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ABSTRACT OF THE DISSERTATION

Machine Learning for High Throughput Genomic Data Analysis

By

Yi Li

Doctor of Philosophy in Computer Science

University of California, Irvine, 2016

Professor Xiaohui Xie, Chair

Machine learning methods have been successfully applied to computational biology and bioin-

formatics for decades with both unsupervised learning and supervised learning. Recent ad-

vancement in high throughput genomic data profiling, such as high throughput sequencing

and large-scale gene expression profiling, has became a powerful tool for both fundamental

biological research and medicine. For example, high throughput sequencing now is possible

to sequence billions of bases both fast and cheap, such as Illumina’s latest sequencer HiSeq

X that can sequence 32 human genomes per week with each costing less than $1000. With

the generation of millions or even billions of signals (e.g. sequencing reads) per experiment

and thousands or even millions of experiments per study (e.g. large-scale gene expression

profiling), there arises a great need for more advanced machine learning models for analysing

high throughput genomic data using both unsupervised and supervised learning methods. In

this thesis, we try to solve two main challenges in high throughput genomic data analysis, 1)

deconvolving the sequencing data from more than one cell population, e.g. heterogeneous tu-

mor tissues, using unsupervised probabilistic learning methods such as mixture models with

latent variables; 2) modelling the nonlinear and hierarchical patterns within high throughput

genomic data using supervised deep learning methods such as convolutional neural networks.

We present five new models to solve these two challenges, each of them is applied to a spe-

cific problem. The first three models focus on deconvolving tumor heterogeneity: Chapter

xv



2 presents a probabilistic model to deconvolve tumor purity and ploidy; Chapter 3 further

extends the model to infer tumor subclonal populations; Chapter 4 presents a probabilistic

model to deconvolve tumor transcriptome expression. The last two models focus on apply-

ing deep learning methods in analysing large scale genomic data: Chapter 5 presents a deep

learning method for gene expression inference; Chapter 6 presents a deep learning method

to understand sequence conservation.
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Chapter 1

Introduction

One of the fundamental problems in computational biology is to extract useful information

from biology experimental data and essentially summarize testable knowledge. Preferred

methods for solving this problem should allow us to summarize knowledge in the format of

abstract models with manageable parameters that are learned from the experimental data.

It is also favorable that the learned models are able to make predictions about the biology

system with reasonable accuracy given new data. With these two goals in mind, machine

learning methods are often the choice to solve computational biology problems that are de-

fined with rich datasets. Machine learning in general refers to the research and study of

algorithms that can learn from data and subsequently make predictions about data by train-

ing a parametrized model [67]. Depending on the learning task, machine learning methods

can be broadly divided into two categories, supervised learning and unsupervised learning.

In supervised learning, the algorithm is presented with both input examples and desired

outputs, such as categorical labels or numerical targets, and the goal is to learn a mapping

from inputs to outputs. In unsupervised learning, the algorithm is presented with only in-

put examples without desired outputs, and the goal is to discover structures and patterns

within the input examples. Both supervised learning and unsupervised learning methods

1



have been successfully applied to computational biology and bioinformatics for decades [8].

In genomics, supervised learning methods have been used to predict genes, their locations

and structures, e.g. translation initiation codon prediction using support vector machine

(SVM) [86, 151]. In proteomics, supervised learning methods have been used to predict the

secondary structures of proteins, e.g. nearest neighbour [65] and Bayesian classifier [142].

In gene expression analysis, unsupervised learning methods, e.g. hierarchical clustering, are

widely used to discover expression patterns of certain disease such as cancers [126]. In sys-

tems biology, probabilistic graphical models, which are also advanced unsupervised learning

methods, are used for cellar networks inference [43].

Recent advancement in high throughput genomic data profiling, such as high throughput

sequencing (HTS) and large-scale gene expression profiling, has became a powerful tool for

both fundamental biological research and medicine. For HTS, on January 2014, Illumina

announced its new state-of-the-art sequencing instrument, the HiSeq X Ten Sequencing Sys-

tem, that is capable of sequencing human genomes at $1000 each, with a throughput of 600

billion base pairs per day. For large-scale gene expression profiling, researchers from Broad

institute have developed the L1000 Luminex bead technology to measure the expression of

about 1000 genes, with a fairly low cost of $5 per profile [100]. With the L1000 technology,

the NIH LINCS program has generated ˜1.3 million gene expression profiles under a variety

of experimental conditions. With the generation of millions or even billions of signals (e.g.

sequencing reads) per experiment and thousands or even millions of experiments per study

(e.g. large-scale gene expression profiling), there arises a great need for more advanced ma-

chine learning models for analysing high throughput genomic data using both unsupervised

and supervised learning methods.

In this thesis, we try to solve two main challenges in high throughput genomic data analysis,

1) deconvolving the sequencing data from heterogeneous tumor tissues, using unsupervised

probabilistic learning methods; 2) modelling the nonlinear and hierarchical patterns within
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genomic data using supervised deep learning methods.

1.1 Tumor heterogeneity

One of the fundamental limitations of the current HTS techniques is that, a sufficient amount

of DNA or RNA material is required for sequencing. Therefore, most of HTS applications

have used a mixture of cells with different populations as the start material. Thus reads from

the sequencer often come from sources of more than one cell population. This limitation is

particularly prominent for tumor samples, that they consist of a mixture population of

tumor cells and surrounding normal cells. More importantly, tumor cells themselves are also

often heterogeneous that consist of multiple subclonal populations [22]. The landscape of

both genomic and transcriptomic profiles of these different subclonal populations are often

distinct. Characterizing genomic and transcriptomic features of each subclonal population is

important for both understanding the evolution path of heterogeneous tumor tissues, and for

designing more effective drug treatments as some subclones may have pre-existing mutations

that could lead to drug resistance [44]. In this thesis, we present three new probabilistic

models to solve different aspects of the tumor heterogeneity problem.

• Chapter 2 focuses on deconvolving tumor purity and ploidy. A prominent

problem in the analysis of cancer genome sequencing data is deconvolving the mixture

to identify the reads associated with tumor cells. Solving the problem is, however,

challenging because of the so-called ‘identifiability problem’, where different combina-

tions of tumor purity and ploidy often explain the sequencing data equally well. We

propose a new model to resolve the identifiability problem by integrating two types of

sequencing information, somatic copy number alterations and loss of heterozygosity,

within a unified probabilistic framework. We derive algorithms to solve our model, and

implement them in a software package called PyLOH. We benchmark the performance
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of PyLOH using both simulated data and 12 breast cancer sequencing datasets and

show that PyLOH outperforms existing methods in disambiguating the identifiabil-

ity problem and estimating tumor purity. The PyLOH package is written in Python

and is publicly available at https://github.com/uci-cbcl/PyLOH. This chapter is a

revision of the original publication [81].

• Chapter 3 focuses on inferring tumor subclonal populations. In addition to

estimate tumor purity in the scenario of mixture of normal and tumor cells within

tumor samples, complete characterization of all subclonal types is a fundamental need

in tumor genome analysis. With the advancement of next-generation sequencing, com-

putational methods have been developed to infer tumor subclonal populations directly

from cancer genome sequencing data. Most of these methods are based on sequence

information from somatic point mutations, However, the accuracy of these algorithms

depends crucially on the quality of the somatic mutations returned by variant calling

algorithms, and usually requires a deep coverage to achieve a reasonable level of ac-

curacy. We describe a novel probabilistic mixture model, MixClone, for inferring the

cellular prevalences of subclonal populations directly from whole genome sequencing

of paired normal tumor samples. MixClone integrates sequence information of somatic

copy number alterations and allele frequencies within a unified probabilistic frame-

work. We demonstrate the utility of the method using both simulated and real cancer

sequencing datasets, and show that it significantly outperforms existing methods for

inferring tumor subclonal populations. The MixClone package is written in Python

and is publicly available at https://github.com/uci-cbcl/MixClone. This chapter

is a revision of the original publication [82].

• Chapter 4 focuses on deconvolving tumor transcriptome expression from

RNA-Seq data. Besides DNA sequencing data, we also developed a probabilistic

model-based approach, Transcript Estimation from Mixed Tissue samples (TEMT), to
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estimate the transcript abundances of tumor cells from RNA-seq data of heterogeneous

tumor tissue samples. TEMT incorporates positional and sequence specific biases, and

its online EM algorithm only requires a runtime proportional to the data size and a

small constant memory. We test the proposed method on both simulation data and re-

cently released ENCODE data, and show that TEMT significantly outperforms current

state of the art methods that do not take tumor heterogeneity into account. TEMT is

written in Python, and is publicly available at https://github.com/uci-cbcl/TEMT.

This chapter is a revision of the original publication [80].

1.2 Deep learning

Recent successes in deep learning on many machine learning tasks have demonstrated its

power in learning hierarchical nonlinear patterns on large scale datasets [14]. Deep learning

in general refers to methods that learn a hierarchical representation of the data through

multiple layers of abstraction (e.g. multi-layer feedforward neural networks). A number of

new techniques have been developed recently in deep learning, including the deployment of

General-Purpose Computing on Graphics Processing Units (GPGPU) [30, 32], new training

methodologies, such as dropout training [56, 10]. With these advances, deep learning has

achieved state-of-the-art performances on a wide range of applications, both in traditional

machine learning tasks such as computer vision [69], natural language processing [125], speech

recognition [55], and in natural science applications such as exotic particles detection [9] and

protein structure prediction [36]. More recently, deep learning has also been successfully

applied in solving sequence-based problems in genomics with convolutional neural networks

[76, 107, 2, 150]. In this thesis, we present two new deep learning models to perform large-

scale gene expression inference and sequence conservation analysis, respectively.

• Chapter 5 focuses on gene expression inference with deep learning. Large-
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scale gene expression profiling has been widely used to characterize cellular states in

response to various disease conditions, genetic perturbations, etc. Although the cost of

whole-genome expression profiles has been dropping steadily, generating a compendium

of expression profiling over thousands of samples is still very expensive. Recognizing

that gene expressions are often highly correlated, researchers from the NIH LINCS

program have developed a cost-effective strategy of profiling only ˜1000 carefully se-

lected landmark genes and relying on computational methods to infer the expression of

remaining target genes. However, the computational approach adopted by the LINCS

program is currently based on linear regression (LR), limiting its accuracy since it does

not capture complex nonlinear relationship between expressions of genes. We present

a deep learning method (abbreviated as D-GEX) to infer the expression of target genes

from the expression of landmark genes. We used the microarray-based Gene Expres-

sion Omnibus dataset, consisting of 111K expression profiles, to train our model and

compare its performance to those from other methods. In terms of mean absolute

error averaged across all target genes, deep learning significantly outperforms LR with

15.33% relative improvement. A gene-wise comparative analysis shows that deep learn-

ing achieves lower error than LR in 99.97% of the target genes. We also tested the

performance of our learned model on an independent RNA-Seq-based GTEx dataset,

which consists of 2921 expression profiles. Deep learning still outperforms LR with

6.57% relative improvement, and achieves lower error in 81.31% of the target genes.

D-GEX is available at https://github.com/uci-cbcl/D-GEX. This chapter is a re-

vision of the original publication [28].

• Chapter 6 focuses on understanding sequence conservation with deep learn-

ing. Comparative genomics has been very effective in finding functional elements

across the human genome. However, understanding the functional roles of these se-

quences still remain a challenge, especially in noncoding regions. We present a deep

learning approach, DeepCons, to understand sequence conservation. DeepCons is a
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convolutional neural network that is trained to classify conserved and non-conserved

sequences. We show that the learned convolution kernels of DeepCons can capture

rich information with respect to sequence conservation: 1) they match motifs such as

CTCF, JUND, RFX3 and MEF2A that are known to be widely distributed within

conserved noncoding elements, 2) they have positional bias relative to transcription

start sites, transcription end sites and miRNA, and 3) they have strand bias relative

to transcription end sites. DeepCons could also be used to score sequence conservation

at nucleotide level resolution. We rediscovered known motifs within a given sequence

by highlighting each nucleotide regarding their scores. The source code of DeepCons

and all the learned convolution kernels in motif format is publicly available online at

https://github.com/uci-cbcl/DeepCons.
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Chapter 2

Deconvolving tumor purity and ploidy

2.1 Introduction

The advent of next-generation sequencing (NGS) and launch of comprehensive cancer genome

sequencing projects [59, 33] have yielded an unprecedented view on the complex landscape

of cancer genomes, leading to the discovery of new cancer-causing genes and pathways,

and novel therapeutic targets for treating cancers. Analysing the data from cancer genome

sequencing remains, however, computationally challenging due to the shear size of the se-

quencing data and the complexity of the tumor genomes and samples.

Cancer genomes are often characterized by wide-spread somatic copy number alterations

(CNAs), where genomic segments are deleted or duplicated one or more times. Identifying

somatic copy number alterations associated with specific tumor genomes is of long-standing

interest in the study of cancer genomes and is one of the focal points of the cancer genome

analysis. Many computational methods have been proposed to discover copy number changes

directly from DNA microarrays [103, 89, 83, 149, 20] or sequencing data [23, 29]. However,

most of these methods aim at identifying the relative copy numbers of segments of the same
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tumor genome. Discovering copy numbers in an absolute scale is biologically more relevant

[25], but more challenging. This is due to the fact that the absolute copy number changes can

be affected by two confounding factors: a) tumor purity - the fraction of all cancerous cells

within a heterogeneous tumor sample, and b) tumor ploidy - the baseline copy number of

genomic segments or entire chromosomes [25, 95], both of which are unknown and themselves

need to be estimated in order to infer absolute copy number changes. It is possible to estimate

tumor purity and ploidy using experimental techniques such as quantitative image analysis

[147] and single-cell sequencing [93], however, these techniques are still too expensive or time-

consuming to support large-scale studies. Hence, it is of great interest to use computational

approaches to estimate tumor purity and ploidy, and consequently absolute copy number

changes, directly from NGS data.

Tumor purity and ploidy affect not only copy number changes in different segments of

genomes, but also the distribution of allele frequencies in these segments. In the NGS

data, these two types of information can be summarized in terms of the total number of

reads mapped to each segment (total read count), and the frequencies of reads matching B-

alleles (B-allele frequencies) at different sites. Computational methods have been proposed

to estimate tumor purity alone [75, 128] or jointly with tumor ploidy [25, 49, 95] based on

these two types of information extracted from NGS data.

Depending upon how copy number changes and B-allele frequency information are used, the

existing methods can be roughly grouped into two categories: one category of methods utilize

B-allele frequencies (BAFs) at somatic mutation sites to estimate tumor purity, including

PurityEst [128] and PurBayes [75]. These methods leverage the fact that the BAFs at

somatic mutation sites are expected to be around 0.5 if the tumor purity is 100%, and any

addition of normal cells will lead to a reduction in the observed BAFs at these sites. The

second category of methods rely instead on copy number changes to estimate tumor purity

and/or ploidy, including CNAnorm [49], THetA [95], and ABSOLUTE [25]. It has been
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shown that the methods in the second category are often more accurate and robust than

those in the first category due to the fact that a) the total read counts are very large in

NGS data, and thus methods relying on copy number changes are statistically more stable

than methods relying on BAFs at somatic mutation sites, the number of which is often very

small, and b) the determination of somatic mutations is not perfect and the inclusion of false

positives can significantly bias the estimation [95, 113, 66].

However, the utility of the methods relying on copy number changes to estimate tumor purity

and ploidy is severely hindered by the so called “identifiability problem”, where different

combinations of tumor purity and ploidy can explain the observed data equally well [25,

95, 109]. This is because tumor purity and ploidy are often intertwined — changes in

one can be offset by compensations from the other, allowing the same copy number to be

explained by multiple combinations of tumor purity and ploidy. For example, a homozygous

deletion combined with 30% tumor purity can also be explained as a heterozygous deletion

combined with 60% tumor purity. Resolving this ambiguity is key to accurate estimation

of tumor purity and ploidy. Existing methods try to solve this identifiability problem by

either using heuristics, e.g., favoring solutions that have the smallest deviations from diploid

(e.g., CNAnorm) [49], seeking additional experiential data (e.g., ABSOLUTE) [25], or simply

outputting all possible solutions (e.g., THetA) [95].

Here we provide a more principled way to solve the identifiability problem by combining

the information revealed from copy number changes and B-allele frequencies. Instead of

using B-allele frequencies extracted from somatic mutation sites as in the previous cases,

we use B-allele frequencies calculated at sites that are heterozygous with respect to the

normal genomes, and most of which are common SNPs. These heterozygous sites are much

more abundant [117] and easier to identify, leading to more statistically stable results. Copy

number changes in the cancer genome often result in loss of heterozygosity (LOH) at these

heterozygous sites, and the extent of LOH is closely related to absolute instead of relative
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copy number changes. We will use BAFs to gauge the extent of LOH, and provide information

on the absolute copy number changes by examining the patterns of BAFs at the heterozygous

sites within the same genomic segment. For example, although a homozygous deletion with

30% tumor purity results in the same copy number as a heterozygous deletion with 60% tumor

purity in a tumor sample, B-allele frequencies at heterozygous sites of the tumor sample

cluster at different values in the two combinations, and therefore are able to distinguish

these two cases. Based on this insight, we propose a full probabilistic model implemented

as a software package called PyLOH to integrate the information gathered from CNAs and

LOH. Estimations of tumor purity and absolute copy numbers are then formulated as an

optimization problem in which we choose those values that maximally explain both total

read counts and B-allele frequency information.

Our method is similar in spirit to some of the earlier methods proposed for SNP array

analysis, where both the signal intensity and BAF of each SNP are used in estimating copy

number changes. The combination of these two signals has been shown to improve the

estimation accuracy of tumor ploidy [47], or both tumor purity and ploidy [134, 144, 108].

Recently, some of these methods have been extended to sequencing data, including OncoSNP-

SEQ by Yau et al. [143] and Patchwork by Mayrhofer et al. [87]. However, the OncoSNP-

SEQ algorithm only utilizes the reads mapped to the SNP sites, while our algorithm uses all

reads, and thus should be able to yield a more accurate estimation of copy number changes.

