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Abstract 

Numbers and variables often follow the same principles of 
arithmetic operations, yet numbers can be computed to a value 
whereas variables cannot. We examined the effect of 
symbols—numbers versus variables—on middle school 
students’ problem-solving behaviors in a dynamic algebra 
notation system by presenting problems in numbers (e.g., 
3+5−3) or variables (e.g., x+y−x). We found that compared to 
problems presented in numbers, students attempted the 
problems more times and took more total steps when the 
problems were presented in variables. We did not find 
differences in pre-solving pause time or strategy efficiency on 
the two types of problems, indicating that students might notice 
problem structure in both types of problems. The results have 
implications for research on cognitive processes of symbols as 
well as the design of educational technologies. 

Keywords: variables, algebra, arithmetic, problem-solving, 
mathematical structure, online learning 

Introduction 
Abstract symbols are cognitive tools that support reasoning, 
problem-solving, and higher-level thinking (Koedinger et al., 
2008; Vygotsky, 1978). However, children’s struggles with 
abstract symbols are documented across development and 
domains. In mathematics, infants as young as six months of 
age can perceive differences in the quantity of sets of objects 
(e.g., 4 vs. 8; Xu & Spelke, 2000), yet the process of mapping 
sets of concrete objects (e.g., 4 cookies) to abstract number 
words or symbols (e.g., “four”, “4”) is protracted. Although 
two-year-olds can recite the count list, children may take 
another three years to reliably map number words to sets of 
objects (Gelman & Meck, 1983). In science, providing 
undergraduate students physical experimentations with 
concrete models before transitioning to virtual simulations 
better promote learning compared to the physical 
experimentations alone (Zacharia, 2007). These findings 
suggest the importance of abstract symbols yet students 
continually struggle with them.  

Fyfe et al. (2014) propose the concreteness fading theory, 
and recommend “beginning with concrete materials and then 
explicitly and gradually fading to the more abstract (p. 9)”. 
Doing so may help students interpret abstract symbols, 
ground them in physical experiences, and distill the 
generalizable properties. Building on this theory, we 
investigate the effects of numbers and variables on students’ 
algebra problem-solving. Focusing on students’ problem-
solving processes, we move beyond the traditional 
approaches that focus on the answer correctness to explore 
how symbols impact the microstructure of problem-solving.    

Algebra is an important building block for success in 
higher-level mathematics, yet many students struggle to learn 
algebra (Matthews & Farmer, 2008). One defining challenge 
is the shift from numbers to variables. Variables are letters 
that represent a range of unknown values and denote a 
systematic relation within expressions (Küchemann, 1981). 
While this shift from numbers to variables can be challenging 
for students, much research has found that using algebraic 
symbols in earlier years can promote a smooth transition 
(Blanton & Kaput, 2005; Carpenter et al., 2005). For 
instance, prior work has highlighted the instructional and 
developmental sequence transitioning students from 
arithmetic to algebra, such as using concrete numbers to 
support thinking about abstract unknown variables (Fyfe et 
al., 2014; Koedinger & Anderson, 1998). Although students 
are introduced to some concepts of algebra at a young age, 
including equivalence, rarely are they asked to work with 
variables before sixth grade (CCSS, 2010). Consequently, 
less is known about how variables may help students reason 
about algebraic structures and arithmetic principles.  

We hypothesize that variables may help middle schoolers 
avoid the impulse to calculate and provide them with 
opportunities to notice structures within algebraic equations. 
Although variables have typically been obstacles for most 
students (Kaput, 1998; Koedinger et al., 2008), this approach 
could potentially help bridge the gap between arithmetic and 
algebra by guiding students’ attention to the structure of the 
mathematical equations.  

Students’ Struggle with Variables 
Arithmetic is a foundation for algebra. Arithmetic relies on 
numbers that represent specific, known, and concrete values. 
Building on arithmetic, algebra introduces the use of 
variables, representing unknowns that cannot be simplified to 
a numerical value. Students often struggle to solve problems 
involving variables because solving these problems requires 
them to understand the meaning of variables, operate with 
unknowns, and make explicit relations between the unknown 
and the numbers (Malisani & Spagnolo, 2009; Philipp, 1992).  

