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ABSTRACT

We have shéwn that the assumption of maximal analyticity of

first degree and fixed-t power behavior of the scattering amplitudes

in general imply a lower bound at a fixed angle. The fixed angle

lower bound takes the form exp{-cy(zs) s’ logs] where Cy(zs) and

¥ are positive. The precise yalue of } depends én the specific
assumptions on the fixed-t bound of the scattering amplitude. 1In
particular, the assumptions made by Cerulué and Martin correspond to

7y = 1/2, and. for the case of a linearly rising trajectory, 7y = 1.
Furthermore, we obtain a finite lower bound at Azs = 0, which heretofore

was glven to be zero.
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I. INTRODUGTION

Cerulus and Martini'havé shown that the Mandelstam representa- .
tion, together with a weak unitarity condition, implies that the
scattering amplitude has a lower bound as the energy s increases
at fixed center-of-mass scattering angle z They used ﬁhe finite
range of the interaction and the assumption of a polynomial bound to
'show that !f(s,zs)l ;.exp[-c(ﬁs) s% logs]. Subsequently, Martin®
rederived this result under a weaker assumption. The rapid decrease
of the differential pp scéttering cfoss section at large momentum
transfer led Kinoshita3 to postulate the principle of "minimal inter-
action"--that the physical amplitude takes the minimum value consiétent
with the general requiremen%s of anélyticity and unitarity.

Doubts concerning the uniform polynomial bound assumption have
been expressed‘by Cerulus and Martin,l and by Mandelstam himself.
Martin2 was éble to include the possibility of Regge cuts when the

L
leading branch point in the J-plane does not increase faster than t2

'
as the momentum transfer +t increases. Recent experiments,5 howvever,
suggest thaf»Regge trajectories could increase 1ineaf1y with t. If
this trend persits, then the assumptions made by Cerulus and Martin,l
and by Mar'tin2 céuld be too strong.

We shall show that the assumptions of meximal analyticity of

the first degree and fixed-t power behavior do indeed imply a lower

bound at fixed angle. The fixed-angle-lower bound (FAIB) takes the

fornm exp[—cy(zs) s/ logs], where 7 is a positive constant and
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Cy(zs) is a positive definite function. The precise value of the
constant 7 depends on the specific aséumptions on the fixed-t bound
1 of thé scattering amplitude. In terms of the Regge pole hypbthesis,
the FALR aepends on the behavior of the leading singularity in the
J-plane as a function of t. We show that the result of Cerﬁlus and
Martin (C-M) ié & special cése of this general resuit. Furthermore,

we improve the lower bound atb z, = O, which heretocfcore was given to

be zero.l"j

In Sectioﬁ IT, we set ub our mathematical problem and prove a
theorem which will be used repeatedly. We shall see that‘the FALR is
closely connected to an angle emax which determines a>domain in the
t-plane within which the fixed-t polynomial bound is assumed. We shall
reduce the pfoblem Tormally to that of a theory satisfying uniform‘
vfixed—t rolynomial bound assumption, where the range of interaction
depends on the energy. In Section III; we shall exhibit a potential
model with its domain for polynomial bound enlarged as compared to the
domain assumed by C-M; cnsequently thet the FALB obtained is higher then
that of C-M. - In Section IV, we consider relativistic scattering
amplitudes. We discuss the additional:éonstraint of simultaneous
unitérity in all channels. We show that the C-M result is consistent
with this constraint, but is by no means the most general one. 1In
particular, we shos thst fora linear Regge trajectory, the best FALR we
can obtain is 'exp[—cl(zs) s logs). We shall make some concluding

remarks in Section V.
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TI. .A MATHEMATTCAI, THEORFM
We nowvshow‘how’the assuﬁption‘of fixea—t pbWer behavior
implies a FALB fér a scattering ampiitude; Conéider an analytic
function T(s,t) of two complex variables. Let T(s,t) be analytic
in .t with a branch point at to' on:thé positive rgal axis. If

T(s,t) has fixed-t power behavior in s, we can define a function

N(t) = lin (log |T(s,t)]/ 10gs). @)

