
UC Irvine
ICS Technical Reports

Title
Messengers : distributed computing using autonomous objects

Permalink
https://escholarship.org/uc/item/08n4m4j6

Author
Bic, Lubomir F.

Publication Date
1995-05-30
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/08n4m4j6
https://escholarship.org
http://www.cdlib.org/


Notice: This Material
may be protected

Copyright Law
(Title 17 U.S.C.)

MESSENGERS: Distributed Computing
using Autonomous Objects

Lubomir F. Bic
Department of Information & Computer Science

University of California, Irvine

Technical Report 95-19

May 30, 1995

Abstract

Autonomous Objects is a new computing and coordination paradigm for dis
tributed systems, based on the concept of intelligent messages that carry their own
behavior and that propagate autonomously through the underlying computational
network. This is accomplished by running an interpreter of the autonomous ob
jects language in each node, which carries out the tasks prescribed by the program
contained in a received message. The tasks could be computational, including
the invocation of some node-resident compiled programs, or navigational, which
cause the message to be propagated to neighboring nodes. Hence interpretation
is incremental in that each node interprets a portion of the received program and
passes the rest of it on to one or more of its neighboring nodes. This is repeated
until the given problem is solved.

We survey and classify several existing systems that fall into this general
category of autonomous objects and present a unifying view of the paradigm by
describing the principles of a high-level language and its interpreter, suitable to
express the behaviors of complex autonomous objects, called Messengers. We
discuss the capabilities and applications of this paradigm by presenting solutions
to a wide spectrum of distributed computing problems. This includes inherently
open-ended applications, such as interactive simulations, where it is not possible
to define and precompile the entire experiment prior to starting its execution, and
distributed computations where the underlying network topology is unknown or
changes dynamically.





Contents

Page
Introduction 1
Autonomous Objects 2

RPCs and Method Invocations 2
Remote Evaluation 3
Echo Algorithms 4
BPEM 5
WAVE 7
Telescript 8
Intelligent Email 9
A Classification 10

MESSENGERS 13
The Language of MESSENGERS 13
Comparison with other Paradigms 17

Capabilities and Applications 19
Network Control—Computing in Unknown or Dynamic Topologies ... 19
Open-Ended Distributed Applications 21
AI Search Problems and General Problem Solving 26
Other Advantages of Autonomous Objects 31

Conclusions 32
References 34



1. Introduction

At the most abstract level, a distributed computing system consists of a

collection of nodes communicating with each other via messages. The computations

at each node axe instruction streams executing asynchronously and operating on

local non-shared data. Message passing is used to achieve collaboration among the
different asynchronous streams of control toward a common goal.

Within this generic computational framework, different programming para

digms have been developed to describe how data and control are to be distributed

and how information can be communicated between the different streams. In most

cases, a conventional programming language is extended with primitives to provide

for explicit communication and synchronization [BST89]. This includes various

forms of send/receive, broadcast, and multicast primitives, as well as some higher-
level constructs, which are usually constructed on top of the lower-level primitives.

What is characteristic of these message-based paradigms is that the system's

control or "intelligence" is embodied in the communicating node programs, while

messages carry only simple pieces of information in the form of passive data. To use

an analogy, these paradigms correspond to real-life scenarios where various agencies

or individuals communicate with one another via mail, fax, or the telephone. We

will refer to these as Communicating Objects paradigms.

In this paper we concentrate on several novel paradigms for distributed com

puting, which depart from the above conventional view by elevating messages to

higher-level entities that embody some degree of autonomy or "intelligence". A

message can be viewed as an object itself, which has its own identity and which

can decide at runtime where it wishes to propagate next and what tasks it is to

perform there. In the extreme, an approach completely complementary to the

Communicating Objects paradigm can be considered, where only messages are

the active components performing all computations, while the nodes are generic

interpreters, enabling the messages to navigate through the network and carry out

the computations specified by each message. In this case, all "intelligence" of the

application is embodied in and carried by messages as they propagate through

the network, much like a human agent or a robot would move in space, visiting

or examining different locales, in the process of performing its tasks. Note that



under this paradigm the interpreters need not be changed to solve different prob
lems, which mahes the application inherently open-ended. We shall refer to this
paradigm as Autonomous Objects.

The first objective of this paper is to survey and classify several seemingly
disparate systems by showing that they all embody the general philosophy of
autonomous objects. We will classify these systems in Section 2 along two separate
axes:

• the ability ofan object to navigate through the network, to possibly replicate
itself, and to decide what actions to take at each destination; this captures the
degree of autonomy of each moving object

• the ability to coordinate the activities ofa distributed application, which cap
tures the ability of each autonomous object to invoke and control the execution

ofconventional sequential functions residing on various nodes throughout the
network

In Section 3 we will then formulate a general framework for computing with
autonomous objects by specifying the structure of a high-level language and its
interpreter, suitable to express the behaviors of such objects, called Messengers.
In Section 4, we demonstrate the paradigm's strengths and weaknesses vis-a-vis
the better known Communicating Objects paradigm by presenting solutions to
problems from a variety of application domains.

2. Autonomous Objects
In this section we survey several recent paradigms where messages have been

elevated from being simple carriers of passive data to a higher form, where some
behavioral information may be carried by each message and interpreted or exe
cuted by the receiving sites. This gives messages a certain degree of autonomy
in navigating through the underlying network and allows them to be viewed as

first-class objects.

2.1. RPCs and Method Invocations

Remote Procedure Calls (RPCs) [BiNe84] are one of the most common mech

anisms for high-level communication in distributed systems, especially in client-
server type applications. The basic idea is for the client to send a message
containing the name of a procedure to be invoked on a remote node, together with



the necessary parameters. The server then executes the procedure and returns the

results in a reply message. All message-passing details, including parameter mar

shalling and the handling of failures are hidden in the underlying RFC mechanisms,

which make the call appear similar to a local call for the client.

In terms of autonomy, RFC messages carry no navigational information other

than their final destination. Compared to ordinary low-level messages exchanged

via send/receive primitives, however, RFCs embody, by their very design, some
degree of coordination capability in that each message determines which function

is to be invoked at the remote site. This distinction has been articulated, albeit

at a lower level, in [ECGS92], where the concept of Active Messages has been

introduced. An Active Message carries in its header a specification of a user-level

handler that integrates the message into the current computation. The ability to

choose its handler is similar to an RFC, which selects a procedure to be invoked.

In fact. Active Messages have been termed ultra-light RFCs [TuMa94]. The

main distinction is that an Active Message handler, unlike an RFC server, does

not return to its sender. Furthermore, Active Messages are not a programming

paradigm but a low-overhead asynchronous communication mechanism that can

be used to implement such paradigm more efficiently.

Another recent approach to higher-level distributed programming is to use an

object-based paradigm [Ame87, BLL88, DaCh88, GeRo88, YoTo87]. An applica

tion based on this paradigm is viewed as a collection of objects residing at different

sites and communicating with one another via messages, which invoke specified

functions (called methods in object-based terminology) in a manner similar to a

RFC. Hence, in terms of their autonomy and coordination capability, RFCs and

methods invocations are at the same level.

2.2. Remote Evaluation

The basic RFC concept has recently been extended by a mechanisms called

Remote Evaluation [StGi90]. The basic idea is for the caller to supply the proce

dure body to be evaluated on the remote computer. This code is carried by the

request message along with the necessary parameters and the results are returned to

the caller in a way analogous to RFCs. The main advantage of Remote Evaluation

is that it allows the server's capabilities to be arbitrarily extended by providing

new functionalities with each request.



While the authors of Remote Evaluation have not explicitly addressed issues
related to autonomy of messages, we include this work in this section because

of its potential to provide such autonomy. Since messages carry arbitrary proce
dures, they may encode any behavior, including code for generating new messages
and sending those to other nodes, thus virtually navigating through the network.
Furthermore, the objective of providing arbitrarily extensible remote servers is
very similar to the goal of open-ended systems, which can be achieved using an
Autonomous Objects paradigm, as will be discussed in Section 4.2. Finally, the
objective ofRemote Evaluation to reduce network traffic bymoving some portion of
a client's application to the server site for the duration of the interaction coincides

with the Autonomous Objects paradigm called Telescript (described in Section
2.6).

