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ABSTRACT OF THE DISSERTATION

A Material Point Method for Elastoplasticity

with Ductile Fracture and Frictional Contact

by

Stephanie Wang

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2020

Professor Joseph M. Teran, Chair

Simulating physical materials with dynamic movements to photo-realistic resolution has

always been one of the most crucial and challenging topics in Computer Graphics. This

dissertation considers large-strain elastoplasticity theory applied to the low-to-medium stiff-

ness regime, with topological changes and codimensional objects incorporated. We introduce

improvements to the Material Point Method (MPM) for two particular objectives, simulat-

ing fracturing ductile materials and incorporation of MPM and Lagrangian Finite Element

Method (FEM).

Our first contribution, simulating ductile fracture, utilizes traditional particle-based MPM

[SSC13, SCS94] as well as the Lagrangian energy formulation of [JSS15] which uses a tetrahe-

dron mesh, rather than particle-based estimation of the deformation gradient and potential

energy. We model failure and fracture via elastoplasticity with damage. The material is

elastic until its deformation exceeds a Rankine or von Mises yield condition. At that point,

we use a softening model that shrinks the yield surface until it reaches the damage thresh-

old. Once damaged, the material Lamé coefficients are modified to represent failed material.
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This approach to simulating ductile fracture with MPM is successful, as MPM naturally

captures the topological changes coming from the fracture. However, rendering the crack

surfaces can be challenging. We design a novel visualization technique dedicated to ren-

dering the material’s boundary and its intersection with the evolving crack surfaces. Our

approach uses a simple and efficient element splitting strategy for tetrahedron meshes to

create crack surfaces. It employs an extrapolation technique based on the MPM simulation.

For traditional particle-based MPM, we use an initial Delaunay tetrahedralization to con-

nect randomly sampled MPM particles. Our visualization technique is a post-process and

can run after the MPM simulation for efficiency. We demonstrate our method with several

challenging simulations of ductile failure with considerable and persistent self-contact and

applications with thermomechanical models for baking and cooking.

Our second contribution, hybrid MPM–Lagrangian-FEM, aims to simulate elastic objects

like hair, rubber, and soft tissues. It utilizes a Lagrangian mesh for internal force computation

and a Eulerian grid for self-collision, as well as coupling with external materials. While recent

MPM techniques allow for natural simulation of hyperelastic materials represented with

Lagrangian meshes, they utilize an updated Lagrangian discretization and use the Eulerian

grid degrees of freedom to take variations of the potential energy. It often coarsens the

degrees of freedom of the Lagrangian mesh and can lead to artifacts. We develop a hybrid

approach that retains Lagrangian degrees of freedom while still allowing for natural coupling

with other materials simulated with traditional MPM, e.g., sand, snow, etc. Furthermore,

while recent MPM advances allow for resolution of frictional contact with codimensional

simulation of hyperelasticity, they do not generalize to the case of volumetric materials. We

show that our hybrid approach resolves these issues. We demonstrate the efficacy of our

technique with examples that involve elastic soft tissues coupled with kinematic skeletons,

extreme deformation, and coupling with various elastoplastic materials. Our approach also

naturally allows for two-way rigid body coupling.

iii



The dissertation of Stephanie Wang is approved.

Jeffrey D. Eldredge

Wotao Yin

Luminita Aura Vese

Joseph M. Teran, Committee Chair

University of California, Los Angeles

2020

iv
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CHAPTER 1

Introduction

1.1 Contributions

This dissertation consists of two major components: fracture and frictional contact, originally

developed in [WDG19b] and [HGG19], respectively. The key contributions are listed below:

1. Fracture

• To our knowledge, we are the first to create an MPM-compliant meshing technique

that admits texturing of the surface and provides a sharp finish for fracturing

objects. It provides comparable visual details for simulations with one-tenth of

the particle count.

• Our meshing technique works with any MPM simulations (for example, thermo-

mechanical models for baking).

• By design, a post-process meshing method saves computational resources as users

need not call the post-process unless the simulated results pass preliminary quality

tests.

• A particle-based MPM framework for simulating material fracture without requir-

ing quality mesh, which is often the bottleneck for mesh-based methods.

• A Lagrangian MPM framework for simulating material fracture, which prevents

numerical fracture.

2. Frictional Contact

1



• A novel method for two-way-coupling of MPM and Lagrangian FEM.

• Our approach also provides a new method for handling self-collision for La-

grangian FEM using an Eulerian grid.

• A plastic model for modeling the frictional contact between MPM particles and

Lagrangian meshes.

• A new approach for coupling rigid body objects with MPM materials using La-

grangian FEM

1.2 Dissertation overview

Chapter 2

We select and review parts of continuum mechanics that lead to the governing equations of

elastoplasticity. We cover Eulerian and Lagrangian dynamics, hyperelasticity, multiplicative

decomposition wand large-strain models, yield surfaces, and associative plastic projection.

We expect readers to have basic knowledge in mechanics, differential equations, and prefer-

ably some differential geometry and convex analysis to follow the derivation.

Chapter 3

We present our work in the simulation and visualization of ductile fracture from [WDG19b].

We begin by reviewing previous work that aims to solve the fracture problem with vari-

ous approaches. We discuss the particular elastoplastic model used to simulate fracturing

material and the numerical discretization used for computation. We then demonstrate the

visualization method, consisting of three processes—processing the topology, smoothing the

crack surface, and extrapolating positions for additional vertices. We provide extensive ex-

amples (e.g. Figure 3.1, 3.3, etc) for our method.

2



We also supply several results from [DHW19] to show the versatility of our mesh-processing

technique developed for fracture (e.g. Figure 3.19, etc).

Chapter 4

We present our work with the hybrid MPM for frictional contact with diverse materials

from [HGG19]. We provide a detailed explanation of our integrated simulation engine that

combines MPM and Lagrangian FEM. We use quadrature particles sampled on the boundary

of the meshed objects to achieve two-way-coupling. Detailed explanation of the modeling

of frictional contact and impulse exchange are provided in Section 4.4.4 and Section 4.5.3.

We then discuss the two-way-coupling with rigid body and traditional MPM. We provide

extensive examples (e.g. Figure 4.1, 4.2, etc) for our method.

3



CHAPTER 2

Continuum Mechanics

Continuum mechanics is the foundation of all governing equations this dissertation concerns.

The Material Point Method itself is a hybrid Eulerian and Lagrangian numerical solver, and

the hybrid MPM–Lagrangian-FEM requires Lagrangian dynamics as well. We go over the

derivation of hyperelasticity in both Eulerian and Lagrangian view in Section 2.1 and 2.2.

Some of the material in this chapter has been published in [WDG19a].

2.1 Eulerian dynamics

We follow mostly [Tao18] to derive the continuity equation and Cauchy’s momentum equa-

tion while carefully identifying the physical laws and mathematical assumptions behind them.

Although these assumptions apply to most cases studied in this dissertation, it is essential

to note that other different types of material often agree with most of these assumptions

except a few.

In this section, we work with the Eulerian view—the mathematical functions used to approx-

imate physical quantities are defined on the set of deformed space. We will further clarify

the distinction between Eulerian and Lagrangian views in section 2.2.

4



2.1.1 Newton’s laws

Consider a set of N particles {P (a)}Na=1 moving in space-time R×R3. Each of them has mass

m(a) > 0 and a trajectory x(a) : R → R3. (We do not consider the scenario where the mass

of particles changes with time.) The force each particle experiences at time t is denoted as

F(a)(t) ∈ R3. We invoke the first physical law,

Newton’s Second Law

F = ma. (2.1)

This gives the equation of motion,

m(a)ẍ(a)(t) = F(a)(t). (2.2)

Here the double dot denotes the second time-derivative.

Assuming forces are additive, we separately consider the external force (e.g. gravity)

and internal force (force induced by interaction amongst particles {P (a)}Na=1),

F(a) = F
(a)
ext + F

(a)
int. (2.3)

Assuming only pair-wise interactions are significant, that is, neglecting the interac-

tion between, say, triplets (P (a), P (b), P (c)) or more, we can write down the force decomposi-

tion,

F(a) = F
(a)
ext +

N∑
b=1

F(ab), (2.4)

where F(ab) denotes the interaction force exerted on P (a) by P (b). The following two laws

can come in handy.

5



Newton’s First Law

F(aa) = 0. (2.5)

Newton’s Third Law

F(ab) = −F(ba). (2.6)

The equation of motion is now

m(a)ẍ(a)(t) = F
(a)
ext +

∑
b:b 6=a

F(ab). (2.7)

From Newton’s third law (2.6), we can deduce that the total (linear) momentum of the

system L(t) =
N∑
a=1

m(a)ẋ(a)(t) remains constant if there’s no external force.

d

dt
L(t) =

d

dt

(
N∑
a=1

m(a)ẋ(a)(t)

)

=
N∑
a=1

m(a)ẍ(a)(t)

=
N∑
a=1

∑
b:b 6=a

F(ab)

=
∑
a,b:a<b

F(ab) +
∑
a,b:b<a

F(ab)

=
∑
a,b:a<b

(F(ab) − F(ab)) = 0.

Another assumption we make is that the interaction force F(ab) must be parallel to the

displacement x(a) − x(b), or,

Vanishing torque

(x(a) − x(b)) ∧ F(ab) = 0. (2.8)

6



We can show that the total angular momentum of the system J(t) =
N∑
a=1

m(a)x(a) ∧ ẋ(a)

remains constant if there’s no external force.

d

dt
J(t) =

d

dt

(
N∑
a=1

m(a)x(a) ∧ ẋ(a)

)

=
N∑
a=1

m(a)
(
ẋ(a) ∧ ẋ(a) + x(a) ∧ ẍ(a)

)
=

N∑
a=1

x(a) ∧ (m(a)ẍ(a))

=
N∑
a=1

x(a) ∧

(∑
b:b 6=a

F(ab)

)

=
∑
a,b:a<b

x(a) ∧ F(ab) +
∑
a,b:b<a

x(b) ∧ F(ab)

=
∑
a,b:a<b

(x(a) − x(b)) ∧ F(ab) = 0.

Note the above definition is the angular momentum with regard to the origin x = 0. By

the following formula we can deduce that the angular momentum with regard to any other

anchor point xanchor also remains constant if there’s no external force.

J(t; xanchor) =
N∑
a=1

m(a)(x(a) − xanchor) ∧ ẋ(a)

=
N∑
a=1

m(a)x(a) ∧ ẋ(a) − xanchor ∧

(
N∑
a=1

m(a)ẋ(a)

)
= J(t)− xanchor ∧ L(t).

2.1.2 Continuity equation

As the number of particles N approaches infinity (or more precisely, the number of particles

per unit volume is comparable to Avagadro’s constant), it is worth considering mathematical

functions defined on the continuum that approximate the physical quantities of interests. The

two most important physical quantities of a moving body are mass and velocity (momentum).
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The discrete measure of the mass distribution is given by

µmass(t) =
N∑
a=1

m(a)δx(a)(t). (2.9)

The discrete measure of the momentum distribution is given by

µmomentum(t) =
N∑
a=1

m(a)ẋ(a)(t)δx(a)(t). (2.10)

We assume there exists a function ρ : R× R3 → R+ that approximates µmass, that is,

µmass(t) ≈ ρ(t,x)dL(x), (2.11)

where dL denotes the Lebesgue measure of R3. This approximation is articulated by testing

with smooth, compactly-supported functions,

∀ψ ∈ C∞c (R× R3),

∫
R

N∑
a=1

m(a)ψ(t,x(a)(t))dt ≈
∫
R

∫
R3

ρ(t,x)ψ(t,x)dxdt. (2.12)

An immediate result is that the total mass of the system remains constant over time,

d

dt

∫
R
ρ(t,x)dx =

d

dt

(
N∑
a=1

m(a)

)
= 0. (2.13)

We also assume there exists a function u : R× R3 → R3 that approximates velocity,

that is,

µmomentum(t) =
N∑
a=1

m(a)ẋ(a)(t)δx(a)(t) ≈ ρ(t,x)u(t,x)dL(x). (2.14)

This is similarly articulated by

∀ψ ∈ C∞c (R×R3),

∫
R

N∑
a=1

m(a)ẋ(a)(t)ψ(t,x(a)(t))dt ≈
∫
R

∫
R3

ρ(t,x)u(t,x)ψ(t,x)dxdt. (2.15)

Note that any smoothness of u : R × R3 → R3 would assume that particles in proximity

must have similar velocity. Boltzmann equation also aims to describe moving particles but

does not build on this assumption. It focuses on stochastic behavior, which is not concerned

in this dissertation.
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For ψ ∈ C∞c (R× R3), due to its compact support (in time), we always have∫
R

d

dt

∫
R3

ψ(t,x(a)(t))dµmass(t)(x)dt = 0 =

∫
R

d

dt

N∑
a=1

m(a)ψ(t,x(a)(t))dt. (2.16)

If we focus on a single particle a ∈ {1, · · · , N}, viewing ψ(t,x(a)(t)) as a function in time,

d

dt
ψ(t,x(a)(t)) =

∂ψ

∂t
(t,x(a)(t)) +

∂ψ

∂x
(t,x(a)(t)) · d

dt
x(a)(t)

= (∂t + u · ∂x)ψ(t,x(a)(t)). (2.17)

The combination Dt := ∂t + u · ∂x is called the material derivative. The fact that µmass(t)

are made out of delta measures concentrating on moving positions {x(a)(t)}Na=1 rewrites the

seemingly harmless equation (2.16),

0 =

∫
R

d

dt

N∑
a=1

m(a)ψ(t,x(a)(t))dt

=

∫
R

N∑
a=1

m(a) d

dt
ψ(t,x(a)(t))dt

=

∫
R

N∑
a=1

m(a)(∂t + u · ∂x)ψ(t,x(a)(t))dt (by (2.17))

=

∫
R

∫
R3

ρ(t,x)(∂t + u · ∂x)ψ(t,x)dxdt (mass approximation (2.11))

=

∫
R

∫
R3

ψ(t,x)(−∂tρ−∇x · (ρu))(t,x)dxdt.

Since the test function ψ is arbitrary, we conclude that

∂tρ+∇x · (ρu) = 0. (2.18)

This is called the continuity equation. As we can see, this is merely a result from assuming

that ρ and u approximate mass and velocity, respectively.
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2.1.3 Cauchy’s momentum equation and Cauchy’s stress tensor σ

Using the same thought as in (2.16) with µmomentum, we get∫
R

d

dt

∫
R3

ψ(t,x(a)(t))dµmomentum(t)(x)dt = 0 =

∫
R

d

dt

N∑
a=1

m(a)ẋ(a)(t)ψ(t,x(a)(t))dt. (2.19)

Expand the right-hand-side and invoke the equation of motion (2.2),

d

dt

(
ẋ(a)(t)ψ(t,x(a)(t))

)
= m(a)ẍ(a)(t)ψ(t,x(a)(t)) +m(a)ẋ(a)(t)Dtψ(t,x(a)(t))

= F(a)(t)ψ(t,x(a)(t)) +m(a)(uDtψ)(t,x(a)(t)).

In particular, using the force decomposition in (2.7),

N∑
a=1

F(a)(t)ψ(t,x(a)(t)) =
N∑
a=1

F
(a)
ext(t)ψ(t,x(a)(t)) +

∑
a,b:a6=b

F(ab)(t)ψ(t,x(a)(t))

∑
a,b:a6=b

F(ab)(t)ψ(t,x(a)(t)) =
1

2

∑
a,b:a6=b

F(ab)(t)
(
ψ(t,x(a)(t))− ψ(t,x(b)(t))

)
=

1

2

∑
a,b:a6=b

F(ab)(t)
(
(x(a)(t)− x(b)(t)) · ∇xψ(t,x(a)(t)) +O(|x(a)(t)− x(b)(t)|2)

)
=

1

2

∑
a,b:a6=b

F(ab)(t)(x(a)(t)− x(b)(t)) · ∇xψ(t,x(a)(t))

+
1

2

∑
a,b:a6=b

F(ab)(t)O(|x(a)(t)− x(b)(t)|2).

We assume short-range interactions, that is, we assume force F(ab)(t) is only significant

for x(a)(t) very close to x(b)(t), thus we can discard the second term in the above equation.

10



We rewrite (2.19) with this approximation

0 =

∫
R

d

dt

N∑
a=1

m(a)ẋ(a)(t)ψ(t,x(a)(t))dt

=

∫
R

N∑
a=1

F(a)(t)ψ(t,x(a)(t))dt+

∫
R

N∑
a=1

m(a)(uDtψ)(t,x(a)(t))dt

=

∫
R

N∑
a=1

F(a)(t)ψ(t,x(a)(t))dt+

∫
R

∫
R3

ρ(t,x)(uDtψ)(t,x)dxdt

=

∫
R

N∑
a=1

F
(a)
ext(t)ψ(t,x(a)(t))dt+

∫
R

1

2

∑
a,b:a6=b

F(ab)(t)(x(a)(t)− x(b)(t)) · ∇xψ(t,x(a)(t))dt

+

∫
R

∫
R3

ρ(t,x)(uDtψ)(t,x)dxdt.

Define the stress tensor

Σ(a)(t) := −1

2

∑
b:b 6=a

F(ab)(t)(x(a)(t)− x(b)(t))T . (2.20)

Note that this is a second order tensor (a matrix), it takes vectors as input (displacement

x(a) − x(b)) and outputs vectors (force F(ab)). We will discuss more on tensors in section

2.2.2. We rewrite the equation with Σ(a),

0 =

∫
R

N∑
a=1

F
(a)
ext(t)ψ(t,x(a)(t))dt−

∫
R

N∑
a=1

Σ(a)(t)∇xψ(t,x(a)(t))dt

+

∫
R

∫
R3

ρ(t,x)(uDtψ)(t,x)dxdt.