Although the transition from arithmetic to algebra can be 
challenging, arithmetic and algebra share many underlying 
principles that are consistent across the use of symbols in 
mathematical notation (Booth, 1981, 1984). In arithmetic, 
students operate with numbers and apply mathematical 
properties (e.g., commutativity, associativity, distributivity) 
to transform or simplify expressions. Students vary in their 
conceptual understanding of these properties when operating 
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with numbers (Robinson et al., 2018), and this understanding 
is an important indicator of flexible problem-solving in 
arithmetic. Although students can benefit from leveraging 
these properties and noticing the structures of the algebraic 
equations (Kieran, 1989), this conceptual understanding 
often do not transfer (Robinson et al., 2006). Further, whereas 
students can simply compute using numbers, they have to 
rely on their understanding of these properties as the option 
to compute becomes more restricted with variables. 

Mathematical Structures and Strategy 
Noticing structures is an important foundation for algebra 
learning (Kaput, 1998; Venkat et al., 2019). There are two 
kinds of “structure”, surface and systemic structures (Kieran, 
1989). Surface structure refers to how the terms and operands 
are presented within an expression to create mathematically 
valid options for computing. For instance, “3 + 5 − 3” has the 
surface structure of 3 on the left, +5 in the middle, and  −3 on 
the right. Systemic structure refers to the underlying 
properties, such as commutativity, associativity, and 
distributivity, within the expression. The systemic structure 
of  “3 + 5 − 3” involves recognizing the inverse relation 
between 3 and −3, and applying the commutative property to 
simplify the expression to 5. Recognizing systemic structures 
can help students apply efficient problem-solving strategies. 

Understanding and noticing the systemic structure is an 
important aspect of flexible and efficient equation-solving 
(Rittle-Johnson & Star, 2007; Schneider et al., 2011), and a 
primary goal in mathematics education (CCSS, 2010). 
However, in numerical expressions, students can rely on the 
surface structure instead of leveraging systemic structure 
(Newton et al., 2020). For instance, in “3 + 5 − 3”, students 
may apply the computation from left to right in response to 
the surface structure (3 + 5 − 3 = 8 − 3, 8 − 3 = 5), and 
simplify the expression in two steps. Alternatively, 
leveraging the systemic structure, students can combine 3 and 
−3 to efficiently reach 5 in one step. Although students can 
use the surface structure to compute and simplify numbers in 
numerical expressions, the same approach does not apply to 
algebraic expressions involving variables. Instead, in “x + y 
− x”, students need to notice the systemic structure and 
combine x with −x in order to isolate y. As students progress 
from arithmetic to algebra, the need to notice systemic 
structure becomes more poignant. 

Prior work suggested that the ability to use efficient 
equation-solving strategies require relevant content 
knowledge and attention to structures (Rittle-Johnson & Star, 
2007; Schneider et al., 2011; Xu et al., 2017). Further, the 
amount of time that students pause before enacting their first 
step positively predicts the strategy efficiency, suggesting 
that pause time may provide a window for students to notice 
the systemic structure and in turn use more efficient strategies 
(Chan et al., 2020). Here, we examine the effect of symbols 
on problem-solving by compare middle schoolers’ behaviors 
on problems presented in numbers versus variables. 

The Current Study 
To examine how numbers and variables impact students’ 
problem-solving, we designed problems that were similar in 
systemic structure but varied in whether they were presented 
with numbers (e.g., 3 + 5 − 3) or variables (e.g., x + y − x). 
We present these problems in From Here to There! (FH2T), 
a web-based interactive game that builds on a dynamic 
algebra notation system (graspablemath.com; Weitnauer et 
al., 2016) to allow real-time manipulation of algebraic 
symbols on the screen. Using the log data within this system, 
we examine the microstructure of students’ problem-solving 
behavior. Specifically, we test whether presenting 
expressions in variables as opposed to numbers helps 
students suppress the impulse of performing computations 
leading to a longer pause time before their first action (RQ1). 
Further, we examine whether students struggle with 
expressions presented in variables as opposed to numbers by 
comparing the number of problem-solving attempts (RQ2) 
and steps students made prior to completing the problems 
(RQ3). Finally, we explore whether students’ strategy 
efficiency on their final solution, as measured by their 
solution steps, vary when expressions were presented in 
variables as opposed to numbers (RQ4). Investigating how 
students’ pause times, attempts, steps, and strategy efficiency 
vary by problem features extends prior work on the relation 
between pause time and strategy efficiency (Chan et al., 
2020) and demonstrates how symbols impact aspects of 
student behaviors during problem-solving. 

