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The Photon Counting Histogram in Fluorescence
Fluctuation Spectroscopy

Yan Chen,* Joachim D. Miiller,* Peter T. C. So,* and Enrico Gratton*

*Laboratory for Fluorescence Dynamics, University of lllinois at Urbana-Champaign, Urbana, lllinois 61801 and *Department of
Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA

ABSTRACT Fluorescence correlation spectroscopy (FCS) is generally used to obtain information about the number of
fluorescent particles in a small volume and the diffusion coefficient from the autocorrelation function of the fluorescence
signal. Here we demonstrate that photon counting histogram (PCH) analysis constitutes a novel tool for extracting quantities
from fluorescence fluctuation data, i.e., the measured photon counts per molecule and the average number of molecules
within the observation volume. The photon counting histogram of fluorescence fluctuation experiments, in which few
molecules are present in the excitation volume, exhibits a super-Poissonian behavior. The additional broadening of the PCH
compared to a Poisson distribution is due to fluorescence intensity fluctuations. For diffusing particles these intensity
fluctuations are caused by an inhomogeneous excitation profile and the fluctuations in the number of particles in the
observation volume N. The quantitative relationship between the detected photon counts and the fluorescence intensity
reaching the detector is given by Mandel's formula. Based on this equation and considering the fluorescence intensity
distribution in the two-photon excitation volume, a theoretical expression for the PCH as a function of the number of
molecules in the excitation volume is derived. For a single molecular species two parameters are sufficient to characterize the
histogram completely, namely the average number of molecules within the observation volume and the detected photon
counts per molecule per sampling time e. The PCH for multiple molecular species, on the other hand, is generated by
successively convoluting the photon counting distribution of each species with the others. The influence of the excitation
profile upon the photon counting statistics for two relevant point spread functions (PSFs), the three-dimensional Gaussian
PSF conventionally employed in confocal detection and the square of the Gaussian-Lorentzian PSF for two photon excitation,
is explicitly treated. Measured photon counting distributions obtained with a two-photon excitation source agree, within
experimental error with the theoretical PCHs calculated for the square of a Gaussian-Lorentzian beam profile. We demon-
strate and discuss the influence of the average number of particles within the observation volume and the detected photon
counts per molecule per sampling interval upon the super-Poissonian character of the photon counting distribution.

INTRODUCTION

The systematic and quantitative study of fluctuations started The inherent sensitivity and specificity of fluorescence
at the beginning of this century with the invention of the spectroscopy suit this technique for fluctuation studies, with
ultramicroscope. This instrument permitted for the first timeits requirement of high background rejection and low sam-
the detection and study of particles with a diameter of lesple concentration. In the early 1970s Magde, Elson, and
than 0.1um (Siedentopf and Zsigmondy, 1903). Fluctua- Webb (Elson and Magde, 1974; Magde et al., 1972) intro-
tion experiments with the ultramicroscope by Perrin andduced fluorescence correlation spectroscopy (FCS) and ap-
others beautifully confirmed the theory of Brownian motion plied the technique to investigation of the diffusion and
and diffusion developed by Einstein and Smoluchowski.binding of ethidium bromide to double-stranded DNA. To
The results of their experiments contributed significantly tokeep the average number of particles in the observation
the acknowledgement of the physical reality of the atomisticvolume small and at the same time reject the background
theory and helped to establish the study of fluctuationsignal, it becomes necessary to work with small volumes.
phenomena as a new branch of physics. Fluctuation spedhe implementation of confocal (Qian and Elson, 1991;
troscopy is at present an extremely diverse field with appli-Rigler et al., 1993a; Koppel et al., 1994) and two-photon
cations ranging from spin glasses and superconductors f@icroscopy (Berland et al., 1995) with their tiny observa-

biological cells (Braun et al., 1994; Rabin et al., 1998;tion volumes ¥ =~ 1 um®) greatly increased the sensitivity
Weissman, 1993). of FCS and pushed the detection limit to the single-mole-
cule level (Rigler et al., 1993b; Eigen and Rigler, 1994).
FCS can be used to study kinetic processes, which cause
fluctuations in the fluorescence intensity. The time-depen-
nggived for publication 18 December 1998 and in final form 15 March yant decay of these fluctuations is characterized by the
Addr(.ess reprint requests to Dr. Yan Chen, Laboratory for FluorescencaUtocorrelatlon fUﬂCtlorg(T), which is dlrt_actly attained
Dynamics, University of lllinois at Urbana-Champaign, 184 Loomis Lab, ?rom FCS e>'<per|ments. There are theoretlcgl models fqr a
1110 West Green, Urbana, IL 61801. Tel.: 217-244-5620; Fax: 217-2440Umber of kinetic processes, such as diffusion or chemical
7187; E-mail: yan@lfd.physics.uiuc.edu. reactions (Elson and Magde, 1974; Ehrenberg and Rigler,
© 1999 by the Biophysical Society 1974; Aragon and Pecora, 1975). FCS has been applied to
0006-3495/99/07/553/15  $2.00 the study of translational and rotational diffusion (Koppel et
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al., 1976; Kask et al., 1989), flow (Magde et al., 1978),autocorrelation function and its molecular brightnedsy
chemical reactions (Magde et al., 1974), triplet state kineticshe photon counting histogram. However, the average num-
(Widengren et al., 1995), hybridization reactions (Kinjo andber of molecules\ can be recovered by both methods and
Rigler, 1995; Schwille et al., 1996), and protein-ligand was used to compare the analysis techniques.
interactions (Rauer et al., 1996). Kinetic processes on sur- We generalize the theory of the photon counting histo-
faces and in bulk solutions were characterized by FCSram to a mixture of species and demonstrate it experimen-
(Koppel et al., 1976; Borejdo, 1979; Thompson and Axel-tally for the case of two species. Resolving a mixture of
rod, 1983). In the case of pure translational diffusion twospecies into its components can be a vexing problem in
parameters can be recovered from the autocorrelation fundluorescence fluctuation spectroscopy. The autocorrelation
tion; the average number of moleculdsn the observation function offers a way to separate species, if their diffusion
volume, which is inversely proportional to the valueg®)  coefficients differ substantially. PCH analysis offers an-
and the diffusion coefficier of the particles (Magde et al., other way to distinguish between different species, which is
1978; Palmer and Thompson, 1989a). based on the difference in brightness between the molecular
Besides correlation functions, probability distributions species and not on the temporal behavior of the fluctuations.
are most commonly used to describe random process&hus PCH analysis can provide information that is not
(Bendat and Piersol, 1971). While the temporal behavior ofccessible through the autocorrelation function. This capa-
fluctuations is best described by the autocorrelation funchility is a major advantage, inasmuch as the analysis of
tion, the amplitude of the fluctuations is characterized by itssystems composed of multiple species is ubiquitous in
probability distribution. Here we are specifically interestedbiophysics.
in the probability distribution to detedt photons per sam-
pling time for typical fluorescence fluctuation experiments. THEORY

This probability is experimentally determined by the histo- ] ) ] )
gram of the detected photons, which will be called photon'” this section we derive an expression for the PCH of freely

counting histogram (PCH). diffusing molecules and explicitly allow for quctuatiprys in
The probability to deteck photoelectrong(k) per sam- the number of molecules: To arrive gt such gdescrlptlon we
pling time in fluorescence fluctuation experiments has so fafirst treat the case of a single diffusing particle enclosed in
received relatively little attention (Qian and Elson, 1989, Small volume. The shape of the excitation profile deter-
1990). In this work we develop a theoretical expression forMines the PCH under this condition and will be treated
the photon counting histogram based on the theory of phoEXPlicitly for two different cases. Subsequently we will
ton detection (Saleh, 1978). The shape of the point sprea@Pand the model to include more than one diffusing par-
function (PSF) is taken explicitly into consideration, while ficle in the same enclosed volume. In the last step we
allowing Poissonian number fluctuations of the particles inf€MoVve the boundary volume and develop the theory for an
the observation volume. The fluorescence fluctuation®P€n System with Poissonian number fluctuations. We start
caused by a small number of particles in the observatio?y considering the statistics of the photon detection process.

