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Abstract
Personalizing Autonomous Driving from Rich Human Guidance
A Ph.D. dissertation by: Chandrayee Basu
Electrical Engineering and Computer Science
University of California, Merced. 2019.
Committee chair: Professor Mukesh Singhal

With progress in enabling autonomous cars to drive safely on the road, it is time to ask
how should they be driving. This dissertation focuses on learning the desired objec-
tive function for autonomous cars with the goal of personalizing autonomous driving:
drive following the passenger’s preferences across diverse environments. Tradition-
ally autonomous cars have been trained using expert demonstrations, with an implicit
assumption that the demonstrations are truly representative of optimal driving. Per-
sonalizing autonomous driving under this assumption would mean using Inverse Re-
inforcement Learning (IRL) to learn the objective function latent in the user’s own
demonstration and then adopt the user’s own driving style. In this thesis, we ques-
tion this assumption and propose algorithmic solutions for personalizing driving styles
without demonstration data. Through user studies in a simulated driving environ-
ment, we first show that people do not want their autonomous cars to drive like them:
they want a significantly more defensive car. Next we formalize driving preference as
reward functions and propose several algorithms to learn them interactively from an
alternative form of human guidance: Preference-based Learning. In Preference-based
reward learning we show users several trajectory pairs sequentially and ask them to
indicate their preference in each pair. This has been shown to be effective for learning
reward functions in absence of demonstrations. Simple preference is, however, far less
informative than all the demonstration data. The key contribution of this thesis is
an algorithmic framework that leverages computational models of human behavior to
enable learning from richer preference queries where response to each query contains
more information than just a comparison. We propose different forms of rich pref-
erence queries. We ask people not only what they prefer, but also why they prefer.
We design new queries to learn more complex reward functions that can potentially
represent preferences in non-stationary environments. We introduce reward dynamics
as a mixture of reward functions and parameters that govern how preferences change
in response to the dynamics of the environment. We develop a unified formalism for
treating all forms of human guidance as observations about the true preferences and
use this formalism to derive objective functions for actively generating rich queries.
We show empirically through simulations and also with user studies that richer pref-
erence queries can learn driving preference more accurately than comparison-alone
queries. We also discover that richer queries not only speed up preference learning in
practice but also offer more transparency into the decision-making algorithms of the
autonomous car, thus enhancing people’s trust in the system. Although the human-
robot system of choice in this thesis is autonomous car, our algorithmic solutions

xv



apply to personalizing other human-robot systems where the robot is a dynamical
system that should match human preference and demonstrations are unavailable due
to complexity of robot operation or disparity between preferences and demonstra-
tions.
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Chapter 1

Introduction

1.1 Motivation
Today we are rapidly approaching towards a future where many of our daily tasks
will be shared by the autonomous systems that interact and collaborate with humans.
Autonomous car is one such powerful system that can relieve humans of the boring
and dangerous task of driving. Humans will play a significant role in the operation
of these systems: as part of the external traffic that the cars will interact with and
as passengers who the cars will serve. Researchers and companies are getting ever-
so-close to enabling autonomous cars to generate safe driving behavior that includes
reaching the destination while satisfying safety constraints, like not colliding with
other cars or pedestrians. Once these cars attain that level of capability, initially,
they might be able to generate, for each driving situation, only one solution trajectory
(or behavior) that satisfies these safety and feasibility constraints. But really, many
solutions exist – there are many ways to drive. This depend on the individual trade-
offs that each driver makes. We have an existence proof for that. Some of us are more
aggressive drivers, valuing efficiency and being comfortable getting close to other cars
on the road. Others are more defensive, a bit more conservative when it comes to
safety, leaving a large distance to the next car for example, or quickly braking when
someone attempts to merge in front. Individual driving preferences and disapproval
thereof can also manifest in the form of backseat driving. And these trade-offs may
not always match the design (see Fig.1.1). The single optimal behavior generated by
the autonomous car may not be the preferable trajectory of its passenger. Overtly
conservative behavior can engender impatience whereas aggressive behavior can lead
to discomfort and distrust of risk-averse passengers.

The purpose of this thesis is to enable autonomous cars to drive following its user
preferences.

For instance, consider a lane change situation where a car is approaching from
behind in the target lane. For a user who weighs safety a lot more than efficiency the
car will learn to slow down and merge after the car in the target lane and for the user
who prefers high speed and efficiency the car will be trained to attempt a merge in

1
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a) The robots take actions a that affect the state X of the world. 
These actions are optimal with respect to some reward function, 
expressed as a weighted combination of features. Currently these 
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the users of the technology

Figure 1.1: Right now the autonomous cars are able to generate one safe trajectory
that can reach the destination without colliding with other objects. This trajectory
is optimal with respect to some reward function that is provided by the designer or
learned from expert demonstrations. But this reward function may not match the
how the users want the autonomous cars to drive leading to discomfort and distrust.
In this thesis, we develop algorithms that enable the cars to learn to drive following
user preferences.

front of the other car.

1.2 Thesis Approach
Autonomous cars that are trained with expert driving demonstrations and learn to
imitate expert driving in known traffic conditions have a generic safe and conservative
driving behavior. However there is no guarantee that the optimal driving behavior
of one expert will match the optimal driving preference of another human. Here we
address the problem of personalizing autonomous driving style : matching the driving
behavior of the autonomous car with the preferred style of the passenger, referred to
as the user in the rest of the thesis. A common approach to following user preference
is to learn or imitate the driving style of the user (79; 114; 81). Learning driving
preference from user data have an underlying assumption that people want their cars
to drive like them, that aggressive drivers prefer aggressive style and defensive drivers
prefer defensive style. Our approach to behavior planning that match user preferences
starts out by putting to test the assumption that user’s own driving style is the same
as their driving preferences. We learn that user preferences are different from their
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own behavior.
We model the autonomous car as a dynamical system that should match human

preferences and present the task of personalizing driving style as a human-robot
interaction problem, where the human is the user and the autonomous car is the
robot. We encode human preferences as reward functions governing trade-offs between
features of the trajectory and learn these functions in a human-robot 2-player game
setting similar to Cooperative Inverse Reinforcement learning (60; 49). In this partial
information game, the human is a noisy rational agent who fully but noisily observes
the true reward function, but the robot does not. The robot’s objective is to interact
with the human in a way to learn the most about this reward function during any
single interaction. The robot has an initial belief over the true reward functions,
which it updates through interactions. The robot’s final payoff is the human’s exact
preference. We draw from recent work in active Preference-based reward learning
(110) and design interactions where the robot learns by asking choice questions to
the human.

• We explore comparison queries as the mode of interaction between the robot
and the human

• We introduce the concept of rich human guidance: different ways to augment
comparison queries into a hierarchical structure for richer information gain per
query

Our approach broadly relates to the value alignment problem in AI where the
goal is for an AI agent to attempt to act according to human values. Unlike prior ap-
proaches to learning policies or reward functions for autonomous cars, passively from
human demonstrations, our goal in this thesis, is to learn preferences interactively in
the absence of demonstrations.

1.3 Contributions
This thesis makes the following contribution (see Fig.1.2):

The goal of my thesis is to enable autonomous cars to drive according to user
preference. Since human preferences do not match human driving demonstrations
we develop algorithms that allow the cars to learn human preferences by seeking rich
end-user guidance.

Should Autonomous Cars Learn from User Demonstrations?

We first attempt to learn whether user demonstrations are a way to go for person-
alizing autonomous driving. We hypothesize that users want a driving style that is
different from their own. We design and conduct a user study to start analyzing
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Figure 1.2: We introduce several forms of rich non-verbal guidance that robots can
seek from humans, to be able to learn their desired reward functions. We first augment
comparison queries with a follow-up feature query. We then design more complex
hierarchical queries as series of connected comparison sub-queries for learning more
complex dynamic preferences. The autonomous car (robot) has an initial belief over
the reward functions p(w). The belief updates to p′(w) using the answers a to the
queries.
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the potential differences between how users drive and how they want to be driven.
Our study, conducted in a driving simulator, has two parts: first, the users come in
and demonstrate their driving in different environments; second, at a later date, the
same users come in and test four driving styles: their own (though they do not know
it is their own), an aggressive style, a defensive style, and another user’s style. We
measure their preference for these styles, as well as the perceived similarity to their
own style.

Our results suggest that there is truth to both sides:

Users do not actually want the car to drive like they drive. Instead, they
want the car to drive like they think they drive.

We find a significant difference in user’s own style and preferred style, with users
typically preferring more defensive driving when they are passengers. Overall, our
work does not contradict the need for customization, but suggests that it might not
be sufficient to learn how the user drives. Instead, we need to learn how the user
actually wants to be driven. This raises challenges for learning, because we can no
longer rely on demonstrations – users can easily demonstrate how they drive, but
they might not be able to demonstrate the driving style they want. Instead, we need
to rely on different kinds of input and guidance from users in the learning process
[Chapter.3] (21).

Personalization as a Human-Robot Interaction Game

Our goal is to integrate human driving preference into the behavior planning of an
autonomous car, i.e. given a starting state of the car, the world and the surrounding
traffic the planner should generate a trajectory for the next few time steps optimal
with respect to the preference of the passenger. Traditional behavior planning mod-
ules of the autonomous cars treat humans like pedestrians and bicyclists as bounded
disturbances and other drivers as having a fixed velocity profile or they follow a set
of known trajectories. Other approaches have integrated human driving style into
motion planning indirectly by learning from human demonstrations, formally called
Learning From Demonstration (LfD). LfD is used to generalize a human demonstra-
tion. The two forms of LfD: learning a latent intent behind driving behavior as a
reward function and learning a direct mapping from states to actions as a policy pas-
sively learn from human demonstrations. In this thesis, we treat personalizing driving
behavior as a human-robot interaction problem. We formalize this problem as a game
where the robot is interactively learning human preference by making queries. The
human and the robot have the same reward and the robot employs active learning
to generate these queries. We encode human preference as a tuple of reward func-
tions parameterized by the preference mode and parameters governing the transitions
between the mode-specific reward functions [Chapter.4].
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Learning from Rich Queries

Inverse Reinforcement Learning (IRL) is a natural way for robots to learn the desired
reward function. IRL collects demonstrations from a person of the desired behavior,
rather than of the desired reward, and finds parameters for the reward function that
explain the demonstrated behavior. In our first work we found that people cannot
demonstrate their true preference when it comes to autonomous driving.

In this thesis, we focus on situations where we do not have access to demonstra-
tions. Comparison-based learning has emerged as a promising alternative for learning
reward in such cases. There, the robot iteratively shows users two possible trajecto-
ries (often in the same environment, for the same starting state), and asks which they
prefer. It then uses the answer to update its understanding of the reward parame-
ters. Comparisons are, however, slower form of learning than demonstrations because
instead of giving the optimal of our reward functions we keep testing if one policy is
better than another. We do this over several iterations, sometimes thousands with
deep representation of the policies.

We propose that robots can extract richer guidance from people when
learning reward functions.

The robot takes a hierarchical approach to learning and seeks richer guidance
in the form of augmented comparison query: a sequence of comparison and other
choice type sub-queries. The key contribution of this thesis is a unified framework
for treating answers to all kinds of queries as observations about the true preference.
Further, we propose that richer guidance can lead to learning richer preference model.
To this end we learn a more complex model of human preference representative of
both static and dynamic environments, i.e. when the preference mode changes in
response to the dynamics of the environment, for example sudden traffic congestion,
change in courtesy level of other cars to name a few [Chapter.5].

Comparison and Feature Queries

We first learn a static preference model by augmenting comparison-based learning
with a follow-up why:which feature in the reward model is the most responsible for
the comparison answer.

Rich Queries combining Comparisons and Features We build on prior work that
leveraged feature queries in the context of learning skills from demonstration to in-
troduce combined comparison-feature queries for reward learning.

Learning from Rich Queries We generalize comparison-based learning to these
richer queries by treating feature answers as observations about the true reward pa-
rameters. We introduce a unifying formalism whereby the person’s answers are all
treated as nosily-optimal responses conditioned on the true reward, and perform
Bayesian inference to estimate the reward parameters.

Active Query Selection To speed up learning, we derive a rich query selection
method that optimizes for gathering as much information as possible from each query.
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Analysis of Rich Queries We conduct thorough experiments in simulation showing
that rich queries learn faster than comparison-only queries, and follow-up with an in-
lab study on learning driving style. We find that rich queries learn a reward that
is significantly closer to the users’ internal preference. This is evidenced by them
preferring the robot that optimizes the reward function learned through rich queries
over the robot that optimizes the reward learned through comparison-only queries.
People also report a better experience with training the robot in case of rich queries
[Chapter.6] (20).

Learning Reward Dynamics from Human Guidance

Enabling robots to act according to human preferences across diverse environments
is a crucial task, extensively studied by both roboticists and machine learning re-
searchers. To achieve it, human preferences are often encoded by a reward function
which the robot optimizes for. This reward function is generally static in the sense
that it does not vary with time or the interactions. Unfortunately, such static re-
ward functions do not always adequately capture human preferences, especially, in
non-stationary environments: Human preferences change in response to the emergent
behaviors of the other agents in the environment. In this work, we propose learning
reward dynamics that can adapt in non-stationary environments with several inter-
acting agents. We formalize reward dynamics as a mixture of static reward functions
representing different preference moods and a set of parameters for the transitions
between the moods. We apply richer guidance to learn a distribution over reward
dynamics. We allow the users to change their preferences within the same query.

Hierarchical Comparison Queries We extend our previous comparison query set-
ting to hierarchical queries, where each query is a sequence of sub-queries. Each
sub-query is a continuation of the trajectories from the previous sub-query. Prior
works have learned static reward functions by asking people to compare between
two different trajectories of robots. There, each query is a pair of short videos that
demonstrate two trajectories of the system. Such short trajectories do not capture the
nuances of interaction in a multi-agent system. The connected sub-queries are meant
to capture the temporal aspect of the longer term interaction between the agents.

Learning a mixture of rewards Estimating reward parameters from a mixture is
challenging due to identifiability issues related to label switching: invariance of like-
lihood to ordering of the parameters. We overcome this challenge by learning transi-
tions between the reward functions and by introducing ordering within the transition
parameters. This enables us to learn a bimodal preference model using pair-wise
comparison unlike prior research (139).

Active Query Selection To speed up learning, we derive a hierarchical query selec-
tion method that optimizes for gathering as much information as possible from each
query about changing human preferences. Our query selection algorithm selects fea-
sible trajectories for each sub-query subject to the constraint that these sub-queries
have connected trajectories.

Analysis of Reward Dynamics We analyze the performance of active preference
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learning from richer guidance in simulation using random data and driving data in a
bimodal setting i.e. people have two preference modes: cooperative and competitive.
We show empirically that our algorithm learns accurate representation of the true
preference function in both the modes [Chapter.7] (19).
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Related Work

We build upon a long history of research on robot cars (102; 46; 132; 34; 31; 131;
63; 12; 137; 32; 100) and borrow concepts like human internal state inference from
human-robot interaction (17; 78; 50) and preference modeling from Economics and
Machine Learning to design autonomous cars that can weave in human preference
into their behavioral decision making.

2.1 Humans and Autonomous cars
The autonomous cars of today make decisions in a hierarchical fashion starting from
route planning followed by behavioral decision making and then local motion plan-
ning and feedback control (100). The behavioral layer reasons about the environment
including dynamic obstacles like human driven cars and pedestrians and generates a
motion specification on a known route. The behavioral layer decides whether the car
should change lane, cruise-in-lane or make a right turn. The motion planning module
translates this behavioral choice into a path or trajectory. Our goal is to integrate hu-
man driving preference into behavioral decision making and local motion planning of
an autonomous car, i.e. given a starting state of the car, the world and the surround-
ing traffic the planner should generate a trajectory for the next few time steps optimal
with respect to the preference of the passenger. In this thesis, we combine the tasks
of behavioral decision making and motion planning into a single optimization problem.

Some of the early cars were treated as finite state machines that could follow a
behavior from a finite set of behaviors at any point of time with heuristics govern-
ing transitions like changing positions with respect to other traffic participants (34).
These prototypes DID NOT HAVE AN EXPLICIT MODEL OF HUMAN BEHAV-
IOR.

HUMAN INTENTION AWARE MOTION PLANNING was introduced consider-
ing the uncertain behavior of other traffic participants. In fact, several autonomous
car prototypes have used intention prediction of other traffic agents (31; 131; 63; 12;

9
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137). Other approaches treated humans as bounded disturbances (59; 105), drivers
as having a fixed velocity profile or they follow a set of known trajectories (90; 111).
(117) used real-time intent prediction of the pedestrians for safer trajectory planning
of autonomous cars. When it comes to actual motion planning, given the current
perceptions and future predictions of the environment, these vehicles stick to entirely
FUNCTIONAL solutions. But, human driving is far richer than a single functional
solution. In contrast, in this thesis, we GO BEYOND PURELY FUNCTIONAL
TRAJECTORIES and incorporate the richness of human behavior into the planned
trajectories of the autonomous cars.