Similar to our work, the Patchwork algorithm also uses all reads, but it requires manual

interpretation through data visualization to determine the initial copy numbers of clusters

of genomic segments, which could be useful when the tumor genome is too complex for the

algorithms to resolve different solutions by themselves. Here we seek an alterative approach

that is based on a generative model and requires no manual intervention. In addition, the

Patchwork algorithm requires the existence of copy-neutral loss of heterozygosity within the

tumor genome in order to run the algorithm, while our algorithm has no such constraints.
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The outline of this article is as follows: in the methods section, we describes the full proba-

bilistic model of PyLOH. In the results section, we first present cluster patterns of BAFs in

NGS data of paired tumor-normal samples, then introduce a visualization tool called “BAF

heat map” to characterize such patterns. Finally, we compare tumor purity estimates of

PyLOH and other methods on both simulated datasets and 12 breast cancer sequencing

datasets. Our results show that explicitly incorporating both CNAs and LOH information

can resolve the identifiability problem and significantly improve the accuracy of tumor purity

estimation. Finally, we discuss the limitations of PyLOH and propose future directions in

the discussion section.

2.2 Methods

In this section, we present the probabilistic model of PyLOH which combines CNAs and

LOH information to infer absolute copy numbers and tumor purity. We first introduce some

notations, then propose a generative mixture model incorporating both total read counts

and B-allele frequency information, and finally introduce algorithms to solve the model.

2.2.1 Basic definitions and notations

Similar to previous work [95, 25], we assume the tumor genome has already been segmented

into J segments, each of which has the same copy number alterations. Denote the copy

number of the j-th segment of the tumor genome by Cj with j = 1, · · · , J . In addition, we

assume each segment has a number of heterozygous sites (single nucleotide changes) in the

corresponding normal (i.e., control) genome. We use (i, j) to index the i-th heterozygous

site in segment j with i = 1, · · · , Ij, where Ij is the total number of heterozygous sites in

segment j.
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The observed data are summarized and grouped into two categories: One category is the

copy number information, represented as the total number of reads mapped to each segment.

Let Dj denote the number of reads mapped to segment j. The second category of observed

data is the allele frequency information, represented by the total number of reads matching

each of two alleles at a heterozygous site. For notational purpose, for each heterozygous site

we define the A allele to be the allele matching the reference genome, and the B allele to be

the corresponding unmatched one. Using the notation from [114], let aij and bij denote the

number of reads matching A and B alleles, respectively, at site (i, j). Since most of the data

we consider are from paired tumor-normal samples, we use a superscript N (from normal

samples) and T (from tumor samples) to denote the sample origin of the data. For example,

DT
j and DN

j will denote the total number of reads mapped to segment j from the tumor and

normal samples, respectively.

To account for the contamination of normal cells, we assume the tumor sample yielding the

sequence data consists of a mixture of normal and tumor cells. Denote the fraction of tumor

cells within the tumor sample by φ, which will also be called tumor purity. Consequently,

the average copy number of each segment within the tumor sample is

C̄j = φCj + (1− φ)2 (2.1)

for j = 1, · · · , J , assuming that the default copy number within normal cells is always 2. Our

goal is to use both the total read count information and site-specific allele count information

to infer both the absolute copy number {C1, · · · , CJ} and the tumor purity φ.

2.2.2 Modeling copy number alterations

Following the Lander-Waterman theory [72], the probability of a read originating from a

specific segment depends on three main factors: 1) the copy number of the segment, 2) the
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total genomic length of the segment, and 3) the mappability of the segment (depending on

factors such as GC content, repetitive sequence, and so on) [95]. Borrowing the concept of

interval weight factor from [95], we associate a coefficient θj to segment j accounting for

the effect of its genomic length and mappability. We assume the expected number of reads

mapped to segment j, denoted by λj, in the tumor sample is proportional to C̄jθj. That is,

given two segments a and b, we have

λa

λb

=
C̄aθa
C̄bθb

(2.2)

In Eq. (2.2), the mapping coefficient θj’s matters only in their relative values. For simplicity,

we take θa/θb = DN
a /D

N
b , the ratio of the mapped read counts between these two segments

in the normal sample, since it reflects intrinsic sequence properties of these segments and

therefore should be the same between the normal and tumor samples.

The above formula determines the relative value of the expected number of reads mapped

to each segment. To further specify the absolute value of λj of segment j, we make use

of the allele frequency information, and curate a list of segments that contain no loss of

heterozygosity. Where there is no loss of heterozygosity, the only possible copy numbers

at these segments in tumor cells must be even numbers. From the list, we further remove

“outlier” segments whose copy numbers deviate from the bulk of the segments in the list

based on the observed read counts at these segments. At the end, we are left with a set of

segments (denoted by set S containing the indices of these segments) that both contain no loss

of heterozygosity and likely share the same copy number. Details are given in supplementary

information Data preprocessing [81].

The set of segments in S will be the baseline segments that we use to specify the expected

read counts λj’s. To reduce complexity, we assume that the same even copy number cs

shared by all segments in S can only be either 2 or 4. (The other possible values are 0 for
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homozygous deletion, which is unlikely since each segment in S is supported by a certain

amount of reads, or values that are greater than 4 for ploidy higher than tetraploid, which

is likely to be rare.) Our algorithm will check both cases and select the one most compatible

with the observed data (in terms of the likelihood function). Given the values of cs’s for

each s ∈ S, the average copy number of these segments in the tumor sample, taking the

contamination of normal cells into account, is then given by Eq. (2.1).

With the average copy numbers in the baseline segments given, we then specify the expected

read count for each segment j = 1, · · · , J in the tumor sample as follows

λj =
1

|S|
∑

s∈S

C̄jθj
C̄sθs

DT
s (2.3)

which is the average expected read count suggested by the baseline segments through Eq.

(2.2), where the observed read counts in segment s of the tumor sample are denoted as DT
s .

Here |S| denotes the number of segments in set S.

Given the expected read count at each segment, we model the probability of observing DT
j

reads in segment j as a Poisson distribution with parameter λj,

DT
j | Cj, φ ∼ Poisson(λj) (2.4)

for each j = 1, · · · , J , where λj is a parameter depending on the absolute copy numbers and

is calculated based on Eq. (2.3). More discussion about using the Poisson distribution is

given in supplementary information [81].
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2.2.3 Modeling loss of heterozygosity

To model the loss of heterozygosity at heterozygous sites (i.e., with genotype AB in the normal

cells), we need to consider the genotypes of these sites in tumor cells. Let

G = {∅, A, B, AA, AB, BB, AAB, ABB, AABB}

be the set of possible genotypes that we will consider at each heterozygous site in tumor cells.

Note that by focusing on this set we have excluded some other genotypes that are less likely

to occur in tumor cells. For instance, we will not consider genotypes AAA or BBB since any

copy number change from AB to these two genotypes will involve at least one deletion and

two insertions. Instead, all genotypes included in G can be derived from AB with a minimum

of one operation on each allele. Although we formulated the set of possible genotypes here

by assuming the maximum copy number of each allele is 2 in tumor cells, PyLOH allows

the user to change this value. However, there is a trade-off in choosing the maximum copy

number threshold. On one hand, increasing the threshold can accommodate genomes with

high instability, but on the other hand, it can also significantly increase the complexity of

the model and thus make it more susceptible to overfitting.

The corresponding copy number and frequency of the B alleles (BAFs) associated with each

genotype in G are {0, 1, 1, 2, 2, 2, 3, 3, 4} and {1
2
, ǫ, 1−ǫ, ǫ, 1

2
, 1−ǫ, 1

3
, 2
3
, 1
2
}, respectively, written

in the same order as the genotypes in set G. Note that we have included a small ǫ ≪ 1 in

the calculation of BAF to account for sequencing and/or read-mapping biases or errors. In

practice, we choose ǫ = 0.01, corresponding to a Phred quality score of 20 [41]. We will use

ng and µg to denote the corresponding copy number and BAF, respectively, for genotype g.

Since the tumor sample consists of a mixture of normal and tumor cells, the fraction of B

alleles in the tumor sample is the weighted average of BAFs between normal and tumor cells,
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with weights depending upon tumor purity φ and copy numbers,

µ̄g =
φngµg + (1− φ)2µ0

φng + (1− φ)2
(2.5)

where µ0 = 0.5 is the BAF at the heterozygous sites in normal cells.

Using the notation from [114], let Gij be a random variable denoting the genotype of site

(i, j) in tumor cells. Conditional on its genotype, we model the probability of the B allele

count at each site as a binomial distribution, that is, given dTij = aTij + bTij reads mapped to

site (i, j), the chance of observing bTij reads matching B allele is

bTij | Gij = g, φ ∼ Binomial(dTij, µ̄g) (2.6)

with the total number of trials specified by dTij and the chance of success at each trial specified

by µ̄g.

2.2.4 Combining CNAs and LOH information

For heterozygous sites located within the same segment, their genotypes are constrained

by the underlying copy number associated with the segment. We model this constraint

through a conditional probability distribution P (Gij = g|Cj = c) = Qgc for all i and j. Here

Qgc is a predefined matrix specifying the chance of a site being genotype g conditional on

the underlying copy number being c. In practice, we assign a small probability σ to any

genotypes incompatible with the copy number c conditional on the heterozygosity in normal

cells, and equal probabilities to other compatible genotypes.

Conditional on the underlying copy number, we can then write down the probability of
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observing B-allele read count at each site as follows

P(bTij|Cj = c, φ) =
∑

g∈G

Qgc P(b
T
ij|Gij = g, φ)

We will assume that conditional on the underlying copy number, the B-allele read counts

at different sites of the same segment are independent of each other and are independent

of the total read count from the segment. Let bT
j = (bT1 , · · · , bTIj) denote all B-allele read

counts at heterozygous sites of segment j. Under the conditional independence assumption

outlined above, the joint probability of observing DT
j and bT

j conditional on the underlying

copy number Cj = c and the tumor purity being φ is

P(DT
j ,b

T
j |Cj = c, φ) = P(DT

j |Cj = c, φ)

×
Ij
∏

i=1

∑

g∈G

Qgc P(b
T
ij|Gij = g, φ) (2.7)

where the probability of DT
j conditional on Cj and φ is the Poisson distribution (2.4), and

the probability of bTij conditional on Gij and φ is the binomial distribution (2.6).

2.2.5 Likelihood model

So far, we have specified the probability of observing total read count and site-specific B-allele

read counts at each segment conditional on the underlying copy number. Next we further

treat the copy number Cj at each segment as a random variable, and model its probability as

a categorical distribution with support C = {0, 1, 2, 3, 4}, denoting the range of considered

copy numbers, and parameters ρj = (ρj0, · · · , ρj4), where ρjc denotes the probability of

having Cj = c in segment j. In other words, we have

Cj | ρj ∼ Categorical(C, ρj) (2.8)
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for each j = 1, · · · , J .

We treat ρ = (ρ1, · · · , ρJ) and φ as parameters of our model Θ = (φ,ρ), and the goal of our

model is to infer the values of these parameters based on the total read count information

in each segment and site-specific allele count information at each heterozygous site of these

segments. Let D = (D1, · · · , DJ) and b = (b1, · · · ,bJ). By Eq. (2.7) and assuming the

observations from different segments are conditionally independent conditional on the tumor

purity φ, the likelihood of observing the combined read count information is then

P(D,b|φ,ρ) =
J
∏

j=1

∑

c∈C

P(Cj = c|ρj)P(DT
j ,b

T
j |Cj = c, φ) (2.9)

=
J
∏

j=1

∑

c∈C

ρjc
λ
DT

j

j e−λj

DT
j !





Ij
∏

i=1

∑

g∈G

Qgc

(

dTij
bTij

)

µ̄
bTij
g (1− µ̄g)

aTij



 .

Given the likelihood function, we can then estimate the model parameters using maximum

likelihood estimation. Alternatively, we can also add a prior into the model by incorporating

our prior knowledge on the copy numbers and/or tumor purity. For instance, we can use

the Dirichlet distribution to incorporate the prior on the distribution of copy numbers, and

beta distribution to incorporate the prior on tumor purity,

ρj ∼ Dirichlet(ω), φ ∼ Beta(α, β) (2.10)

where ω is a vector having the same dimension as ρj and gives a weight to each copy number.

If the priors are specified, we can then estimate the values of the parameters by maximizing

their posterior probability, i.e., using the method of maximum a posteriori (MAP) estimation.

In this article, we use non-informative prior for φ and a Dirichlet prior configured based on

the compatible genotypes of each copy number for ρj. We solve the MAP problem using the
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Expectation-Maximization (EM) framework [35]. An alternative approach would be to take

a Bayesian approach to calculate the posterior probabilities of the tumor purity and copy

number changes. We do not take the Bayesian approach due to computational considerations

as it would require more time-consuming inference procedures. The complete details about

prior configurations and EM updates are given in supplementary information [81].

2.3 Results

Next we demonstrate the utility of combining loss of heterozygosity with copy number al-

terations to infer tumor purity and ploidy. For this purpose, we first present a clustering

pattern of B-allele frequencies derived from NGS data in paired tumor-normal samples. Then

we show that this clustering pattern can be used to resolve the ambiguous combinations of

tumor purity and copy number changes, using both a toy example and real data. Afterward,

we apply our method PyLOH, developed to infer tumor purity and absolute copy numbers

by integrating the information from total read counts and B-allele frequencies, to simulated

data and compare its performance to exiting state-of-the-art methods, CNAnorm-1.4.0 [49],

THetA-0.0.3 [95] and PurBayes-1.3 [75]. Finally, we test the performance of our and other

methods on real data, consisting of 12 whole genome sequencing datasets from breast cancer

samples [11].

2.3.1 BAFs patterns in NGS data and BAF heat map

As discussed in the introduction, the distribution of BAFs is closely related to the underlying

copy number changes. In particular, copy number changes at sites that are heterozygous

with respect to the normal genome may result in a deviation of the BAFs from 0.5 (loss

of heterozygosity), and the extent of this deviation depends on the absolute copy number
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Figure 2.1: Frequencies of BAF pairs in paired tumor-normal samples shown as heat maps.
(a) Chromosome 3 of patient 990515 [148]; (b) Chromosome 15 of patient MB-45 [11]; (c)
Chromosome 1 of patient PACA-1130 [19]; (d) Chromosome 2 of patient PACA-1130 [19].
The x-axis and the y-axis are divided into 100 bins representing the BAF resolution of 1%,
thus each BAF heat map is a 100 by 100 mesh grid. The color of each grid quantifies the
number of sites that has such a paired BAF across a specific genomic segment.

changes and tumor purity. We illustrate this idea using a heat map plot (Figure 2.1), which

shows the frequencies of BAF pairs, with one calculated from the normal sample and the

other calculated from the matched tumor sample at the same site, coded in pseudo colors.

Figure 2.1 shows the BAF heat maps of paired tumor-normal samples from three independent

cancer genome NGS datasets, including both exome sequencing [19, 148] and whole genome

sequencing [11].

The BAF heat maps demonstrate a clear cluster pattern on the distribution of BAF pairs
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(Figure 2.1). Two clusters are shared by all four heat maps, including the bottom left cluster,

containing sites with homozygous A-allele in both normal and tumor genomes, and the top

right cluster, containing sites with homozygous B-allele in both normal and tumor genomes.

(Note that the small deviations of BAFs away from 0 or 1 of sites in these two clusters are

likely due to sequencing and/or read-mapping errors.) Without changes in BAFs, these two

clusters reveal no information with regard to the underlying copy number changes. Thus, we

focus our attention on the other clusters in the heat maps, which all have BAFs centering at

0.5 in the normal samples, and thus contain mostly the heterozygous sites that underscore

our method. For this reason, these clusters will be referred to as heterozygous clusters in the

following.

The heterozygous clusters demonstrate distinct cluster patterns in different genomic seg-

ments of same/different samples. Although the BAFs of these clusters all center at 0.5 in

the normal samples, the BAFs of the corresponding matched tumor samples can center at

0.5 (Figure 2.1cd) or at values away from 0.5 (Figure 2.1abc). In fact, these values provide

a measure on the extent of LOH in the segments of tumor samples. For example, the tumor

BAFs of the heterozygous cluster center at 0.5 in Figure 2.1d, suggesting no loss of heterozy-

gosity in this segment. Without LOH, the absolute copy number in this case can only be

even numbers, with diploid being the most plausible answer. (We can eliminate homozygous

deletion since there are reads mapped to this region.)

A different cluster pattern emerges in Figure 2.1ab, which show two heterozygous clusters,

with tumor BAFs centering at 0.1 and 0.9 in Figure 2.1a, and at 0.2 and 0.8 in Figure 2.1b,

suggesting significant loss of heterozygosity in these two segments. (Note the appearance

of two heterozygous clusters in these two cases and the symmetry of the two clusters with

respect to the tumor BAF=0.5. This is because the B-alleles are determined according to

the human reference genome, which is not phased.) If the underlying copy number changes

are a single-copy deletion in both cases, then the cluster with tumor BAFs centering at 0.1
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Figure 2.2: A toy example illustrating the utility of BAFs patterns in resolving the identifi-
ability problem.

(Figure 2.1a) would correspond to a larger LOH, and consequently a higher tumor purity

than the other case(Figure 2.1b).

Figure 2.1c shows an interesting case with three heterozygous clusters with one center cluster

showing no LOH and two symmetric clusters suggesting LOHs. This more complex cluster

pattern suggests more than one types of CNAs within the segment being considered, most

likely due to the presence of both diploid and single-copy deletion changes.

Overall, these BAF heat maps provide a convenient and intuitive way to examine the overall

CNAs of a chromosomal segment, and illustrate the utility of BAFs at heterozygous sites for

inferring tumor purity and absolute copy numbers.
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Table 2.1: Three SNP sites from the exome sequencing data of patient MB-154.

Index Pos dN dT BAFN BAFT dbSNP ID
1 chr6:112,147,822 141 87 49% 25% rs28763978
2 chr7:131,842,835 98 29 51% 52% rs156961
3 chr7:82,225,896 317 352 50% 51% rs62465931
BAFN and BAFT denote BAFs of the normal and tumor sample, respectively. dN and dT
denote the read depth at the SNP site of the normal and tumor sample, respectively.

