a2, . . . , an ∈ Kd. Then B ⊂ [n] is a basis of M(A) on the ground set [n] if {ai | i ∈ B}
forms a linear basis for Kd.

The Dehn-Sommerville relations

Definition 3.2.1. Let P be a d-dimensional simplicial polytope, that is, a polytope whose
facets are simplices. Define f(P ) = (f−1, f0, f1, . . . , fd−1) to be the f -vector of P where fi is
the number of i-dimensional faces of P . It is convention that f−1 = 1.

Definition 3.2.2. The h-vector of a simplicial polytope is the sequence with elements

hk =
k∑

i=0

(−1)k−i
(
d− i
k − i

)
fi−1,

for k ∈ [0, d]. The g-vector of a simplicial polytope is the sequence where g0 = 1 and
gi = hi − hi−1 for i ∈ [1, bd

2
c].

The Dehn–Sommerville relations can be stated most simply in terms of the h-vector.

Theorem 3.2.3. [34] The h-vector of a simplicial d-polytope satisfies

hk = hd−k

for k = 0, 1, . . . , d.

We now discuss a matrix reformation of Theorem 3.2.3.

Definition 3.2.4. The Dehn–Sommerville matrix, Md, is defined by

(Md)0≤i≤b d
2
c

0≤j≤d
:=

(
d+ 1− i
d+ 1− j

)
−
(

i

d+ 1− j

)
,

for d ∈ N.

Theorem 3.2.5. [14] Let P be a simplicial d-polytope, and let f and g denote its f and
g-vectors. Then

g ·Md = f.
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Label the columns of Md from 1 to d+ 1. We define the Dehn–Sommerville matroid DSd
of rank d to be the pair ([d+1],B) where B ∈ B if B is a collection of columns associated with
a non-zero maximal minor of Md. Its bases are the Dehn–Sommerville bases, the minimal
sets S such that {fi−2 | i ∈ S} determines the whole f -vector for any simplicial polytope.

For example, let d = 4. Then

M4 =




1 5 10 10 5
0 1 4 6 3
0 0 1 2 1




and the Dehn–Sommerville bases of DS4 are

B = {123, 124, 125, 134, 135}.

Definition 3.2.6. Define the Dehn–Sommerville graph DSd to be a directed graph (or
digraph), as shown in Figure 3.1, where all horizontal edges are directed east and all vertical
edges are directed north. Number the nodes along the southwest border 1, . . . ,

⌈
d+1
2

⌉
in

bold, and call them the sources. Number the nodes along the east border 1, . . . , d + 1, and
call them the sinks.

1
1

2
3

4
5

2
3
4
5
6
7
8
9
10

(a) DS9

1
1

2
3

4
5

6

2
3
4
5
6
7
8
9
10
11

(b) DS10

Figure 3.1: Dehn–Sommerville graphs for odd and even d.

Definition 3.2.7. A routing is a set of vertex-disjoint paths in a digraph.

Considering the collection of routings on the Dehn–Sommerville graph DSd produces the
following theorem.

Theorem 3.2.8. A subset B ⊂ [d + 1] is a basis of DSd if and only if there is a routing
from the source set [dd+1

2
e] to the sink set B in the graph DSd.
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Proof. Björklund and Engstöm [11] found a way to give positive weights to the edges of
DSd so that Md is the path matrix of DSd; that is, entry (Md)ij equals the sum of the
product of the weights of the paths from source i to sink j. Then, by the Lindström–
Gessel–Viennot lemma [24, 31], the determinant of columns j1, . . . , jd d+1

2 e is the sum of the

products of weights of the routing from the source nodes 1 < · · · <
⌈
d+1
2

⌉
to the sink nodes

j1, . . . , jd d+1
2 e. It follows that the determinant is non-zero if and only if there is a routing.