2.3. Echo Algorithms

One of the first approaches to distributed computing based on the philosophy
ofpropagating self-contained intelligent messages through a system ofsimple inter
pretive nodes were Echo Algorithms, developed to solve a variety of graph-based
problems, such as finding shortests paths or biconnected components of a given
graph [Cha82]. The basic idea of Echo Algorithms is to consider the underlying
graphs themselves as the computational engine, where each node is an independent
logical processor, capable ofreceiving, processing, and emitting messages traveling
along the graph's edges. Computation in such a network then starts by a wave of
messages spreading from one or more initial nodes into neighboring nodes until all
network nodes have been visited. The forward propagating messages are termed
explorers, since they replicate themselves according to the given topology into all
possible directions. When a message reaches a node that has already been visited,
it stops its forward movement and starts retracing its path to its origin. The
returning messages result in a second wave, termed the echo, which is the reversal

of the explorer wave. At each node, messages can collect information about the

graph they are traversing. This informationis then composed into a globalsolution
to the given problem during the echo phase and reported to the original starting
point(s) of the wave.

The main characteristic of Echo Algorithms is that asynchronous message
passing may be used to explore properties of arbitrary networks without any

centralized control, centralized memory, global clock, or any a priori knowledge



of the network's topology. The capabilities of Echo Algorithms to solve complex
problems, however, are limited by the fundamental structure of the paradigm,
which is based on first creating a spanning tree within the underlying network using
explorer messages and then retracing the paths of explorers using echo messages.
Even though the creation of the spanning tree is asynchronous and its shape is
non-deterministic (depending of the current traffic explorer messages encounter),
messages are not autonomous in the sense of carrying their own behavior. The

original paper suggests that decisions regarding the propagation of messages be
performed by application-specific node programs. There is, however, nothing
that would preclude the carrying of the necessary navigational information on
the messages themselves and hence they could be implemented as completely
autonomous objects. Furthermore, it is very natural for the programmer to think
in terms of waves of autonomous messages. Hence this paradigm, together with
Dijkstra's diffusing computations [DiScSO] can be viewed as the foundation for

later approaches, where messages propagating autonomously throughnetworks are
the primary vehicle for solving problems.

2.4. BPEM

Another paradigm based on the principles of intelligent messages propagat
ing asynchronously and autonomously through a network of interpreters is the
Binary Predicate Execution Model (BPEM) model developed at the University
of California, Irvine [Bic85, Bic87, BiLe87]. BPEM is a computational model
designed to facilitate the parallel processing of knowledge, represented in the form
of semantic nets [Woo75] or cognitive maps [Zha92]. In a traditional implementa
tion, these nets areviewed as passive repositories ofknowledge, where programs are
the active objects that search for and process the recorded information. BPEM*

proposed a different philosophy in the processing of knowledge nets. It views the
knowledge base as a network of labeled nodes and edges, and each query as a net
work template, consisting ofthe same nodes and edges as the underlying knowledge
net, but alsoallowing free variables to be used as nodes or edges. Toanswer a query
then corresponds to the problem of finding a match for a given template in the
underlying knowledge net such that each free variable is bound to a node label in

• BPEM derives its name from the fact that a (directed) graph edge may be described textually
as a binary predicate p(x,y), where x and y are two nodes and p is the edge label. Hence it is
possible to describe arbitrary graphs in the form of logic clauses, where finding information in the
net corresponds to the process of resolution in logic programming.



the knowledge net. The answer, if one exists, is the set of bindings for the free
variables.

To illustrate the principles, consider a simple knowledge network that records

the parent relationships between individuals. That is, a directed link labeled

"parent" from node n to node m represents the fact that n is the parent of m:
parent

n —y m

The knowledge net is thus a collection of labeled nodes interconnected via the

appropriate "parent" links. Answering queries, such as "who are the parents of m",

can then be represented as finding matches in this network to the corresponding
template, in this case, a directed link labeled "parent" from any node (i.e. a free
variable X) to the node m:

^ parent
X y m

Along these lines, arbitrarily complex queries can be constructed as network

templates. For example, the query "who are the grandparents of m" would be

expressed as the following template, where X would be bound to parents and Y to

grandparents of m.
parent parent

Y —y X —y m

In addition to viewing the problem of knowledge extraction as a non-procedu

ral template matching process, BPEM provides a way to perform the template

matching in an asynchronous distributed manner using autonomous objects. The

template, which could be of arbitrary topology, is first converted into a tree and

injected into the net in the form of a autonomous object, where each network node is

an interpreter of the network pattern. The essential steps of the interpreter in each

node are the following: for each received message, see if the root of the template

matches the node's content. If not, discard it; else, propagate each subtree along

all matching edges. When a leaf node is matched, propagate a success message to

the original parent node. Hence the object propagates and replicates itself along

multiple paths through the underlying knowledge net until a matching pattern is

found or the knowledge net is exhausted.

To illustrate this distributed interpreter, consider again the above grandparent

query. This template would be placed on a message and injected into the node m

of the underlying knowledge network. This node propagates it along all incoming

edges labeled "parent". The receiving nodes bind themselves to the variable X and



([^C2 ...
interpreter interpreter

Figure 1

Autonomous Objects

propagate the remainder of the template, again along all incoming edges labeled
"parent". All receiving nodes, ifany, then constitute the final answer to the original
grandparent query.

2.5. WAVE

Another representativeof the Autonomous Objects paradigmis WAVE [Sap88,
Bor92, SaBo94], developed at the University of Surrey, UK, and the University
of Karlsruhe, Germany. Like BPEM and Echo Algorithm, WAVE also rejects the
notion of precompiled programs running in each node of the underlying network
and communicating with other programs via data messages. Instead, each mes
sage is a self-contained object, which carries along its complete functionality in
the form of a specialized program, that is, instructions specifying what to compute
and what to pass on to other neighboring nodes via messages. Unlike BPEM and
Echo Algorithms, however, WAVE is a complete language, capable of expressing
arbitrary computations and navigation strategies. Each WAVE program is a se
quence of computational and navigational commands carried by a message. It is
a completely autonomous object, which may travel and replicate itself through
the underlying network of logical nodes (interpreters). When the receiving node
encounters a computational command, it carries it out locally. When it encounters

a navigational command, it propagates the program to one of more nodes in the

network. Hence the interpretation is incremental in both time and space. This

is repeated until the given program terminates, causing the corresponding WAVE

program instance to cease to exist.

Figure 1 illustrates the above basic principles. It shows two network nodes,

each running the WAVE interpreter as one of its applications. A WAVE program

is received by the first node (marked as step 1 in the figure) where the current

command ci is assumed to be navigational, thus causing it to be forwarded to

another node (step 2). Assuming the next command, C2, is computational, the



receiving node wouldinterpret it and goon to the next command C3. This continues
until another navigational command, say Cj, is encountered, which causes the
WAVE program to again propagate to one or more neighboring nodes, each of
which would continue interpreting the program at command Cj+i.

WAVE features a very elaborate set ofcommands to control both computation
and navigation, which have been tested on a number of different applications. As
part of the computation, WAVE programs may also create new shell processes,
which may invoke arbitrary precompiled functions as their subcomputations and
return their results back to the WAVE program. Hence WAVE, unlike BPEM or
Echo Algorithms, isnot limited to only autonomous objects computations but may
also include conventional node-resident programs. WAVE is currently operational
on SUN-based networks, in both LAN and WAN configurations [Bor92].

2.6. Telescript

Telescript is a commercial product developed by General Magic, Inc. (Moun
tain View, OA). While the details of the language have not yet been released,
the general operational principles are known and have been reported on in trade
journals [Way94] and technical reports [Whi94].