2.2 Driving Style from Human Demonstrations
End-to-end planning and control algorithms INTEGRATE HUMAN DRIVING STYLE
INTO MOTION PLANNING INDIRECTLY by learning from human demonstrations
(LfD) (102; 3; 124; 79; 96). LfD is used to generalize a human demonstration. Sup-
pose a human shows a robot how to go from point a to b. With LfD a robot learns
how to use the knowledge from this demonstration to go from point c to d perhaps
with a new obstacle on the way. This approach falls into two categories: learning a
mapping directly from states to actions (policy) using some supervised approach and
learning the hidden intent behind driving style or the objective function which the
car can later on optimize to generate driving policies.

2.2.1 Supervised Learning
Most of the early work in learning to drive by imitating an expert imitation learning
and apprenticeship learning falls under the category of Behavioral Cloning: a way to
find a direct mapping from states to actions π : x → u, where π is called the policy
(107; 65; 126; 125). The simplest approach is to perform a supervised learning using
demonstration data in the form of state-action pairs D = (x,u). Any regressor can
be used to learn π. The training data consists of video camera recordings within
and outside the car and target variable are the driver control inputs like steering,
acceleration and braking. ALVINN (Autonomous Land Vehicle) (102) in a Neural
Network) was the first attempt to use neural network mapping from images to nav-
igation directions of the vehicle. More recently end-to-end vehicle control learning
learn deep neural network policies using supervised regression. For example, Bojarski
et al. used Convolutional Neural Network to map from front-view camera images
to steering control (28; 27). Xu et al. proposed an end-to-end motion prediction
approach that takes raw pixels from images and prior vehicle states signals as input
and predict several sequences of discretized actions (135) . Kim and Canny used At-
tention models with CNN to explain deep driving policies as post-processed attention
maps (77). While policy learning has proven to be useful for autonomous cars, it fails
in learning long range and goal-directed behavior. In our case the lack of reliable
demonstrations renders policy learning useless.
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2.2.2 Reward Learning
Alternative to Behavioral Cloning is Inverse Reinforcement Learning (IRL), where
instead of directly learning a policy, we assume that expert demonstrations are man-
ifestation of optimal behavior and we recover the objective function or the reward
function behind this behavior, denoted by r(xt, ut). (xt, ut) is a state-action pair at
time t. The reward function can naturally represent a style of behavior (latent vari-
able or hidden state characterizing a specific behavior) and have been used extensively
for that purpose in robotics (78; 17), animation (83) and autonomous driving (3; 79).
Originally IRL is used to recover the objective function that potentially generated
the human demonstration data. The probabilistic formulation of the algorithm is as
follows:

E[
∞∑
t=0

r(xt, ut)|π∗] ≥ E[
∞∑
t=0

r(xt, ut)|π] ∀π (2.1)

i.e. the expected sum of reward functions for demonstrated trajectory is greater
than the reward functions that optimize all other trajectories. The IRL formulation
assumes that humans are experts and demonstrations are always optimal with respect
to a true reward function. One big challenge of IRL is that r = 0 is a valid solution.
In fact, the above problem can have many solutions including degenerate ones(97).
Algorithms for learning reward function from state action sequences as in Markov
Decision Processes and those addressing degenerate solutions are recent developments
(97; 4; 106; 140). Most of these algorithms use an approach called Feature Expectation
Matching which models the reward as a weighted linear combination of features of
the states x as:

r(xt, ut) = w>φ(xt, ut) (2.2)

where φ : X → Rd is an d dimensional feature function.
The problem in (2.1) then reduces to solving for a w∗, such that w∗>µ(π∗) ≥

w∗>µ(π) ∀π where µ is the expected feature value also called feature expectation.
Abbeel and Ng (2004) demonstrated that it is guaranteed to recover a policy as well
as the expert policy if we can match the feature expectation µ(π∗) of the expert policy
(4). Mathematically this can be written as:

µ(π)− µ(π∗) ≤ ε (2.3)

implies that for all w with ‖w‖∞ ≤ 1∥∥∥w∗>µ(π)− w∗>µ(π∗)
∥∥∥ ≤ ε (2.4)

IRL formulation assumes that the expert behaves optimally. But when the real
expert behavior is sub-optimal, i.e. no single policy maximizes the reward function
Feature Expectation Matching breaks. Maximum Entropy IRL (140) extends IRL
framework to sub-optimal expert behavior and attempts to find the maximum entropy
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distribution over demonstrations ξ (sequences of states and actions of variable length)
with the feature matching constraint as:

maxP −
∑
ξ

P (ξ)logP (ξ)

s.t.
∑
ξ

P (ξ)µ(ξ) = µ(π∗) (2.5)

Using the principle of maximum entropy, the distribution of human demonstration
becomes:

P (ξ) = 1
Z(w)exp(w

>µ(ξ)) (2.6)

We use Maximum Entropy IRL to recover a reward function that represents hu-
man preference WHEN THE PREFERENCES DO NOT MATCH INDIVIDUAL
DEMONSTRATIONS.

2.3 Learning Human Preferences
Broadly in robotics, generating trajectories that are aware of human’s physical com-
fort and preferences is relatively new. For example, (50) considers robotic arm motions
that human’s can read and interpret, (74) learned how humans would prefer robot
arms to perform manipulation tasks for dangerous objects. While researchers have
largely used Learning from Demonstration to enable cars that can drive following a
few different driving styles, making cars drive following individual preferences is only
a very recent achievement (48). We build upon this work and borrow further from
existing work on robot teaching and models of human behavior to develop algorithms
that allow weaving in RICHER HUMAN PREFERENCES into the car’s behavior.

2.3.1 Robot Learning from Queries
In this thesis, we enable robots to learn about human preferences THROUGH AC-
TIVE QUERIES. While preference learning for autonomous cars is a novel concept,
the methods that we use for preference learning are certainly not new. Our query
based approach to reward learning is inspired from several other works in robotics
and machine learning. We build upon preference learning from human feedback in
machine learning (30; 73; 5; 108; 7; 76; 35) and demonstration-free robot learning
from human guidance (37; 36; 6; 38; 39; 66; 48; 45; 15) in robotics.

Preference learning is a sub-field in machine learning in which the goal is to learn
a predictive preference model from observed preference information, like some form
of ranking (5). Alternatively Fürnkranz (58) defined preference learning as learning
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from observations that reveal information about the preferences of an individual or
a class of individuals. In machine learning, preference learning can be categorized
into label ranking, instance ranking, and object ranking. Typically in preference
learning the queries are actively selected from a discrete set (51; 120; 76). Some of
the successful applications include recommender systems and information retrieval
(5; 7; 76). Fürnkranz et al. first applied preference learning to the problem of rein-
forcement learning (58). Jain et al. used a active ranking-based approach to learn
user preferences for manipulation tasks (74). Recently comparison-based approach
has emerged as a more intuitive form of learning in AI (134; 48; 43). Sadigh et al.
learned driving preferences from active comparisons which involves showing people a
pair of driving trajectories at every time step and asking for their preference over the
two. While pair-wise comparisons are more intuitive and easier than ranking-based
preference learning, they are much slower than learning from demonstration. In fact,
learning deep reward representations can take more than 1000 such comparisons. We
build on comparison-based learning because of its success in a demonstration-free
setting, but, augment it with richer information to learn more efficiently. We enable
the robot to ask new kinds of questions to the users, answers to which can be treated
as additional observations about their preference.

In particular we draw from prior research on feature queries (103) in active clas-
sification tasks in machine learning and mixed queries (37) in active skill learning.
The latter explored label queries (requesting for labels for unlabeled data), instance
queries (requesting for example of a certain class) and feature queries (whether a state
variable is relevant or important for a skill). They also found that the majority of the
questions people ask during task learning fall in the category of feature queries (38).
Therefore, feature queries are likely to be more intuitive for people to answer. WE
INTRODUCE FEATURE QUERIES WITHIN THE PREFERENCE LEARNING
FRAMEWORK.

2.3.2 Models of Human Behavior
Most of the early prototypes of autonomous cars treat humans as dynamic obstacles.
The intent prediction algorithms used as part of behavioral decision making system
so far are blackbox models that use some form of regression to map directly from
sensor measurements to future positions (132; 86; 63; 12). A more recent genre of
work in robotics is based on the idea that the robots of tomorrow should use theory
of mind (49) to predict and infer human internal states like intent. This body of
work uses Bayesian Theory of Mind to model people’s action choices as function of
some implicit reward (16). Inverse reinforcement learning already assumes human
demonstrations as noisy evidences of their implicit reward functions (97; 104). The
maximum entropy formulation of IRL: humans are exponentially more likely to select
actions that have higher rewards, includes a plausible model of noisy rational behav-
ior called Luce’s Choice Axiom (89). The robot, however, in this case, is a passive
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observer of demonstrations, inferring reward functions using this model. More recent
work treats robot as an active observer that maintains models of people’s responses to
comparison queries in the domain of autonomous driving (48), models of how they will
demonstrate actions in teaching mode (122; 57; 93), how people provide corrections
while teaching robots (15), how they behave in collaboration (23; 60), how people
may react to robot actions (116) and what people actually mean when they specify
a reward function for the robot (62). We call these observation models. Like most
of these works, we treat humans as noisily rational agents optimizing some reward
function.

We extend the probabilistic observation model for comparison responses (48) and
develop a UNIFIED FRAMEWORK FOR TREATING ALL FORMS OF ANSWERS
AS OBSERVATIONS ABOUT TRUE HUMAN PREFERENCE.

2.4 Chapter Summary
Autonomous cars of today are great at functional driving that includes perception and
navigation tasks like obstacle avoidance, lane-keeping and active steering and braking
(54; 55). To do so, these cars maintain meticulously detailed models of the environ-
ment and continuously predict the intent and future trajectories of the dynamic traffic
participants including the pedestrians. Moreover, intent prediction is based on sim-
ple regression or more sophisticated deep learning approaches. But, when it comes
to behavioral decision making, we are able to produce only one solution trajectory
for each scenario that meets all the functional constraints. Even, researchers who
attempt to learn driving style assume that people want to drive their cars like they
do and restrict to learning a few different driving styles from expert demonstrations.
Our KEY INSIGHT in the thesis is that there is a lot of more richness in people’s
driving preferences. We can draw from the latest developments in the field of human-
robot interaction and robot learning to incorporate this richness into the car’s local
trajectories.
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Should Autonomous Cars Drive
Like Users?

The goal of this thesis is personalization of autonomous driving: to enable an au-
tonomous car to follow trajectories according to user preferences. In all of the prior
work, learning driving style entailed imitating an expert driver Chapter.2, which made
an implicit assumption that humans want their cars to drive like they do, that sporty
adventurous drivers was sporty and adventurous cars. Here we start out with an user
study in a driving simulator to TEST THE ABOVE ASSUMPTION.

3.1 Definition of Driving Style
In order to find out whether users’ preferred autonomous driving style match with
their own driving style we first need a formal definition for driving style. We borrow
from literature in traffic, transportation and robotics and define driving style as the
typical behavioral patterns of a driver. This includes the choice of driving speed,
headway, overtaking of other vehicles, or the tendency to commit traffic violations
(133).

Defensiveness-aggressiveness is the most commonly used metric for defining driv-
ing style. Prior work refers to drivers as aggressive/assertive versus defensive (138); or
mild versus moderate versus aggressive (136). In the Multidimensional Driving Style
Inventory (MDSI), Taubman-Ben-Ari et al. identified four broad driving styles: (1)
reckless and careless driving, characterized by, for example, higher speed; (2) anxious
driving; (3) angry and hostile driving, characterized by more use of the horn and
flash functionality; and (4) patient and careful driving (129). Similarly, Huysduy-
nen categorized driving style as angry driving, anxious driving, dissociative driving,
distress-reduction driving and careful driving style (133). Horswill et al. provided a
valuable distinction between skill and style in the context of driving behaviors (70).
Hong et al. (69) differentiated styles in terms of defensiveness, as well as by propen-
sity for violation of rules. Scherer defined driving style in terms of comfort (119). Lee
et al. (84) analyzed lane changes as a function of its severity (degree to which the

15
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a. Simulator set-up showing projection screen and driver at the wheel

b. Snapshot of autonomous driving task 1 showing the same segment of 
the track as above.

aggressive defensiveuser’s style

þ	☐	☐	

Figure 3.1: We first get data from user driving in different scenarios, and in a second
session ask them to compare their own style (without knowing it is theirs), a more
defensive style, and a more aggressive style. Participants tended to prefer a more
defensive style than their own, but mistakenly thought they were actually picking
their own.

vehicle in the destination lane was cut off), urgency (how soon the lane change was
needed), and type classification for the full population of 8,667 lane changes.

We focus on driving style based on degree of defensiveness.
Driving style is a “humanized driving” quality (64). Hence, most of the driving

style literature relates to understanding and modeling human driver behavior, in very
specific traffic situations or contexts, like lane changing (84; 118; 92), intersection
crossing (69; 18; 52), car following (29), and in terms of driving actions specific to
those contexts (e.g., throttle and braking level, turning) and features thereof (e.g.
rate of acceleration, rate of deceleration, maximum speed in a time window). We
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define driving defensiveness in our work as an aggregate of driving features in various
driving scenarios. Therefore, in our study, we present a combination of all of the
aforementioned traffic conditions and scenarios to our participants.

Research on driving styles has been extended to autonomous cars in two forms.
One body of work includes exploratory studies on understanding how explicitly-
defined driving styles relate to comfort (119). The second body of work encompasses
research on ways to teach an autonomous car how to drive from human demonstra-
tions (4; 141; 79; 124). Both these groups assume that an autonomous car should
learn their own user’s driving style or driving behavior. But this assumption may not
be true. In fact, research shows that people prefer slower speeds when not in control
of the driving (70). Since autonomous car is an instantiation of not being in control
of driving, we design the following two-stage user study to test this assumption.

3.2 Methods

3.2.1 Hypothesis
Because being a passenger is a different experience than being a driver, we hypothesize
that:
H. Users of autonomous cars prefer a driving style that is significantly different than
their own.

3.2.2 Study Design
In order to test our hypothesis, we leverage a driving simulator, and let users experi-
ence and evaluate autonomous cars with different driving styles, including their own
style (without their knowledge).

We conducted a study in two parts. In the first part we collected driving data of
participants in a simulation environment, so that we could let them experience their
own style in the second part of the study.

3.2.3 Manipulated Variables
We manipulated the driving styles of autonomous cars at four levels of defensiveness:
aggressive, defensive, own style, and a distractor style (a different partici-
pant’s style). Users did not know if any of the styles were their own. Likewise, we
also consciously avoided the use of the phrase “driving style” anytime during the
studies, as well as, in the pre-study screening.

We define the defensiveness of the style objectively, as a function of several driving
features (e.g., distance to other cars – the larger the distance, the more defensive the
driving). We use features informed by existing literature. We describe them in Sec.
3.2.6.
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We created the aggressive and the defensive styles of driving by demonstration,
and then validated these styles using our driving features (see our Manipulation Check
Sec. 3.2.7).

3.2.4 Simulator and Driving Tasks
We conducted both parts of the study in a simulation environment. Our simulation
environment consisted of a standard classroom projection screen and table in front
of the screen fitted with Logitech G920 steering wheel, brake, and gas pedal. We
used the OpenDS driving simulation software (99) for running each of the driving
simulations. The simulation platform was set up on a standard PC augmented with
NVIDIA GeForce GTX 1070 and was hidden from the participants’ view.

In the first part, the participants drove on a 9.6 mile long test track that consisted
of 14 different driving tasks designed using the City Engine software (Fig.3.2).

We define a driving task as a sequence of driving maneuvers in response to specific
traffic conditions. For each task there are two to three simulated traffic conditions that
resemble everyday traffic, so as to elicit natural driving behavior from the participant.

In the second part of the study, the participants experienced 6 of these 14 tasks,
each performed by autonomous cars of four different styles.

3.2.5 Procedure
Before the driving session in part one of the study, we familiarized participants to the
driving simulator. We asked each participant to practice on two different test tracks
until they felt that they were driving as they would in their everyday driving. The
first track had several traffic signals and turns, and second one was on congested city
roads with several traffic cars. Their driving was assisted by a voice navigation. There
were road signs for speed change zone, speed limit, sharp turns, entry to expressway
and exit from expressway. We instructed the participants to drive as they would on
actual roads and to treat the speed limits the way they would in their usual driving.
This practice session lasted 5-10 minutes for each participant.

Participants then began the first part of the study, which consisted of 15-20 min-
utes of driving along the 14 tasks-test track, followed by a 10 minute interview.

In the second part of the study, the autonomous cars performed six tasks (com-
bined into four test tasks) from this list with the participant as a passenger, shown
in bold letters on the list in Fig.3.2. To simplify, we combined the second and the
third tasks in the list, i.e., lead car slows down forcing lane change and merge back to
right lane into a single test task, which we refer to as Task 1. Likewise, we combined
the sixth and the seventh tasks into a single test task, called Task 2 in the rest of the
chapter. Thus, each autonomous car performed four test tasks in total. Two of the
test tasks were on the expressway and lasted approximately 4 minutes for each style
and the other two tasks on the inner city roads were shorter than 2 minutes.