Continuing with our example for d = 4, we see the possible destination sets of the routings
on digraph DS4 match with the bases {123, 124, 125, 134, 135} of DS4:

1
1

2
3

2
3
4
5

1
1

2
3

2
3
4
5

1
1

2
3

2
3
4
5

1
1

2
3

2
3
4
5

1
1

2
3

2
3
4
5

Dyck Paths and the Catalan Matroid

Definition 3.2.9. For n ∈ N, a Dyck path of length 2n is a path in the plane from (0, 0) to
(2n, 0) with upsteps, (1, 1), and downsteps, (1,−1), that never falls below the x-axis. The
number of Dyck paths of length 2n is the Catalan number Cn = 1

n+1

(
2n
n

)
.

Dyck paths can be characterized in the following way.

Lemma 3.2.10. [49, Problem 6.19 (i, t)] Let a1 < a2 < · · · < an be the upsteps of a lattice
path P of length 2n. Then P is a Dyck path if and only if

a1 = 1, a2 ≤ 3, a3 ≤ 5, . . . , an ≤ 2n− 1.

Definition 3.2.11. [3, 16] The Catalan matroid, Cn, is a matroid with a ground set of [2n]
whose bases are the upstep sets of the Dyck paths of length 2n.

Let n = 3. Then the bases of the Catalan matroid are the upstep sets of the Dyck paths
of length 6:

B = {123, 124, 125, 134, 135}.
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3.3 Main Result

Theorem 3.3.1. The Dehn–Sommerville bases of dimension 2n are precisely the upstep sets
of the Dyck paths of length 2(n+ 1).

Proof. To prove the forward direction, assume for the sake of contradiction that B = {b1 <
b2 < · · · < bn+1} is a basis of DS2n that is not the upstep set of a Dyck path. By Lemma
3.2.10 then bi ≥ 2i for some i. Notice that the northwest diagonal starting at sink 2i has
n − i vertices (excluding sink 2i). Since there is a routing from 1, . . . ,n + 1 to B, the
n+ 1− i paths starting at source nodes i + 1, . . . ,n + 1 must pass through this diagonal of
width n − i. By the Pigeonhole Principle, this means two paths must use the same vertex,
a contradiction. This argument is illustrated in Figure 3.2a.

For the backward direction, assume P is a Dyck path with up step set {b1 < b2 < · · · <
bn+1}. We define a path Pi from the source i to the sink bi by truncating the Dyck path P
immediately before its ith up step, and converting its up steps to East steps and its down
steps to North steps. The resulting paths P1, . . . , Pn+1 form a routing. Therefore the set
{b1 < b2 < · · · < bn+1} is a Dehn–Sommerville basis, as desired. See Figure 3.2b for an
example of this construction.

1
1

2
3

4
5

6

2
3
4
5
6
7
8
9
10
11

(a)

7
8

6
6

9

5
5

10

4
4

11

3
3

12

2
2

1
1

7

13

(b)

Figure 3.2: (a) Sink b4 = 8 prevents a routing in DS10, forcing the paths starting at
sources 5 and 6 to collide. (b) A routing constructed from a Dyck path with upsteps
B = {1, 2, 5, 6, 8, 11, 12} in DS12.

Having settled the even dimensional case, we now address the odd dimensional case.
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Lemma 3.3.2. The bases of the Dehn–Sommerville matroid DS2n are in bijection with the
bases of the Dehn–Sommerville matroid DS2n−1. More precisely, DS2n

∼= DS2n−1⊕C, where
C = 2n is a coloop.

Proof. For the graph DS2n, any path leaving the top source node d2n+1
2
e = n+ 1 must first

travel east along the only edge leaving it. To satisfy the condition that all paths in a routing
are vertex-disjoint, any path leaving all other source nodes, excluding 1, must also first travel
east. Source node 1 is forced to have the trivial path. Thus, the horizontal edges from every
source node, excluding 1, can be contracted without affecting the potential destinations of
the routings. This results in a graph equal to the graph DS2n−1 with an added vertical edge
extending from the bottom.

It follows that the number of bases of DS2n is equal to the number of bases of DS2n−1
and there exists a bijection between the bases, namely,

{1, b2, b3, . . . , bn} 7→ {b2 − 1, b3 − 1, . . . , bn − 1},

where {1, b2, b3, . . . , bn} is a basis of DS2n.

We may restate Theorem 3.3.1 and Lemma 3.3.2 in the language of matroids in the
following way.