volume yield a super-Poissonian distribution of photon

counts. A super-Poissonian distribution has a width that i$’hoton detection

broader than its mean, whereas for a Poissonian distributiof . |4, light levels typically encountered in FCS experi-
the width and the mean have the same value. We show that ., .« require the use of photon counting techniques to-

for a single chemical species two parameters uniquely chalze o with efficient single photon detectors such as photo-

acterize the distribution of photon counts, the average nuMMg, , sipjier tubes (PMTs) or avalanche photodiodes (APDS).
ber of molecules in the observation volumié and the 1o elementary event in the detection process is the gener-

molecular bnghtn?sd&. Thedmﬁlecular br|ghtne|§s IS the ation of a charge separation after the absorption of a photon
average number of detected photons per sampiing tu_ng P y the detector. This photon-induced charge is then subse-
molecule and plays a fundamental role in the statistica

¢ FCS K | 1974) The infl uently amplified to yield an electronic signal. The primary
accuracy o measurements (Koppel, ). The in u'step in the detection process involves the interaction of a

ence of both parameters on the shape of the histogram E‘noton with matter, which is purely guantum mechanical in
discussed. . . nature. However, for most cases a semiclassical description
.TO test the theory, fluorescence fluctuation experiment,¢ i getection process, in which the electromagnetic field
with a tV\_/o-phot.on microscope were performed. The photoqs treated classically and only the atomic system is described
count distribution O.f fluorescent dyes was measured afqnqm mechanically, is sufficient to cover most experi-
different concentrations and compared to the theory. Tqne ) sityations (Saleh, 1978). The resulting photon count-

extractfthe a\;]erage ngmber ?f dmOIGCUMMd the blrlghF—h ing statistics for the semiclassical case has been worked out
nesse from the experimental data, a computer algorthmy,q is referred to as Mandel's formula (Mandel, 1958):

was developed, which fits the experimental PCH to the
theory. The same experimental data set determines both the “ (mwW(t)) ke~ ™WO
autocorrelation function and the photon counting histogram. ~ pk t, T) = K pPOW(D)dW(). (1)

For a single species the diffusion is determined by the 0
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The probability p(k, t, T) of observingk photoelectron our current experimental situation is fully described by the
events at timd depends on the statistical properties of thesemiclassical picture.

light reaching the detector, the detection efficiengy, and As mentioned earlier, the fluctuation of the light intensity
the integration timel. The energy of light falling upon the 1(t) will cause additional broadening of the photon counting
detector surface is given by the light intensity, t) inte-  histogramp(k, t, T), which depends on the integration time

grated over the time periofl and the detector are& T. In the limit of long integration times, — oo, the intensity
fluctuations will be completely averaged out in the corre-

bl sponding fluctuations of the light energy(t). The proba-
WI(t) = J [ I(r, dA dt. (2) bility distribution p(W) approaches a delta function, and the
t A PCH will narrow to a Poissonian. In the other extreme, for

very short integration timeg, — 0, the energy fluctuations

The photon counting distributiop(k, t, T) is thus the . ; ) .
. . T, W(t) will completely track the intensity fluctuationKt).
Poisson transformation of the energy distributia(t)). Thus the probability distributions of the energy and inten-

From a mathematical point of view, Eq. 1 constitutes a . .
i . : sity are proportional to each othep(W) = p(I)At. To

doubly stochastic Poisson point process based on the two . . . .
capture intensity fluctuations of a particular process of

sources of randomness encountered (Snyder, 1975). The . ; . o
. L ._interest in the photon counting histograutk, t, T), it is
first is quantum mechanical in nature and reflects the dis- . o
mandatory to choose an integration tifiehorter than the

creteness and statistical independence of the photoelectrf'ﬁJ ctuation time scale for that particular process. We will

detection process for coherent electromagnetic radiation. . A
. L .__assume for the rest of the paper that the integration fime
This fundamental form of noise is also known as shot noise,
; . . .—Is chosen to be short enough such that the energy fluctua-
a random Poisson point process, which cannot be elimi:; ) . ; .
. . tions track the intensity fluctuations of interest. We can thus
nated. Thus even if the light source has absolute constant . , . .
. L B < . rewrite Mandel’s formula by replacing the energywith
intensity withp(W) = 8(W — W), the resulting photon count . : .
S LT : the intensityl at the detector:
distribution due to the shot noise is given by a Poisson

distribution, « (e .
kg W p(k) = f R p(lp)dlp = J' Poi(k, mlp)p(lp)dip.
Poi(k, (k) = % 3) &

4)

The variancdAk?) serves as an indicator of the width of a For simplicity. we take the detector ara: mall enouah
distribution and for the Poisson distribution is equal to its or simpicity, we take the detector arfas small enougn,
so that the intensity field is constant across the detector

average value{Ak?) = (k). . > VS -
The second source of noise is fluctuations in the IightSurface with a short sampling time interval bf= At. We

intensity reaching the detector, which are characterized bgsoeﬁzse%rgjc:oa tﬁ?;g:gc%ocfssérstioe;hs; tt?w??llljitzgtit;\me
the probability distributionp(W). Any fluctuations in the rl?t ey | and tharef P tP oend o th 9
light intensity will cause an additional broadening of the 'ght Intensity I and theretore no ime dependence 1o he
photon counting histogram(k, t, T) compared to a Poisson photon_countmg hlstograr_p(k). 'I_'h_e new constani, Is
distribution (Mandel and Wolf, 1995). This is immediately ProPortional to the detection efficiency,, and takes the
clear from the structure of Eq. 1, which constitutes a superS2MPIiNg imeT = At into accountn, = Ty,.
position of Poisson distributions for each of the energy
valuesW, with the amplitudes given by the value pfw).
The distributionp(k, t, T) is now characterized by a variance
(AK?) greater than its mean valuéAk®) > (k), which is  The small excitation volume generated by the microscope
classified as super-Poissonian (Teich and Saleh, 1988). optics allows the effective observation of fluorescence in-
A sub-Poissonian distribution is hence analogously detensity fluctuations. The spatial intensity distribution of the
fined by a variancéAk®) smaller than its meaAk?) < (k). excitation light is characterized by its PSF. In our context it
Mandel’s semiclassical formula, however, excludes the exis more convenient to define a scaled PSF:
istence of sub-Poissonian statistics. It is, nevertheless, pos-
sible to generate photon counting histograms with a width
narrower than the mean, as first demonstrated in resonance
fluorescence experiments (Short and Mandel, 1983). To
understand these properties one has to abandon the serfibich is normalized at the origin.
classical theory and use the corresponding photon counting FOr our experimental two-photon setup, the PSF is well
statistics for the full quantum mechanical case, which wagPproximated by the square of the Gaussian-Lorentzian
developed by Glauber (1966). The full quantum mechanicaP€am profile (Berland et al., 1995):
description allows new states not covered by the semiclas- (0, 2) 4ot 407
sical theory, including squeezed states of light (Walls, 1983)  BgE_ (5, 2) = (p. 2 _ % exp{— P ] )
and photon antibunching (Kimble et al., 1977). However, ' 15 T0'(2) (2)

Point spread function

PSFX, Y, 2)