After the participants had driven in an autonomous car of each driving style
for each of the test tasks, we conducted a short interview-based survey with each
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Expressway entry
[1]

3 miles straight stretch
[2,3]

[4]
[5]

Intersection 1 

4 miles straight stretch
[6, 7]

[5]
[4]

Intersection 2 

[8]
Expressway exit

[18,5]

[9]

[12]

[13]
[14]

[11]

[10]

1. Merge onto expressway between two cars
2. Lead car slow down forcing lane change
3. Merge back to right lane
4. < 90 degrees Turn negotiation on 

expressway
5. Stop light at intersection on expressway

6. Slow lead car in right lane forcing lane change when 
another car is approaching fast in the destination lane

7. Merge back into right lane with a continuous traffic 
moving at constant gap and constant speed

8. Expressway exit
9. Sharp right turn no signal

10. Left turn on green light
11. Right turn at stop light
12. Left turn at stoplight and 

yield at green
13. Right turn on green light
14. Park along curb

Figure 3.2: Designed track: Tasks (shown in the list below the figure) are indicated
in square brackets. Total road stretch is 9.6 miles.

participant.

3.2.6 Dependent Measures
Perceived similarity to real driving. In the first part of the study we conducted
a post-driving open-ended interview with the participants to understand whether the
manual driving in the simulation environment resembled their everyday driving. We
asked three questions in this interview, each followed by a request for more elabora-
tion. We asked the following questions in the interview:

1. Did you enjoy the drive?

2. Are there any positive or negative aspects of the simulation environment, the
driving controls and the traffic conditions that you would like to mention?

3. On a scale of +3 to -3 (11), please rate how similar or different is this experience
from your daily driving?

Open-ended responses. In the second part we asked each participant to think
aloud about their emotions and feelings as they were experiencing autonomous driv-
ing.
Main subjective measures: Preference and perceived similarity to own
style. After a participant had experienced each autonomous style for a given task,
we conducted an interview-based survey. We asked the participants to rate each style
of driving for comfort, safety, preference for everyday use, and similarity with their
own driving on 7 point Likert scale.
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Main objective measures: Driving style features and overall defensiveness.
We measured the user’s style quantitatively using task specific driving features, de-
rived from existing literature. We carefully considered the contexts and subject demo-
graphics of each of these existing studies to ensure as much similarity in the context
as possible with our study.

For car following, lane changing, and return to preferred lane, we selected the
features described by Lee et al. in “A Comprehensive Examination of Naturalistic
Lane-Changes” (84). This study analyzed the largest naturalistic lane change dataset
and specifically labelled lane change data resulting from the slowing down of the lead-
ing car. The speed range of 45 mph to 55 mph matches our driving conditions. Their
dataset consisted 8667 lane changes over 23,949 miles of driving from 16 commuters of
age group 20 to 60. They studied car following, lane changing, and return of preferred
lane in terms of distance, time to collision, and relative speed classified by severity
and urgency of lane change.

The features for tasks like turning at the intersection with a green light or stop
light were derived from our preliminary interview with the participants and from
Hong et al. (69) and Banovic et al. (18).

Table 3.1 summarizes all the features for the four driving test tasks. We used
mean distance to lead car, mean time headway, time headway during lane change,
and distance headway during lane change as features for Task 1 and Task 2. Task 1
had an extra feature distance headway merge back for scoring the merge back behavior
to the right lane.

Task 3 consisted of two sub-tasks (approaching intersection at a stop light and then
making a left turn at green ball). We characterized this task with 5 features: Braking
Distance from the intersection, Average speed for 20 meters before intersection, Time
To Stop, Speed at the intersection, and Maximum turn speed.

Task 4 constituted approaching intersection at green ball and then turning right
without stopping. The features for this tasks are Speed at the intersection and Max-
imum Turn Speed.

We objectively measured a participant’s overall driving style in terms of a De-
fensiveness Score. We first normalized the feature values across participants for
each feature irrespective of the task. We calculated a Defensiveness Score for each
participant and for each task as the average over all the normalized feature values for
that participant and task. We then computed an Aggregate Defensiveness Score for
each participant by averaging their scores across the four test tasks.

3.2.7 Manipulation Check
We performed a manipulation check on our aggressive and defensive driving styles.
We measured the aggregate defensiveness score for each style, plotted on the bottom
right of Fig.3.3. We found that indeed, the aggressive style was less defensive than
the defensive style (lower defensiveness score). We found that 86.67 % of the users’
styles scored higher than the aggressive style, and lower than the defensive style. This
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Features Definitions
Mean Distance to Lead car During car following (with 200 meters distance) the av-

erage distance between middle of the driver car and the
lead car.

Mean Time Headway During car following (with 200 meters distance) average
time headway, defined as ratio of Distance headway and
speed of the driver car.

Time Headway during Lane
change

Distance headway divided by the speed of the driver car
during lane change.

Distance Headway during
Lane change

Distance between the middle of the driver car and the
lead car during lane change

Distance Headway Merge
Back

This is the same as Distance Headway during lane change
except measured in between driver car and the following
car in the destination lane.

Braking Distance from the
Intersection

The distance from the intersection at which a person
starts applying brakes.

Time To Stop Braking distance divided by the speed of the car right
before brake is applied.

Maximum Turn Speed Maximum speed of the driver car over a time window
during a left turn or a right turn.

Speed at the Intersection Instantaneous speed at the intersection.
Average Speed for 20 meters
before Intersection

This is the speed of the driver car averaged over a dis-
tance range of 20 meters from the intersection.

Table 3.1: Features for style classification
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suggests that the two reference driving styles created by demonstrations resulted in
meaningful representations of aggressive and defensive driving.

3.2.8 Participants
Subject Allocation. We opted for a within-subjects allocation because the par-
ticipants needed to choose a preferred style out of the set of available ones. We
randomized the order of the conditions.
Demographics. We recruited 15 participants consisting of a mix of graduate
students and undergraduate students. Before the study we sent out a screening form
to each participant in order to ensure a wide distribution of demographics, driving
experience and perceived driving behaviors of the participants. We also checked for
a valid driving license. 3 of our participants were 30 to 31 years old, the rest of the
participants were 18-24 years old.

The mean driving experience of the participants was 5.46 years with a standard
deviation of 4.5 years. Participants had driven an average 214 miles with a standard
deviation of 188 miles on the week before they filled out the screening form.

We asked the participants to give us some information about their perceived driv-
ing behavior using the following questions: 1. Please rate if you consider yourself a
conservative or an adventurous driver on a 7-point scale, 1 being conservative and
7 being adventurous. 2. Please rate on a 7-point scale what you like about driving,
1 being joy of motion (like feeling the force as you accelerate) and 7 being comfort
of steadiness. You may like some of both. 3. Rate on a 7-point scale if you think
you vary your driving by road conditions, traffic and time availability, 1 being vary
always and 7 being I don’t vary at all. 4. Please rate your driving experience from
somewhat experienced to very skillful. The purpose of these questions was to acquire
some information about the participants’ driving styles without explicitly using the
term style or in other words give away the original goal of the study.

Approximately 46 % of the participants considered themselves well experienced
in driving, and 20 % considered themselves experienced. The rest were equally dis-
tributed between somewhat experienced to very skillful. The mean score for perceived
conservative-adventurous driving behavior was 3.6. Most of the participants consid-
ered themselves to be in the middle of the spectrum. Only one participant considered
himself to be conservative. More participants preferred comfort and steadiness over
joy of driving, the average rating being 4.46. The mean rating for variation of driving
style in response to environment and traffic was 3, which means most participants
believed that they alter their driving behavior according to traffic.
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3.2.9 External Validity and
Controlling for Confounds

Driving environment. We used a simulator and not real autonomous cars. How-
ever, we designed a simulation track and traffic conditions so as to elicit natural
driving responses. We also collected participant feedback in the first part of the
study on the simulation environment and how their driving behavior in the simulated
track related to their actual driving behavior.
Masking own style. One of the major challenges of this work was to ensure that a
participant could not recognize his or her driving style from simulation peculiarities
like scenes, traffic and controls. We wanted the participants to only recognize their
driving style based on their traffic maneuvers and actions. We took several steps to
camouflage the driving data of a participant in the second part of the study:

• We retained the traffic conditions and route from the first part of the study while
changing the surrounding scenes and traffic cars, such that we can replicate the
user’s driving while removing the bias of familiar environment.

• We let the participant perform approximately 14 driving actions in the first
part of the study and picked only some of these tasks for the second part of the
study.

• During the second part of the study we presented the tasks in an order different
from how they occurred in the manual mode. For example: In the first part, the
participants first entered the expressway and performed some driving actions
on the expressway and then exited the expressway and performed some more
driving maneuvers on the city roads. During the second part, we presented one
city road task and one expressway task in an alternate order.

• We presented the four styles for each of the test driving tasks in a randomized
order, which made it more difficult to consistently recognize one style.

• We post-processed the users’ driving to remove peculiarities, which we explain
below.

During our pilot studies we found that due to some peculiarities of simulation
environment (over-sensitive steering, less sensitive braking) and the resultant jitter
in the driving data, some participants were able to recognize their own driving. For
example, a participant mentioned: “This looks like how I was driving. I had to
stop at the intersection because I pressed the brake too early. The brake was tight.”
Idiosyncrasies of the simulator led pilot participants to identify their driving behavior
in the second part of the study. In order to eliminate these peculiarities of the
simulation environment, we changed the brake stiffness and steering sensitivity and
presented participants with smoothed version of their data in the second part of the
study.
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Task 1 features

Task 2 features Task 3 features Task 4 features

Task 2 features Task 3 features Task 4 features

Aggregate 
defensiveness score

Figure 3.3: Participants’ feature distribution

Figure 3.4: Smoothed trajectory compared to original trajectory of task 1 of one
participant at 15 % smoothing

3.2.10 Trajectory Smoothing
We filtered the driving trajectories to eliminate idiosyncrasies that make the trajectory
instantly recognizable.

We applied a Bilateral Filter (130) to reduce the lateral variance (or equivalently,
the variance of the lateral displacements from the center of the lane) of the trajectories.
By affecting only the lateral components of the trajectory, this filtering preserves
distance between the cars. We applied filtering only to the stretches of the trajectory
on the expressway.

Fig.3.4 shows a smoothed trajectory for one participant. It has 15 % lower lateral
variance than the original trajectory.

3.3 Results

3.3.1 Simulation Realism
In the first part of the study, in addition to collecting user driving data, we also
wanted to ensure that this driving data corresponded to participants’ everyday driving
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as much as possible. We conducted a post-driving interview, as described in the
Dependent Measures subsection (Sec. 3.2.6). Here we present the results of the
interview.

The rating mode for similarity between driving on road and driving in our study
simulator was +1 on -3 to +3 scale. Four participants gave a rating of +2. Some
of their positive comments were: “Not considering the room environment and just
looking at the simulation graphics and the car it was pretty much the same environ-
ment as real. I would give +3 for surrounding traffic conditions”. Other participants
said that they felt relaxed in the simulator environment and that they could drive
cautiously as they would in real traffic.

One participant who rated the driving experience similarity -2 complained about
the lack of motion feedback in the system. This is the same participant who gave
high rating for joy of motion in the screening question. However, no other participant
had the same concern and got well-adjusted to the simulation environment.

Most of the participants who rated +1 to -1 found steering re-centering or brake
insensitivity difficult. We also received quite opposite feedback from two participants
when they compared their everyday driving to the simulator driving. For example,
one participant mentioned “It felt real. It was something I could get used to after
driving a while. The gas and brakes were more sensitive than my car”. Another
participant felt that the brakes were excellent, different from regular car.

One participant reported that she was so immersed after driving for a while, that
she caught herself turning her head back to check for oncoming traffic in the desti-
nation lane. We found that participants with one or less years of driving experience
could not use the simulation environment properly. Overall, the ratings and the com-
ments supported that the simulator conditions are not too far from real conditions.

3.3.2 Feature Distribution for Participant Styles
We define driving style in terms of features mentioned in the Sec. 3.2.

Fig.3.3 shows, for each task, feature, and participant, what the participant’s fea-
ture value was for that task (blue marks). The figure also shows the aggressive style
values in red and defensive style values in green.

Higher negative values correspond to more aggressive behavior. All the feature
values are arranged from aggressive on the left to defensive on the right. However,
for features like speed where lower values mean more defensive we show and use the
negation of these features.

The bottommost plot to the right shows the aggregate defensiveness score. This
score is derived from the normalized feature values. 60 % of the participants are
within 0.75 standard deviation aggressive and 40 % within 0.75 standard deviation
defensive. Only two of the participants were more defensive than the autonomous
defensive car, one of them being very close to the defensive car in the score.

When looking at the aggregate defensiveness, most participants lie between
the aggressive and defensive styles.
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Figure 3.5: Mean Defensiveness Score Across Participants. The corresponding scores
of aggressive and defensive autonomous cars are Task 1: (-0.768, -0.222) Task 2:
(-0.885, 1.325), Task 3: (-1.82, 0.766) and Task4: (-1.49,0.72).

There are, however, exceptions, but for particular features in particular tasks.
For task 1, several participants were more defensive than the defensive autonomous
car. For the last feature of task 1, Distance Headway Merge Back, the aggressive car
was not as aggressive as several participants and even our defensive car. In task 2,
the aggressive and the defensive autonomous cars enclosed a middle section of the
spectrum for Mean Distance Headway and Mean Time Headway. In other words,
several participants were more aggressive and more defensive than the aggressive and
defensive autonomous cars respectively. This is because these features were measured
during car following over a long time span and are expected to have wider distributions
than features characterizing instantaneous actions.

3.3.3 Preferred Style in Relation to Own Style
We asked participants to rate how much they would prefer driving with each style,
for each task. We refer to the highest rated style(s) as the participant’s preferred
style(s).

Our main finding is that overall, users preferred a different style than their own.
A total of 9 out of 15 participants preferred a different style than their own on at least
one of the tasks. A matched pairs t-test comparing actual and preferred defensiveness
score showed a significant difference (t(1, 60) = −2.58, p = .0121), supporting our
hypothesis. Here, whenever a user’s highest rating was for multiple styles as opposed
to a single one, we included each preferred style as a data point.

Overall, people prefer a significantly more defensive style than their own.
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We also investigated how this breaks down by task, and only found significant
effects on the 2nd and 3rd tasks. See Fig.3.5 for comparison between average preferred
style and own style of our participants for each of the four tasks. For task 1 we note
that several participants were more defensive than other autonomous styles presented
to them. However, they still preferred our defensive style, which explains that the
average choice was more aggressive than the participants’ own style.

Interestingly, some participants did not perceive the extra defensive nature of
their own style in task 1 positively. One participant mentioned about their own
style that “In this one I felt like we gave a lot of room, more than I would have
probably.” (ironically, since they did exactly that). Two other participants made
similar comments about their own lane changing behavior. Besides, a few participants
also considered driving features beyond the ones we accounted for.

For task 2 and task 3 the defensive autonomous car was more aggressive than only
none to three participants across all features and it was more defensive than the rest
of the population by a major margin, in features like Distance Headway and Time
Headway During Lane Change.

The task had a significant effect on the difference (F (3, 58) = 4.13, p = .0101),
suggesting that people’s preferences for a driving style are not consistent, but rather
change based on the context. This motivates future research on predicting the desired
driving style not just based on the individual, but also based on the current driving
context.

3.3.4 Perceived Own Style
in Relation to Actual Own Style

We also asked participants to rate each style in terms of similarity to their own. From
this, we learned what participants perceived their own style to be.

We found that even though participants did not pick their actual style as their
preferred (Sec. 3.3.3), participants did tend to prefer their perceived style. On each
task, between 80 and 93% of participants opted for the same style as the one they
thought was the closest to their own (and sometimes rated other styles as well as
equally good). We found a significant correlation between the perceived own and
preferred styles, r(58) = .86, p < .0001. Fig.3.6 shows a scatter plot of preferred style
by perceived style, with many points on the diagonal representing users who preferred
driving in the style they thought was (closest to) their own.

However, even though the majority participants thought that they were picking
their own style, they really were not. A total of 46 to 67% participants on each
task did not correctly identify their actual own style, and the correlation between
perceived and actual defensiveness score was only r(56) = .40 across tasks. Fig.3.7
paints a different picture from Fig.3.6: it plots the perceived style against the actual
own style, showing many off-diagonal points, representing users who did not correctly
identify their style.

In task 1 we see that several participants perceived themselves to be slightly more
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Figure 3.6: Scatter plot showing correlation between the style that users thought was
their own and the style that they chose as their preferred.

aggressive irrespective of their actual style. Likewise, both for task 2 and task 3
several participants perceived themselves to be more defensive irrespective of their
actual style.

Participants tended to prefer the style that they thought was their own,
but in fact that style had little correlation to their actual own style.