Based on the prior literature, we hypothesize that when 
expressions are presented in variables as opposed to numbers, 
students may pause longer prior to taking their first action 
(H1). They may also struggle more and consequently take 
more attempts (H2) and steps (H3) to complete the problem 
presented in variables. We do not have a directional 
hypothesis on students’ strategy efficiency (H4). While 
students may struggle less and be more efficient at solving 
problems presented in numbers, the variables may force 
students to notice the systemic structure of the expression 
leading to a decrease of unnecessary computations and a 
more efficient solution strategy that involve fewer steps. 

Methods 

Participants 
The sample was drawn from a larger study conducted in Fall 
2019. The aim of the larger study was to improve students’ 
algebra performance through educational technologies. 
Students were randomly assigned to one of two technology 
conditions at the student level within their classrooms. All 
students worked on their assigned technology at their own 
pace on their own device as a part of their regular instruction.   

Here, we focused on the 125 middle schoolers who 
received FH2T as their technology intervention and 
completed the four focal problems within FH2T. We 
designed the four focal problems to address our research 
questions regarding the effects of variables and numbers on 
students’ problem-solving.  
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These 125 students (57 girls) were recruited from four 
schools in a large urban district in the Southeastern United 
States. The majority of students were in sixth grade (98.4%), 
and the remaining were in seventh grade (1.6%). Most 
students were in advanced mathematics class (96%), and the 
remaining were in on-level (2.4%) or support (1.6%) classes. 
In terms of race, 64.8% were Asian, 26.2% were White, 4.1% 
were Hispanic or Latino, 2.5% were multiracial, 1.6% were 
American Indian or Alaska Native, and 0.8% were Black.  

Procedure 
All students began by completing  a pretest on algebra 
knowledge. After, students completed four 30-minute 
sessions using their assigned technology; they had two weeks 
to complete each intervention session. Then, they completed 
a posttest on algebra knowledge that mirrored the pretest. All 
study assessments and assignments were administered online 
in mathematics classrooms during instructional periods.  

We used the log data within FH2T and the algebra pretest 
for our research questions. The results on the efficacy of the 
learning technologies are reported in Chan et al. (2021), thus 
we only describe the tasks relevant to the current study. 

From Here to There! (FH2T) 

 
Figure 1: A sample problem in From Here to There!. 

 
In FH2T (https://graspablemath.com/projects/fh2t), students 
were presented with an initial expression at the top and a 
mathematically equivalent goal at the bottom in the white box 
(Figure 1). The objective was to transform the expression into 
the goal using a series of gesture-actions (e.g., tapping or 
dragging) that applying mathematical operations and 
properties.  As an example (Figure 1), a student could drag 
and distribute the 2 inside the parentheses to transform the 
expression into 2𝑦 + 2𝑦 ∙ %&'()&)*')*(

+)+
∙ 𝑦. All student 

actions were counted and reflected as the number of steps in 
the white box, informing students of how many steps they 
have taken to solve the problem. If students were stuck, they 
could reset the expression to the starting state and reattempt 
problems as many times as needed.    

Because all student actions and the corresponding 
transformations were time-stamped and recorded, we could 
systematically and quantitatively compare students’ 
equation-solving processes in ways not accessible in answer-
based learning systems or paper-and-pencil tasks (Figure 2). 
Furthermore, students could take any series of 
mathematically valid steps that link the initial expression and 

the goal. The activity thus provided an ideal context for 
examining variation in algebra problem-solving processes. 

 

 
Figure 2: A visualization of the data on a student’s 
problem-solving process for problem 2-Number. 

 
All students who received FH2T as their intervention in the 

larger study worked on problems in the same order starting 
from basic arithmetic operations to more complex topics, 
such as fractions, distributions, and algebraic equations. We 
designed and embedded two pairs of problems to directly 
compare student behaviors on problems with variables versus 
numbers. Within each pair, problems shared a similar 
systemic structure of the starting expression and the goal; the 
paired problems varied on whether the symbols were 
numbers or variables (Table 1). Both pairs of problems 
required six steps as the optimal solution strategy—
cancelling the opposite, cancelling the inverse, and 
simplifying the 0 and 1. For the primary analyses, we dummy 
coded the numerical problems as 0 and variable problems as 
1 in order to test the effect of variables as opposed to numbers 
on students’ problem-solving. 

