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Abstract

Graph Curvature for COVID-19 Network Risk Analytics

by

Qingyuan Cui

Curvature of a smooth manifold is quite intuitive, and has been studied in

differential geometry for a long time. However, the notion of curvature for metric

spaces in general, and for graphs in particular, is a relatively recent idea. In 2015,

graph Ricci curvature was introduced as a framework to consider neighborhood

to neighborhood interactions within a weighted undirected graph. In this thesis,

we generalize graph Ricci curvature for weighted directed graphs, and apply this

notion to analyze the spread of the Coronavirus disease 2019 (COVID-19) across

the counties in the state of California.

We use real data for the daily traffic across different counties in California,

and the daily COVID-19 case counts from March 2020 to March 2021. We demon-

strate that graph Ricci curvature, and curvatures derived from it–such as graph

scalar curvature–are particularly suited to dynamically predict and locate the on-

set and intensity of virus spread. The outcome of this thesis is a novel geometric

data-driven risk analytics methodology to identify time-varying network-level risks

for a virus spread. We envisage that our ideas will be useful for designing dynamic

nonpharmaceutical intervention (NPI) strategies across the network to optimally

mitigate the spread of the virus.

vi



Acknowledgments

I thank Professor Abhishek Halder for his detailed and patient guidance. I also

thank Karthik Sivaramakrishnan for discussion during the early phase of this re-

search.

vii



Chapter 1

Preliminaries on Graphs

In this introductory Chapter, we review some preliminaries on graphs, and

introduce the county-level traffic graph that will be useful in the sequel.

1.1 Graphs

A graph G is specified by pair of sets: a set of vertices V, and a set of edges

E . We write G = (V, E). Figure 1.1 shows an unweighted undirected graph with

the vertex set V = {a, b, c} and the edge set E = {ab, ac, bc}. Because this graph is

undirected, meaning the edges have no directionality associated with them, hence

ab and ba are referring to the same edge, that is, ab ≡ ba.
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a

b

c

Figure 1.1: An unweighted undirected graph with three vertices a, b, c.

A directed graph is a graph whose all edges are directed. Each directed edge

encodes two information: the connectivity between the two associated vertices, and

the direction of that connectivity. Figure 1.2 shows an unweighted directed graph

with the vertex set V = {a, b, c} and the edge set E = {ab, ac, bc, cb}.

a

b

c

Figure 1.2: An unweighted directed graph with three vertices a, b, c.

A weighted graph G is a triple: a set of vertices V, a set of edges E , and a

weight function w : E 7→ R. For a weighted graph G, we write G = (V, E , w). Figure

1.3 shows a weighted undirected graph with the vertex set V = {a, b, c}, the edge

set E = {ab, ac, bc}, and the weights w(ab) = 4, w(bc) = 6, w(ac) = 12.
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a

b

c

4

6

12

Figure 1.3: A weighted undirected graph with three vertices a, b, c.

A weighted directed graph is a weighted graph whose all edges are directed.

Figure 1.4 shows a weighted directed graph with the vertex set V = {a, b, c}, the

edge set E = {ab, bc, ac, cb}, and the weights w(ab) = 4, w(bc) = 6, w(ac) =

12, w(cb) = 23.

a

b

c

4

12

6

23

Figure 1.4: A weighted directed graph with three vertices a, b, c.

1.2 Adjacency Matrices for Weighted Directed Graphs

The adjacency matrix of a weighted directed graph G (V, E , w) with V =

{v1, v2, v3, ..., v|V|}, is denoted as A ∈ R|V|×|V| where |V| denotes the cardinality of

3



the vertex set V. Specifically, the adjacency matrix A is defined as

Aij :=


w(vivj) if vivj ∈ E ,

0 otherwise,

(1.1)

for all i, j = 1, . . . , |V|. Consider, for instance, the graph shown in Fig. 1.4. Its

adjacency matrix is

A =


0 4 12

0 0 6

0 23 0

 .

1.3 County-level Traffic Graph

In this work, we model the county level traffic of the United States on

any given day (say January 1st, 2020) using a weighted directed graph where each

county is represented as a vertex, and there exists a directed edge ab between two

counties a and b provided people traveled from county a to county b on that day.

Then, the weight

w(ab) = the traffic count from county a to county b on that day.

To exemplify this idea, suppose that we only have three counties: Santa Clara

County (SC), San Francisco County (SF), and Los Angeles County (LA), and con-

sider the following table showing traffic between these three counties on a particular

day. The weighted directed graph associated with Table 1.1 below, is shown in Fig.

1.5.
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From county To county Traffic count

SC SF 50

SC LA 5

SF SC 0

SF LA 2

LA SC 0

LA SF 60

Table 1.1: Example single day traffic between three counties SC, SF, and LA.

LA

SC

SF

5

50

60 2

Figure 1.5: County-level traffic graph as per Table 1.1.