3.4 Chapter Summary
In this chapter, we hypothesized that users of future autonomous cars would prefer a
driving style that is significantly different than their own. We conducted a user study
in a driving simulator to test our hypothesis. We found that users preferred a more
defensive style than their own. This echoes the finding from prior work (70) that
when people are not in control of the driving they prefer lower speeds – autonomous
cars are one instantiation of not being in control of the driving. Interestingly, over
80% of users preferred the style that they thought was their own, but many times
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Figure 3.7: Scatter plot showing little correlation between own style and perceived
own style: users did not tend to identify their own style correctly. as evidenced by
the off-diagonal points.

they were incorrect in identifying their own style. These results open the door for
learning what the user’s preferred style will be, but caution against getting driving
demonstration from the user, since people can drive like they do, not like they want
to be driven. Our work is limited in the following ways:

• Limited driving style features. Following the most common conventions,
we have only characterized style in terms of defensiveness. We also inherited
from previous studies the feature choices in defining driving styles.

• Limited driving style choices. We presented participants with limited op-
tions along the spectrum of defensiveness and found that they preferred a style
more defensive than their own. However, we did not learn the style they actually
desired, only the best out of our few options. An natural extension of this work
would be to test more diverse feature choices and driving style representations
in a higher fidelity setting. It is also worthwhile exploring what features users’
consider when they evaluate autonomous driving styles. These experiments will
provide a comprehensive evaluation of the study presented in this chapter.
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• Limited fidelity of simulation environment. Our simulation environment
does not provide motion feedback, which may limit the users’ perception of
speed. Although the interview results validated that participants’ perception of
the driving styles are sufficient, experiment results in a higher fidelity simulation
environment might be more accurate.

Despite the above limitations, this work serves as a preliminary proof of con-
cept that driving preferences, when it comes to autonomous cars, is not the same a
driving demonstrations. While prior research have shown that it is possible to learn
driving preferences without demonstration data (110), this is the first study with real
users which empirically supports demonstration-free approaches for personalizing au-
tonomous driving. Going forward in this thesis, we explore learning autonomous
driving from alternative forms of human guidance.



Chapter 4

Preference Model

Learning from Demonstrations have been extensively used in learning driving styles.
Both Behavioral Cloning and Maximum Entropy IRL passively that learn a driving
policy and a reward function representing driver intent respectively have an implicit
assumption - that autonomous cars should drive like individual users (see Chapter.2).
However, we learned in the previous chapter that it may not be sufficient to per-
sonalize autonomous driving from individual user demonstrations, because end-user
preferences do not match individual demonstrations.

We propose that autonomous cars can learn driving preferences from
richer forms of human guidance in absence of demonstrations.

To validate this proposal we implement interactive algorithms that enable the
robot to learn user preferences by making queries in a two-player game setting. Here
we first formally introduce the problem domain. Similar to Chapter.3 and prior work
on learning driving style with IRL (see Chapter.2), we define preferred driving style
as a linear combination of features parameterized by a MIXTURE OF REWARD
FUNCTIONS. We present a generic preference model that can apply to static pref-
erences as well as dynamic preferences in non-stationary environment. We close this
chapter with an introduction to the simulation environment that we used to learn
this preference model.

4.1 Problem Domain
We tackle the following problem domain in this thesis. We denote the ego car that
should match individual human preference ℘ as H. The environment of the ego-car
consists of other agents or traffic participants like manual cars, autonomous cars,
bicycles and pedestrians. We denote these agents by E = {E1, E2, ..., EP}. These
agents can act differently at different times. For example, in case of driving, some
cars aggressively swerve through the traffic and others may follow a more cooperative
strategy allowing other cars to merge smoothly.

31



Chapter 4. Preference Model 32

We model the environment as a fully-observable dynamical system. For driving,
the continuous state of the system x ∈ X includes the positions and the velocities of
H and E . The state of the system changes based on actions of all the agents through
a function f .

xt+1 = f(xt, utH , utE) (4.1)

where uE are the actions of E , which may affect ℘ and in turn the actions uH
of H. We define a finite trajectory ξ ∈ Ξ as a sequence of continuous state-action
pairs ξ = (x0, u0

H , u
0
E, . . . , x

T , uTH , u
T
E) over a finite horizon T , and Ξ is the set of all

feasible trajectories that satisfy the dynamics of the system. We assume a features
function φ : Ξ → Rd that maps every trajectory to a d-dimensional feature space
which includes features for lane keeping, distance to other cars, weaving for instance.

4.2 The Human-Robot Interaction Formulation
For the robots to act around and according to human preferences it is important
for them to know human preferences and predict what people think and how people
respond to their actions. Autonomous cars that will drive for human convenience
and comfort should have models of human intent, anticipation, reaction, preference
etc., which it can then blend into its control policies. A recent approach is to adopt
methods from human-robot interaction to autonomous driving (115; 116; 72; 110; 56;
25; 82; 128; 127). We follow a similar approach and treat autonomous car as a robot
that learns about human preference by interacting with people.

We present the task of personalizing driving style as a human-robot interaction
problem, where the human H′ is the user and the autonomous car H is the robot
that learns to match H′’s preferences for driving style interactively. We design the
interaction between H′ and H as a two-player game in a partially observable setting
similar to Partially Observable Markov Decision Processes (POMDP).

4.2.1 Interaction as a two-player game
We can define human-robot interaction as a 2-player game between a human H′ and
a robot H. There is a state space S with states s. s contains the physical states x
which originally contains the robot’s states xH and the environment agents’ states
xE. For the purpose of this game we add one more component to x: x′H , the human’s
physical state in the game. s also contains the hidden internal states of the human like
intent, reward function, emotions etc. which are integral components of interaction
with a human. Each agent can take actions. They do so by optimizing some reward
function, potentially different for each agent.

r′H(x, qH , a′H ;w′H) (4.2)

for the human and
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rH(x, qH , a′H ;wH) (4.3)

for the robot, each with parameter w. H′ and H may not know each other’s w.
T ′ is the time horizon of the game and qH and a′H are action sequences of H and R
over T ′. To not confuse with the previous notations, in the previous section robot
action refers to control inputs and in the context of the game robot action mean
making a query to the human. Likewise the time horizons refer to trajectory length
and number of iterations of the game respectively. The action sequences in the game
form the policy pairs. The cumulative reward is the sum of individual rewards over
T ′. One way to model this problem is consider humans as rationally solving the game.
The problem is however computationally intractable and if rH 6= r′H then there are
several equilibria. This is also not a good model of human behavior (116). Humans
do not solve games in everyday decision making. Several approximations have been
introduced for this problem in the human-robot interaction domain (49) that reduce
it to a tractable problem. Fortunately, in our case the interaction game has a single
equilibrium, as rH = r′H , as we explain next.

4.2.2 Approximations
In this game the actions amount to the robot asking choice questions to H′ intelli-
gently and the human providing answer to these questions. r′H represents the human
preference for how H should act in a given situation (a combination of initial world
states x0 including the robot and a trajectories of other agents in the world.) H′ is
noisily aware of w′H . The robot doesn’t observe know r′H . It has a model of human
as being noisily rational, which serves as a map from r′H to actions. It, therefore
treats human actions, in this case, human answers as observations about the hidden
internal state r′H . We describe the model of human behavior in the Chapter.5. H
starts out with an initial belief p(w′H) over w′H . At every t′ it asks a choice question
q′t to H′, who in turn noisily picks the choice optimal with respect to true preference
w′H . Both the agents perform a local optimization for action selection. H uses this
answer to update its belief as in Bayesian Inverse Reinforcement Learning (104; 110).
Moreover, at every t′, wH is equal to the best estimate of w′H . H leverages its current
knowledge of user’s ability to answer the questions and wH to intelligently ask the
next choice question. In our formulation, the human is unaware of this mechanism i.e.
H′ doesn’t observe rH . Alternative formulations explicitly consider humans as being
aware that the robot is learning (60; 93). The optimal solutions to this game maxi-
mize the human reward and since the ultimate pay-off of the robot is equal to the true
human preference, the problem ends up having a single Nash Equilibrium. The above
interaction problem can also solved as a single actor POMDP as shown by (60). The
game continues over a fixed number of iterations T ′ which is selected based on how
many questions H can answer reliably without cognitive overload. Since w′H = wH ,
for the rest of this thesis we use just w to denote reward function representing the
user’s preference.
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4.3 Preference model
We propose a generic model of human preference that can be applied to both static
and dynamic preferences, i.e. when the preference mode changes in response to
the dynamics of the environment, for example sudden traffic congestion, change in
courtesy level of other cars to name a few. We assume that human preference is
stable over a period of time defined by a small segment of the trajectory of the ego
car and the environment agents and the corresponding states of the world and is
characterized by a preference mode. The preference is represented by the sum of
rewards over the small segment of trajectory. We encode human preference as a tuple
of reward functions parameterized by the preference mode and parameters governing
the transitions between the mode-specific reward functions.
Reward functions under known modes. We assume each human has a finite set
of modes M and we enumerate each mode such that M = {1, 2, . . . , k} where k is
the total number of modes. Mj is the jth element of the set of modes M . We define
a user specific reward function parameterized by the mode of the user: RMj

: Ξ→ R
for j ∈ [k] where Ξ is the set of all feasible trajectories of the ego car.
Mode transitions. The user changes their mode based on their immediate previous
experience i.e. the previous stable period of preference. We consider a stochastic
transition and model it in terms of an underlying mode-utility function. This mode-
utility function is parameterized by the mode of the user: VMj

: Ξ → R for j ∈ [k]
where Ξ is the set of all feasible trajectories of the ego car. The human quantifies the
utility of the current trajectory of the ego car with respect to all the mode-specific
utility functions. If the user thinks she would have higher utility with mode Mj, then
she transitions to Mj for the next time step. As an example, imagine you are driving
in a very calm mood. If someone suddenly cuts in front of you, you would think
“if I were aggressive, I could keep a shorter headway with the car in front and the
other car would not have been able to cut in front of me”, and you also switch to
an aggressive mood. It is of course also possible that you keep calm. Therefore, the
transition should be stochastic.
Preference Model. Our human-specific preference model is a tuple as:

℘ = (RMj
, UMj

)∀j ∈ [k] (4.4)

The Learning Problem.Throughout the work we assume that RMj
and UMj

are
linear functions of features derived from the trajectory of the ego-car defined earlier as
φ. Therefore, RMj

(ξ) = w>Mj
φ(ξ) where ξ ∈ Ξ and w ∈ Rd×k is a user-specific weight

matrix, and wj is the jth column of w, with each column corresponding to a particular
mode for a user. Our problem is to learn the parameters wj and γj respectively of
the linear functions and UMj

(ξ) = γ>Mj
φ(ξ) where γ ∈ Rd×k is another user-specific

weight matrix and γj is the jth column of γ. Our goal is to learn the tuple (w, γ).
Assuming static preference reduces to learning a single reward function w.
Features The feature function φ is carefully engineered and has seven dimensions
corresponding to seven features derived from the states of the ego-car H. Human
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preference ℘ governs the trade-off between these features. (see Fig. 6.1).
• φ1 ∝ c1 exp(−c2d

2
c) exponentially decreases as the distance to the center of the

lane increases where c1 and c2 are the appropriate scaling factors

• φ2 penalizes distances closer to the road edges with the penalty being maximum
at and outside the road edges and is of the form φ2 = g.exp(g)+s.exp(s)

exp(g)+exp(s) , where g
is a Gaussian function of the distance between H and the road edges similar
to φ1, controlling the penalty within the road boundaries, and s is a sigmoid
function controlling the penalty outside the road. The above Softmax function
picks the maximum of g and s outside the road as shown in Fig.

• φ3 ∝ ψ · n computes alignment between the car’s heading and the road where
ψ is the heading of H and n is a vector normal to the direction of the road

• φ4 computes distance to other cars and is for collision-avoidance. It computes
the non-spherical Gaussian over the distance between H and E with major axis
along the heading of E

• φ5 ∝ exp(−c3.(v− vmax)2) gently increases with the speed of the car and favors
high speed (read efficiency) where c3 is the appropriate scaling factor

• φ6 ∝ c4 exp(−c2d
2
c) incentivizes a preference to be in the right lane

• φ7 disincentivizes reverse motion

4.4 Simulation Environment
We test of algorithms in both simulations and with user study. In both of these
we present the simulated users and the real users with queries with comparative
trajectory snapshots. The snapshots are generated in a driving simulator that uses a
simple point-mass model of the ego-car’s dynamics. We define the physical state of
the system x = [x, y, ψ, v]T , where x and y are the coordinates of the vehicle, ψ is the
heading and v is the speed. We let u = [u1, u2]T as the control input, where u1 is the
steering input and u2 is the acceleration. We denote the friction coefficient as µ. We
can write the dynamics model of the ego-car as:

[ẋ, ẏ, ψ̇, v̇] = [v · cos(ψ), v · sin(ψ), v · u1, u2 − µ · v] (4.5)

The simulator provides as top-down view of the environment.
Now given this general preference model, we developed a unified algorithmic frame-

work that can learn both static and dynamic preferences using rich human guidance
that does not involve demonstrations. Now what do we mean by rich human guid-
ance? Here we showed how we treat learning preferences from rich guidance as a
human-robot interaction game. In the following chapter we will formally define rich
guidance and present our algorithmic framework.
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Learning Preference from Richer
Queries

In Chapter.4 we presented a rich preference model that can represent both static
and dynamic preferences for autonomous driving behavior. Our learning problem,
in this thesis, involves learning a distribution over parameters of this model - (w, γ),
where w is the weight vector for reward function representing a specific preference
mode and γ is a parameter vector governing mode transitions as function of prior
driving experience. We proposed that the robot can learn these parameters by seeking
richer guidance from human. Now since comparison-based learning has emerged as
a useful form of human guidance in learning preferred driving style (see Chapter.2)
(5; 76; 73; 7; 30; 45; 74; 66; 43; 48)., we build on this approach and DEVELOP
RICHER COMPARISON QUERIES.

5.1 Learning Preference from Rich Human Guid-
ance

Comaprison Queries. In comparison queries, the robot iteratively shows users two
possible trajectories (often in the same environment, for the same starting state),
and asks which they prefer. For example, in Fig.5.1b. the autonomous car in orange
is cutting in front of the white traffic car in option A, whereas in option B, it goes
on straight without interacting with the white car. The car asks the user to pick
between these two trajectories. It then uses the answer to update its understanding
of the reward parameters. In comparison-based learning each answer tells you that
one trajectory is better than another. This binary feedback is very little information
compared to a demonstration where we directly get the optimal trajectory. In this
thesis, we propose a middle ground between comparisons and demonstrations. We
leverage several variants of the comparison-queries to collate richer information per
query than just one trajectory is better than the other. We refer to these queries as
Rich Queries as opposed to Comparison-only queries.

36
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a. Comparisons are much less informative than demonstration. 

b. The middle ground is augmented comparison queries. 

Figure 5.1: a. We argue that comparisons are far less informative than demonstrations
and can lead to slower learning of a continuous high dimensional reward function.
Instead we look for a middle ground between comparisons and demonstrations. b.
Our key insight in this thesis is that we can ask people for richer information in the
form of rich queries: a series of hierarchical sub-queries at least one of which is a
comparison query. In this example, qi is a usual comparison query where user is
asked to pick between ξA and ξB and qi+1 is a follow-up query like which feature of
the reward function was the most responsible for your choice?

Rich Queries. Our insight is that we can extract much richer information from
a single comparison query by asking some follow-up queries like emphwhy did you
select A? or would this choice change had the white car behaved differently? (see qi+1
Fig.5.1). We propose rich query q as a sequence of connected sub-queries qi, where
the current sub-query qi forms the context for the future sub-query qi+1. A rich query
has at least one rich query comparison-only query of the form qi = (x0, ξA, ξB), where
we ask the user ”Which of the two trajectories do you prefer?”. Our framework is
designed to accommodate several sub-queries of different forms, for example, qi+1
could be a follow-up question seeking to understand the user choice in qi or qi+1 could
be another comparison-only query that uses qi as a context. The user’s response to
qi is denoted by ai.
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5.2 Unified Algorithmic Framework
We propose a unified framework for treating answers to all forms of sub-queries as
observations about true human preference, and its parameters (w, γ) thereof. Our
framework is probabilistic. The goal of the learning algorithm is to learn a distribution
over (w, γ). Our robot H starts out with a belief over the parameter space. After
receiving all the answers to a query q, (a1, a2, . . . , as), we perform a Bayesian update:

p(w, γ|as, as−1, . . . , a1, qs, qs−1, . . . , q0)
∝ p(as, as−1, . . . , a1|w, γ, qs, qs−1, . . . , q0)p(w, γ) (5.1)

The two key components of the above equation needed to compute the posterior
distribution over (w, γ) are the prior p(w, γ) and the likelihood function, which is the
joint distribution over the answers to all the components of a query conditioned on
the query and the parameters: p(as, as−1, . . . , a1|w, γ, qs, qs−1, . . . , q0). We draw from
the Theory of Mind to develop a probabilistic observation model of how a human
would answer any robot query within our framework: the likelihood function. More
specifically, we restrict all the subqueries to some form of choice question between
several alternatives and use Luce’s choice Axiom to model human decision making.
We employ a common case of the Luce Choice Axiom, the Boltzmann (or soft-max)
model of noisy rationality, in which the probability of choice decays exponentially as
it’s utility decreases in comparison to the competing options.