 
Table 1: The paired problems with a similar structure 

presented in either numbers or variables. 
Pair Initial Expression Goal 

1-Number 2 + 2,
2 + 2 ∙ 2 − 2

2
. − 2 2 ∙ 2 

1-Variable −𝑧 + 𝑦 ,
𝑥 − 𝑎 ∙ −𝑎 − 𝑥

𝑦
. + 𝑧 −𝑎 ∙ −𝑎 

2-Number (4 − 4 − 3 ∙ −3) − 7 + 7 ∙ 2 ∙
1
2 −3 ∙ −3 

2-Variable 
1
𝑏 ∙ 𝑏 ∙

(−𝑏 + 𝑏 + 𝑏 ∙ 𝑏) + 𝑏 − 𝑏 𝑏 ∙ 𝑏 
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Measures 
Algebra Knowledge Assessment at Pretest  Students’ 
algebra knowledge was assessed with 10 items selected from 
a validated measure (Star et al., 2014; Cronbach’s α = .89). 
The 10 items were selected because they measured aspects of 
students’ algebra knowledge that were relevant to the 
intervention. Two sample items were as follows: solve for y 
in 5(y − 2) = 3(y − 2) + 8, and identify the expressions that 
are equivalent to 4(n + 3). Each item was scored as correct 
(1) or incorrect (0). The total score on this assessment was 
included as a covariate in all primary analyses.  
 
Measures in FH2T  All student actions were recorded for 
each FH2T problem. The five variables described below were 
computed based on the log data.  

 
Pause Time  We computed the number of seconds students 
spent before taking their first step—a valid transformation—
on their first attempt of each problem. This value represented 
the number of seconds from when the problem first appeared 
on the screen to when students took their very first step. As 
an example, the pause time in Figure 2 was 7.691 seconds. 
We used the pause time as the dependent variable for RQ1 in 
our analyses.  
 
Attempt Count  We computed the attempt count using the 
number of times students reset the problem. The attempts 
represented the number of times students tried to solve the 
problem. For example (Figure 2), the student reset the 
problem once, thus attempted the problem twice. We used the 
attempt count as the dependent variable for RQ2 in our 
analyses. 
 
Total Step Count We computed the total number of steps 
students took on the problems. The total step count consisted 
of all the steps students took from when the problem first 
appeared on the screen to when the expression matched the 
goal.  As an example, the student in Figure 2 took a total of 
eight steps on the problem. We used the total step count as 
the dependent variable for RQ3 in our analyses. 

 
Final Solution Step Count  We computed the number of 
steps students took to reach the goal on their final, successful 
attempt. If students completed the problem on their first 
attempt, the final solution step count included all the steps 
they took on the problem. If students reset and re-attempted 
the problem, the final solution step count only included the 
number of steps they took from when they last reset the 
problem to reaching the goal. As an example, the final 
solution step count in Figure 2 was six steps. We used the 
final solution step count as the dependent variable for RQ4 in 
our analyses. 
 
Exploratory Step Count Prior to the Final Attempt On the 
problems where students did not reach the goal on their first 
attempt, we computed the number of steps they took from 
when the problem first appeared on the screen to when they 

last reset the problems. We classified these actions leading up 
to their final attempt as exploratory steps. Exploratory step 
count represents the amount of actions students took prior to 
their final successful attempt of solving the problem. For 
example (Figure 2), the student took two exploratory steps 
before they reset the problem and solved it on their next 
attempt. We used the exploratory step count as a covariate for 
RQ4. Because students who took more exploratory steps had 
more opportunities to practice with the problems and might 
use more efficient strategies involving fewer steps on their 
final solution, we included exploratory steps as a covariate to 
account for the potential practice effects on students’ final 
strategy efficiency.  

Results 
Prior to addressing the research questions, we conducted 

descriptive analyses to examine the distribution of the algebra 
pretest scores and the measures in FH2T for each focal 
problem. Because students could take as many attempts and 
steps as needed to reach the goal, we used the interquartile-
range methods to replace outliers (Walfish, 2006). This 
method extracted the top and bottom 25% values from the 
data. Within these two quartiles, the values that were beyond 
1.5 times the interquartile range were considered as outliers. 
These values were then replaced with either the fifth or 
ninety-fifth percentile observation value. This method 
allowed us to retain all participants in the analyses while 
avoiding the results being distorted by the influential cases. 

To address our research questions, we conducted a series 
of mixed-effect linear regression models on the two pairs of 
problems using the lme4 package (Bates et al., 2015) with 
maximum likelihood estimation in R. In each model, we 
included students as a random effect to account for the 
repeated measures (i.e., all students completed all four focal 
problems), the algebra knowledge score as a covariate, and 
the symbol of the problem (variables vs. numbers) as the 
focal predictor. To address our first research question, we 
conducted a mixed-effect linear model with pause time as the 
dependent variable. Next, we replaced pause time with 
attempt count or total step count as the dependent variable to 
address our second and third research question, respectively. 
Finally, we used the final solution step count as the dependent 
variable for the fourth research question. We included 
exploratory step count as an additional covariate to examine 
whether symbols (number vs. variable) impacted students’ 
final strategy efficiency above and beyond the practices they 
had with the problem. To aid the interpretation of the results, 
all covariates (i.e., algebra knowledge score, exploratory step 
counts) were mean-centered in all models. 