PSKx,y, 2) = PSH0. 0,0’ (5)
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The PSF is expressed in cylindrical coordinates for arzero otherwise:
excitation wavelengtih and a beam waist of the excitation

profile w,. The inverse of the Lorentzian along the optical - 1IN, forf €V,

is is qi p(r) = = : (11)
axis is given by 0, forr ¢ V,

z\? T, Inserting the probabilityp(f) and Eqg. 10 into Mandel’s
2 — 2 - H _ .
w2 = ‘”0(1 + (ZR> ) with zz = ——. ™ formula (Eq. 4) yields the following result:

Another important case is confocal detection, where the
depth discrimination is achieved via a pinhole at the detec- p(K; Vo, €) = fPoi(k, €PSRT))p(r)dr
tor. The PSF in confocal spectroscopy is given by the
convolution of the excitation PSF, and the detection PSF (12)

and has been considered in detail (Qian and Elson, 1991). It

1 e
was shown that concerning FCS, the PSF is nevertheless - \Qf Poi(k, ePSKr))ar,

well approximated by a three-dimensional Gaussian (Rigler Vo
etal., 1993a). wheree is given bye = IgB8n,. Equation 11 is the funda-
1%, y, 2) A2 +y) 27 mental equation for determining the P@R(k; V,, €) for a
PSFpe(X, Y, 2) = ,I = exp[—w2 - g , single molecule. It is the weighed average of Poissonian
0 0

®) distributions, each with a mean ePSF¢), over the volume
V,. If we consider, instead of a freely diffusing particle, a
with an effective beam waist, in the axial direction. particle fixed at positionf,, the resulting PCH vyields a
The fluorescence intensity, at the detector for a fluoro- Poissonian with a mean @PSF():
phore at positiorf, is given by the PSF and the excitation

intensity |, at the center of the PSF: p™ed(k, ro) = Poi(k, ePSKT)). (13)
I = INBPSHT,). (9)  The average photon cout) of the PCHp™(k; Vo, €) is
given by
For two-photon excitation the fluorescence intensity is pro-
portional to the square of the excitation intensity= 2), e [ Vesr
whereas for normal excitation it is proportional to the ex- (ky = VJ PSHIdr = e~ (14)
citation intensity § = 1). The coefficient@ contains the °Jy, °

excitation probability, the fluorescence quantum vyield, and _ _
all of the instrument-dependent factors, such as the trand-he average photon counts are essentially determined by the
mittance of the fluorescence through the microscope opticBarametere and the probability of finding the molecule

and the quantum yield of the detector. within the volume of the point spread functipn= Vpgd Vo,
The molecular brightness = 1581, T scales with the

sampling timeT, but the ratioe... = €/T is independent of
PCH for a single particle the arbitrary sampling tim@&. The new parametes,..can

be used to express the brightness in counts per second per

To model the photon counting histogram of fluorescencgy,gjacyle (cpsm) and allows a more convenient comparison
fluctuations, we need to combine the PSF with Mandel’sbetween experiments

formula. Equation 9 connects the intensity at the detector 4, e will explicitly calculate the probability distribu-
with the positionf of a fluorescent particle. Thus we can tion for a single molecule according to Eq. 12 for the two

express the probabilitp(lp) with the help of Eq. 9 as point spread functions discussed earlier. For mathematical
convenience we will integrate Eq. 12 over all space, but still
_  NADEE I\ (P A2 reference to a volum¥,. Because the reference volurig
plo) = JS(ID laBPSKT))p(r)ar, (10) is chosen so that the PSF is essentially contained within it,
there are no additional photons excited outside of the ref-
where the transformation property of probabilities was ap-erence volumé/,, and the change in the probabilipf”(k;
plied (van Kampen, 1981). Before we insert Eq. 10 intoV,, €) caused by the change in the integration limits to
Mandel's formula, we need to choose the appropriate probinfinity are negligible except fok = 0. Outside the PSF no
ability distribution p(f). Let us assume a single particle photons will be generated, and the additional contributions
enclosed within a volum¥,,. The particle can diffuse freely made by changing the integration limits lead to the diver-
within the bounds of the volum¥,. Because the particle gence of the integral fdt = 0. The probabilityp™(0; V,, €)
can be found with equal probability at any position within of receiving no photon counts is simply determined by using
the volumeV,, the probabilityp(r), if T is within the volume,  the normalization condition of probability distributions, so
is simply given by the inverse of the total volume and isthatp®(0; V,, €) = 1 — =p_,; pP(k; V,, €). The following
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equations are all derived by integrating over all space ands given by

are only applicable fok > 0. Note that the probability

pD(k; Vo, €) of receivingk photon counts for a reference L I -
volume V, is just an intermediate step in deriving an ex- p™(k; Vo, ©) = J ' 'jdrldb' -+ dnp(FOp(F2) - - -p(f)
pression for the probability of an open system with fluctu-

ations in the particle number. As expected, the choice of the N

reference volumeV, is of no consequence for the final Poi(k, € EP—SR’E)). (18)
probability of an open system, as will be shown later. i=1

Now we can determine the PCH for a single molecule and

(N (1¢- _ i
a particular PSF of interest. Let us first focus on the case o ecause the PClﬁ (k; Vo, €) for the.N particle case has
o . N integration variables, the evaluation of Eq. 18 becomes
two-photon excitation, where our PSF can be approximate

by the square of a Gaussian-Lorentzian. We insert Eq. 6 imgomputanonally formidable. However, if the p.ar.t|cles-are
; : - noninteracting, then we can treat them as statistically inde-
Eq. 12, integrate analytically over, and simplify the ex-

. : . . pendent variables. We can therefore exploit the fact that the
pression for the PCH of a single particle to a One'd'men'moment-generating function for the sum of statistically
sional integral: independent variables is given by the product of the mo-
ment-generating functions for each stochastic variable (van
s [~ de Kampen, 1981). Thus the probability distribution for the
pieu(k; Vo, €) = V, 20K 1+ X2)7<k, M)“ sum of statistically independent variables is the convolution

0 of the probability distribution of the individual stochastic
variables (Feller, 1957). The PCH for two independent
particles is therefore given by the convolution of the PCH

) ) ] . for the one particle case with itself,
The integral, which contains the incomplete gamma func-

tion y, can be numerically evaluated. p?(K; Vo, €) = (p? & pY)(k; Vo, €)
The second case we will consider is for the three-dimen-
sional Gaussian PSF. Again, inserting the equation for the B - @ ' Do
PSF (Eq. 8) into Eq. 12, an analytical integration leads to the = 2 pPk—r; Vo, pU(r; Vo, o). (19)
PCH in the form of a one-dimensional integral, =0

fork>0. (15)

By repeating the convolution of the probability distribution

TwiZy [~ pP(K; Vo, €) N-times the PCH foN identical, but indepen-
psa(k; Vo, €) = Vok!j y(k, ee ®)dx, fork>0. dent particles can be generated,
0
(16) Pk Vo, &) = (p? ® - - @ pY)(k; Vo, €). (20)
N-times

Constructing théN-particle PCHp™(k; V,, €) by convolu-
PCH for several particles tion of multiple single particle PCH®(k; V,, €) according

to Eqg. 20 is equivalent to the evaluation of thid-8imen-

So far we have only considered the case of a single diffusing; . .
) . %IOI’]GJ integral, but computationally much more advantageous.
molecule. To treat the case for two independent particles o

the same species diffusing within an enclosed volurge
we simply need two position coordinatésandf, to ac-  PCH for an open system
count for both particles. The PCH for two independent

particles can be described as So far we have considered the case of particles diffusing

within an enclosed volum&,. In the experiments under
consideration, we have an open system with particles en-

Ty tering and leaving the subvolumé&. We choose the refer-
(1 _
Pk Vo, €) fJPm(k, ePSHry) ence volumeV,, so that it is much smaller than the reser-
(17)  voir, and the number fluctuations of the particles are
+ ePSKT,))p(f1)p(F,)dr, df,. therefore governed by Poisson statistics (Chandrasekhar,
1943):