At thecore ofTelescript aretwo languages. High Telescript and Low Telescript.
The former is object-oriented and translated into the latter, which is interpreted
rather than compiled. Using these languages, it is possible to write programs to
describe the behaviors ofautonomous objects (referred to as Intelligent Agents in
Telescript). Similar to the objects in WAVE, a Telescript object is also autonomous
in that it can request—as part of its behavior—to be sent to some other node in

the underlying network. The receiving node then interprets the object's program,
which may in turn result in the sending of new objects to other nodes.

While Telescript employs the same basic principles of interpretive autonomous

objects as the previous three systems, it differs from these in its primary objectives.
Echo Algorithms, BPEM, and WAVE all strive for highly distributed computing.
Each attempts, in some way, to "colonize" the underlying network and to use
it as a resource to speedup some computational task. Telescript, on the other

hand, attempts to provide a communication medium independent of all underlying
network protocols or transport services. It is targeted to client-server type appli
cations in large geographically distributed networks, notably, the Internet. Instead



of having to establish a traditional "session", where low-level data messages are
exchanged between the client and the server, Telescript permits the creation of an

autonomous object by the client, which is released into the net in the search of a

suitable service. What makes this approach independent of network protocols is

that Telescript objects are interpreted and hence any "Telescript-sensitive" node,

i.e., one that contains the Telescript interpreter, is able to communicate with any
other such node.

Similar to Remote Evaluation, Telescript also aims at reducing message traffic
over the network. Without Telescript or Remote Evaluation, each client must

engage in a low-level message exchange with a (remote) server using the existing
network protocols. An autonomous object, on the other hand, is dispatched only

once to the server site, where it performs the necessary interactions locally or

possibly dispatches its own subobjects to other sites. When the task is completed,

it reports the answer to the original client. Hence only a single "round trip",
traveled by the object, is necessary between the client and the server.

2.7. Intelligent Email

Another line of research related to autonomous objects contains several related

approaches to creating what we shall collectively refer to as Intelligent Email

systems. The objective is to elevate electronic mail messages from simple carriers

of data to entities of a higher rank, called active messages, intelligent messages,
active entities, or envoys by the different projects [Gee91, Gol86, RiDa89]. The

purpose is to allow messages, having reached their remote destinations, to perform

actions of their own, including collecting data, interacting with other processes

or users on the remote host, or sending themselves to other destinations. An

example of an active message application given in [RiDa89] is the publicizing of

a conference. Initially, an active message would be sent to a list of potential

attendees. Once at their destinations, each message would ask its recipient for

additional names of potential participants, to whom it would send a copy of

itself, thus incrementally disseminating the announcement through the network.

Intelligent Email is similar to Telescript in that autonomous agents axe released

into the communication network to perform intelligent tasks on behalf of their

senders. Intelligent Email is more restrictive than Telescript in that it is confined

to the electronic mail domain. Unlike Telescript, however, it does not require each



participating host computer to run a special interpreter for the
by the active messages.

programs carried

2.8. A Classification

In this section we classify the various paradigms surveyed in the previous
sections along two orthogonal axes. The first axis captures the notion ofautonomy
of messages, that is, to what degree a message can be viewed as an object with
its own innate behavior, capable ofmahing decisions about its own destiny, rather
than being just a passive data object passed around by communicating nodes.
We distinguish three levels along the axis of autonomy: none, potential, and
inherent. The first contains paradigms where messages contain no navigational
information (other then their immediate destination); the second includes systems
where messages could contain some navigational information but this capability has
not been addressed explicitly by the developers; finally, the third category contains
paradigms where the fundamental operational principles are based on messages
representing completely autonomous objects with their own behaviors.

The second axis captures the ability of a paradigm to serve as a coordination
language for programs resident on various nodes throughout the network. We dis
tinguish four levels along that axis: none, process-based, function-based (resident),
and function-based (carried). The first category includes paradigms not intended
for coordination, i.e., those where messages have no ability to invoke any com
piled functions or interact with other processes; the second includes those where
functions already compiled and resident on the receiving node may be invoked
by spawning a new process for their execution, or where the autonomous object
can interact with other processes on the remote host; the third category include
paradigms where autonomous objects can invoke and execute precompiled func
tions aspart ofthecurrently running process; finally, the fourth includes paradigms
where the autonomous objects can actually carry a compiled program and invoke
it at the receiving node.

Figure 2 shows how the paradigms surveyed in the previous section can be cat
egorized based on the two criteria. Along the autonomy axis, RPCs and method

invocations in (distributed) object-based systems fall into the first category, where
a message contains only the name of the procedure/method to be invoked, together
with the necessary parameters. In terms of coordination capabilities, they fall into



COORDI
NATION process

function

(resident)

function

(carried)

Methods

inherent

AUTONOMY

potential

Echo

Algorithms

Remote

Evaluation

BPEM

WAVE

Telescript

Intelligent Email

MESSENGERS

Figure 2

Classification

the third category, since their main purpose is to invoke remote functions efficiently
as part of the current (server) process. Echo Algorithms and Remote Evaluation

both have the potential for autonomy in message passing, even though this aspect
has not explicitly been addressed. In the case of Echo Algorithms, applications
could be structured as collections of interpreters while all navigational and com

putational information could be carried on messages. These would then function

as fully autonomous objects exploring the underlying network in an asynchronous

manner. With Remote Evaluation, each message can potentially carry an arbi

trary program to be evaluated on a remote node. This program could in turn

spawn other messages, carrying the same or a modified program to other nodes

for remote evaluation. In that sense, messages under this paradigm can be consid

ered autonomous objects capable of carrying both computational and navigational

information. In terms of coordination capabilities, the two paradigms are very

different. While Remote Evaluation can (and is intended to) be used to perform

efficiently the invocation of pre-compiled functions carried throughout a network.

Echo Algorithms have no coordination capabilities. They have been designed as

a computational paradigm for network algorithms where the only node programs

executed are those that pass explorer and echo messages among nodes.

The remaining four paradigms, BPEM, WAVE, Telescript and Intelligent

Email, are highly unconventional in their basic philosophy. In all four cases, the

emphasis is on completely autonomous objects propagating through the underlying



network. An object's behavior is encoded in the form ofa complete program, which
determines what is to be done at each receiving node and where the objects should
be propagated next. BPEM, like Echo Algorithms, is a purely computational
paradigm, designed to find given patterns in the underlying network. The empha
sis in WAVE is alsoprimarily on computing, accomplished by waves of autonomous
objects navigating through the network, and communicating with one another by
reading andwriting node-resident variables. However, due to their ability to invoke
Unix shell processes, WAVE programs also possess a fair amount of coordination
capability, but only at the process level. Telescript and Intelligent Email aim at
providing autonomous agents capable of navigating the Internet. The main empha
sis here is on coordination in that each agent's task is to locate services, possibly by
spawning subagents to facilitate the search, to negotiate with each service locally,
and to coordinate the results for its original user. Computational capabilities are
secondary, employed only as part of the overall coordination process. However, in
addition to their communication capabilities, both also providemechanisms for in
voking node-resident functions. Finally, the MESSENGERS paradigm, which will
be described in Section 3, falls into the fourth category of coordination paradigms,
which permit an efficient execution offunctions carried by the autonomous objects.

We wish to emphasize that the concept of autonomy as used in this paper
should not be confused with process or object migration, which is orthogonal to
the former. While autonomy refers to theability ofmessages to navigate, migration
refers to the ability ofthe sending/receiving -programs to change location. There axe
a number of systems that support object migration (without message autonomy).
For example. Emerald [JLHB88] allows arbitrary migration of fine-grain objects,
including objects passed as parameters to remote sites. The purpose it to reduce
communication overhead during the remote operation. However, unlike Remote
Evaluation, the object being moved has no autonomy—it is being moved (in the
passive sense) by a command executed by some other object rather than as the
result of any of its o-wn actions. Another example of migrating entities are Worm-
based programs [ShHu82], where the application consists of a certain number

of communicating components, which try to find free network nodes to use as

computing resources. The distinguishing feature of a Worm is that it regenerates
any of its components automatically and dynamically if that component is killed.



This allows the Worm to "colonize" a subnetwork for its own purposes and to
migrate through the network as the availability of computing nodes changes.