P (a = f) ∝ exp(βUf ) (5.2)

where β > 0 is termed as the rationality coefficient and quantifies the concentra-
tion of choice around the optimum, as β → inf means a perfectly rational or oracle
human who always makes the choice based on the perfect knowledge of the utility of
the items. As as β → 0 the human responses get closer to random and Uf is the true
utility of the f th item. This model represents people’s behavior reasonably well and
has been adopted in several recent work in human-robot interaction and psychology
as we discussed in Chapter.2. That said, there are other models of rational behavior
that account for limitations within our rationality (75) or specific biases or errors
inherent in our behavior (53; 91) and may also be suitable for modeling preferences
when it comes to autonomous driving. We leave the investigation on applicability
of these other models to future researchers. As we will see later in this thesis the
hyperparameter β plays a significant role in getting the model right.

5.3 Chapter Summary
We want to personalize driving style without using the user’s own driving demonstra-
tions. Comparisons have proven to be a useful form of guidance in such scenarios. We
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note that comparisons are, however, far less informative than demonstrations. The
key insight in this work is that humans can provide richer guidance than just com-
parisons and robots can actively seek this guidance by making richer queries. Here
we defined richer queries as augmented comparison queries. The main contribution of
this thesis is a unified algorithmic framework that uses models of noisy rationality to
treat user answers to all kinds of queries as observations about the true preference.
While, our preference model supports represents constant preferences and people’s be-
havior in changing environments, we first design rich queries to learn a static reward
function w.
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Comparison-Feature Queries

We introduced the concept of rich queries in Chapter.5, which are augmented com-
parison queries and argue that we can learn much faster from rich queries than from
comparisons alone. In this thesis we explore two different forms of rich queries: one for
learning a static preference model or reward function, that is when people’s preference
for autonomous driving do not change with time or environment, and second type for
learning a mixture of reward functions representing preferences that change with non-
stationary environment. Here we start out by introducing the former: FEATURE-
AUGMENTED COMPARISON QUERIES, where the robot also asks why: which
feature in the reward function was responsible for the preference between the two op-
tions (see Fig.6.1). We generalize comparison-based learning to these richer queries by
treating feature answers as observations about the true reward parameters. To speed
up learning, we derive a rich query selection method that optimizes for gathering as
much information as possible from each query. Feature queries have already been
used in the context of learning a classifier from labels (103), and here we show their
equivalent for learning a reward function from comparisons. We build on prior work
that leveraged feature queries in the context of learning skills from demonstration
(37) to introduce combined comparison-feature queries for reward learning.

6.1 Static Preference
The goal is here to learn a simple model of human preference ℘ that doesn’t change
over time i.e. k = 1 in (4.4) . Since each mode in our model is represented by
a single reward parameter, our learning problem here reduces to learning a single
reward function w ∈ Rd which parameterizes the reward model as R = w>φ and φ is
the d-dimensional feature function.

40
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Figure 6.1: We augment comparisons between trajectories q1 with feature queries
q2 that are responsible for these preferences. We assume a static preference model
℘ parameterized by a single reward function w and introduce a probabilistic model
P (c, f |w, q1, q2) of how a human might answer these queries given the desired objective
function for the robot w, and use this model to actively generate rich queries that
learn w.

6.2 Comparison-Feature Queries
Following the definition of queries q in Chapter.5 as a sequence of several sub-queries,
we introduce comparison-feature query as a sequence of two sub-queries: the first
one is a comparison query of the form q1 = (x0, ξA, ξB) and the second sub-query q2
is a follow-up why. We present why as choice question, where we ask the users to
pick one of the feature φf ∈ φ in the reward function the most responsible for their
choice in q1. ”Which feature is most responsible for the difference in your preference
between these two trajectories?”. For ease of understanding we rename answer to the
comparison part of the query q1 as c and answer to the feature question q2 as f in
this chapter, where c ∈ A,B: A if ξA is preferred, B otherwise and f is a feature ID.

6.3 Active Preference Learning from Comparison-
Feature Queries

6.3.1 The Learning Problem
The goal here is to learn a distribution over a single reward function w. Our robot
H starts out with a belief over the parameter space. After receiving all the answers
to a query q: (c, f), we perform a Bayesian update:
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Figure 6.2: Four dependent measures:probability of the ground truth reward function,
integral over rewards similar to the ground truth, dot product between the ground
truth and the learned weights, and regret, averaged across 20 true weights for each
algorithm, show that compared to comparison-only queries, rich queries learn the true
reward much faster, especially, when people are fully aware of their true reward.

p(w|c, f, q2, q1) ∝ p(c, f |w, q2, q1)p(w) (6.1)

6.3.2 Observation Models
We propose a probabilistic observation model for the likelihood function p(c, f |w, q2, q1).
First of all we assume that c and f are conditionally independent given the reward.
Therefore:

p(c, f |w, q2, q1) = P (c|w, q1)P (f |w, q2) (6.2)

This is a design choice, and it means that people don’t have to get the comparison
correct to tell us the main feature that matters in the comparison. Alternately, we
could condition the feature on the comparison answer, and model a feature as only
probable when the sign of the weighted feature difference, not just the absolute value,
is consistent with the weight vector. For each part we assume that people are noisily
rational and probability of picking an answer follows the Boltzmann model of noisy
rationality as in Chapter.5 in (5.2), i.e. we replace the utility term Uf with the true
reward of the user associated with the options ξA, ξB. Applying Boltzmann model to
the comparison answers we get:

P (c = A|w, q1) = exp(βcR(x0, ξA))
exp(βcR(x0, ξA)) + exp(βcR(x0, ξB)) (6.3)

P (c = B|w, q1) = exp(βcR(x0, ξB))
exp(βcR(x0, ξA)) + exp(βcR(x0, ξB)) (6.4)
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Figure 6.3: Four dependent measures: probability of the ground truth reward func-
tion, integral over rewards similar to the ground truth, dot product between the
ground truth and the learned weights, and regret, averaged across 20 ground truth
weights. The results show that even when people provide noisy responses to feature
queries, the robot still learns better compared to comparison-only queries.

where βc is the rationality coefficient for the specific case of comparison.
The Boltzmann model for feature ID choice is based on the assumption that

people will noisily identify the feature f in a set of d features, which, when combined
with how important it is (its weight in w), best accounts for the difference in reward
between the two trajectories ξA and ξB:

P (f |w, q2) = exp(βfwf · |Φf (x0, ξA)− Φf (x0, ξB)|)∑
i exp(βfwi · |Φi(x0, ξA)− Φi(x0, ξB)|) (6.5)

with βf a rationality coefficient for these types of queries, Φf the value of f th feature
summed over the trajectory, and wf its weight in w.

6.3.3 Active Query Selection
So far we have defined our queries, and how to update the robot’s belief given the
answer to a query. Now, we turn to which queries to make, i.e. how the robot should
select queries.

The simplest option for query selection is to draw queries at random from a set.
However, we can speed up learning by actively selecting queries.

At every step, assuming a discrete space of ws we would ideally select the query
that will remove as many ws from the hypothesis space as possible so that we converge
faster to a single w∗ closest to the true reward function wGT . There are two challenges
with this.

The first challenge is that we do not eliminate hypotheses, rather update a belief
over them. We thus want to maximize some measure of the change in probability
distribution over w. For the purpose of this sub-section we use a = (c, f) as answer to
query q = (q1, q2). Following (48), we use volume removed: a query q with an answer
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a removes the following volume:
V (q, a) =

∑
w

P (w)− P (w)P (a|w, q) = Ew[1− P (a|w, q)] (6.6)

where P (a|w, q) = p(c, f |w, q2, q1) from (6.2).
The second challenge is that we don’t know what answer we will get. However,

our current belief induces a probability distribution over answers, so we can choose
the query that in expectation removes the most volume:

max
q

Ew
∑
a

P (a|w, q)V (q, a) (6.7)

where the sum over a is over all tuples (c, f).
Note that other measures are also possible, including information gain (reduction

in Shannon entropy) (120).

6.3.4 Allowing ”I don’t know”
Since feature queries are more complex than their comparison counterpart, we also
experiment with allowing users to say ”I don’t know”. In that case, we skip the
update based on the feature query, and only use the answer to the comparison query
for update, i.e. P (c|w, q1).

More interestingly, we inform the query selection criterion about this option, so
that it does not choose queries that will lead to no update from the feature response.

To achieve this, we model when a user might say that they don’t know as their
answer to the feature query. We model this ”I don’t know answer” as occurring
whenever the probability distribution over their answers is too close to uniform, i.e.

P (skip|w, q) =

1 1
d
− ε ≤ p(f |w, ϕ) ≤ 1

d
+ ε ∀f ∈ {1..d}

0 otherwise
(6.8)

with d the number of features and ε capturing how similar the contributions of the
features need to be with respect to each other for the user to decide to skip the answer.

If the person does skip, then the volume removed is
V skip(q, c) = Ew[1− P (c|w, q1)] (6.9)

Then the robot selects the next query by optimizing
max
q

EwP (skip|w, q) ·
∑
c

P (c|w, q)V skip(q, c)+

(1− P (skip|w, q)) ·
∑
a

P (a|w, q)V (q, a) (6.10)

6.4 Hypothesis
We hypothesize that using rich queries (i.e. our queries that seek feature clarification)
leads to higher accuracy of the learned reward, given the same budget of queries. We
test this hypothesis in simulation, and in a user study.



Chapter 6. Comparison-Feature Queries 45

6.5 Experiments in Simulation
We start with experiments that simulate user responses based on some known true
weights wGT .

6.5.1 Experiment Design
Manipulated Factors. We manipulated the type of queries we used for learning,
with two levels: comparison only queries vs. rich queries that ask for a comparison,
along with the feature that is important in the difference.

We also manipulated the number of queries that each resulting algorithm gets to
make, from 0 to 40.

Finally, we repeated the experiment for 20 possible ground truth weights.
Dependent Measures. We evaluated the accuracy of the learned probability dis-
tribution over reward parameters w in four ways:

• The learned probability of the true weights:

P (wGT )

The higher the probability assigned to the ground truth, the more accurate the
learned distribution is.

• The integral of the probability of all ”close” weights, i.e. all weights that have
high dot product with the ground truth weight:∫

C
P (w)dw

with C = {w|w ·wGT > 0.9}. This is a more robust version of the first measure,
where we capture not only the probability of the ground truth, but also what
the probability distribution does around the ground truth.

• The dot product between the ground truth weights and the learned weights:

wGT · ŵ

with ŵ = arg maxw P (w). Rather than focusing on just the ground truth, this
measure gets at how good the weights that we learned, ŵ, actually are.

• The regret resulting from converging to a reward function different from the
true reward function measured across different test environments:

1
|e|
∑
e

wTGT (ξe(ŵ)− ξe(wGT ))

with ξe(ŵ) denoting the optimal trajectory in environment e for the reward
function ŵ and ξe(wGT ) denoting the optimal trajectory for the true reward
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function. In other words, we measure the difference in true reward between the
actually optimal trajectory, and the learned optimal trajectory. This captures
what happens when we go out into the world and optimize the reward that we
learned, i.e. to what extent do we match the user’s actual preference.

6.5.2 Problem Domain
We focus on learning driving preferences for a single ego-car H. The dynamics and
the environment are as described in the Chapter.5. Our environment consists of a
single environment agent E that interacts with H. We assume that the trajectory of
E is predefined and fully observable by H. H optimizes for the learned w including
collision-avoidance with E . w governs the trade-off between the seven driving features
defined in Chapter.5, except for the penalty feature for proximity to the edges of the
road φ2. For this feature we just use a Gaussian function similar to φ1 that increases
closer to edges. However, note that for the rest of the thesis we use the version of φ2
defined originally in Chapter.5 as the Gaussian function equally incentivizes staying
away from the edges whether it is on the road outside the road. This is because the
Gaussian function decreases symmetrically on either side of road edges.
Queries. Queries consist of an environment and two trajectories for that environ-
ment shown in a simulator (see Fig. 6.1). The environment consists of an initial state
for the user’s car, along with a trajectory for another traffic car with which the user’s
car shares the road. Our query trajectories for the user’s car are always optimal with
respect to some reward, such that users are essentially comparing reward functions.
We pre-computed a query pool consisting of 7000 queries generated from a combina-
tion of 19 ”plausible” reward functions and 40 environments. We rejection-sampled
plausible reward functions by eliminating rewards that, for instance, incentivise the
car to crash.

6.5.3 Oracle Users
The Users We Simulate. In our first experiment, we tested our hypothesis for
the case that users are perfect, meaning their answers are noise-free. The user
becomes an oracle, who is fully aware of the ground truth reward wGT and uses
it to answer queries, returning I∗ = argmaxP (I|w,ϕ, βc) for the comparison and
i∗ = argmaxP (i|w,ϕ, βf ) for the most influencing feature. Equivalently, this oracle
user has βc = βf =∞.

We thus simulated oracle answers based on wGT , setting the simulated noise βcs =
βfs =∞. We refer to the simulation noise parameters as βcs and βfs , where s stands for
simulation. We distinguish these parameters from model assumption of user noise,
which we denote by βcm and βfm (m stands for model).
Our Model of the Users. First we used an accurate model of the oracle behav-
ior: the learning algorithm models users as perfect as well, with the modeled noise
parameters βcm = βfm =∞.
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Analysis. For each ground truth reward function and the number of queries allowed,
a query in each learning method produces a probability distribution over reward
parameters, which we evaluate according to our dependent measures. We analyzed
the effect of the query type on each measure using a repeated measures ANOVA.
Here we included the number of queries to help explain the difference between both
algorithms’ performance with very few queries and with many queries. We included
an identifier for the ground truth weight as a random effect.

The results support our hypothesis. Rich queries lead to significantly higher prob-
ability being assigned to the ground truth reward function (F (1, 778) = 374.02,
p < .0001), significantly higher integral over rewards similar to the ground truth
(F (1, 778) = 33.60, p < .0001)), significantly higher dot product between the ground
truth and the learned weights (F (1, 778) = 4.89, p = .02), and a significantly lower
regret when used to optimize behavior (F (1, 778) = 10.14, p < .01).

Fig.6.2 summarizes these results.

6.5.4 Realistic, Noisy Users
The Users We Simulate. Real people are imperfect. They will not follow the βc =
βf =∞ assumption. We thus ran a pilot user study with a few real users to estimate
the realistic values for βc and βf . We estimated the users’ true reward parameters,
then generated queries in different environments and asked them to provide responses
to the queries. We ran a maximum likelihood estimation for the βs given their data:

βc∗ = argmax
N∑
i=1

log 1
1 + exp(−Iiβw∗TΦ∗i )

(6.11)

βf∗ = argmax
N∑
i=1

log
exp(|βfw∗fφif )|

(1 + exp(−Iiβcw∗TΦi))
∑
j exp(|βfw∗jφij|)

(6.12)

Here |N | denotes total number of queries made and w∗fφif is the true reward contri-
bution of the most influencing feature for that query. We decoupled the comparison
query function and the feature query function in equation 6.12 and performed a search
for βc over several thousand values of β and then used this βc to run a similar search
for βf . We also computed βc∗ separately for rich queries and comparison queries.
To our surprise, we found that βc is much higher for our algorithm than for the
comparison-only method: users were more accurate in comparison responses when
the comparison queries are accompanied by feature queries. We found the average βc
to be 1.6 and 5.65 for the baseline and for our algorithm respectively. Objectively,
this might be due to the difference in the nature of the queries selected by the two
algorithms. Our algorithm selects queries with low norms that differ along only very
few features, in order to make the feature answer more useful. This might lead to
comparisons that are easier to make. Subjectively, too, most users seemed to think
they were better at answering comparisons when they had feature queries too (the
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Figure 6.4: A scatter plot of the probability of all the weights in the data set by their
dot product with a true reward shows that our algorithm converges much faster than
comparison-only queries. Here βfs = βfm = 2.5, βc1s = βc1m = 5. and βc2s = βc2m = 2.
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Figure 6.5: As users become more or less noisy in answering the feature query than
we model them to be (captured by βfs ), our algorithm’s performance ranges between
the performance of learning from comparisons-only queries, and that of learning from
oracle users.
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Figure 6.6: Graphs showing three dependent measures for the case when users are
allowed to skip feature queries and this user behavior is incorporated in the model.
The dependent measures are for a single true reward function averaged over 100
repetitions. Allowing users to skip the feature queries they are unsure of improves
the performance of our algorithm. But interestingly, incorporating this behavior into
the model hurts the performance.

average on a 7-point Likert scale for the question ”I thought answering feature queries
improved my ability to compare between the two trajectories” was 6.0).