Much like we assumed the existence of approximation ρ and u for discrete quantities like mass

and velocity, we assume there exists a matrix-valued function σ : R× R3 →M(3,R)

that approximates the stress tensor. We articulate this approximation by testing it

with compactly supported functions,

∀ψ ∈ C∞c (R× R3),

∫
R

N∑
a=1

Σ(a)(t)ψ(t,x(a)(t))dt ≈
∫
R

∫
R3

σ(t,x)ψ(t,x)dxdt. (2.21)
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We also assume there exists a function b : R× R3 → R3 that approximates the

external forces (body force) on the particles, that is,

∀ψ ∈ C∞c (R× R3),

∫
R

N∑
a=1

F
(a)
ext(t)ψ(t,x(a)(t))dt ≈

∫
R

∫
R3

b(t,x)ψ(t,x)dxdt. (2.22)

The most common type of body force is gravity, which is a constant function in time and

space b(t,x) ≡ g.

Finally, we summarize the above derivation

0 =

∫
R

N∑
a=1

F
(a)
ext(t)ψ(t,x(a)(t))dt−

∫
R

N∑
a=1

Σ(a)(t)∇xψ(t,x(a)(t))dt+

∫
R

∫
R3

ρ(t,x)(uDtψ)(t,x)dxdt

=

∫
R

∫
R3

b(t,x)ψ(t,x)dxdt−
∫
R

∫
R3

σ(t,x)∇xψ(t,x)dxdt+

∫
R

∫
R3

ρ(t,x)(uDtψ)(t,x)dxdt

=

∫
R

∫
R3

b(t,x)ψ(t,x)dxdt+

∫
R

∫
R3

∇x · σ(t,x)ψ(t,x)dxdt+

∫
R

∫
R3

D∗t (ρu)(t,x)ψ(t,x)dxdt.

Here D∗t denotes the adjoint of the material derivative Dt, that is∫
R

∫
R3

fDtψdxdt =

∫
R

∫
R3

(D∗t f)ψdxdt (2.23)

Using the Leibniz rule of Dt, we have that∫
R

∫
R3

D∗t (fg)ψ =

∫
R

∫
R3

fgDtψ

=

∫
R

∫
R3

f(Dt(gψ)− (Dtg)ψ)

=

∫
R

∫
R3

(D∗t f)gψ − f(Dtg)ψ

and D∗t (ρu) = (D∗t ρ)u− ρDtu. Here

D∗t ρ = −∂tρ+ u · ∇xρ = 0,

since D∗t ρ is exactly as in the continuity equation. Since the test function ψ is arbitrary, we

are now left with

ρDtu = ∇xσ + b. (2.24)

This is called the Cauchy’s momentum equation. We will reinterpret this equation with the

Lagrangian view in section 2.2.
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Remarks

Note that the introduction of a matrix-valued variable σ introduces 3 × 3 = 9 more un-

knowns. (The external force b is often coming from gravity.) The continuity equation and

Cauchy’s momentum equation alone make up 1 + 3 equations. We will need more physi-

cal insights to derive equations for σ. These equations are usually called the constitutive

equation. Nonetheless, we can use the vanishing torque assumption (2.8) (force is parallel to

displacement),

Σ(a)(t) = −1

2

∑
b:b6=a

F(ab)(t)(x(a)(t)− x(b)(t))T

= −1

2

∑
b:b6=a

f (ab)(t)(x(a)(t)− x(b)(t))(x(a)(t)− x(b)(t))T ,

to deduce that Σ(a) is always symmetric, so is its approximation σ. This reduces the number

of unknowns to 3 + 1 + (3 + 2 + 1) = 10.

2.2 Lagrangian dynamics

In the previous section, we derived two equations (continuity and Cauchy’s momentum) for

the evolution of mass and velocity by introducing the new variable stress tensor. Notice the

equations themselves do not require any knowledge of the material’s “resting state”, that is,

a canonical state of the material where no external force is applied and the material is not

moving. While the states in which the material is moving is often of interests (they are called

“equilibria”), the equilibrium in which no external force is present is especially important in

the analysis of elastoplastic materials. In this section and the sections after, we will consider

a time domain [0,∞) instead of R, and the material is at it’s resting configuration at time

t = 0.

Suppose the material consisting of the particles {P (a)}Na=1 occupies the spatial domain
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Ω0 ⊆ R3 at time 0. As particles travel along its trajectory x(a)(t) with time, the mate-

rial also changes its shape (and volume, too). For any given time t, we denote the spatial

domain where the material occupies as Ωt ⊆ R3.

The major distinction between Eulerian dynamics and Lagrangian dynamics is the difference

in the domain of the mathematical functions discussed. In Eulerian dynamics, for instance,

the velocity of the material is approximated by a velocity field function u : Ωt → R3 in ways

that

u(t,x(a)(t)) ≈ ẋ(a)(t).

In this section, we shall discuss a different mathematical function V : Ω0 → R3 that approx-

imates the material velocity in ways that

V(t,x(a)(0)) ≈ ẋ(a)(t).

For those who savvy differential geometry, the velocity function u : Ωt → TΩt = R3 here

is really a section in the tangent bundle. The notion TΩt helps draw a distinction between

the physical space Ωt and the tangent space TΩt. We borrow the language of differential

geometry sometimes only to help clarify the derivation. One does not need to know much

about differential geometry to proceed.

2.2.1 Flow map, deformation gradient, mass density, and velocity

Assume there exists a flow map φ : [0,∞)× Ω0 → R3 that represents the

trajectories of the particles, that is, provided time t and the particle initial position

x(a)(0),

φ(t,x(a)(0)) = x(a)(t). (2.25)

We introduce new symbol X(a) to denote the initial position x(a)(0), and x(a) to denote the

deformed position x(a)(t) when time t is implicitly specified. As such, we can write the flow
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Figure 2.1: Flow map.

map as

φ(t,X) = x. (2.26)

We also introduce a symbol F for the spatial derivative of the flow map,

F(t,X) :=
∂

∂X
φ(t,X). (2.27)

This is often called the deformation gradient. Notice that it is implicitly assumed that the

flow map φ is somewhat smooth — at least smooth enough to permit spatial deriva-

tive ∂
∂X
φ and time derivatives, ∂

∂t
φ and ∂2

∂t2
φ, as we will use in later discussion. The readers

should be aware that the regularity of the solutions to non-linear elasticity or non-linear

elastoplasticity remains an open problem. We don’t cover the discussion of regularity in this

dissertation.

The deformation gradient measures the local distortion of the material. It maps a tan-

gent vector dX ∈ TΩ0 to dx ∈ TΩt, or—for the differential geometry savvy readers—pulls

k-form ω ∈ Ωk(Ωt) back to φ∗tω ∈ Ωk(Ω0). To provide more intuition, consider the singular

value decomposition of F,

F = UΣVT . (2.28)

If the material is undergoing rigid motion, that is, φ(t,X) = R(t)(X−X0) + d(t) for some

base point X0 ∈ Ω0 , rotation R(t) ∈ SO(3) and translation d(t) = φ(t,X0) ∈ R3, then
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Figure 2.2: Deformation gradient.

F(t, ·) ≡ R(t) is simply the rotation and Σ = I. On the other hand, if Σ has an entry smaller

than 1, a local compression is taking place. Similarly, if Σ has an entry bigger than 1, a

local expansion is taking place. The determinant of F, denoted by J(t,X) := det(F(t,X)),

is usually called the Jacobian. With the singular value decomposition,

J = det(F)

= det(U) det(Σ) det(VT )

= det(Σ)

=
3∏
i=1

σi.

J is the product of the singular values of F, and amounts to the rate of local volume change

induced by the flow map φ(t, ·).

As articulated in (2.12), the Eulerian mass density ρ(t,x) was characterized by integrat-

ing with test function ψ ∈ C∞c (R × R3). The Lagrangian mass density function should be

defined in similar fashion. The discrete measure of the Lagrangian mass distribution is given

by

µLmass =
N∑
a=1

m(a)δX(a) . (2.29)

Note that unlike its Eulerian counterpart, this mass measure does not depend on time t, and is

used solely in Lagrangian coordinates Ω0. We assume there exists a function R : Ω0 → R+
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that approximates µLmass, that is,

µLmass ≈ R(X)dL(X). (2.30)

This approximation is similarly articulated by testing with smooth, compactly-supported

functions,

∀φ ∈ C∞c (Ω0),
N∑
a=1

m(a)φ(X(a)) ≈
∫

Ω0

R(X)φ(X)dX. (2.31)

This approximation itself is enough to provide some interesting insights. The Eulerian mass

density works by integrating ψ ∈ C∞c ([0,∞)×R3) on both space and time domain. However,

take a sequence of nascent delta function ηk → δt such that

lim
k→∞

∫ ∞
0

ηk(s)ψ(s,x)ds = ψ(t,x). (2.32)

Since ψk := ηkψ ∈ C∞c ([0,∞)× R3), we have∫ ∞
0

∫
Ωs

ηk(s)ψ(s,x)ρ(s,x)dxds ≈
∫ ∞

0

ηk(s)
N∑
a=1

m(a)ψ(s,x(a)(s))ds

Let k →∞, we get ∫
Ωt

ψ(t,x)ρ(t,x)dxdt ≈
N∑
a=1

m(a)ψ(t,x(a)(t)). (2.33)

This shows that the mass measure approximation works on single time slice Ωt as well. Now

since φ(t, ·) is a homeomorphism between Ω0 and Ωt, we consider the change of variable

formula using the Jacobian J = det(F),∫
Ω0

ψ(t,φ(t,X))R(X)dX ≈
N∑
a=1

m(a)ψ(t,φ(t,X(a)))

=
N∑
a=1

m(a)ψ(t,x(a)(t)))

≈
∫

Ωt

ψ(t,x)ρ(t,x)dx

=

∫
Ω0

ψ(t,φ(t,X))ρ(t,φ(t,X)) det

(
∂φ

∂X
(t,X)

)
dX

=

∫
Ω0

ψ(t,φ(t,X))ρ(t,φ(t,X))J(t,X)dX.
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Since ψ is arbitrary, the above equation is sometimes interpreted as

R(X) = ρ(t,φ(t,X))J(t,X). (2.34)

For those differential geometry savvy readers, this is a results due to that ρdL ∈ Ω3(Ωt) and

RdL = φ∗t (ρdL) ∈ Ω3(Ω0). (Ω0 and Ωt are 3-dimensional manifolds.) The Jacobian arises

naturally due to the pullback.

As one might wonder, in section 2.1 we assumed the existence of two functions, mass density ρ

and velocity u. What is velocity in Lagrangian view? We use the flow map φ approximation

(2.25) and take time derivative,

∂

∂t
φ(t,X(a)) = ẋ(a)(t) (2.35)

The momentum approximation (2.14) then becomes

ρ(t,x)u(t,x)dL(x) ≈
N∑
a=1

m(a)ẋ(a)(t)δx(a)(t) =
N∑
a=1

m(a)∂φ

∂t
(t,X(a))δφ(t,X(a)). (2.36)

And for ψ ∈ C∞c ([0,∞)× R3),∫ ∞
0

∫
Ωt

ψ(t,x)ρ(t,x)u(t,x)dxdt =

∫ ∞
0

N∑
a=1

m(a)∂φ

∂t
(t,X(a))ψ(t,φ(t,X(a)))dt (by (2.15))

≈
∫ ∞

0

∫
Ω0

R(X)
∂φ

∂t
(t,X)ψ(t,φ(t,X))dXdt (by (2.31))

By changing variable,∫ ∞
0

∫
Ωt

ψ(t,x)ρ(t,x)u(t,x)dxdt =

∫ ∞
0

∫
Ω0

ψ(t,φ(t,X))ρ(t,φ(t,X))u(t,φ(t,X))J(t,X)dXdt,

and letting ψ vary, we see that

R(X)
∂φ

∂t
(t,X) = ρ(t,φ(t,X))u(t,φ(t,X))J(t,X).

Combining this with (2.34), we finally arrive at this seemingly trivial fact,

∂φ

∂t
(t,X) = u(t,φ(t,X)). (2.37)

18



We sometimes denote V(t,X) := ∂φ
∂t

(t,X) for simplicity. The reason for an extensive proof

for ∂φ
∂t

= φ∗tu is the same as that for RdL = φ∗t (ρdL). Without careful arguments (or

unmatched expertise in differential geometry), we can’t make sure if the pullback is just a

function composition, or a Jacobian should emerge. One will see in later sections that more

complicated terms could emerge from pullbacks.

The absence of continuity equation

Note the continuity equation arises from the fact that µmass(t) ≈ ρ(t, ·)dL is time-dependent.

In the Lagrangian view, the mass density RdL is not time-dependent. One can think of the

continuity equation as intrinsically implied by the way Lagrangian functions are defined.

The same is however not true for Cauchy’s momentum equation. In section 2.2.3, we will

see an equivalent version of the Cauchy’s momentum equation in Lagrangian coordinates.

2.2.2 Tensors

In the discussion concerning continuum dynamics, we often focus on domains that are sim-

ply subsets of R3. In such a setting, the tangent space is isomorphic to R3 itself, and many

structural distinctions between a tangent vector and a point are lost. On top of it, the canon-

ical basis {e1, e2, e3} of R3 makes the change between Lagrangian and Eulerian coordinates

rather confusing. In this section, we set up a framework to analyze relationships between

Eulerian and Lagrangian functions.

Viewing our domain Ω as a 3-dimensional manifold (a topological space that is locally home-

omorphic to open subsets of R3). The tangent space of a point p ∈ Ω, denoted as TpΩ, is

the collection of infinitesimal curves in Ω passing through p. At the infinitesimal scale, each

curve boils down to its tangent vector at p. The collection of tangent spaces of all points in
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Ω is denoted as

TΩ :=
∐
p∈Ω

TpΩ (2.38)

A vector field is a function f that associates a tangent vector f(p) ∈ TpΩ for each point

p ∈ Ω. We can write it as

f : Ω→ TΩ,

f(p) ∈ TpΩ.
(2.39)

Or sometimes we denote it as f ∈ Γ(TΩ). One example of a vector filed is the velocity

field u : Ωt → TΩt. On the other hand, from the definition V(t,X) = ∂φ
∂t

(t,X), we can see

that each value V takes is the derivative of a curve moving in R3, an element of Tφ(t,X)Ωt.

The relation between an Eulerian function (e.g. u) and its Lagrangian counterpart (e.g. V)

is called pullback. Consider the flow map φ(t, ·) =: φt as a one-parameter family of maps

between manifolds Ω0 → Ωt. For a fixed time t, the Lagrangian velocity Vt = ut ◦ φt is the

pullback of the Eulerian velocity ut.

In later discussion, it benefits to consider push-forward as well, the reverse of pullback.

Denote the inverse of φt (as a one-parameter family of maps)

Υt := φ−1
t . (2.40)

This map satisfies

Υt(φt(X)) = X. (2.41)

Take partial derivative with regard to X, we get

∂Υ

∂x
(t,φt(X)) · ∂φ

∂X
(t,X) = I,

∂Υt

∂x
◦ φt =

(
∂φt
∂X

)−1

.
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Take partial derivative with regard to t, we get

∂Υ

∂t
(t,φt(X)) +

∂Υ

∂x
(t,φt(X)) · ∂φt

∂t
(t,X) = 0,

∂Υt

∂t
◦ φt = −

(
∂φt
∂X

)−1
∂φt
∂t

= −F−1V.

We will use these identities in the derivations to come.

2.2.3 Momentum and constitutive equation

The constitutive equation describes the relationship between stress and other state variables

of the material (e.g., velocity, velocity gradient, position, deformation gradient, etc.). In this

dissertation, we focus on the type of materials that are hyperelastic. Here is the definition

of elasticity.

Elasticity

The stress of an elastic material only depends on the current defor-

mation gradient of the same spot.

σ(t,φ(t,X)) = σ(F(t,X)). (2.42)

Hyperelasticity is a subclass of elasticity such that the work done by the stresses during a

deformation process is dependent only on the initial state at time t0 and the final configura-

tion at time t. We also call such material path-independent. See [BW08] for more motivation

and theories in mechanics. Materials of this type satisfy the least action principle, that is,

the material flow φ of time interval [0, T ] satisfies

φ = argmin

∫ T

0

∫
Ω0

1

2
R(X)

∣∣∣∣∂φ∂t (t,X)

∣∣∣∣2 − ψ( ∂φ∂X
(t,X)

)
dXdt. (2.43)

The integrand 1
2
R|V|2 − ψ(F) is often called the non-relativistic Lagrangian of the system.

Here ψ(F) is the elastic potential energy density. It is a material-dependent, and usually a

norm-like function. The integral of this energy density,

Ψ[φ] =

∫ T

0

∫
Ω0

ψ

(
∂φ

∂X
(t,X)

)
dXdt, (2.44)
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amounts to the total work done by the elasticity of the material from the initial to the current

position. Meanwhile, the other integral

K[φ] =

∫ T

0

∫
Ω0

1

2
R‖V|2dXdt, (2.45)

is called the total kinetic energy of the system.

Denote the objective of the minimization as

S[φ] :=

∫ T

0

∫
Ω0

1

2
R(t,X)

∣∣∣∣ ∂φ∂X
(t,X)

∣∣∣∣2 − ψ( ∂φ∂X
(t,X)

)
dXdt. (2.46)

Taking a variation with φε := φ+ εφ̃,

d

dε
S[φε; 0, T ]

∣∣∣∣
ε=0

=

∫ T

0

∫
Ω0

R
∂φ

∂t
· ∂φ̃
∂t
− ∂ψ

∂F

(
∂φ

∂X

)
:
∂φ̃

∂X
dXdt (2.47)

=

∫ T

0

∫
Ω0

−R∂
2φ

∂t2
· φ̃+∇X ·

(
∂ψ

∂F

(
∂φ

∂X

))
· φ̃dXdt

=

∫ T

0

∫
Ω0

(
−R∂

2φ

∂t2
+∇X ·

(
∂ψ

∂F

(
∂φ

∂X

)))
· φ̃dXdt.

Since φ̃ is arbitrary, we know the minimizer φ for (2.43) must satisfy the first order optimality

condition,

R
∂2φ

∂t2
−∇X ·

(
∂ψ

∂F

(
∂φ

∂X

))
= 0. (2.48)

This is the momentum equation in Lagrangian view, as we shall see. If one composite this

equation with the inverse flow map Υ : Ωt → Ω0, the left-hand side becomes(
R
∂2φ

∂t2

)
◦Υ = ρ(J ◦Υ)Dtu.