As already mentioned above, Worm programs support the migration of the
communicating nodes rather than any autonomy of messages traveling through
the network. Program migration and message autonomy could, however, coexist in
the same system and effectively complement each other. In particular, a paradigm,
such as WAVE or MESSENGERS, that requires interpreters to be running on
all participating network nodes, could be built on top of a Worm-program. The
latter would establish the necessary network of interpreters and maintain their

availability by recreating those that have been killed on other nodes in the network.

The Autonomous Objects paradigm would then operate within this dynamically
maintained network of interpreters.

3. MESSENGERS

In this section we present a unifying view of the various paradigms presented
in Section 2, by describing a system, called MESSENGERS, currently under de
velopment at the University of California, Irvine. MESSENGERS is a general
Autonomous Objects paradigm, which incorporates the main features of the in

dividual models of Section 2 into a common framework. It is intended for the

composition and coordination of concurrent activities in a distributed environment

using autonomous objects called Messengers.*

3.1. The Language of MESSENGERS

For the purposes of this section we assume that nodes and links of the com

putational network have unique labels. Both nodes and links are logical entities
mapped onto the physical network. Multiple logical nodes can be mapped onto

the same physical node, in which case the interpreter is multiplexed among these
logical nodes, thus making them independent of one another and running con
currently. Logical links are addresses used by the logical nodes to communicate

with one another. The language distinguishes three types of variables: node, link,

and messenger variables, which axe associated with nodes, links, and Messengers,

respectively. The first two types are stationary (i.e. node- and link-resident) while

the third is carried by the Messenger as it propagates through the network. At

* We use capitalized lower-case when referring to the individual autonomous objects and upper-case
for the entire system.



any point in time, a Messenger has access to its own (messenger) variables, the
node-resident variables of the node currently interpreting the Messenger, and the
link variables of the link along which the Messenger arrived at the current node.

Every Messenger program has the following form:

i
Ci C2 ... C,- ... c„; messenger variables; functions

Each C| is either a computational or a navigational command. The arrow is
used to indicate the current command, i.e., the one to be interpreted next. This
corresponds to a program counter in a conventional language but must be made
part of the Messenger, rather than the processor state, since the Messenger migrates
between different nodes. "Messenger variables" denotes the set of variables local
to and carried as part of the Messenger. Finally, "functions" denotes a (possibly
empty) set of precompiled functions carried by the Messenger for the purpose of
remote evaluation.

Any command, c,-, constituting the Messenger's program could be one of the
following:

Computation:

1. define and initialize a node variable: the Messenger defines and initializes a
new variable resident in the current node

2. define and initialize a link variable: the Messenger defines and initializes a new
variable associated with the link along which it arrived at the current node

3. define and initialize a messenger variable: this defines and initializes a new

variable local to the Messenger; that is, the variable does not stay with the
current node or link but is carried along with the Messenger as it propagates
to other nodes

4. read node address: this allows the Messenger to read the address of the current
node

5. arithmetic or logic statement: the Messenger may perform arbitrary arithmetic
and logic operations using any node, link, or messenger variables

6. control statement: the Messenger may perform statements such as if-then-else,
while, or repeat-until as part of its computation



Navigation:

7. moveJ,o.node(S): this causes the Messenger to be forwarded to node S in the

network; that is, the Messenger is routed directly to the destination node

without following any logical links

8. repUcate-alongJink(L): this causes the Messenger to be replicated and a copy
sent along all links labeled L; if L is omitted, the Messenger is sent along all
links; when all replicas have been sent, the original copy in the current node
ceases to exist

9. send-alongjnew-link(L)\ this is similar to the previous command, however, the
sending of the Messenger causes the creation of a new link along which the
Messenger is sent; it is received by a new node created at the end of the

newly created link, which continues interpreting the Messenger; additional

parameters specify how the new node and link are to be mapped onto the

physical network

10. terminate: this causes the interpreter to discard the current Messenger

Interaction:

11. call: this invokes a precompiled function, waits for its completion, and returns

the results back to the invoking Messenger's program; the invoked function

could be one already residing on the current node or it could actually be
carried by the Messenger

12. spawn: this also invokes a precompiled function but as a separate process,
which runs concurrently with the invoking Messenger and may continue oper
ating even after the Messenger has left the node (or has terminated)

Commands 1-6 are strictly computational, allowing Messengers to define and

use arbitrary variables, which can then either be left in the current node or link,

or carried along to other nodes. The next 4 commands are navigational, allowing
the Messenger to specify where it wishes to propagate within the network. This

also includes termination, which is viewed as the Messenger leaving the network.*

Command 9 also embodies the concepts of mapping of the logical onto the physical

* Termination could also be viewed as a computational control command. We chose to view it as

navigation, since, from the interpreter's point of view, the Messenger is leaving the current node
and hence causes the interpreter to relinquish control as with the other navigational commands.



Ci^.1 Ci+2 Cj+3.

physical

nodes

pj interpreter h

Cf Ci^-i Ci+2 C,+3.

interpreter

Figure 3

Autonomous Object Invokes Node-Resident Program f()

network, since this allows new nodes and links be created, thus expanding the
logical network. As indicated above, additional parameters used with the command

determine the mapping. In particular, the new node could be mapped locally (i.e.,
on the current computer); remotely (on another computer); or on a computer
with specific properties. The link could be mapped according to the following
criteria; maximum bandwidth; shortest latency; communication cost. Finally, the
last two commands are related to communication with the environment, allowing
the Messenger to invoke node-resident functions as subprograms or as concurrent
processes.

The interpreter for the above Messenger language executing in each node then
has the following basic structure:

repeat forever
receive Messenger
repeat

interpret current command
increment current commaind pointer

until command = navigational

For each new Messenger, the interpreter continues processing its commands

until it encounters one that is navigational, i.e., one that causes the Messenger to

be removed from the current node. This also includes the terminate command,

which does not propagate the Messenger but discards it.

Figure 3 illustrates these basic principles graphically. It shows two network

nodes, each running the Messenger interpreter as one of its applications. A



Messenger is received by the first node (marked as step 1 in the figure) where
the current command c,- is assumed to be navigational, thus causing the Messenger

to be forwarded to the next node (step 2). The next command, Cj+i, is assumed

to be a call statement, causing the invocation of some node-resident program f()
(step 3). Upon returning from the function call, the interpreter carries out the

next command, Ci+2, which we again assume to be navigational. It causes a replica

of the Messenger to be sent to all neighbors of the current node (step 4), with the
current command pointer at command Ci+3. Note that steps 3 and 4 are sequential

since the propagation awaits the completion of the function. If, however, a "spawn"

command was used instead of "call", the two steps would proceed concurrently.

3.2. Comparison with other Paradigms

The above abstract Messenger language embodies many of the concepts de

veloped as part of the paradigms presented in Section 2. For example, it is easy

to see how a program corresponding to a simple RFC would be constructed: it

would consist of a function call, surrounded by two navigational commands—one

to transport the Messenger to the server site and the second to carry back the

results. Remote Evaluation can be handled using a similar program. The main

distinction is that the function to be evaluated is carried along by the Messenger.

Most of the capabilities of the other paradigms, notably Echo Algorithms,

BPEM, Telescript, and WAVE can also be subsumed naturally, depending on

the specific commands provided when implementing the above abstract Messenger

language. WAVE is closest to the above Messenger language and, in terms of its

basic operational principles, MESSENGERS is just an abstraction of WAVE. There

are, however, several important distinctions between the two. First, WAVE does

not allow for compiled functions to be carried as part of Messengers. Furthermore,

WAVE must create a new Unix process for every compiled function it invokes,

which, due to the excessive overhead, greatly limits its usefulness to serve as a

coordination language for distributed programs. With MESSENGER, functions

may be executed directly by being loaded and invoked as part of the interpreter

process. This light-weight capability is essential to make MESSENGERS useful for

coordination of distributed activities, such as the distributed simulation application

described in Section 4.2.