2.3.2 Using BAFs to solve the identifiability problem

The BAFs patterns shown in Figure 2.1 can be used to resolve the identifiability problem, as

the heterozygous clusters in each BAF heat map will center at different values with respect

to different combinations of tumor purity and copy number changes. We demonstrate this

idea using a toy example (Figure 2.2). In this example, we have total read counts in two

segments of the genome from both normal and tumor samples. The segment 2 has much

smaller total read counts from the tumor sample than the normal sample. The differences

can be explained by either a heterozygous deletion with 60% tumor purity or a homozygous

deletion with 30% tumor purity in this segment. The total read counts themselves cannot

distinguish these two possibilities. However, if we add in the information from the BAFs

of the sites in segment 2, an observation of heterozygous clusters centering at tumor BAFs

away from 0.5 would eliminate the homozygous deletion solution (Figure 2.2).

We can observe similar cases in real cancer genome sequencing data as those in the above toy

example. For instance, Table 2.1 shows the total read counts and BAFs at three SNP sites

(dbSNP 130 ID listed [120]) observed in the exome sequencing of a breast cancer patient MB-

154 [11]. The mean coverage of the exome sequencing data was 141X for the tumor samples

and 133X for the normal samples, respectively [11]. The first SNP site shows an example of

a heterozygous deletion as dT is significant lower than dN while BAFT significantly deviates

from 0.5. The second site shows an example of a homozygous deletion as dT is significant

lower than dN while BAFT is around 0.5. As a control, the third site shows an example
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Figure 2.3: The tumor purity estimates of the first three simulated datasets given by THetA,
CNAnorm, PurBayes and PyLOH. The x-axis is the estimated tumor purity and the y-axis
is the ground truth tumor purity.

without LOH or CNAs.

2.3.3 Results from simulated data

We have developed a probabilistic model to infer tumor purity and absolute copy numbers

by integrating the LOH information described above and the information based on total read

counts (see methods). Next we benchmark the performance of our new method on simulated

data and compare it with other algorithms. By using simulated data, we know the ground

truth of both tumor purity and absolute copy numbers, thereby providing us an objective

way of comparing the performance of different algorithms.

We first created an artificial diploid human genome by using the human reference genome as

a template and inserting SNP sites with a frequency similar to those observed in the human

population [117]. This diploid genome will be treated as the normal genome in our follow-up

simulation and analysis. The tumor genome was generated by adding somatic mutations

and copy number changes to the normal genome. NGS reads were then simulated from the

tumor sample consisting of a mixture of the normal and tumor genome, with the fraction of
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the tumor genome determined by the tumor purity. To reduce computational time, we use

only data from chromosome 1 in our analysis. Details on how the genomes and reads were

generated are described in supplementary information [81].

We created four tumor genomes that differ in their copy number configurations. The absolute

copy numbers of each tumor genome were configured to introduce the identifiability problem

and the detailed configurations are given in supplementary Table S1 [81]. For each tumor

genome, we then simulated eight different sets of NGS reads from both normal and tumor

samples by varying tumor purity. Overall, 32 sets of paired tumor-normal reads, each with

60X coverage, were generated. We applied PyLOH to each of these datasets, and compared

its performance to three other methods, including PurBayes, CNAnorm, and THetA. THetA

and PyLOH require a segmentation of the tumor genome based on relative CNAs as an input.

To avoid issues related to genome segmentation, we used ground truth segmentations in our

analyses. Similarly, we used ground truth somatic mutation sites as the input for PurBayes.

Details on how reads were preprocessed are given in supplementary information [81].

The tumor purities estimated by PyLOH and three other existing methods are shown in

Figure 2.3. Due to the space limitation, we only show the results of the first three simulated

datasets in Figure 2.3. The complete tumor purity estimates for all the simulated datasets are

shown in supplementary Table S2 [81]. The absolute copy numbers estimated by PyLOH and

THetA for each simulated dataset are shown in supplementary Table S4,S5,S6 and S7 [81]. A

few observations emerge from the figure and tables. First, PyLOH significantly outperforms

the other three methods on these datasets, providing a more accurate estimation of both

tumor purity and absolute copy numbers and returning ground true values in most of the

tested cases. Second, the THetA method, based only on total read counts information, is

able to identify the ground truth as one of its possible solutions for tumor genomes 1 and

2, but fails to resolve the identifiability problem. Third, the PurBayes method, based on

information from somatic mutations, can return the true tumor purity in some cases, but
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Table 2.2: The tumor purity estimates of the 12 breast cancer whole genome sequencing
datasets given by THetA, CNAnorm, PurBayes and PyLOH.

Patient ID THetA CNAnorm PurBayes PyLOH ABSOLUTE
MB-15 0.288 0.245 0.999 0.589 0.22
MB-45 0.526 0.291 0.999 0.566 0.25
MB-50 0.193 0.224 0.999 0.532 0.47
MB-82 0.129 0.274 0.999 0.192 0.74
MB-98 0.598 0.437 0.999 0.698 0.54
MB-106 0.409* 0.135 0.999 0.831 0.89

0.817*

MB-116 0.325 0.510 0.769 0.325 0.66
MB-123 0.358 0.353 0.999 0.377 0.65
MB-154 0.645 0.187 0.999 0.664 0.70
MB-165 0.668* 0.172 0.999 0.662 0.68
MB-198 0.301 0.293 0.999 0.607 0.64
MB-200 0.515 0.158 0.999 0.523 0.55
MAE# 0.220 0.320 0.397 0.186 n/a
*THetA outputted multiple solutions and here we only show the solutions with the smallest
deviation from the diploid.
#For tumor purities reported by THetA with multiple solutions, we used the average of the
solutions with the smallest deviation from the diploid to calculate the Mean Absolute Error
(MAE).

has larger deviations than PyLOH, likely reflecting the statistical fluctuation associated with

relatively small number of somatic mutation sites.

In addition to the four simulated tumor genomes discussed above, we simulated two addi-

tional tumor genomes based on copy number configurations derived from Sanger COSMIC

v68 [42]. The tumor purities and absolute copy numbers of the two COSMIC samples esti-

mated by PyLOH and other methods are shown in Supplementary Table S9,S10 and S11 [81].

PyLOH still outperformed the other methods on these two new datasets. Further details on

these two dataset are described in supplementary information [81].
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2.3.4 Results from breast cancer sequencing data

Having illustrated the utility of our method on simulated data, we proceed to test the per-

formance of PyLOH on a real cancer genome dataset, consisting of whole-genome sequencing

of 12 breast cancer samples [11]. As the ground truth tumor purities are unknown for this

dataset, we used the tumor purities calculated by ABSOLUTE based on SNP array data

and reported in the paper by Bajerji et al. [11] as a baseline for our comparison. Although

this baseline is by no means absolutely correct, it offers clues on the performance of different

algorithms since it was derived from SNP array data instead of NGS sequencing data as in

our case. We used BIC-seq-1.2.1 [139] to obtain segmentation files for THetA and PyLOH,

and used VarScan-2.3.5 [66] to call somatic mutation sites for PurBayes. Since THetA often

outputs multiple solutions, we selected the ones with the smallest deviation from the diploid

whenever this happens, as recommended by THetA [95]. Further details on this dataset are

described in supplementary information [81].

The tumor purities estimated by PyLOH and three existing algorithms - THetA, CNAnorm

and PurBayes, for the 12 breast cancer sequencing datasets are summarized in Table 2.2.

If the tumor purities estimated by ABSOLUTE are used as our comparison baseline, we

find PyLOH to be the most accurate algorithm among the four - it yields a mean absolute

error (MAE) of 0.186, as compared to a MAE of 0.22 by the second best algorithm, THetA.

PurBayes, which utilizes somatic mutations to estimate tumor purity, produced poorest

results, likely due to the inclusion of false positives in the somatic mutation calling procedure.

Although PyLOH returned closer solutions to ABSOLUTE (as measured by MAE) than any

of the other methods, the tumor purities estimated by PyLOH and ABSOLUTE deviate in

six samples: MB-15, MB-45, MB-82, MB-98, MB-116 and MB-123. To find out why such a

discrepancy arises, we carefully studied each of these six cases. In two of these cases (MB-15

and MB-45), we believe that the results obtained by PyLOH are more accurate because
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the tumor purities and absolute copy numbers inferred by total read counts information are

consistent with those inferred by BAFs information, and both support the results obtained by

PyLOH. For sample MB-82, MB-116, and MB-123, the contribution of BAFs information to

estimating tumor purities is not significant compared with the total read count information,

likely due to a low tumor purity in these samples. As a result, the estimation of tumor

purity is mainly contributed by information from total read counts, and in fact produces a

similar estimation compared to THetA. For the remaining case MB-98, the estimated tumor

purities given by the four algorithms are all inconsistent - one possible reason for this may

be the existence of subclonal tumor populations in the tumor sample.

Aside from the accuracy comparison described above, we note that PyLOH is very fast, with

a running time scaling linearly with the number of segments. This is in contrast to the

THetA method, the running time of which scales exponentially with the number of segments

since it explores all combinations of copy number changes across all segments [95]. As a

result, THetA takes a prohibitively long time to run when the number of segments is above

150 and the maximum copy number is greater than 6, while PyLOH has no such constraints.

Further details about the run time of each algorithm are given in supplementary information

[81].

2.4 Discussion

In this paper, we examined the problem of estimating tumor purity and absolute copy number

changes from NGS data, and, in particular, focused on solving the identifiability problem

that has not been properly solved by the existing methods. We demonstrated that the

distribution of B-allele frequencies at sites that are heterozygous with respect to the normal

genome provides key, but underutilized, information to solve the identifiability problem. We

further developed a full probabilistic model to integrate the copy number change and BAF
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information, and derived a principled way to estimate tumor purity and absolute CNAs.

We benchmarked the performance of our method, PyLOH, on both simulated data and real

whole-genome sequencing data, showing that our method outperforms existing methods in

both cases.

PyLOH requires a segmentation of the genome into segments with different CNAs as input.

Many algorithms have been developed to segment genomes based on copy number changes

and BAFs of SNP array data with varying levels of accuracy [134, 144, 129, 96]. A few of

these array-based methods have recently been translated to the sequencing domain [87, 143].

A future direction of PyLOH would be to integrate these existing methodologies and combine

them with the probabilistic model of PyLOH to carry out both genome segmentation and

absolute copy number estimation.

Another important future direction is to use our model to study tumor heterogeneity. So far,

we have focused on separating genetic changes from a mixture of normal and tumor cells. It

is well known that multiple tumor clonal types may coexist in the tumor sample, each with

an associated mutation landscape [99]. To further model intra-tumor heterogeneity on top of

the current probabilistic framework, we can assume there are multiple populations of tumor

cells. Thus the model likelihood given by Eq. (2.9) can be extended to account for subclonal

tumor populations (details in supplementary information [81]). We plan to further extend

PyLOH in this direction to tackle the more challenging problem of deconvolving tumor

heterogeneity by combining copy number change and allele frequency information.
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Chapter 3

Inferring tumor subclonal populations

3.1 Introduction

Tumor genomes have been shown to present extensive cellular heterogeneity for decades since

Nowell’s original clonal theory for tumor progression [94]. Identifying tumor subclonal pop-

ulations is important for both understanding the evolution of tumor cells, and for designing

more effective treatments as pre-existing mutations occurring in some subclones could lead

to drug resistance [44]. For example, a research in lymphocytic leukemia has shown links

between the presences of driver mutations within subclones and adverse clinical outcomes

[71].

With the advancement of next-generation sequencing (NGS) and launch of large-scale cancer

genome sequencing projects [59], computational methods have recently been developed to

infer tumor subclonal populations based on cancer genome sequencing data [115, 3, 61, 50,

95].

Most of these methods rely on sequence information from somatic point mutations, such as
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PyClone [115], EXPANDS [3], PhyloSub [61] and rec-BTP [50]. Methods in this category

leverage the cluster pattern of allele frequencies at somatic point mutations to detect distinct

subclonal populations. However, as the determination of somatic point mutations is imper-

fect and the inclusion of false-positives is unavoidable [113], deep sequencing with more than

100X coverage is often required for subclonal inferences with high sensitivity and specificity

[115, 61, 50].

Other approaches utilizing the read depth information from genomic segments with somatic

copy number alterations (SCNAs) to infer the cellular prevalences of subclonal populations

have also been developed, such as THetA [95]. THetA explores all combinations of copy

number changes across all segments to infer the most likely collection of subclonal pop-

ulations [95]. However, with the copy number information alone, THetA suffers from the

“identifiability problem”, where distinct combinations of tumor purity and ploidy are able to

explain the read depth information from SCNAs equally well [95]. Additionally, the running

time of THetA scales exponentially with the number of genomic segments [95], and often

takes a prohibitively long time to run under certain parameter settings.

In this article, we present a novel probabilistic mixture model, MixClone, to infer the cellular

prevalences of subclonal populations. MixClone integrates both read depth information

from genomic segments with SCNAs and allele frequency information from heterozygous

single-nucleotide polymorphism (SNP) sites within a unified probabilistic framework. Such

integrative framework has been shown to significantly improve the accuracy of tumor purity

estimation in our previous work [81]. Here, we present that MixClone achieves two major

advantages compared to the existing methods that (i) it does not require deep sequencing

data, (ii) it resolves the identifiability problem. To demonstrate MixClone’s utility, we

conducted simulation studies and showed that it outperforms existing methods. We also

applied MixClone on a breast cancer sequencing dataset [11], and showed that it was able

to discover subclonal events not reported before.
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3.2 Methods

In this section, we introduce the generative mixture model of MixClone, which is an extension

of our previous work on tumor purity estimation[81]. First, we introduce the notations for

input data. Then, we describe the probabilistic models for sequence information of both

SCNAs and allele frequencies. Finally, we combine these two types of data into a single

likelihood model, and describe an algorithm to solve the model.

3.2.1 Basic notations

The raw input data for MixClone are two aligned whole genome sequencing read sets of

paired normal-tumor samples and a genome segmentation file based on the tumor sample.

Following the notations from our previous work [81], we assume the tumor genome has been

partitioned into J segments. We also assume there are Ij heterozygous SNP sites within

segment j in the corresponding normal genome, and use (i, j) to index SNP site i within

segment j. For each SNP site (i, j) we define the A allele to be the reference allele and the B

to be the alternative allele, with respect to the reference genome. We also use a superscript

N to denote data from normal samples and superscript T to denote data from tumor samples.

Overall, the observed data are summarized in the following notations [114]:

bNij = number of reads mapped to the B allele in the normal sample at site (i, j).

dNij = reads depth of the normal sample at site (i, j).

DN
j = total number of reads mapped to segment j of the normal sample.

The notations for the observed data from tumor samples are similarly defined, e.g. DT
j

denotes total number of reads mapped to segment j of the tumor sample.
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3.2.2 Modeling SCNAs

Next, we describe the probabilistic model for SCNAs data. For each segment j, we define

an allelic configuration Hj to represent its underlying allele-specific copy number status.

For example, if the absolute copy number of segment j is 2, then the compatible allelic

configurations are PP, MM and PM, where P and M denotes the paternal and maternal allele of

the tumor genome, respectively. Since PP and MM are not distinguishable based on sequence

information alone as the reference human genome is not phased, we define the set of all

possible allelic configuration as

Hj ∈ H = {∅, P/M, PP/MM, PM, PPP/MMM, PPM/PMM} (3.1)

assuming the maximum copy number for each segment is 3. The corresponding copy number

associated with each allelic configuration in H is then

nh = {0, 1, 2, 2, 3, 3} (3.2)

MixClone allows the user to specify the maximum copy number and the default value is 6 in

the released package [81]. We further assume there are K subclonal populations within the

tumor sample, each of which has an associated cellular prevalence φk ∈ [0, 1]. The subclonal

type of each segment j is denoted as

Zj ∈ Z = {1, 2, · · · , K} (3.3)
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representing one of the K possible subclonal populations. Given the allelic configuration

Hj = h and the subclonal type Zj = k, the average copy number of segment j within the

tumor sample, taking into account the subclonal cellular prevalence φk, is

C̄j = φknh + (1− φk)2 (3.4)

Based on the Lander-Waterman model [72], the probability of sampling a read from a given

segment j depends on three main factors: 1) its copy number, 2) its total genomic length, and

3) its mappability, which depends on factors such as repetitive sequence and GC content [95].

For each segment j, we associate a coefficient θj to account for the effect of its mappability

and genomic length. Thus the expected read counts mapped to segment j, which is denoted

as λj, is proportional to C̄jθj. For example, for segment x and segment y, we have

λx

λy

=
C̄xθx
C̄yθy

(3.5)

Because the mappability coefficients (θj’s) matter only in a relative sense, we take θx/θy =

DN
x /D

N
y , as these segments should have the same sequence properties between the normal

and tumor samples.

Additionally, to determine the absolute value of λj, we curate a list of segments which

contain no loss of heterozygosity according to their allele frequencies information. Based on

the observed number of reads mapped to each segment, we further remove “outlier” segments

from the list if their copy numbers are different from the bulk of the segments’ copy numbers

in the list. Finally, we call the remaining segments in the list as “baseline segments” and

denote the set of these segments as S. We assume the allelic configurations of all the baseline
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segments are PM with copy number ns = 2. Other possible allelic configurations for baseline

segments, which have equal copy numbers for each allele (e.g. ∅, PPMM), are likely to be rare,

and currently we do not model them. Then based on ns, we specify λj as follows

λj =
1

|S|
∑

s∈S

C̄jθj
nsθs

DT
s (3.6)

where DT
s denotes the number of reads mapped to segment s of the tumor sample. Finally,

we model the number of reads mapped to segment j in the tumor sample as a Poisson

distribution, given Hj and Zj

DT
j | Hj, Zj ∼ Poisson(λj) (3.7)

Details on curating the baseline segments are given in Supplementary [82].

3.2.3 Modeling allele frequencies

Next, we describe the probabilistic model used for allele frequencies of heterozygous SNP

data. For each SNP site i within segment j, we denote its tumor genotype as Gij, which

is selected from the set of all possible tumor genotypes up to a maximum copy number

alteration, e.g.