The function N(t) is a real-valued continuous function on the complex

SN(t) at large s, vhere ¢ is a

t-plane. We assune lT(s,t)l < c
large positive constant. We shall show that the specific behavior of
this function N(t) will determine a FALB for the function f(s,zs) =
T(s,t), with z_ =1 +2t/(s-k). :

First, we need a lemma, which is a generalized version of a

theorem proved by Cerulus and Martin.l

Lemma (Cerulus-Martin Theorem):

Let ~g(s,w) be an analytic function of the real variable s
and the complex variable w , such that, at large s,

1) g(s,w) is analytic in w with a branch point at Wy =

1+ ozl/(s-h)gy, @ >0, 7 >0;
N

2) Jlg(s,w)| <s° for we D, where D 1is a finite domaih in the

w-plane (to be specified in the proof);

3) loglg(s,1)] = o (o, logs), @, <N and finite.



b
Then, |g(s,w)| > exp[—cy(w)syulogs],.for s sufficiently large, and
-o0 < w <1, where the real function cy(w) is positive definite in

this interval. . (See the appendix for the proof.)

We cannot apply this lemma to our function 'f(s,zs) directly,
by identifying the variable w with Z g beczuse condition 2) of the

lemma is in general not satisfied. We can, however, make an appropriate

change of variable so that this lemma becomes applicable.. Let us

first define a new variable &

i

r expli(n - 8)] = t - to and

write N(t) as N(t). Denote by © the biggest angle for which

max

N(¢) 1is bounded by some constant N., whenever ¢ lies to the left

OJ

of two lines €, 1in the ¢-plane, Ei = r expli(n £
In this sector of the ¢-plane, subtended by an angle of 2 emax’ the
N L

function T(s,t) is bounded by s O, The desired transformation is

emax)], ggr < .

the one which maps this sector onto a plane. On this new complex
plane, we can apply the above lemma and obtain a FALB.

We define‘
) 2y 2y
w = -(p - Zs) + (p - 1) +1, (11.2)

where 7 = ﬁ/éemax’ and p = 1 + 2to/(s - k); and we use f(s,w)

to represent f[S,zs(s,w)]. In the w-plane, f(s,w) is bounded by
g . '
s O, and it is analytic ewept frabranch point at

vy = 1+ (o - 127 - 14 (eto)?7/(s - L), | (11.3)
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Now we apply the lemma, assuming the condition 3) is satisfied by

f(s,w), and obtain
|#(s,w)] > expl-c, (v) s” 1ogs]. (11.14)

Since w(s,zc). = 1 - (1 - 28)27 + O(s~27), we immediately obtain a
FALB for f‘(s,zs).-

Theorem:

1r |7(s,t)| g C sN(t) and T(s,t) has the singuwlarity

structures described above, then f(s,zs) has a FAIB, i.e.,
_lf(s,zs)l >Ac'vexp[—c;(zs) s/ logs], for -m < z <1, (11.5)

vhere 7 = mﬂ29max,

Thus the asymptotic lower bound at a fixed angle derived here

is connected to assumptions on the domain specified by emax' The
usually assumed polynomial bound corresponds to emax = gn. In that
case, O = }~, and we obtain the C-M result. But in'general, the

2

angle emax will not be equal tQ n. For a theory with a finite

range of interaction, to% is a constant (it is the in?erse of the.
range.) It corresponds to a singularity in zs-plane, located at the
point p = 1 + [Eto/(s - h)]. This point p .approaches Zs = 1

as l/s when s 1is large. If we make an analogy with a problem in
which w 1is the cosine of the scatteying anzle, we see from Eq. (II.3)
that the range of the interaction has an energy dependence (s~h)7—l/2.
In this new tleory, the scatiering amplitude satisifes a uniform fixved-t

polynomial bound.
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Martin? has subsequently abandoned the assumption of a uniform
polynomiai bound, and rederived the C-M result under a somewhat
different assumption. His "nevw'" assumption requires that the function