Descriptive Analysis 
On average, students scored 7.18 points (SD = 2.22) on the 
algebra knowledge assessment, indicating that the scores 
were not subject to ceiling or floor effects. A total of 500 
problems were completed by the 125 students (each student 
completed four focal problems). See the descriptive statistics 
(Table 2) and the data distribution (Figure 3) below.
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Table 2: Means and (standard deviations) of the FH2T measures on each problem. 

 Pair1 Pair 2 
 Number Variable Number Variable 
Pause time	 9.08 (6.47)	 8.90 (6.65)	 8.96 (6.81)	 8.67 (6.10)	
Attempts 1.51 (1.15) 3.36 (1.75) 1.57 (1.04) 2.62 (2.00) 
Total Steps 8.92 (4.94) 19.41 (8.71) 11.78 (6.15) 15.45 (10.00) 
Solution Steps 6.94 (1.57) 7.36 (1.51) 8.46 (1.75) 8.17 (2.00) 
Exploratory Steps 1.87 (4.52) 11.96 (8.56) 3.29 (6.31) 7.42 (10.24) 

 

 
Figure 3: Density plots of the dependent variables by problem. 

 
 

Table 3:  Fixed effect estimates (standard errors) in the mixed-effect linear regression models. 
Dependent variable Model 1: Pause  Model 2: Attempts  Model 3: Total steps  Model 4: Final steps  
  Pair 1   Intercept 9.49 (0.62)*** 1.52 (0.14) *** 8.74 (0.66)*** 6.91 (0.15) *** 
               Algebra 0.33 (0.21) -0.02 (0.05) -0.26 (0.21) -0.14 (0.05) ** 
               Exp. Steps -- -- -- 0.002 (0.01) 
               Variable -0.15 (0.72)  1.85 (0.17) *** 10.49 (0.87)*** 0.40 (0.23) 
  Pair 2  Intercept 8.98 (0.60)*** 1.59 (0.15) *** 11.92 (0.77)*** 8.45 (0.18)*** 
              Algebra -0.07 (0.19) -0.02 (0.05) -0.25 (0.25) -0.14 (0.06) * 
              Exp. Steps -- -- -- -0.27 (0.20) 
              Variable -0.29 (0.80)  1.06 (0.19) *** 3.67 (1.00) *** -0.01 (0.01) 
Note. Algebra = Algebra knowledge score; Exp. steps = Exploratory step count, Variable = Symbol (variable = 1, 
number = 0).* indicates p < .05; ** indicates p < .01; *** indicates p < .001 

Primary Analyses  
All primary analyses were first conducted with the first pair 
of problems, then repeated on the second pair of problems. 
Because the pattern of the results was consistent between the 
two pairs of problems, we summarized the findings below 
and presented the results in Table 3.  

A generalized mixed-effect model revealed that students’ 
pause time before first action did not differ whether the 
problems were presented in variables or numbers (Model 1). 
Next, we found that students attempted the problems 1.85 
(Pair 1) or 1.06 (Pair 2) more times when they were presented 
in variables as opposed to numbers (Model 2). Students took 
10.49 (Pair 1) or 3.67 (Pair 2) more steps on problems 
presented in variables as opposed to numbers (Model 3). 
Finally, students’ final solution steps did not differ by 
symbols, but students with higher algebra knowledge tended 
to take fewer steps on their final solution. Specifically, for a 
student with the average score on the algebra knowledge 
assessment, a one-point increase in the assessment was 

associated with 0.14 steps decrease in final solution steps 
(Model 4).  

Discussion 
The aim of this study is to examine how variables and 
numbers impact students’ algebra problem-solving 
behaviors. We address the aim by testing the effect of 
presenting problems in variables as opposed to numbers on 
aspects of students’ behaviors. Our findings provide insights 
into ways in which symbols—specifically variables and 
numbers—influence students’ problem-solving. The results 
have implications for future research on algebra problem-
solving, and instructional practices on guiding students’ 
attention to the systemic structures of expressions within 
learning technologies.   