We simulated imperfect real users with these estimated values of βcs and βfs . Fol-
lowing the results of the pilot we considered two different noise parameters for com-
parison answers: βc1s for the comparison-only method and βc2s for rich queries. Note
that βf = 0 is equivalent to the baseline, where we get no additional information
because here the users are totally random in answering the feature queries and βf =
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∞ is equivalent to oracle feature picking.
Our Model of the Users. In this experiment, we first assumed that the models
have accurate knowledge of the user behavior and set βc1m = βc1s for the comparison-
only algorithm and βc2m = βc2s and βfm = βfs for our algorithm. This scenario replicates
what would happen when the learning algorithm has a good model of what noise level
to expect from users.
Analysis. This time, since we simulate users to be noisy, we ran each simulated
condition, which is a combination of ground truth weight and query type, 100 different
times with different random seeds for each of the 20 ground truth weights. We ran
these simulations in parallel using PyWren (1).

We repeated the analysis from before, and found support for our hypothesis despite
the fact that we no longer learn from perfect user answers. Rich queries lead to
significantly higher probability assigned to the ground truth reward, significantly
higher integral over similar rewards to the ground truth, significantly higher dot
product of the learned reward with the true reward, and significantly lower regret,
all with F (1, 1e + 5) > 335 and p < .0001 throughout. The scatter plot between the
probability distribution over the reward space and their dot product with the true
reward, in fig. 6.4 shows a comparison between the convergence of the two algorithms.
Our algorithm with feature queries converges faster to a reward function closer to the
true reward.

This is not too surprising: even with noisy users, that the added information
about features should still help. Fig.6.3 shows the results.

6.5.5 Users with Different Noise Level from the Model
Simulated Users and Model. In some situations, it will indeed be possible to get
a good estimate of the user noise level. Here, we explore what happens when this is
not the case, and the users are either much worse or much better at answering feature
queries than we expect. We set βfm as before, but vary βfs , namely the simulated user
noise. Throughout these experiments, we keep βc = ∞ to avoid additional noise
introduced through noisy comparison response.
Analysis. Not surprisingly, as βfs ranges from 0 to ∞, our algorithm’s performance
improves, interpolating between the comparison-only performance and the oracle per-
formance. Note that βfm = 2.5, used in the noisy model, is less than the estimated
optimal value of 3.8 from pilot studies. Fig. 6.5 shows that this is quite a conservative
value. The algorithm performance does not decrease significantly with lower values of
βf . On the other hand, if people are more accurate about their true reward functions,
feature queries can lead to a much faster learning.

6.5.6 Users that Say ”I don’t know.”
The Users we Simulate. We now turn to studying the utility of allowing users to
say ”I don’t know”, i.e. to skip the feature part of the rich queries. We recover from
a pilot study analogous to the one on the noise parameters a value for ε at 0.066.
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Figure 6.7: Scatter plot of the probability of all reward functions by their dot product
with the true reward function at convergence. This graph suggests that allowing
users to skip the feature queries they are unsure of leads to faster convergence. But
incorporating this human behavior into the model hurts convergence.

We used this value of εs to simulate no response to the feature query. We ran these
simulations assuming noisy responses to comparison and feature queries as before.
Our Model of the Users. Here we switch to the learning algorithm that models
users as saying ”I don’t know” within some εm (see eq. 6.8), and set εm = εs.
Analysis. The results show that it is wise to avoid responding to feature queries
when highly unsure, under the current assumption of noise (βfm = 2.5), matching our
expectations. Our algorithm performs better when we allow people to say ”I don’t
know” compared to when we do not allow them to. For a given true weight, we
observed that after 40 iterations, the probability of the true weight improves from
0.012 to 0.016 as we allow people to skip feature queries. Likewise, allowing skipping
leads to learning weights that are much closer to the true weight (probability integral
of close ws = 0.8) than when people respond to every query (probability integral of
close ws = 0.6). Fig. 6.6 shows these results. This result is also apparent from the
scatter plot in Fig. 6.7 that shows a faster convergence when people are allowed to
say ”I don’t know”.

However, to our surprise, if we include the assumption that people might say
”I don’t know” in our model, the performance of the algorithm suffers. For the
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Figure 6.8: (a) During the validation phase most participants preferred the trajecto-
ries optimal for w∗rich. (b) Overall trajectories learned with feature queries matched
what participants’ desired and expected driving behavior and also appeared to be
safer and efficient. (c) Post experiment, most participants agreed that the robot with
feature queries was more intelligent, effective and trustworthy than the one that just
made preference query.

same true weight as above, we found the probability of this true weight and the
probability integral of close ws to be 0.003 and 0.23 respectively, compared to 0.016
and 0.9 when feature skipping is not modeled. Furthermore, the scatter plot between
probability distribution over weight space and dot product with true weights hardly
shows any sign of convergence. This performance is comparable with the case when
no feature query is made. Intuitively, having a better user model should lead to higher
performance, but it seems like at least the volume removed metric (which optimizes
purely for information) interacts poorly with this user model and makes active query
selection less useful.

6.6 User Study

6.6.1 Experiment Design
Next, we tested our hypothesis with actual users.
Study Protocol Overview. Each user answered 20 queries of each type: comparison-
only and rich. For each method, we used the 20 answers to learn a reward function:
two reward functions per participant, that we then compared in order to test which
method learned a more accurate reward. We then used 10 test environments for val-
idation. We asked the participants, for each test environment, to choose between a
pair of trajectories (one optimal with respect to the reward learned through compar-
isons only, one optimal with respect to the reward learned through rich queries). We
also asked them to rate each of the two trajectories in each environment on Likert
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scales for the statements in Table 6.1. Finally, at the end of the study, the partici-
pants answered questions about the experience of interacting with rich queries (Table
6.2).
Manipulated Factors. We manipulated the query type. Informed by the results of
our simulation, we also allowed participants to skip queries if they were unsure of the
answers.
Participants and Allocation Method. We recruited 10 participants consisting of
a mix of undergraduate and graduate students, and used a within-subjects allocation
so that participants could actually compare the outcome of the two learning methods.
All the participants had 1+ years experience in driving and were comfortable with
feature queries even with limited technical background.
Dependent Measures. Since with real people we no longer have access to the
ground truth reward (it is internal to them), we had to settle on a different way to
measure the quality of the learned reward. We thus had participants compare the
learned rewards from each method by exposing them to two trajectories that optimize
each reward in 10 test environments.

For each environment and trajectory, we asked participants 4 Likert-scale ques-
tions, capturing their preference for one or the other (see Table 6.1). We also asked
them, for each environment, to choose the trajectory they prefer. These questions
helped us understand if the users considered any of the two methods to be particularly
effective or both methods to be ineffective.

Table 6.1: Measures for each trajectory in each test scenario.
Validation Likert Questions

Q1: Trajectory X matches what I want the
car to do.
Q2: Trajectory X is what I would expect the
car to do.
Q3: I would like to ride in the car using tra-
jectory X.
Q4: I think trajectory A is the right combi-
nation of safety and efficiency.

6.6.2 Analysis
We analyzed participants’ ratings of the trajectories produced by each learning method
using a repeated-measures ANOVA for each item. We found significant effects of the
query type across the board: rich queries led to significantly higher evaluation of
whether the car matched what the user wanted (F (1, 175) = 11.52, p =< .001),
whether it matched what they expected (F (1, 175) = 10.00, p =< .01), whether they
would like to ride it (F (1, 175) = 14.41, p =< .001), and whether it was the right
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combination of safety and efficiency (F (1, 175) = 15.05, p =< .001). The trajectory
corresponding to the weight learned by the rich queries was chosen 74% of the time.

Participants found the robot that makes rich queries more intelligent, effective
and trustworthy. Fig. 6.8 shows the results of the user study experiment and their
responses to the post-study Likert Scale questions.

We asked participants to rate their experience with the feature queries on a 7-point
Likert scale in the following form:

Table 6.2: Feedback on experience with feature queries.
Post-study Likert Questions

Q1: I thought answering feature queries was
useful.
Q2: The method where the car uses feature
queries was annoying.
Q3: I thought answering feature queries gave
more transparency into the working of the
car.
Q4: I thought answering feature queries im-
proved my ability to compare between the
two trajectories.
Q5: I liked when I did not have to answer
feature queries.

Most participants considered feature queries to be extremely useful (average rat-
ing 5.8 and that answering feature queries helped them to understand how the car
worked and thus improve their comparison capabilities (average ratings 5.9 and 6.3
respectively). They all agreed that they would help the car to learn their preferences
better by answering feature queries, even if it was extra work (average rating for Q5 in
Table 6.2). Overall the participants reported positive experience with feature queries
and gave an average rating of 6.0 over all the experience-related statements.

6.7 Chapter Summary
The key idea of this chapter is that robots can extract richer information from people
about their preferences if they make the right kinds of queries. We introduced feature
queries as a way to augment comparison-only queries and get richer guidance from
users when learning reward functions. We did an in-depth analysis in simulation,
emulating perfect and noisy responses. We found that the richer queries consistently
outperform comparison-only queries in being able to extract the correct reward faster.
We then did an in-lab user study where participants interacted with each learning
method, and again found that rich queries led to better outcomes within the same
number of iterations.
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Limitations and Future Work. While rich queries are really helpful, they assume
that the features of the reward function are interpretable, and that they can be
explained to end-users. This was the case in our application, but it will not always
hold. There has been a lot of progress in learning features from sensorimotor data
directly via deep learning, and even though there is much excitement about being
able to interpret or visualize these features, this is still work in progress.

Next we extend the concept of rich queries into a hierarchical structure and learn
more complex reward dynamics that represents changing preference in non-stationary
environments.



Chapter 7

Multi-modal Preference from
Hierarchical Queries

We already demonstrated that we can use rich queries along with an intelligent query
selection algorithm to learn a static reward function that represents constant human
preference for autonomous driving. This is the most common form of reward model
used across all IRL (97; 106; 140) and robotics literature (3; 79). Despite the popular-
ity, such static reward functions do not always adequately capture human preferences,
especially, in non-stationary environments: Driving preferences change in response to
the emergent behaviors of the other agents in the environment. In this chapter, we
propose a second form of rich query HIERARCHICAL COMPARISON QUERIES to
learn non-stationary preferences.

7.1 Multi-modal Preference
Real world is often non-stationary due to environment complexity or changes in ob-
jectives in the environment. Surrounding agents continuously change their behavior
which in turn requires the robot to adapt to these changes. As an important class of
non-stationary environments, human-robot and robot-robot adaptation have recently
attracted much attention. However, unlike existing works that try to ensure robots
adapt to their changing environments and other agents (98; 8), our goal is to learn
the reward functions that dynamically change depending on the interactions between
the agents and the environment.

Consider the example in Fig.7.1: On the left the white traffic car E is attempting
a merge in front of our user’s autonomous car. the users car H decides to be nice and
slows down to facilitate the merge. E still cuts close in front of our car and continues
slowly after merging. The user in this case showed a cooperative mode of preference
indicated by M1 in the figure. This can frustrate the user who then decides to speed up
and overtake the white car, as we see in the right. He transitions to a more aggressive
behavior. We consider this a change in preference mode to aggressive, indicated by

56
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Figure 7.1: The orange car is the autonomous car and the white car is the environment
agent. On the left the user prefers a trajectory of the autonomous car optimal with
respect to a reward function that represents a more cooperative behavior (mode M1):
letting the environment agent merge. But the environment agent’s behavior frustrates
the user and he next prefers a more aggressive behavior: speed up and overtake the
white car. This trajectory is optimal with respect to a different reward function that
represents more aggressive behavior (mode M2).
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M2. If we consider the user as a rational entity whose actions can be explained by
a reward function, it is almost as though the user is optimizing two different reward
functions wM1 and wM2 . Modeling driving behaviors in non-stationary environment is
a well-studied problem especially for driving. For example, (47) characterizes driving
styles based on sensor data using deep learning. In a more related work (96), the
authors modeled the drivers with a latent state space which can affect their driving
behavior. While they stated these latent states might change over time, both of these
works made the assumption that latent states remain unchanged over the trajectories
of interest, so they did not address changing behaviors. In (22), the authors modeled
the latent states of the drivers using Hidden Markov Models (HMM) where they
also allow adaptation. However, they did not specifically learn reward functions, and
they focused on identifying the maneuvers the drivers will perform from a predefined
database. With a similar objective, (80) employed HMMs for latent state estimation
for human-robot interaction. We are interested in a particular kind of non-stationary
environment: which changes in response to other agent E ’s behavior as in Fig.7.1.

We represent this behavior by a mixture of reward functions wMj
for all j ∈

[k] , one for each jth mode of preference, as we mentioned in Chapter.4. We call
this REWARD DYNAMICS. Prior works have also theoretically investigated how to
perform preference-based learning for multi-modal reward functions (88; 139; 87; 41).
Specifically in (139), it was shown that pairwise comparisons can be used to learn only
unimodal reward functions, or as we call, static reward functions. This is because
most of these works consider that the two modes are independent of each other. We
have this problem too. Unlike prior formulations of Bayesian update as in Chapter.6,
where we knew which distribution w came from, in case of two modes we do not
know the current mode of the user. Speaking in terms of mixture model, we do not
know the parameters of the individual distributions and the parameter governing the
component membership at the same time. Other researchers have made uniformity
assumptions as a work around (41) i.e. any mode is equally likely. We do not
make a uniformity assumption. Instead we propose a computational model for mode
transitions, which takes care of the identifiability issues. We referred to this as Mode
utility Function UMj

for all j ∈ [k] in Chapter.4. Now we know why we need a function
governing mode transitions when we are trying to learn multi-modal preferences. So
reward dynamics now encodes not only different human preferences but also how the
preferences change.

7.2 Overview of Contributions
Our contribution is in the way we adapt preference-based learning into a hierarchical
approach that aims at learning not only reward functions but also how they evolve
based on interactions. We derive a probabilistic observation model of how people will
respond to the hierarchical queries. Our algorithm leverages this model to actively
select hierarchical queries that will maximize the volume removed from a continuous
hypothesis space of reward dynamics. We empirically demonstrate reward dynamics
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can match human preferences accurately.
In our work, as well as how to learn the reward functions, we are also interested

in how they change in non-stationary environments.
In this thesis, we propose to learn an expressive representation of preferences in

non-stationary scenarios, where interactions and adaptations better reflect the real-
world conditions. We assume that the non-stationary scenarios arise from changing
behaviors of other agents interacting with our system, which in turn affect human
preferences. We formalize reward dynamics which encodes not only different human
preferences but also how they change.

Our insight is that reward dynamics matches human preferences more
accurately in a wide range of scenarios than a static reward function.

We actively select comparison queries from a database, similar to (25), to learn a
probability distribution over reward dynamics: a mixture of static reward functions
representing different moods and a set of parameters for the transitions between the
moods. We tailor comparison queries to capture longer term interactions between
the robot and the surrounding agents, and develop a mathematical model of user
responses for any number of static reward functions and the transitions between
them.

In this work, we make the following contributions:
Reward Dynamics: User preferences may change based on the behaviors of other
agents in the environment. We encode the momentary human preference by a static
reward function and assume at any point of time the human has an internal preference
mode (mood) which dictates what static reward function the human will optimize
next. We introduce the notion of reward dynamics as a tuple of reward functions each
representing a different preference, and mode-utility functions that are parameters
governing transitions between different modes.
Hierarchical Queries: We formally define hierarchical queries which are a sequence
of hierarchical pairwise comparison questions, each of which will be called a sub-
query. These subqueries sequentially follow each other so that the user moods will be
reflected into their behaviors. The hierarchical queries are essential in learning the
user’s reward dynamics.
Active query selection: We provide an algorithm that actively selects informative
hierarchical queries in order to efficiently learn reward dynamics through interactions
with the users. We evaluate our algorithm on an autonomous driving example in
simulation. Our user study suggests that we can efficiently learn changes in humans’
preferences based on interactions with different environments.
Problem Domain Prior works on autonomous driving(116; 115; 112; 113; 14; 121;
56; 127) assume that H should follow the same reward function over time in both
of the above scenarios. We argue that user preferences may vary in response to
the changing behaviors of the environment agents in both driving and potentially
other multi-agent environments. Our goal is to learn an expressive reward function
corresponding to these dynamic preferences.
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Figure 7.2: In a. we see in two consecutive 1-step comparison queries people may give
two different preferences, preferring defensive behavior in the first one and aggressive
in the second one. This registers as noise in 1-step comparison based learning as
shown in b. In b. wGT is a single 2-D ground truth reward function for 1-step
comparison query (1.) and wGT is a tuple of 2-D ground truth reward dynamics for
hierarchical comparison query (2.). In (c) we show the hierarchical structure of our
proposed queries, where we can learn that both w1 and w2 represent true user intent
wGT .
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7.3 Hierarchical Comparison Queries
Prior works have learned static reward functions by asking people to compare between
two different trajectories of robots. There, each query is a pair of short videos that
demonstrate two trajectories of the system (110; 25; 43). Such short trajectories do
not capture the nuances of interaction in a multi-agent system. As an example, let
us consider a sequence of two comparison queries as shown in Fig. 7.2 (a). In the
first query, an environment agent Ei (white car) aggressively merged in front of H
(orange car). One option is for our user to slow down (optimize a cooperative reward
function). This sudden slow down may have frustrated the user. So, in a different
query, if one previous sub-query induces some change in the user’s mode, then in a
similar situation when another agent Ej (white car) tries to merge in front, our user
prefers the trajectory whereH (orange car) speeds up and does not let Ej merge. Here
the user showed a more competitive behavior (optimized with respect to a competitive
reward function). This change of preferences between the two comparison queries will
manifest as noise in 1-step preference-based reward learning approaches. However,
we would like to learn a composite reward function that not only captures both of
these preferences but also captures how the humans’ preferences have changed in such
non-stationary environment.