This is almost the left hand side of the Cauchy’s momentum equation (2.24) except differing

by a push-forward Jacobian J ◦Υ. Define the first Piola-Kirchhoff stress P,

P(t,X) :=
∂ψ

∂F
(F(t,X)). (2.49)

Consider the push-forward f̃ := φ̃ ◦Υ of the perturbation φ̃, or equivalently,

φ̃ = f̃ ◦ φ.
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By chain rule,

∂φ̃

∂X
=

(
∂ f̃

∂x
◦ φ

)
· ∂φ
∂X

.

We perform change of variables to (2.47), noting dX = (J ◦Υ)−1dx,

0 =

∫ T

0

∫
Ω0

R
∂φ

∂t
· ∂φ̃
∂t
−P :

∂φ̃

∂X
dXdt

=

∫ T

0

∫
Ωt

(
ρ(J ◦Υ)u ·Dtf̃ − (P ◦Υ) :

(
∂ f̃

∂x
·
(
∂φ

∂X
◦Υ

)))
(J ◦Υ)−1dxdt. (2.50)

The second term is made easier if one looks at matrix inner product as trace, and use its

cyclic rule,

A : B = tr(ATB); tr(ABC) = tr(CAB)

1

J ◦Υ
(P ◦Υ) :

(
∂ f̃

∂x
·
(
∂φ

∂X
◦Υ

))
=

1

J ◦Υ
tr

(
(P ◦Υ)T · ∂ f̃

∂x
·
(
∂φ

∂X
◦Υ

))

=
1

J ◦Υ
tr

((
∂φ

∂X
◦Υ

)
· (P ◦Υ)T · ∂ f̃

∂x

)

=
1

J ◦Υ

(
(P ◦Υ)

(
∂φ

∂X
◦Υ

)T)
:
∂ f̃

∂x

=

((
1

J
PFT

)
◦Υ

)
:
∂ f̃

∂x
.

Plug this back to (2.50),

0 =

∫ T

0

∫
Ωt

ρu ·Dtf̃ −
((

1

J
PFT

)
◦Υ

)
:
∂ f̃

∂x
dxdt

=

∫ T

0

∫
Ωt

−Dt(ρu) · f̃ +∇x ·
((

1

J
PFT

)
◦Υ

)
· f̃dxdt

=

∫ T

0

∫
Ωt

−ρDt(u) · f̃ +∇x ·
((

1

J
PFT

)
◦Υ

)
· f̃dxdt. (Dtρ = 0 by (2.18))

Since φ̃ is arbitrary, so is f̃ = φ̃ ◦Υ. We circled back to the Eulerian momentum equation,

ρDt(u)−∇x

((
1

J
PFT

)
◦Υ

)
= 0. (2.51)

23



We hence deduce the relation between the Cauchy’s stress σ and the first Piola Kirchhoff

stress P,

σ(t,x) =

(
1

J
PFT

)
(t,Υ(t,x)), (2.52)

or,

σ(t,φ(t,X)) =

(
1

J
PFT

)
(t,X) =

(
∂ψ

∂F
(F)cof(F)−1

)
(t,X). (2.53)

Remark

Near the end of Section 2.1, we had 1 + 3 equations and 3 + 1 + (3 + 2 + 1) unknowns. In

the Lagrangian view, once provided the elastic potential energy density ψ, we have 1 + 3

equations, and exactly 1 + 3 unknowns (the stress tensor as a variable is entirely determined

by F using ∂ψ
∂F

). In Section 2.3, we shall see that ψ can depend on additional variables for

plasticity, and it would affect φ,V through the Lagrangian momentum equation (2.48).

2.3 Plasticity

According to hyperelastic rule, since the elastic potential energy density is a norm-like func-

tion, its derivative P = ∂ψ
∂F

(F) is monotonically increasing function in F. As a result, the

stress can go to infinity (in norm) if the deformation gradient goes to infinity. However, most

material cannot exert infinite stress. Most materials, especially the ones prone to fracture,

undergoes a plastic phase where the stress stops corresponding to the increasing deformation

when it exceeds a certain threshold.

To analyze this behavior, we first introduce the multiplicative decomposition of deforma-

tion gradient,

F = FEFP . (2.54)

The plastic deformation gradient FP is an internal variable that records the permanent de-

formation due to the excess in stress. While the additive type of models is common in
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Figure 2.3: Plastic deformation.

engineering, it is only accurate up to small deformation. In graphics, we often concern

simulation in which the material undergoes massive deformation and rotation. We chose

multiplicative models as the theoretical foundation to accurately capture the deformation-

and rotation-full simulations presented in this dissertation. See Figure 2.3.

The elastic potential energy density now depends on both FE and FP , written as

ψ(FE,FP ). (2.55)

The stress tensor is then given by

P =
∂ψ

∂F
=

∂ψ

∂FE

:
∂FE

∂F
+

∂ψ

∂FP

:
∂FP

∂F

=
∂ψ

∂FE

F−TP + F−TE
∂ψ

∂FP

.

(2.56)
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In the discussion of plasticity, we use Kirchhoff stress to describe the stress threshold. It is

defined by

τ = Jσ = PFT . (2.57)

The constraint on stress is then given by

f(τ ) ≤ 0. (2.58)

The hypersurface {τ : f(τ ) = 0} is called yield surface, and we can rewrite the Lagrangian

minimization problem from least action principle,

minimize

∫ T

0

∫
Ω0

1

2
R|V|2 − ψ (FE,FP ) dXdt,

subject to f(τ ) ≤ 0.

(2.59)

At time t = 0, the value of FP is identity everywhere, representing a neutral initial state.

During the deformation process, the value FP changes whenever the stress reaches the yield

surface. It acts as the Lagrangian multiplier to “absorb” the excessive deformation, keeping

FE in the region such that the stress τ remains within the yield surface.

2.3.1 Rates of plastic flow

The rate of change of the plastic decomposition F = FEFP is

Ḟ = ḞEFP + FEḞP (2.60)

ḞE = ḞF−1
P − FEḞPF−1

P

ḞP = FE
−1Ḟ− FE

−1ḞEFP .

Furthermore, defining bE = FEFT
E as the elastic right Cauchy-Green strain and using Equa-

tions (2.60), we can see that

ḃE =
∂v

∂x
bE + bE

∂v

∂x

T

+ LvbE, (2.61)
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where

LvbE = FĊ−1
p FT = −FC−1

p ĊpC
−1
p FT = −FC−1

p ḞT
PFPC−1

p FT − FC−1
p FT

P ḞPC−1
p FT ,

(2.62)

and Cp = FT
PFP is the plastic left Cauchy-Green strain. It is convenient to use the notation

ḃE = ḃE|ḞP =0 + LvbE, ḃE|ḞP =0 =
∂v

∂x
bE + bE

∂v

∂x

T

. (2.63)

The elastic Hencky strain εE is defined as

εE =
1

2
log (bE) . (2.64)

See Section 2.3.4 for more details on functions defined this way. The rate of change of the

elastic Hencky strain is given by

ε̇E =
(

[B](bE) ◦ [ḃE]
)
kl

uk ⊗ ul (2.65)

where bE =
∑

i λ
E
i

2
ui⊗ui, εE =

∑
i log

(
λEi
)
ui⊗ui, [ḃE]ij = ui·

(
ḃEuj

)
are the components

of ḃE in the eigen basis and

[B](bE) =


1

2λ2E1

log(λE1)−log(λE2)

λ2E1−λ
2
E2

log(λE1)−log(λE3)

λ2E1−λ
2
E3

log(λE2)−log(λE1)

λ2E2−λ
2
E1

1
2λ2E2

log(λE2)−log(λE3)

λ2E2−λ
2
E3

log(λE3)−log(λE1)

λ2E3−λ
2
E1

log(λE3)−log(λE2)

λ2E3−λ
2
E2

1
2λ2E3

 . (2.66)

See Section 2.3.4 and Equation (2.94) for the derivation.

2.3.1.1 Energy dissipation and stress/rate pairs

The energy at time t of the material in B0 ⊆ Ω0 is

E(t;B0) =

∫
B0

R(X, 0)

2
|V(X, t)|22 dX +

∫
B0

ψ(FE(X, t),FP (X, t))dX. (2.67)

with P = ∂ψ
∂FE

(FE,FP )F−TP . To avoid confusion when changing variables, we denote R(X) =

R(X, 0) in this session to emphasize its Lagrangian nature. The rate of change of the energy

27



is

d

dt
E(t;B0) =

∫
B0

R(X, 0)V(X, t)A(X, t)dX +

∫
B0

∂ψ

∂FE

(FE(X, t),FP (X, t)) : ḞE(X, t)dX

+

∫
B0

∂ψ

∂FP

(FE(X, t),FP (X, t)) : ḞP (X, t)dX. (2.68)

The second term can be reduced to∫
B0

∂ψ

∂FE

(FE,FP ) : ḞEdX =

∫
B0

∂ψ

∂FE

(FE,FP ) :
(
ḞF−1

P − FEḞPF−1
P

)
dX

=

∫
B0

(
∂ψ

∂FE

(FE,FP )F−TP

)
: Ḟ−

(
FT
E

∂ψ

∂FE

(FE,FP )F−TP

)
: (ḞP )dX

=

∫
B0

P :
∂V

∂X
−
(
FT
EP
)

: ḞPdX

=

∫
∂B0

V · (PN) ds(X)−
∫
B0

V ·
(
∇X ·P

)
+
(
FT
EP
)

: ḞPdX.

Using R(X, 0)A(X, t) = (∇X ·P)(X, t) with Equation (2.68) gives

d

dt
E(t;B0) =

∫
∂B0

V · (PN) ds(X)−
∫
B0

(
FT
EP
)

: ḞPdX (2.69)

+

∫
B0

∂ψ

∂FP

(FE,FP ) : ḞPdX.

Note that P = ∂ψ
∂FE

(FE,FP )F−TP ,
(
FT
EP
)

: ḞP =
(
FT
E

∂ψ
∂FE

(FE,FP )
)

:
(
ḞPF−1

P

)
. The term

LP = ḞPF−1
P (2.70)

is called the plastic velocity gradient. Using this we can write the change in energy as

d

dt
E(t;B0) =

∫
∂B0

V · (PN) ds(X)−
∫
B0

ME : LPdX (2.71)

+

∫
B0

∂ψ

∂FP

(FE,FP ) : ḞPdX.

where we define the Mendel stress ME as

ME = FT
E

∂ψ

∂FE

(FE,FP ). (2.72)

The term
∫
∂B0 V · (PN) ds(X) is the rate of work done on B0 at time t via contact with

material external to the region.
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2.3.1.2 Isotropy

We assume the energy density is isotropic , that is, ψ(FE,FP ) is of the form

ψ(FE,FP ) = ψ̂(I(FE), II(FE), III(FE)). (2.73)

Then we have

∂ψ

∂FE

(FE,FP ) = αFE + βbEFE + γF−TE

τ = PFT =
∂ψ

∂FE

(FE,FP )F−TP FT = αbE + βbE
2 + γI.

Note that τ and bE as well as τ and bE
−1 commute in this case

bEτ = bEτ , bE
−1τ = τbE

−1. (2.74)

We can rewrite the plastic dissipation in terms of τ since

ME : LP = τ :
(
FEḞPF−1

)
. (2.75)

Using the definitions in Equations (2.61) and (2.62) and

LvbEb−1
E = −FEF−TP ḞT

PF−1
E − FEḞPF−1, (2.76)

we can conclude that in the case of isotropic energy density,

τ :
(
LvbEb−1

E

)
= −τ :

(
FEF−TP ḞT

PF−1
E

)
− τ :

(
FEḞPF−1

)
= −tr

(
τFEF−TP ḞT

PF−1
E

)
− τ :

(
FEḞPF−1

)
= −tr

(
τFEFT

EF−TE F−TP ḞT
PF−1

E

)
− τ :

(
FEḞPF−1

)
= −tr

(
τbEF−T ḞT

PF−1
E

)
− τ :

(
FEḞPF−1

)
= −tr

(
bEτF−T ḞT

PF−1
E

)
− τ :

(
FEḞPF−1

)
= −tr

(
τF−T ḞT

PF−TE

)
− τ :

(
FEḞPF−1

)
= −2τ :

(
FEḞPF−1

)
. (2.77)
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2.3.1.3 Plastic dissipation rate without hardening

In summary, the rate of energy release due to plasticity (with no hardening) can be written

as ∫
B0

ẇp(X, t)dX, (2.78)

where

ẇp =
(
FT
EP
)

: ḞP = ME : Lp = −1

2
τ :
(
LvbEb−1

E

)
. (2.79)

The last equality only holds for isotropic energy density.

2.3.2 Associative

Assume we have no hardening, e.g. ψ̃(FE) = ψ̂(1
2

(
FE

TFE − I
)
), thus P = FE

∂ψ̂
∂EE (1

2

(
FE

TFE − I
)
)F−TP

and the Mendel stress ME satisfies

ME = FT
E

∂ψ

∂FE

= CE
∂ψ̂

∂EE
. (2.80)

If we choose LP such that

ME : LP ≥M∗ : LP (2.81)

for all admissible states of stress M∗, then

1. If M∗ = 0 is an admissible state of stress, then

d

dt
E(t;B0) ≤

∫
∂B0

V · (PN) ds(X) (2.82)

which says that the plasticity dissipates energy.

2. If the region of admissible M∗ is (a) convex and (b) defined via f(M∗) ≤ 0 then

LP ∈ ∂f(ME) satisfies Equation (2.81).

Similarly, if we choose −1
2
LvbEb−1

E ∈ ∂f we get an associative plastic flow when we write

the yield surface in terms of τ : f(τ ).
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2.3.2.1 Yield surface and plastic flow

We will have plastic flow ḞP 6= 0 when our stress is on the boundary of the feasible region,

and without plasticity we would leave the region. In the case of isoptropy and a yield surface

defined in terms of the Kirchhoff stress, then

LvbE = −2λ
∂f

∂τ
(τ )bE, (2.83)

where

• If f(τ ) < 0 or f(τ ) = 0 and α ≤ 0, then λ = 0.

• Otherwise if, f(τ ) = 0 and α > 0, then λ = α
β

where

α =
∂f

∂τ
:
∂τ

∂bE
: ḃE|ḞP =0, β = 2

∂f

∂τ
:
∂τ

∂bE
:

(
∂f

∂τ
(τ )bE

)
. (2.84)

2.3.2.2 Isoptropic yield surface

Assume the yield surface function f : Sym(3,R)→ R is isotropic, that is, f(VτVT ) =

f(τ ) for all rotations V. Then as discussed in Section 2.3.4.2, we can write f(τ ) =

f̂(τ1, τ2, τ3) where τ =
∑

i τiui ⊗ ui and ∂f
∂τ

(τ ) =
∑

i
∂f̂
∂τi

ui ⊗ ui. Therefore since τ and

bE have the same eigenvectors

∂f

∂τ
(τ )bE =

∑
i

∂f̂

∂τi
λ2
Eiui ⊗ ui. (2.85)

Furthermore using the properties of isotropic energy density,

β = 2
∑
i,j

∂f̂

∂τi
C̃ij(bE)

∂f̂

∂τj
λ2
Ej (2.86)

where
∂τ

∂bE
(bE) :

(∑
j

σjuj ⊗ uj

)
=
∑
i,j

C̃ij(bE)σjui ⊗ ui

for arbitrary
∑

j σjuj ⊗ uj.

31



2.3.3 Hencky strain

If we define the elastic potential as a function of the Hencky strain as

ψ(FE,FP ) = µεE : εE +
λ

2
tr (εE)2 , (2.87)

then

τ = CεE = 2µεE + λtr (εE) I. (2.88)

This can be written in terms of the eigen basis of bE as

τ = CεE =
∑
i,j

Ĉij log
(
λEj
)
ui ⊗ ui (2.89)

with

[Ĉ] =


2µ+ λ λ λ

λ 2µ+ λ λ

λ λ 2µ+ λ

 .

2.3.3.1 Yield surface and plastic rate of change

With this energy density, the rate of change of the elastic Hencky strain has the favorable

property that its direction is simply related to the yield surface when it is written in terms

of εE. Specifically, α and β in Equation (2.84) can be written as

α =
∂f

∂τ
:
∂τ

∂εE
: ε̇E|ḞP =0, β = 2

∂f

∂τ
:
∂τ

∂εE
:

((
[B](bE) ◦ [

∂f

∂τ
(τ )bE]

)
kl

uk ⊗ ul

)
, (2.90)

and since ∂f
∂τ

(τ ) =
∑

i
∂f̂
∂τi

ui ⊗ ui and bE =
∑

i λ
2
Eiui ⊗ ui and

[
∂f

∂τ
(τ )bE]ij = ui ·

(
∂f

∂τ
(τ )bEuj

)
=


∂f̂
∂τi
λ2
Ei, i = j

0, otherwise

and [B](bE) from Equation (2.66), as well as ∂τ
∂εE

= C from Equation (2.89)

β = 2
∑
i,j

∂f̂

∂τi
Ĉij

∂f̂

∂τj
. (2.91)
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2.3.4 Appendix: eigen decomposition differentials

Consider the space of symmetric 3 × 3 matrices R3×3
sym, thus SS ∈ R3×3

sym have eigen decom-

positions, SS = VΛVT for some orthogonal V and diagonal Λ. We can define a class of

functions g : R3×3
sym → R3×3

sym that are inherited from scalar functions g : R→ R as

g(SS) = Vg(Λ)VT

where we use the notation

g(Λ) =


g(λ1)

g(λ2)

g(λ3)

 and Λ =


λ1

λ2

λ3

 .

We can derive the differentials of scalar inherited g using the expressions for the differ-

entials of the eigen decomposition of SS. The eigen decomposition of the symmetric matrix

SS can be thought of as a function over R3×3
sym: V : R3×3

sym → R3×3
orth and Λ : R3×3

sym → R3×3
diag, or

V(SS) and Λ(SS) to emphasize the dependent variable. By definition, we have the relation

δS = δVΛVT + VδΛVT + VΛδVT

and since VTV = I,

δVTV + VT δV = 0.

Using W = δVTV, we see that W is skew symmetric and that

VT δSV = WTΛ + δΛ + ΛW.