N(t) 1|2
, N(t) = o(|t|?). This weaker assumption

T(s,t) be bounded by s
might still be too strong. Recent experiments seem to suggest the
power N(t) gréws 1ineariy with . However, we can make use of his
.mathematical method and derive éur theorem with a relaxed condition.
The angle 6y Can now be the biggest angle 50 that N(&) = o(!glé)
in the se;tor defined by this angle emax.
In the next section, we shall exhibit a potential model Where
emax > and fhe correéponding FALB derived is higher than that of

C-M. In Section IV, we shall see that for a linear trajectory the angle

emax will be ﬁ/é. Hénce the FALB will be lower than that of C-M.
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ITI. A POTENTIAL MODEL"

The existence of the Mandelstam represehﬁatién has been pfoved
_ férAa certain class of potentials.6‘ Through the work Ovaegge,7 we
also-know that the scattering amplitude has fixed-t poﬁer behavior due
to the existence of t-~channel Regge poles. The uniform polynomial
bound, required by the Mandélstam representation, puls a restricticn
on the possible positioh of a t-channel Regge pole. ILet the scattering
amplitude A(s,t) . be bounded by !S,N; ‘The power N hés the physical
interpretation of being the "maximum" angular momentum ak t-channel Regge
pole can have,'as can be seen easily from the Froissart-Gribov amplitude
@ |
. [ (
a(t,2) = g D (s,t) @, {1+ m) ds . (111.1)
o0

Since the discdntinuity funétion Ds(s,t) is also bounded by the same
power, Eq. (III.1) defines an analytic funétion of £, regular Tor
Re(£) >N, for all t on the t-channel physical sheet. Since a
Regge pole arises from the divergence of the integral in'Eq. (I11.1),
it follows that no Regge pole éan move to the right of the liﬁe
Re(£) = N for all t on the fir;t sheet. The angle -6 defined
in the last section will then be at least as large as =n. Using the
Theorem of Section II, we see that the FAILR of the scattering amplitude
is exp[-c%(zs) s2 logs]. This is exactly the Cerulus-Martin result.

If the angle emax is bigger than =, the corresponding FALB

will be bigger than that of C-M. If a(t,£) is also regular on the
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second sheet of the $-plane, for Re(Z) > N, the double spectral
function p(s,t) will also be bounded by"sN, for all t, This
follows from the faét that the discontinuity of a(t,2) across its

elastic cut is given by

[e.e]

—

(21) J! o(s,6) @, (0 + £5) as . (171.3)
s(t)

Now we cen use a disﬁersion relation to find Dt(s,t), and Dt(s,t) is also
bounded by SN in the same reéion vhere p(s,t) is bounded. Since
(Ei) Dy (s,t) is the difference of the scattering amplitude A(s,
betwaen the first and the second t sheets, the angle emax is now
possibly bigger than .

For potentials sufficiently "ama:l;yt:ic,"8 all poles of af(t,£)
move‘towardé the negative qt2 -axis on the secoﬁd sheet where Re(4)
is large. For this;class of potentials, smax. cén be as large as

2% - €. We apply our theorem of Section IT and obtain a FALB
exp| /M(Z ) sl/( -€ loos} _ (111.3)

We can generalize this method to include_ahy finite numnber of channels,
and obtain a FALB higher tﬁan that of C-M.

Additional considerationslnyetobé made.for relativistic
problems. As we shall see,that there are iniinitelzhmany multiparticle

channels opening as t increases, and their existence i1s probavly what
is responsible for the ever-rising Regge trajectory.9 If the leading
Regge trajectcry increases too fast, the FALB will be considerably lower

than that of C-M.
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IV.  POWER BEHAVIOR AT FIXED-MOMENTUM TRANSFFR AND FIXED-ANGLE LOWER BOUND
In a relativisﬁic thedry, the séattering amplitude A(s,t) is the

sum of two analytic functions A(t)(s,t) and 'A(u)[s,u(s,t)], defined by

82 1
; s _D_t(S;t )

A(t)(s,t) == / -—-_E'r——-:*{:‘- - dt
tO
: P D (s,u')
A(u)[s,u(s,t)] = % Jf ET%"E(ETE7' du' - (1v.1)
u, : ,
with
A(s,t) = A(t)(s,t) + A<u)[$,u(s,t)] and  u + s+t = b,

Both A(t)(s,t) and A(u)(s,u) have the same singwlarity strﬁcture

in s as does A(s,t), and both have right hand cuts in the }t and u
planes respectively. For potential scatiering, the complete scattering
amplitude A(s,t) is just A(t)(s,t). Here.wé are interested in the
behavior of _A(s,t) wﬁen s goes to infinity while keeping Zg fixed,
where zs is the cosine.of the s-channel center of.mass scattering angle.

