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Human-like Learning Framework for
Frequency-Skewed Multi-level Classification

Amarjot Singh (as2436@stanford.edu)

James L. McClelland (jlmcc@stanford.edu)

Department of Psychology, 450 Jane Stanford Way
Stanford, CA 94305 USA

Abstract

Contemporary deep neural network based classification sys-
tems are typically designed to learn information at a single
level of granularity from datasets in which all items occur with
equal frequency. Humans, on the other hand, acquire informa-
tion at several different levels of granularity from experiences
that contain some items more frequently than others. This al-
lows us to learn and differentiate frequent items better from
other items. We investigate the consequence of learning from
a natural frequency/multi-level dataset in a deep neural net-
work designed to model the human neocortex, complemented
in some simulations with a replay buffer, playing the role of
the human hippocampus. The NC network, when trained on
its own, is able to learn more frequent items relatively quickly
and differentiate them better from other items, as human learn-
ers do. However, the network’s performance on infrequent
and unseen examples pays a price in generalization perfor-
mance compared to a standard training regime. The replay
buffer serves to ameliorate these deficiencies, and we intro-
duce a computationally and psychologically motivated replay
weighting scheme that performs better than two alternatives.
Keywords: Multi-level classification; frequency effects; com-
plementary learning systems

Introduction
Humans continuously acquire information from profoundly
skewed distributions. We have far more experience with some
items than others, and our performance is frequency sensitive
– frequency affects accuracy and reaction times in word and
object identification and many other tasks (Patterson et al.,
2006). Not only do we recognize familiar things with higher
probability, but we also differentiate them from other items
better (Shiffrin, Ratcliff, & Clark, 1990). We also learn both
general and specific information – for example, we learn what
things are cars, which cars are Subarus, and which Subaru is
our own specific Subaru.

In contrast to humans, in most machine learning systems,
all items are presented equally frequently, and each item is
generally assigned only to a single class or category at a sin-
gle level of generality. Interest focuses only on the question of
how well we have learned to classify items in a held-out test
set, ignoring how well we know the things we have seen. A
further issue is that most of this research ignores the question
of how rapidly we learn. Machine learning research focuses
on presenting all the training date repeatedly until we reach
an optimum on held out items. For humans, there is no train-
test split – each presentation of an item is potentially a test of
our knowledge of it, as well as an opportunity to learn. And

it seems natural to think that we want to learn new things as
quickly as possible – we want to know what we have been
told (like people’s names or word meanings) after as few pre-
sentations as possible.

Our approach to these issues starts with the idea that hu-
mans continuously acquire information using two comple-
mentary learning systems (Marr, 1971; McClelland, Mc-
Naughton, & O’Reilly, 1995). A fast learning system rely-
ing on the hippocampus in the medial temporal lobes (MTL)
acquires new information quickly, while a slower learning
system based in other neocortical (NC) brain areas gradu-
ally builds up knowledge in a form that no longer depends
on the MTL. Integration into the NC is thought to depend
in part on replay of information stored in the MTL. A great
deal of evidence now supports the view that memory replay
occurs during sleep in humans and in other animals (Wilson
& McNaughton, 1994). David Marr, an early proponent of
replay, and most empirical studies have emphasized replay
events occurring during the night immediately after exposure
to an item. In humans, however, evidence from the effects
of brain lesions supports the view that memory depends on
the fast learning system for a period that extends over many
years or even decades (Mackinnon & Squire, 1989). Thus, we
treat the fast-learning system as a limited capacity system that
learns rapidly but forgets over an extended time scale. In this
way, replay is more probable for recent items, but older items
still have some opportunity for replay. We build from this
starting place to propose a human-like learning framework
that uses a complementary learning architecture to learn in-
formation at multiple levels of granularity about items whose
frequency varies over a wide frequency range. Within this
framework, we explore several issues:

• What consequences do learning with unequal frequency
distributions and learning to classify at several levels of
granularity have for learning outcomes and learning dy-
namics, both for items presented during training, and items
held out of the training set for testing?

• Does learning with an unequal frequency distribution lead
to greater differentiation of frequent items compared with
less frequent items?

• What is the best policy for replaying items for facilitating
learning in the neocortex-like deep neural network?
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We have taken four steps aimed at the development and
assessment of this framework, and to aid in answering these
questions.