Theorem 3.3.3. The Dehn–Sommerville matroids are obtained from the Catalan matroids
by removing trivial elements:

DS2n
∼= Cn+1\(2n+ 2) and DS2n−1 ∼= Cn+1\1\(2n+ 2) for n ∈ N.

Note that 1 is a loop and 2n+ 2 is a loop in Cn+1.

3.4 Positroid Representations

Björner [12] conjectured and Björklund and Engstöm [11] proved that Md is a totally non-
negative matrix, which implies DSd is a positroid. As seen in Chapter 2, there are several
positroid representations introduced by Postnikov [39] that can be used to further repre-
sent the Dehn–Sommerville matroid. We give the Grassmann necklace description and the
simple decorated permutation representation, which may be used to establish the remaining
representations (see Chapter 2 for relevant definitions).

Theorem 3.4.1. The Grassmann necklace I2n corresponding to the Dehn–Sommerville ma-
troid of rank 2n has as its entries

• I1 = {1, 2, 3, . . . , n+ 1},

• I2i = {2i, 2i+ 1, . . . , i+ n, 1, 2, . . . , i} for 1 ≤ i ≤ n, and

• I2i+1 = {2i+ 1, 2i+ 2, . . . , i+ n+ 1, 1, 2, . . . , i} for 1 ≤ i ≤ n.
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Similarly, the Grassmann necklace I2n−1 corresponding to the Dehn–Sommerville matroid of
rank 2n− 1 has as its entries

• I1 = {1, 2, 3, . . . , n},

• I2 = {2, 3, 4, . . . , n+ 1},

• I2i = {2i, 2i+ 1, . . . , i+ n, 1, 2, . . . , i− 1} for 2 ≤ i ≤ n, and

• I2i+1 = {2i+ 1, 2i+ 2, . . . , i+ n, 1, 2, . . . , i} for 1 ≤ i ≤ n− 1.

Proof. We first prove I2n has the above description. Consider the sets I1 = {1, 2, 3, . . . , n+1},
I2i = {2i, . . . , i + n, 1, 2, . . . , i} and I2i+1 = {2i + 1, . . . , i + n + 1, 1, 2, . . . , i}. We need only
to show that these are the Gale-minimal bases for DS2n.

By Theorem 3.3.1 each basis is a Dyck path. The upstep set of a Dyck path containing
2i that is Gale-minimal must have the maximum number of upsteps possible between 2i and
2(n+ 1). By definition of a Dyck path, the number of upsteps in [2i, 2(n+ 1)] is equal to the
number of downsteps in [0, 2i − 1]. Moreover, there must be n + 1 total upsteps. Thus, if
there are i upsteps beginning at 2i, then there are also i upsteps less than 2i, which implies
I2i = {2i, . . . , i+ n, 1, 2, . . . , i} is the 2i-Gale-minimal basis.

Entry I2i+1 = {2i + 1, . . . , i + n + 1, 1, 2, . . . , i} follows by a similar argument with only
a shift needed in the beginning upsteps.

By Lemma 3.3.2, the Grassmann necklace for DS2n−1 can be achieved from the Grass-
mann necklace of DS2n by removing 1 from every basis and decreasing each remaining value
by 1.

We may now describe the decorated permutation for the Dehn–Sommerville matroids.

Theorem 3.4.2. The decorated permutation corresponding to the Dehn–Sommerville ma-
troid is

1̄35 · · · (2n+ 1)246 · · · (2n) for DS2n

246 · · · (2n)135 · · · (2n− 1) for DS2n−1.

Proof. We prove this for rank 2n, from which case 2n − 1 follows by Lemma 3.3.2 and
Theorem 3.4.1. To determine the decorated permutation π for DS2n we will compute its
inverse directly from the associated Grassmann necklace.