The corresponding adjacency matrix is given by

A =


0 50 5

0 0 2

0 60 0

 .

In the 3 county example above, we observe a significant cross-county

traffic to SF, and in the context of COVID-19, hinting that implementing non-

pharmaceutical interventions (NPIs) such as shelter-in-place orders, social distanc-

ing, closure of schools and daycares, should become important in SF. This suggests

that the cross-county traffic graph may, in general, be useful to identify vulnerable

edges, thus helping us determine exactly which edges should the NPI measures be

directed at. This will in turn, help the county-level decision making by determining

5



when, where, and for how long to implement the NPI measures, by looking at the

time-varying county-level traffic graphs.

In the ensuing chapters, we will propose an algorithm to compute the dis-

tribution of the graph Ricci curvature over the directed edges of the daily county-

level traffic graphs, to identify the spatio-temporal variation of the edge vulnerabil-

ities.

6



Chapter 2

Optimal Transport on Directed

Graphs

In this chapter, we introduce the optimal transport between discrete proba-

bility measures on a directed graph. To this end, we first recall the notion of directed

path, its length, and the hop distance. Then we set up the optimal transport prob-

lem, and define the 1-Wasserstein distance. The notion of 1-Wasserstein distance

will be needed in the subsequent chapters to compute the graph Ricci curvature.

2.1 Directed Path

Let [n] := {1, 2, . . . , n}. Given a directed graph G = (V, E), a directed path

of length n is a sequence of distinct directed edges {e1, e2, e3, ..., en} in G, for which

there exist a sequence of distinct vertices {v1, v2, v3, ..., vn+1} in G such that

ei = vivi+1 for all i ∈ [n], ei ∈ E , vi ∈ V.

Thus, a directed path is a sequence of distinct directed edges joining a sequence of

distinct vertices. We denote the length of a directed path as l{e1,e2,...,en}(v1, vn+1) =

7



n.

Notice that for any pair of nonidentical vertices in G, there may exist zero,

one or multiple directed paths connecting them. If there exist multiple directed

paths between two distinct vertices, it is further possible that some of them may

have equal lengths. This is why, in the notation for the length of a directed path,

we put the edge sequence as the subscript of l.

2.2 Vertex Reachability

We say that the vertex v1 ∈ V connects to v2 ∈ V, v1 6= v2, if there exists

at least one directed path from v1 to v2. In other words, v2 is reachable from v1.

Symbolically, we write v1  v2.

Likewise, we say that the vertex v1 ∈ V does not connect to the vertex

v2 ∈ V, v1 6= v2, if there does not exist a directed path from v1 to v2, i.e., v2 is not

reachable from v1. Symbolically, we write v1 6 v2.

We can extend the notion of reachability from vertex-to-vertex level to

subset-to-subset level. For instance, given two nonidentical subsets V1,V2 ⊂ V, we

say V1  V2 if v1  v2 for all vertex pairs (v1, v2) ∈ V1×V2. In words, V1 connects

to V2, or equivalently, the set V2 is reachable from the set V1. Likewise, V1 6 V2 if

there exists a vertex pair (v1, v2) ∈ V1 × V2 such that v1 6 v2.

8



2.3 Hop Distance

Given a directed graph G = (V, E), we define the hop distance, also known

as the combinatorial graph distance, as the mapping dHop : V × V 7→ R as follows.

dHop(v1, v2) :=



min
s∈S

ls(v1, v2) if v1  v2,

∞ if v1 6 v2,

0 if v1 = v2,

where S is the set of all directed paths from the vertex v1 to the vertex v2. In

words, the hop distance is the length of the shortest directed path from a vertex to

another.

a

b c

d

0.9157

0.9595

0.9340 0.7060

0.7577

0.8491

0.7922

Figure 2.1: An example directed graph to illustrate the hop distance.

To illustrate the ideas above, consider the directed graph shown in Fig.

2.3. Here, dHop(a, c) = 0 because the vertex a does not connect to the vertex c. On

the other hand, dHop(d, c) = 2 because the shortest directed path from the vertex

d to the vertex c is realized by the edge sequence {db, bc}, and the length of this

directed path is l{db,bc}(d, c) = 2.
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2.4 Optimal Transport and the 1-Wasserstein Distance

Given a directed graph G (V, E), consider two subsets X ,Y ⊆ V. Suppose

that we are given two probability distributions (i.e., discrete probability measures)

µ,ν over the vertex sets X ,Y, respectively. We represent µ,ν as column proba-

bility vectors, i.e., elements of the standard simplices of dimensions1 |X | and |Y|,

respectively. In other words,

1>|X |µ = 1>|Y|ν = 1, µ ≥ 0|X | (elementwise), ν ≥ 0|Y| (elementwise),

where the symbols 1 and 0 denote column vectors with all ones and all zeros,

respectively, with their lengths denoted by their subscripts.