Since W is skew symmetric, it can be written as

W =


0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0
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and thus

VT δSV =


δλ1 −ω3(λ2 − λ1) ω2(λ3 − λ1)

−ω3(λ2 − λ1) δλ2 −ω1(λ3 − λ1)

ω2(λ3 − λ1) −ω1(λ3 − λ2) δλ3

 . (2.92)

Thus denoting A = VT δSV, we have the expressions

ω1 = − a32

λ3 − λ2

, ω2 =
a31

λ3 − λ1

, ω3 = − a21

λ2 − λ1

, and δλi = aii, i = 1, 2, 3

Similar to the eigen decomposition

VT δgV = WTg(Λ) + δg(Λ) + g(Λ)W

where

δg(Λ) =


g′(λ1)δλ1

g′(λ2)δλ2

g′(λ3)δλ3

 .

Thus,

VT δgV =


g′(λ1)a11

g(λ2)−g(λ1)
λ2−λ1 a21

g(λ3)−g(λ1)
λ3−λ1 a31

g(λ2)−g(λ1)
λ2−λ1 a21 g′(λ2)a22

g(λ3)−g(λ2)
λ3−λ2 a32

g(λ3)−g(λ1)
λ3−λ1 a31

g(λ3)−g(λ2)
λ3−λ2 a32 g′(λ3)a33


and

δg = V


g′(λ1)a11

g(λ2)−g(λ1)
λ2−λ1 a21

g(λ3)−g(λ1)
λ3−λ1 a31

g(λ2)−g(λ1)
λ2−λ1 a21 g′(λ2)a22

g(λ3)−g(λ2)
λ3−λ2 a32

g(λ3)−g(λ1)
λ3−λ1 a31

g(λ3)−g(λ2)
λ3−λ2 a32 g′(λ3)a33

VT .

We can rewrite this in terms of the matrix

B =


g′(λ1) g(λ2)−g(λ1)

λ2−λ1
g(λ3)−g(λ1)
λ3−λ1

g(λ2)−g(λ1)
λ2−λ1 g′(λ2) g(λ3)−g(λ2)

λ3−λ2
g(λ3)−g(λ1)
λ3−λ1

g(λ3)−g(λ2)
λ3−λ2 g′(λ3)


using the Hadamard product (or entry-wise product) where the i, j entry of A ◦B is AijBij

(with no summation on the repeated indices). That is,

δg = V
(
B ◦

(
VT δSV

))
VT (2.93)
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2.3.4.1 Symmetric tensors

This result generalizes to functions over symmetric tensors. If g : V2
sym → V2

sym, then

δg = ([B](SS) ◦ [δSS])kl uk ⊗ ul (2.94)

where SS =
∑

i λiui × ui is the eigenvalue decomposition of SS. [δSS], [B](SS) ∈ R3×3

and [B](SS) ◦ [δSS] ∈ R3×3 is their Hadamard product. The entries in the matrix [δSS] are

[δSS]ij = ui · (δSSuj), i.e. it is the expression of δSS in the eigenbasis of SS. We would

assume the convention λ1 ≥ λ2 ≥ λ3 to make the mapping [B] :→ V2
sym well defined from

[B](SS) =


g′(λ1) g(λ2)−g(λ1)

λ2−λ1
g(λ3)−g(λ1)
λ3−λ1

g(λ2)−g(λ1)
λ2−λ1 g′(λ2) g(λ3)−g(λ2)

λ3−λ2
g(λ3)−g(λ1)
λ3−λ1

g(λ3)−g(λ2)
λ3−λ2 g′(λ3)

 .

2.3.4.2 Appendix: Scalar functions of symmetric tensors

Let f : V2
sym → R with f(SS) = f̂(λ1, λ2, λ3) = f̃(I(SS), II(SS), III(SS)) where

I(SS) = λ1 + λ2 + λ3, II(SS) = λ1λ2 + λ1λ3 + λ2λ3, III(SS) = λ1λ2λ3. (2.95)

Using Equation (2.92), we can conclude

δf =
∂f

∂SS
(SS) =

∑
i

∂f̂

∂λi
(λ1, λ2, λ3)δλi =

∑
i

∂f̂

∂λi
(λ1, λ2, λ3)ui · (δSSui)

Thus, the derivative is given by

∂f

∂SS
(SS) =

∑
i

∂f̂

∂λi
(λ1, λ2, λ3)ui ⊗ ui. (2.96)
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CHAPTER 3

Simulation and Visualization of Ductile Fracture

Figure 3.1: Montage. Left: Meshing an elastic wall shot by a projectile. Bottom: Breaking

a zucchini with brute force. Top: Twisting a cube until it breaks. Right: Ductile walls

fracture as a mannequin walks through.

3.1 Introduction

Ductile materials behave elastically until a yield stress condition is met, at which point

they yield plastically and at some point fail completely. Whether it be the distinctive pat-

terns exhibited while tearing a piece of fruit or twisted metal after a high-velocity impact,

the fracture and failure of ductile materials are ubiquitous and indispensable when creating

visually interesting virtual worlds for computer graphics applications. Indeed, some of the

earliest methods for simulating elasticity in computer graphics included treatment for tearing
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and failure of materials [TF88]. O’Brien et al. [OBH02] demonstrated that using the Fi-

nite Element Method (FEM) with continual domain remeshing after fracture events allowed

for a wide range of ductile behaviors and incredibly detailed simulations. Since this pio-

neering approach, many others have used FEM and remeshing to achieve similar behaviors

[MG04, MBF04, WTG09, WRK10]. Particle methods based on Smoothed Particle Hydrody-

namics (SPH) [GBB09, CWX13] and Moving Least Squares (MLS) [PKA05, MKN04] have

also been used with impressive effect, since their unstructured nature naturally allows for

topological change. Procedural approaches have also achieved good results when computa-

tional cost is limited [MHH07, Cho14, JML16].

The Material Point Method (MPM) is another unstructured particle technique that natu-

rally resolves topological changes and fracture, and also naturally accommodates elastoplastic

phenomena. Furthermore, a key advantage of MPM is that the hybrid Lagrangian/Eulerian

nature of the method naturally resolves collisions between fragments of material. These

aspects make MPM an ideal candidate for simulating fracture and failure of ductile materi-

als. However, while MPM naturally allows for topological changes, they can be difficult to

control. Particles are connected in the domain when they are in the support of the same

Eulerian grid node interpolating function. Particles that do not interact with the same grid

nodes in this way are decoupled. This is advantageous in that topology change requires no

special treatment; however, fracture is therefore a numerical error that is not influenced by

a material property but rather by discretization-related parameters like particle sampling

density and Eulerian grid resolution.

Numerical fracture can be addressed by utilizing particle resampling techniques as in

[YSB15] or by using the Lagrangian energy technique of Jiang et al. [JSS15] in which a

tetrahedron mesh is used to compute deformation gradients. This treatment naturally cou-

ples meshed objects with MPM-based materials, and also gives an automated treatment of

self-collision between meshed objects and other materials. However, in either the resampling
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Figure 3.2: Comparison of mesh visualization using twisted cube example. A cube

with 8,000 particles was twisted to fracture in the simulation. We render the results with

Houdini particle fluid surface (left) and our mesh visualization (right).

or Lagrangian energy approaches, an additional model must be provided to allow for fracture.

A second issue hindering MPM adoption for ductile fracture is largely common to all particle-

based techniques: defining and rendering material boundary surfaces in a visually sharp man-

ner is difficult. While particle-based simulation techniques naturally allow for topological

change, they generally have a more vague notion of material boundaries that complicates the

process of rendering. FEM and mesh-based techniques require more intervention (remesh-

ing) to resolve topological change, however in the process material boundaries are sharp and

well defined. This is important for preserving the surface of objects created by users, and

for transferring textures as the material fails.

The most common techniques for visualizing particle-based simulation data define the bound-

ary of the particle domain as the zero isocontour of a level set function, or as a threshold

value of a density function. This goes back to at least Blinn [Bli82]. Many other authors

have provided improvements on these techniques over the years, including sharper surface

resolution, reduction of noise and temporal coherence of surfaces, resolution of anisotropic

features, and many more [MCG03, ZB05, SSP07, APK07, YT13, ATW13, MCZ07, Mus14].

However, these types of techniques are much more appropriate for fluid simulations, and
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Figure 3.3: Hydraulic press. The orange is simulated with a meshed hollow sphere filled

with guts made by MPM particles.

cannot support initialization from a high-resolution textured input surface mesh without

complicated texture transfer at each frame, etc.

Surface tracking techniques can provide the desired preservation of sharp features and sur-

face details. These techniques have been used with great effect in simulations of fluid

[BB09, DBG14, M09, WTG10, YWT12] and viscoelastic materials [WTG09, DGP17]. These

approaches are extremely powerful, but computationally expensive. However, much of the

implementation and computational overhead is associated with material merging. Much

simpler techniques can be used if only splitting is required. Fracture of ductile materials

typically only involves failure without cohesive merging, so fully-general surface tracking

techniques are not necessary.

Pre-scoring-based surfacing approaches are generally more efficient than surface track-

ing, and can be used when merging is not needed. These techniques predefine the maximally

split configuration of the material, and only separation between components can occur. For

example, the virtual node algorithm of Molino et al. [MBF04] is a pre-scoring technique

where each vertex in a tetrahedron mesh represents a portion of the material in the elements

in its one ring. Choi [Cho14] use a pre-scoring approach for visualizing shape-matching-based

ductile fracture where each node is assigned material as a union of elements, gathered via
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Figure 3.4: Four columns braided to fracture.

K-means, from a tetrahedron mesh. Chen et al. [CZZ18] assign a single tetrahedron to each

particle by initializing particles at the barycenters of an input tetrahedron mesh. In these

techniques, material separation is introduced when connectivity between adjacent particle

regions is severed. Crack surfaces are then defined as a subset of the boundary of the maxi-

mally split configuration. Generally, pre-scoring techniques suffer from mesh-based aliasing,

since the crack paths must lie on the predefined maximally split configuration. Fracture

surfaces are usually much smoother than they will appear when the sampling bias in the

predefined maximally split configuration is imposed on the visualization.

We provide two options to remove the barriers preventing MPM adoption for ductile fracture

simulation in graphics applications. First, we provide an extension of the mesh based strat-

egy of Jiang et al. [JSS15] that removes numerical fracture and introduces failure through

the elastoplastic constitutive equations alone. Second, when traditional particle-based MPM

with numerical fracture suffices, we overcome limitations of existing surfacing strategies with

a pre-scoring approach. We note that our surfacing approach is a post-process that can be
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Figure 3.5: Four stiffer columns braided to fracture.

implemented on data generated from standard MPM simulations. In summary, our contri-

butions include:

• An elastoplasticity and damage model for ductile fracture that works easily with ex-

isting MPM code bases.

• A generalization of the Lagrangian energy approach of Jiang et al. [JSS15] for removing

numerical fracture with ductile materials.

• A novel particle surfacing technique that preserves input surface details like texture

and high-curvature regions, while removing mesh-based aliasing inherent in pre-scoring

surfacing strategies.

3.2 Previous work

Here we discuss works from the computer graphics and computational physics literature re-

lated to simulation of ductile fracture and visualization of particle-based simulation data.
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Figure 3.6: Twisting and Pulling. Four identical cubes of different resolution undergoing

twisting and pulling motions. From left to right: 60K, 17K, 8K, 4K particles.

Following the seminal approach of O’Brien et al. [OBH02], many authors have used FEM

simulation of elastoplasticity with continual domain remeshing for ductile fracture. Müller

et al. [MG04] use warped stiffness with a Rankine condition on the principal stress to de-

fine per-tetrahedron element fracture planes. Pfaff et al. [PNJ14] use an adaptive mesh to

simulate tearing and cracking of thin sheets. Parker and O’Brien [PO09] use the separation

tensor from [OH99] but split along element boundaries rather than cutting elements for the

sake of efficiency. Wicke et al. [WRK10] dynamically remesh tetrahedron meshes to allow

for efficient simulation of behaviors ranging from purely elastic to extremely plastic with

fracture. Other remeshing approaches include [BWH07, WT08, WTG09, BDW13]. Wicke

et al. [WBG07, KMB08] developed interpolating functions for convex polyhedral elements to

allow for easy splitting of elements in fracture simulations. Gissler et al. [GBT07] introduce

a notion of constraint sets for fracture simulation. Koschier et al. [KBT17] use XFEM and

improve the mass matrix treatment by integrating over partially empty enriched elements.

Zhang et al. [ZZS06] use tetrahedron mesh-based FEM with elastoplasticity driven damage,

element splitting (at damage threshold), and molecular dynamics for debris simulation.

Pauly et al. [PKA05] use a meshfree MLS approach to simulate elastoplastic ductile fracture

with Heaviside-enriched interpolating functions, as in the XFEM approaches of Belytschko
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[BCX03]. They create domain and crack boundary surfaces at render time using the surfels

approach in [PKK03, WTG04]. Müller et al. [MKN04] use a similar approach. Steineman

et al. [SOG09] use visibility graphs to further improve the modification of MLS interpolat-

ing functions in the presence of splitting and merging defined by explicitly tracked failure

surfaces. Gerszewski et al. [GBB09] also compute the deformation gradient in a weighted

least squares sense.

Other notable ductile fracture techniques include the peridynamics approach of Chen et

al. [CZZ18]. Bußler et al. [BDP17] visualize crack surfaces in peridynamics particle data by

computing Delaunay tetrahedralizations that respect height ridges in the damage field. Choi

[Cho14] uses shape-matching to simulate procedural ductile fracture. Ohta et al. [OKN09]

use an adaptive regular lattice with shape matching-based elasticity to simulate ductile frac-

ture. Jones et al. [JML16] simulate ductile fracture using shape matching.

Various approaches for ductile fracture with MPM exist in the computational physics lit-

erature. Wretborn et al. [WAM17] simulate fracture with MPM by pre-scoring materials

into pieces held together by massless particle constraints. They resolve collisions between

fragments by using the MPM N-body approach of [HZM11]. Nairn et al. [Nai03, GN06]

developed the CRAMP MPM technique for simulating velocity and displacement disconti-

nuities on the grid. Other MPM techniques utilize grid node duplication [DLC07]. They

then resolve frictional contact on the duplicated Eulerian grid nodes.

Surfacing particle-based simulation data is a long-standing problem. Most approaches define

the boundary of the particle domain as the zero isocontour of a level set function or as a

threshold value of a density function [Bli82, DC98, MCG03, ZB05, APK07, SSP07, Mus14].

Yu and Turk developed an anisotropic approach to more accurately capture sharp features

[YT13]. Bhattacharya et al. [BGB15] fit signed distance functions to particle data by mini-
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mizing a biharmonic thin shell energy over a surface constrained between interior and exte-

rior CSG surfaces, and support anisotropic capture of sharp features as in [YT13]. Williams

[Wil08] similarly solves the surfacing problem with a constrained minimization. Shen and

Shah [SS07] address temporal discontinuities by blending adjacent frames. Museth et al.

[MCZ07] incorporate a variety of post-processing techniques including temporal and spatial

anti-aliasing. Adams et al. [APK07] use a semi-Lagrangian contouring method similar to

that proposed by Bargteil et al. [BGO06]. Dagenais et al. [DGP17] improves and extends

surface tracking to retain surface details. Mercier et al. [MBT15] develop a post-process

approach for surfacing particle-based fluid simulation data. They create an up-res particle

surface using a generalization of the approach in [Wil08] and then apply a surface-only La-

grangian wave simulation to provide realistic, detailed motion.

Pre-scoring bodies into precomputed pieces is useful for simulation and visualization. Müller

et al. [MCK13] decompose objects into convex pieces and generate fracture patterns of space

using Voronoi diagrams. CSG operations are used to resolve the initial convex decomposi-

tion with the fracture patterns. Su et al. [SSF09] also fracture all of space to generate rigid

body fragment pieces for real time simulation of brittle fracture. Liu et al. [LHL11] also

pre-score the material along Voronoi boundaries to add user control over fracture patterns.

Schvartzman and Otaduy [SO14] use Voronoi-based pre-scoring of fracture boundaries with

rigid body simulation to simulate brittle fracture. Zheng and James [ZJ10] use the strain

energy density to adapt Voronoi fracture regions. Raghavachary [Rag02] defines fragments

in polygon meshes by splitting into Voronoi regions.

3.3 Mathematical models

We define the deformation of a continuum body as a map from its undeformed configuration

consisting of points X to its deformed configuration consisting of points x at time t by x(t) =
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Figure 3.7: Projectiles and thin walls. Shooting projectiles at ductile walls with 5.5K

(orange), 14K (yellow), 33K (blue), and 77K (red) particles.

Figure 3.8: Stretching armadillo. An armadillo stretched to fracture.
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Figure 3.9: Twisting armadillo. An armadillo twisted to fracture.

φ(X, t). We refer to the spatial derivative of this map as the deformation gradient F = ∂φ
∂X

and decompose it into elastic and plastic parts F = FEFP . Here FE is the elastic deformation

and FP is the plastic deformation associated with inelastic yielding at large stresses [BW08].

The potential energy in the system increases as FE deviates from orthogonality, meaning

that the motion from the plastic/damaged state is non-rigid. The governing equations for

the deformation mapping are derived from conservation of mass and momentum

Dρ

Dt
= −ρ∇ · v, (3.1)

ρ
Dv

Dt
= ∇ · σ + ρg, (3.2)

where σ denotes the Cauchy stress, g the gravity, and D
Dt

= ∂
∂t

+v ·∇ the material derivative.

46



Figure 3.10: Twisting with von Mises. Twisting cubes with different von Mises yield

surfaces. We use τC = E, (blue), 0.7E (cyan), and 0.5E, for Young’s modulus E.
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3.3.1 Elastic constitutive model

We use the isotropic hyperelastic potential energy density of [KGP16]. This model is

quadratic in elastic Hencky strain εE = 1
2

ln(FEFT
E),

ψ(FE) = µε : ε+
λ

2
tr(ε)2 = µ

3∑
i=1

ln(σEi )2 +
λ

2

(
3∑
i=1

ln(σEi )

)2

(3.3)

where FE = UEΣE(VE)T is the singular value decomposition of FE and σEi denote the

entries in ΣE. Here µ and λ are the Lamé coefficients which control the amount of resistance

to deformation and volume change. The Cauchy stress is defined in terms of the elastic

potential as

σ =
1

det(F)

∂ψ

∂FE

FE
T , (3.4)

∂ψ

∂FE
= UEΣE−1 (

2µ ln(ΣE) + λ ln(Σ)
)

(VE)T . (3.5)

This choice of potential energy is primarily for the sake of simplifying the return mapping

process (see [WDG19a]), as discussed in [KGP16, JGT17].