By Theorem 3.4.1, we know I1 and I2 are equal. Since 1 is a loop in DS2n, it follows
π−1(1) = 1 is a counterclock wise fixed point and π(1) = 1̄. For the remaining entries,
recall 1 ≤ i ≤ n. To compute π−1(2i), compare the entries I2i = {2i, . . . , i + n, 1, 2, . . . , i}
and I2i+1 = {2i + 1, . . . , i + n + 1, 1, 2, . . . , i} of I. Then π−1(2i) = (i + n + 1). To
compute π−1(2i + 1), compare the entries I2i+1 = {2i + 1, . . . , i + n + 1, 1, 2, . . . , i} and
I2(i+1) = {2(i + 1), . . . , (i + 1) + n, 1, 2, . . . , (i + 1)} = {2i + 2, . . . , i + n + 1, 1, 2, . . . , i + 1}.
Then π−1(2i + 1) = (i + 1). Thus, π(1) = 1̄, π(i + 1) = 2i + 1, and π(i + n + 1) = 2i, as
desired.
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Using this description we can obtain the Le diagram, plabic graph and juggling pattern.
Another corollary to our main theorem is that the Catalan matroid is a positroid, a result
also discovered by Pawlowski [38].
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Chapter 4

Knuth Equivalence Graphs and
CAT(0) Combinatorics

4.1 Introduction

A useful equivalence relation on Sn is defined in terms of the Knuth relations [28], defined
below. Equivalently, the well-known Robinson–Schensted algorithm bijectively assigns to
each permutation π a pair of standard Young tableaux (P (π), Q(π)) of the same shape λ,
and π and σ are Knuth equivalent if and only if P (π) = P (σ) [28, 40, 42]. This equivalence
relation gives rise to a graph Gλ where the nodes are the permutations π such that P (π) has
shape λ, and the edges correspond to Knuth relations between them. We call such graphs
Knuth equivalence graphs. Similar graphs have been studied and characterized by Assaf [8].

In this chapter we take a new perspective regarding Gλ as the 1-skeleton of a cubical
complex, Cλ, and analyzing whether Cλ has the CAT(0) property, a metric property studied
by geometric group theorists. This is useful combinatorially because CAT(0) cubical com-
plexes are in bijection with posets of inconsistent pairs [5], so these results shed light on the
combinatorics of Knuth equivalent graphs. This chapter is joint work with John Guo [18].

4.2 Knuth Equivalence, the Robinson–Schensted

Algorithm and Young Tableaux

Permutations π, σ ∈ Sn differ by a Knuth relation of the first kind, denoted π
1∼= σ, if

1. π = x1 . . . yxz . . . xn and σ = x1 . . . yzx . . . xn for some positive integers x < y < z.

They differ by a Knuth relation of the second kind, denoted π
2∼= σ, if

2. π = x1 . . . xzy . . . xn and σ = x1 . . . zxy . . . xn for some positive integers x < y < z.
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We say π and σ are Knuth equivalent, π
K∼= σ, if there exists permutations such that

π = π1
i∼= π2

j∼= · · ·
l∼= πk = σ,

where i, j, . . . , l ∈ {1, 2}.

Example 4.2.1. Here are the non-trivial Knuth equivalence classes for S4.

1243
2∼= 1423

2∼= 4123 3124
2∼= 1324

2∼= 1342 1432
2∼= 4132

2∼= 4312

4213
1∼= 4231

2∼= 2431 2134
1∼= 2314

1∼= 2341 3214
1∼= 3241

3142
1,2∼= 3412 2143

1,2∼= 2413

As mentioned before, the Robinson–Schensted algorithm bijectively assigns to each per-
mutation π a pair of standard Young tableaux (P (π), Q(π)) of the same shape λ, and Knuth
equivalence can be described in terms of tableaux [28, 40, 42]. We now clarify this relation-
ship.

Denote the partition λ = (λ1, λ2, . . . , λk) of n as λ ` n, where λ1 ≥ λ2 ≥ · · · ≥ λk and
|λ| =

∑k
i=1 λi = n. Then the Ferrers diagram, or shape, of λ is an array of n boxes having k

left-justified rows with row i containing λi boxes for 1 ≤ i ≤ k. From a Ferrers diagram of
boxes one can form a standard Young tableau, SYT, where the boxes are filled with elements
from [n] such that no element is repeated and rows and columns are strictly increasing.