First, we have focused on creating a data set with a fre-
quency distribution like that encountered in natural human
experience and including items to be categorised at three lev-
els of granularity, We call this a natural frequency / multi-
level (NFML) Dataset. This data set is composed of items
that appear with a Zipfian frequency distribution and encode
its class labels at a coarse or superordinate level, a finer or
more basic category level, and, for some frequent items, at an
item specific level. For this work, we assume that all classes
appear with the same frequency and only the items within
a class appear with different frequencies. We also assume
that all the data is available together avoiding the continuous
acquisition of information. We hope to extend this study to
include the two factors.

Second, we have aimed at designing a complementary
learning architecture inspired by human learning mecha-
nisms, composed of a fast learning network that idealises the
human medial temporal lobe memory and a slow learning net-
work that represents the neocortical brain areas. The slow
learning NC system is represented by a standard deep net-
work. This network is the primary focus of our study as we
view our integrated neocortical learning as the form of learn-
ing that informs our most automatic and deeply entrenched
expectations, reactions, and intuitions. Although we believe
information stored in the MTL guides our behavior while still
available in that system, at this stage of our work the role of
the fast learning system is only to provide extra exposures to
the NC network through replay. Both networks receive ex-
perience in the form of images sampled from the proposed
Zipfian frequency dataset each ‘day’. The items in the fast
learning system are replayed to the slow learning using dif-
ferent replay schemes during the following ’night’.

Third, we have examined the learning in the NC system on
its own, and we have developed alternative replay schemes
to explore how they affect integration of knowledge into the
NC system. We consider human replay capacity to be a fi-
nite resource, and model this by restricting the number of
replay events that the rehearsal buffer can provide during
each ’night’ or replay cycle. We propose a replay weighting
scheme that prioritizes items for replay weighted by the net-
work’s error on the item and the item’s recency of occurrence.
Weighting by the network error enhances the efficiency of
learning by focusing learning where it can do the most good
(Schaul, Quan, Antonoglou, & Silver, 2015). Weighting by
recency advantages frequent items (frequent items will have
been seen more recently, on average, than infrequent items),
helping to minimize the overall loss because these items con-
tribute to the loss more often. Recency weighting also reflects
human forgetting – the tendency of an item to become less
available in memory with the passage of time. As we shall
see, this weighting scheme enhances overall learning com-
pared to two baseline reply policies.

Fourth, we propose several measures of the NC system’s
performance on the NFML dataset. The results are compared
to the results to the standard uniform frequency distribution
used in most machine learning classification task settings.
Our work also allows us to explore whether deep neural net-
work models trained with the proposed NFML dataset show
greater differentiation of frequent items from other items, as
human learners do. We also assess how well the different re-
play schemes support classifying items of differing frequen-
cies at the item-specific level.

The approach that we have taken involves considerable
simplification relative to the brain and the details of natural
experience. Yet it allows, we hope, the prospect of begin-
ning to understand more about how learning occurs with the
highly skewed data distributions and multiple levels of clas-
sification that humans experience, in a setting where we seek
to maximize overall learning success summed over the entire
course of the learning process. In future work we plan to as-
sess the combined performance of the fast and slow-learning
systems at test time, as well as considering the performance
of the slow-learning system on its own. We also aim to extend
the current Zipfian datasets so that the data is available incre-
mentally as well as the classes are presented with different
frequencies in addition to the items.

Human-like Learning Framework
Our human-like learning framework is based on a computa-
tional systems that learns multi-level information from the
proposed NFML frequency dataset as shown in Fig. 1.
We first describe the development of the proposed learning
regime has been on creating datasets that are in accordance
with human experiences. Next, we present the complemen-
tary learning architecture, composed of a slow and fast learn-
ing system, that can learn this multi-level information from
the Zipfian datasets. Finally, we describe the measures we
have adopted to evaluate the learning performance of the slow
learner on the proposed datasets.

Natural frequency/multi-level (NFML) Datasets
Traditional machine learning systems are designed to grad-
ually acquire information at a single level of granularity
from stationary batches of well-balanced training data with
many repeated exposures. These assumptions are improba-
ble for humans as detailed in the introduction section. We
have adapted the standard CIFAR-100 (Krizhevsky & Hin-
ton, 2009) dataset to include the frequency effect and encode
label information at multiple levels.