To do so, we allow the users to change their preferences within the same query.
We propose a second type of rich query Hierarchical Comparison Queries, where each
query q as a sequence of several sub-queries. Each sub-query qi in the sequence is
a continuation from the final state of the trajectory of the previous sub-query qi−1.
This allows us to learn how the behavior of other interacting agents in one sub-
query affects user preference in the next sub-query. We assume that the users’ next
immediate preference mode depends only on their current experience. We, therefore,
reset their preference mode at the beginning of each query with a demonstration,
the first sub-query, which we denote as q0 (see the hierarchical query structure in
Fig. 7.2 (b). After q0, each sub-query presents a pair of trajectories qA, qB ∈ Ξ for
the user to indicate their preferences by selecting which trajectory they would prefer.
qA1 and qB1 are both continuations of q0. In general, for the rest of the sub-queries, qAi
and qBi are continuations from q

ai−1
i−1 where ai−1 is the option the user picked in the

(i− 1)th sub-query, as shown in Fig. 7.2 (c). Following the definition of rich queries
in Chapter.5, therefore, all our sub-queries are pairwise comparison queries between
trajectories.

7.4 Reward Dynamics Model

7.4.1 Preliminaries
Throughout the chapter, we will use [n] to denote the integer set {1, 2, . . . , n} for
n ∈ Z>0.
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We denote the ith sub-query as qi for i ∈ [s]∪{0}, where the number of sub-queries
within one query is s.

We assume there is a finite set of modes M and we enumerate each mode such
that M = {1, 2, . . . , k} where k is the total number of modes. Mj is the jth element
of the set of modes M . We also assume the mode of the user is stable during each
time period, the duration of a sub-query. We denote the mode in the ith sub-query
as mi ∈M .

Each qi, except q0, consists of two trajectories qAi , qBi ∈ Ξ. The user selects A or B
as his/her response to each of these sub-queries. The user’s response to qi is denoted
as ai ∈ {A,B}. āi denotes the complement of ai, i.e. {ai} ∪ {āi} = {A,B}.

In addition, we assume a features function φ : Ξ→ Rd that maps every trajectory
to a d-dimensional feature space. This function depends on bothH and E . We assume
the d features of the environment F are known. For example, some representative
features for driving in traffic can be distance to the closest environment car, distance
to the road boundaries, the speed or heading angle of the vehicles, etc.

7.4.2 Human Preference Model
Reward functions under known modes. Reiterating from Chapter.4, we defined
a user-specific reward function parameterized by the mode of the user: RMj

: Ξ→ R
for j ∈ [k]. With linearity assumption as in (110; 25), it is defined as: RMj

(ξ) =
w>Mj

φ(ξ) where ξ ∈ Ξ and w ∈ Rd×k is a user-specific weight matrix, and wj is the jth

column of w, with each column corresponding to a particular mode for a user. Then,
the user response to a sub-query qi is probabilistic based on Luce’s Choice Axiom
(89; 67) which is a widely used human decision model in cognitive science as it nicely
captures the noise in humans’ choices:

P (ai|qi,mi, w) = exp(Rmi
(qai
i ))

exp(Rmi
(qai
i )) + exp(Rmi

(qāi
i ))

This expression captures probability of the human making a choice given a sub-
query, the humans’ mode during that sub-query, and the user specific preferences and
relates this probability to the human’s preference reward function in that particular
mode.
Prior on mode transitions. We also define a matrix G ∈ Rk×k that defines the
prior over the mode transitions. That is, on a completely neutral case (the meaning
of this will become clear in a while), if the user is in mode Mj0 , then its probability
of transitioning to mode Mj1 is given by Gj0j1 . This implies that G is constrained to
be a proper Markov chain matrix. We note Markov chains are employed similarly for
mood changes by psychiatrists, e.g. (68). We are going to assume G is provided by
the model designer.
Mode transition model. The user changes its mode based on the previous time
interval, i.e. previous sub-query. We model this stochastic transition as follows: The
user has an underlying mode-utility function that quantifies the trajectory. This
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mode-utility function is parameterized by the mode of the user: UMj
: Ξ → R for

j ∈ [k]. Again with linearity assumption, it is defined as: UMj
(ξ) = γ>Mj

φ(ξ) where
γ ∈ Rd×k is another user-specific weight matrix and γj is the jth column of γ. If the
user thinks she would have higher utility with mode Mj, then she transitions to Mj.
As an example, imagine you are driving in a very calm mood. If someone suddenly
cuts in front of you, you would think “if I were aggressive, I could keep a shorter
headway with the car in front and the other car would not have been able to cut in
front of me”, and you also switch to an aggressive mood. It is of course also possible
that you keep calm. Therefore, the transition should be stochastic.

Moreover, some mode transitions are naturally more likely than the others. For
example, if we have three modes that correspond to defensive, neutral and offensive
moods, then it would be more likely for a defensive user to switch to the neutral mode
than to the offensive mode. G captures this prior. We will give some examples after
we define the probabilistic mode transition with a softmax model:

Pj0j1(qi−1, ai−1, γ)
:= P (mi = Mj1 |mi−1 = Mj0 , qi−1, ai−1, γ)

= 1
Z

exp(UMj1
(qai−1
i−1 ))∑

m∈M exp(Um(qai−1
i−1 ))Gj0j1

where Z is the normalization constant. Now, it should be clear what we previously
meant by “completely neutral case”. That is, when the softmax gives equal values for
each mode, the transition is solely defined by the prior G. Some examples of G are:

• Gj0j1 = 1/k for ∀(j0, j1) ∈ [k]2 means that the user may change from any mode
to any other mode just based on the previous subquery with a uniform prior.
This is suitable when the modes are categorical, not sequential.

• G = I means the user will not ever change her mode and will remain in her
initial mode. Note that the initial mode will also be modeled in a probabilistic
way.

• If G is a band matrix, then the user can only change between the modes that
are “close”. This is suitable for sequential modes.

While our model will be valid for any feasibleG, we will do simplifying assumptions
to actively select the hierarchical queries for sample-efficient learning.

Definition 7.4.1. We define reward dynamics of a user as a tuple of (w, γ), which
governs both the user preferences and how they change with the interactions the user
is involved.

Therefore, our aim is to learn the reward dynamics rather than a static reward
function.
Initial State. We do not know the initial mode m0 of the user, which is the active
mode during q0. One simple way is to assume uniform distribution over all modes.
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However, imagine G is such that transitioning to Mj is very unlikely from any mode.
Then, the uniform assumption will not hold, because the user is unlikely to be in
mode Mj. Then a better model is the following:

Pj := P (m0 = Mj) = πMj
(G)

where πMj
denotes the probability of mode Mj in the stationary distribution of the

Markov chain G. If there exist several stationary distributions, the designer should
pick one of them using domain knowledge. For example, for G = I, one option is to
assume Pj is uniformly distributed.

7.4.3 Learning Reward Dynamics
To make the learning of reward dynamics effective and efficient, we should restrict the
continuous space of reward dynamics. For that, we make assumptions on the norms
of the columns of w and γ similar to (110; 25).

There is also the problem of label switching. That is, all the probabilities will
remain the same if we switch the order of modes both in w and γ. Since this can
completely disable the learning, we enforce another constraint on the ordering, as
mentioned by (139), such that γM1,1 > γM2,1 > · · · > γMk,1 where γMj ,1 is the first
row of M th

j column of γ.
Our goal is to learn a distribution over the reward dynamics by making informative

queries. We start with a uniform prior over the space of all feasible (w, γ). After
receiving all the answers to a query q, (a1, a2, . . . , as), we perform a Bayesian update:

p(w, γ|as, as−1, . . . , a1, qs, qs−1, . . . , q0)
∝ p(as, as−1, . . . , a1|w, γ, qs, qs−1, . . . , q0)p(w, γ)

Next we derive the expression for the update function p(as, as−1, . . . , a1|w, γ, qs, qs−1, . . . , q0)
and present some simplifications that we adopted for our implementation.

7.4.4 Derivation and Simplifications
In this section, we present how we compute the update function for p(w, γ). We note
q0 does not receive any response. For the simplicity of notation, we assume qa0

0 gives
the associated trajectory in q0, so that Pj0j1(q0, a0, γ) is well-defined for ∀(j0, j1) ∈ [k]2.
We then derive

P (as, as−1, . . . , a1|w, γ, qs, qs−1, q0)
=

∑
(j0,...,js)∈[k]s+1

Pj0Pj0j1(q0, a0, γ) . . . Pjs−1js(qs−1, as−1, γ)
∏
l∈[s]

P (al|w, ql,ml = Mjl)
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In our implementation, we restrict ourselves to the cases where s = 2. Then, the
above equation is simplified as

P (a2, a1|w, γ, q2, q1, q0)
=

∑
j0∈[k]

∑
j1∈[k]

∑
j2∈[k]

Pj0Pj0j1(q0, a0, γ)Pj1j2(q1, a1, γ)

P (a1|w, q1,m1 = Mj1)P (a2|w, q2,m2 = Mj2)

To eliminate the normalization Z from the equation, we assume Gj0j1 ∈ {0, 1/cj0}
for ∀(j0, j1) ∈ [k]2 where cj0 is an appropriate constant. That is, we assume the model
designer will just decide on whether or not it is possible to move between any two
modes and will not assign specific prior probabilities. Then,

Pj0j1(q0, a0, γ) =
exp(γ>Mj1

φ(qa0
0 ))∑

j′∈[k]:Gj0j′=1/cj0
exp(γ>Mj′

φ(qa0
0 ))

If we further assume k = 2 and Gj0j1 = 1/2 for ∀(j0, j1) ∈ [k]2, such as the case of
cooperative and competitive modes, we also have Pj0 = 1

2 , so we can write:

P (a2, a1|w, γ, q2, q1, q0)

=
∑

(j1,j2)∈{1,2}2

∏
i∈{1,2}

exp(w>Mji
φ(qai

i ))
exp(w>Mji

φ(qai
i )) + exp(w>Mji

φ(qāi
i ))

exp(γ>Mji
φ(qai−1

i−1 ))
exp(γ>M1φ(qai−1

i−1 )) + exp(γ>M2φ(qai−1
i−1 ))

This formulation is completely independent from m0 thanks to the simplifying as-
sumptions on G.

7.5 Active Query Selection
In this section, D denotes all the information about w and γ up to the current iteration
of interest – we dropped the subscript for simplicity.

Each answer tuple (a1, a2) removes some volume from the hypothesis space of
(w, γ), where, volume removed is given as the difference between the unnormalized
posterior distribution over (w, γ), and its prior distribution. We have a belief over
what the user answers could be. We leverage this probabilistic model to actively select
a query at each iteration that will maximize the expected volume removal. Formally,
we solve the following optimization:

(q∗0, q∗1, q∗2)
= arg max

q0,q1,q2
Ea1,a2 [Ew,γ [1− p(a2, a1|w, γ, q2, q1, q0)]]
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where both expectations are taken given D, q0, q1 and q2. To compute the inner expec-
tation, we sample (w, γ) from p(w, γ|D) using Markov Chain Monte Carlo methods.
Unlike previous works in active reward learning (110; 25), our update function is not
log-concave. We, therefore, resort to Metropolis-Hastings algorithm. Now, let’s say
we take M samples. We let w̄ and γ̄ represent those samples:

(q∗0, q∗1, q∗2)

u arg max
q0,q1,q2

Ea1,a2

 1
M

∑
w̄,γ̄

(1− p(a2, a1|w̄, γ̄, q2, q1, q0))


= arg min
q0,q1,q2

Ea1,a2

 1
M

∑
w̄,γ̄

p(a2, a1|w̄, γ̄, q2, q1, q0)


By formally writing the expectation, we obtain the objective as∑
(a1,a2)

p(a2, a1|q2, q1, q0,D) 1
M

∑
w̄,γ̄

p(a2, a1|w̄, γ̄, q2, q1, q0)

where the first sum is over {A,B}2. By the law of large numbers, we also have:

p(a2, a1|q2, q1, q0,D) = lim
M→∞

1
M

∑
w̄,γ̄

p(a2, a1|w̄, γ̄, q2, q1, q0)

which is because w̄ and γ̄ were drawn from p(w, γ|D) and are independent from q2,
q1, q0; and (a1, a2) are conditionally independent from D. Then, for large M , we can
write the optimization as:

(q∗0, q∗1, q∗2)

= arg min
q0,q1,q2

∑
(a1,a2)∈{A,B}2

∑
w̄,γ̄

p(a2, a1|w̄, γ̄, q2, q1, q0)
2

where the probability expression in the objective function is already derived in Sec-
tion 7.4.

7.6 Simulation Experiments

7.6.1 Problem Domain
We focus on learning driving preferences. Each component of the learned reward dy-
namics weighs 5 features for driving: a feature for the distance to the road boundary,
a feature for velocity, and three more features of proximity to lane borders, to other
cars and alignment with the road, similar to (110). Each sub-query consists of the
driving environment and a pair of trajectories of E andH whose preferred behavior we
are learning. The environment is represented by the trajectory of an environment car
and the initial states of H. Our query database consists of 10000 randomly generated
hierarchical comparison queries.
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7.6.2 Dependent Measures
In our implementation we learned α1 := γ1 − γ2, instead of γ, as it has fewer param-
eters. The same approach generalizes to any k with αj := γj − γk for ∀j ∈ [k − 1].

We measure the performance of hierarchical preference learning in terms of ex-
pected dot product between learned weights and true weight as in (110; 25), separately
for each component of (w, α). r is a measure of convergence as value of r close to 1
indicates learned weights are close to the true weights.

r = E
[

v̂.v∗

‖v̂‖2 ‖v∗‖2

]
(7.1)

where v ∈ {w1, w2, α1}, v̂ and v∗ are the estimated and true weights, respectively,
and the expectation is taken over the sampled v̂ values.
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Figure 7.3: r value shows that our algorithm converges well for non-driving data with
non-active query selection when the simulated user is oracle. Here we show an average
m over 5 different ground truth reward dynamics.

7.6.3 Experiments with Random Data
We first conduct experiments with completely random and independent sub-queries
without the driving environment. We assume we can generate queries in an uncon-
strained way such that any φ-vector is possible, i.e. there is no dynamics constraint
in the generation of queries. Here, we simulate oracle users: users who are per-
fectly aware of their true reward dynamics. That is, they always behave (change
mode and respond) with respect to the higher probability out of softmax models. In
Fig. 7.3, the average results of 5 different simulated oracle users show convergence
of (w1, w2, α1) whose true values were independently drawn from standard normal
distribution independently for each entry.
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7.6.4 Experiments with Driving Data
Active versus non-active query selection. We compare the performance of our
active query selection algorithm with a non-active baseline where we uniformly sample
the queries from a discrete database of 10000 queries. Here our simulated users are
always oracle. We test the following hypothesis:

0.0

1.0

0 600
#iterations

!"!#$"

r

0.0

1.0

600

r

!"!#$"

#iterations
a) Active query selection b) Non-active query selection

0

Figure 7.4: r values show that our algorithm with active query selection from dataset
of 10000 discrete queries (left) can learn reward dynamics faster than non-active query
selection (right) when the simulated user is oracle. Here we show an average r over 5
different ground truth reward dynamics.

H1. The reward dynamics learned with our active query selection algorithm con-
verge to their true weights faster compared to the non-active baseline. Our results
in Fig. 7.4 supports this hypothesis by demonstrating that active query selection
accelerated the learning of one of the modes (the average r value at convergence for
(w1, w2, α1) are 0.84, 0.74 and 0.6 respectively) compared to the non-active baseline
(the average r value at convergence for (w1, w2, α1) are 0.85, 0.62 and 0.63 respec-
tively). In fact, at the end of 600 queries, active selection led to significantly higher
rw2 .

Testing different mode preferences. Next we simulate 5 noisy users, who
choose between options A and B with respect to p(a|w, γ, q). Our algorithm actively
selects queries from the same discrete dataset of size 10000 as in the case of oracle
users. We first set the following hypothesis: H2. Our algorithm learns the reward
dynamics even when the users are noisy.

We also test the performance of our algorithm for different mode likelihoods, i.e.
probability of transitioning to a given mode, p(m = Mj). We manipulated the ground
truth reward dynamics to reflect different mode likelihoods. For example, one user
might be in one mode 80% of the time while another user has equal chances of being in
one of the two modes. Although this might actually affect the priors P1 and P2 as we
explained in Section 7.4, we still adopted the derivations based on uniform prior to test
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the robustness of our framework. Therefore, we test the following hypothesis: H3.
Our algorithm learns the weights w that correspond to both modes, and it converges
faster for wMj

if p(m = Mj) is higher.
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Figure 7.5: m value shows even when the users are noisy our algorithm can learn the
true reward dynamics (left) and that as p(m1) increases, w1 converges faster (right).