Essentially to determine the PCH for two independent par-
ticlesp@(k; V,, €), the Poisson function associated with the
combined intensity of both particles at the detector is averwhereN is the actual number of particles within the refer-
aged over all possible spatial configurations. It is straightence volumeV,. The average number of moleculbsis
forward to generalize the two-particle case to deschbe connected to the concentrationf particles in solution with
particles. The PCH foN independent particlgs™)(k; Vo, €)  the help of Avogadro’s numbéd, asN = cVyN,.

p«(N) = Poi(N, N), (21)
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Before we continue we need to describe the photon courgnclosed within a volum¥, is given by
probability p(k; V,, €) of having no particle present in the
volumeV,. If there are no particles present, we receive no
photon counts by definition, and the photon count probap™ ™(k; Vo, €1, €) = f : deip(Fi) -+ - djp(F)
bility is given by

N1 N2
1, k=0 . . .
pOK; Vo, €) = 8(K), with 8(k) = { o k=0- @ Poi k, €, >, PSRT)) + €, >, PSKT))|. (25)
! i=1 j=1

In the final step in determining the PCH for an open systempyt pecause the species are assumed to be independent, we
we avel[‘age the |nd|y|dual probaplllty .functllons mrparj_ can also express the PCH for a mixture as the convolution
ticlesp™(k; Vo, €) weighted by their Poissonian probability petween the PCH functions of individual species. For the

of observingN particlespy(N), case of an open system we simply convolute the PCH
~ . ~ function TI(k; N, €;) of species 1 with the equivalent
TI(K; Npsr, €) = p(k; Vo, N, €) = (pN(k; Vo, )y function TI(k; N,, €,) of species 2 to arrive at the photon
(23)  count distribution of the mixture,
= E p(N)(k, Vo, E)p#(N) H(kl Nl! NZ! €1, 62) = H(kr Nll El) ® H(kl NZ! 62)1 (26)
N=0

whereN, andN, represent the average number of particles
The functionp(k; Vo, N, €) describes the probability of inside the PSF volumépge For more than two independent
observingk photon counts in an open system for a particlemoving species, the photon counting histograms of all in-
solution with a concentration of = N/(VONA)' We will dividual components have to be convoluted successively.
show in Appendix A that the photon count probability of an
open system is independent of the reference voliye
Thus the photon count probability of an open system shoulMATERIALS AND METHODS
either be referenced to the concentration, which is an intenl- .

. . . . nstrumentation
sive quantity and independent of the arbitrary voluvgeor
be referenced to a standard volume with an inherent physFhe instrumentation for two-photon fluctuation experiments is similar to
ical meaning. Here we will follow the convention used in tThr?t described ?Y Berland et g"- (1995} Wit; the fZ')'(F’Wi”@g Tg%diTﬁ\C/a“Q”S-
e experiments were carried out using a Zeiss over micro-

FCS, where the volume of the PSES'_:(See Eq. 14) serves scope (F')I'homwood, NY) with a 40 Fluargoil immersion objective (NA=
as the _Standard volume for connecting the number of m0|1.3). A mode-locked Ti:sapphire laser (Mira 900; Coherent, Palo Alto, CA)
eculesNpgewith the g(0) value of the autocorrelation func- pumped by an Innova 410 argon ion laser (Coherent) was used as the
tion (Thompson, 1991). Therefore we define the PCH func4wo-photon excitation source. For all measurements, an excitation wave-
tion IT(k; NPSF €) for an open volume in Eq. 23, Wher‘%SF length in the range from 770 to 780 nm was used, while the average power

is the average number of molecules inside the volume of th?t the sample ranged from 15 to 25 mW. Under our experimental condi-
ions no photobleaching was detected for any of the samples measured.

P_SFVPS,; The change fronN t0 Npsgin Eq- 23 reﬂ(_aCtS the  photon counts were detected with either a PMT (R5600-04-P; Hamamatsu)
difference in the reference volume and is determined by th@r an APD (SPCM-AQ-161; EG&G). The PMT output was amplified

concentrationg = Npsd(VpsiNa) = N/(VoN,). The average  (model 6931; Phillips Scientific, Ramsey, NJ), and a discriminator (model

number of photon counték) for an open system can be 6930; Phillips Scientific) converted the amplified signal to TTL pulses,

obtained directly froml'[(k' N 6) and is simply the which were collected continuously by a home-built computer acquisition
» Npsp

d f the brigh lecweand th card and stored in memory. The output of the APD unit, which produces
product of the brightness per molecweand the average TTL pulses, was directly connected to the data acquisition card. The

number of molecules inside the PSF V0|Uﬁ¢|€sp photon counts were sampled either at 20 kHz or at 1 kHz. The recorded and
stored photon counts were later analyzed with PV-WAVE version 6.10
(K = GNPSF- (24) (Visual Numerics).

PCH for multiple independent species Sample preparation

F th hemical . h to tak tthodamine 110, 3-cyano-7-hydroxycoumarin, fluorescein, and yellow-
or more than one chemical species, we have 10 take &reen fluorescent latex microspheres with a diameter of 500 nm were

diﬁeren_(?es in the molecular propgrties, like the exclitationpurchased from Molecular Probes (Eugene, OR). All dyes were dissolved
probability, or the quantum yield into account and, in ad-in 50 mM Tris[hydroxymethy]amino-methane (Sigma, MO), and the pH

dition, consider the microscope and detector properties fowas adjusted to 8.5 by adding HCI. Latex spheres were suspended in
the different emission wavelengths All of these diﬁerenceéjeionized water. Dye concentrations were determined by absorption mea-

. . . [ surements, using the extinction coefficients provided by Molecular Probes.
can be absorbed in the coefficientwhich will differ from Samples were either mounted in hanging drop microscope glass slides or in

species to-species. The PCH for t.WO SpeCieS. Wiflparti- 5 plastic sample holder with a window made from a standard microscope
cles of brightnesse; and N, particles of brightness,  cover glass.
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Data analysis ] T T T T r T
® laser light

The theoretical photon counting distributibi(k; N, €) is determined by predicted Poisson

numerical integration of the probability density(k; Vess €) for a
particular PSF (Eg. 15 or 16) ahkd= 1. The normalization to the volume
Vpsr allows the determination gf)(0; Vegs €). After convoluting the
density functionp®(k, Vpsr €) according to Eq. 20 to obtaipf™(k; Vegs 10% 4
€), the final probability function for an open system with an averaghl of ]
particles in the reference volumé.se can be determined by weighing
p™(k; Vpss €) according to Eq. 23 with the Poissonian number probability
Poi(N, N).

The histogram of the experimental data is calculated and then normal
ized to yield the experimental photon counting probability den(t).
Because a typical data set contains on the order 8fdhBa points, the 104-5
values of the photon counting densi¢k) vary over several orders of ]
magnitude. To fit to the PCH model, we must assign the proper statistical
uncertainty to each value of the histogram. For each measurement the
probability of yieldingk counts is given by the probabilifi(k) and the
complementary probabilitfi(k) = 1 — p(k) of not yieldingk counts. The ]
probability of observingk countsr times out ofM trials is given by a 1 o 1 20 %
binomial distribution functiorB(r, M, p(k)), wherep(k) is the probability 10° T T T T T T
of observingk counts. The expectation valge for the binomial distribu- 0 10 20 30
tion is given by(ry = Mp(k) and the standard deviatiom by o = photon counts (k)
VMp(K)g(k). We weigh each element of the photon counting histogram

with its corresponding, calculate the theoretical density functibigk; N, FIGURE 1 Photon counting histograi®) of the excitation light from a

frequency

€), and then determine the reducg#function, mode-locked Ti:sapphire laser at 780 nm, shown in a semilogarithmic plot.
Ko - _ P The solid line represents the Poisson distribution with a mean equal to the
p(k) - H(k; N, 6) average photon countk) of the experimental data. The inset displays the
E M o same data in a linear scale for comparison.
k=Kmin
2= 27
X kmax - kmin —d ( )