Let us define

f(s,zs) % Als,t),. f(t)(s,zs) = A(t)(s,zs), and f(u)(s,zs) = Als;u(s, t)]

ot 2u ' .
where z, = l+m = -1 - pas : (1v.2)
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We shall find lower bounds for f(t)(s,zs) and ~f(u)(s,zé) as s

becomes large (while keeping Zg fixed) from our knowledge of the

() ana AW,

asymptotic behavioré >of A
Itbdoes not follow immediately that the lower bounds for f(t)

and f(u) should also bé lower bounds for the full amplitude f(s,zs),

because canceilétionlo might occur betveen bf(t) and f(u). We think' |

such cancellations are unlikely and shall assume that thgy occur only

at isolated points of It then follows that the 5igger of these

Z .
S
two lower bounds for f(t) and f(u) is the best lower bound obtained

for averaged functions. For instance, define

. zS+A
F(s,zs) = % f f(s,x) dx, A > 0. (1v.3)
Z .
S

If- A 1is not too small, we immediately have a lower béund for F(s,zs)
in both energy and z dependénce. From this point on, we shall discuss
only - fﬁ»(s,zs), (and drop the subscript) for simplicity.

,The FALB of A(s,t) can now be found in exactly the same
fashion as that for potential models. 1In the Regge theory, the function
N(t) would be the value of the real coordinate'of the rightmost
sihgularity in the jt-plane at a given t. Because of s-channel
unitarity, the Froissart bound™  tells us that N(t) < 1, for
-0 £ tg0. It also follows from unitarity that'® N(0) < N(t) g2 for

0<t g tO’ where t is the lowest t-channel singularity. The value

0

of N(t) for an arbitrary t 1is, in general, not kncwm. Tn most model
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theories,13 N(t) is bounded for the whble complex t-plane,.as was
shovn in the example in the preceding section. However, all these
models could-ﬂot incorporate simultaneous unitarity in-all channe%s.
It is a well-known fact that a finite number of normal'threshold
singularities in one channel is inconsistent with unitaritybin the
cross~channel. As discussed in Ref. 9, the existence of infinitely
many multiparticle channels may havelthe effect of producing e?er-
rising Regge frajectories. If this is the case, N(t) will not be
bounded as ltl -> oo;

Applying the theorem of Section II, we obtain a lower bound for
f(s,zs), | |

lf(s,zs)l'z. exp[—cy(zs) 7 logs], where Y = ﬁ/éemax.(IV.h)

The existence of infinitely many multiparticle channels also limits the
angle emax to less than ﬁ.lh Wheﬂ emax = 1, Qe obtain the C-M
lower bound. 1In this sense, the C-M lower bound is the best possible
lower bound for f(s,zs) consistent with s-channel unitarity.l5
We can easily see that the FALB of f(s,zs) can. be considerably
vlower than that of C-M. In particular, if a Regge trajectory increases
linearly with ¢, emaxl will be wn/2. It'then follows that the FALB of
f(s,zs) is

exp[-cl(zs) s logs]. ‘ - (1v.5)
In general, the FALRB will be
7 1 '. |
exp[—cy(zs) s’ logsl, 5<7 <m. (1v.6)

We note16 that this bound is true for all zZg between 1 and -1,

including the point z_ = O. (Numerical form for Cy is given in Ref. 17.)
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V. CONCLUDING REMARKS

We have seen-that there is a'connecfion betweeﬁ the asymptotic
behaviors of the scattering amplitude A(s,f) in difféfént aéymptotic
régioﬁs. It is not clear at the present if the asymptofic condifions
of the S-matrix are determined by axioms of maximal'analyticity of the
first degree. The postulate of second degree maximal analyticity is
intended to.fill this gap. It is neVerthéless encouraging to know that
the knowledge of fixed-t asymptotic behavior, which can be obtained from
thesecond degree maximal analyticity, implies certain constraints on
the fixed-angle behavior, whether the former is simply a consequence of
basic S-matrix axioms or not.