Example 4.2.2. Let λ ` 8 be the partition λ = (4, 2, 1, 1). Then a SYT of shape λ is

1 3 4 6
2 7
5
8

We will now describe the Robinson–Schensted algorithm denoted π
RS−→ (P,Q) where

π ∈ Sn and P and Q are standard λ-tableaux, for λ ` n. Given

π =
1 2 . . . n

π(1) π(2) . . . π(n)
,

we construct a sequence of tableaux pairs (P1, Q1), (P2, Q2), . . . , (Pn, Qn) = (P,Q), where
π(1), . . . , π(n) are inserted into P and 1, 2, . . . , n are inserted into Q in that order. Entry
x = π(i) is inserted into Pi−1 in the following way:

RS1 Let R be the first row of Pi−1.

RS2 While x is less than some element of row R, do the following

RSa Let y be the smallest element of R greater than x and replace y by x in R.
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RSb Set x := y and let R be the next row down.

RS3 Now x is greater than every element of R, so place x at the end of R and stop.

Tableau Qi is created by recording i in the box corresponding to the final box inserted into
Pi so that Pi and Qi have the same shape. We call P = Pn the insertion tableau, denoted
P (π), and Q = Qn the recording tableau, denoted Q(π). Notice that both P and Q have the
same shape by construction.

Example 4.2.3. Let π = 58273461. We will apply the Robinson–Schensted algorithm to π
and show each step of the process in the table below.

π 5 8 2 7 3 4 6 1

Pi 5 5 8
2 8
5

2 7
5 8

2 3
5 7
8

2 3 4
5 7
8

2 3 4 6
5 7
8

1 3 4 6
2 7
5
8

Qi 1 1 2
1 2
3

1 2
3 4

1 2
3 4
5

1 2 6
3 4
5

1 2 6 7
3 4
5

1 2 6 7
3 4
5
8

Thus, P (π) =

1 3 4 6
2 7
5
8

and Q(π) =

1 2 6 7
3 4
5
8

.

Once the algorithm is complete, pair (P,Q) is uniquely determined by π. Furthermore,
π can be recovered from P and Q.

Theorem 4.2.4. [40, 42] The map

π
RS−→ (P (π), Q(π))

is a bijection between elements of Sn and pairs of standard tableaux of the same shape λ ` n.

The Robinson–Schensted algorithm produces Knuth equivalence classes as follows.

Theorem 4.2.5. [28] If π, σ ∈ Sn, then

π
K∼= σ ⇔ P (π) = P (σ).

There is a very natural permutation πP such that P (πP ) = P . Define the row word of P
to be the permutation πP formed by reading the entries of P from bottom to top and left to
right. The row word of Example 4.2.3 is πP = 85271346. It is easy to verify that πP indeed
gives the desired P tableau.
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Proposition 4.2.6. [8] If π and π′ have insertion tableaux P (π) and P (π′) of the same
shape λ then their Knuth equivalence graphs are isomorphic, and denoted Gλ.

Our goal is to apply the theory in Section 4.3 and examine the structure of Knuth
equivalence graphs.

4.3 CAT(0) Cubical Complexes and Posets with

Inconsistent Pairs

Informally, a reconfigurable system is a collection of states with a set of reversible moves that
are used to navigate from one state to another. These moves are tethered to particular states
and can only be used to traverse back and forth between them. Moves are commutative if
they are physically independent of one another, and thus can be done simultaneously. A
more complete formalization of a reconfigurable system can be found in [1, 25].

Definition 4.3.1. [1, 25] A cubical complex X is a polyhedral complex formed by joining
cubes of various dimensions such that the intersection of any two cubes is a face of both.

Definition 4.3.2. The state complex S(R) of a reconfigurable systemR is a cubical complex
whose vertices correspond to the states ofR. There is an edge between two states if they differ
by an application of a single move. The k-cubes are associated to k-tuples of commutative
moves.

Remark 4.3.3. The 1-skeleton of S(R) is the transition graph T (R), a graph whose vertices
are the states of the system and whose edges correspond to the permissible moves between
them.

Definition 4.3.4. A metric space X is said to be CAT(0) if:

• there is a unique geodesic (shortest) path between any two points in X, and

• X has non-positive global curvature.