G = {∅, A, B, AA, AB, BB, AAA, AAB, ABB, BBB} (3.8)
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assuming the maximum copy number is 3. The corresponding B allele frequencies (BAF) for

all the genotypes in G are

µg = {1
2
, ǫ, 1− ǫ, ǫ,

1

2
, 1− ǫ, ǫ,

1

3
,
2

3
, 1− ǫ} (3.9)

in which, ǫ ≪ 1 is a small random deviation accounting for general sequencing errors. We

choose ǫ = 0.01, which is equivalent to a Phred quality of 20 [41].

Given the tumor genotype Gij = g, the allelic configuration Hj = h, and the subclonal type

Zj = k, the average BAF of site (i, j) within the tumor sample, taking into account the

subclonal cellular prevalence φk, is

µ̄ij =
φknhµg + (1− φk)2µ0

φknh + (1− φk)2
(3.10)

in which µ0 = 0.5 is the BAF of heterozygous SNP sites in the normal sample. Finally, we

model the distribution of the B allele count bTij at site (i, j) as a binomial distribution, given

Gij, Hj and Zj

bTij |dTij , Gij, Hj, Zj ∼ Binomial(dTij, µ̄ij) (3.11)

3.2.4 Combining SCNAs and allele frequencies

Now, we combine sequence information from both SCNAs and heterozygous SNP sites. For

all the heterozygous SNP sites within the same segment, their genotypes should be consistent
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with the underlying allelic configuration of the segment. We model this consistency through a

predefined conditional probabilityQgh = P(Gij = g|Hj = h). If the genotype g is inconsistent

with the allelic configuration h, e.g. AA is inconsistent with PM, we assign a small probability

σ as Qgh, otherwise we assign equal probabilities to genotypes that are consistent with the

allelic configuration.

Conditional on the underlying allelic configuration Hj and subclonal type Zj , the probability

of observing B allele read count bTij at site (i, j) is given as

P(bTij|Hj = h, Zj = k) =
∑

g∈G

QghP(b
T
ij|Gij = g,Hj = h, Zj = k) (3.12)

We assume that conditional on the allelic configuration Hj, the B allele read counts {bTij}
Ij
i=1

at different sites within the same segment j are independent of each other, and are also

independent of the total read count DT
j of the segment. Then, the joint probability of

observing the two types of read counts information of segment j is

P(DT
j , {bTij}

Ij
i=1|Hj = h, Zj = k)

= P(DT
j |Hj = h, Zj = k)×

Ij
∏

i=1

∑

g∈G

QghP(b
T
ij|Gij = g,Hj = h, Zj = k) (3.13)

3.2.5 Likelihood model

We have specified the joint distribution of the two types of read counts information of segment

j. We then further model the allelic configuration Hj and the subclonal type Zj of segment
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j as random variables that follow categorical distributions

Hj | ρj ∼ Categorical(ρj) (3.14)

Zj | π ∼ Categorical(π) (3.15)

ρj = (ρj∅, · · · , ρjPPM/PMM), where ρjh = P(Hj = h) is the probability of observing h as the allelic

configuration of segment j. π = (π1, · · · , πK), where πk = P(Zj = k) is the probability of

observing subclonal type k for all the segments. The model parameters Θ is defined as

Θ = ({ρj}Jj=1, {πk}Kk=1, {φk}Kk=1) (3.16)

And the model likelihood of observing all the data is then

P({DT
j }Jj=1, {bTij}

Ij ,J

i=1,j=1|Θ)

=
J
∏

j=1

K
∑

k=1

∑

h∈H

P(Zj = k)P(Hj = h)P(DT
j |Hj = h, Zj = k)

×
Ij
∏

i=1

∑

g∈G

QghP(b
T
ij|Gij = g,Hj = h, Zj = k)

=
J
∏

j=1

K
∑

k=1

∑

h∈H

πkρjh
λ
DT

j

j e−λj

DT
j !

×
Ij
∏

i=1

∑

g∈G

Qgh

(

dTij
bTij

)

µ̄
bTij
ij (1− µ̄ij)

dTij−bTij (3.17)

We use Expectation-Maximization (EM) algorithm [35] to find the maximum likelihood

estimation of Θ. The complete details of the EM updates are given in Supplementary [82].
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3.2.6 Model selection

One of the key issues in subclonal analysis is to determine the number of subclonal popu-

lations K. PyClone and PhyloSub use posterior sampling methods to estimate K [115, 61],

while THetA requires users to specify K as an input [95]. Since the probabilistic model

of MixClone is a generative mixture model, the model complexity and the corresponding

log-likelihood increases as K increases. Therefore, we use a criterion based on the increase

of the log-likelihood to select K. Practically, MixClone allows the user to specify K. If K is

not specified, MixClone runs the mixture model five times with different K in range of 1 to

5. We denote the log-likelihoods under the five different settings as {LK}5K=1, and the total

log-likelihood increase as

∆ = L5 − L1 (3.18)

If |∆/L1| < 0.01, which means the ratio of total log-likelihood increase is less than 0.01,

MixClone predicts there is no subclonal event in the tumor sample and selects K = 1 as

the number of subclonal populations. If |∆/L1| ≥ 0.01, MixClone further calculates another

quantity

δi = |Li − L1|/∆, i ∈ [2, 5] (3.19)

which is the cumulative log-likelihood increase from K = 1 to K = i as a percentage

regarding to the total increase ∆. If δi ≥ 0.9 and δi−1 < 0.9, MixClone selects K = i as the

number of subclonal populations.

In practice, we suggest users use this criterion as a heuristic guide when analyzing real data,
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and determine the number of subclonal populations in conjunction with regard to other

external information.

3.2.7 MixClone software package

Figure 3.4 is the general workflow of MixClone. MixClone is a comprehensive software

package, including subclonal cellular prevalences estimation, allelic configuration estimation,

absolute copy number estimation and a few visualization tools. This package is implemented

in Python and is built on top of the PyLOH package, previously released by us [81]. It

also utilizes some features from the software package JointSNVMix [114], which have been

explicitly indicated in the source code.

3.3 Results

In this section, we evaluate the performance of MixClone on both simulated and real datasets

and compare its performance with two published algorithms: (i) PyClone, a method based

on somatic point mutations, and (ii) THetA, a method based on somatic copy number

alterations.

3.3.1 Results from simulated data

To generate simulation data, we simulated ten sets of NGS reads from chromosome 1 of

artificial paired normal-tumor samples, each with 60X coverage. Heterozygous SNP sites

from dbSNP [120] were inserted to the reference human genome to create the artificial normal

genome. Both heterozygous SNP sites and somatic point mutations from [16] were inserted

to the reference human genome to create artificial tumor genomes. Five of the artificial

41



0 247249719
Coordinates of Chromosome 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Su
bc

lo
na

l c
el
lu
la
r p

re
va

le
nc

e

Ground truth diploid
Ground truth non-diploid
MixClone
PyClone

Figure 3.1: Subclonal inference results by MixClone and PyClone on a simulated dataset with
two subclonal populations. The x-axis are the coordinates of Chromosome 1, and the y-axis
are subclonal cellular prevalences. The blue horizontal bars represent the subclonal cellular
prevalences estimated by MixClone based on non-diploid segments. Cyan and red horizontal
bars represent the ground truth subclonal cellular prevalences of diploid and non-diploid
segments. Yellow dots represent the subclonal cellular prevalences estimated by PyClone
based on somatic point mutations.

tumor genomes contain two subclonal populations and the other five contain three subclonal

populations. Each artificial tumor genome was randomly assigned with segmentations, allelic

configurations and subclonal cellular prevalences. We used segmentations based on both

ground truth and BIC-seq [139] as the input for MixClone. We used ground truth somatic

point mutation sites and copy numbers as the input for PyClone and THetA. Details on how

reads were simulated and preprocessed are given in Supplementary [82].

MixClone is able to identify the correct subclonal populations for all the simulated datasets

based on ground truth segmentations. Figure 3.1 shows the result of simulated dataset with

two subclonal populations. MixClone also correctly estimates the subclonal cellular preva-

lences of all the segments with SCNAs except for one small segment in tumor genome case

4 with three subclonal populations. For results based on BIC-seq segmentations, MixClone
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still correctly estimates the subclonal cellular prevalences of the majority of the segments

with SCNAs, except for those with copy-neutral loss of heterozygosity. This is likely due

to the incorrect segmentations of BIC-seq, as BIC-seq relies on copy number changes and is

unable to detect segments with copy-neutral loss of heterozygosity when they are adjacent to

diploid segments. The complete results of all the simulated datasets based on both ground

truth and BIC-seq segmentations are shown online through the github website associated

with MixClone. As a comparison, we also run PyClone and THetA on the same datasets.

We were unable to obtain THetA results after running it for more than 72 hours, likely due

to its exponential scalability with the number of segments. In Figure 3.1, PyClone detects

one of the two subclonal populations, whose ground truth cellular prevalence is 20%, but

misestimates the other subclonal population, whose ground truth cellular prevalence is 80%,

except for a few segments. The performance of MixClone on the other simulated datasets

also significantly outperforms PyClone. One possible reason might be that the reads coverage

of simulated datasets is not deep enough to support PyClone’s non-parametric method [115],

thus PyClone tends to report more subclonal populations due to the statistical variance.

3.3.2 Results from breast cancer sequencing data

We also applied MixClone on a whole-genome breast cancer sequencing dataset [11]. The

details on data preprocessing are described in Supplementary [82].

Figure 3.2a shows the subclonal inference results of sample MB-116. One estimated subclonal

cellular prevalence 32% is consistent with the tumor purities estimated by PyLOH and

THetA [81], and another estimated cellular prevalence 66% is consistent with the tumor

purity estimated by ABSOLUTE [25] reported in [11].

Figure 3.2b shows the five log-likelihoods of MB-116 under different numbers of subclonal

populations. The magenta, red and yellow curves represent the log-likelihoods corresponding
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Figure 3.2: Subclonal inference results of sample MB-116. (a) The subclonal cellular preva-
lences estimated by MixClone, the tumor purities estimated by PyLOH, THetA [81], and
the tumor purities estimated by ABSOLUTE [25] reported in [11] of sample MB-116. Each
blue dot represents a segment. The x-axis is the estimated absolute copy number of the
segment, and the y-axis is the estimated subclonal cellular prevalence of the segment. (b)
The five log-likelihoods of MB-116 under different number of subclonal populations.

to number 1, 3, and 5, respectively. Because the distance between the magenta and red curves

(the cumulative log-likelihood increase from 1 to 3) is greater than 0.9 of the distance between

the magenta and yellow curves (the total log-likelihood increase from 1 to 5), MixClone

selected K = 3 as the number of subclonal populations for MB-116.

For samples without significant subclonal events, MixClone selected one as the number

of subclonal populations, e.g. MB-106 (Figure 3.3). In Figure 3.3b, the ratio of total

log-likelihood increase from 1 to 5 is 1.4 × 10−4, which is less than the threshold of 0.01.

Therefore, MixClone selected K = 1 as the number of subclonal populations for MB-106.

The estimated cellular prevalence of this single population is 83%, which is also consistent

with the tumor purities estimated by PyLOH, ABSOLUTE and one result of THetA [81]

(Figure 3.3a).
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Figure 3.3: Subclonal inference results of sample MB-106. (a) The subclonal cellular preva-
lences estimated by MixClone, the tumor purities estimated by PyLOH, THetA [81], and
the tumor purities estimated by ABSOLUTE [25] reported in [11] of sample MB-106. Each
blue dot represents a segment. The x-axis is the estimated absolute copy number of the
segment, and the y-axis is the estimated subclonal cellular prevalence of the segment. (b)
The five log-likelihoods of MB-106 under different number of subclonal populations.

Besides MB-116, MixClone also detected significant subclonal events in MB-45 and MB-123.

Results of MB-45 and MB-123 are given in Supplementary [82].

3.4 Discussion

In this article, we demonstrated MixClone’s utility using whole genome sequencing data.

However, most of the existing cancer genome sequencing data are from exome sequencing.

An important future direction is to extend the current methodology to handle the exome

sequencing data. Yet, extending MixClone to whole exome sequencing data is not trivial, as

reads coverage on targeted exonic regions are no longer randomly distributed due to probe’s

variable efficiency [119]. Instead of Poisson distribution, using Gaussian distribution to model
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reads depth ratios between tumor and normal samples might be more appropriate to account

for such additional variances, which has been demonstrated in whole exome sequencing based

copy number analysis [119].

Another important future direction to extend MixClone is to implement joint analysis based

on multiple samples, which is supported by PyClone and PhyloSub [115, 61]. Multiple

samples have been obtained for a single heterogeneous tumor tissue both temporally and

spatially, and joint analysis based on these samples may reveal additional patterns of the

history of tumor progression [115].

Currently, MixClone runs the subclonal analysis five times with different number of subclonal

populations in range of 1 to 5 by default. In reality, larger numbers of subclonal populations

may coexist within one tumor sample, but in this case some of the populations are very likely

to share similar cellular prevalences. Since MixClone defines different subclonal populations

based on distinct cellular prevalences, those populations with similar cellular prevalences

may not be differentiated by MixClone. To achieve finer resolution of subclonal populations,

subclonal lineages information would be necessary to further differentiate each population

in addition to cellular prevalences. And phylogenetic methods may be possible solutions to

explicitly incorporate subclonal lineages information [61].
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Figure 3.4: The general workflow of MixClone.
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Chapter 4

Deconvolving tumor transcriptome

expression

4.1 Introduction

The rapidly advancing next-generation sequencing based transcriptome analysis tool, RNA-

seq, provides a comprehensive and accurate method for analyzing the entire RNA components

of the transcriptome [85]. The efficiency and sensitivity of RNA-seq make it a primary

method for detecting alternatively-spliced forms and estimating their abundances [133, 110].

However, estimating transcript abundances in heterogeneous tissues by RNA-seq remains an

unsolved, outstanding problem because of the confounding effect from different cell types

[26]. Many tissue samples from native environments are heterogeneous. For example, tumor

samples are usually composed of tumor cells and surrounding normal cells [93]. Therefore,

reads from an RNA-seq experiment of tumor samples will consist of contributions from both

tumor and normal cells. Additionally, tumor tissues themselves are often heterogeneous,

consisting of different subclones (e.g. breast cancer subtypes [91]), leading to even more
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complicated tissue environments.

Experimental methods have been proposed to address issues arising from contamination of

different cell types, such as laser-capture microdissection [39], which allows dissection of

morphologically distinguishable cell types. The mRNA content yield by this technology is

consequently lowered, and needs to be compensated for, usually by molecular amplification.

However, the nonlinearity induced by amplifying mRNA [97] has its own problems, and can

make the expression profiles of distinct cell types less distinguishable, weakening the sen-

sitivity of RNA-seq technology. Other experimental approaches, including cell purification

and enrichment, are comparatively expensive and laborious [31]. Therefore developing alter-

native in silico approaches to resolving the tissue heterogeneity problem, especially in cancer

research, remains a major problem in RNA-seq analysis [90].

Research in computational approaches to resolving the tissue heterogeneity problem of dif-

ferent biotechnologies has a fairly long history [135, 49, 40, 146]. The first attempt to com-

putationally micro-dissect heterogeneous tissues for microarray expression data was based

on a linear model [135], which estimated both cell-type proportion and gene expression

level. Prior information regarding “marker genes”, which are genes uniquely expressed in

each cell-type, was incorporated into the linear model to identify distinct cell types. The

linear model was extended with Bayesian prior densities of cell-type proportions [40], and

a posterior sampling approach was then constructed for cell-type-specific expression profil-

ing. A statistical testing method [146] was proposed for single nucleotide polymorphism

(SNP) array based copy number alterations analysis from heterogeneous tissue samples. In

this method, Bayesian differentiation between hemizygous deletion and homozygous deletion

were used to infer the underlying normal cell proportion and copy number profiles of both

normal cells and tumor cells. One common feature shared by these methods is that they all

adopted probabilistic models, not only allowing prior information about different cell types

to be smoothly incorporated into the models, but also taking advantages of the flexibility of
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probabilistic model to capture specific aspects of each data type.

To the best of our knowledge, no computational approaches have been proposed to resolve

the tissue heterogeneity problem from RNA-seq data in a probabilistic fashion. Typically,

researchers apply transcriptional profiling tools designed for homogeneous tissue samples di-

rectly to RNA-seq data from heterogeneous tissue samples. Subsequent estimation results

are interpreted as transcriptional profiling of a particular single cell type of interest. There-

fore, we ask whether it is possible to estimate trancriptive abundances of individual cell types

from RNA-seq of heterogeneous tissues, by decoupling the contributions from multiple cell

types. We propose a probabilistic model-based approach, Transcript Estimation from Mixed

Tissue samples (TEMT) to address this question. Currently, TEMT requires two sets of

single-end RNA-seq reads. One read set is from a heterogeneous tissue sample composed of

two cell types, while the other is from a pure tissue sample composed of one of the two cell

types. TEMT incorporates prior information of cell type proportion and can calculate proba-

bilities of RNA-seq reads sampled from each cell type. Because TEMT implements an online

EM algorithm [24], it has a time requirement proportional to the data size and a constant

memory requirement. To further improve the estimation accuracy, TEMT also implements

a bias module, which incorporates both positional bias [21, 78, 79] and sequence-specific bias

[112, 51].

To assess the performance of TEMT, we analyzed a series of both simulation and real

data from ENCODE [64], and compared the transcript relative abundances estimation from

TEMT to those obtained from other methods that do not take the tissue heterogeneity into

account. Our results show that explicitly accounting for tissue heterogeneity can significantly

improve transcript abundance estimation accuracy.
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4.2 Methods

In this section, we first introduce the generative mixture model of TEMT. Combined with

cell type proportion as prior information, we propose a maximum a posteriori estimation

approach for finding model parameters. Next, we explain how to incorporate a positional

and sequence-specific bias module into the model. Finally, we introduce an online EM

algorithm for parameter estimation, reducing the time complexity to be proportional to the

data size and the space complexity to be constant.