The problem of optimal transport [18, 22] concerns with computing the

optimal plan to transport the measure µ on X to the measure ν on Y. For this

purpose, suppose that the cost of transporting unit amount of probability mass

from the vertex x ∈ X to the vertex y ∈ Y is equal to dHop(x, y). Then, the optimal

transportation plan π solves

arg min
π

∑
x∈X ,y∈Y

dHop(x, y)π(x, y) (2.1a)

π(x, y) ≥ 0 (elementwise), (2.1b)∑
y∈Y

π(x, y) = µ, (2.1c)

∑
x∈X

π(x, y) = ν. (2.1d)

Notice that the objective in (2.1a) is the total transportation cost. Also observe

that (2.1c)-(2.1d) together imply
∑

x∈X ,y∈Y
π(x, y) = 1, which combined with (2.1b)

ensure that π is a joint probability measure with X marginal µ, and Y marginal ν.

1Here, | · | denotes the cardinality of the set argument, and the superscript > denotes the
transpose operator.
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Since the objective and constraints in (2.1) are all linear in π ∈ R|X |×|Y|,

computing the same amounts to solving a linear program (LP) in the matrix vari-

able π. To explicitly write this LP, let dHop ∈ R|X |×|Y| be the associated Hop

distance matrix, and let 〈·, ·〉 denote the Frobenius inner product. Then (2.1) can

be rewritten as

arg min
π

〈dHop,π〉 (2.2a)

π ≥ 0 (elementwise), (2.2b)

1>|Y|π = µ, (2.2c)

1>|X |π = ν. (2.2d)

The minimum value of (2.1), or equivalently of (2.2), is called the 1-Wasserstein

distance, or the Earth mover’s distance, denoted as W1 (µ,ν). It can be shown that

W1 is, in fact, a metric on the space of probability measures, i.e., W1 (µ,ν) = 0 if

and only if µ = ν, W1 (µ,ν) = W1 (ν,µ), and it satisfies the triangle inequality.

This quantity W1 will be an important ingredient in the next Chapter.

We remark here that the Wasserstein metric and optimal transport have

garnered significant recent interests in control design [1,11], uncertainty propagation

and filtering [2, 9], probabilistic validation [6–8] and verification [8, 13].

Notice that if the subsets X ,Y are such that a vertex x ∈ X does not

connect to a vertex y ∈ Y, then the corresponding dHop(x, y) = ∞, and therefore,

W1 = ∞. Thus, to have W1 < ∞, each vertex in X should connect (over possibly

multi hop) to every other vertex in Y.

We note that the LP (2.1), or equivalently (2.2), has |X | × |Y| unknowns,

and |X | × |Y| + |X | + |Y| constraints. The state-of-the-art method to solve this

exact LP involves recasting the same as a network flow problem and then to solve it

11



in Õ
(
|X | × |Y|

√
|X |+ |Y|

)
time [14] wherein as usual, Õ(·) hides polylogarithmic

factors in |X |, |Y|.

12



Chapter 3

Curvature of Weighted Directed

Graphs

As the intuition suggests, the concept of curvature quantifies the degree

to which a surface, or smooth Riemannian manifold, differs from being “flat” or

Euclidean. Perhaps less intuitive is the idea that the notion of curvature can be

extended to nonsmooth discrete spaces such as graphs, and even if such an extension

is possible, it is far from obvious what information can be gleaned about a dynamics

that is evolving on the underlying network. Progress in this direction came quite

recently: a 2009 paper by Ollivier [16] extended the idea of Ricci curvature to

Markov chains on general metric spaces, and a 2011 follow-up by Lin, Lu and

Yau [15] extended the same to the graphs. In the following, we review these ideas

and then introduce the Ricci curvature for weighted directed graphs.

13



3.1 Ricci Curvature on a Riemannian Manifold

In Riemannian geometry, the notion of curvature measures the deviation of

the manifold from being locally Euclidean. Ricci curvature quantifes that deviation

for tangent directions. It controls the average dispersion of geodesics around that

direction. It also controls the growth of the volume of distance balls and spheres.

Figure 3.1: Two spheres Sε(x) and Sε(y) in a Riemannian manifoldM. The tangent
vector at x ∈ M is the vector v with endpoint y ∈ M. The dashed lines show the
“inter-sphere” geodesics.

Let ε, δ > 0, and as shown in Fig. 3.1, consider two points x, y in a smooth

Riemannian manifold M of dimension n. Suppose that the points x, y are at a

geodesic distance d(x, y) = δ apart. Let v be a tangent vector at x with endpoint y.

Suppose the sphere Sε(x) with radius ε centered at x get parallel transported to the

sphere Sε(y) with radius ε centered at y. The points on these two spheres are, on

average, at a distance δ(1 − ε2

2nRic(v)), where Ric(v) denotes the Ricci curvature

in the tangent direction v; see e.g., [17, Corollary 10], [19].