3.3.2 Plasticity

Ductile materials behave elastically until a critical stress is reached, at which point deforma-

tion becomes permanent and the material achieves a new local rest state. We express this

notion of critical stress in terms of a yield surface in stress space defined implicitly as y(σ) = 0

using a yield function y. When y(σ) < 0, the critical stress has not been achieved and the

material behaves elastically. When y(σ) = 0, the elastic limit is reached and the plastic

deformation defined via FP becomes non-trivial. Mathematically, we can view the dynamics

of FP as being chosen to satisfy the stress constraint y(σ) = 0 through its dependence on FE.

Although the Cauchy stress σ is more physically intuitive, the Kirchhoff stress τ = det(F)σ

is often more convenient when working with plasticity. It is particularly convenient for defin-
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Figure 3.11: Return mappins. Left: Rankine yield surface and its return mapping. Right:

von Mises yield surface and its return mapping.

ing the plastic deformation in a manner that is consistent with the second law of thermo-

dynamics and when enforcing the yield condition discretely during time stepping, a process

which is typically referred to as the return mapping (see [WDG19a]). Henceforth, we will

assume the yield surface is defined in terms of the Kirchhoff stress y(τ ).

3.3.2.1 Yield surface

We use two different yield surfaces to model different fracture modes. The Rankine yield

surface [And17] is given by

y(τ ) = max
‖u‖=‖v‖=1

uTτv − τC ≤ 0, (3.6)

where τC is a scalar parameter that represents the maximum allowed tensile strength, since

the expression max‖u‖=‖v‖=1 uTτv measures the tensile stress among all directions and cor-

responds to the largest eigenvalue of τ . Constraining the maximal tension in all directions

enables the material to go through mode I yielding, where permanent deformation is induced

in response to local tension.
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The von Mises yield surface given by

y(τ ) = ‖τ − tr(τ )I‖F − τC ≤ 0 (3.7)

provides plastic response to mode II and mode III shearing deformations by constraining the

deviatoric (shear) stress; here ‖A‖F =
√

A : A denotes the Frobenius norm. By combining

the two yield surfaces or using them independently, we can simulate a wide range of fractur-

ing and plastic materials.

In practice, the yield condition y(τ ) ≤ 0 is enforced per time step. In this process, the

trial strain (ε̃E) is mapped from a state whose corresponding stress violates the condition to

one whose corresponding stress is on the boundary of the yield surface (εE,n+1) in a process

referred to as the return mapping. We illustrate the different yield surfaces and the associa-

tive direction for return mappings in Figure 3.11. We provide detailed derivation in Section

3.3.2.2

3.3.2.2 Return mapping

A trial state of deformation F̃E is computed, assuming no plastic flow from time tn to

tn+1. With this assumption, the plastic deformation does not change over the time step,

so FP,n+1 = FP,n, and FE,n+1 = F̃E. However, if the yield condition is violated when τ is

computed from the trial deformation F̃E, then F̃E must be modified accordingly to satisfy

the constraint. This process is often referred to as the return mapping: F̃E → FE,n+1. There

are infinitely many ways that this can be done. We use associative plastic flow since it is

straightforward with our choice of hyperelastic potential, and guarantees no violation of the

second law of thermodynamics. See Section 2.3.2 for details.

Associativity requires that the projection of the stress be done in a direction equal to the
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elasticity tensor C = 2µI + λI ⊗ I times the normal to the yield surface ∂y
∂τ

. Here C is a

fourth-order tensor, I the fourth-order identity tensor, and I the second-order identity ten-

sor. This process can be described succinctly in terms of the trial and project elastic Hencky

strain as

ε̃E − εE,n+1 = δ
∂y

∂τ
(C : εE,n+1), (3.8)

where ε̃E = 1
2

ln(F̃E(F̃E)T ) is the trial elastic Hencky strain, εE,n+1 = 1
2

ln(FE,n+1(FE,n+1)T )

is the projected elastic Hencky strain, C : εE,n+1 = τ = λtr(εE,n+1)I + 2µεE,n+1 is the elas-

ticity tensor, and δ > 0 is a Lagrange multiplier chosen so that εE,n+1 is on the yield surface.

Due to our assumption of isotropy, the constraint in Equation (3.8) can be satisfied in

terms of the singular values of the elastic deformation gradient. Furthermore, the singular

vectors of the trial elastic strain do not change in the return mapping:

FE,n+1 = UEΣE,n+1(VE)T , F̃E = UEΣ̃
E

(VE)T . (3.9)

With this convention, the trial and projected Hencky strains and Kirchhoff stresses satisfy

ε̃E = UE ln Σ̃
E

(UE)T (3.10)

εE,n+1 = UE ln ΣE,n+1(UE)T (3.11)

and

τ̃E = UE
(
λtr(ln(Σ̃

E
))I + 2µ ln(Σ̃

E
)
)

(UE)T (3.12)

τE,n+1 = UE
(
λtr(ln(ΣE,n+1))I + 2µ ln(ΣE,n+1)

)
(UE)T , (3.13)

respectively.

The return mapping is completed as an operation on the eigenvalues ε̃E. For simplicity

of notation, we henceforth denote the eigenvalues of ε̃E and τ̃E by ε̂ and τ̂ = λ(1 · ε̂)1 + 2µε̂

respectively, where 1 is the vector of all ones. Furthermore, we refer to the eigenvalues of the
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projected εE,n+1 and τE,n+1 as proj(ε̂) and proj(τ̂ ) respectively. The process of satisfying

Equation (3.8) is, in the case of the Rankine yield condition,

• If λ1 · ε̂+ 2µε1 ≤ τC , no projection, proj(ε̂) = ε̂,

• If (2µ+ λ)ε2 + λ(1 · ε̂− ε1) ≤ τC < λ1 · ε̂+ 2µε1, proj(ε̂) =
(
τC−λ(1·ε̂−ε1)

2µ+λ
, ε2, ε3

)
,

• If (2µ+3λ)ε3 ≤ τC < (2µ+λ)ε2+λ(1·ε̂−ε1), proj(ε̂) =
(
τC−λ(1·ε̂−ε1−ε2)

2µ+2λ
, τC−λ(1·ε̂−ε1−ε2)

2µ+2λ
, ε3

)
,

• If τC < (2µ+ 3λ)ε3, proj(ε̂) = τC
2µ+3λ

1.

In the case of the von Mises yield condition, the projection is

• If |τ̂ − 1 · τ̂1| ≤ τC , no projection, proj(ε̂) = ε̂,

• If |τ̂ −1 · τ̂1| > τC , p = (τ̂ ·1)1
3
, d = τ̂ −p, proj(τ̂ ) = p+ τC

d
|d| , proj(ε̂) = Ĉ−1proj(τ̂ )

where

Ĉ =


2µ+ λ λ λ

λ 2µ+ λ λ

λ λ 2µ+ λ

 . (3.14)

After the projection has been done, the singular values of the time tn+1 elastic deformation

gradient are computed from ΣE,n+1 = exp(proj(ε̂)), which are used to construct the defor-

mation gradient as in Equation (3.9). Lastly, the time tn+1 plastic deformation gradient is

computed from FP,n+1 = (FE,n+1)−1Fn+1.

3.3.2.3 Softening and damage

As the material undergoes plastic deformation, we decrease τC to shrink the yield surface

towards the origin. This limits the strength of the material as smaller and smaller stresses

are admissible. For each projection ε̃E → εE,n+1 in the return mapping (see [WDG19a]), we

decrease τC by θ‖ε− proj(ε)‖F , where θ > 0 is a material constant that defines the rate of
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softening. When τC reaches zero, we model the material as completely damaged and set the

Lamé coefficients to zero.

3.4 Numerical method

We use MPM to discretize the governing equations and cover both standard particle-based

MPM as in [SCS94, SSC13] as well as the mesh-based Lagrangian energy techniques used to

prevent numerical fracture [JSS15]. In the Lagrangian energy case, we modify the approach

of Jiang et al. [JSS15] to include the effects of plasticity and damage.

In MPM, the discrete state consists of a collection of particles that partition the domain

based on initial volumes V 0
p , with time tn positions xnp and with masses mp computed from

the initial mass density as ρ(x0
p, t

0)V 0
p and linear and affine time velocities vnp , Cn

p used for

APIC particle/grid transfers [JSS15]. In the case of traditional particle-based MPM, each

particle additionally stores the elastic portion of the deformation gradient FE,n
p and yield

surface size τCp. In the case of mesh-based MPM, we assume there additionally exists a

tetrahedron mesh connecting the particles xnp . We use e to denote elements in the mesh and

store FE,n
e and τCe per tetrahedron element, rather than per particle. Furthermore, in the

mesh-based case, we must also store the plastic part of the deformation gradient FP,n
e .

An MPM time step from time tn to tn+1 typically consists of three steps: (1) mass (mp) and

momentum (mpv
n
p ) are transferred from particles to the grid using weights (wnip = N(xnp−xi))

defined by Eularian grid interpolating functions N(x) that describe the degree of interaction

between particle p and grid node i, (2) the grid momentum (mn
i v

n
i ) is then updated in a

variational way from the potential energy in the system, and finally (3) the motion of the grid

under the updated momentum is interpolated to the particles. In step (2), the discretiza-

tion is done differently in the cases of standard particle-based MPM versus the mesh-based
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approach. The difference lies in how the deformation gradient is computed. In the case

of standard particle-based MPM, the deformation gradient is stored per particle and is up-

dated using an updated Lagrangian view. With this assumption the deformation gradient

is computed as the product of the time tn deformation gradient Fn
p and the deformation of

the grid (evaluated at the particle) over the time step F̂n+1
p = (I + ∆t

∑
i v

n+1
i ∇wnip) where

∇wnip = ∂N
∂x

(xnp − xi) is the derivative of the grid interpolating functions. In the case of

mesh-based elasticity, the deformation gradient is computed using mesh connectivity as in

standard FEM [SB12, JSS15] Fn+1
e =

∑
p xn+1

p ∇Ñp(Xe) where Ñp(X) is the piecewise linear

interpolating function associated with particle p evaluated at the tetrahedron barycenter in

the initial configuration of the mesh. We summarize this below as

mn
i =

∑
p

wnipmp (3.15)

vni =
1

mn
i

∑
p

wnipmp(v
n
p + Cn

p (xi − xnp )) (3.16)

vn+1
i = vni +

dt

mn
i

fi + ∆tg (3.17)

xn+1
p = xnp + ∆t

∑
i

vn+1
i wnip (3.18)

vn+1
p =

∑
i

vn+1
i wnip (3.19)

C̃n+1
p =

12

∆x2(b+ 1)

∑
i

wnipv
n+1
i ⊗ (xi − xnp ) (3.20)

Cn+1
p = (1− ν) C̃n+1

p +
ν

2

(
C̃n+1
p − C̃n+1T

p

)
(3.21)

F̃E
e =

(∑
p

xn+1
p ∇Ñp(Xe)

)
(FP,n

e )−1 (3.22)

F̃E
p = (I + ∆t

∑
i

vn+1
i ∇wnip)FE,n

p (3.23)

FE,n+1
q = returnMap(F̃E

q ). (3.24)
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Here the transfer to grid in step (1) consists of Equations (3.15)-(3.16), the grid-based mo-

mentum update in step (2) consists of Equations (3.17)-(3.19) and the interpolation from

grid to particles in step (3) consists of Equations (3.19)-(3.21). This is using APIC transfers

[JSS15] for Equations (3.16) and (3.20) as well as the RPIC damping of [JGT17] in Equa-

tion (3.21) where ν controls the amount of damping. Note that in Equation (3.17), α = 0

corresponds to symplectic Euler for the grid momentum update and α = 1 corresponds to

backward Euler. Equations (3.22) and (3.23) represent the deformation gradient update

in the cases of mesh-based and standard MPM respectively. Equation (3.24) projects the

elastic state to satisfy the plasticity constraints. The equation is indexed by q to indicate

that it is either e for mesh-based or p for particle-based MPM.

In Equation (3.17), fi is the force on grid node i which is computed as the variation of

the total potential with respect to grid nodes moving as xi + ∆tvn+α
i , where α = 0 corre-

sponds to symplectic Euler and α = 1 corresponds to backward Euler time stepping. The

value varies based on the choice of mesh- or particle-based MPM as

fi =


∑

pw
n
ipfp(x

n+α) + ∆tg,

−
∑

p
∂ψ
∂FE (F̃E

p (x̃n+α))(FE,n
p )T∇wnipV 0

P + ∆tg
(3.25)

respectively, where xn+α ∈ R2nP is the vector consisting of all particle time tn+α positions

xn+α
p according to Equation (3.18). In the case of standard particle MPM, x̃n+α is the vector

of all Eulerian grid node positions, moved according to

xn+α
i =

 xi, α = 0

xi + ∆tvn+1
i , α = 1

(3.26)

In the case of mesh-based MPM, the particle force fp in Equation (3.25) is related to the

variation of the potential as estimated over the tetrahedron mesh, rather than the particles

fp =
∑
e

∂ψ

∂FE
(F̃E

e (xn+α))∇Ñ(Xe) (3.27)
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where F̃E
e (xn+α) is given by Equation (3.23).

3.5 Material surface definition and visualization

We provide a novel pre-scoring strategy for visualization of material boundary and crack

surfaces as a post-process for ductile fracture simulations. Our approach can easily be used

for most standalone MPM solvers. Our technique works with either traditional particle-based

MPM, or Lagrangian energy mesh-based MPM [JSS15]. In the case of mesh-based MPM,

we assume the user provides a tetrahedron mesh of quality suitable for FEM simulation

of elasticity. In the case of traditional particle-based MPM, we assume the user provides

interior points that are sampled with a Poisson disc, or similar initial random spacing. We

also assume that the user provides a triangulation of the boundary of the domain from which

the internal particles are sampled. The vertices of the boundary (triangle) mesh and the

randomly sampled interior particles are treated as MPM particles for simulation. If the

user does not provide a triangle mesh, we can generate one by surfacing the interior particles

using an existing technique like [YT13]. We assume that most users will define the boundary

of the initial domain for ductile materials using a triangle mesh, typically with texture etc.

and our approach is designed to preserve those details throughout the simulation. Once in

possession of the boundary triangle mesh and the interior particles, we create a Delaunay

tetrahedralization connecting the interior and boundary points and preserving triangles on

the original boundary.

3.5.1 Visualization mesh topology

With our initialization strategy, in either the traditional particle-based MPM or Lagrangian

energy mesh-based MPM cases, we can assume we have a tetrahedralization of the particles

used in the MPM calculation. The mesh is used to define a particle-wise partition of the

material domain. Each tetrahedron in the mesh is split into four cuboids, one for each of
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Figure 3.12: Mesh cutting. From left to right: 1: Initial simplex mesh (Delaunay or quality

mesh generated for Lagrangian simulation). 2: Particle core partitioning. 3: Identify failed

edges (marked red). 4: The corresponding partially split mesh to the set of failed edges in

3. 5: A different set of failed edges (marked red). 6: The corresponding split mesh to the

set of failed edges in 5.
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its particles. To create the particle-wise partitioning, each particle in the MPM calculation

receives a cuboid from each of the tetrahedron elements it belongs to. We note that this is

essentially the same as the per-particle cores of material used in the virtual node approach

of Molino et al. [MBF04]. We adopt this name and refer to the particle’s union of cuboids

as its core of the domain. With this convention, each particle is responsible for updating its

core over the course of the simulation.

The boundary of each particle core initially shares faces with cores of particles that it is

connected to in the tetrahedron mesh. We define material failure on a per-initial-tetrahedron-

mesh-edge basis. That is, common faces on cores of material associated with particles initially

connected in the tetrahedron mesh are treated as identical until material failure occurs. To

define material failure, we label core faces between particles connected along an edge in the

tetrahedron mesh as broken. We use a simple union-find data structure to manage the topo-

logical connectivity and create a hexahedron mesh that respects the failed core faces. To do

this we start with a mesh that is completely broken into the maximally split configuration

and merge unbroken faces using the union-find data structure. See Figure 3.12 for details.

One could use an element wise splitting strategy where core faces within a damaged element

are broken, but we found that this gave inferior results to this edge-wise criterion.

We manage all topological aspects of the material and crack surface visualization with this

simple strategy. Next we discuss our criteria for deciding when an edge (and its associated

core faces) are broken as well as the geometric aspects of the crack surface evolution.
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3.5.2 Topology evolution

We use a history-based maximal stretching criteria to define broken edges. We define the

maximum relative stretching of an edge for times before a given time t as

ζt = max
s<t

‖φ(X1, t)− φ(X2, t)‖
‖X1 −X2‖

. (3.28)

When this value is larger than a threshold, we consider the cores associated with X1 and X2

as separated from each other and break the edge connecting them. Note that if any edge is

broken at a given time t̂ it will be broken for all times t > t̂.

3.5.3 Visualization mesh geometry: extrapolation

Each particle is responsible for updating the geometry of its core. We do this with a simple

extrapolation strategy. We use a rigid transform local to each particle to extrapolate the

motion of the particle to the rest of its core. For each core vertex ynp associated with a

particle center xnp , we compute the time tn position as

ynp = Rn
p (y0

p − x0
p) + xnp , (3.29)

where Rn
p is the rotation associated with the simulated particle p at time tn. We use the

MPM grid velocity to update the local rotation matrix on each particle

Zn+1
p =

(
I +

∑
i

ṽni∇ωnip

)
Rn
p , (3.30)

Rn+1
p Sn+1

p = Zn+1
p . (3.31)

where the polar decomposition (Rn+1
p )TRn+1

p = I, Sn+1
p = (Sn+1

p )T is used to enforce orthog-

onality. This creates a rigid core translating and rotating with the particle. However, when

the vertices on the boundary of the core are associated with multiple cores, we take the

average of the extrapolated positions given by each core. This introduces visually realistic

deformation when material is not fully failed, while reverting to translation and rotation in
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Figure 3.13: Extrapolation. 1. Initial particle core partition. 2. Initial particle core

partition embedded in grid. 3. Velocity field defined on grid. 4. Particle cores positioned

and oriented by local rigid body transform. 5. Sewing connected cells. 6. Final deformed

fractured mesh.
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the event of a fully separated core.