The second property of being CAT(0) can be described as follows. Let X be a metric
space with a unique geodesic (shortest) path between any two points. Consider a triangle
T in X with side lengths a, b, and c, and construct a comparison triangle T ′ with the same
lengths in Euclidean space. If every chord in the comparison triangle T ′ is of equal or greater
length than the corresponding chord in T (in Figure 4.1, |xy| ≤ |x′y′|), for every triangle T
in X, then we say that X is CAT(0).

There are several characterizations of being CAT(0). We utilize the characterization
given by Ardila–Owen–Sullivant [5] given in terms of partially ordered sets with inconsistent
pairs (PIPs).
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x x’ 

y y’ 

a 

b 

c 

a 

b 

c 

T T ′

Figure 4.1: The CAT(0) property: X has non-positive global curvature.

Definition 4.3.5. If X is a CAT(0) cubical complex and v is any vertex of X, then (X, v) is
a rooted CAT(0) cubical complex rooted at v. This can be thought of as identifying a home
state if the cubical complex is a state complex.

Definition 4.3.6. A poset with inconsistent pairs (PIP) is a locally finite poset P of finite
width, together with a collection of inconsistent pairs {p, q}, such that:

• If p and q are inconsistent, then there is no r such that r ≥ p and r ≥ q.

• If p and q are inconsistent and p′ ≥ p and q′ ≥ q, then p′ and q′ are inconsistent.

The corresponding Hasse diagram of a PIP is constructed by taking the poset and ap-
pending a dotted line between minimal inconsistent pairs. An order ideal of P is a subset I
of P such that if a ≤ b and b ∈ I then a ∈ I. A consistent order ideal is an order ideal that
contains no inconsistent pairs. An antichain is a collection of elements in the poset such
that any pair of these elements is incomparable.

We provide the following definition which describes the relationship between PIPs and
cubical complexes.

Definition 4.3.7. If P is a poset with inconsistent pairs, we construct the cube complex of
P , which we denote X(P ). The vertices of X(P ) are identified with the consistent order
ideals of P . There will be a cube C(I,M) for each pair (I,M) of a consistent order ideal
I and a subset M ⊂ Imax, where Imax is the set of maximal elements of I. This cube has
dimension |M |, and its vertices are obtained by removing from I the 2|M | possible subsets of
M . The cubes are naturally glued along their faces according to their labels.

Remark 4.3.8. When P has no inconsistent pairs, this is precisely the bijection between
posets P and distributive lattices J(P ) = L. To recover P from L = J(P ), we consider the
poset of join-irreducibles of L.
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See Figure 4.2 for an example of a tableau, its cubical complex X(P ), and the associated
PIP P .

Theorem 4.3.9. [5] The map P → X(P ) is a bijection between posets with inconsistent
pairs and rooted CAT(0) cube complexes.

Theorem 4.3.9 provides a method of proving a cubical complex has the desirable CAT(0)
property, namely, by constructing the associated PIP after choosing a root for the cubical
complex.

4.4 Knuth Equivalence Graphs

In this section we will prove that the only tableau whose equivalence graph Gλ is the 1-
skeleton of a CAT(0) cubical complex is the hook, namely for λ = (n− k, 1k). Equivalently,
we will show that when λ contains (2, 2) then the 1-skeleton of Gλ is not CAT(0).

Definition 4.4.1. Define a hook to be a partition of the form (n− k, 1k).

Note that we need only consider hooks λ = (n − k, 1k) for k ≤ bn
2
c since conjugate

partitions produce isomorphic equivalence graphs, as stated in the following proposition.

Proposition 4.4.2. [8] Given partition λ and its conjugate λ′, then

Gλ
∼= Gλ′ .

For completeness, we provide a proof of Proposition 4.4.2, which utilizes the following
theorem.

Theorem 4.4.3. [42] If P (π) = P , then P (πr) = P t, where t denotes transposition and πr

is the reverse reading word of π.

Proof of Proposition 4.4.2. Let π produce tableau P of shape λ. By Theorem 4.4.3, the

conjugate λt is the shape of the transposed tableau P t for πr. Moreover, π
1,2∼= ω if and only

if πr
1,2∼= ωr. Thus, relabeling the nodes π of Gλ with πr preserves its graphical structure.