_ . , particle is of the same magnitude as the PSF; therefore the
The experimental photon counts range from a minimum vklye which . . . .
is typically 0 for most experiments, to a maximum number,. The f!uoresqent particle experiences anllnhomogene'ous .excna-
number of fitting parameters is given loly Because we take on the order tion profile. The fluorescence intensity of the particle is the
of M = 10° data points, the resulting binomial distribution, except@®r ~ summed contribution of the particle’s immobilized fluoro-

~ 1, is well approximated by a normal distribution. Thus the quality of the phores, which leads to a constant fluorescence intensity with
model can be estimated by the redugédind by the normalized residuals
of the fit

= _ N 10°3 T T T T T T T T T T T T
Sl (L) 5

¢ immobilzed 500 nm sphere]
predicted Poisson

RESULTS

The photodetection process is sensitive to intensity fluctu-
ations. To determine the intensity fluctuations of the sample 10°
alone, an excitation source with constant light intensity is§
needed. To test this condition, a small fraction of the im- 3
pinging laser light was scattered onto the detector. The§ 10°
resulting PCH is plotted in Fig. 1 in a linear and semiloga-
rithmic plot. We also calculated the Poisson distribution,
using the average photon couis as the mean. The PCH
of the laser light is well described by a Poisson distribution,
and the assumption that the excitation light has a constant ]
excitation intensity as assumed in the Theory section is 1 ‘ A A T4
valid. 10° —T

In the next measurement a fluorescent particle of 500-nm
diameter was immobilized on a glass coverslip. The laser
light was focused on the particle to excite two-photon N . .
fluorescence. The histograms of the photon counts in Fig. IGURE 2 Photon counting histogran) of an immobilized fluores-

. . ” L . . ent latex sphere with a diameter of 500 nm. The Poisson distribustigial (

are again described by a Poisson distribution with @ mealhe) was calculated by using the mean value of the experimental photon
determined by the average photon coykisThe size of the  counts. The data are displayed in both a semilogarithmic and a linear scale.
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time. The situation is analogous to measuring the laser
intensity, but instead of scattered light a fluorescent sphere
is used as the light source. To observe a Poissonian photon
count distribution, the particle has to remain immobilized
during the experiment. Any movement of the particle will
lead to intensity fluctuations at the detector and subse-
quently to a broadening of the photon count distribution.

The above measurements demonstrate that the detected
photon counts of the emitted fluorescence under constant
excitation light conditions exhibit a Poissonian distribution.
The concentration fluctuations of a small volume are also
governed by Poissonian statistics; therefore one might first
naively expect that the photon counts of diffusing particles
will also follow a Poisson distribution. In Fig. 3 the exper-
imentally determined PCHs of the dye fluorescein are
shown for three different concentrations in a semilogarith-
mic plot. The Poisson distribution with a mean equal to the
experimental average counfle is displayed for each his-
togram as a solid line. The recorded PCH for a dye concen-
tration of 550 nM (Fig. 3A) reaches almost 60 counts per
sampling period, with an average ¢ ~ 26 counts. A
Poisson distribution with the same average as the experi-
mental photon counts approximates the data. However, de-
creasing the dye concentration yields PCHs that are not
described by Poisson statistics. At a fluorescein concentra-
tion of 55 nM (Fig. 3B), a broadening of the experimental
PCH compared to the Poisson distribution is observed. The
deviation is clearly visible in the tail of the distribution,
which corresponds to high photon counts. Here, the actual
experimental data exceed the values based on the Poisson
distribution. The deviation of the PCH from the Poisson
distribution becomes even more apparent with a reduction
in the fluorescein concentration to 5.5 nM (FigCR In this
case the experimental values of the histogram exceed the
corresponding values of the Poisson distribution for more
than two photon counts.

Each histogram is also displayed as an inset in Fig. 3,
which uses a linear scale. In this representation no deviation
between the experimental data and a Poisson distribution is
detectable by visible inspection, except for the high concen-
tration cased = 550 nM). Because each histogram is based
on more than 19data points, the histogram values of the

FIGURE 3 Comparison of the photon counting histogram for fluorescein
at different concentrations with the Poisson distribution. Fluorescein was
dissolved in 75% glycerol/25% Tris buffer solution (v/v). The samples
were measured with a 83Plan Apochromat objective (NA 1.4) and an
incident laser power at the sample 7 mW. The histograms for fluo-
rescein at concentrations o&)(550 nM, B) 55 nM, and C) 5.5 nM are
plotted together with their Poisson distribution for a mean equal to the
corresponding average photon coutks of the experimental histogram
(Table 1). For the highest concentration only small deviations from a
Poisson distribution are noticeable. Lowering the concentration of the
fluorescein results in increased deviations of the histogram from a Poisson
distribution, as shown iB andC. This deviation of the experimental data
from the Poisson distribution is much more pronounced in the logarithmic
representation as compared to the linear scale (shown imsed.
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A . T . . PCH can span six orders of magnitude. A logarithmic scale
E for the histogram values is therefore essential for picking up
the deviations from a Poisson distribution.

In the next step we will reanalyze the same experimental
data sets and model them using the PCH for a Gaussian-
Lorentzian beam profile, as explained in the Theory section.
The corresponding PCH can then be determined by using a
fitting algorithm as outlined in Materials and Methods. Each
histogram for a single species is characterized by two pa-
rameters: the average number of partides the volume
Vpge Of the PSF and the average molecular brightness
Because the three data sets were recorded under the same

frequency
3
ul

*  550nM fluorescein
PCH fit

2
A conditions, except that the fluorescein concentration was
g o \“‘fv\/ varied, the average counts per partielgre the same for all
§ N three experiments. We performed a global fit of all three
. . histograms withe linked together across all data sets, while
0 20 0 60 the average number of particles was allowed to vary. The
photon counts (k) data and the fitted histograms for the three different con-
B centrations in Fig. 4 are in good agreement. The residuals

between data and fit for each histogram are displayed in Fig.
4, with each unit representing the standard deviatioas
explained in Materials and Methods. The residuals are ran-
dom across the countsand the reduceg? is close to 1,
indicating a good description of the data by the theoretical
model. The fit parameters and the average counts are com-
piled in Table 1. The recovered number of molecules

frequency

16° 1 4 55nM fluorescein L .

3 PCH fit scales exactly with the average photon coukjsas pre-
104 dicted by Eq. 24. However, the ratio of both parametées,
10°9 andN, for each successive dilution is 9.7 instead of 10, as

expected for the dilution experiment, thus suggesting an
overestimation of the experimental dilution factor.
\\ /\ /\/P\\ A In a similar experiment we diluted a stock solution of the
pe Tt * - dye rhodamine 110 successively and measured the photon
counts as a function of time. The data of each experiment
; ® N were analyzed using both the PCH and autocorrelation
photon counts (K) methods. The average number of molecUlesas deter-
mined by fitting the autocorrelation functiog(r) as de-
C1 T " T ' ' " ' " scribed by Berland et al. (1995). The results of both analysis
: v 5.5nM flucrescein methods are compiled in Table 2. The average number of
107 4 PCH fit photon countgk) scales exactly with the number of mole-

; culesN based on the PCH analysis and to a lesser extent
with the N from the autocorrelation function. Nevertheless,
both methods are able to recover the average number of
molecules in the observation volunve g

We used three different fluorophores, each with its own
brightness parameter, to illustrate the influence of the
molecular brightnesg on the photon count distribution.