First, contrary to our hypothesis, students do not pause 
longer on problems presented in variables as opposed to 
numbers. On average, they pause for approximately nine 
seconds prior to taking their first step. The pause time is 
longer than that of guessing (five seconds; Kong et al., 2007), 
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suggesting that students may be thinking and planning  during 
pause time (Chan et al., 2020; Welsh et al., 1995). The 
comparable pause time suggests that presenting problems in 
variables does not force students to pause longer, inhibit the 
impulse to calculate, or notice the systemic structures.  

Next, students made more attempts and steps on problems 
presented in variables as opposed to numbers. Although these 
actions may indicate explorations within the context of an 
intervention, they may also indicate student struggles. 
Students can explore all problems as much as they want in 
FH2T, but they tend to solve problems presented in numbers 
in one attempt, suggesting that they may be solving  problems 
efficiently rather than exploring. The higher attempt and step 
counts in variable problems thus may be signs of student 
struggles, aligning with previous research documenting the 
difficulties of understanding and solving problems involving 
variables (Heffernan & Koedinger, 1998; Malisani & 
Spagnolo, 2009; Philipp, 1992). The findings further suggest 
some convergence across contexts, and student behaviors in 
FH2T may providing some insights into their reasonings 
about algebraic symbols beyond the game.  

Extending beyond prior research, we find that students 
solve problems presented in variables just as efficiently 
(using a similar number of final solution steps) as problems 
presented in numbers on their final solution, albeit they take 
more attempts and steps on variable problems prior to their 
final solution. Considering the relatively long pause time, low 
attempt count, and high strategy efficiency, as measured by 
the final solution step count, we posit that students may notice 
the systemic structure within the problems presented in 
numbers. Although students pause for a similar amount of 
time on variable problems, they took more attempts and steps 
prior to using an efficient final solution strategy, indicating 
that presenting problems in variables do not help students 
notice the systemic structures but interacting with problems 
may help. The findings suggest that presenting problems in 
non-calculatable variables may not be sufficient in guiding 
students’ attention to systemic structures of problems, but  
providing them with opportunities to dynamically manipulate 
algebraic symbols may help. This aligns with the theory of 
concreteness fading (Fyfe et al., 2014), and demonstrates the 
importance of explicitly drawing connections between 
concrete materials and abstract symbols as well as grounding 
abstract symbols in concrete, perceptual, and physical 
experiences. Prior work has demonstrated the efficacy of 
FH2T in improving students’ mathematical performance 
(e.g., Chan et al., 2021; Ottmar et al., 2015). FH2T may be 
one way to provide students the concrete experiences with the 
abstract algebraic symbols. Future research should explore 
how FH2T support algebraic reasoning, and ways to 
explicitly draw connections between numbers and variables.  

Several limitations warrant mention. First, given the nature 
of the intervention, the paired problems are not identical in 
the problem structure. As an example, the first number 
problem starts with 2 and ends with -2 whereas the first 
variable problem starts with -z and ends with +z. Further, the 
former involves all 2s whereas the latter involves other 

variables. Second, the order in which the problems are 
presented was not counterbalanced. In both pairs of 
problems, students received the variable problems followed 
by the number problems. Third, the majority of the sample 
was Asian students in advanced mathematics classes, and is 
not representative of the US population. We are currently 
conducting a larger randomized controlled trial with middle 
school students from a large, public school district. When the 
data become available, we will replicate the current findings 
with a larger, more diverse sample and with more problems 
that matched exactly on the systemic structure and 
counterbalanced on the presentation order. Furthermore, we 
plan to conduct additional analyses on the visualization of 
students’ problem-solving (e.g., Figure 2) to reveal the 
sequence of steps that students take. Visualizing students’ 
problem-solving steps will provide insights into whether 
students leverage the systemic structure of the problem to 
efficiently reach the goal.    

Overall, the study reveals ways in which symbols influence 
students’ problem-solving processes, and contribute novel 
findings to the literature on the transition between arithmetic 
and algebra. Going beyond correctness, we investigate 
students’ behaviors in problems presented in variables versus 
numbers to demonstrate how symbols may impact students’ 
behavior at a microlevel while problem-solving. The findings 
provide important information for future research examining 
students’ conceptualization of numbers and variables, and 
how the conceptualization impacts aspects of students’ 
mathematical thinking, learning, and problem-solving. The 
findings also have implications for designing educational 
technologies that support algebra problem-solving through 
drawing explicit connections between symbols and ground 
abstract variables in concrete, embodied experiences.  
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