We present the results in Fig. 7.5. The first plot shows that our algorithm was
able to learn w1, w2 and α1 converge even when the users are noisy. However, we note
that throughout the simulated conditions α1 converges slowly, as we were not able to
fully avert the label switching problem. The second plot shows we are able to learn
the reward weights wj of a mode j regardless of its likelihood probability being high
or low. The same plot also shows the algorithm converges faster for the modes that
are visited more often. This is very intuitive as the algorithm is able to gather more
information about those modes, even though it does not perfectly know the user is in
the corresponding mood. Hence, H3 has a strong empirical support.

7.7 User Study

7.7.1 Hypotheses
We test the following hypotheses with the user study: H1. Our algorithm learns
weights that can represent the driving behavior of the users. H2. Some people indeed
change preferences depending on the driving behaviors of the interacting agents.
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Agreement with “I like to ride in this car.” Likert scale
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Figure 7.6: The validation interface showed each user 5 trajectories per query: two
optimal with respect to the learned weights for the two modes, two optimal with
respect to the perturbed versions of these weights and one optimal with respect to a
random weight vector.
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Figure 7.7: Distribution of ŵ1 and ŵ2 across all users for individual features in a)
shows that user preferences vary widely for adherence to lane center and distance to
road boundaries, but are very similar for efficiency (speed) and safe driving (collision
avoidance). While we did not learn significantly different w1 and w2 for individual
users, b) shows that the average reward w.r.t to ŵ1 and ŵ2 differ slightly for some of
our study participants.
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7.7.2 Study Design
In order to validate our hypotheses, we collected data from 10 real users in a within-
subjects study. We first learn a general reward dynamics (ŵ, α̂) using 50 hierarchical
queries. We then use the distributions over these parameters to jump-start the process
for each subject with a reasonable prior that better represents legally correct driving.
During validation, we ask users to provide ratings for trajectories locally optimized
with respect to the learned reward dynamics. We compare the expressiveness of
the learned weights (ŵ1, ŵ2) against their perturbed versions (wp1, wp2). We sampled
these perturbed versions from Gaussian distributions centered around (ŵ1, ŵ2) and a
standard deviation of 0.5× |ŵ1| and 0.5× |ŵ2|. While creating perturbed versions of
ŵ1 and ŵ2, we make sure that all weights generate legally correct driving, so that we
only compare people’s preferences for different modes. To do so, we constrained the
weight components for staying within the road and collision with cars. Each rating
question consists of two parts. The first part is similar to q0 of the learning step,
where we show user one trajectory demonstration of H as an attempt to set their
initial mode. In the next part, we show users 5 trajectories continued from the first
part, optimal with respect to 5 reward functions: ŵ1, ŵ2, their perturbed versions wp1
and wp2, and a random weight wr. For fair comparison, we also generated wr from a
Gaussian distribution centered on either ŵ1 or ŵ2 and a standard deviation of 2×|ŵj|
with the j being the corresponding mode index. For each of the 5 trajectories, we ask
users a 7-point Likert scale rating question: Indicate your level of agreement with the
following statement: I would like to ride this car (see Fig.7.6).

In H1 we claim 1) users will give the highest overall rating to the trajectories
generated from ŵ1 and/or ŵ2 most of the time, and 2) if p(Mj) is very high, we
expect people to give the highest rating to trajectories generated from corresponding
weight ŵMj

. To validate the first part, we repeat the same demonstration across
several rating queries preserving E ’s trajectory alike and changing the trajectory of
H, varying between different local optimal with respect to w1, w2 and the other
weights. We randomize demonstration trajectories across the rating questions. In
H2 we hypothesize that subject to different interactions in the environment, users
will sometimes give higher rating to trajectory optimal for ŵ1 and sometimes to those
optimal for ŵ2.

7.7.3 Results
Like previous work in this area (110; 25), we found that the users have somewhat
similar preferences, proximity to cars have high negative weight and speed has high
positive weight showing that people generally prefer safe and efficient driving (see
Fig. 7.7). However, features like preferences to stay on the road and alignment with
the road vary more. While the general direction of the feature weights is similar
between ŵ1 and ŵ2 for each user, there is some difference in the magnitudes. We
computed the percentage difference between average reward with respect to ŵ1 and
ŵ2 as ŵ1.φ−ŵ2.φ

ŵ1.φ
, where φ is the average feature values for our application. This gave
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us the percentage difference in the average reward. We found that of all the users the
maximum difference is 12% and the minimum difference is 6%. While we also learnt

ˆalpha1, it is relatively less important here as ŵ1 and ŵ2 are close.
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Figure 7.8: Most users gave high ratings to the trajectories optimal for ŵ1 and ŵ2
and low ratings to trajectories optimal for their perturbed versions wp1 and wp2 and
the lowest rating to the trajectories that were optimal with respect to some random
weight wr.

As it can be seen in Fig. 7.8, the users gave the highest scores to the trajectories
generated from ŵ1 and ŵ2 with statistical significance. This suggests an empirical
evidence for H1. While we also observed that users sometimes gave high ratings to
ŵ1 and sometimes to ŵ2, we have not observed a significant dependence on the modes.
This is due to the fact that the learned weights were very close to each other as they
represent the legal driving behavior, which is a very small subset of all the reward
space.

7.8 Chapter Summary
In this chapter, we developed a model of how humans change their moods (latent
states) based on the interactions they are involved in the environment, as well as how
they respond to the given queries when they are in a particular mood. Using this
model, we developed a maximum volume removal based active learning algorithm to
efficiently learn the reward functions and mode transitions. We demonstrated through
simulations and user studies that this framework can efficiently learn expressive re-
ward dynamics.
Limitations. While the framework is very general, we tested it only for driving
environment. In fact, because legal driving is a very small subset of the space of
static reward functions, we observed in our experiments that queries focus mostly on
learning this small subset, and we would need higher number of queries to recover
different modes within this set. More extensive experiments on various environments
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where all reward functions are sound but the personalization is more important could
give more interesting results.

We also used a specific set of parameters k = 2, s = 2. While larger s values
can ease learning, larger k values require further research, because there is currently
no theoretical guarantee of identifiability (139) even with the relaxed problem of
multimodal reward learning we presented.

In this thesis we attempted to find some solutions to the problem of personalizing
autonomous driving from within the domain of human-robot interaction. We found
that unlike popular belief in the research community, learning from user’s own driving
demonstrations is not an adequate solution. We turned to alternative means of human
guidance for learning driving preferences. We developed the concept of rich queries
as augmented comparison-queries and leveraged two forms of rich queries: a feature-
augmented comparison query in the previous chapter and hierarchical comparison
query in this chapter to learn complex dynamic user preferences. This chapter brings
us to last contribution of this thesis. However, there are many more things to say:
the other possible directions that this thesis could have taken and future work that
can continue from this thesis, in the concluding remarks next.



Chapter 8

Concluding Remarks

8.1 Summary of Contributions
Autonomous cars are a reality of today. But only a handful of them can drive safely
on an already charted route. Like several other systems of autonomy, they were de-
signed for a safer and better future of mobility. There are, however, several challenges
to mass adoption of the system which include initial software failures (85), lack of
trust in automation (2) and the safety-critical nature of the system in itself (71).
One thing to remember is that these systems do not exist in vacuum. Humans are in
continuous interaction with autonomy and many of the above mentioned challenges
can be overcome by a designing systems that humans can understand better, operate
effortlessly and interrupt if necessary (61). It is, however, difficult to guarantee con-
tinuous supervision. It defeats the purpose of having the systems in the first place.
A better model is to build into the autonomous systems, an ability to understand
what humans are thinking and how humans want them to act. These systems should
be able to reason about what humans need to know in order to provide efficient and
effective supervision. For example, an autonomous car, on encountering an unknown
scenario where it doesn’t know how to act, should be able to make the supervisor
aware of the situation. Likewise, it should know to avoid drastic unanticipated ma-
neuvers that can surprise or scare an user. But for that the car should know what
maneuver is unpredictable for its user. In other words, it needs to know the user’s
preferred driving behavior. The field of human-robot interaction addresses some of
the fundamental challenges in realizing safe human robot co-existence. In this the-
sis, we borrow methods and concepts from human-robot interaction and interactive
machine learning to enable an autonomous car to learn about it’s user’s preference.
We formally define personalizing autonomous driving as a behavior planning, where
the goal is for the car is to follow trajectories like lane change, car following, merging
etc. that match the user’s preferences. Chapter.1. We show empirically that the
traditional approach to learning from expert driving demonstrations does not work
in our case. This is because autonomous driving preferences do not match individ-
ual demonstrations Chapter.3. We propose to use alternative richer forms of human

74



Chapter 8. Concluding Remarks 75

guidance for personalization. We model humans as noisily rational agents whose
preferences can be encoded by a mixture of reward functions Chapter.2. The most
important contribution of this thesis is a general framework that expands the scope
of Preference-based reward learning (48) to include other forms of human guidance,
leading to more efficient learning. Within the limited scope of this thesis we have
explored two different types of richer guidance: i) feature augmented comparison
queries Chapter.6 and ii) hierarchical comparison queries Chapter.7. As I close this
thesis, more and more researchers in AI and robotics are adopting Preference learn-
ing (33; 44). We hope that our proposed framework will foster further research in
interactive preference learning: incorporating novel forms of human-robot learning in-
teractions and will be applied to other dynamical systems with continuous state-space
besides autonomous car.

8.2 Value Aligned AI
In this thesis, we model our autonomous car as a rational agent that perceives and
acts to maximize a Utility function, also called reward function. When designing
such an agent it is important to carefully imbue the correct objective function in the
system, so as to avoid unindented consequences that can harm the society (9). The
idea of value alignment suggests that for the AI agents to act in the best interest
of the society, they should not just optimize any carefully designed reward function,
but one that matches true human values. In other words, the agent’s value function
should be aligned with that of human (109). It is notoriously difficult to define
such a reward function because we as humans do not always know what we desire
(9; 62; 95). One approach to solve this problem is to learn a reward function by
observing how people generally behave using Inverse Reinforcement Learning. But
desires are not constant across people. Humans are diverse in both preferences and
circumstances (109). Here we attempt to build an autonomous car whose values are
aligned with the user’s individual preferences. We learn from Cooperative Inverse
Reinforcement Learning (CIRL), which extends the IRL framework to incorporate
human robot collaboration in the process of value alignment (60). Similar to CIRL,
we design preference learning as a two-player partial information game where the
human is noisily aware of his reward function, but the robot is not. The robot’s pay-
off is exactly same as the human’s reward function. The robot queries the human and
the human provides answer that reflects the true preferences. While original CIRL
framework considers learning a static reward function, we design our queries with a
hierarchical structure that can capture the variations within the individual preferences
in the same game. That said, our approach to learning a mixture of reward functions
had several challenges, both in theoretical and pragmatic senses. Theoretically, while
our approximations mitigated some of the issues related to label-switching in mixture
models, it slowed down the overall convergence of the algorithm. Practically, we were
unable to capture the emotions that lead to preference changes in the real users. This
brings us back to the problem of complexity of human desires, values and intents and
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challenges associated with learning these hidden states thereof. This is even more true
for safety-critical systems like autonomous cars where we have to rely on simulations.
For better value aligned AI systems, research on algorithms for collaborative human-
robot learning (72; 60; 62) should go hand in hand with development of high fidelity
simulation environments that can elicit true human preferences.

8.3 Models of Human Behavior
We treat user-autonomous car as a human-robot system where successful robot oper-
ation is dependent on a learning an accurate mental model of human preference. The
robot starts out with two model assumptions: i) humans are noisily rational and ii)
the distribution over choices follow the principle of maximum entropy. As we see in
Chapter.6, the efficiency of this learning is largely governed by the hyperparameter of
the model: the rationality coefficient. In this work, this hyperparameter represented
how accurate people are in their answers to comparison and feature queries. While,
research shows model-based approaches to robot learning are more sample efficient
(49; 42), it also comes with the limitations stemming from the model assumptions
and the data quality. Data quality refers to expressiveness of the features that con-
stitute the linear reward model and diversities of the scenarios for which the human
model is learnt. Reward functions representing human preferences are as good as the
expressiveness of the features that form it. In this thesis, the hand-coded features fo-
cused mainly on legal driving which is a small subset of the space of true preferences.
We note that the performance of the same algorithm may vary in real life depending
on the expressiveness of the features. We also found that for interactive learning
the features should be human interpretable. In the current self-driving industry, it
is impossible to avoid deep learning algorithms, where we can learn highly expres-
sive features. But interpretability remains a major challenge with these algorithms.
In future, further research can investigate the trade-off between expressiveness and
interpretability of features encoding human preferences for autonomous driving.
Bounded Rationality. The whole thesis is based on the same assumption about
human behavior as most modern human-robot interaction algorithms (140; 141; 49),
i.e. humans are imperfect rational agents. While many of our day to day driving
decisions may be rational, in extreme events like accidents, human decisions cannot
be explained as outcomes of rational decision making. Learning true preferences for
such edge cases in itself is a difficult and controversial task (13). In this work, we
do not attempt to learn how people would prefer their cars to drive in case of an
imminent accident. However, in future we can borrow from theories in behavioral
economics (75) to design autonomous systems like cars that account for limitations
of humans’ rationality, also called bounded rationality. Such models can also enable
estimating probability of loss in the events of accidents.
Biased Rationality. We also know that human rationality is not uniformly noisy.
It has systematic biases like risk aversion, myopia etc. A proof of concept in this
thesis is that people can answer certain types of queries more easily and accurately
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than others even though they carry the same amount of information for both types
of answers (see Chapter.6). Other forms of biases could arise in our interaction, if
we made people aware that they were in fact teaching the robot (57). For example,
instead of actually revealing the true preferences that can include both altruistic and
selfish behavior (128; 24), the teacher may only pick options that show socially nice
behavior. In a human robot interaction scenario as ours or CIRL where the goal for
the robot is to exploit the model of human rationality to learn faster, it may not
be sufficient to learn or rely on just one model (of perfect rationality or Boltzmann
rationality). There are IRL algorithms that account for systematic biases (53; 91).
Choosing biased models may have worse risks than choosing models with uniform
noise assumption (94). But one of the reasons that we stick to the model of noisy
rationality is that it is extremely challenging to learn reward functions for humans
with unknown rationality models (10). A recent solution to learn the demonstrator’s
planning algorithm as a differentiable planner (123) can overcome this limitation.
Future work can incorporate concepts from meta-learning within the CIRL framework
for learning models of biased preferences.

8.4 Collaborative Human-Robot Learning and Trust
In this thesis, we enable the robot (autonomous car) to learn about human preferences
or reward dynamics interactively. The human is, however, not aware of the ultimate
goal of the robot, which is to match the human reward function or more generally act
according to human preference. Alternative formulations of human-robot collabora-
tive learning game (60; 62; 57) enable humans to explicitly act as a teacher. Research
shows that in such a game the objective function that human optimizes for is differ-
ent from that when they are just indicating preference over choices. As discussed in
the previous paragraph, making the teacher aware of his teaching role may lead to
biased preference learning. However, there is also a possibility that the teaching role
can make the user think harder about his own preferences. Other formulations allow
users to even discover their own preferences collaboratively with a robot within the
multi-armed bandit framework (40). In future, it would be worth exploring different
versions of the human-robot interaction game within our richer preference learning
framework and investigate how these interactions affect user trust. Our work shows
that richer queries, especially human interpretable feature queries can enhance trust
in the robot making such queries, by exposing the internal workings of the system.
This opens up a possibility of further investigations into how interactive machine
learning algorithms can improve human trust by the virtue of their design without
having to deliberately communicate the internal workings (72; 71).
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8.5 Final Words
Our work in this thesis is a first step towards enabling autonomous cars to drive follow-
ing human preferences. We treated the user-autonomous car system as a human-robot
system and designed algorithms to efficiently and interactively learn human prefer-
ences. We showed empirically and through real user studies that our learned model
represents true preferences accurately. That said, there are still existing challenges
that need to be addressed for improving the generalizability of the learned model
across diverse environments. We need to better account for variations in individual
behavior in AI. Our approach is just one way to speed up comparison-based learning.
More recent works combined IRL with preference-based learning (101) or used batch
active learning to speed up the query selection part (25; 26). In order to ensure re-
liability of performance of such safety-critical systems as autonomous cars, we must
test our algorithms in realistic simulation environments. Autonomous cars of today
know to drive safely on a known route, treating humans as obstacles or bounded
disturbances, leading to conservative and uninterpretable driving behaviors. When it
comes to functional aspects of driving like perception, obstacle avoidance and path
planning, these systems are approaching near perfection and almost ready for real
world deployment. A bigger question is what happens when not just one in hundred
other cars is autonomous, but when more than 50 % of the traffic is autonomous.
We believe that at that point functional driving must be augmented to account for
individual sense of safety and risk aversion. Even in ride sharing scenario, the cars
should learn to drive following some population preference model.
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