The accuracy of the update in Equation (3.30) is affected by the particle sampling den-

sity. If the grid resolution is too high relative to the particle density, the update can be

noisy. For traditional particle-based MPM this is not an issue, however for Lagrangian en-

ergy MPM we found it advantageous to add traditional MPM particles in each element to

help resolve update in Equation (3.30). These particles are not used to compute forces until

their parent elements fail. In the event of failure, they function as standard elastic MPM

particles. See Figure 3.15 on the right for details.

3.5.4 Visualization mesh geometry: crack smoothing

There is considerable flexibility when defining the initial geometry of each particle core. The

geometry of the cuboid is most naturally chosen by setting its vertices as the edge, face

and tetrahedron centers. However, these points may be chosen anywhere in their respective

submanifolds. The only points on the cuboids without flexibility are those corresponding to

MPM particles (tetrahedron mesh vertices). We take advantage of this flexibility to remove

sampling based biasing in the crack paths. Note that the flexibility is only in the initial

geometry of the cuboids. Once set, they must always evolve according to the per-particle

extrapolation in Section §3.5.3.

A limitation of our pre-scoring visualization approach is that all possible crack paths are

determined from the initial particle partitioning of the domain. This will lead to sampling

bias of the crack surface in general. This tends to make the crack surfaces appear more jaggy

in the case of randomly sampled initial points. In the case of structured initial points, the

structure is imposed on the crack paths. In order to remove initial sampling bias, we itera-

tively smooth the crack surface in the initial configuration. Smoothing the surface tends to

remove sampling bias as is usually visible through regions of locally high curvature. Because
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Figure 3.14: Crack boundary curve smoothing. From left to right: 1: Identify broken

edges (red dashed line). 2: Identify boundary curve of the crack surface (purple solid line). 3-

4: Smooth crack boundary curve while remaining on the original boundary surface: triangle

centers move to average of neighbors, edge centers move to the intersection of its associated

edge and the path joined by its neighbors. 5: Crack boundary curve after one iteration of

smoothing.
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Figure 3.15: Crack smoothing and sampling extra particles. Left: original crack

surface (yellow), crack surface smoothed with 2 iterations (green), crack surface smoothed

with 20 iterations (cyan). Right: we sample extra particles in each quadrilateral/cuboid to

help reduce noise.

63



our visualization technique is a post-process, we can assume that we know the topology of

the crack surface at the final time from the condition in Section §3.5.2. We can therefore

smooth the entire surface in the initial configuration, as required.

The first step of our approach smoothes the intersection of the initial material boundary

surface and the crack surface. Care must be taken in this step to ensure that the boundary

crack curves remain on the initial boundary during the smoothing process. See Figure 3.14

for details. Next, we smooth the crack surface interior by assigning each vertex to the av-

erage of its neighbors while the curve processed in the first step remains unchanged. We

do this in a Gauss-Seidel fashion. Our approach quickly removes high-frequency noise while

preserving the general shape of the crack pattern.

3.6 Results

We demonstrate our ductile fracture simulation and surface visualization techniques with

a variety of simulations exhibiting a wide range of representative behaviors. We list our

computational performance and simulation details in Table 3.1. We note that in many of

our examples, remarkably detailed fracture patterns are produced with comparatively low

resolutions. This is advantageous because surfacing limitations often require simulations

with artificially high resolution in many MPM applications. Our results were run on an Intel

Xeon E5-2687W v4 with 48 threads. Time stepping was adaptively chosen according to the

CFL condition, i.e. ∆t was set so no particle travels more than a portion of a grid cell in each

time step. For particle-based MPM, the grid resolution was chosen so that there are initially

approximately six particles per grid cell. For Lagrangian energy MPM, the grid resolution

reflects the tetrahedron mesh resolution, i.e. grid ∆x was chosen roughly the same as the

average edge length of the tetrahedron mesh. In our examples, we used TetWild to generate

the tetrahedron mesh for Lagrangian MPM [HZG18].
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Simulation Post-process Resolution

Pull - MPM (Fig. 3.17 red and blue) 0.6 0.5 8K

Pull - Lagrangian (Fig. 3.17 green) 0.6 0.5 8K

Projectile - 77K (Fig. 3.7 red) 2 5 77K

Projectile - 33K (Fig. 3.7 blue) 0.9 2 33K

Projectile - 14K (Fig. 3.7 yellow) 0.4 0.7 14K

Projectile - 5.5K (Fig. 3.7 orange) 0.2 0.3 5.5K

Twist - 60K (Fig. 3.6 blue) 11 5 60K

Twist - 17K (Fig. 3.6 purple) 4 1 17K

Twist - 8K (Fig. 3.6 green) 2 0.4 8K

Twist - 4K (Fig. 3.6 red) 2 0.2 4K

Twist von Mises (Fig. 3.10) 11 4 60K

Pulling with angle - 60K (Fig. 3.6 blue) 11 5 60K

Pulling with angle - 17K (Fig. 3.6 purple) 8 1 17K

Pulling with angle - 8K (Fig. 3.6 green) 8 0.4 8K

Pulling with angle - 4K (Fig. 3.6 red) 5 0.2 4K

Braiding Columns (Fig. 3.4 and Fig. 3.5) 35 16 200K

Crushing Orange (Fig. 3.3) 15 8 130K

Zucchini (Fig. 3.1 bottom) 16 13 207K

Stretching Armadillo (Fig. 3.8) 49 27 299K

Tearing Armadillo (Fig. 3.9) 48 26 299K

Wall breaking (Fig. 3.1 right) 50 5 933K

Table 3.1: Performance of Ductile Fracture Simulations

All simulations and post-processes were run on an Intel Xeon E5-2687W v4 with 48 threads

and 128 GB of RAM. Simulation and post-process time are measured in averaged seconds

per frame, and resolution is measured by particle count.
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V2
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Figure 3.16: Voronoi versus Delaunay Given a point cloud and a boundary surface (V1),

its Voronoi diagram could be ill-posed where interior cell intersects the boundary (V2). If

we take the dual of the Voronoi diagram, its Delaunay triangulation (D1), we can construct

the degenerated Voronoi region (D2) without interior cell contacting the boundary.

Figure 3.17: Comparison of particle-based MPM and Lagrangian MPM. We illus-

trate our treatment of numerical fracture with three simulations using the same particles.

The red cube and blue cubes are simulated using traditional particle-based MPM with fine

grid resolution (approximately 1 particle per grid cell) and coarse grid resolution (approxi-

mately 6 particles per grid cell) respectively. The green cube is simulated with our Lagrangian

approach and fine grid resolution.
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3.6.1 Capturing different fracture modes

We test our method with fracture simulations in which excessive tension or shear force is

applied. In Figure 3.17, we simulate the process of pulling on a cube and demonstrate

how Lagrangian MPM prevents numerical fracture caused by excessive deformation. In

Figure 3.6, we twist and pull a cube until the shearing forces cause material failure and the

material becomes disconnected. In Figure 3.9, we pull the 4 limbs of the armadillo until they

break and observe how the fracture introduces momentum to the torso. In Figure 3.10, we

added the von Mises plasticity model to the particles to capture more shear-induced plastic

deformation.

3.6.2 Texturing objects

Our mesh visualization technique has the advantage that it naturally accommodates textur-

ing based on an input mesh. E.g. all particles from the initial mesh are in the cut mesh and

it is trivial to obtain a consistent vertex ordering based on the initial mesh for simplified

texturing. In Figure 3.1, we simulated a zucchini being broken in half and demonstrated that

its detailed texture is preserved. Also in Figure 3.1, we textured the ductile walls broken by

the walking mannequin with SCA logos. In Figure 3.3, we textured the ductile sphere and

created convincing details in the fracture scene.

3.6.3 Relaxed resolution requirements

In Figure 3.2, we simulated twisting of a cube with 8,000 particles. We compared two different

renders: conventional particle fluid surface reconstruction and our approach. Our result

captures significantly more detail and does not suffer from reconnection due to proximity.

We also provide similar resolution comparison in Figure 3.6, and Figure 3.7. With our

meshing technique, the results still look comparable even with comparatively low resolution.
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Figure 3.18: Effect of grid resolution on fracturing behavior. We compare the same

twisting cube simulation with different particle count and grid size. The sims with smaller

grid dx to particle count ratio experience more fracture than the ones with larger ratio in

the same frame.
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3.7 Discussion and limitations

Many existing FEM approaches for simulating ductile materials rely on the creation of a

sufficiently high quality tetrahedron mesh to be used in the simulation. In the case of

traditional particle based MPM, our mesh quality demands are practically non-existent.

Indeed we simply use Delaunay tetrahedralization. In the case of Lagrangian mesh-based

MPM our approach requires a mesh with the same quality constraints as traditional FEM. In

either case, the MPM conception of our approach automatically resolves self-collision allowing

us to simulate ductile fracture with comparably low implementation and computational

complexity. Our approach does have a number of clear limitations. First, crack patterns are

affected by particle sampling density/tetrahedron mesh topology and grid resolution. See

Figure 3.18. Also, choosing appropriate parameters for edge splitting thresholds and crack

surface smoothing iteration counts can vary from example to example.

3.8 Applications in visualizing thermomechanical simulations of

baking and cooking

In [DHW19], we proposed an MPM-based simulation method for baking bread, cookies,

pancakes, and similar materials that consist of dough or batter (mixtures of water, flour,

eggs, fat, sugar, and leavening agents). We used a novel thermomechanical model using

mixture theory to resolve interactions between individual water, gas, and dough species.

Heat transfer with thermal expansion is used to model thermal variations in material prop-

erties. Water-based mass transfer is resolved through the porous mixture, gas represents

carbon dioxide produced by leavening agents in the baking process and dough is modeled as

a viscoelastoplastic solid to represent its varied and complex rheological properties. Water

content in the mixture reduces during the baking process according to Fick’s Law which

contributes to drying and cracking of crust at the material boundary. Carbon dioxide gas
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Figure 3.19: Muffin. Left: baking of a tray of muffins, resulting in a classic dome shape on

top. Right: a muffin cut and torn open to reveal a fully cooked interior and melted chocolate

chips. Surfacing the muffin particles would result in a blurry finish. Our mesh-processing

technique helped show the crusty surface of the fractured muffin.

produced by leavening agents during baking creates internal pressure that causes rising. The

viscoelastoplastic model for the dough is temperature dependent and is used to model melt-

ing and solidification.

These simulations are particle-based from their MPM conception. However, for simulations

with fracture, we construct a reference tetrahedron mesh in the initial state for rendering

purposes and adopt the post-processing techniques from [WDG19b] to obtain clean and

consistent surfacing of the fractured material. The reference meshes are generated with

70



Figure 3.20: Tearing bread.

TetWild [HZG18]. We demonstrate crusty exterior and fibrous interior of the baked results

with tearing examples in Figure 3.19 and Figure 3.20. By modeling the combined effect of wa-

ter diffusion, temperature change, and chemical leavening, our method can achieve visually

realistic baking and tearing of a muffin, see Figure 3.19. Drawing slits on the bread dough

helps with the rising during baking as well as the formation of a nice crust. In Figure 3.21,

we compare the baking process of bread with and without scoring the surface beforehand.

Notice how the bread cracks in a more controlled and appealing manner when there are slits

on the surface.
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Figure 3.21: Bread. Top left shows raw dough, one is left intact and the other two have

different slits on top. When baked (right), the bread expands in size and the slits open up.

The bread without an initial slit also cracked on the top surface.
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CHAPTER 4

Hybrid Material Point Method for Frictional Contact

with Diverse Materials

4.1 Introduction

The Material Point Method (MPM) [SCS94] was developed as a generalization of the Particle-

In-Cell (PIC/FLIP) [Har64, BR86] method to elastoplastic materials, and like PIC/FLIP, it

has proven to be a very effective tool for many computer graphics problems. Phenomena like

fracture/topological change, multiple material interactions, and challenging self contact sce-

narios with complex geometric domains are all commonplace in computer graphics applica-

tions. MPM naturally handles many of these. This was first demonstrated for snow dynamics

by Stomakhin et al. [SSC13]. Since then a wide variety of other phenomena, particularly

those that can be described as elastoplastic, have been simulated with MPM in graphics ap-

plications. This includes the dynamics of non-Newtonian fluids and foams [YSB15, RGJ15],

melting [SSJ14, GTJ17], porous media [TGK17, GPH18, FBG18], and frictional contact

between granular materials [DB16, KGP16, YSC18]. MPM has also been used to simulate

contact and collision with volumetric elastic objects [JSS15, ZZL17] and frictional contact

between thin hyperelastic materials like clothing and hair [JGT17, GHF18, FBG18]. In this

paper, we refer to methods that follows Sulsky et al.’s original idea to use the updated La-

grangian view and grid interpolation functions to compute deformation as traditional MPM.

However, there are drawbacks associated with MPM collision resolution. As noted in
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Figure 4.1: Montage. Left: Simulation of a mannequin breaking through an elastic wall.

Middle: Hair of a dancer in motion. Right: Colored sand and elastic characters are poured

into a cabinet, setting rigid pinwheels in motion.

Figure 4.2: Coupling hair with snow. Our method captures the dynamics of a snowball

falling on a head of hair.
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[JSS15, FGG17, HN17], information is typically lost when transferring from particles to

grid, since there are generally many more particles than grid nodes. Even when utilizing

Lagrangian meshes in the updated Lagrangian view as in [JSS15, JGT17, GHF18, ZZL17]

information is still lost which can lead to persistent wrinkles and apparent interaction at

a distance, as discussed in [JGT17, GHF18]. Volumetric elastic materials suffer from two

additional drawbacks. First, while contact for materials such as grains [KGP16, DB16], mem-

branes/shells and fibers [JGT17, GHF18] can be envisioned as a continuum process where

elastoplasticity associated with frictional contact is defined by the directions orthogonal to

the grain, curve or surface, volumetric objects have no non-elastic directions for which to

apply the condition. Hence, all self-collision resolution will result from volumetric elasticity,

which means that frictional sliding cannot be regulated in a Coulomb fashion via plasticity.

The second drawback is that the Eulerian grid spacing must be approximately the same

as the edge lengths in the volumetric Lagrangian mesh. If the Eulerian grid resolution is

significantly lower, there is non-negligible information loss in the transfer from particles to

grid, and there will be spurious interaction at a distance. If the grid resolution is signifi-

cantly higher, collisions will not be resolved (see Figure 4.7). This is problematic because

visual separation between elastic bodies is proportionate to the Eulerian grid spacing, which

therefore mandates high spatial resolution of the volumetric Lagrangian mesh to reduce sep-

aration thickness. This problem is not present when simulating cloth and hair because they

admit the use of elastoplasticity frictional contact particles [JGT17, GHF18] and arbitrarily

many can be added on each surface element or hair segment to accommodate high spatial

grid resolution.

Our novel hybrid Lagrangian Material Point Method is designed to alleviate these draw-

backs. Our approach utilizes more of the Lagrangian degrees of freedom to minimize artifacts

while retaining aspects of MPM that allow for collision resolution without suffering from in-

formation loss when going from particles to grid. Our approach also resolves the Eulerian

grid size (and artificial separation distance) limitations associated with volumetric elastic-
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ity, allowing for Coulomb frictional contact with volumetric elastic meshes. We support

coupling with materials simulated with standard MPM discretizations and we provide for

simple two-way coupling with rigid bodies. We demonstrate the effectiveness of our tech-

niques with skinning, clothing, hair and multi-material simulation examples. In summary,

our contributions are:

• Novel collision impulses defined from the MPM particle to grid transfers that resolve

the drawbacks of the volumetric approaches in [JSS15, ZZL17].

• A hybrid elastoplastic model for hair and strand self collision that supports bending,

torsion and stretching resistance and that does not suffer from information loss in

particle to grid transfers.

• Two-way coupling with rigid bodies.

• Removal of numerical cohesion between phases.

• Coupling with materials discretized with traditional MPM.

4.2 Previous work

Our method fits most naturally within the context of PIC/MPM methods, but also with

hybrid approaches and those that make use of Lagrangian and Eulerian techniques for self

collision. Here we discuss the relevant computer graphics techniques within these categories.

McAdams et al. [MSW09] use a hybrid PIC/geometric impulse technique to resolve self

collision of many thin straight hairs. They assume that hair is incompressible and interpret

the PIC grid projection as a Lagrangian repulsion. They then apply the collision impulses of

Bridson et al. [BFA02] to catch cases not resolved on the grid. Yue et al. [YSC18] develop

a hybrid MPM/discrete element (DEM) technique. The DEM approach resolves frictional

contact directly through constrained optimization and is generally much more detailed, but
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Figure 4.3: Hair braids. Our method captures the dynamics of a braid by robustly resolving

many collisions.
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more expensive. MPM is used where the expense of DEM would be prohibitive, and their

technique resolves the combination of these two representations. Sifakis et al. [SSI07] also

use multiple representations of elastic materials to help resolve contact, including the use of

a high-resolution surface mesh to aid in collision resolution.

Pai and colleagues [LLJ11, FLL13, FLP14] pioneered a class of methods using Eulerian

techniques for self collision with elastic objects. Li et al. [LSN13] show that the Eulerian

view is useful for resolving close self contact between skin and other soft tissues. Teng et

al. [TLK16] show that the approach can be naturally used to couple with incompressible

fluids. Hybrid Eulerian/Lagrangian techniques are also useful for simulating crowd dynamics

[NGC09, GNL14]. Our method is also similar to those of Müller et al [MCK15], Sifakis et

al. [SMT08] and Wu et al. [WY16]. These approaches mesh the space surrounding elastic

objects and enforce positive volume and/or incompressibility constraints respectively on the

air surrounding the objects to resolve collisions.

MPM techniques have proven very effective in graphics applications. Stomakhin et al.