residuals / ¢

frequency
3

histograms as used in Fig. 3 are plotted as symbols, together with an error
bar (+=30), for each data point on a semilogarithmic scale. The three data
T T , . sets were fit by globally linking the molecular brightness parameter
across the data sets, while allowing the average number of molddutes

photon counts (k) vary. The solid line represents the best fit obtained by using the theoretical

PCH functionII(k; N, €) as explained in the text. The fitting parameters are

FIGURE 4 Photon counting histogram for fluorescein at three differentcompiled in Table 1. The lower panel displays the normalized residuals of
concentrations, ) 550 nM, @) 55 nM, and C) 5.5 nM. The same the fit.

residuals / ¢
o
;
<<
e
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TABLE 1 PCH analysis of a fluorescein dilution experiment

¢ (nM) c/[5.5 nM] (ky (k)/0.28 € N N/0.347 Reduceg?
550 100 26.25 93.8 0.807 32.53 93.7 1.14
55 10 2.71 9.7 0.807 3.36 9.7 0.98
5.5 1 0.28 1.0 0.807 0.347 1.0 0.84

The photon counting histogram of fluorescein for three different concentrations was fitted globally to the theoretical PCHIi{kchips). The molecular
brightnesse was linked across the data sets, while the average number of molé&tulas allowed to vary. The reduced for each individual data set

is shown in the table, with a globgf of 1.01. The average number of photon counts per sampling pédiodas calculated directly from the experimental
data. The ratios of the concentrations, the photon cofkitsaind the number of moleculé$é were determined relative to the lowest concentration case.

Each fluorophore sample was made up to approximately thecules. Here we choose to study the same fluctuations in the
same concentration to facilitate the comparison of the difamplitude domain instead of the time domain. The distri-
ferent histograms. The count distributions were analyzedbution of the amplitude fluctuations depends on the number
with the PCH algorithm and are shown together with the fitsof statistically independent contributions. In the one ex-
in Fig. 5. In addition, Poisson distributions with the sametreme, where many independent events contribute to the
mean as the average photon counts are displayed as dasHkdttuating signal, a Gaussian amplitude distribution is ob-
lines for each histogram. The deviation between the tail otained regardless of the microscopic details. In this case the
the PCH and the Poisson distribution increases with increassmplitude distribution describes ensemble properties, rather
ing €, whereas fore approaching zero the histogram con- than the individual events. For FCS the other extreme ap-
verges to a Poisson distribution. plies, where only a few particles contribute to the fluores-
To demonstrate that the PCH of a mixture of two fluo- cence signal. The intensities are described by non-Gaussian
rescent species is given by the convolution of the individuaktatistics, which in principle allows us to extract information
histograms (Eq. 26), the following experiment was carried
out. First the PCH distributions of fluorescein and cyano-
hydroxy-coumarin, each at a concentration of 1.2 nM, were 4
obtained separately. In the next step, fluorescein and cya-
nohydroxy-coumarin were mixed together, such that each
dye had a concentration of 1.2 nM. The PCH of the mixture
was measured and is well represented by the convolution of
the single species histograms, as shown in Fig. 6. 10°

® 3-cyano-7-hydroxycoumarine
— — Poisson
———— PCH fit
v fluorescein
— — Poisson
—— PCH fit
% rhodamine 110
~= = Poisson
- PCH fit

DISCUSSION

Fluctuations of a physical observable offer a convenientg. .
way to study microscopic processes and have proved usefif
in many fields (Weissman, 1981, 1988). FCS, for example,
exploits the fluctuations of the fluorescence intensity in the
time domain to recover details about the dynamics of mol-

ency

TABLE 2 Comparison between PCH and autocorrelation

1 -7
analysis for a dilution series of rhodamine 110 0 ! : : : | 1 I |
C (nM) ® Ny Nocy 0 4 8 12 16 20 24 28
10.8 4.76 10.70 12.82 photon counts (k)
g;l iii 222 g;g FIGURE 5 Photon counting histograms for three dyes, each with a
1'35 0'57 1'59 1'55 different molecular brightness The histograms of cyanohydroxycouma-
068 029 081 07g !N (@), fluorescein ¥), and rhodamine 110%), taken with the same
0'34 0.16 0.48 0'44 number of data points, were fitted to the theoretical PCH fundti@k N,
0'17 0.085 0'29 0'23 €), shown as solid lines. The concentrations of the three samples were kept

similar to each other to facilitate the comparison between the histograms.
For each dilution the photon count distribution and the autocorrelationThe fit recovered the average number of moleciNess 2.6, 3.3, and 3.0
were measured with a #0Fluar objective (NA= 1.3) and a power at the  for cyanohydroxycoumarin, fluorescein, and rhodamine 110, respectively.
sample of~20 mW. The number of molecules in the excitation volume For the molecular brightness values of 0.74 for cyanohydroxycoumarin,
Npcy Was determined by a global fit of the histograms with the molecular 1.60 for fluorescein, and 2.73 for rhodamine 110 were recovered. For each
brightness linked across the data sets. The average number of moleculekistogram a Poisson distribution with a mean equal to the average number
Ny was determined by global analysis of the autocorrelation fungiion of photon counts is plotted as a dashed line. The deviation between the
with the diffusion coefficient linked across the data sets. The averagéPoisson distribution and the photon counting histogram increases markedly
photon countgk) were obtained directly from the experimental data. with increased molecular brightness




Chen et al. Photon Counting Histogram 563

RN B B S B S R M R Poissonian statistics. As an example, consider a homoge-
} A 3-cyano-7-hydroxycoumarin neous excitation profile, where the fluorescence intensity is
o i = v- Fluorescein not affected by the diffusion inside the observation volume.
. ® mixture In this case the particle fluctuations lead to a compound
A convolution Poisson distribution of photon counts:
10° F ' .
? Ik N, €) = > p™(K; Vpsr, €)pu(N)
% 10° b N=0
o i} (28)
0 = > Poi(k, eN)Poi(N, N).
N=0
0L The fact that the count distribution follows super-Poissonian
N instead of Poissonian statistics is crucial for extracting in-
r a v formation from the histogram. Instead of one parameter,
3 U PR WY SO B S N EEPU TS S which is sufficient to characterize a Poisson distribution,
o t 2 8 4 5 6 7 8 9 10 4wy parameters, the average number of molecules in the
photon counts (k) excitation volumeN and the brightness coefficiert are

required to uniquely describe the single species histogram.
; ) _ The deviation of the PCH from a Poisson function is most
cyanohydroxycoumarin at 1.2 nMA{, and a mixture of fluorescein and . . L . .
cyanohydroxycoumarin®), each at a concentration of 1.2 nM. The solid pronounced in the tail of the distribution. Because the his-
line was determined by convoluting the experimental histograms of thdogram values span several orders of magnitude, a logarith-
individual dyes @ashed lineso guide the eye) and matches the photon mic data representation as illustrated in Fig. 3 is necessary
counting histogram of the mixture. to make the super-Poissonian character of the PCH visible.
The photon counting histogram approaches a Poisson
distribution with increasing fluorophore concentration, as
about the individual fluorescent particles from the intensityshown in Fig. 3. This behavior can be readily understood by
distribution. The detection process needs additional consiczonsidering the influence of the molecule concentration on
eration, because experimentally photon counts instead afe intensity fluctuations. The relative strength of the num-
intensities are measured. The photon count distribution stilber fluctuations is given by the ratio between the standard
contains all of the information of the intensity distribution, deviatione and the meam of the molecule distribution:
but in a transformed manner. However, a well-developed