The conjecture of ever—fising Regge trajectory might sound |
alarming at first. It will nct allow us té write down a double-spectral.
representation in the form originally proposed by Mandelstam. This
worry is really an ill-founded one. Unitarity in all channels and
simultaneous analyticity in s and t can give definite meaning té
the Mandelstam representation through énalytic continuation.18 All
singularitieévof scattering amplitudes are dynamically determined. The
ever-rising-Regge-trajectory model is definitely a qualified candidate
to satisfy all these requirements.

It is interesting that both the energy dependence and the angular
dependence of the pp cross section data at large angle are compatiblel7

2

Unfortunately, the data are not sufficient to make a meaningful test on

wiﬁh the form of our lower bound for eiﬁher Y = ; or ¥y = 1.
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the minimal interaction hypothesis. Should the scattering amplitude at
large angle indeed c0incidevwiﬁh the lower bquﬁd amplitude, the situa-
tion will be quite pﬁzzling, siﬁce there are other general requirements
notvused/in our derivation of the resulfs. 8o it 1s still possible
that the fixed-angle behavior is of the form proposed by Martin and by
Kinoshita, with 7 = % , whereas the lower bound will.decrease faster.

Consideration of analyticity_in the s~channel: might, however, raise

the lower bound obﬁained here.
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APPENDIX

Proof of the Lemma (Cerulus-Mertin Theorem):

The original C-M theorem was given in Ref. 1, and vas subsequently
clarified by 7. Kinoshita in Ref. 3. We shall not repeat their results
and refer interested readers to Ref. 3 for details. We shall only

oint out the major modifications riecessar" Tor our proof.
J
a

(1) g(s,v) has a branch ‘point at w. = 1 + ———£-*—~,
. ’ O (S_).]_)gy
0 <7 < oo, vwhereas the actual scattering amplitude has a branch point
'2to
in 2z -plane at 1 + 7——¢ .,
g Hane 6-5

(2) g(s,w) has no left-hand cut in w. Consequently, we do
" not have to restrict ourselves to mappings centered at w = O,

(3) For any point wb' on the real axis to the left of w = 1,
W o- W :

define w = T~:7£2 . If we consider g(s,v) as a function of s and

b : '

w, we see that g(s,w) has a branch point at

a./(1 - w )] a
w o= 1+ 1/ hi: = 1 4+ "1

(s - b)?7 (s - 177

. (A.1)

Q

(4) "Now we do precisely the same thing as C-M did. Using
'_the mappings of Refs. 1 and 3, centered at W = O,.and applying Hadamard's

three-circle theorem,l9 one obtains:

M, <M

1 (A.2)

(1 - £n r/fn R) {40 r/in R)
o \ _ \,

where
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o _
M, = s ¢ o o (A.3)
M, = o R ; | (A.4)
M o= exp [- ¢(w,;s)] = &(s,v) (A.5)
s@emF
Inr clw)eay); =, 4 \
B T R § | ——— (A.6)
Zn R (S _ )4-)7 <(S—ll-)27/
with y
: : = \1/2
st -k m @ - (2R)
and

Substituting Fgqs. (A.3), (A.4), (A.5), and (A.6) into (A.2), one has

o(w,s) S F(w, w.) (s - W) tn s, m<vw g1, (A7)
(N - a2) .
" where we have-introduced F(w, wb) = ——.
» o . c(w,wb)(Eéfl)2
(5) Define cy(w) = min [F(w,wb) -0 < w < w}. Putting

this back into Eq. (A.5), we obtain
le(s, )] 2 exp [-c, (1) (s - 4)7 in s].

(6) One can check that c, (w) 1is finite for all w, -o<w < 1.
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implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