[SSC13] and Gaume et al. [GGT18] use the method to simulate snow. Various others

have simulated more general granular materials like sand [DB16, KGP16], porous water and

sand mixtures [TGK17, GPH18], viscoelastic foams and sponges [YSB15, RGJ15], coupling

with rigid bodies and cutting [HFG18], volumetric elastic materials [JSS15, ZZL17], thin

elastic membranes and shells [JGT17, GHF18], and even wet clothing [FBG18]. Various

improvements to the method have been made, including removal of noise with angular mo-

mentum conservation [JSS15, FGG17], adaptive spatial discretization [GTJ17], temporally

asynchronous time stepping [FHH18], and GPU acceleration [GWK18]. Also of relevance

is the approach of Huang et al. [HZM11] to N-body collision, which has been used for self

collision for fracture debris in graphical simulation of ductile fracture by Hegemann et al.

[HJS13].
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Figure 4.4: MPM particle coupling. Elastic Jell-O’s with varying stiffness are two-way

coupled with MPM particles.

4.3 Mathematical background

Here we describe the governing equations for volumetric elastic solids and hair strands.

We define the deformation of an elastic body as a map from its undeformed configuration

consisting of points X to its deformed configuration consisting of points x at time t by

x(t) = φ(X, t). We refer to the spatial derivative of this map as the deformation gradient

F = ∂φ
∂X

. The deformation gradient is used as a measure of strain, where its deviation from

orthogonality indicates the local violation of rigid body motion. For hair, we decompose

the deformation gradient into elastic and plastic parts F = FEFP , where FE is the elastic

deformation and FP is the plastic deformation, as a means to resolve stress constraints

associated with frictional contact as in [KGP16, JGT17, GHF18]. For elastic solids, we do not

use an elastoplastic decomposition. Instead, we model elastic objects using hyperelasticity

[BW08], where the potential energy in the system increases as φ deviates from rigid body

motion. For frictional collision with hair strands, the potential energy density penalizes FE.

We adopt the fixed corotational model from [SHS12] for elastic solids, the Discrete Elastic
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Rod (DER) model from [BWR08, BAV10] for hair and strands, and the St. Venant-Kirchhoff

Hencky model from [KGP16] for hair collision resistance.

The governing equations for the material deformation φ are described from conservation

of mass and momentum

Dρ

Dt
+ ρ∇ · v = 0, ρ

Dv

Dt
= ∇ · σ + ρg (4.1)

where

σ =
1

J
PFET

, P =
∂ψ

∂FE
, J = det(F). (4.2)

ρ is material density, v is velocity, g is gravity constant, P is the first Piola-Kirchhoff stress,

and σ is the Cauchy stress. ψ is the potential energy density, which we assume varies with

FE. For volumetric objects we do not use an elastoplastic decomposition and can so assume

FE = F in this case.

4.3.1 Hyperelastic volumetric solids

For volumetric elastic objects, we adopt the fixed corotational model from [SHS12], though

any hyperelastic potential may be used. With this choice, the stress satisfies

ψ(F) = µ
∑
i

(σi − 1)2 +
λ

2
(J − 1)2,

P = µ(F−R) + λ(J − 1)JF−T .

(4.3)

Here µ and λ are the Lamé coefficients that express the material resistance for deformation

and volume change, and σi are the singular values of the deformation gradient F computed

according to the polar SVD convention of [ITF04] to allow for extreme deformation.

4.3.2 Hair strands

We follow the codimensional approaches of [JGT17, GHF18] and penalize frictional contact

between hairs and thin strands using a continuum assumption. Following their formulation,
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Figure 4.5: A walking mannequin with a full head of hair.

we decompose the deformation of the material φ into the deformation of the individual

strands φs and the deformation associated with frictional contact interactions among strands

φd, namely

φ = φd ◦ φs. (4.4)

Consequently, the deformation gradient is decomposed into F = FdFs. We treat the defor-

mation of the strand Fs as purely elastic using standard rod and curve models [BWR08,

BAV10, BAC06, MSW09], and decompose Fd into elastic and plastic components,

Fd = Fd,EFd,P (4.5)

to handle frictional contact among hair strands.

We utilize the continuum Coulomb friction view from [KGP16, JGT17, GHF18] to place

a constraint on admissible stress. Shear stresses resisting sliding motions between strands

cannot be larger than a frictional constant times the normal stress holding them together.
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(a)(a)

(c)(c)

(b)(b)

Figure 4.6: MPM Overview. The steps in the MPM update are: (a) The Lagrangian

quantities (black and red) are transferred to an Eulerian grid (blue), which may be viewed

as a new FEM mesh. (b) Grid nodes receive new velocities (purple) from updated Lagrangian

elastic updates and are temporarily moved with those velocities. (c) The Lagrangian quan-

tities are updated by interpolating from the new positions and velocities of the Eulerian grid

nodes. The triangles are colored based on the amount of compression.
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When the shear stress exceeds that threshold, the strands will start to slide against each

other, inducing plastic deformation. Mathematically, the Coulomb friction model states that

sTσn+cFnTσn ≤ 0, where n is the normal to the contact surface, s is any unit vector along

the contact surface, and cF is the friction coefficient. While Jiang et al. [JGT17] considers

only directions n orthogonal to the tangent of the midline of the strand, we enforce this

condition for all directions. The continuum assumption in Jiang et al. [JGT17] is that of

a tube of parallel strands, which holds well for simulating knits but is less effective in the

more complicated contact scenarios that occur when simulating hair and thin strands. To

accomodate this more general constraint, we use an isotropic potential to resist collision,

rather than the transversely isotropic potential of Jiang et al. [JGT17].

With this convention, we define the potential energy as a combination of the DER energy

for strand elasticity and the St. Venant-Kirchhoff Hencky energy from [KGP16] to penalize

collision and shearing,

Ψ = Ψs(Fd,E) + ΨDER(Fs). (4.6)

The St.Venant-Kirchhoff Hencky energy, chosen for the ease of plasticity return mapping,

takes the form

Ψs =

∫
Ω

ψsdV (4.7)

ψs = µtr
(
(ln Σ)2)+

1

2
λ
(
tr (ln Σ)2) (4.8)

where Fd,E = UΣVT is the singular value decomposition of the elastic deformation, Ω is the

original domain the material occupies, and µ and λ are Lamé parameters. The DER energy

ΨDER consists of stretching, twisting, and bending potentials. We refer readers to [BAV10]

for details on this energy and the time parallel transport required to calculate the force.

The derivatives of the potential with respect to deformation are needed for computation and

satisfy

∂ψS

∂FE
(FE) = U

(
2µΣ−1 ln(Σ) + λΣ−1 ln(Σ)

)
VT . (4.9)
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4.4 Discretization: hyperelastic solids

Our hybrid approach utilizes aspects of traditional Finite Element Methods (FEM) for hy-

perelasticity [SB12]. However, our approach is largely motivated by the the MPM treatment

of volumetric objects from Jiang et al. [JSS15] and Zhu et al. [ZZL17]. These methods

were originally designed to prevent the numerical fracture that would occur with volumetric

objects in traditional particle-based MPM. We first discuss this approach and how it resolves

self collision, followed by its drawbacks.

In Jiang et al. [JSS15] and Zhu et al. [ZZL17], the state at time tn consists of parti-

cles with positions xnp connected with a tetrahedron mesh with elements indexed by e, as

in Lagrangian FEM. Furthermore, particles store velocities vnp and masses mp. The MPM

time step from time tn to tn+1 consists of three steps: (1) mass (mp) and momentum (mpv
n
p )

are transferred from particles to the grid using weights (wnip = N(xnp − xi)) that describe

the degree of interaction between particle p and grid node i and which are defined by Eu-

lerian grid interpolation functions N(x), (2) the grid momentum (mn
i v

n
i ) is updated in a

variational way from the potential energy in the system and finally, (3) the motion of the

grid under the updated momentum is interpolated to the particles. The process of updat-

ing the grid momentum in step (2) uses the updated Lagrangian [BLM13, JST16, GW03]

convention where the time tn configuration serves as the reference, rather than the t = 0

configuration in a Lagrangian discretization. With this updated Lagrangian convention, the

particles xnp are moved by the grid via interpolation xn+1
p =

∑
i x

n+1
i wnip, and they change the

potential energy via the per-element deformation gradient computed as in standard FEM

(see Equation (4.10)). The grid node vertices xi, which are allowed to move temporarily

as xn+1
i = xi + ∆tvn+1

i , serve as degrees of freedom. When the spatial discretization is

done variationally from the potential energy, this step is almost identically what is done in a

Lagrangian FEM discretization of elastoplasticity [SB12]. In this sense, the method can be

interpreted as continually remeshing the domain of the material, where the transfer process

84



in step (1) is all that is needed to define the mesh at a given time step (see Figure 4.6). We

refer the reader to [JSS15, JST16] for more basic MPM details.

The MPM update only considers the variation of the potential energy with respect to grid

degrees of freedom; nothing explicit is done to model self collision. Self collision is modeled

as if it were an elastic phenomenon, and by virtue of switching between particle and grid

representations. We describe these two aspects of collision resolution as type (i) and type

(ii).

Type (i) The grid transfers in step (1) ultimately remesh the domain (see Figure 4.6). By

transferring to the grid, and using an updated Lagrangian formulation where the grid

nodes are updated based on the variation of the potential energy in Equation (4.6),

MPM essentially uses a new FEM mesh (blue in Figure 4.6) to calculate the elastic

update. This process creates new connections in the updated Lagrangian mesh and

once they are made, collision inducing modes are penalized via the potential energy

in the system (see Figure 4.6). For example, collision trajectories of the particles will

induce compression in elements of the Eulerian grid which would be penalized from

the elastic potential in the system.

Type (ii) In particle systems, collisions occur because of discontinuities in the velocity, e.g.

consider two particles next to each other with opposing velocities. Transferring to and

from the grid smooths the particle velocities, which ultimately prevents collision. Since

the motion of the Eulerian grid after the momentum update in step (2) is interpolated to

the particles using continuous interpolating functions, particle collisions cannot occur

as long as the Eulerian mesh is not tangled by the motion. This can be guaranteed

with a CFL restriction since the tangling is a temporal discretization artifact. In fact,

an updated Lagrangian MPM simulation with no constitutive model on the particles

at all can still prevent material collision, simply by virtue of the type (ii) interactions

(see Figure 4.7).
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These modes of collision resolution are simplistic, but limited by several drawbacks. For

volumetric objects, the type (i) interactions are unable to regulate the potential energy

with a plasticity model derived from Coulomb friction as in [JGT17, GHF18]. The mesh is

volumetric and therefore does not have the flexibility of codimension that can be used to

model contact through the continuum. There are no directions left for plastic flow of the type

designed in [JGT17] that could be used to satisfy the Coulomb friction stress constraints.

This can lead to unregulated resistance to shearing and cohesion as the elastic potential will

still increase with these modes, even though that is not consistent with Coulomb friction (see

Figure 4.9). Furthermore, the updated Lagrangian treatment of the stress-based momentum

leads to visual interaction at a distance and persistent wrinkling when the grid resolution

is too low [JSS15, FGG17, HN17]. Additionally, when the grid resolution is too high, type

(i) and type (ii) interactions have no effect and the method does not prevent collision (see

Figure 4.7). To prevent this, the Lagrangian mesh resolution must be about the same as

the Eulerian grid resolution. This is suboptimal when a coarse Lagrangian mesh suffices to

resolve deformation.

4.4.1 Hybrid Lagrangian MPM for elastic solids

Our method is designed by abandoning the type (i) collision prevention for volumetric

meshes and the updated Lagrangian integration of the elastic forces in general. Instead we

use a splitting approach where elastic forces are applied in a Lagrangian way, and type (ii)

interactions are integrated by MPM with no elastic force computation. We achieve this by

introducing collision particles xnq which are sampled uniformly at random on the boundary

of the volumetric elastic mesh. The mass of the collision particle mq is found by dividing the

mass of the boundary element by the number of collision particles on that element. These

particles are not true degrees of freedom and are tied to the mesh during the Lagrangian

update. They are then used to generate type (ii) collision prevention. We show that their

response defines a type of impulse that can be regulated by Coulomb friction and applied
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Figure 4.7: Type (ii) interations with different ∆x, columns indicating consecutive

time steps. At appropiate grid resolution (middle row), MPM prevents material collision

even without constitutive model. However, when the grid resolution is too low (top row),

objects are separated at a distance, and when the grid resolution is too high (bottom row),

the MPM grids may miss a collision.
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to the mesh at the end of the time step. Furthermore, because the collision particles can be

sampled at a density proportional to the grid spacing, we show that they remove the effect

of grid resolution on collision resolution (see Figure 4.8).

Our approach uses the same discrete state as in [JSS15]: time tn, particle positions xnp

connected with a tetrahedron mesh, velocities vnp , and masses mp. In addition, we store

the collision particles xnq sampled on the boundary of the tetrahedron mesh. We summarize

essential steps in the algorithm for updating our discrete state to time tn+1 below.

1. Lagrangian update: Update particle velocities from potential-energy-based and

body forces, and interpolate velocities to collision particles. §4.4.2

2. Transfer to grid: Transfer mass and momentum from collision particles to grid.

§4.4.3.1

3. Transfer to collision particles: Transfer velocities from grid back to collision par-

ticles. §4.4.3.2

4. Apply impulses: Calculate the impulse applied to each boundary mesh using the

velocity change in collision particles and update velocities of particles on the boundary

mesh. §4.4.4

5. Update positions: Update particle positions and elastic states. §4.4.5.

4.4.2 Lagrangian update

We consider the case of piecewise linear interpolation over a tetrahedron mesh. The defor-

mation gradient varies in a piecewise constant manner with each element, which we denote

as Fe. With this convention, the FEM force per particle fp can be seen as the negative
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Figure 4.8: Collision particles. Sampling density based on Eulerian grid ∆x.

Figure 4.9: Friction comparison with sand and bunny. Our method (right) removes

the excessive numerical friction common to traditional MPM (left), and regulates friction

with the Coulomb friction model. With low friction coefficients, the colored sand freely slides

off the bunnies.
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gradient of the the total potential energy Ψ with respect to particle positions:

Fe(x) =
∑
p

xp
∂Ñp

∂X
(Xe) (4.10)

Ψ(x) =
∑
e

ψ(Fe(x))V 0
e (4.11)

fp(x) = −
∑
e

∂ψ

∂F
(Fe(x)) :

∂Fe

∂xp
(x)V 0

e (4.12)

= −
∑
e

P(Fe(x))
∂Ñp

∂X
V 0
e . (4.13)

Here x ∈ R3np refers to the vector of all particles xp, where np is the total number of particles,

Ψ is the total potential energy which is a sum of tetrahedron element contributions ψ(Fe)V
0
e ,

where ψ is the potential energy density in Equation (4.3), V 0
e is the volume of the element in

the initial state, Ñp is the piecewise linear interpolating function associated with particle xp,

and Xe is the tetrahedron barycenter in the time t = 0 configuration. We refer the reader

to Sifakis and Barbic [SB12] for a more detailed derivation.

The FEM update uses the usual Lagrangian view of the governing physics. The internal

force is the negative gradient of the potential energy in Equation (4.13). Particle velocities

are updated according to forces computed at particle positions xn+α
p , where symplectic Euler

integration corresponds to α = 0 and backward Euler corresponds to α = 1:

v∗p = vnp + ∆t
fp(x

n+α)

mp

. (4.14)

When damping is required while using symplectic Euler integration, we construct a back-

ground Eulerian grid with ∆x comparable to the mesh size and transfer the velocity to and

then back from the grid using APIC with RPIC damping as described in [JGT17]. We can

even perform the transfers multiple times when more damping is desired. For interior par-

ticles, vn+1
p = v∗p. On the other hand, for particles on the boundary mesh, we interpolate
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Figure 4.10: Element inversion. MPM (left) has difficulties when elements invert, es-

pecially with low grid resolution (yellow and red). Our method (right) handles element

inversions with ease.

their velocities and positions to collision particles using

v∗q =
∑
p

bpqv
∗
p (4.15)

xnq =
∑
p

bpqx
n
p (4.16)

where bpq is the barycentric weight of the point q relative to p. We also assign to each point

q an outward normal vector nq inherited from the face of the mesh that q is tied to.

91



4.4.3 Grid transfers

4.4.3.1 Particle to Grid

To process collision and contact, we transfer mass and momentum from collision particles

xnq to grid nodes xi using standard MPM transfers

mn
i =

∑
q

wniqmq (4.17)

v∗i =
1

mn
i

∑
q

wniqmqv
∗
q . (4.18)

Here wniq = N(xnq − xi) is the weight of interaction between particle xnq and grid node xi, as

in standard MPM.

4.4.3.2 Grid to Particle

Without any constitutive model on the grid, we proceed directly to the grid to particle step.

The grid to particle transfer defines the velocity local to collision particle xnq in terms of v?q

from

v?q =
∑
i

wniqv
∗
i . (4.19)

4.4.4 Apply impulse

Since the velocity v?q is interpolated from an updated Lagrangian background grid, the

boundary of the mesh is safe from self-intersection if it is moved with v?q . However, the

change may not be consistent with a Coulomb friction interaction, and the response can

even be cohesive. In the case of a cohesive response after collision, we reject the change.
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That is, when

vr = v?q − v∗q (4.20)

vr · nq ≥ 0 (4.21)

the updated Lagrangian mesh detects a separation instead of collision, and the collision

particle keeps the velocity from the FEM update v∗q . On the other hand, if

vr · nq < 0 (4.22)

we apply an elastic impulse Iqnq to the mesh at position xnq where Iq = 2mqvr · nq. We

also allow for friction using Coulomb’s model with the friction parameter µ. When an elastic

impulse of magnitude Iq would be applied based on condition (4.22), Coulomb friction admits

a change in magnitude of tangential velocity of at most −µ Iq
mq

. So the combined velocity

change on collision particle q is then

∆vq =
Iqnq
mq

+ min

(
‖vt‖,−µ

Iq
mq

)
vt
‖vt‖

, (4.23)

where vt = vr − vr · nqnq. We then transfer this change to the particles p as

∆vp = vn+1
p − v∗p =

∑
q

b̃pq∆vq (4.24)

where

b̃pq =
bpqmq∑
r bprmr

(4.25)

are the normalized weights defined from the barycentric weights used to transfer from par-

ticles to collision particles.