This dataset is constructed of 100 classes which are com-
posed of 20 classes (coarse-level) with each class further di-
vided into 5 sub-classes (fine-level). Each fine class consists
of 500 training (500×100 = 50,000 total) and 100 test im-
ages (100×100 = 10,000 total) with each image (item-level)
of size 32×32×3. The training and test sets are merged to-
gether to create the complete dataset of 60,000 images with
each fine class containing 600 images.
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Figure 1: Our proposed human like learning framework, composed of the complementary learning architecture trained on a natural
frequency/multi-level (NFML) data set. The architecture includes a slow learning system based on a ResNet 56 network and a fixed ca-
pacity replay buffer that idealizes the human fast learning system. The architecture consumes the NFML dataset that represents the skewed
data distribution experienced by humans to learn to classify images at three levels: coarse, fine, and item. Three illustrative items with their
labels are shown.

In our simulations, we have use three instances of a
frequency-weighted data set. Each of the three instances (set-
1, set-2, and set-3) is constructed by first randomly sampling
500 items for training and 100 items for test from each fine-
level class. Next, we assign a random frequency rank to all
500 training set item within each class. This rank is used to
produce a Zipfian probability distribution detailed below:

p(itemi) ∝ 1/rank(itemi) (1)

Probabilities are normalized to sum to one across all
50,000 items in the training set. To simplify the experiments,
all classes appear with equal frequency. Once the probabili-
ties are assigned to each item, batches of items to be used in
training are sampled with replacement for presentation with
the assigned probability. As a comparison to the standard
CIFAR-100 dataset, if one million items are sampled from
the Zipfian dataset, the most frequent items would be sampled
1472 times and the least frequent item just 3 times. This num-
ber is 20 ((1/50000)×1000000) presentations per item for the
standard CIFAR-100 dataset. In addition to the coarse and
fine labels, 5 of the most frequent items from each class are
assigned an item-specific label. These are the first, second,
fourth, eighth, and sixteen ranked items in each class, and
they appear with the following frequencies per million pre-
sentations: 1472, 736, 368, 184, 92. Training of the slow-
learning system (described below) occurs in alternating ’day’
and ’night’ phases. Each ’day’ is thought of as arising from
direct experience, consisting of 500 batches of 20 images
each (500×20 = 10000 images) sampled from the complete
data set with replacement. Presentations during the night
phase depend on the replay condition, described below.

Complementary Learning Architecture
The architecture consists of a commonly used deep neural
network and a rehearsal buffer that idealizes the properties of
a fixed-capacity fast-learning system.

ResNet: We use a ResNet-56 (He, Zhang, Ren, & Sun,
2015), a 56 layer convolutional architecture as the slow-
learning deep neural network. The ResNet architecture em-
ploys ‘Skip Connections’ – connections that skip over sets of
stacked hidden layers, making it possible to train very deep
networks. Our only modifications to this architecture are its
output layer, its activation function and the loss function. In
our network, the next-to-last layer of the ResNet is fully con-
nected to our modified output layer, which consists of 620
units, one for each of the 20 course class labels, one for each
of the 100 fine class labels, and one for each of the 500 item-
specific labels. Each output unit’s activation is independently
computed from the weighted input it receives from the next-
to-last layer using the logistic function. For a given item, the
target activation is 1 for the two units corresponding to its
coarse and fine labels and for the unit corresponding to its
item-specific label if it has one. The target activation is 0 for
all of the other units. Note that this means that the target for
all of the item-specific label units is 0 if the item does not
have an item-specific label.

The network is trained using the binary (unit-wise) cross
entropy (BCE) loss, defined for each item i as:

Li =−∑
u
(yu log(ŷu)+(1− yu) log(1− log(ŷu))) (2)

Where u indexes the output units, yu is the ground truth value
for unit u and ŷu is activation of output unit u after application
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Figure 2: Frequency Effect: The illustration shows the coarse (20 classes), fine (100 classes), and item (500 classes) level performance
comparison of the ResNet learner trained on the Zipfian and standard CIFAR-100 datasets. This analysis is performed on several bins which
are composed of items with decreasing frequencies as detailed in the graphs. As expected the learner trained on the Zipfian dataset can rapidly
learn the bins with frequent items, similar to human learners. Also, the frequent bins are learned better as their final asymptotic performance
is higher. This frequent effect is not observed for the standard training regime as all the items are presented with the same frequency (20 per
million presentations) and hence the learner has a similar performance on all items. The graphs show the average performance across the
three (set-1 to set-3) experiments. The standard deviation is also shown at each point with the shaded region around the mean.

of the logistic function. The weights of the ResNet architec-
ture are initialized by randomly sampling values from a uni-
form distribution with a range that depends on the number of
inputs and outputs of each weight matrix (Glorot & Bengio,
2010). The loss is then averaged over the batch and passed
to a stochastic gradient descent optimizer using a constant
learning rate or 0.001 and no momentum.