FIGURE 6 Photon counting histogram for fluorescein at 1.2 ¥}, (

theory relating the properties of the photon counts and o \KANZ> _i 29
intensities exists and had been applied in the past to study a v N \ﬁ (29)

variety of light sources (Bertolotti, 1973). Let us now con-
sider the intensity fluctuations and their influence on theThe number of molecules inside a small, open volume is
photon count distribution in more detail. Poisson distributed, and the relative strength of the particle
Three sources of fluctuations account for the shape of théluctuations decreases with the inverse square root of the
photon counting histogram. The first one is a consequencaverage number of particlés Thus with increasing particle
of the quantum nature of the detection process. Because tloencentration the number distribution approaches a delta
absorption of a photon occurs almost instantaneously, ntunction8(N — N). Consequently, the intensity fluctuations
correlation between the atomic detector system and thassociated with the particle number die away. The second
electric field for adjacent photon counts exists. This noisecontribution to the intensity fluctuations, due to the diffu-
generated by the detector is also known as shot noise argion in an inhomogeneous excitation profile, also vanishes
leads to a Poisson distribution of photon counts. The flucat high particle concentrations; a vacancy created by a
tuations of the fluorescent light intensity are caused by thenolecule leaving a position is almost always filled by
diffusion of molecules in an inhomogeneous excitation pro-another molecule moving to that position, so that no net
file and the particle number fluctuations within the obser-change in the fluorescence intensity occurs. Thus the con-
vation volume, which represent the other two sources obtant fluorescence intensity dictates a Poissonian photon
noise. These intensity fluctuations introduce correlationgount distribution.
between photon counts and are responsible for the super- To maximize the deviation between the photon count
Poissonian statistics of the photon count distribution aglistribution and the corresponding Poisson function, one
explained in the Theory section. FCS experiments alwaysan either reduce the number of molecules within the exci-
measure small, open volumes that freely exchange particlgation volume or increase the brightness parametas
with the surrounding bath. The resulting number fluctua-demonstrated in Fig. 5. The relationship between the super-
tions of such a system alone are sufficient to cause nonPoissonian character of the PCH and the molecular bright-
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nesse can be qualitatively understood. The average fluo-source with a repetition rate 610 ns does not influence
rescence intensity of a molecule in the excitation volume iour experimental results, because we measure fluctuations
characterized by the parameterA particle with a larger in the microsecond to millisecond range. Intensity fluctua-
value ofe causes stronger intensity fluctuations as it entersions of the excitation source, which occur on a time scale
and diffuses through the beam. The increase in the fluoresnuch faster than the sampling tinfeof the detector, are
cence intensity fluctuations leads to a further broadening oéffectively averaged out and do not influence the counting
the PCH. This behavior is a consequence of the averaging @fatistics.
Poisson distributions over a wider intensity range as ex- Generalization to more than one species has been de-
pressed by Mandel's formula. To quantify this statementscribed in the Theory section. In the case of two indepen-
we define the fractional deviatio®Q, a measure of the dent species, the corresponding PCH is obtained by convo-
deviation between the PCH and the Poisson distributionyting the individual counting distributions of each species
(Mandel, 1979): alone. If the two species interconvert chemically, they are
A — (K no longer independent. Theoretically species interconver-
=< ) — < >= ve (30) sion would not affect the PCH, because all contributions
K ’ from reactions vanish at= 0 (Elson and Magde, 1974). In
practice, however, we have to work with a short but finite
where (Ak®) and (k) are the variance and the expectation gampling timeT. In the limit that the integration tim@ is
value of the photon counts, respectively. A Poissonian disgch smaller than the characteristic reaction time, the two

tribution is defined byQ = 0, whereas super-Poissonian gnecies behave independently. In the other extreme, when
distributions requir& > 0 and sub-Poissonian distributions the chemical interconversion time is much faster than the

g‘?”hdat@ < Oc'thiS dri]rectl); propo;tiﬁnal to the mﬁlecular sampling timeT, we will detect a single species with the
rightnesse and the shape factoy of the PSF, as shown in time-averaged properties of the interconverting species. If

Appendix B. They factor is constant for a given PSF. Thus the characteristic chemical reaction time is on the order of

th? super—P0|ss_on|an qharac_ter of the PCH is largely dete{he sampling timd, then the additional fluorescence inten-
mined by e, which varies with the excitation power, the

. . . sity fluctuations from the chemical reaction contribute to
detection efficiency, and the molecular species.

the counting statistics and consequently alter the countin
Not all of the detected counts are due to the fluorophore%isto(‘:]ram 9 q y g

of interest. Dark and background counts superimpose upon Both PCH and the autocorrelation function describe flu-

the photon counts from the actual sample. Background . .
. . orescent fluctuations, but each focuses on a different prop-

counts due to scattered light or sample contaminants can beerty of the stochastic process. Whereas the autocorrelation
largely suppressed by care in the sample preparation and the ” = . "
gely supp y pie prep I?unctlon is a measure of the time-dependent decay of the

use of proper filters. Dark counts are inherent to all photo luctuati o thei libri lue. the bhot "
detectors; the details depend largely on the detector typ HC uations to their-equifibrium valule, the pnoton counting
istogram captures the amplitude distribution of these fluc-

but cooling of the detector typically reduces the dark count : L p i ingle i .
drastically. Under our experimental conditions, both thetuations. Letus first consider a single fluorescent species as

dark and background counts are on the order of 50 cps Th%utlined in the Theory section. The autocorrelation function

count rate of all measured samples exceeds 1000 cps: thgRecifies the diffusion coefficienD. PCH, on the other
the influence of the dark and background counts on the Pcilfand, provides the average number of molectlesid the
is negligible under these conditions. However, if necessarynelecular brightnese from the super-Poissonian character
it is straightforward to account for the dark and backgrouncPf the photon counts. The autocorrelation functggn) not
signal. The dark and background events are statisticall;‘?”'Y characterizes dynamic mformatl'on., but also carries a
independent of the sample signal and act like an additionaftatic componeng(0). Theg(0) value is inversely propor-
species. The PCH of this additional species can be detetional to the average number of moleculésas shown by
mined separately and incorporated into the data fitting routineEd- 32. The shot noise contributiong(0), however, makes
Far more serious than dark or background counts arl impossible to measure this value directly, and its value
intensity variations of the excitation source. Fluctuations ofnust be inferred by extrapolation of the fitted autocorrela-
the excitation intensity induce fluctuations in the fluores-tion curve. From our experience both techniques, the auto-
cence intensity. The additional intensity fluctuations lead tocorrelation and PCH, recover the average number of mole-
a further broadening of the photon counting distribution.cules N reliably. However, for dilutions the number of
Hence, the fluorescence fluctuations are not independent dholeculesN recovered by the PCH method scaled closest
the excitation fluctuations, and there is no straightforwardwith the measured average photon coykigsee Table 2),
way to correct for this additional broadening. Care shouldsuggesting a higher accuracy of the PCH method for our
be exercised to ensure a stable intensity output of thexperimental conditions.
excitation source from the very beginning. We checked the Resolving different species poses a practical and impor-
excitation laser output (Fig. 1) to verify that the resulting tant problem. We will limit ourselves to the case of two
PCH is described by a Poissonian distribution. The fact thaspecies to facilitate the discussion. If the diffusion coeffi-
the two-photon experiments require a pulsed excitatiortient of two species differs substantially, then the two
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species can be resolved by the autocorrelation approach. FAPPENDIX A
small differences in the diffusion coefficient, resolving two The probability pP(k: V. €) of detectingk photon counts for a single

spem_es becgmes exc_eedmgl_y d'ff!cu_lt a'md is often praCt"moIecuIe diffusing within an enclosed volunvg depends on the size of
cally impossible. This is a serious limitation of the autocor-the volume. If the reference volume is changed figgio V,, whereV, =
relation approach, because the diffusion coefficient is to dV., the value of the probability of(k; Vi, e))must be transformed. We
first approximation inversely proportional to the cube rootdefme the transformation of the probabilipf(k; V, €) by changing the
. . . reference volume fronv, to V, as

of the molecular weight. Thus a wide class of biomolecules
cannot be distinguished by diffusional analysis alone. One pP(k; Vi, €) = fpP(k; Vo, €) + (L — H)d(k), (31)
has to resort to more elaborate techniques like dual-color h 59 as defined