4.2.1 Model

Basic definition We focus on transcript abundance estimation. Denote T as a set of

reference transcripts, which we assume is known and complete. Let lt denote the length of

transcript t in the set with t = 1, · · · , T , where T is the total number of transcripts in the

reference set. Suppose we are interested in transcriptome analysis in two cell types: a and

b. Let ρat and ρbt denote the relative transcript abundance of transcript t in cell type a and

b, respectively, with t = 1, · · · , T . We assume {ρat }Tt=1 and {ρbt}Tt=1 are properly normalized

such that
∑T

t=1 ρ
a
t = 1 and

∑T

t=1 ρ
b
t = 1.

We assume RNA-seq reads are available in two samples: one consisting of cells of only type

a, which we call the “pure sample”, and the other consisting of cells of both type a and

b with percentage τa from cell type a and τ b from cell type b, which we call the “mixed

sample.” In the cancer transcriptome analysis, cell type a can represent normal cells as it

is usually easy to obtain a pure tissue sample, while cell type b can represent tumor cells as

most tumor tissue samples are contaminated by normal cells.

Because the pure sample consists of only cell type a, its relative transcript abundance ρpt is

described by ρpt = ρat for all t. However, the relative abundance of transcript t within the
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mixed sample is a weighted sum of the transcript abundance of both cell type a and b

ρmt = τaρat + τ bρbt , τ
a
t + τ bt = 1 (4.1)

Denote the read set from the pure sample by Rp and the read set from the mixed sample by

Rm. Our goal is to estimate the relative abundance of each transcript in the reference set T

from the RNA-seq read data Rp and Rm in both cell type a and b.

Alignment representationWe first map reads to the reference transcript set T and convert

the raw read data into a corresponding alignment representation. Denote the alignment

representation of the read set Rp by Yp = {ypi,t|i = 1, · · · , Np, t = 1, · · · , T}, where ypi,t = 1

if read i from Rp aligns to transcript t and 0 otherwise, and Np is the total number of reads

in read set Rp. The alignment representation Ym = {ymi,t|i = 1, · · · , Nm, t = 1, · · · , T} is

similarly defined for read set Rm from the mixed sample. Note that one read might map to

multiple transcripts due to alternative splicing, sequence similarity shared by homologous

genes, or other reasons. As a result, the summation of ypi,t over all transcripts may be bigger

than 1 for some i. These “ambiguous reads” introduce a major source of uncertainty into

transcript abundance estimation.

Generative model We model the sequencing of reads as a sampling process, randomly

chooses a transcript t from the reference transcript set T according to its relative abun-

dance and effective length, and then generates a read from a random location of the chosen

transcript. Under this model, the probability of a read originating from transcript t is

αs
t =

ρst l̃t
∑T

k=1ρ
s
k l̃k

(4.2)

with s being either p for the pure sample or m for the mixed sample. Here, l̃t is the
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effective length of transcript t, which quantifies the number of positions at which a read

can start within transcript t. Different methods have been proposed to model the effective

length [112, 98]. In TEMT, the effective length is modelled with consideration to the length

distribution of RNA-seq fragments [112]

l̃t =
lt
∑

x=1

φ(x;µ, σ2)
∑lt

x′=1 φ(x
′;µ, σ2)

(lt − x+ 1) (4.3)

We assume the fragment length x has a normal distribution with mean µ and variance σ2,

and φ(x;µ, σ2) is the normal probability density function of. By renormalizing φ(x;µ, σ2),

we obtain the discrete distribution of all possible fragment lengths. The effective length l̃t is

then the expectation of the number of positions a read can start within transcript t, based

on the discrete distribution of fragment length.

Suppose a read is generated uniformly from each location covered by the effective length of

each transcript. Then the probability of observing read i as represented by its alignment

map is

P({ysi,t}Tt=1) =
T
∑

t=1

ysi,t
αs
t

l̃t
(4.4)

for s = p or m.

Assume each read is generated independently in both the pure and the mixed samples. The

likelihood of observing the read set Rp from the pure sample and Rm from the mixed sample

is then described by

P(Rp,Rm|{αp
t}Tt=1, {αm

t }Tt=1) =
Np
∏

i=1

T
∑

t=1

ypi,t
αp
t

l̃t

Nm
∏

i=1

T
∑

t=1

ymi,t
αm
t

l̃t
(4.5)

We are interested in estimating the relative transcript abundances set {ρat }Tt=1, {ρbt}Tt=1, but
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since it can be uniquely defined by the read sampling probability set {αa
t }Tt=1, {αb

t}Tt=1

ρat =

αa
t

l̃t
∑T

k=1

αa
k

l̃k

, ρbt =

αb
t

l̃t
∑T

k=1

αb
k

l̃k

(4.6)

We can directly estimate the read sampling probability set {αa
t }Tt=1, {αb

t}Tt=1 from the likeli-

hood function Eq. (4.5) instead. Note that, again αp
t = αa

t for all t as it is the parameter

of pure sample, but unlike the linear form in Eq. (4.1), αm
t in terms of αa

t , α
b
t is given as a

nonlinear form

αm
t = Λaτaαa

t + Λbτ bαb
t (4.7)

Λa =

∑T

k=1 ρ
a
k l̃k

∑T

k=1 ρ
m
k l̃k

,Λb =

∑T

k=1 ρ
b
k l̃k

∑T

k=1 ρ
m
k l̃k

(4.8)

Where, the factor Λa,Λb induce the nonlinearity. But due to the averaging effect of the large

number of transcripts, practically Λa,Λb lies within 1 ± 0.05. So we approximate αm
t with

the linear form

αm
t ≈ τaαa

t + τ bαb
t (4.9)

As it brings computational convenience in the following learning step.

Finally, we define

Θ = {{αa
t }Tt=1, {αb

t}Tt=1, τ
a, τ b} (4.10)
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as the parameters of our model. The likelihood in Eq. (4.5) can be then expressed as

P(Rp,Rm|Θ) =
Np
∏

i=1

T
∑

t=1

ypi,t
αa
t

l̃t

Nm
∏

i=1

T
∑

t=1

ymi,t
(τaαa

t + τ bαb
t)

l̃t
(4.11)

4.2.2 Maximum a posteriori estimation

Several analysis have noticed the identifiability problem [49, 40] in estimating cell type

specific expression in heterogeneous tissue samples. Ideally, if the proportion information

for some cell types is missing, we can then pool these cell types as one type, making the

expression of each individual cell type inside unidentifiable. Previously, prior constraints

have been used to resolve the problem [49, 40]. In our model, the prior knowledge of cell

type proportions is combined with the model likelihood, and we subsequently use maximum

a posteriori (MAP) estimation to find the optimal parameters.

Specifically, we place a Beta(βa, βb) distribution as the prior for cell proportions of type a and

type b. The parameter βa, βb quantify the location and sharpness of the prior. Practically,

we found setting βa, βb 10 times as the data size gave a good convergence rate and accuracy.

Combining the prior with the likelihood given in Eq. (4.11), the posterior distribution of the

model is proportional to

P(Θ |Rp,Rm) ∝
(

Np
∏

i=1

T
∑

t=1

ypi,t
αa
t

l̃t

)[

Nm
∏

i=1

T
∑

t=1

ymi,t
(τaαa

t + τ bαb
t)

l̃t

]

(τa)β
a−1(τ b)β

b−1 (4.12)

4.2.3 Incorporating sequencing bias

Both positional [21, 78, 79] and sequence-specific [112, 51] sequencing biases have been

observed in next generation sequencing data. These biases mainly result from non-uniformly

distributed cDNA fragments during the RNA-seq library preparation [51]. Under positional
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bias, reads positioning is not uniformly distributed across the effective length of the target

transcript, but preferentially distributed around either the 5′ end or the 3′ end of the target

transcript. Under sequence-specific bias, the sequences near the two ends of the fragments

affect their probability to be sequenced. To account for these non-uniformity effects during

transcript abundance estimation, we incorporate the bias module of [112] into our model.

In order to further describe the local alignment context, we define another two sets of vari-

ables. Specifically, for read i from either read set Rp or Rm, we denote bsi,t ∈ [0, l̃t] as the

starting position of the alignment within transcript t relative to the 5′ end of the strand.

We also denote πs
i,t ∈ ΣL, where Σ = {A,C,G, T}, as the local sequence of transcript t with

length L and centered at bsi,t .Then we define the bias weight ws
i,t as

ws
i,t =

P(bsi,t|bias)P(πs
i,t|bias)

P(bsi,t|uniform)P(πs
i,t|uniform)

(4.13)

for s=p or m.

This bias weight ws
i,t is essentially the ratio of the probability of observing bsi,t and πs

i,t under

the bias model to the probability under the uniform model. If no bias exists, the weight ws
i,t

reduces to 1. The bias re-weighted Eq. (4.4) is then:

P({ysi,t}Tt=1) =
T
∑

t=1

ysi,t
αs
t

l̃t
ws

i,t (4.14)

To calculate the bias weight, we use the bin method and Markov chain for positional bias

and sequence-specific bias respectively. Complete details can be found in the Supplementary

[80]. The final unnormalized posterior distribution of the model is then described as

P(Θ |Rp,Rm) ∝
(

Np
∏

i=1

T
∑

t=1

ypi,t
αa
t

l̃t
wp

i,t

)[

Nm
∏

i=1

T
∑

t=1

ymi,t
(τaαa

t + τ bαb
t)

l̃t
wm

i,t

]

(τa)β
a−1(τ b)β

b−1 (4.15)

Where wp
i,t and wm

i,t are the bias weights computed based on read set Rp and Rm. The
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Figure 4.1: The representative graphical model of TEMT.

directed graphical model of TEMT is shown in Figure 4.1. The estimated parameters are

given by

Θ̂ = arg max
θ

logP(Θ |Rp,Rm) (4.16)

4.2.4 Online EM algorithm for learning

We solve the maximum a posteriori problem in Eq. (4.16) using the Expectation-Maximization

(EM) [35] framework. For each read i from read set Rp of pure sample, we denote the latent

variable of the transcript alignment representation as Zp
i = {zpi,t|t = 1, · · · , T}, where zpi,t = 1

if read i aligns to transcript t and 0 otherwise. But now
∑T

t=1 z
p
i,t = 1, which means only one

zpi,t = 1, indicating read i is actually originating from transcript t. Similarly, for each read i

from read set Rm of mixed sample, we denote the latent variable of the transcript alignment

representation as Zm
i = {zma

i,t , z
mb
i,t |t = 1, · · · , T}, where zma

i,t = 1 if read i aligns to transcript

t and is originating from cell type a within the mixed sample, and 0 otherwise. zmb
i,t = 1 or 0

is similar defined for cell type b. Thus
∑T

t=1(z
ma
i,t +zmb

i,t ) = 1 means read i is actually originat-
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ing from only one transcript, and either from cell type a or b within the mixed sample. We

also define the auxiliary variable qpi,t = P(zpi,t = 1|Θ,Yp,Ym), qma
i,t = P(zma

i,t = 1|Θ,Yp,Ym)

and qmb
i,t = P(zmb

i,t = 1|Θ,Yp,Ym) as the conditional probability weight of each latent variable

zpi,t = 1, zma
i,t = 1 and zmb

i,t = 1 conditional on model parameters Θ and the observed read

alignment representations Yp,Ym. Then based on Jensen’s inequality [60], the complete

posterior distribution, which is also the lower bound of Eq. (4.15) can be written as

P(Θ |Rp,Rm)

≥ 1

C

[

Np
∏

i=1

T
∏

t=1

(
αa
t

l̃t
wp

i,t)
q
p
i,t

][

Nm
∏

i=1

T
∏

t=1

(
τaαa

t

l̃t
wm

i,t)
qma
i,t (

τ bαb
t

l̃t
wm

i,t)
qmb
i,t

]

(τa)β
a−1(τ b)β

b−1 (4.17)

In which C is a normalizing constant and the equality holds only if the conditional probabil-

ities qpi,t, q
ma
i,t , q

mb
i,t are the true posterior distributions of latent variables {Zp

i }N
p

i=1, {Zm
i }Nm

i=1 .

The EM framework maximizes Eq. (4.17) by iteratively applying the expectation step and

the maximization step to update both the conditional probabilities qpi,t, q
ma
i,t , q

mb
i,t and model

parameters Θ until convergence. The expectation step of typical batch EM algorithm has to

fetch all the data points into memory, and calculates the conditional probabilities based on

the average of all the data points. While this batch method guarantee’s the log-likelihood

function to monotonically increase, it also induces inefficiency in both time and space com-

plexity. Considering the high-throughput nature of next-generation sequencing technology

as well as its huge data size, we implemented the EM algorithm in an online fashion [24] to

both lower the memory requirement and boost the convergence rate.

The main difference between the batch EM and the online EM is in the E-step. The E-step

of the online EM algorithm first calculates the conditional probabilities of only one new

data point, and then updates the conditional probabilities of all the current data points by

interpolating between the conditional probabilities of all the previous data points and the
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conditional probabilities of the new data point, with a forgetting factor σ controlling the

convergence rate.

It is shown in [24] that with the constraint 0.5 < σ ≤ 1, the online EM algorithm is

asymptotically equivalent to stochastic gradient ascent, and is guaranteed to converge to the

maximum likelihood estimator, which is extended to the maximum a posteriori estimator in

our model.

Specifically, the online EM updates in our model is given by

E-step

qpi+1,t =
ypi+1,t

αa
t
(n)

l̃t
wp

i,t

∑T

k=1 y
p
i+1,k

αa
k
(n)

l̃k
wp

i,k

(4.18)

qma
i+1,t =

ymi+1,t
τa(n)αa

t
(n)

l̃t
wm

i,t

∑T

k=1 y
m
i+1,k

τa(n)αa
k
(n)+τb

(n)
αb
k

(n)

l̃k
wm

i,k

(4.19)

qmb
i+1,t =

ymi+1,t
τb

(n)
αb
t

(n)

l̃t
wm

i,t

∑T

k=1 y
m
i+1,k

τa(n)αa
k
(n)+τb

(n)
αb
k

(n)

l̃k
wm

i,k

(4.20)

qp∗,t
(n+1) =

[

1− 1

(n+ 2)σ

]

qp∗,t
(n) +

1

(n+ 2)σ
qpi+1,t (4.21)

qma
∗,t

(n+1) =

[

1− 1

(n+ 2)σ

]

qma
∗,t

(n) +
1

(n+ 2)σ
qma
i+1,t (4.22)

qmb
∗,t

(n+1)
=

[

1− 1

(n+ 2)σ

]

qmb
∗,t

(n)
+

1

(n+ 2)σ
qmb
i+1,t (4.23)

We compute the conditional probabilities qpi+1,t, q
ma
i+1,t, q

mb
i+1,t of just one new read i+ 1 based

on previous parameter estimation {αa
t
(n)}Tt=1, {αb

t

(n)}Tt=1, τ
a(n), τ b

(n)
; Then, we compute the

new conditional probabilities average qp∗,t
(n+1), qma

∗,t
(n+1), qmb

∗,t

(n+1)
by interpolating between the

previous conditional probabilities average qp∗,t
(n), qma

∗,t
(n), qmb

∗,t

(n)
and qpi+1,t, q

ma
i+1,t, q

mb
i+1,t. n is the

index of iteration step and i is the index of data points. σ is the forgetting factor which
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controls the convergence rate, with the constraint 0.5 < σ ≤ 1.

M-step

τa(n+1) =

∑T

t=1 q
ma
∗,t

(n+1) + βa−1
Nm

1 + βa+βb−2
Nm

(4.24)

τ b
(n+1)

=

∑T

t=1 q
mb
∗,t

(n+1)
+ βb−1

Nm

1 + βa+βb−2
Nm

(4.25)

αa
t
(n+1) =

qp∗,t
(n+1) + qma

∗,t
(n+1)

1 + τa(n+1)
(4.26)

αb
t

(n+1)
=

qmb
∗,t

(n+1)

τ b(n+1)
(4.27)

In the subsequent M-step, parameters {αa
t
(n+1)}Tt=1, {αb

t

(n+1)}Tt=1, τ
a(n+1), τ b

(n+1)
are updated

according to new conditional probabilities average qp∗,t
(n+1), qma

∗,t
(n+1), qmb

∗,t

(n+1)
.

4.3 Results

Next we test the performance of the proposed method on both simulation data and the

recently released ENCODE data [64]. For both datasets, we used the following three-step

protocol and parameters to construct the analysis:

1. We aligned the raw read set from either simulation or the ENCODE data to a given

transcript set using bowtie-0.12.7 [73]. For each read, we allowed 2 mismatches and reported

at most 10 candidate alignments.

2. The abundance of each transcript in terms of estimated counts was estimated via both

TEMT and a control model. Estimated counts is defined as the estimated number of reads

generated from the target transcript. In TEMT, the prior of each cell type proportion was
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set to the same as the proportion used in simulation and ENCODE data respectively, and

βa, βb was set to 10 times the size of the read set Rm. µ = 200, σ = 80 were used as

the mean and standard deviation of the RNA-seq fragment length distribution. We chose

eXpress-0.9.4 [111] as the control model, as it is the state-of-the-art method for transcript

abundance estimation and also utilizes an online-EM algorithm. Note that, to run TEMT,

we need two read sets, in which one is for the pure sample and the other is for the mixed

sample, as previously mentioned. In contrast, to run eXpress, we only need one read set

from either the pure sample or the mixed sample. The forgetting factor for the on-line EM

algorithms in both TEMT and eXpress was set to be σ = 0.85, and the error-model in

eXpress was disabled for comparison.

3. To measure the model accuracy, we used the Error Fraction (EF) measure introduced

by [78] to quantify the discrepancy between the model estimates and the ground truth

estimates. The Error Fraction is defined as the fraction of transcripts for which the estimates

are significantly different (percent error > 10% in our case) from the ground truth.

4.3.1 Simulation

Data preparation To show the utility of TEMT, we first carried out a series of simula-

tion studies. To obtain simulated read sets, we used FluxSimulator [118], a software for

transcriptome and read generation by simulating the biochemical processes underlying the

library preparation. FluxSimulator requires a reference transcript set to start the simulation

process, so we manually downloaded 406 transcripts of 208 alternatively spliced genes in

human from Alternative Splicing Structural Genomics Project (AS3D) [5], and used these

406 transcripts as the reference transcript set. We first simulated the transcript expression

process twice producing two sets of relative transcript abundances, corresponding to cell

type a and b respectively. Based on these two transcript abundance sets, we then simulated
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Figure 4.2: Analysis results of simulated data of 6 different cell type b proportions with the
bias module disabled. The x-axis is the cell type b proportions, and the y-axis is the Error
Fraction of the corresponding estimates. The green and blue lines are the estimates from
TEMT for cell type a and cell type b, based on the two read sets of the cell type a pure
sample and the mixed sample. The yellow and magenta lines are the estimates from eXpress
for cell type a and cell type b, based on the two read sets of the cell type a pure sample and
the cell type b pure sample. The red line is the direct estimates from eXpress for cell type
b, based on the read set of the mixed sample.