From above, it is clear that in the context of Riemannian geometry, a

positive Ricci curvature implies that small spheres are closer (in transport distance)

than their centers. Specifically, if the Ricci curvature is negative, small spheres are

further than their centers. Replacing the spheres by balls replaces the factor ε2

2n

14



by ε2

2(n+2) ; see [17, Corollary 10]. In other words, in a Riemannian manifold M of

dimension n, two balls of radius ε centered at x, y ∈M respectively, are located at

an average distance

δ

(
1− ε2

2(n+ 2)
Ric(v) +O

(
ε3 + ε2δ

))
.

Here, the average is with respect to the uniform Riemannian volume measure on the

respective balls. Neglecting the higher order (i.e., O(·)) term, gives us the stated

relation among the average distance between the two balls, the distance between

the centers of the two balls, and the Ricci curvature.

3.2 Ricci Curvature on a Metric Space

The 2009 paper by Ollivier [16] extended the notion of Ricci curvature to

general metric spaces. The key idea was to equip the metric space with a suitable

(possibly discrete) measure, and to extend the geometric intuition that in a posi-

tively (resp. negatively) curved space, balls are closer (farther) than their centers.

Balls are defined by their volume measures. So to define Ricci curvature in a metric

space, what is needed is a way to compare the distance between suitably defined

“ball measures” with the distance between those balls’ centers (points in that metric

space). In case of a smooth Riemannian manifold, it is natural to take arbitrarily

small balls (hence the small radius ε > 0 in the previous subsection). In case of a

graph, it is natural to take unit balls.

Thus, characterizing the Ricci curvature in a metric space requires two

ingredients:

• a way to compute distance between the volume measure of the balls.

15



• a way to compute distance between the “points”.

When the metric space is a graph, the “points” are the nodes or the vertices of the

graph, and a natural notion of distance between the nodes is the “hop distance”,

i.e., the minimum number of edges (geodesic length) from one node to the other.

To compute distance between the balls, one needs a notion of distance

between the (normalized) measures, and in case of a graph, this is naturally given

by the 1-Wasserstein distance W1 introduced in Chapter 2. Thus, computing the

distance between unit balls centered on two different nodes of a graph reduces to the

following: consider the pair of normalized discrete measures in the respective (one

hop) neighborhood of the two nodes under consideration, and then compute the

1-Wasserstein distance between these two discrete measures. In the graph context,

unit ball ≡ “one hop neighborhood”. To compute the Ricci curvature in a graph, we

are thus led to comparing the transportation distance between the discrete measures

in the one hop neighborhood of two given points to the distance between those

points.

To formalize the ideas above, let (X , d,m) be a polish (i.e., complete sepa-

rable) metric space equipped with measure m, and distance metric d. Let x, y ∈ X

be two distinct points. The Ricci curvature κ(x, y) of (X , d,m) along the path xy

is

κ(x, y) = 1− W1(mx,my)

d(x, y)
, (3.1)

where W1(mx,my) is the 1-Wasserstein distance between two measures mx and my

over the unit balls centered around the points x, y, respectively. In (3.1), the d(x, y)

denotes the length of the geodesic distance between x, y ∈ X . Often (3.1) is referred

to as the “coarse Ricci curvature” [17, Def. 18]. We point out that (3.1) tacitly

16



assumes that both the measures mx,my have finite first moments.

3.3 Unit Ball in A Weighted Directed Graph

Consider a weighted directed graph G = (V, E , w). For any x ∈ V, let

N (x) := {x1, x2, . . . , xk} be the one hop out-neighborhood of x, meaning that

dHop(x, xi) = 1 for i = 1, 2, ..., k. Clearly, N (x) ⊂ V for all x ∈ V. We define the

unit ball of any node x ∈ V as a discrete probability measure

mx = {µx(x1), µx(x2), . . . , µx(xk)}

supported on {x1, x2, . . . , xk}, where

µx(xi) :=


w(xxi)∑k

j=1 w(xxj)
if xi ∈ N (x),

0 otherwise.

(3.2)

As an example, consider the node b in Fig. 2.1. Its out-neighborhood N (b) = {a, c}.

The unit ball centered at the node b is given by the (normalized) discrete probability

measure

mb =

{
0.9157

0.7577 + 0.9157
,

0.7577

0.7577 + 0.9157

}
= {0.5472, 0.4528}

supported on N (b) = {a, c}.