Replay Buffer: The replay buffer is implemented as a list
of entries, one for each item in the training set. Items that
have occurred at least once during any training “day” are in
the pool of items available for replay. Our experiments in-
clude a no-replay condition, as well as three replay conditions
in which items are sampled from the replay buffer to present
5,000 training items to the slow-learning network during each
simulated “night” following each simulated day. We propose
what we call a strength-based replay policy which we com-
pare with two simpler policies. According to the Strength-
based Replay Policy, each item’s replay probability is pro-
portional to it strength, which the product of a regret fac-
tor and a recency factor, so that strength = loss× recency.
The regret factor is the summed loss at the output layer of
the network the last time the item was presented. Quite sim-
ply, we imagine that the learner experiences regret in propor-
tion to how poorly it produced the correct output, and there-
fore devotes more storage capacity (or more immediate re-
hearsal, increasing strength of the stored memory trace) to

the items that produce the most regret, promoting their replay
and down-weighting the probability of replaying items that
are already well known. Recency is a hyperbolic function of
time t since last prior presentation as is typical of human for-
getting curves. Specifically, recency = (t)−0.16666 where one
unit of time corresponds to 2,000 pattern presentations. One
comparison policy is a Zipfian policy, such that items seen at
least once in any previous day phase are chosen for replay
in proportion to the item’s Zipfian probability. This scheme
can be seen as representing a control for the extra presenta-
tions occurring during the night, using the same frequency-
weighing scheme enforced by direct experience during the
day. The other comparison policy is a uniform policy, such
that items that have occurred at least once in any previous day
are sampled from the buffer for replay according to a uniform
distribution, independent of either recency or frequency.

Performance Measures

Zipfian Dataset Performance: The performance of the
ResNet without replay is evaluated for the coarse and fine
level classification performance, with the expectation that
more frequent items should be learned better and more
quickly than the infrequent items. To measure the frequency
effect, the 500 training items in each fine class were sorted
according to their sampling probability in the Zipfian dataset
and then grouped into 20 bins of 25 items each. The fre-
quency bins were combined across the 100 fine classes result-

2168



Figure 3: Differentiation of different target items with item specific
labels from other items, as a function of the frequency of the target
item. As explained in the text, greater differentiation corresponds
high activation when the item itself is presented (left most point on
each curve), and steeper fall off as other items less and less similar
to it are presented. See Differentiation section in text for details.

ing in 2500 items per bin. Bin-1 contains the 25 most frequent
items while Bin-20 contains the 25 least frequent items. Bin-
1 is expected to be sampled at an average of 224 times per
million presentations while this number is 3 for Bin-20. Bin-
21 represents 10,000 test items from the held-out test set.

Differentiation: Humans differentiate more frequent items
from less frequent items (Shiffrin et al., 1990). We looked for
differentiation in the network’s performance on items with
item specific labels. The learner’s differentiation ability is
measured by evaluating the input activation ai to the item-
specific unit for the item, prior to the application of the lo-
gistic function. Following Criss (2006), differentiation is
demonstrated by how sharply this value falls off as items that
are less and less similar to the target are presented. In figure
3, we first plot the average activation ai for the cases where,
for each item in the bin, the target item themself is presented
(ai|i). Next we plot average values of ai when any other item
in the same fine class as the target is presented (a( f | f 6= i)),
then the average activation (a(c|c 6= f )) for all the remaining
items in the same coarse class as the target, and finally the
average activation (a(t|t 6= c)) of unit for the item for all the
remaining items in the Zipfian CIFAR-100 dataset.