A second important distinction between WAVE and MESSENGERS is that,
unlike WAVE, the MESSENGERS interpreter does not permit multiple active
Messengers to coexist in the same logical node. This is because it does not

relinquish control until encountering a navigational command, which removes the
current Messenger from the node and frees the interpreter to continue with the

next Messenger. That is, the sequence of commands between the current and the

next navigational command is indivisible. The main advantage ofnot multiplexing
the interpreter among different Messengers is that no explicit constructs to enforce
synchronization among Messengers are needed. At the same time, this does not
restrict the expressive capabilities of this paradigm since a Messenger could give up
control explicitly (by a command analogous to sending itself to the same node), thus
allowing the interpreter to receive and interpret other Messengers in the meantime.

WAVE, while permitting multiple concurrent objects in a node, does not pro
vide any synchronization primitives. That is, cooperating WAVE programs cannot
block on a condition but can only coordinate their interactions through a form
a busy-waiting on shared node variables, which makes the programming of many
applications very awkward. This problem couldbe solved at the expense of a more
complex state management. Each WAVE program would have to be promoted to
an actual process, with its own running, ready, or blocked state. The base lan

guage could then be extended to include explicit synchronization constructs, such
as semaphores, out of which more complex constructs could be built. Not allowing
programs to interleave arbitrarily, as is the case with Messengers, eliminates this
problem.

The final distinction between WAVE and MESSENGERS is their user inter

face. WAVE features a highly condensed syntax with a large number of special-
purpose operators for navigation, computing, and communication. This permits
the construction of arbitrarily complexself-containedobjects but requires the learn
ing a new language that is dissimilar to any other programming language in both

syntax and semantics. Messengers, on the other hand, use the familiar c syn
tax, with a very few special constructs to express navigation. Unlike WAVE, the

Messenger language is intended primarily for coordination, while most of the actual

computation should be performed by compiled node-resident functions. Hence its

emphasis is on simplicity in orchestrating the operations of distributed applications

consisting of large numbers of independent functions as their basic building blocks.



4. Capabilities and Applications

The purpose of this section is to illustrate the capabilities of Autonomous

Objects paradigms, such as MESSENGERS, by describing solutions to problems

from a variety of application areas, some of which would be much more difficult to

solve using the conventional Communicating Objects paradigm.

4.1. Network Control—Computing in Unknown or Dynamic Topologies

The ability to operate in networks without any knowledge of their topology or
even in networks whose topology may be changing dynamically while computation

is in progress, is very important to a number of modern application domains,

such as telecommunication. A typical example is a mobile telephone network,
where large numbers of mobile units are not only constantly being turned on

and off but also roam in space and need to be tracked by a static network of

sender/receiver stations. Using an Autonomous Objects paradigm, it is possible to

construct arbitrary control structures superimposed over the physical network. The

purposeof sucha logical structure is twofold: (1) to hide the underlying networking
details, thus providing a more convenient abstract computing environment for an

application, or (2) to establish a given logical structure, such as a spanning tree or
a ring, for the purposes of network control; e.g., for distributing data or commands

to all nodes or for collecting status information.

To illustrate how MESSENGERS can be used for this purpose, we consider

the well-known graph-theoretic problem of finding a shortest-path spanning tree
in an undirected network with a given node S as its root. Normally, this problem

assumes a fixed weight associated with every link, which is used to compute the

length (i.e., cost) of each path in the tree. We consider an important variation

of the problem, where the link weight is not a fixed constant but corresponds to

the current propagation delay on that link. Hence the problem is to construct

a "shortest-communication" spanning tree in the current network topology. For

simplicity, we assume that the logical network topology is identical to the physical

network topology, i.e., a MESSENGERS interpreter is running in every physical

node and each can communicate with all its direct neighbors.

The following Messenger program finds the spanning tree as defined above.

The program is based on the principles of Echo Algorithms—it corresponds to the

first phase of every Echo Algorithm, which dynamically constructs a spanning tree



by asynchronously spreading explorer messages into all nodes. The program is
written using the constructs outlined in Section 3.

(1) move_to_node(S)

(2) repeat
(3) M_PREDECESSOR = read_node_address()
(4) replicate_along_links(ALL)
(5) if N.VISITED == FALSE

(6) then N.VISITED = TRUE

(7) N.PREDECESSQR = M.PREDECESSOR
(8) else terminate

(9) until terminate

The program utilizes three variables. N.VISITED is a node variable that

records whether the currentnode has already been visited by a Messenger. MJPRE-
DECESSOR is a messenger variable that carries the address of the node from which

the current Messenger arrived. NPREDECESSOR is a node variable that is set

to MPREDECESSOR if the current Messenger is the first to arrive at the node,
i.e., if it traveled along the fastest path from node S.

Note that the program is the behavioral descriptionof a Messenger. Hence the
code (compiled into an internal representation to minimize its length) is carried
by the Messenger as it propagates through the network. Initially, the Messenger is
injected into the starting nodeS (line 1). This nodeinterprets the repeat statement
(line 2), where the next command (line 3) reads the addressof the current nodeinto
the variable MPREDECESSOR. The next command (line 4) then causes the entire
Messenger to be replicated to all neighbors of S. A copy of the MPREDECESSOR

variable is carried by each Messenger.

Each receiving node continues interpreting the next command (line 5), which
determines if the node has already been visited before. If not, the variable
N.VISITED is set to TRUE to indicate that it now has been visited and the node

from which the Messenger arrived is remembered in NPREDECESSOR (line 7).
The collection of all N.PREDECESSOR values thus record an incrementally con
structed trace through the net, which will become the final spanning tree when all

Messengers terminate. If the condition on line 5 fails, the current branch dies (line
8). Otherwise, the repeat statement causes the Messengerto remember the address
of the current node (line 3) and to again replicate itself to all neighbors (line 4),
with its current command pointer advanced to the next command (line 5). This is



repeated until failure occurs (in line 8), causing the repeat statement to terminate

(line 9). When all nodes have been visited, the spanning tree is complete.

Note that the above program performs its task in a fully distributed manner,
without making any assumptions about the topology of the given network. The

resulting spanning tree is non-deterministic, reflecting the current communication

load on each of the links of the underlying network and thus guarantees the

minimum amount of time to visit all nodes [Cha82].

A similar program has been written in WAVE to construct the shortest-path
spanning tree in a network where the weights are recorded explicitly as link labels

[SaBo94]. The main distinction between this algorithm and the above shortest-

communication version is that, with the former, a branch does not terminate in

a node if it has already been visited but only when the path recorded thus far is

shorter than the one found by the current WAVE program. If the latter is shorter,
the node variables are updated to record the new path and the WAVE program
continues propagating. One drawback of the WAVE solution is that it does not have

link variables and hence the link weights are recorded as textual labels associated

with every link. With MESSENGERS,explicit link variables may be deflned, which
can then record information, such as weights, independently of the link labels.

Other programs, where autonomous objects navigate their way in o priori
unknown topologies, can be written for other well-known graph-theory problems,
such as the traveling salesman problem, shortest paths, maximum cliques, transi
tive closure, network radius and diameter, cycles, articulation points, or various

graph sort problems [SaBo94, Cha82].

4.2. Open-Ended Distributed Applications

The complex behaviors of many applications cannot be fully specifled at the

time of development or even after they have started operating. Typical examples

axe systems that require human intervention while the computation is in progress,

e.g., simulation scenarios where humans are integral components of the system

being simulated. Conventional simulation techniques require the entire experiment

to be set up and compiled prior to starting the execution. This is clearly inade

quate for interactive simulation. Autonomous objects offer a much more natural

paradigm within which such applications can be implemented.



inhalation

kidney

bladder

injestion

gastro
intestinal

excretion

excretion

excretion

Figure 4

Toxicological Model

4.2.1. Biomedical Simulations

Simulating biological and physiological processes in living organisms isofgreat
interest to many branches of medicine, biotechnology, pharmacology, as well as the
military. In collaboration with UCI's Medical School, we have developed several
parallel pharmaco-kinetic models using MESSENGERS to simulate the distribution

over time and the metabolism of various toxins by different organs of a living
organism. Figure 4 shows a simple model consisting of several organs and their
interactions. The model is defined by a system of differential equations that govern
the rates of absorption and excretion ofeach organ, the flow rate of blood through
each organ, the concentrations of the toxins in the blood stream and in the various

organs, their metabolic processes, and other possible interactions. The objective
of the simulations is to solve these equations over a given simulated time interval

to predict the levels of certain variables, such as the concentrations of toxins in the

various organs, as functions of time.

