
UCLA
UCLA Previously Published Works

Title
A Tale of Two Genotypes: Consistency between Two High-Throughput Genotyping Centers

Permalink
https://escholarship.org/uc/item/08m294g0

Journal
Genome Research, 12(3)

ISSN
1088-9051

Authors
Weeks, Daniel E
Conley, Yvette P
Ferrell, Robert E
et al.

Publication Date
2002-03-01

DOI
10.1101/gr.211502
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/08m294g0
https://escholarship.org/uc/item/08m294g0#author
https://escholarship.org
http://www.cdlib.org/


A Tale of Two Genotypes: Consistency between
Two High-Throughput Genotyping Centers
Daniel E. Weeks,1,4 Yvette P. Conley,1,2 Robert E. Ferrell,1 Tammy S. Mah,3 and
Michael B. Gorin1,3
1Department of Human Genetics, 2Department of Health Promotion and Development, School of Nursing, 3Department of
Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA

Multiple genome-wide scans involving sib-pairs or limited pedigrees have been extensively used for a wide
number of complex genetic conditions. Comparing data from two or more scans, as well as combining data,
require an understanding of the sources of genotyping errors and data discrepancies. We have conducted two
genome-wide scans for age-related maculopathy using the Center for Inherited Disease Research (CIDR) and the
Mammalian Genotyping Service (MGS). Thirty individuals were typed in common, in order to allow for the
alignment of alleles and comparison of the data sets. The analysis of these 8914 genotypes distributed over 321
markers in common demonstrated excellent agreement between these two laboratories, which have low rates of
internal errors. Under the assumption that within each genotype, the smaller MGS allele should correspond to
the smaller CIDR allele, the alleles align well between the two centers, with only a small fraction (less than
0.65%) of the aligned alleles showing large differences in sizes. However, since called allele sizes are integer
“labels” which may not directly reflect the true underlying allele sizes, it is important to carefully prepare in
advance if one wishes to merge data from different laboratories. In particular, it would not suffice to attempt to
align alleles by typing only one or two controls in common. Fortunately, for the purposes of linkage analysis,
one can avoid merging difficulties by simply carrying out linkage analyses using laboratory-specific allele labels
and allele frequencies for each laboratory-specific subset of the data.

As genotyping has become less expensive, it has become com-
mon to attempt to map disease genes via genome-wide scans
(Weeks and Lathrop 1995). In fact, large-scale genotyping
centers have been established to facilitate this process
throughout the world. In the United States, the National In-
stitutes of Health (NIH) have funded two prominent genotyp-
ing centers: the Mammalian Genotyping Service (MGS), led
by Dr. James Weber and funded by the National Heart, Lung,
and Blood Institute; and the Center for Inherited Disease Re-
search (CIDR), led by Dr. David Valle and funded by 11 NIH
Institutes. At these Centers, millions of genotypes are being
generated per year: In 1999, MGS generated 5.54 million
genotypes and CIDR generated approximately 1.2 million
genotypes. These two centers, which both use multiallelic
short tandem repeat (STR) markers, have extensive experi-
ence, and report very small internal error rates. MGS reports
an average genotype error rate of 0.7%, based on blindly typ-
ing Centre d’Étude du Polymorphisme Humain (CEPH) fam-
ily DNA samples in duplicate or triplicate on different gels
(Weber and Broman 2001); note that the allele error rate is
approximately 60% of the genotype error rate (as usually one
of the two alleles is correct for most incorrect genotypes).
CIDR reports an error rate of 0.18% based on more than 2
million genotypes; these error rates are based on four blind
duplicates of investigator-supplied samples per 96-lane gel.

These impressively low error rates indicate that allele calling is
highly consistent within each of these genotyping centers.
While it is implicitly recognized that marker genotypes are,
like most experimentally derived data, an excellent but im-
perfect reflection of the underlying “true” genotypes, most
published linkage studies fail to discuss genotype error rates in
any detail, despite the fact that even a small genotyping error
rate can have negative consequences, increasing the esti-
mated recombination fraction (Terwilliger et al. 1990) and
reducing the evidence for linkage (Göring and Terwilliger
2000; Abecasis et al. 2001). For example, Douglas et al (2000)
found that a genotype error rate of 1% can cause a loss of
53%–58% of the linkage information for a trait locus of small
effect; an error rate of 0.5% can cause a loss of 28%–30% of
the linkage information. Similarly, genotype error rates as
small as 3% can have serious effects on measures of linkage
disequilibrium (Akey et al. 2001; Gordon et al. 2001).