3.4 W1 Distance between Unit Balls in A Weighted Di-

rected Graph

Recall from Chapter 2 that the 1-Wasserstein distance W1 is defined be-

tween two normalized measures. Following Sec. 3.2, the 1-Wasserstein distance

between two unit balls centered at x, y ∈ V in a weighted directed graph G (V, E , w),

17



is then W1(mx,my) where the normalized measures mx,my are defined as in (3.2),

and are supported on N (x) and N (y), respectively. Thus, each choice of distinct

nodes x, y ∈ V such that x connects to y (i.e., node y is reachable from node x via

some directed path) yields a value of W1 associated with that pair of nodes. It is

obvious that the W1 distance between a ball to itself must be zero. Hence, we can

element-wise define a 1-Wasserstein matrix W = [Wij ] ∈ R|V|×|V| where |V| denotes

the cardinality of the vertex set V = {v1, v2, v3, ..., v|V|}, as

Wij :=



0 if i = j,

undefined if (i 6= j)
∧

((vi 6 vj)
∨

(N (vi) = ∅)
∨

(N (vj) = ∅)) ,

W1

(
mvi ,mvj

)
otherwise,

(3.3)

where i, j = 1, . . . , |V|, and following Ch. 2.2, the notation “vi 6 vj” stands for

“vi does not connect to vj”. In (3.3), the symbol
∧

denotes the logical AND. The

symbol
∨

denotes the logical OR. We point out that the condition given the third

case in (3.3), includes the possibility that the W1 value equals ∞.

To exemplify (3.3), consider again the weighted directed graph shown in

Fig. 2.1. Its 1-Wasserstein matrix W ∈ R4×4 is

W =



0 undefined undefined undefined

undefined 0 ∞ ∞

undefined 0.6293 0 0.2852

undefined 0.3801 ∞ 0


where the row and column indices follow the sequence {a, b, c, d}. The off-diagonal

finite values in the above matrix were computed by solving the LP (2.1), or equiva-

lently (2.2) from Chapter 2.3, using the cvx package [3] in MATLAB. The procedure
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for the W1 computation using cvx is outlined in Algorithm 1.

Algorithm 1 Compute the Earth mover’s distance (EMD) W1

1: procedure EMD(C, µ, ν) . C is the

ground cost matrix for optimal transport between the supports of the discrete

probability mass function vectors µ and ν

2: m = count(µ)

3: n = count(ν)

4: A =

1>n ⊗ Im

In ⊗ 1>m

 . 1m denotes the m× 1 column vector of

ones, and Im denotes the identity matrix of size m×m, the symbol ⊗ denotes

the Kronecker product

5: b =

µ
ν

 ∈ Rm+n
≥0

6: c = vec(C) . vectorize the cost matrix C ∈ Rm×n
≥0 to a column vector

c ∈ Rmn
≥0

7: cvx begin

8: variable x ∈ Rmn

9: minimize 〈c,x〉

10: subject to

11: Ax = b . Equality constraints for the LP

12: x ≥ 0 . Elementwise vector inequality constraint

13: cvx end

14: end procedure

3.5 Ricci Curvature for a Weighted Directed Graph

Given a weighted directed graph G = (V, E , w), to define its Ricci curva-

ture, we generalize (3.1) as follows. For vi, vj ∈ V, we define the Ricci curvature
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κ(vi, vj) along a weighted directed path vivj as

κ (vi, vj) := 1− Wij

dHop (vi, vj)
. (3.4)

where Wij is defined as in (3.3). Then, using (3.4), we can define a Ricci curvature

matrix K = [Kij ] ∈ R|V|×|V| having elements

Kij := κ (vi, vj) , where i, j = 1, . . . , |V|, (3.5)

associated with the given graph G = (V, E , w).

Notice that (3.3) permits the possibilities that Wij may be undefined or

equals to 0, or equals to∞. Since Wij = 0 for i = j, and in that case, dHop (vi, vj) =

0, so (3.4) evaluates to 1 − 0
0 , and therefore, Kij is undefined. If Wij itself is

undefined, then so is the corresponding Kij . If Wij equals∞ but dHop (vi, vj) <∞,

then by (3.4), we get Kij = −∞.

Algorithm 2 Compute the Ricci curvature matrix K

1: procedure RicciOllivier Curvature(G)

2: for i = 1 to |V| do

3: µ{i} = e{i}
sum(e{i}) . e{i} denotes the vector of edge weights going out

from vi

4: end for

5: for i = 1 to |V| do

6: for j = 1 to |V| do

7: if (vi  vj)
∧

(N (vj) = ∅) then

8: Wij = EMD(C, µ{i}, µ{j}) . C

is the ground cost matrix for optimal transport between µ{i} and µ{j}. The

procedure EMD follows Algorithm 1.

9: Kij = 1− Wij

dHop(vi,vj)
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10: else

11: Kij is undefined

12: end if

13: end for

14: end for

15: return K . return the Ricci curvature matrix

16: end procedure

To give an example for the computation of K, consider again the weighted

directed graph G shown in Fig. 2.1. Its Ricci curvature matrix K ∈ R4×4 is

K =



undefined undefined undefined undefined

undefined undefined −∞ −∞

undefined 0.2588 undefined 0.5960

undefined 0.5930 −∞ undefined


,

where the row and column indices follow the vertex sequence {a, b, c, d}.

Some properties of the Ricci curvature matrixK are immediate from (3.5).