6 pairs of 1 million 75-bp single-end read sets corresponding to six different cell type b pro-

portions from 40% up to 90%. The relative transcript abundances of cell type a and b were

kept the same throughout these simulations. For each paired read set, one read set is for

the pure sample composed of only cell type a, whereas the other read set is for the mixed

sample composed of both cell type a and b, mixed with the cell type b proportion. Within

the mixed-sample read set, we also extracted the reads simulated purely from cell type b,

which was used for control model eXpress.

Analysis The simulated data are analyzed with the bias module both enabled and disabled.

Surprisingly, the positional and sequence-specific bias module did not improve the accuracy
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of the transcript abundance estimation as measured by the Error Fraction of estimated

counts in both TEMT and eXpress. This result may due to the stochasticity during the

simulation of FluxSimulator. So we only present the results with the bias module disabled

in both TEMP and eXpress in Figure 4.2.

We note that the estimates of cell type a from TEMT achieve roughly the same accuracy,

compared with the estimates from eXpress based on the read set of the pure sample of cell

type a. Also, this accuracy does not change significantly under the effect of different cell

type b proportions. This is mainly due to the pure sample read set of cell type a within the

input data for TEMT.

The accuracy of the estimates of cell type b from TEMT is also shown in Figure 4.2, which

shows that TEMT generally outperforms the direct estimation method. To the best of

our knowledge, there are no computational tools similar to our model that can estimate

the relative transcript abundances of cell type b via RNA-seq data generated from mixed

samples. Typically, computational methods are applied directly to the noisy data of mixed

samples and results are interpreted as the estimates of cell type b. To compare the estimates

of cell type b from TEMT with direct estimates using the current method, we applied the

control model eXpress directly to the read set of the mixed sample. The estimated counts

from eXpress were then compared with the true counts from another 1 million simulated

read set purely of cell type b, while keeping the same relative transcript abundance as the

previous simulations. The corresponding Error Fractions are shown as the red line in Figure

4.2 regarding different cell type b proportions. Although the accuracy of cell type b estimates

from TEMT is affected by different cell type b proportions, it is generally better than the

direct estimates. This can be further illustrated in Figure 4.3, which shows that the direct

estimated counts of cell type b from eXpress deviate more from the true counts as the cell

type b proportion decrease, while the estimates of TEMT have much reduced deviation. We

notice that as the cell type b proportion gradually decreases, the accuracy of the estimates
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(a) Cell type b proportion: 40%
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(b) Cell type b proportion: 50%
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(c) Cell type b proportion: 60%
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(d) Cell type b proportion: 70%
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(e) Cell type b proportion: 80%
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(f) Cell type b proportion: 90%

Figure 4.3: Comparisons between indirect estimates from TEMT and direct estimates from
eXpress for cell type b in terms of estimated counts. The x-axis is the estimated counts from
the two models, and the y-axis is the true counts. Each point in the figure is a comparison
between the estimated count and true count. The red points are the direct estimates from
eXpress, while the blue points are the indirect estimates from TEMT. Figure (a)-(f) are
each comparison with cell type b proportions from 40% to 90%.

of cell type b from TEMT also decreases. This is the result of the contamination effect

from the cell type a within the mixed sample. A recent paper [26] also observed this similar

phenomenon when studying copy number aberrations from heterogeneous tumor tissue.
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4.3.2 ENCODE data

Data preparation Next we analyzed the recently released ENCODE data. Due to the lack

of RNA-seq data sampled from mixed tissue samples with known cell type proportions, we

artificially generated the mixed-sample read sets by mixing reads obtained from two different

cell types. Specifically, we chose two Tier 1 cell lines, GM12878 and K562, and treated them

as cell type a and cell type b respectively. The corresponding single-end RNA-seq data of

these two cell lines, GM78 1x75D A 1 (UCSC Accession: wgEncodeEH000125) and K562

1x75D A 1 (UCSC Accession: wgEncodeEH000126) from the Wold lab [92] at Caltech, were

download from ENCODE (2012). The data downloaded from the same lab under similar

protocols is intended to reduce the deviation resulting from experiments. We then randomly

selected 10 million reads from GM12878 cells to form the read set of the pure sample, and

10 million reads from both GM12878 and K562 cells using different K562 cells proportions

to form the read set of the mixed sample. Similar to the previous simulation study, we

extracted the reads purely selected from K562 cells within the mixed sample, and used them

for the eXpress control model. We studied 6 different K562 cells proportions from 40% to

90% in order to compare with the previous simulation study. 36908 human RefSeq [104]

transcripts from UCSC known genes [58] were used as the transcript set for the ENCODE

data.

Analysis One major issue in studying the ENCODE data is that the ground truth of relative

transcript abundance in each cell type is unknown. We used the estimates from eXpress based

on the GM12878 and K562 pure samples as the ground truth. Again, the bias module was

disabled for both TEMT and eXpress. The general result of ENCODE data is shown in

Figure 4.4. Similar to the simulated data, the indirect estimates for K562 cells from TEMT

generally outperforms the direct estimates from eXpress based on the read set of the mixed

sample. The contamination effect from cell type a within the mixed sample observed in

Figure 4.3 is also seen in the eXpress analysis of ENCODE data, while TEMT does not have
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Figure 4.4: Analysis results of the ENCODE data of 6 different K562 cells proportions with
the bias module disabled. The x-axis is the different K562 cells proportions, and the y-axis is
the Error Fraction of the corresponding estimates. The green and blue lines are the estimates
from TEMT for GM12878 and K562 cells, based on the read sets of the GM12878 cells pure
sample and the mixed sample. The red line is the direct estimates from eXpress for K562
cells, based on the read set of the mixed sample.

this issue. Note that the measure of relative transcript abundances as shown in the red line

of Figure 4.4 is no longer estimated counts, but reads per kilobase of transcript per million

mapped reads (RPKM), as the total number of reads from K562 cells within the mixed

sample is less than the total number of reads of the mixed sample, so that normalization is

necessary for comparison. We notice TEMT underperforms direct estimates from eXpress

when K562 cells proportion equals 90%. Possibly the contamination effect of GM12878 cells

within the mixed sample is not severe enough at this point, as we can imagine the red line in

Figure 4.4 will finally reach 0% Error Fraction when K562 cells proportion reaches 100%. On

the other hand, since the estimates from eXpress based on the pure sample are considered

the ground truth, the lower bound Error Fraction of K562 cells estimates from TEMT should

be the same as the Error Fraction of GM12878 cells estimates, which is around 20% to 30%
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in Figure 4.4.

4.4 Discussion

We formulated our model under the assumption that the heterogeneous tissue is only com-

posed of two cell types, but in reality, a heterogeneous tissue might be much more com-

plicated, consisting of multiple cell types. To relax this constraint, our model needs to be

further extended to analyze more complex cases in which each cell type may have its own

subtypes, e.g. breast cancer subtypes, leading to a more sophisticated heterogeneous tissue

environment. Further dissecting cell subtype heterogeneity is the next step in refining our

model. Moving from two cell types to arbitrarily many cell types is of great interest, since

it may substantially facilitate transcriptome study of heterogeneous tissues.

One critical component necessary to make our model work is the prior information of cell

type b proportion, which is necessary to resolve the identifiability problem of mixed samples.

In real experiments, precise prior information regarding cell type proportions may be unavail-

able. One solution in the context of our model is to down weight the effect of the prior by

decreasing the parameter βa, βb, which adds more uncertainty to the cell mixture proportion.

However, this approach may decrease the performance of the model as the uncertainty in cell

mixture proportion can not be distinguished from the uncertainty in transcript abundance

estimation. This observation suggests another direction to further improving our model

which is to solely estimate cell type b proportion without the prior information. To fulfill

this requirement, the identifiability problem needs to be resolved as mentioned in section

2.3, which turns out to be comparatively hard for RNA-seq data. Unlike the heterozygous

and homozygous deletions in [146], which can be utilized to differentiate between the SNP

array data generated by normal cells and tumor cells, there are no such explicit differences

between the reads generated by distinct cell types in RNA-seq data, thus making the gener-
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ative mixture model unconstrained. The “marker genes” method proposed by [135], which

tries to distinguish distinct cell types by utilizing genes uniquely expressed in each cell type,

provides a future potential direction to extend the current model.
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Chapter 5

Gene expression inference with deep

learning

5.1 Introduction

A fundamental problem in molecular biology is to characterize the gene expression patterns of

cells under various biological states. Gene expression profiling has been historically adopted

as the tool to capture the gene expression patterns in cellular responses to diseases, genetic

perturbations and drug treatments. The Connectivity Map (CMap) project was launched to

create a large reference collection of such patterns and has discovered small molecules that

are functionally connected using expression pattern-matching (e.g., HDAC inhibitors and

estrogen receptor modulators) [70].

Although recent technological advances, whole-genome gene expression profiling is still too

expensive to be used by typical academic labs to generate a compendium of gene expres-

sion over a large number of conditions, such as large chemical libraries, genome-wide RNAi

screening and genetic perturbations. The initial phase of the CMap project produced only
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564 genome-wide gene expression profiles using Affymetrix GeneChip microarrays [70].

Despite the large number of genes (˜22,000) across the whole human genome, most of their

expression profiles are known to be highly correlated. Systems biologists have leveraged this

idea to construct gene regulatory networks and to identify regulator and target genes [12].

Researchers from the LINCS program (http://www.lincsproject.org/) analyzed the gene ex-

pression profiles from the CMap data using principal component analysis. They found that

a set of ˜1,000 carefully chosen genes can capture approximately 80% of the information in

the CMap data (http://support.lincscloud.org/hc/en-us/articles/202092616-The-Landmark-

Genes). Motivated by this observation, researchers have developed the L1000 Luminex bead

technology to measure the expression profiles of these ˜1,000 genes, called the landmark genes

(http://support.lincscloud.org/hc/en-us/articles/202092616-The-Landmark-Genes), with a

much lower cost (˜$5 per profile) [100]. Therefore, researchers can use the expression signa-

tures of landmark genes to characterize the cellular states of samples under various exper-

imental conditions. If researchers are interested in the expression of a specific gene other

than landmark genes, the expression profiles of the remaining ˜21,000 genes, called the target

genes, can be then computationally inferred based on landmark genes and existing expres-

sion profiles. With the L1000 technology, the LINCS program has generated ˜1.3 million

gene expression profiles under a variety of experimental conditions.

However, computationally inferring the expression profiles of target genes based on landmark

genes is challenging. It is essentially a large scale multi-task machine learning problem, with

the target dimension (˜21,000) significantly greater than the feature dimension (˜1,000). The

LINCS program currently adopts linear regression as the inference method, which trains re-

gression models independently for each target gene based on the Gene Expression Omnibus

(GEO) [38] data. While linear regression is highly scalable, it inevitably ignores the non-

linearity within gene expression profiles that has been observed [52]. Kernel machines can

represent dexterous nonlinear patterns and have been applied to similar problems [145]. Un-
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fortunately, they suffer from poor scalability to growing data size. Thus, a machine learning

method enjoying both scalability and rich representability is ideal for large scale multi-task

gene expression inference.

Recent successes in deep learning on many machine learning tasks have demonstrated its

power in learning hierarchical nonlinear patterns on large scale datasets [14]. Deep learning

in general refers to methods that learn a hierarchical representation of the data through

multiple layers of abstraction (e.g. multi-layer feedforward neural networks). A number of

new techniques have been developed recently in deep learning, including the deployment of

General-Purpose Computing on Graphics Processing Units (GPGPU) [30, 32], new training

methodologies, such as dropout training [56, 10] and momentum method [130]. With these

advances, deep learning has achieved state-of-the-art performances on a wide range of ap-

plications, both in traditional machine learning tasks such as computer vision [69], natural

language processing [125], speech recognition [55], and in natural science applications such

as exotic particles detection [9], protein structure prediction [36], RNA splicing prediction

[77] and pathogenic variants identification [106].

Here we present a deep learning method for gene expression inference (D-GEX). D-GEX is

a multi-task multi-layer feedforward neural network. We evaluated the performances of D-

GEX, linear regression (with and without different regularizations) and k-nearest neighbor

(KNN) regression on two types of expression data, the microarray expression data from

the GEO and the RNA-Seq expression data from the Genotype-Tissue Expression (GTEx)

project [84, 4]. GPU computing was used to accelerate neural network training so that

we were able to evaluate a series of neural networks with different architectures. Results

on the GEO data show that D-GEX consistently outperforms other methods in terms of

prediction accuracy. Results on the GTEx data further demonstrate D-GEX, combined with

the dropout regularization technique, achieves the best performance even where training and

prediction were performed on datasets obtained from different platforms (microarray verse
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RNA-Seq). Such cross platforms generalizability implies the great potential of D-GEX to

be applied to the LINCS program where training and prediction were also done separately

on the microarray data and the L1000 data. Finally, we attempted to explore the internal

structures of the learned neural networks with two different strategies and tried to interpret

the advantages of deep learning compared to linear regression.

5.2 Methods

In this section, we first introduce three expression datasets we used in this study and for-

mulate gene expression inference as a supervised learning problem. We then present D-GEX

for this problem and explain a few key deep learning techniques to train D-GEX. Finally, we

introduce several common machine learning methods that we used to compare with D-GEX.

5.2.1 Datasets

1. The GEO expression data was curated by the Broad Institute from the publicly available

GEO database. It consists of 129,158 gene expression profiles from the Affymetrix microarray

platform. Each profile comprises of 22,268 probes, corresponding to the 978 landmark genes

and the 21,290 target genes. The original GEO data was accessed from the LINCS Cloud

(http://www.lincscloud.org/), which has been quantile normalized into a numerical range

between 4 and 15. Some of the expression profiles in the GEO dataset are biological or

technical replicates. To avoid complications in the learning procedure, we removed duplicated

samples (see Supplementary [28]), leaving 111,009 profiles in the end.

2. The GTEx expression data consists of 2,921 gene expression profiles of various tissue

samples obtained from the Illumina RNA-Seq platform [4]. The expression level of each gene

was measured based on Gencode V12 annotations [4] in the format of Reads Per Kilobase
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per Million (RPKM).

3. The 1000 Genomes expression data consists of 462 gene expression profiles of lymphoblas-

toid cell line samples from the Illumina RNA-Seq platform [74]. The expression level of each

gene was also measured based on Gencode V12 annotations [74] in the format of RPKM.

Since the gene expression values of the microarray platform and the RNA-Seq platform were

measured in different units (probes vs Gencode annotations) and different numerical scales,

we quantile normalized the three expression datasets jointly to retain the maximum infor-

mation cross platforms. Because one Gencode annotation may include multiple microarray

probes, 943 landmark genes and 9,520 target genes in terms of Gencode annotations were

left after joint quantile normalization. Details of joint quantile normalization are given in

Supplementary [28]. Finally, all the datasets were standardized by subtracting the mean and

dividing by the standard deviation of each gene.

5.2.2 Gene expression inference as multi-task regression

Assume there are L landmark genes, T target genes, and N training samples (i.e. profiles);

the training dataset is expressed as {xi,yi}Ni=1, where xi ∈ RL denotes the expression values

of landmark genes and yi ∈ RT denotes the expression values of target genes in the i-th

sample. Our goal is to infer the functional mapping F : RL → RT that fits {xi,yi}Ni=1,

which can be viewed as a multi-task regression problem.

We use Mean Absolute Error (MAE) to evaluate the predictive performance at each target

gene t,

MAE(t) =
1

N ′

N ′

∑

i=1

∣

∣yi(t) − ŷi(t)
∣

∣ (5.1)
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where N ′ is the number of testing samples and ŷi(t) is the predicted expression value for

target gene t in sample i. We define the overall error as the average MAE over all target

genes, and use it to evaluate the general predictive performance.

For the microarray platform, we used the GEO data for training, validation and testing.

Specifically, we randomly partitioned the GEO data into ˜80% for training (88,807 samples

denoted as GEO-tr), ˜10% for validation (11,101 samples denoted as GEO-va) and ˜10% for

testing (11,101 samples denoted as GEO-te). The validation data GEO-va was used to do

model selection and parameter tuning for all the methods.

For the RNA-Seq platform, we used GEO-tr for training, the 1000 Genomes data for vali-

dation (denoted as 1000G-va), and the GTEx data for testing (denoted as GTEx-te). The

validation data 1000G-va was used to do model selection and parameter tuning for all the

methods.

5.2.3 D-GEX

D-GEX is a multi-task multi-layer feedforward neural network. It consists of one input layer,

one or multiple hidden layers, and one output layer. All the hidden layers have the same

number of hidden unites. Units between layers are all fully connected. A hidden unit j in

layer l takes the sum of weighted outputs plus the bias from the previous layer l − 1 as the

input, and produces a single output olj using a nonlinear activation function f .

olj = f(
H
∑

i=1

wl−1
i,j ol−1

i + bl−1
j ) (5.2)

H is the number of hidden units. {wl−1
i,j , bl−1

j }Hi=1 are the weights and the bias associated

with unit j that need to be learned. We adopt the hyperbolic tangent (TANH) activation
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function to hidden units, which naturally captures the nonlinear patterns within the data.

Linear activation function is applied to output units for the regression purpose. The loss

function for training is the sum of mean squared error at each output unit, namely,

L =
T
∑

t=1

[

1

N

N
∑

i=1

(

yi(t) − ŷi(t)
)2

]

(5.3)

D-GEX contains 943 units in the input layer corresponding to the 943 landmark genes.