Knowledge Integration: Different replay policies are ex-
plored for effective integration of the knowledge stored in the
replay buffer at all three (coarse, fine, and item) levels. The
best policy should produce faster acquisition of information
with respect to no replay and is measured as:

Mg =
Mpolicy

Mno−replay
(3)

Here Mg is either slope gained (Sg) or area gained (Ag) by
the learning curve for a specific policy as compared to no
replay. The slope for a learning curve is estimated by fitting
a sigmoid curve. Area (A) corresponds to the area under the
learning curve until the end of the training. This analysis is
performed for the most, intermediate, and least frequent bins
(Top, Middle, Bottom) for all three policies.

Table 1: The area and slope gained computed for the fre-
quency weighted learning curves, as detailed in the perfor-
mance measures section, is presented for the replay policies
over three datasets. This is shown for all coarse, fine, and
item levels.

Uniform Strength Zipfian
Sg Ag Sg Ag Sg Ag

Coarse-level
Set-1 1.67 1.37 1.87 1.87 1.88 1.79
Set-2 1.71 1.41 1.99 1.91 1.93 1.75
Set-3 1.73 1.53 1.80 1.84 1.99 1.83

Fine-level
Set-1 1.63 1.13 1.93 1.33 1.93 1.27
Set-2 1.55 1.19 1.99 1.44 1.95 1.31
Set-3 1.67 1.23 1.87 1.47 1.99 1.19

Item-level
Set-1 1.79 1.32 1.97 2.04 1.81 1.59
Set-2 1.73 1.39 1.99 2.11 1.88 1.71
Set-3 1.81 1.44 2.01 1.97 1.79 1.67

In order to measure the overall effectiveness of each policy,
the slope and area measures are also computed over the com-
plete dataset using the frequency weighted curves obtained as
shown below:

ovlc f w =
lc1× f req1 + lc2× f req2 + ....+ lcN× f reqN

f req1 + f req2 + ....+ f reqN
(4)

where ovlc f w represents the overall frequency weighted
learning curve, lci represents the learning curve for a specific
item and f reqi represents the item’s frequency.

Experimental Results
Zipfian Classification Performance: The performance of
the ResNet learner without replay was evaluated after each of
400 simulated ’days’ on the three NFML datasets (set-1, set-
2, set-3). The coarse and fine level classification performance
for several bins with different item frequencies per million are
shown in Fig. 2. It can be seen that higher frequency is as-
sociated with both faster learning and higher accuracy at the
end of the training period, though accuracy is still increas-
ing at the end of the simulation. Performance on held-out
test items falls below that on even the lowest frequency train-
ing items, which have been seen only about 12 times each at
the end of training, indicating that the network is sensitive to
item-specific effects even for very infrequently trained items.

Comparing the results with identical ResNets trained on
the same three data sets, but with the standard procedure of
using equal frequencies for all of the trained items, we see
that performance on held-out test items is far better with equal
frequencies than with the Zipfian frequency distribution, both
at the coarse and the fine levels. On the other hand, with equal
frequencies, performance at the individual item level remains
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Figure 4: Replay Scheme Comparison: The illustration presents the learning curves for the most, intermediate, and least frequent bins (Top,
Middle, Bottom) for the strength, Zipfian, and uniform replay schemes. The learning curves for no replay training regime are also shown.
It can be seen from the curves that the proposed strength replay scheme outperforms the other two replay schemes as well as no replay as
it results in faster consolidation for the items. The graphs show the average performance across the three (set-1 to set-3) experiments. The
learning curves for frequency weighted aggregate performance computed for all the bins are also shown for all three replay policies as well
as the no replay case. The standard deviation is also shown at each point with the shaded region around the mean.

at floor throughout training. Thus, the Zipfian distribution ap-
pears to favor specific over general information, while equal
frequencies favors the general at the extreme expense of the
specific.

Even with the standard, uniform frequency training regime,
the ResNets trained to classify at the coarse, fine, and item
level do not perform well. This reflects competition among
the three classification tasks. When the ResNets are trained
only to classify at the fine level, training accuracy reaches
93% correct, and test accuracy reaches 88% correct; when
trained on both the coarse and the fine but not the item level,
the train and test scores were 76% and 74% respectively.

Differentiation: Training with a Zipfian frequency distri-
bution enables greater differentiation of frequent items from
the other items. As seen in Fig. 3, the activation produced by
the item itself (ai) at its specific node is higher than the acti-
vation of that node produced by other items. The ResNet also
learns to reduce the activation at the item-specific node for
other items resulting in a cross-over effect, so that the three
curves all cross each other, as expected if more frequent items
are more strongly differentiated from other items.