Originally, the models were implemented in Fortran as simple integration
routines driven by a fixed time increment. Using such a continuous time-driven

simulation, it is very difficult to improve its performance through parallelization.
Furthermore, it is impossible to interact with the simulation process, for example,

by altering some of the equations or constants, once execution has started.



Our implementation uses MESSENGERS as a control language to coordinate

the operation and interaction of compiled node-resident functions, which carry out

the actual computations of the model. The basic approach is to map each organ

onto a separate node (running the MESSENGERS interpreter). This node contains

the necessary sets of differential equations and constants describing the organ's

behavior. The toxin-carrying fluids, such as blood, are implemented as waves of

consecutive Messengers, which cycle through the organism along the predeflned

paths, thus mimicking the actual flow through the body over time. As they pass

through the organs, they trigger the execution of the appropriate functions to

compute the new concentrations and other values for the current simulated time

increment.

The circulation of the Messengers through the simulated organs can be driven

by time or by other events, such as changes in certain variables. In the first case, the

model mimics the original time-driven simulation, where each wave of Messengers

that pass from the lung node to the other organs and back represents one time

increment in the overall integration process. The lung node becomes the generator

of the virtual time increments, which it sends to all other organs with each wave

of Messengers. The time increments can be constant, or can vary with the rate of

change in the computed variables to automatically maintain the accuracy of the

computations at the same levels.

In the second case, the simulation becomes event- rather than time-driven.

This is accomplished by sending Messengers between nodes only when some vari

able changes by a predeflned threshold increment. This not only distributes

message traffic more evenly but actually reduces the total traffic volume, since

changes are propagated among nodes only when they become significant. At the

same time, the model's fidelity increases, since its precision does not depend on an

arbitrary time increment (which must be chosen conservatively small) but reflects

the actual current changes in the variable.

One of the main advantages of the above MESSENGERS implementations

is their inherent parallelism, since each organ is logically a separate computa

tional node. Furthermore, the parallelism is easily scalable to larger numbers of

organs—something that cannot be done with the current sequential implementa

tion. Additional parallelism, and, at the same time, a more precise model, can be

obtained by subdividing individual organs into subregions using a grid. This then



allows the modeling of different levels of toxins in different parts of the same organ
as well as their diffusion through the tissues over time. The subdivision offers the

possibility to map different grid cells on separate processors, thus further increasing
parallelism.

In addition to performance gains through parallelism, the MESSENGERS
implementation offers the potential for interactive simulation. In particular, it
may be possible for one or even multiple users to observe the simulation as it

unfolds and to interact with it by modifying its parameters or its functions. The
latter is possible because the computations performed ineach node are sequences of
function invocations prescribed and triggered by the arrival ofa Messenger. Hence
the user may easily change the computation while it is in progress by modifying
the Messengers circulating though the model.

4.2.2. DIS

The objective of the Distributed Interactive Simulation (DIS) initiative is to
establish standards that will permit the creation of synthetic environments to con
duct large-scale interactive battle simulations involving human personnel, aircraft
and other simulators operated by human pilots/drivers, simulated aircraft/vehicles
(called Computer Generated Forces), simulated unmanned objects, such as missiles,
geographical features, and other important phenomena [Lor92]. The proposed
standard is based on defining a common unit of discourse, called a Protocol Data
Unit (PDU), which encodes the necessary information about possible events. All
dynamic objects are then required to inform each other of their movements and

other events they cause by broadcasting that information using PDUs.

One of the main problems with this philosophy is that there is no correlation
between the simulated space and the underlying distributed network. Each par
ticipant simply gets a copy of the entire simulated space (geographical database)
and is responsible for maintaining all updates locally. The simulated objects do
not migrate through the physical network, only through the local simulated space.
Consequently, logical proximity is unrelated to physical proximity; e.g., two planes
flying in close formation could each be running on machines located on different

continents, or vice versa. The unfortunate implication is that PDUs from anygiven
object must be broadcast to the entire physical net, even though only a small num
ber of participants in the object's logical vicinity may potentially be interested in



this information. (Multicasting is being explored by the DIS community but no
satisfactory solutions have yet been found.)

Although DIS is now a de facto standard and its basic philosophy is not likely
to change, there are other applications with similar characteristics. At the last DIS

conference, we demonstrated that the principles of autonomous objects offer a more

natural formalism to satisfy the requirements of such open-ended simulations due

to their inherent mobility in the net [BBCS94]. The simulated space is divided into

a grid and each subregion is mapped onto a different physical node. Autonomous

objects, each representing a distinct simulated object, such as an aircraft or ship,
then move through the simulated space according to their predefined behaviors or

in response to an operator's directions. Once an object reaches the boundary of

a subregion, it is handed off to the appropriate neighboring region. Hence objects
move not only in the simulated space but actually migrate physically through the
network. The important implication is that logical proximity of objects is related

to their physical proximity and thus information about a given object does not

have to be broadcast to the entire net.

Many open-ended applications, such as DIS, also require the introduction of

new objects or new behaviors of existing objects at run time. Under existing
message passing paradigms, this is difficult to achieve, since the set of functionalities

(behaviors) for each object is defined and compiled in advance. To introduce a new

message type requires the definition of new functions to handle such messages. This

problem can be captured very succinctly by considering the generic structure of a

mobile object, such as a simulated aircraft, which is to propagate through a network

of monitoring stations. The program skeleton describing the object's behavior is

described as follows:

repeat

f(...)
next_node = g(node_variables, my_variables)
forward to next_node

until h(node_variables, my_variables)

The object must traverse a series of logical nodes representing monitoring

stations. In each station, it performs some local computation, represented by

the function f and then determines where to go next, i.e., the value of the vari

able next_node, which is computed by applying the function g to local variables



found in the current station node (node_variables) and variables it carries along
(my-variables) as it travels through the net. Once the destination is determined,
the object is transferred to the next station. In this way it keeps moving through
the net until the termination condition, computed by the function h, is satisfied,
at which time it ceases to exist.

The main point here is that the three functions, f, g, and h, which determine
the object's overall behavior, are unspecified. They could be different for each
object, thus defining objects with different behaviors. Furthermore, they may not
all be known at the time the simulation process is started; rather, the user should
be able to introduce new object types on the fly by specifying the functions f, g,
and h as needed in a given situation.

Autonomous objects offer great flexibility in developing such open-ended ap
plications, since thecommon agreed-upon basis of understanding isnot anencoding
of facts but a complete language, which is universally understandable at any node
containing the basic interpreter. This allows many decisions to be postponed until
run time. In [MBBC95] we have formulated several primitive Autonomous Object
programs (using WAVE) for guiding simulated objects through a spatial database.
These include primitives to follow a given line segment already existing in the
spatial database (e.g. a road), to move in a certeiin direction for a certain distance

through the simulated 2-dimensional space, or to replicate and spread a wave of
autonomous objects into an area within a certain radius. The first two primitives
then can be combined into more complex behaviors, allowing objects to navigate
through the simulated space. The third primitive may be used, among other things,
for orientation. That is, the object can actively "look" for other object, events, or
geographicalfeatures, by sending out waves of "sensing" objects, whichspread into
the observer's vicinity and report back information they have been programmed
to detect. This form of active sensing of the environment can be invoked any time
during the object's lifetime and thus can guide its navigation through the space.

4.3. Al Search Problems and General Problem Solving

There are two classes of AI problems that can benefit greatly from the dis

tributed nature of autonomous objects. The first has to do with searching for
matching patterns in graphs while the second actually creates graphs dynamically

as it searches for solutions.