Ideally, we should also configure D-GEX with 9,520 units in the output layer corresponding

to the 9,520 target genes. However, each of our GPUs has only 6 GB of memory, thus we

cannot configure hidden layers with sufficient number of hidden units if all the target genes

are included in one output layer. Therefore, we randomly partitioned the 9,520 target genes

into 2 sets that each contains 4,760 target genes. We then built 2 separate neural networks

with each output layer corresponding to one half of the target genes. With this constraint,

we were able to build a series of different architectures containing 1˜3 hidden layers each

and each hidden layer contains 3,000, 6,000 or 9,000 hidden units. Supplementary Figure S1

[28] shows an example architecture of D-GEX with 3 hidden layers.

Training D-GEX follows the standard back-propagation algorithm [116] and mini-batch gra-

dient descent, supplemented with advanced deep learning techniques. Detailed parameter

configurations are given in Supplementary Table S1 [28]. For more descriptions about neural

networks and their background please see [27]. We discuss a few key training techniques as

follows:

1. Dropout is a technique to perform model averaging and regularization [56] for neural

networks. At the training time, each unit along with its edges is temporarily dropped out

with probability p for each training sample. Then the forward- and back-propagation are

performed on a particularly “thinned” network. For an architecture with n units performing
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dropout, there are O
(

1
(1−p)n

)

such thinned networks. At the testing time, all the units are

retained with weights multiplied by 1−p. Therefore, dropout can be seen as model averaging

of exponentially many different neural networks in an approximate but efficient framework.

Dropout has been shown to suppress co-adaptation among units and force each unit to learn

patterns that are more generalizable [127]. The dropout rate p serves as a tuning parameter

that controls the intense of regularization. We applied dropout to all the hidden layers of

D-GEX except for the outgoing edges from the input layer. The dropout rate was set to

[0%, 10%, 25%] to compare the effect of different degrees of regularization.

2. Momentum method is a technique to accelerate gradient-based optimization. It accumu-

lates a velocity in directions of gradients of the loss function across iterations and uses the

velocity instead of the gradient to update parameters [130]. Given a loss function L with

respect to the parameters Θ of the neural network, the momentum is given by

V (k+1) = µV (k) − η(k)∇L(Θ(k))

Θ(k+1) = Θ(k) + V (k+1) (5.4)

where µ ∈ [0, 1] is the momentum coefficient, η is the learning rate, V is the velocity, and

∇L(Θ) is the gradient of the loss function. Momentum method has been shown to improve

the convergence rate particularly for training deep neural networks [130].

3. Normalized initialization is a technique to initialize the weights of deep neural networks

[45]. The weights of a unit is sampled from a uniform distribution defined by,

W ∼ U

[

−
√
6√

ni + no

,

√
6√

ni + no

]

(5.5)
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where ni, no denote the number of fan-ins and fan-outs of the unit. It is designed to sta-

bilize the variances of activation and back-propagated gradients during training [45]. The

uniform distribution of the output layer of D-GEX was set to be within a smaller range of

[−1× 10−4, 1× 10−4] as it was adopted with the linear activation function.

4. Learning rate was initialized to 5× 10−4 or 3× 10−4 depending on different architectures,

and was decreased according to the training error on a subset of GEO-tr for monitoring the

training process. Specifically, the training error was checked after each epoch, if the training

error increased, the learning rate was multiplied by a decay factor of 0.9 until it reached a

minimum learning rate of 1× 10−5.

5. Model selection was performed based on GEO-va for the GEO data and 1000G-va for the

GTEx data. Training was run for 200 epochs. The model was evaluated on GEO-va and

1000G-va after each epoch, and the model with the best performance was saved respectively.

D-GEX was implemented based on two Python libraries, Theano [18] and Pylearn2 [46].

Training was deployed on an Nvidia GTX TITAN Z graphics card with dual GPUs. The

largest architecture of D-GEX (3 hidden layers with 9,000 hidden units in each hidden

layer) contains ˜427 million parameters. Training half of the target genes with the largest

architecture took around 6 hours. D-GEX is publicly available at https://github.com/uci-

cbcl/D-GEX.

5.2.4 Linear regression

Linear regression (LR) for multi-task gene expression inference trains a model, F(t)(x) =

wT
(t)x+ b(t), independently for each target gene t. w(t) ∈ RL, b(t) ∈ R are the model param-
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eters associated with each target gene t, and

(

w(t), b(t)
)

= argmin
w,b

1

N

N
∑

i=1

(

yi(t) −wT
(t)xi − b(t)

)2
(5.6)

L1 or L2 penalties can be further introduced for regularization purpose. In these cases,

(

w(t), b(t)
)

= argmin
w,b

1

N

N
∑

i=1

(

yi(t) −wT
(t)xi − b(t)

)2
+ λ‖w(t)‖1 (5.7)

or

(

w(t), b(t)
)

= argmin
w,b

1

N

N
∑

i=1

(

yi(t) −wT
(t)xi − b(t)

)2
+ λ‖w(t)‖2 (5.8)

Linear regression (5.6) is currently adopted by the LINCS program. In our study, we evalu-

ated both (5.6) and (5.7), (5.8) using scikit-learn [102]. The regularization parameter λ was

tuned based on the performance on GEO-va and 1000G-va.

5.2.5 K-nearest neighbor regression

K-nearest neighbor (KNN) regression is a non-parametric and instance-based method. In

standard KNN regression, a spatial data structure T such as the KD tree [15] is built for

training data in the feature space. Then, for any testing data, the k nearest training samples

based on a certain distance metric are queried from T . The average of their values is

computed as the prediction.

However, the standard KNN regression may be biased when duplicated samples frequently

exist in the data, such as the GEO microarray data. Therefore, in gene expression inference,

a commonly adopted alternative is to query the k nearest genes rather than the k nearest
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samples. Specifically, for each target gene, its euclidean distances to all the landmark genes

were calculated using the training samples. The k landmark genes with the least euclidean

distances are determined as the k nearest landmark genes of the target gene. Then the

average of their expression values in the testing samples is computed as the prediction for

the target gene. Such algorithm is also consistent with the basic assumption of the LINCS

program that, the expression of target genes can be computationally inferred from landmark

genes. We call this algorithm the gene-based KNN (KNN-GE).

Due to the non-parametric and instance-based nature, KNN-GE does not impose any prior

assumptions on the learning machine. Therefore, it is very flexible to model nonlinear

patterns within the data. However, as performing prediction involves building and querying

data structures that have to keep all the training data, KNN-GE suffers from poor scalability

to growing data size and dimension. We evaluated KNN-GE in our study. The optimal k

was selected based on the performance on GEO-va and 1000G-va.

5.3 Results

We have introduced two types of gene expression data, namely the GEO microarray data

and the GTEx/1000G RNA-Seq data. We have formulated the gene expression inference

as a multi-task regression problem, using the GEO data for training and both the GEO

and the GTEx data for testing. We have also described our deep learning method D-GEX,

and another two methods, linear regression and k-nearest neighbour regression, to solve the

problem. Next, we show the predictive performances of the three methods on both the GEO

data and the GTEx data.
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Figure 5.1: The overall errors of D-GEX-10% with different architectures on GEO-te. The
performance of LR is also included for comparison.

Table 5.1: The overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX-10% with different
architectures on GEO-te. Numerics after “±” are the standard deviations of prediction
errors over all target genes. The best performance of D-GEX-10% is shown in bold font.
The performance selected using model selection by GEO-va of D-GEX-10% is underscored.

# of hidden units 3000 6000 9000

#
of

h
id
d
en

la
ye
rs 1 0.3421±0.0858 0.3337±0.0869 0.3300±0.0874

2 0.3377±0.0854 0.3280±0.0869 0.3224±0.0879
3 0.3362±0.0850 0.3252±0.0868 0.3204±0.0879
LR 0.3784±0.0851
LR-L1 0.3782±0.0844
LR-L2 0.3784±0.0851
KNN-GE 0.5866±0.0698
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5.3.1 Performance on the GEO data

D-GEX achieves the best performance on both GEO-va and GEO-te with 10% dropout rate

(denoted as D-GEX-10%). Figure 5.1 and Table 5.1 show the overall performances of D-

GEX-10% and the other methods on GEO-te. The complete performances of D-GEX with

other dropout rates on both GEO-va and GEO-te are given in Supplementary Table S2 and

S3 [28]. The largest architecture of D-GEX-10% (3 hidden layers with 9,000 hidden units in

each hidden layer, denoted as D-GEX-10%-9000×3) achieves the best performance on both

GEO-va and GEO-te. The relative improvements of D-GEX-10%-9000×3 are 15.33% over

LR and 45.38% over KNN-GE. Besides D-GEX-10%-9000×3, D-GEX-10% consistently out-

performs LR and KNN-GE on all the other architecture as shown in Figure 5.1. One possible

explanation is that deep architectures enjoy much richer representability than shallow archi-

tectures, thus learning complex features is much easier from the perspective of optimization

[13].
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Figure 5.2: The density plots of the predictive errors of all the target genes by LR, KNN-GE
and GEX-10%-9000×3 on GEO-te.

D-GEX also outperforms LR and KNN-GE for almost all of the target genes. Figure 5.2
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Figure 5.3: The predictive errors of each target gene by GEX-10%-9000×3 compared to LR
and KNN-GE on GEO-te. Each dot represents 1 out of the 9,520 target genes. The x-axis
is the MAE of each target gene by D-GEX, and the y-axis is the MAE of each target gene
by the other method. Dots above diagonal means D-GEX achieves lower error compared to
the other method. (a)D-GEX verse LR; (b)D-GEX verse KNN-GE.
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shows the density plots of the predictive errors of all the target genes by LR, KNN-GE and

GEX-10%-9000×3. Figure 5.3 shows a gene-wise comparative analysis between D-GEX-

10%-9000×3 and the other two methods. D-GEX-10%-9000×3 outperforms LR in 99.97%

of the target genes and outperforms KNN-GE in all the target genes. These results seem to

suggest that D-GEX captured some intrinsic nonlinear features within the GEO data where

LR and KNN-GE didn’t.

Regularization methods do not improve LR significantly. Table 5.1 shows the relative im-

provements of LR-L1 and LR-L2 over LR are 0.05% and 0.00%. Thus, it is most likely that

LR is underfitting which means linear model is not complex enough to represent the data.

Therefore, regularization techniques that reduce model complexity are not helpful.

KNN-GE performs significantly worse than the other methods. One possible explanation is

that the k nearest landmark genes for each target gene based on GEO-tr and GEO-te may

not be fully consistent.

5.3.2 Performance on the GTEx data

Results on the GEO data demonstrate the significant improvement of D-GEX over LR and

KNN-GE on the microarray platform. Yet in practice, the LINCS program trains regression

models with the GEO data and performs gene expression inference on the L1000 data, which

was generated with a different platform. Whether the significance of D-GEX preserves cross

platforms requires further investigation. To explore the cross platforms scenario, we trained

D-GEX with GEO-tr and evaluated its performances on GTEx-te which was generated with

the RNA-Seq platform [84].

However, new challenges arise in this scenario as the intrinsic distributions of the training

data and the testing data may be similar but not exactly equivalent. Particularly in gene
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expression profiling, discrepancies between microarray and RNA-Seq data have been system-

atically studied [137]. Such discrepancies bring specific challenges to deep learning as the

complex features it learns in the training data may not generalize well to the testing data,

which leads to overfitting and reduces the prediction power. Therefore, more aggressive reg-

ularization may be necessary for deep learning to retain the maximum commonality cross

platforms while avoiding platform-dependent discrepancies.

D-GEX-25%-9000×2 (with 25% dropout rate, two hidden layers with 9000 hidden units in

each layer) achieves the best performance on both 1000G-va and GTEx-te. The relative

improvements of D-GEX-25%-9000×2 are 6.57% over LR and 32.62% over KNN-GE. Table

5.2 shows the overall performances of D-GEX-25% and the other methods on GTEx-te. The

complete performances of D-GEX with other dropout rates on both 1000G-va and GTEx-te

are given in Supplementary Table S4 and S5 [28].

Table 5.2: The overall errors of LR, LR-L1, LR-L2, KNN-GE and D-GEX-25% with different
architectures on GTEx-te. Numerics after “±” are the standard deviations of prediction
errors over all target genes. The best performance of D-GEX-25% is shown in bold font.
The performance selected using model selection by 1000G-va of D-GEX-25% is underscored.

# of hidden units 3000 6000 9000

#
of

h
id
d
en

la
ye
rs 1 0.4507±0.1231 0.4428±0.1246 0.4394±0.1253

2 0.4586±0.1194 0.4446±0.1226 0.4393±0.1239
3 0.5160±0.1157 0.4595±0.1186 0.4492±0.1211
LR 0.4702±0.1234
LR-L1 0.5667±0.1271
LR-L2 0.4702±0.1234
KNN-GE 0.6520±0.0982

D-GEX still outperforms LR and KNN-GE in most of the target genes. Figure 5.4 also shows

the gene-wise comparative analysis between D-GEX-25%-9000×2 and the other two methods.

D-GEX-25%-9000×2 outperforms LR in 81.31% of the target genes and outperforms KNN-

GE in 95.54% of the target genes. Therefore, the significance of D-GEX on the microarray

platform basically preserves on the RNA-Seq platform. However, unlike the results on the
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GEO data, there is a noticeable number of target genes that D-GEX gets higher error than

the other methods on the GTEx data. Thus, the expression patterns of these target genes

D-GEX learned on the GEO data may be platform dependent and do not generalize well to

the GTEx data. It is noteworthy that although the general performance of KNN-GE is still

poor on the GTEx data, its errors on some of the target genes are significantly lower than

D-GEX (dots in bottom right part of Figure 5.4(b)). This is likely due to the gene-based

aspect of KNN-GE that the numerical values predicted on target genes were not computed

based on GEO-tr but based on GTEx-te itself. Therefore, the expression patterns captured

by KNN-GE may be cross platforms invariant.
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Figure 5.4: The predictive errors of each target gene by GEX-25%-9000×2 compared to LR
and KNN-GE on GTEx-te. Each dot represents 1 out of the 9,520 target genes. The x-axis
is the MAE of each target gene by D-GEX, and the y-axis is the MAE of each target gene
by the other method. Dots above diagonal means D-GEX achieves lower error compared to
the other method. (a)D-GEX verse LR; (b)D-GEX verse KNN-GE.

Dropout regularization effectively improves the performance of D-GEX on the GTEx data

as shown in Figure 5.5. Without dropout, the overall error of D-GEX-9000×2 on GTEx-te

slightly decreases at the beginning of training and then quickly increases, clearly implying

overfitting. However, with 25% dropout rate, D-GEX-9000×2 achieves the best performance
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on both 1000G-va and GTEx-te.
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Figure 5.5: The overall error decreasing curves of D-GEX-9000×2 on GTEx-te with differant
dropout rates. The x-axis is the training epoch and the y-axis is the overall error. The overall
error of LR is also included for comparison.

5.3.3 Interpreting the learned neural network

We have demonstrated the performance of our deep learning method D-GEX on both the

GEO microarray data and the GTEx RNA-Seq data. D-GEX outperforms linear regression

on both types of expression data. On the other hand, interpreting the learned linear model

from linear regression is straightforward as coefficients with large absolute value indicate

strong dependencies between landmark genes and target genes. But for deep learning, cur-

rently there are no established methods to interpret the neutral networks learned from gene

expression data. Next, we attempt to explore the learned neural networks with two strate-

gies, a) visualizing the major weights of the learned neural networks and b) examining the

nonlinearity captured by the hidden layers.
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1. Visualizing the major weights is a strategy inspired by the method of interpreting linear

model that coefficients with large absolute value indicate strong dependencies between inputs

and targets. Similarly, we examined the weights of the learned neural network of D-GEX-

10%-3000×1 that was trained based on half of the target genes of GEO-tr and GEO-va.

The weights from input to hidden units were randomly initialized with dense connections.

However, after learning, the connections became so sparse that each input unit was primarily

connected to only a few hidden units with the weights to the rest of hidden units decayed to

near zero. Similar patterns were also observed for connections from the hidden to the output

layer. Therefore, we created a visualization map of the learned connections by removing those

with weights near zeros. Specifically, for each input unit (landmark gene), we calculated the

mean and the standard deviation of the weights of the connections between the input unit

and the 3,000 hidden units. Then we only retained the major weights that were 4 standard

deviations away from the mean. Likewise, we used a threshold of 5 standard deviations to

retain the major weights of the connections between the output units (target genes) and the

hidden units. We colored the weights differently so that red indicates positive weights and

blue indicates negative weights. Supplementary Figure S3 [28] shows the final visualization

map. From the visualization map, we noticed two interesting observations: a) Most of the

units in the input layer and the output layer have connections to the hidden layer. In

contrast, only a sparse number of units in the hidden layer have connections to the input

and the output layer. Specially, the connections to the output layer are dominated by a

few hidden units, which we refer to as the “hub units”. b) Lots of the “hub units” seem to

have only one type of connections to the output layer, e.g. some of them only have positive

connections (red edges), while some other units only have negative connections (blue edges).

It seems that these “hub units” may have captured some strong local correlations between

the landmark genes and target genes.