_ ; i ith 8(k) as defined in Eq. 22.
C!’OSS Corre,latlon’ Wh,lch is able to separate ba_sed on the If V, is larger thanV,, thenf = V/V, represents the probability of
difference in the emission color of (_jyes (Sghwﬂle et. al-’_ﬁnding the molecule inside the smaller volurdg The transformation of
1997). Another approach to separating multiple species ise probabilities by Eq. 31 represents the joint probability of finding the
higher order FCS, which has been described in detail in thawlecule inside the original volumé, with its probability distribution of

; photon countp®(k; V,, €) and the joint probability of finding the molecule
literature (Palmer and Thompson, 1987, 1989D). tside the original volume (& f) with its corresponding probability of

Here_ we want to discuss anOth_er approach. based on I:)Cg_xoton counts. Because there is no excitation possible outside the volume
analysis. The PCH of a two-species sample is the convoluv,, the probability function for photon counts is given Bfk).

tion of the individual photon count distributions. Thus four  In contrast to the probability of photon courktsor one molecule in a
nfined volumeV,, p(k; V,, €), the probability distributiorp(k; Vo, N
parameters, the average number of molecules and tI;E o PTAK Vo, €), the p Y P Vo N,
€

. : . . for the photon countk of a freely diffusing chemical species with an
brightness of both species, are requwed to characterize t erage of\ molecules in the volum&, is independent of the chosen

photon count distribution completely. The molecular bright-reference volume. The independence(it Vo, N, €) from the arbitrary

nesse and the average number of moleculdsshape the volume V, is intuitively expected, becausifk; Vo, N, €) describes the
histogram distinctively, as discussed earlier. The ConVoluprobabmty of an open system. In this case, to describe the photon count

. ill ch b il he ch . f robability for a different reference volume, one must consider that the
tion will change but still preserve the characteristics of eac verage number of molecules scales with the size of the reference volume.

species. Thus as long as there is a brightness differeng@r example, changing the volume froxh to V, changes the average
between the species, PCH will be able to resolve themjumber of molecules froml, = N to N, = Ny/f.

regardless of their diffusion coefficient. The demonstration_ NoW itis relatively straightforward to show thatk; Vo, No, €) = p(k;
V1, Ny, €), using Egs. 20, 23, and 31. The choice of the auxiliary volume

and detailed anaIyS|s of this appl|cat|on will be the SUbJeCtto calculate the probability of an open system is of no importance, as long
of a separate study. as the average number of molecuisorresponds to the proper reference
volume V. To reflect the independence from the reference volume, we
define a new probability function for the open systeitk; Npgy €), which
by convention expresses the number of molecligs-for the volume of

CONCLUSION the point spread functioWpse

In principle, any value for the auxiliary volum¥, can be chosen to

In this paper we derived the theory of the photon countingealculate the probability distributio(k; Nes €), but practical consider-
histogram for fluorescence fluctuation experiments and conations will limit the range of useful values. For very large volumes the

.average number of moleculd$ will also become very large, and the

structed an algomhm to calculate the hlstogram numerl_number of convolutions necessary to calculate the PCH becomes numeri-

cally. The deviation of the probability function from Pois- cally cumbersome. By going to the other extreme and making the auxiliary

sonian statistics is caused by the fluorescence intensityolumeV, very small, the functiop®@(k; V;, €) loses its interpretation as
fluctuations due to the spatially inhomogeneous excitatior? probability. The value dfin Eqg. 31 would in this case be greater than 1,

profile of the laser beam and the fluorophore number fluc-and the new value gb“(0; Vs, €) can be less than 0 amif™(1; V,

. o S . greater than 1. But only the intermediate steps in the calculation lose their
tuations inside the excitation volume. Comparison betweephysical meaning. From a purely mathematical point of view, this is of no
theory and experiment demonstrates that the data are iwnsequence for arriving at the final photon counting histodriky Nps
agreement with the theoretically predicted phOtOI’l counting?), but should be avoided because of numerical problems. Values greater

h . . -than 1 and less than 0 ptP(k; V,, €) lead to increasing oscillations in the
histograms. The PCH algorithm cons'tltutes a novel analys%onvolution (Eq. 20) to determine the functigh(ki Noey, ), which is
tool, as was demonstrated by extracting the average nUmbgiimerically unstable. For practical purposes, using an auxiliary vokime
of molecules within the excitation volunmd and the mo- identical to the reference volume of the two-photon excitatibu is
lecular brightnesg from experimental data. typically a good compromise.

PCH is sensitive to the brightness of particles, thus of-

ferlng a possibility to distinguish a mlxtu.re of species basedAPPENDIX B
on this feature alone. The autocorrelation function, on the
other hand, is virtually insensitive to the brightness of The fluorescence intensity autocorrelation functigm) at~ = 0,
molecules but sensitive to the time-dependent fluctuations (1D (AR — (K
in the fluorescence intensity. Thus PCH and FCS provide g(0) = 0y = (K2 =_, (32)
complementary information, which should prove useful for N
tackling biological problems with fluorescence fluctuation gquates the ratio of the shape factprwith the average number of
spectroscopy. molecules in the excitation voluméwith the ratio of the variancé\l?) to
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the averaggl) of the fluorescence intensity (Thompson, 1991). The shapeKimble, H. J., M. Dagenais, and L. Mandel. 1977. Photon antibunching in

factor v, resonance fluorescendehys. Rev. Lett39:691-695.
Kinjo, M., and R. Rigler. 1995. Ultrasensitive hybridization analysis using
f(PSRF))ZdF fluorescence correlation spectroscopyucleic Acids Res23:
=" (33) 1795-1799.
fPSF(I’)dI’ Koppel, D. E. 1974. Statistical accuracy in fluorescence correlation spec-

troscopy.Phys. Rev. A10:1938-1945.
depends on the functional form of the PSF. For the squared Gaussiarkoppel, D. E., D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb.
Lorentzian PSFy = 3/(4n°) (Berland et al., 1996). The moments of the ~ 1976. Dynamics of fluorescence marker concentration as a probe of
fluorescence intensity and the moments of the photon counts are related to mobility. Biophys. J.16:1315-1329.
one another (Saleh, 1978). This relation is used to expgé@sas a  Koppel, D. E., F. Morgan, A. E. Cowan, and J. H. Carson. 1994. Scanning
function of the variancéAk?) and the averagg) of the photon counts. The concentration correlation spectroscopy using the confocal laser micro-
subtraction of the averag&) from the variancéAk?) eliminates the shot scope.Biophys. J.66:502-507.
noise contribution to the photoelectron counts (Qian, 1990). The averagiagde, D., E. Elson, and W. W. Webb. 1972. Thermodynamic fluctuations
photon counts(k) scale with the number of molecules present in the in a reacting system: measurement by fluorescence correlation spectros-

excitation volumeN and the brightness per partiateso that(k) = €N, as copy.Phys. Rev. Let29:705-708.
derived in the Theory section. We can now express the fractional deviatioMagde, D., E. L. Elson, and W. W. Webb. 1974. Fluorescence correlation
Q by rewriting Eq. 32 as spectroscopy. Il. An experimental realizatid@iopolymers13:29-61.
Magde, D., W. W. Webb, and E. L. Elson. 1978. Fluorescence correlation
(Ak2> — (k) spectroscopy. lll. Uniform translation and laminar floBiopolymers.
= = Y€ (34) 17:361-376.

(k)

Mandel, L. 1958. Fluctuations of photon beams and their correlations.
Proc. Phys. Soc72:1037-1048.
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