Francis students

supervise

director

participate

Project-A Jack Jill Craig

director

Figure 5

A Semantic Network

Francis

supervise

participate

Project-A

students

Figure 6

Sample Query Template

4.3.1. Graph Matching Problems

Knowledge is frequently recorded in the form of directed graphs, where nodes

represent concepts or actions and edges represent relationships. Semantic nets

[Woo75] or cognitive maps [Zha92] are common forms of such knowledge repre
sentation. Many problems can then be formulated as searches for given patterns

in the underlying knowledge nets. In a traditional implementation, the nets are

viewed as passive repositories of knowledge, where programs are the agents that

search for and process the recorded information. With autonomous objects, we can
view the knowledge structure as an active network where each node is an inter

preter and the search for matching patterns is performed by autonomous objects

navigating through the net. These principles, developed originally as part of the

BPEM model, have already been introduced in Section 2.4. We now present a

more complex example involving a non-trivial search pattern.



Consider a portion of a knowledge network shown in Figure 5, which records
the various relationships among a faculty member (Francis), his project (Project-
A), and three students. Assume now that we wish to answer a query such as "which
of Francis' students work on Project-A?". This can be captured by a network
template shown in Figure 6, where X represents a free variable to be bound to

the answer. That is, to answer the query, we need to find a match for the query
template in the knowledge base of Figure 5; the underlying nodes that match X
("Jack" in the above example) constitute the answer.

To find the answer using autonomous objects, the template of Figure 6 is
transformed into a sequence of navigational steps that mimic a sequential scan of
the pattern and test for matches as the objects propagate through the knowledge
net. One possible sequence would be as follows. First, the autonomous object is
sent to one of the nodes, say "students", in the knowledge net (Figure 5). From
there it replicates along all "is-a" links, thus reaching the nodes "Jack", "Jill",
and "Craig". There are now three independent autonomous objects proceeding
concurrently. Each remembers the name of the current node (to later detect
the cycle) and replicates itself along all "supervise" links. Since "Craig" has no
such link, the object dies; the others, upon reaching a node, check if this node
is named "Francis" and, if so, propagate themselves along the "director" link.
Upon a successful match against the "Project-A" node, they continue along the
"participate" link. If the node reached at the end of that link matches the name of

the node each autonomous object remembered earlier, the cycle has been closed,
indicating a successful match of the entire pattern.

4.3.2. Problem Solving

To illustrate the use of autonomous objects in dynamically building a general
problem search tree, consider the "farmer-goat-wolf-cabbage" problem, which is
representative of many similar problems for AI. It can be stated simply as follows:

A farmer with a goat, a wolf, and a cabbage is standing on the left bank of a
river and wishes to cross it in a boat, which can hold only the farmer and one of

its three possessions at a time. The task is to find a series of river crossings such
that, at no time, is the goat left alone with the cabbage or with the wolf.

The algorithm given below (which has originally been formulated in WAVE

[SaBo94]) illustrates informally how an autonomous object program could be



written to solve this problem. Let L represent the set of possessions the farmer can

currently choose from at the left river bank. Initially, L={w,g,c,@} where w, g,
and c represent the wolf, goat, and cabbage, respectively, and @ means "empty",

symbolizingthat the farmer may choose to take the boat across empty. Similarly, R
represents the possessions the farmer may choose from on the right bank; initially,

R={@}. The algorithm is then as follows:

replicate_along_new_link()
L=-Cw,g,c,®}
R={(a}
repeat

for each element e in L do:

if w,g or g,c are in L-e then terminate
else replicate_along_new_link()

L=L-e

R=R+e

for each element e in R do:

if w,g or g,c are in R-e then terminate
else replicate_along_new_link()

replicate program along this link
L=L+e

R=R-e

until L={Q}

From its starting point (which could be any node in the network), the au

tonomous object first creates a new link and propagates itself along that link to

a new node. In this node it creates the two initial lists L and R. From there, the

object then dynamically creates a breadth-first parallel search tree as follows. It

considers each element e of L for possible transfer to the right bank. If g is left on L

with either w or c, this branch terminates. Otherwise, a new link and a new node

are created and the entire program is replicated along that link, thus representing

the movement of the particular element e to the right bank. At the receiving end

of the link, the newly created node moves the element e from L to R. After that,

an analogous process is repeated in each of these nodes with the elements on R

(representing the transfer from the right to the left bank), trying to move them to

L without leaving w,g or g,c together. Eventually, one or more paths result in a

configuration where L is empty while R contains all possessions.

Figure 7 illustrates the search tree. Starting from the root node, only the

movement of g does not violate the two restrictions and hence a new node with L =

@} and R = {5^,®} is created. From there, two possible paths are possible.

One of these ferries g back to L, thus resulting in the original configuration. This



w,g,c,@ :

w,c,(a : g,«

c,® : g,w,(i

c,g,® : w,(i w,g,® : c,

: w,g,c, : w,g,c

Figure 7

Problem Search Tree

path, which does not lead to any new solution, is not expanded further in the
figure.^ The successful path, which moves the boat empty to L results in a new
node, where L and R are unchanged.

The next step allows the movement of either w or c from L to R. The two

successful branches then continue in parallel, each exploring all possible moves,
until a solution is found. The two possible sequences of successful moves are

g] w, g\ c; g and g-, c; g-, w, g.

The main advantage of the above autonomous objects solution is that it can

adapt automatically to any underlying network topology, thus exploiting paral
lelism available at the time of execution. This can be achieved by letting each
autonomous object decide, based on the current network status, whether to create

the next tree node locally or on another computer.

additional test in the program. This was left out
le.

t This path can easily be optimized away by an a(
from the algorithm to keep it as simple as possible



4.4. Other Advantages of Autonomous Objects

In addition to the capabilities presented in the preceding sections, there are

several other areas where the Autonomous Objects paradigm offers greater flexibil

ity than other approaches to distributed computing. Among these are robustness,

security, and accountability.

Robustness is the resilience to failure and the ability to recover from failure

so that operation can resume in the least disruptive manner. The latter depends

greatly on the system's flexibility, since no design will be able to predict all possible

failure scenarios. The Autonomous Objects paradigm by its very nature provides

for great flexibility and, consequently, robustness, of a system in that it does not

"hard-wire" any behavior into its nodes but rather constantly responds to messages

as they arrive.

To illustrate the point, consider the problem of node failure in a network. One

possible strategy to deal with a single node failure is the following: each logical

node, initially, determines its surrounding topology, i.e., the addresses of all its

neighbors. It then designates one of its neighbors (running on a different physical

node) as its "guardian" to whom it sends the information about its surrounding
topology. This guardian then periodically tests the availability of its "ward". If

the latter is destroyed or damaged, the guardian recreates it and all its links on a

different physical node using the previously supplied information.

The above recovery protocol can obviously be written in any conventional

language. However, once it has been implemented and deployed, no modification

to the scope or strategy of the recovery algorithm is possible. For example,

to change the strategy such that it could deal with the concurrent failure of

two nodes would require each node to obtain a larger view of its surrounding

topology and to designate more than one possible guardians. Hence, given a

conventional programming paradigm, any such change would require new programs

to be written, compiled, and distributed to all nodes in the net. With autonomous

objects, on the other hand, the behavior is carried on a message. Hence, extending

the recovery protocol sketched above would only require the development of a new

"program" released into the network on one or more messages. There is no need

to modify any nodes or to even know how many nodes there are and in what

configuration. Hence it is possible to establish (logical) network structures with a



built-in capability of self-regeneration or replication, where the level of resiliency
can be modified arbitrarily at any time during the system's operation.

Security and AccountabUity. Autonomous objects are similar to viruses or
worms in that they spread autonomously through a network. A fundamental differ
ence, however, is that objects are interpreted while viruses and worms are compiled.
Viruses typically attach themselves to legitimate (compiled) programs andthus be-
come very difficult to detect. V^orms actively look for idle computer nodes, which
they "invade" by spawning remote processes on them. Autonomous objects, on
the other hand, are under complete control of the interpreters, which decide what
privileges they will be granted, which resources, including CPU time, they may
utilize, and how their creators will be billed for the services rendered. Many of
these issues, including billing and controlling "runaway" objects by restricting the
amounts ofresources they are allowed to utilize throughout their lifetime, have been
studied extensively as part ofTelescript [Whi94]. Hence autonomous objects offer
a much safer way to provide public services in a highly distributed environment.