For instance, Kij ≥ 0 if and only if Wij ≤ dHop (vi, vj). This matches with the

geometric intuition that a positive curvature implies that unit balls (here, discrete

measures supported on one hop out-neighbors) are closer than their centers (here,

graph vertices), as we explained in Ch. 3.1 and 3.2. Likewise, Kij < 0 if and only

if Wij > dHop (vi, vj). This again confirms the geometric insight that a negative

curvature implies that unit balls are farther than their centers.

The above observation can phrased equivalently as follows. A positive

(resp. negative) Ricci curvature between two vertices implies that their one hop

out-neighborhoods are on average “well connected” (resp. “weakly connected”)

than those vertices. In our COVID-19 spread context, the vertices stand for the
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counties, and the directed edges give the inter-county daily traffic flow directions

with edge-weights being indicative of the corresponding traffic volume. Thus, if the

outgoing edges from a county has mostly large positive curvatures, then we can

expect that county to be a “super-spreader” of the virus.

3.6 Scalar Curvature for a Weighted Directed Graph

Recall that the Ricci curvature is defined over paths. However, we some-

times want to focus on the vertices of a graph. For this purpose, we next define the

scalar curvature as the weighted average of the Ricci curvature. This is inspired

by the analogous definition in the Riemannian geometry context. Specifically, in

a Riemannian manifold M, the scalar curvature at a point x ∈ M is the average

of the Ricci curvature Ric(v) over all unit vectors v around x. Then, it is natural

to generalize the scalar curvature for a metric space (X , d,m) as follows. Suppose

that κ(x, y) is the Ricci curvature of (X , d,m) along the path xy, as defined in (3.1).

Then the scalar curvature at x ∈ X is
∫
κ(x, y)dm(y), i.e., the average of the Ricci

curvature κ(x, y) w.r.t. the volume measure m.

Motivated by the above, we are now ready to define the scalar curvature

in a weighted directed graph. Given a weighted directed graph G = (V, E , w) and

its Ricci curvature matrix K, we define the scalar curvature s (vi) of a vertex vi as

s(vi) :=
∑

j∈Nvi

Kijµvi (vj) , i = 1, . . . , |V|, (3.6)

where µvi (vj) was introduced in Ch. 3.3. In (3.6), we tacitly assume that the

summation indices j ∈ Nvi are such that Kij is finite and well-defined. Using

(3.6), we then define a scalar curvature vector s ∈ R|V| with entries si := s(vi),

i = 1, . . . , |V|. For completeness, we outline the computation of the vector s in
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Algorithm 3.

Algorithm 3 Compute the scalar curvature vector s

1: procedure Scalar Curvature(G, K, µ)

2: for i = 1 to |V| do

3: si =
∑

j∈Nvi
Kijµvi (vj)

4: end for

5: return s ∈ R|V| . return the scalar curvature vector s

6: end procedure
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Chapter 4

Numerical Simulations

In this Chapter, we apply the graph curvature related ideas and algorithms

introduced in the preceding chapters to analyze the spread of COVID-19 based on

the inter-county traffic data for the state of California. Based on the computation

performed on real data, our intent is to demonstrate that the graph Ricci curvature

and scalar curvature are indeed suited for network-level risk analytics.

4.1 Simulation Set Up

We obtained the daily inter-county traffic count data for the state of Cali-

fornia from March 1, 2020 to March 31, 2021. These data were obtained from Safe-

Graph [12] dataset: “Social Distancing Metrics”. The obtained anonymous daily

commute data were differentially private [4, 5] and were collected based on cellular

pings and social network usage. Using this dataset, we computed the county level

traffic graphs G (V, E , w) and the associated adjacency matrices, as detailed in Ch.

1.3. The vertex set V in our context denotes the collection of counties in the state

of California with |V| = 58.
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We emphasize here that since the inter-county daily traffic in any given

day is different from the other, hence the graphs and adjacency matrices are time-

varying. In other words, we have a different county level traffic graph and thus

different adjacency matrix for each day because the edge weights for the same

directed edge for different days are different.

Figure 4.1: County level traffic graph for all the 58 counties of the state of California
corresponding to January 1st, 2021. The above does not show the edge weights but
instead shows the weighted out-degrees for all the vertices (i.e., counties) as the
colormap. This helps depict which counties have more outgoing traffic than others
for that particular day.

Fig. 4.1 shows the county-level traffic graph for the state of California

corresponding to January 1, 2021, wherein the Colors of the vertices (see colormap)

denote the associated weighted out-degrees, i.e., the sum of edge weights going out

from that vertex for that day. After computing all the county-level traffic graphs and

the corresponding adjacency matrices, we applied the Algorithm 2 to compute the

Ricci curvature matrices K for each week. Recall from Ch. 3 that Algorithm 2 in

turn uses Algorithm 1. Having obtained the Ricci curvature matrices at the weekly
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time scale, we finally computed the scalar curvature vectors s using Algorithm 3,

again at the weekly timescale.