4.4.5 Update positions and elastic state

For boundary particles, we adopt symplectic Euler time integration

vn+1
p = vnp + ∆vp (4.26)

xn+1
p = xnp + ∆tvn+1

p (4.27)
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For interior particles, the update is in accordance with either symplectic Euler or backward

Euler, depending on the choice of α in Equation (4.14):

vn+1
p = v∗p (4.28)

xn+1
p = xnp + ∆tvn+1

p . (4.29)

4.5 Discretization: hair strands

As discussed in Section §4.3.2, we decompose the motion of the hair into that representing

individual strand deformation φs and that of frictional sliding and compression φd. As in

[JGT17, GHF18], we discretize these two motions in different ways. Since φs only considers

single hair strands, it suffices to discretize the energy and forces with traditional FEM.

We do this using the approach of [BWR08, BAV10]. However, unlike the approaches in

[JGT17, GHF18], we do not make use of an updated Lagrangian discretization of φs. To

do so severely limits the ability of the hair to resolve collisions without a prohibitively high-

resolution Eulerian grid (see Figure 4.11). Rather, we split the updates of φs and φd, where

the velocities for φs are first updated in a Lagrangian manner and φd with a standard

updated Lagrangian MPM discretization. We then adopt the approach of McAdams et al.

[MSW09] where the grid-based updates are interpreted as impulsive changes in velocities

on the strand that prevent self collision. However, by foregoing the updated Lagrangian

discretization of φs, we cannot guarantee that self collision is prevented and thus revert to

geometric impulses after the correction from φd.

The discrete state for each strand at time tn consists of centerline particle positions

xnp , with velocities vnp , masses mp, APIC matrix Cn
p , and elastic and plastic deformation

gradients associated with φd, FE,n
p and FP,n

p . Furthermore, each edge e connecting particles

xne and xne+1 stores orientation angle θe as in [BAV10]. We summarize essential steps in the

algorithm for updating the discrete state to time tn+1 below.
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Figure 4.11: Hair comparison with MPM. Top row: MPM simulation of hair exhibits

excessive friction and cohesion whereas our method captures the rich dynamics of individual

strands. Bottom row: We demonstrate the dynamics of two hair strands, colored black and

red, at two time steps. MPM (left) results in uncontrolled friction. Hybrid method without

geometric collision (middle) misses the collision. Our method (right) captures the sliding

behavior between two strands.

95



1. Lagrangian update: Update particle velocities from strand model of [BAV10]. §4.5.1

2. Transfer to grid: Transfer mass and momentum from particles to grid using APIC

as in [JSS15].

3. Update grid momentum: Compute effect of collision potential and friction elasto-

plasticity. §4.5.2

4. Apply impulses: Interpolate the change in grid velocity to particles and then apply

geometric collision handling. §4.5.3

5. Update positions: Update particle positions as in Equation (4.29).

4.5.1 Lagrangian update

We adopt a time splitting scheme for the velocity update where the velocity is first updated

according to the force induced by the energy ΨDER. Specifically, we have

v∗p = vnp + ∆t
fp
mp

(4.30)

where fp is calculated as in [BAV10]. This new velocity v∗p is then transferred to the MPM

background grid v∗i as in Section 4.4.3.1.

4.5.2 Grid momentum update

The grid momentum is then updated according to the elastoplasticity model for the φs

motion and associated potential energy Ψs:

v?i = v∗i −
dt

mn
i

∑
p

∂ψS

∂FE
(F̃E

p (x̃n+α))(FE,n
p )T∇wnipV 0

P + ∆tg. (4.31)

Here, F̃E
p (x̃n+α) is the trial elastic strain and x̃n+α is the vector of all Eulerian grid node

positions, moved according to

xn+α
i = xi + α∆tv?i , F̃E

p = (I + α∆t
∑
i

v?i∇wnip)FE,n
p (4.32)
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where α = 0 corresponds to symplectic Euler and α = 1 corresponds to backward Euler for

the grid momentum update. We also update APIC matrix Cp using grid velocity v?i as in

[JSS15, JST16].

4.5.3 Impulses

To interpret the motion in v?i as inducing impulsive change in momentum on the midline,

we interpolate the change in the grid velocity to the particles. However, we blend in the

updated Lagrangian response weighted with parameter ξ

v?p = (1− ξ)

(
v∗p +

∑
i

(v?i − v∗i )w
n
ip

)
+ ξ

∑
i

v?iw
n
ip. (4.33)

This introduces a bit of the type (i) and type (ii) collision prevention, but without sacri-

ficing the geometric detail of the Lagrangian motion. This is equivalent to the PIC/FLIP

blend used in [MSW09]. Typically, we introduce ξ = 0.95. However, abandoning the up-

dated Lagrangian update can leave collisional modes unresolved for hair. We apply geometric

collision handling similar to [BFA02] to resolve remaining collisional modes.

Collision impulses are applied based on proximity between strand edges. We use accel-

eration structures for efficient proximity queries as in [BFA02]. However, we use regular

grid-based structures inherent in MPM implementations. We divide the domain into calcu-

lation pads in space with edge length l. Then we extend the pad in the positive axis direction

by proximity threshold δ so that neighboring pads have an overlap of length at least δ and

thus any proximity pair will appear in at least one pad. In parallel, each extended pad

collects all segments that have at least one endpoint contained in the pad, and then registers

any proximity pairs contained in its set of segments. We apply an impulse to any proximity

pair on a colliding trajectory as determined by relative velocity component on the direction

separating the pair. The inelastic impulses from [BFA02] are then calculated and distributed

to particles. Also as proposed in Bridson et al. [BFA02], we divide the total impulse on a

particle by the number of impulses it receives from all pads and perform Jacobi iteration.
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Figure 4.12: Braiding hair. Two bundles of hair are interwined into a braid and then

separated.

After a fixed number of iterations, we obtain the particle velocity vn+1
p , and then advect

particles using Equation (4.29).

4.6 Rigid bodies

Two-way rigid body coupling may be achieved with a treatment similar to volumetric elastic

objects. We sample collision particles on the boundary in the same fashion as in Section 4.4.1

and then uniformly distribute the mass of the rigid body to the collision particles. However,

we found that unlike for volumetric elastic objects, type (ii) interactions on the grid alone are

not enough to resolve collisions. Instead we endow the collision particles with the potential

described in [JGT17, GHF18] to penalize contact. Specifically, we update the deformation

gradient Fq from time tn to tn+1 in the following way. Let xα and Xα, α ∈ {0, 1, 2} be the

current and initial positions of the vertices of the triangle that collision particle q is tied to.
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Let Dq,β = Xβ −X0 be the undeformed mesh element edge vectors (where β = 1, 2), and

d̂Eq,β = xnβ − xn0 be the deformed edge vectors. We choose each D3 to be unit-length and

normal to D1 and D2, and evolve each one as in traditional MPM via d̂Eq,3 = ∇xqd
E
q,3. Then

F̂E
q = d̂Eq D−1

q . Following [JGT17, GHF18], we let F̂E
q = QR̂ be the QR decomposition of

F̂E
q and design a collision energy density ψ(R̂) = f(R̂) + g(R̂),

f(R̂) =

 kc

3
(1− r̂33)3 0 ≤ r̂33 ≤ 1

0 r̂33 > 1
, g(R̂) =

γ

2
(r̂2

13 + r̂2
23) (4.34)

where r̂ij is the ij-th entry of R̂. We resolve the force which is the negative derivative of this

energy on the MPM background grid, and we refer the reader to [JSS15, JST16] for more

details. Plasticity is then applied according to [JGT17, GHF18] to give R

r33 =

 r̂33 0 < r̂33 ≤ 1

1 r̂33 > 1
, rβ3 = h(r̂13, r̂23, r33)r̂β3 (4.35)

h(r̂13, r̂23, r33) = min

(
1,
cFk

c (1− r33)2

γ
√
r̂2

13 + r̂2
23

)
(4.36)

Finally, we update the deformation gradient with Fn+1
q = QR.

Let v∗q =
∑

iw
n
iqv
∗
i , where v∗i is the grid velocity after the MPM force update, and let

vr = v∗q − vq. If vr · nq < 0, we apply an impulse Iq to the rigid bodies to update velocity v

and angular velocity ω via

Iq = mqvr · nq (4.37)

vt = vr − vr · nqnq (4.38)

Iq = Iqnq +mq min

(
‖vt‖,−µ

Iq
mq

)
vt
‖vt‖

(4.39)

vn+1 = vn +
∑
q

Iq
mq

(4.40)

ωn+1 = ωn +
∑
q

J−1(r× Iq) (4.41)
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Figure 4.13: Skin and shirt. The skin of a mannequin is coupled with clothing simulated

with MPM.

where r is the vector from the rigid body’s center of mass to the application point of the

impulse, and J is the inertia tensor.

4.7 Coupling with traditional MPM

Our method easily couples with traditional MPM particles such as snow, sand and clothing.

To prevent numerical cohesion between phases common to MPM, we adopt two separate

background MPM grids, one for volumetric elastic and rigid objects, and the other for

general MPM materials. We denote quantities associated with the two grids with subscripts

1 and 2 respectively. We denote quantities associated with traditional MPM particles with
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subscript p and quantities associated with quadrature points with subscript q. So we have,

mn
1,i =

∑
q

wniqmq,m
n
2,i =

∑
p

wnipmp (4.42)

v∗1,i =
1

mn
1,i

∑
q

wniqmqv
∗
q (4.43)

vn2,i =
1

mn
2,i

∑
p

wnipmp (vp + Cp(xi − xp)) (4.44)

nni =

∑
q wiqnq

‖
∑

q wiqnq‖
(4.45)

Grid velocity vn2,i is updated as in [JSS15, JST16] to get v∗2,i. Then the collision between

phases is handled through an inelastic collision on collocated grid nodes.

vr = v∗1,i − v∗2,i (4.46)

vt = vr − vr · nni nni (4.47)

Ii = max

(
mn

2,im
n
1,i

mn
2,i +mn

1,i

vr · nni , 0

)
(4.48)

v∗∗1,i = v∗1,i −
Iini

mn
1,i

−min

(
µIi
mn

1,i

, ‖vt‖

)
vt
‖vt‖

(4.49)

vn+1
2,i = v∗2,i +

Iini

mn
2,i

+ min

(
µIi
mn

2,i

, ‖vt‖

)
vt
‖vt‖

(4.50)

Finally, we interpolate the the grid velocity vn+1
2,i to MPM particles with APIC as in [JSS15,

JST16], and Equation (4.19) is replaced with

v?q =
∑
i

wniqv
∗∗
1,i. (4.51)

4.8 Results

We demonstrate the efficacy of our method with a number of representative examples that

illustrate the dynamics of hair and volumetric objects, and show that our method couples

with granular materials, clothing and rigid bodies. We list the runtime performance for
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Figure 4.14: Walking mannequins. Our method handles the numerous collisions occurring

in the scene with walking characters.

102



our examples in Table 4.1. All simulations were run on an Intel Xeon E5-2690 V2 system

with 20 threads and 128GB of RAM. We report the timing in terms of average seconds of

computation per frame. We chose ∆t in an adaptive manner that is restricted by a CFL

condition when the particle velocities are high, i.e., we do not allow particles to move further

than the CFL number times ∆x in a time step.

4.8.1 Hair

We demonstrate that our method preserves the intricate dynamics of individual hair strands

and robustly handles the numerous collisions among them. In Figure 4.11, 32 thousand

strands of hair with 60 segments per strand are simulated subject to intense boundary

motions. Our algorithm is able to run this challenging example at 122 seconds per frame.

In Figure 4.3 and Figure 4.12, we show that our method effortlessly resolves the intense self

collisions occurring in braiding examples. In Figure 4.5 and Figure 4.1 (middle), we show

a mannequin with a full head of hair in motions common in everyday life, such as walking

and dancing. In Figure 4.15, we compare our method with McAdams et al. [MSW09]

in a numerical experiment where a bundle of hair strands falls and bounces off another

bundle. The experiments are run with a total of 2700 hair strands with 175 segments per

strand. Five iterations of impulse application are applied to resolve the collisions missed by

advecting the segments with the velocity in Equation (4.33) in our method and the velocity

satisfying incompressibility condition in [MSW09]. Notice that our method preserves the

volume of the hair bundle and does not suffer from numerical cohesion. We run the test for

100 frames until the hair bundles are apparently separated and track the missed collisions

in the process by calculating the collision interactions between pairs of segments using the

cubic solve proposed in [BFA02]. The test using McAdams et al. [MSW09] registers more

than 543 thousand missed collisions whereas the test using our method registers 120 missed

collisions. Our method runs three times faster (see Table 4.1). Note that our method not

only avoids the expensive Poisson solve for incompressibility, but it also serves as a better
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approximate collision response and therefore reduces the runtime and number of missed

collisions in the collision impulse step. We plot the total energy in the test run with our

method in Figure 4.16.

4.8.2 Volumetric objects

We demonstrate the robustness of our method for resolving collisions between volumetric

objects. Our method correctly resolves frictional sliding without artifacts. In Figure 4.14,

we show a skin simulation with walking characters in various body shapes. In Figure 4.9,

we compare our approach with updated Lagrangian MPM, which exhibits excessive cohesion

and numerical friction. We also show that our method removes the requirement of compa-

rable grid and mesh resolution. We use a moderate resolution Lagrangian mesh to resolve

the dynamics of the bunnies and a high resolution Eulerian grid to resolve more detailed be-

haviors of the sand. In contrast, updated Lagrangian MPM would require a high resolution

Lagrangian mesh for bunnies in order to resolve collisions between phases. Furthermore,

traditional MPM methods often have difficulties recovering from element inversions, as the

particle modes needed to uninvert the material are lost in the tranfers between particles

and the grid due to the type (ii) interactions discussed in Section 4.4. On the other hand,

our method handles extreme deformation and even element inversion as demonstrated in

Figure 4.10. MPM fails to recover the original shape of the object when the grid resolution

is low and type (ii) interactions are effective and exhibits high frequency noise when the

grid resolution is too high for type (ii) interactions to be effective. On the other hand, the

elastic object recovers its original shape with any grid resolutions using our method.

4.8.3 Coupling with MPM and rigid bodies

Our method also supports coupling with rigid bodies as well as traditional MPM particles

such as snow, sand and clothing. In Figure 4.13, we demonstrate the coupling of soft tissues
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Figure 4.15: Hair tubes comparison. Comparison between McAdams et al. [MSW09]

(top row) and our method (bottom row) in resolving the collisions between two bundles of

hair strands.

with clothing material simulated with MPM as in [JGT17]. In Figure 4.2, we show a hairy

ball that is first hit by a snowball and then shakes the snow off. In Figure 4.1 (right), elastic

characters and a column of sand are poured on a series of pinwheels simulated as rigid bodies,

setting them in motion. In Figure 4.4, colored sand is poured on top of three Jell-O’s with

various stiffness, generating interesting patterns.

4.9 Discussion and limitations

While our approaches address many shortcomings in existing techniques, there are a number

of limitations that persist. First, while abandoning the transversely isotropic elastoplasticity

assumption of Jiang et al. [JGT17] does improve the resolution of more complicated strand
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Figure 4.16: Energy Plot. We plot the total energy as a function of time for the hair tubes

test. The energy is calculated as the sum of elastic and gravitational potential energy and

the kinetic energy on the particles.
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interactions, as shown in Figure 4.11, it also causes the potential energy associated with

collision and shearing to interfere with that of the strand. Interestingly, this does not have

an effect under extension. Only under compression of a strand will there be an additional

resistance. Furthermore, while our treatment of rigid body dynamics is useful for coupling

with elastoplastic materials like sand, soft tissues, etc., our approach is not ideally suited for

interactions between rigid bodies. Our approach fails to resolve simple cases like stacking of

a few rigid bodies without penetration and/or grid based separation artifacts. Lastly, our

collision impulses do not provide any geometric guarantees against self collision, as in e.g.

[BFA02]. If large time steps are taken, material will interpenetrate. In general this can be

avoided by obeying a CFL condition, as is generally true with MPM.
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Time Element # Particle # ∆x CFL

Mannequin (Fig. 4.14 left) 39 933K 41K/41K 0.05 0.6

Mannequin (Fig. 4.14 right) 27 641K 31K/31K 0.05 0.6

Pinwheel (Fig. 4.1 right) 89 93K 930K/57K 0.5 0.6

Bunnies (MPM) (Fig. 4.9 left) 186 3.97M 2.67M 0.1 0.6

Bunnies (Hybrid) (Fig. 4.9 right) 66 201K 1.99M/25K 0.1 0.6

Hair ball (MPM) (Fig. 4.11 top left) 84 1.92M N/A 0.05 0.1

Hair ball (Hybrid) (Fig. 4.11 top right) 122/83 1.92M N/A 0.05 0.1

Hair tubes ([MSW09]) (Fig. 4.15 top) 156/56 47.5K N/A 0.08 0.6

Hair tubes (Hybrid) (Fig. 4.15 bottom) 55/11 47.5K N/A 0.08 0.6

Skin and shirt (Fig. 4.13) 3 207K 120K/40K 0.006 0.6

Braiding (Fig. 4.12) 87/73 372K N/A 0.15 0.2

Braids (Fig. 4.3) 25/9 323K N/A 0.03 0.2

Hair (Fig. 4.5) 127/46 1.01M N/A 0.05 0.6

Snow on hair (Fig. 4.2) 153/38 1.92M 2.16M 0.05 0.2

Wall breaking (Fig. 4.1 left) 50 933K 2.29M/41K 0.05 0.6

Dancer (Fig. 4.1 middle) 117/27 490K N/A 0.04 0.2

Table 4.1: Performance of Hybrid MPM–Lagrangian-FEM Simulations

All simulations were run on an Intel Xeon E5-2690 V2 system with 20 threads and 128GB of

RAM. Simulation time is measure in seconds per frame. Time spent on geometric collision

per frame is recorded in the second entry of the timing column where applicable. Element

# denotes number of segments for hair simulations and number of tetrahedra for volumetric

simulations. Particle # denotes the total number of MPM particles, and the number of

collision particles are recorded in the second entry where applicable.
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