Consolidation with different replay policies: our
strength-based replay policy aids knowledge integration as
compared to the uniform or Zipfian replay policies. As shown
in Fig. 4, the strength-based policy has a larger advantage
over the other two policies relative to no replay. This is seen

for all three coarse, fine, and item levels with particular ad-
vantage seen for the items with frequencies of 368 and 92 per
million in Fig. 4. Replay itself is relatively unimportant for
the highest frequency items which are learned very rapidly.
The overall effectiveness of the replay policies is also com-
puted using the frequency weighted analysis detailed above.
The strength policy has an overall advantage as well over the
remaining policies. This is detailed quantitatively as well us-
ing the slope (Sg) and area (Ag) gain measures in Table 1. It
can be seen that the highest gains are for the strength policy
on all three datasets.

Conclusion
This work proposed a human-like learning framework that
used a deep neural network in combination with a replay
buffer inspired by the neocortex and hippocampus respec-
tively. Several aspects of our findings that are of note.

We found that both the multi-level classification task and
frequency weighting greatly impacted the network’s learning.
Considering first multi-level classification, when we com-
pared the performance of the ResNet trained on the standard
CIFAR 100-way classification task using uniform frequen-
cies, it reached 88% correct performance on trained and held
out test items, but when it was trained with the same uniform
frequencies to classify items at the course, fine, and item lev-
els, performance on fine level classification dropped to about
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40% correct, while completely failing at item-level classifi-
cation. This appears to be a weakness of these systems – it
would be desirable for a learning system to be able to classify
at multiple levels of granularity. Future work should explore
neural network architectures that can accommodate classifi-
cation at multiple levels more easily.

Given the challenge posed by multi-level classification,
a Zipfian frequency distribution allowed the network to fo-
cus its efforts on items occurring more frequently, leading
to higher aggregate accuracy on all three classification tasks
than uniform frequency weighting (compare the aggregate
’no replay’ curves in the right panels of Fig. 4 with the train
set performance at the three levels shown in the bottom row of
Fig. 2). This did come at the expense of performance on held
out test items. Further research should focus on understand-
ing how we as humans achieve frequency sensitivity, while
also achieving good generalization.

Our strength-based replay policy builds on prioritized re-
play (Schaul et al., 2015) by introducing recency weight-
ing and enhanced consolidation compared to the other replay
policies considered. This supports the view that there are ad-
vantages to forgetting in addition to the loss produced by each
item, since it allows focusing on recent items, which are more
likely to be occur again (Anderson & Schooler, 1991).

We see this work as an initial foray into using
slow-learning deep neural networks complemented by
hippocampus-like fast learning systems to model human
memory, where sensitivity to frequency and familiarity-
driven differentiation are prominent aspects. An important
next step is to use the hippocampus like system to work to-
gether with the cortex more fully, providing the initial ba-
sis for correct performance on new items and for retention
of item-specific information, as it does in human learners
(Knowlton & Squire, 1993). We are intrigued by the pos-
sibility that this might allow the deep network to specialize
more in acquiring generalizable knowledge, thereby improv-
ing fine-level classification on held-out test items, which was
severely impacted by the use of the NFML training set. The
use of the hippocampus-like system to guide responding dur-
ing direct experience might also enhance the impact of our
strength-based hippocampal weighting scheme. We are par-
ticularly interested in exploring the impact of using such a
system in the context of learning when the experience distri-
bution is not completely stationary. Real natural experience
involves relatively constant exposure over a life time to some
items, but other items come and go, and a hippocampus-like
system is likely to prove especially useful for performance
on items that have recently occurred once or a few times, but
that will never be experienced again. Here again this func-
tion may help buffer a cortex-like deep neural network from
responsibility for specific items.

An even longer-term goal for a human-like learning sys-
tem will be to replace the current replay buffer with truly
MTL like learning system, which is unlikely to retain exact
copies of training images and their targets and/or internal net-

work states, as in the rehearsal buffers used here and in many
deep learning architectures. We look forward to emergence
of large-scale systems that use the kinds of sparse distributed
representations first envisioned by Marr (1971) that can en-
compass the kinds of data sets required to capture more fully
the role of the human hippocampus in supporting our mem-
ory for the large number of items we know about and the wide
range of different kinds of things we know about them.
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