We first establish that if λ contains shape (2, 2) then the 1-skeleton of Gλ is not CAT(0).

Theorem 4.4.4. Let the shape λ contain (2, 2). Then Cλ is not a CAT(0) cubical complex.

Proof. Assume the shape λ contains (2, 2) and is canonically filled so that the first row
contains numbers 1 through k1 in increasing order, the second row is filled with numbers
k1+1 to k2 in increasing order, etc. Consider the row word π of λ, which ends by adjoining row
2 and then row 1 in that order. Then π has the following entries in this order: k2−1, k2, 1, 2.
This means Gλ will have a double edge connecting the vertices π = . . . k2 − 1, k2, 1, 2 . . .



CHAPTER 4. KNUTH EQUIVALENCE GRAPHS AND CAT(0) COMBINATORICS 44

and π′ = k2 − 1, 1, k2, 2 . . . because both Knuth moves of type 1 and 2 can be performed
on π to produce the same adjacent permutation π′. Note these moves are dependent and
therefore do not commute. This implies the edges form a hole and so there are two shortest
geodesics between π and π′. Since Cλ is not a space with unique geodesics, then it cannot
be CAT(0).

We will now prove that when λ is a hook then Cλ is a CAT(0) cubical complex.

Theorem 4.4.5. When λ is a hook, the graph Gλ is the 1-skeleton of a CAT(0) cubical
complex.

Proof. We begin by describing Gλ in terms of permutations. Consider the permutation
π = n, n − 1, . . . , n − k + 1, 1, 2, ..., n − k which, after applying the Robinson–Schensted
algorithm, has insertion tableau P (π) of shape λ = (n − k, 1k), a hook. Notice a series of
Knuth moves beginning with π effectively pushes entries {n, n − 1, . . . , n − k + 1} to the
right. As consecutive integers will never be swapped by a Knuth move, it follows that the
Knuth equivalence class generated by π consists of the permutations that have the integers
{n, n− 1, . . . , n− k + 1} in decreasing order and the integers {1, 2, . . . , n− k} in increasing
order. Thus, these determine the vertices of Gλ where there is an edge between vertices π

and σ when π
1,2∼= σ.

We now will describe Gλ in terms of sequences. From above it follows that the vertices of
Gλ can be uniquely determined by the positions of the integers n, n− 1, . . . , n− k+ 1 in the
associated permutation. With this observation we introduce a new labeling of each vertex
of Gλ to be the index sequence of the positions of the integers n, n− 1, . . . , n− k + 1 in the
corresponding permutation. See Figure 4.2(a) for an example of this labeling. Recall an edge
between vertices means a Knuth swap occurred; that is, an integer from n, n−1, . . . , n−k+1
moved from position i to i+ 1. In terms of this new labeling, this means two vertices share
an edge when the corresponding sequences have a difference of 1 in only one position.

Next we define a poset structure Lλ on the vertices of Gλ and prove it is a distributive
lattice. The sequence description of Gλ produces a natural component-wise ordering on its
vertices. For sequences s = (i1, i2, . . . , ik) and s′ = (j1, j2, . . . , jk) in Lλ, we say s ≤Lλ s′
if ir ≤ jr for 1 ≤ r ≤ k. Define the function max: Ltλ → Lλ to be the component-wise
maximum. Define the function min similarly. Since Lλ is finite, then max and min are
well-defined. Moreover, since max and min are distributive on each component, it follows
that they are distributive on Lλ as well. Thus, (Lλ,≤Lλ) is a distributive lattice.

By Birkhoff’s representation [50] theorem there exists a poset of order ideals isomorphic
to Lλ. We now construct the poset Pλ such that Lλ ∼= J(Pλ). We construct Pλ by describing
the join-irreducible elements of Lλ. The order on Pλ will follow from the component-wise
order on Lλ.