4.2 California COVID-19 Cases and the Scalar Curva-

ture

Recall from Ch. 3.6 that the scalar curvature of a vertex v is the weighted

average of Ricci curvatures going out from v. Recall also that in our county-level

traffic graphs, the vertices represent the counties. Therefore, a high scalar curvature

for a county indicates that the average outgoing Ricci curvatures from that county

is high. If we postulate that inter-county traffic may contribute to the spread

of COVID-19, then it follows that a high scalar curvature can be indicative of

an acceleration of COVID-19 case counts. Likewise, a small scalar curvature for

a particular county implies that the average outgoing Ricci curvatures from that

county remains small, i.e., a small scalar curvature may predict a deceleration of

COVID-19 cases.

In Figs. 4.2–4.5, we plot how the COVID-19 case counts and the scalar

curvatures varied over the weeks for 4 counties: Los Angeles, Sacramento, San

Diego, and Santa Clara.
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A. High Scalar Curvature, easier for 
COVID-19 to spread, and the number 
of new cases has a positive 
acceleration. Cases vs Week graph 
concave up.

B. Low Scalar Curvature, harder for 
COVID-19 to spread, and the number 
of new cases has a negative 
acceleration. Cases vs Week graph 
concave down.

C. High Scalar Curvature, easier for 
COVID-19 to spread, and the number 
of new cases has a positive 
acceleration. Cases vs Week graph 
concave up again.

D. COVID-19 vaccine comes out, number 
of new cases drops significantly as 
more people were vaccinated.

A B DC

Figure 4.2: Scalar curvature and cases vs week graph - Los Angeles county.

A. Low Scalar Curvature, harder for COVID-19 
to spread, and the number of new cases has 
a negative acceleration. Cases vs Week 
graph concave down.

B. High Scalar Curvature, easier for COVID-19 
to spread, and the number of new cases has 
a positive acceleration. Cases vs Week 
graph concave up again.

C. Low Scalar Curvature, harder for COVID-19 
to spread, and the number of new cases has 
a negative acceleration. Cases vs Week 
graph concave down.

D. High Scalar Curvature, easier for COVID-19 
to spread, and the number of new cases has 
a positive acceleration. Cases vs Week 
graph concave up again.

E. COVID-19 vaccine comes out, number of 
new cases drops significantly as more people 
were vaccinated.

A B DC E

Figure 4.3: Scalar curvature and cases vs week graph - Sacramento county.
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A. High Scalar Curvature, easier for 
COVID-19 to spread, and the number 
of new cases has a positive 
acceleration. Cases vs Week graph 
concave up.

B. Low Scalar Curvature, harder for 
COVID-19 to spread, and the number 
of new cases has a negative 
acceleration. Cases vs Week graph 
concave down.

C. High Scalar Curvature, easier for 
COVID-19 to spread, and the number 
of new cases has a positive 
acceleration. Cases vs Week graph 
concave up again.

D. COVID-19 vaccine comes out, number 
of new cases drops significantly as 
more people were vaccinated.

A B DC

Figure 4.4: Scalar curvature and cases vs week graph - San Diego county.

A. High Scalar Curvature, easier for 
COVID-19 to spread, and the number 
of new cases has a positive 
acceleration. Cases vs Week graph 
concave up.

B. Low Scalar Curvature, harder for 
COVID-19 to spread, and the number 
of new cases has a negative 
acceleration. Cases vs Week graph 
concave down.

C. High Scalar Curvature, easier for 
COVID-19 to spread, and the number 
of new cases has a positive 
acceleration. Cases vs Week graph 
concave up again.

D. COVID-19 vaccine comes out, number 
of new cases drops significantly as 
more people were vaccinated.

A B DC

Figure 4.5: Scalar curvature and cases vs week graph - Santa Clara county.

From Fig. 4.2–4.5, comparing the time histories of the COVID-19 case

counts and scalar curvature, we observe that the scalar curvature appears to be a
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predictor of new cases. When scalar curvature drops, case count is about to go

down, and when scalar curvature rises, case count is about to go up.

We have observed the trends similar to the Figs. 4.2–4.5 for all the coun-

ties. This suggests that future trend of case counts can be reliably based on scalar

curvature, and the NPIs may be implemented in an data-driven adaptive manner,

for instance, by issuing more regulations to counties with growing scalar curvature.

4.3 California COVID-19 Cases and the Ricci Curva-

ture

The graph Ricci curvature contains more information than the graph scalar

curvature. This is because the graph Ricci curvature not only considers how well a

particular vertex is connected with other vertices, but also considers which vertices

are best connected to or path connected by this particular vertex.

Ricci curvature is directed. For a county-level traffic graph of California,

outward Ricci curvature of a county measures the wellness of connection from that

county to all its reachable counties. Similarly, the inward Ricci curvature of a

county measures the wellness of connection from its reachable counties to itself.