2. Examining the nonlinearity is a strategy to show that the intermediate hidden layers

have captured some nonlinearity within the raw expression data. The neural networks we
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used are quite complex, containing several layers and many hidden units, each of which

is activated through a nonlinear transfer function. To dissect the nonlinear contribution,

we took a relatively simple approach by focusing on the representation (activations) from

the last hidden layer. Each of the hidden unit in that layer can be viewed as a feature

generated through some nonlinear transformation of the landmark genes. We then studied

whether a linear regression based on these nonlinear features can achieve better performance

than a linear regression based solely on the landmark genes. For this purpose, we measured

the linear correlation between the activations from the last hidden layer of D-GEX-10%-

9000×3 and the final targets (the expression of target genes), and compared it with the

linear correlation between the raw inputs and the final targets. Normally, coefficient of

determination (R2) is used to compare the fitnesses of different linear models. Since the

dimensionality has changed from the raw inputs to the transformed activations, we used

adjusted R2 [132] to specifically account for the change in dimensionality. We calculated

the adjusted R2 of both the raw inputs and the transformed activations for each target gene

based on GEO-tr. Supplementary Figure S2 [28] shows the gene-wise comparison of adjusted

R2 between the raw inputs and the transformed activations. The transformed activations

have a larger adjusted R2 than the raw inputs in 99.99% of the target genes. It seems to

indicate that the intermediate hidden layers have systematically captured some nonlinearity

within the raw expression data that would be ignored by simple linear regression. After

the nonlinear transformation through the hidden layers, the activations fit the final targets

significantly better than the raw inputs using a simple linear model. The analysis seems to

suggest that most of the target genes benefit from the additional nonlinear features, although

to a different extent as characterized by the adjusted R2.
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5.3.4 Inference on the L1000 data

The LINCS program has used the L1000 technology to measure the expression profiles of the

978 landmark genes under a variety of experimental conditions. It currently adopts linear re-

gression to infer the expression values of the 21,290 target genes based on the GEO data. We

have demonstrated our deep learning method D-GEX achieved significantly improvement on

prediction accuracy over linear regression on the GEO data. Therefore, we have re-trained

GEX-10%-9000×3 using all the 978 landmark genes and the 21,290 target genes from the

GEO data and inferred the expression values of unmeasured target genes from the L1000

data. The full dataset consists of 1,328,098 expression profiles and can be downloaded at

https://cbcl.ics.uci.edu/public_data/D-GEX/l1000_n1328098x22268.gctx. We hope

this dataset will be of great interest to researchers who are currently querying the LINCS

L1000 data.

5.4 Discussion

Revealing the complex patterns of gene expression under numerous biological states requires

both cost-effective profiling tools and powerful inference frameworks. While the L1000 plat-

form adopted by the LINCS program can efficiently profile the ˜1,000 landmark genes, the

linear-regression-based inference does not fully leverage the nonlinear features within gene

expression profiles to infer the ˜21,000 target genes. We presented a deep learning method

for gene expression inference that significantly outperforms linear regression on the GEO mi-

croarray data. With dropout as regularization, our deep learning method also preserves cross

platforms generalizability on the GTEx RNA-Seq data. In summary, deep learning provides

a better model than linear regression for gene expression inference. We believe it achieves

more accurate predictions for target gene expressions of the LINCS dataset generated from

the L1000 platform.
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Interpreting the internal representation of deep architectures is notoriously difficult. Unlike

other machine learning tasks such as computer vision, where we can visualize the learned

weights of hidden units as meaningful image patches, interpreting the deep architectures

learned by biological data requires novel thinking. We attempted to interpret the internal

structures of the neural networks learned from gene expression data using strategies that were

inspired by linear model. Yet, more systematic studies may require advanced computational

frameworks that are specifically designed for deep learning. Unsupervised feature learning

methods, such as autoencoder [136] and restricted Boltzmann machine [54] may provide

some insights on this problem.

In the current setting, target genes were randomly partitioned into multiple sets, and each

set was trained separately using different GPUs due to hardware limitations. Alternatively,

we could first cluster target genes based on their expression profiles, and then partition

them accordingly rather than randomly. The rationale is that target genes sharing similar

expression profiles share weights in the context of multi-task neural networks. Ultimately,

the solution is to jointly train all target genes, either by using GPUs with larger memory

such as the more recent Nvidia Tesla K80, or by exploiting multi-GPU techniques [32].

90



Chapter 6

Understanding sequence conservation

with deep learning

6.1 Introduction

Numerous conserved elements have been detected through comparative genomics [122, 34].

This is because conserved elements tend to be functional and are believed to be under

negative (purifying) selection. Thus they evolve at a significant slower rate than other non-

conserved (neutral) sequences, and develop distinct sequence patterns. Studies based on

human and rodent genomes estimate that about 5% bases of mammalian genomes are under

negative selection, among which coding regions only account for 1.5% [122]. Therefore,

extensive studies and methods have been focused on understanding the functional roles of

conserved sequences in noncoding regions. Nevertheless, the exact function of conserved

non-coding sequences remains elusive.

Recent advances in deep learning, specifically in solving sequence-based problems in genomics

with convolutional neural networks [76, 107, 2, 150], provide a new powerful method to study
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sequence conservation. Deep learning refers to algorithms that learn a hierarchical nonlinear

representation of large datasets through multiple layers of abstraction (e.g. convolutional

neural networks, multi-layer feedforward neural networks, and recurrent neural networks).

It has achieved state-of-the-art performances on several machine learning applications such

as speech recognition [55], natural language processing [125], and computer vision [69]. Most

recently, deep learning methods have also been adapted to solve genomics problems such as

motif discovery [107, 2, 150], pathogenic variants identification [106], and gene expression

inference [28].

Here we present a deep learning method for studying sequence conservation (DeepCons).

DeepCons is a convolutional neural network trained to predict whether a given DNA se-

quence is conserved or not. By learning to discriminate between conserved and non-conserved

sequences, DeepCons can capture rich information about conserved sequences, such as mo-

tifs. Specifically, we show that, 1) the learned convolution kernels significantly match to

known motifs, such as regulatory motifs CTCF and the RFX family, that are known to be

widely distributed within conserved noncoding elements [141], 2) the kernels have positional

bias relative to transcription start sites (TSS), transcription end sites (TES) and miRNA,

indicating their potential roles in post-translational regulation, and 3) the kernels that are

close to TES display strand bias, suggesting their RNA level regulatory effects. We further

demonstrate that DeepCons could be used to score sequences at nucleotide level resolution

in terms of conservation. We rediscovered known motifs, such as CTCF, JUND, RFX3 and

MEF2A, within a given sequence by highlighting each nucleotide regarding their scores. Fi-

nally, we show that the learned convolution kernels represents a large variety of motifs, and

we have made all the kernels publicly available online in the MEME [6] format. We hope

researchers may draw new biological insights from these motifs.
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6.2 Methods

6.2.1 DeepCons

DeepCons is a convolutional neural network [76] composed of one input layer, three hidden

layers and one output layer. The first input layer uses one hot encoding to represent each

input sequence as a 4-row binary matrix, with the number of columns equal to the length of

the sequence. The second layer is a convolution layer composed of 1,000 convolution kernels

of 10 bp length and 500 convolution kernels of 20 bp length. All the convolution kernels use

rectified linear function as the activation function. Each convolution kernel acts as a motif

detector that scans across input matrices and produces different strengths of signals that are

correlated to the underlying sequence patterns. The third layer is a max pooling layer that

takes the maximum output signal of each convolution kernel along the whole sequence. The

fourth layer is a fully connected layer of 1,500 hidden units with rectified linear function as

the activation function. The last layer performs a non-linear transformation with sigmoid

activation and produces a value between 0 and 1 that represents the probability of a sequence

being conserved. DeepCons contains ∼2.3 million parameters. Figure 6.1 shows the neural

network architecture of DeepCons.

DeepCons was trained using the standard back-propagation algorithm [116] and mini-batch

gradient descent with the Adagrad [37] variation. Dropout [56] and early stopping were used

for regularization and model selection.

DeepCons was implemented based on two Python libraries, Theano [17] and Keras http://keras.io/.

Training was performed on an Nvidia GTX TITAN Z graphics card. DeepCons is publicly

available at https://github.com/uci-cbcl/DeepCons.
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Figure 6.1: The neural network architecture of DeepCons.

94



6.2.2 Logistic regression

We also trained a baseline model using logistic regression (LR) for benchmarking purpose.

Instead of using raw sequences as inputs, we first computed the counts of different k-mers of

length 1-5 bp [107]. We then normalized the counts by subtracting the mean and dividing

by the standard deviation and used these values as features. We also added a small L2

regularization of 1e-6 to the cross entropy loss function of LR during training. LR was

implemented with the scikit-learn [101] library.

6.3 Results

In this section, we first introduce the dataset of conserved and non-conserved sequences we

used in this study and show the performances of both DeepCons and LR on this dataset.

Next, we demonstrate DeepCons captures rich information within the conserved sequences

by showing that the learned convolution kernels correspond to known motifs, have positional

bias relative to TSS, TES and miRNA, and display strand bias relative to TES. We further

demonstrate that the learned model could be used to score the importance of each nucleotide

within a given sequence in terms of conservation, and rediscovered known motifs with these

scores. Finally, we clustered all the convolution kernels and show that they represents a

large variety of informative motifs.

6.3.1 Classifying conserved and non-conserved sequences

We first show that DeepCons can accurately discriminate between conserved and non-

conserved sequences. To build the dataset of conserved sequences, we downloaded the 46-way

phastCons conserved elements [122] under mammal category from UCSC genome browser
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Figure 6.2: The ROC curves of DeepCons and LR on classifying conserved and non-conserved
sequences on the testing dataset.

[62] based on hg19. We excluded conserved sequences that overlap with repetitive sequences

(http://www.repeatmasker.org/). or coding exons. We then filtered away conserved se-

quences that were either shorter than 30 bp or longer than 1,000 bp for training the model,

leaving 887,577 sequences in the end. 75% of the nucleotides were preserved after the length

filtering. To build the dataset of non-conserved sequences, we randomly shuffled the 887,577

conserved sequences on hg19, excluding repetitive sequences, coding exons and conserved

sequences themselves. After combining both conserved and non-conserved sequences, we

randomly set aside ∼80% for training (1,415,154 sequences), ∼10% for validation (180,000

sequences) and ∼10% for testing (180,000 sequences).

DeepCons achieved 74.9% accuracy and an area under the curve (AUC) of 0.830 on the

testing dataset. The baseline LR model achieved 65.9% accuracy and 0.722 AUC on the

testing dataset. Figure 6.2 shows the receiver operating characteristic (ROC) curves of both

DeepCons and LR on the testing dataset. DeepCons outperforms the baseline LR model
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significantly on classifying conserved and non-conserved sequences.

6.3.2 Known motifs

Previous results have shown that regulatory motifs are widely distributed within conserved

noncoding elements across the human genome, such as CTCF and the RFX family [141].

We observed similar results when examining the learned convolution kernels of DeepCons.

Specifically, we converted the kernels from the convolution layer to position weight matrices,

using the method described in DeepBind [2]. Then, we aligned these kernels to known motifs

using TOMTOM [48]. 69 kernels match known motifs significantly (E < 1e− 2), including

the CTCF and RFX families. Figure 6.3 shows four examples of identified known motifs.

6.3.3 Positional bias

We observed that many of the convolution kernels have display bias relative to TSS, TES

and miRNA. Specifically, we downloaded RefSeq gene models[105] and obtained 4,000 bp

sequences centered on the TSS or the TES of each gene. Then, we used CentriMo [7] to

assess the positional bias of each kernel relative to TSS and TES. 264 and 779 kernels have

significant (E < 1e−5) positional bias relative to TSS and TES, respectively, indicating these

kernels have potential roles in post-translational regulation. Figure 6.4 shows the positional

distributions of the top four biased kernels relative to TSS and TES. We note that, the well

known polyadenylation signal AATAAA and its reverse compliment TTTATT are among

the top four positional biased kernels relative to TES. Previous results have also reported

that motifs discovered in conserved sequences have positional bias relative to TSS and TES

[140].

Besides positional bias relative to TSS and TES, we also observed several kernels have
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(a) (b)

(c) (d)

Figure 6.3: Four known motifs (top) aligned with convolution kernels (bottom). E-values of
the match are displayed. (a)CTCF; (b)JUND; (c)RFX3; (d)MEF2A.

(a) (b)

Figure 6.4: The positional distributions of the top four biased kernels relative to TSS and
TES. (a)TSS; (b)TES.
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Figure 6.5: The strand bias of the top 100 positional biased kernels relative to TSS and TES.
The x-axis is the rank of each kernel. The y-axis is the fraction of forward strand genes that
each kernel is positional biased to.

positional bias relative to miRNA. We downloaded all the 1,881 human hairpin miRNA

from miRBase [68] and used CentriMo [7] to test the positional bias of each kernel relative

to miRNA. 122 kernels have significant (E < 1e − 5) positional bias relative to the first 10

positions of miRNA. Previous results have also reported that 95% of 8-mers discovered in

conserved sequences match the first 10 positions of miRNA [140].

6.3.4 Strand bias

In addition to positional bias, we also observed the convolution kernels that are close to

TES have strand bias. Specifically, for each of the top 100 positional biased kernels relative

to TSS and TES, we looked at the strand of the genes that the kernel is close to. Figure

6.5 shows the fractions of forward strand genes for each kernel. We found the fractions of
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forward strand genes is tightly distributed around 0.5 for kernels that positional biased to

TSS, while the fractions significantly deviate from 0.5 for kernels that are positional biased

to TES, suggesting those kernels also have strand bias and their RNA level regulatory effects.

6.3.5 Scoring sequences at nucleotide level resolution

We adopted the method of saliency maps [124, 121] to compute the gradient of a given

sequence and used it as a score to annotate each nucleotide within the sequence. Negative

gradients were clipped to 0. Figure 6.6 shows the saliency maps of four conserved sequences.

The motifs of CTCF, JUND, RFX3 and MEF2A are clearly recovered in this example,

demonstrating their relevancy to conservation.

6.3.6 Motifs summary

Finally, we clustered all 1,500 convolution kernels into 820 clusters, using RSAT motif hier-

archical clustering tool [88]. The clustering results suggest that DeepCons learned a large

variety of informative motifs (Figure 6.7). The complete RSAT clustering results and the

1,500 kernels in the format of MEME [6] are publicly available online at

https://github.com/uci-cbcl/DeepCons.

6.4 Discussion

Comparative genomics is an powerful tool in finding functional elements across the human

genome. However, our understanding of the functional roles of these conserved sequences

remains incomplete, especially in noncoding regions. Here we present a deep learning ap-

proach, DeepCons, to understand sequence conservation by training a convolutional neural
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Figure 6.6: The saliency maps of four conserved sequences. The black letters below the
gray line are the nucleotides of each sequence. The colored letters above the gray line are
the nucleotides highlighted by their gradients, with the height proportional to the gradient.
Four motifs are rediscovered in this example. (a)CTCF; (b)JUND; (c)RFX3; (d)MEF2A.
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Figure 6.7: The hierarchical clustering heatmap of all the 1,500 kernels using RSAT motif
clustering tool [88]

network to classify conserved and non-conserved sequences. The learned convolution ker-

nels of DeepCons captured rich information with respect to sequence conservation that 1)

they match to known motifs that are known to be widely distributed within conserved

noncoding elements, 2) they have positional bias relative to both transcription start sites

(TSS), transcription end sites (TES) and miRNA, indicating their potential roles in post-

translational regulation, and 3) they also have strand bias relative to TES, suggesting their

RNA level regulatory effects. We further demonstrate that DeepCons could be used to

score sequence conservation at nucleotide level resolution. We rediscovered known motifs,

such as CTCF, JUND, RFX3 and MEF2A, within a given sequence by highlighting each

nucleotide regarding their scores. We have made all the kernels publicly available online at

https://github.com/uci-cbcl/DeepCons as motifs, and we hope researchers may discover

new biology by studying these motifs.

Convolutional neural networks are very effective at finding local sequence patterns through

its kernels, but the kernels will typically fail to find long range sequence patterns that

correspond to complex regulatory mechanisms. The size of the pattern mostly depends on

the length of the convolution kernel, which typically ranges from a few bases to less than
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one hundred bases. Using multiple convolutional layers may help to capture broader ranges

of sequence patterns, but interpreting kernels at top layers that are not directly connected

to the input sequences remains difficult. Long short term memory (LSTM) networks [57],

on the other hand, are specifically designed to capture long term sequential patterns, and

have been widely applied to analysis natural languages [131]. However, LSTM is also very

inefficient to train since its backpropagation step is equivalent to passing the error through

dozens, even hundreds, of layers. We applied LSTM to classify conserved and non-conserved

sequences, but due to the large training set the algorithm took prohibitively long time to just

finish even one epoch. Next, we plan to investigate multi-GPU training schemes that are now

supported by TensorFlow [1], and hopefully this solution will speed up training LSTM to

within an acceptable time range. Interpreting LSTM trained on sequence data also requires

novel thinking. Visualizing the memory cell activities [63] may shed some lights on revealing

long term sequence patterns.
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Chapter 7

Conclusion

In this thesis, we have presented five machine learning models to solve different problems in

analysing high throughput genomic data. The first three models focused on deconvolving

high throughput sequencing data from heterogeneous tumor samples using unsupervised

probabilistic learning methods. The last two models focused on modelling the nonlinear

and hierarchical patterns within large scale genomic data using supervised deep learning

methods. For the tumor heterogeneity problem, we first developed a probabilistic model to

estimate tumor purity based on somatic copy number alterations observed in whole genome

sequencing data. We then extended the model to further estimate the cellular prevalences

of different subclonal populations within heterogeneous tumor samples. In addition to DNA

sequencing data, we also developed a probabilistic model to estimate the transcriptome

expression of tumor cells within heterogeneous tumor samples using RNA-Seq data. For

analysing large scale genomic data using deep learning methods, we developed a multi-task

deep neural network to infer the expression of ˜21,000 target genes given the expression of

˜1,000 landmark genes. We also developed a convolutional neural network to study conserved

DNA sequences in non-coding regions of the human genome. The source code of all the five

machine learning models are available at https://github.com/uci-cbcl.
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High throughput technologies such as high throughput sequencing, have significantly ad-

vanced in the past decade. The cost of sequencing one human genome has extremely de-

creased for 100K fold, from about $100M in 2001 to about $1K in 2015. And enormous

genomic data has been generated with these technological advances, such as large-scale can-

cer genome projects launched by International Cancer Genome Consortium (ICGC) [59] and

The Cancer Genome Atlas (TCGA) [138]. To analyze this genomic “big data”, advanced ma-

chine learning techniques that are both scalable and capable of modelling complex patterns

are needed. Fortunately, machine learning research especially research in deep learning has

also progressed rapidly in the past few years. Deep learning based artificial intelligence has

surpassed human-level performances in various applications, such as image recognition [53]

and the classical board game Go [123]. User-friendly software packages for training deep neu-

ral networks are also available from open-source projects, such as TensorFlow [1]. Therefore,

more research and applications in genomics are expected to move from hypothesis-driven

approaches to data-driven approaches, and machine learning plays an essential role in this

move.
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F. Calvo, I. Eerola, D. S. Gerhard, et al. International network of cancer genome
projects. Nature, 464(7291):993–998, 2010.

[60] J. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta
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