Consider the following edge labeling of Gλ. The edge between s′ and s is labeled Mi,i+1(l)
to indicate that position l is the location where s′ and s differ by 1. As these edges correspond
to Knuth moves in Gλ, we will refer to the label Mi,i+1(l) as a move. See Figure 4.2(b) for an
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(a) A vertex labeling by index sets and an edge labeling by Knuth moves for Cλ where λ = (4, 12)

M23(2) 

M34(2) 

M45(2) 
M12(1) 

M23(1) 

M34(1) 

(b) The PIP Pλ constructed from edge labels of Cλ for λ = (4, 12), such that the order ideals of Pλ
correspond to vertex labels of Cλ.

Figure 4.2: Given λ = (4, 1, 1), we construct Cλ and the associated PIP P .

example of this labeling. Since λ is a hook, there are no double edges in Gλ so this labeling
is well-defined.

The join-irreducible elements of Lλ are those that have a unique cover relation. For
a sequence this means there is only one entry that can be decreased by 1 and produce a
sequence still in Lλ. In particular, they are of the form

s = (1, 2, . . . , l, j, j + 1, . . . , j +m) such that l ≥ 0, j +m < n, j > l + 1 and l +m = k − 1.

When s has a unique cover relation, we identify it with the move Mj−1,j(l + 1). Define Pλ
to be the set of moves {Mj−1,j(l + 1)} associated with the join-irreducible elements s ∈ Lλ
with the order induced by Lλ. By construction,

Mj−1,j(l + 1) ∈ Pλ for 0 ≤ l ≤ k − 1 and l + 2 ≤ j ≤ l + k + 2.

It follows from the component-wise order on Lλ that the order on Pλ is

Mi−1,i(l + 1) ≤Pλ Mj−1,j(m+ 1) if l ≥ m and i− l ≤ j.
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Thus Pλ is just the product of two chains (k)× (n− k− 1). Therefore

Lλ ∼= J((k)× (n− k− 1)).

We will now regard Pλ as a PIP with no inconsistent pairs and show that the CAT(0)
cubical complex X(Pλ) from Definition 4.3.7 is isomorphic to the cubical complex Cλ of Gλ

rooted at π. To do this we will first describe explicitly the bijection between the vertices
of X(Pλ) and those of Cλ which follows directly from Birkhoff’s theorem. In particular,
the order ideal I generated by the set of moves {Mi,i+1(l)} corresponds to the following
k-sequence s(I). The l-th entry of s(I) is determined by the move that is maximal among all
moves in position l in I. For example, consider Pλ as in Figure 4.2(b). The ideal generated
by {M23(1)} is I = {M23(2),M34(2),M12(1),M23(1)}. Move M23(1) is maximal among all
Mi,i+1(1) ∈ I and M34(2) is maximal among all Mi,i+1(2) ∈ I. Thus, the corresponding
vertex in Cλ is the sequence s(I) = (3, 4). Similarly, I = {M12(1),M23(2),M34(2)} gives
s(I) = (2, 4).

To complete the proof, we give an explicit bijection between d-dimensional cubes of
X(Pλ) and d-dimensional cubes of Cλ. By Definition 4.3.7, this equates to giving a bijection
between a set of subideals of a consistent ideal of Pλ and a set of vertices that form a d-cube
in Cλ. Since all ideals of Pλ are consistent, consider any I ∈ X(Pλ). We know I corresponds
to a vertex s(I) = (i1, i2, . . . , ik) of Cλ. Let M be the set of moves determined by the
entries of s(I). For example, for I = {M12(1),M23(2),M34(2)}, we have s(I) = (2, 4) and
M = {M12(1),M34(2)}. Then I is equal to the ideal generated by M . Let Mmax = Imax and
d = |Mmax|. Then vertices of a d-cube in X(Pλ) are obtained by removing from I the 2d

possible subsets of Mmax. For M ′ ⊂ Mmax, removing M ′ from I corresponds to decreasing
the entries of s(I) in position l for every Mj,j+1(l) ∈M ′. So the set of 2d subsets of I obtained
by removing subsets M ′ corresponds to the set of 2d vertices of Cλ achieved by decreasing
s(I) in all positions determined by M ′. This completes the bijection and concludes the
proof.

Theorems 4.4.4 and 4.4.5 can be combined and restated in the following theorem.

Theorem 4.4.6. The graph Gλ is the 1-skeleton of a CAT(0) cubical complex if an only if
λ is a hook.
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