5. Conclusions

In this paper we have compared several novel paradigms for distributed com
puting where messages carry some amount of behavioral information and thus can

be considered as having a certain degree of autonomy in navigating through the
network. We have demonstrated the capabilities of this approach by presenting
a spectrum of problems, formulated originally using the various instances of the

general Autonomous Objects paradigm, notably. Echo Algorithms and WAVE.

In addition to autonomy, we have also considered the ability of the paradigm
to serve as a coordination language for applications consisting of node-resident
compiled programs distributed throughout the network. The need for such lan

guages has been argued for eloquently by Gelernter and Carriero in a recent article

[GeCa92]. They observe that most existing programming languages focus pri
marily on computing, while leaving the aspects ofcommunication (including I/O)
and coordination to be handled outside the scope of the computing model, i.e.,
through ad hoc language extensions or library routines. They observe further that
market forces of prepackaged softwareare already forcing a shift from creating new
programs from scratch toward composing complex systems from existing program



components. This will require the development of new coordination languages to
facilitate the construction of such program ensembles.

We feel that the MESSENGERS paradigm, which incorporates the ability to

efficiently invoke functions on remote nodes into the general autonomous objects

philosophy, satisfies these requirements much better than other approaches, which

typically offer an embedded set of primitives callable by processes to coordinate

their activities. MESSENGERS allows the construction of arbitrarily complex

control sequences, which are carried on messages through the network and which

are capable of invoking node-resident computational programs as well as to coordi

nate their operation by carrying information among them. We have demonstrated

these capabilities in the construction of the toxicology simulation models, which

are collections of sequential distributed functions threaded together at run time

through waves of autonomous objects that cycle through the computational nodes.

The same principles can, of course, be applied to applications in other areas. Our

current work includes the identification of useful navigational and coordination

constructs that would allow us to design a language aimed specifically at the con

struction of distributed program ensembles.



References

[Ame87] p. America, POOL-T: A Parallel Object-Oriented Language. In Ob
ject-Oriented Concurrent Programming, Akinori Yonezawa and Mario
Tokoro, Ed., The MIT Press, 1987, pp. 199-220.

[BST89] Bal, H.E., Steiner, J.G., Tanenbaum, A.S. Programming Languages
for Distributed Computing Systems. ACM Surveys 21, 3 (1989).

[Bic85] Bic, L. Processing of Semantic Nets on Dataflow Architectures. Arti
ficial Intelligence. 27 (1985).

[Bic87] Bic, L. Data-Driven Processing ofSemantic Nets. In ParallelCamputa
tion and Computers for Artificial Intelligence, J. Kowalik, Ed., Kluwer
Publ, 1987.

[BBCS94] Bic, L., Borst, P., Corbin, M., Sapaty, P. The WAVE Control Proto
col for Distributed Interactive Simulation. 11th Workshop on Standards
for the Interoperability ofDistributed Simulation (Sept, 1994), Orlando,
FL.

[BiLe87] Bic, L., Lee, C. A Data-Driven Model for a Subset ofLogic Program
ming. ACM TOPLAS 9, 4 (Oct, 1987).

[BiNe84] Birrell, A.D., Nelson, B.J. Implementing Remote Procedure Calls.
ACM Tranc. Computer Systems 2 (1984).

[BLL88] Bershad, B.N., Lazowska, E.D., and Levy, H.M. PRESTO: A
System for Object-Oriented Parallel Programming. Software-Practice
and Experience 18, 8 (August, 1988), pp. 713-732.

[Bor92] Borst, P. The First Implementation of the WAVE Systems for UNIX
and TCP/IP Computer Networks. Technical Report 18/92 (Dec, 1992),
Univeristy of Karlsruhe.

[Cha82] Chang, E.J.H Echo algorithms: depth parallel operations on general
graphs. IEEE Trans. SE SE-8 (4) (1982).

[DaCh88] Dally, W.J., Chien, A.A. Object-Oriented Concurrent Programming
in CST. The Third Conference on Hypercube, Concurrent Computers
and Applications 1 (Jan., 1988), pp. 434-439, Pasadena, CA.

[DiSc80] Dijkstra, E.W, Scholten, C.S. Termination Detection in Diffusing
Computations. Inf. Process. Letters 16,, 5 (Aug., 1980).



[ECGS92] VON Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.
Active Messages: a Mechanism for Intergrated Communication and
Computation. 19th Int'l Sump. Computer Architecture (May, 1992),
Gold Coast, Aus.

[GeeQI] Geesink, L.H. The Coordination of Distributed Active Messages in a
Dynamic Network Topology. The Computer Journal S4, 6 (1991).

[GeRo88] Gehani, N.H., Roome, W.D. Concurrent CH—h: Concurrent Program
ming with Class(es). Software—Practice and Experience 18(12) (Dec.,
1988), pp. 1157-1177.

[GeCa92] Gelernter, D., Carriero, N. Coordination Languages and their
Significance. Comm. ACM 85, 2 (Feb., 1992).

[Gol86] Gold, E. Envoys in electronic mail systems. ACM SIGOIS Conf.
Office Automation Systems, SIGOIS Bulletin 7, (2,3) (1986).

[JLHB88] JuL, E., Levy, H., Hutchinson, N., Black, A. Fine-Grain Mobility
in the Emerald System. ACM Trans. Computer Sys. 6, 1 (Feb., 1988).

[Lor92] Loral Systems Company Strawman Distributed Interactive Simu
lation Architecture Description. ADST/WDL/TR-9200S010 1 and 2
(1992), Training Devices, Naval Training Systems Center, Orlando,
FL.

[MBBC95] Merchant, F. Bic, L., Borst, P., Corbin, M., Dillencourt, M.,
Fukuda, M., Sapaty, p. Simulating Autonomous Objects in a Spatial
Database. 9th European Simulation Multiconf. (June, 1995), Prague,
Czech Rep..

[RiDa89] Richardson, F.W., Danielsen, T. Intelligent Messages or When
messages come alive. In Network Information Processing Systems, (K.
Boyanov and R. Angelinov, Eds.), North-Holland, 1998.

[Sap88] Sapaty, P. WAVE-1: A New Ideology of Parallel and Distributed
Processing on Graphs and Networks. Future Generations Computer
Systems 4(1) (1988).

[SaBo94] Sapaty, P.S., Borst, P.M An Overview of the WAVE Language and
System for Distributed Processing of Opne Networks. Technical Report
(1994), University of Surrey, UK.

[ShHu82] Shoch, J.F., Hupp, J.A. The "Worm" Programs—Early Experience
with Distributed Computation. Comm. ACM 25, 3 (March, 1982).



[StGi90] Stamos, J.W., Gifford, D.K. Remote Evaluation. ACM Trans. Pro
gramming Lang, and Systems 12, 4 (Oct, 1990).

[TuMa94] Tucker, L.W., Mainwaring, A. CMMD: Active messages on the
CM-5. Parallel Computing 20 (1994), Elsevier Science Publ..

[Way94] Wayner, p. Agents Away. BYTE (May, 1994).

[Whi94] White, J.E. Telescript Technology. Technical Report (1994), General
Magic, Inc., Mountain View, OA 94040.

[Woo75] Woods, W.A. What's in a Link: Foundations for Semantic Networks.
In Representation and Understanding, Bobrow & Collins, Ed., Aca
demic Press, 1975.

[YoTo87] Yokote, Y., Tokoro, M. Concurrent Programming in Concur-
rentSmalltalk. In Object-Oriented Concurrent Programming, Akinori
Yonezawa and Mario Tokoro, Ed., The MIT Press, 1987, pp. 129-158.

[Zha92] Zhang, W-R. et al. A Cognitive-Map-Based Approach to the Coordi
nation ofDistributed Cooperative Agents. IEEE Tran. Systems, Man,
and Cybernetics 22, 1 (Jan/Feb, 1992).