In summary, the Ricci curvatures help answer more fine-grained questions such as

from which external counties is the virus spreading from, and to which counties is

the virus spreading to.

4.3.1 Outward Ricci Curvature

We computed the outward Ricci curvatures of two populated counties with

a high number of COVID-19 cases: Los Angeles(LA) and Santa Clara(SC), to

29



examine which counties were largely affected by LA and SC. Figures 4.6 and 4.7

show the heatmaps of the outward Ricci curvatures from LA and SC, respectively.

Figure 4.6: Heatmap of the outward Ricci curvature from the Los Angeles county.

Focusing on columns of figure 4.6, the heatmap is mostly red(positive)

from March 2020 to August 2020, which matches with our scalar curvature graph.

Perhaps, the more interesting to examine is a horizontal direction in the heatmap.

Each row of the heatmap shown in Fig. 4.6 represents Ricci curvature from LA

to a particular county. If a row is particularly red, it means that LA might be a

important source of the virus, i.e., “spreader” for that county. For instance, Fig.

4.6 shows that LA is well connected with Riverside, Kern, and San Diego countioes,
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and implies that LA could be the main source of the virus spread in these three

counties.

Figure 4.7: Heatmap of the outward Ricci curvature from the Santa Clara county.

Similarly, for Santa Clara, the rows for Contra Costa and San Joaquin

counties shown in Fig. 4.7, are particularly red, and this means Santa Clara could

county be a major source of virus spread for them.

4.3.2 Inward Ricci Curvature

We computed the inward Ricci curvatures of two counties with relatively

low number of COVID-19 cases: Butte and Ventura, to examine where did the virus
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came from in those two counties..

Figure 4.8: Heatmap of the inward Ricci curvature to the Butte county.

In Fig. 4.8, each row of the heatmap represents Ricci curvature from

a particular county to Butte. If a row is particularly red, it means that county

connects to Butte well, and might be responsible for the virus in Butte. As shown

in Fig. 4.8, our analysis finds that the counties Humboldt, Plumas, Sacramento,

and Shasta connect to Butte well, and out of these four counties, only Sacramento

has a lot of COVID-19 cases. So we can conclude that cases in Butte will be more

likely to come from Sacramento than from Los Angeles. This conclusion also makes

sense geographically because Butte is located only 80 miles away from Sacramento
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but about 500 miles away from Los Angeles.

Figure 4.9: Heatmap of the inward Ricci curvature to the Ventura county.

In Fig. 4.9, we observe that the heatmap for Ventura is dominantly blue,

meaning that Ventura is a comparatively isolated county. But it still has great

connection with counties such as Los Angeles and San Bernardino. The heatmap

shown in Fig. 4.9 implies that LA is more likely to be the main virus source for

Ventura county.
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Chapter 5

Conclusions

In this thesis, we posit that graph curvatures are well-suited for analyzing

the spatio-temporal dynamics, such as the spread of the COVID-19 virus, evolving

on graphs. In particular, we defined the Ricci curvature and the scalar curvature for

weighted directed graphs. We used the inter-county daily traffic data during March

1, 2020–March 31, 2021, for the state of California to highlight that the Ricci cur-

vature and the scalar curvature can serve as a predictor of the surge and reduction

of the case-counts. Specifically, the graph Ricci curvature is shown to encode fine-

grained interaction information helping to locate the origin and destination of virus

spread.

We emphasize that unlike the notions such as network centrality, the Ricci

curvature provides pairwise information over all possible pathways in the network,

i.e., returns a distribution of the curvature over the edges at any given time. In

our application, this is particularly significant to capture the county-to-county in-

teractions contributing to the resilience of the COVID-19 spread. In other words,

unlike the nodal measures, the notion of network Ricci curvature does not “av-
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erage out” the pairwise interaction information. This particular realization has

prompted researchers to investigate the implication of curvature in different appli-

cations: robustness of cancer genomic networks [20], risk in financial networks [21],

and congestion management in wireless networks [23] have all appeared in the last

few years. In the proposed research, the Ricci curvature computation will reveal

which edges on the network, at any given time, are most robust (having large posi-

tive Ricci curvature), i.e., most resistant to NPI measures, and which may be more

fragile (having large negative Ricci curvature), hence more responsive to immedi-

ate NPI measures but less effective in the long network range (i.e., for large hop

distances).

We remark that the numerical simulations reported in this thesis directly

generalizes to larger spatial (e.g., entire country) and temporal (e.g., longer dura-

tion, daily level analysis etc.) scales. We decided to restrict our analysis to the

state of California only for the illustration purpose.

One possible direction of future research is to design control mechanisms

to optimally (e.g., minimum effort) steer the spatial distribution of the graph Ricci

curvatures over time. This can be of interest to design optimal time-varying mit-

igation strategies for abating the virus spread. Another potential direction is to

generalize the notions of Ricci and scalar curvatures from graphs to higher dimen-

sional simplical complexes, to capture more than two-site interactions.
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