As part of our large linkage study of age-related macular
degeneration, we had our first set of 225 families genotyped at
MGS (Weeks et al. 2000), and our second set of 196 families
genotyped at CIDR, for much the same set of markers (Weeks
et al. 2001). When we started the study, CIDR did not exist,
and MGS was the only available center that was performing
high-quality genome-wide scans. We were very fortunate that
MGS accepted our application at a time when the demand for
genome-wide scans allowed them to conduct studies that
were not directly related to the mission of the National Heart
Lung and Blood Institute. Once CIDR was established, we
were strongly encouraged to use CIDR as our genotyping cen-
ter in part because the National Eye Institute (NEI) (which
funded our study) had announced its intention of being one
of the supporting institutes for CIDR. Using the 30 samples
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from 15 families that had been genotyped by both centers, we
hoped to be able to align the marker alleles and analyze both
sets of families in one analysis. We report here on our com-
parisons of these genotypes and the implications of our re-
sults for combining data across genotyping centers.

RESULTS
Our 30 samples were genotyped at 321 markers in common.
Due to varying genotype success rates, the number of samples
genotyped in common ranged from 17 to 30, with an average
of 27.8 genotypes in common. The rate of missing genotypes
differed between the two centers, with 6.0% of the genotypes
missing in the CIDR data and 1.5% missing in the MGS data.
In total, there were 8914 genotypes in common (Table 1).

Using PedCheck (O’Connell and Weeks 1998) to carry
out Mendelian error checks, we found only 18 Mendelian
inconsistencies (10 from CIDR, eight from MGS). This low
number of inconsistencies was expected because we are study-
ing small families due to the late age of onset of age-related
macular degeneration, so it is difficult or impossible to detect
Mendelian inconsistencies for many of our families. Addition-
ally, the genotyping centers themselves did some screening
for Mendelian errors prior to sending us the genotypes.

We examined how many genotypes were scored as ho-
mozygous by CIDR but heterozygous by MGS—this occurred
only 27 out of 8914 times. Similarly, there were only 29 geno-
types that were scored as heterozygous by CIDR but homozy-
gous by MGS. We also examined how often a one-to-one
mapping could be established between the alleles under the
assumption that, within each genotype, the smaller MGS al-
lele should correspond to the smaller CIDR allele. That is, a
one-to-one mapping holds if each allele as called by CIDR is
consistently matched with only one other allele as called by
MGS. For the majority of the markers, 262 of 321 (81.6%), a
one-to-one mapping held; however, no one-to-one mapping
existed for 59 (18.4%) of the markers.

We then examined more closely the 59 markers where
alleles did not align one-to-one. Figure 1 displays, for the first
15 of these markers, plots of the CIDR alleles versus the MGS
alleles under the assumption that, within each genotype, the
smaller MGS allele should correspond to the smaller CIDR
allele. Note that, even in this small subset of problematic
markers, we see that the majority of the CIDR–MGS allele

pairs do follow a one-to-one map, forming a straight diagonal
line. Some of the discrepancies are due to large differences in
called allele sizes; for example, for D1S1612, the point off the
diagonal line represents a CIDR–MGS allele pair where CIDR
called the allele as a ‘97’ and MGS called it as a ‘122.’ Other
differences appear to be due to small differences in called
allele sizes; for example, at D1S1679, we have a ‘173’-‘172’
CIDR–MGS allele pair and a ‘174’-‘172’ pair. Similar 1-bp dis-
agreements are seen at D1S2141 and D3S2406. One should
also note that each point in these graphs may represent sev-
eral CIDR–MGS allele pairs; for example, the two filled points
off the diagonal at D1S1588 actually represent a total of five
CIDR–MGS allele pairs.

In order to generate an objective count of the number of
off-diagonal points, we applied a linear regression approach
across all 321 markers and identified 116 CIDR–MGS allele
pairs with large residuals distributed across 45 markers (Table
1). Note that 14 of the 59 non-one-to-one markers do not
have large residuals. These results indicate that the alleles
align quite well between the two centers, with only a small
fraction (less than 0.65%) of the aligned alleles showing large
differences in sizes. Figure 2 indicates that 50 of these 116
discrepant CIDR–MGS allele pairs are due to just three mark-
ers; the other 42 markers have five or less discrepant CIDR–
MGS pairs, and 28 of these markers have only one discrepant
CIDR–MGS pair.

We then counted how many of the non-one-to-one
matches, where one allele from one center aligns with more
than one allele from the other center, involve adjacent alleles
(from the other center). As Table 1 indicates, the majority
(82.8%) of non-one-to-one mappings for the dinucleotide re-
peat markers are most likely due to differing decisions about
placing an allele in adjacent bins. However, while it is intui-
tive that dinucleotide repeat markers would have a higher
percentage of binning discrepancies, the tetranucleotide re-
peat markers still have a relatively large 50% binning discrep-
ancy rate.

The majority of our families have only the offspring
genotyped, as we were studying a late-onset disease and par-
ents were not available for genotyping. Thus, in our data, it is
difficult to determine identity by descent (IBD) sharing be-
tween siblings. Therefore, we instead examined how identity
by state (IBS) sharing might change when the different sets of
two genotypes are used. Out of 5247 relative pair-marker com-

Table 1. Linear Regression Results

di tri tetra Total

Markers 34 38 249 321
Genotypes 937 1023 6954 8914
Alleles 1874 2046 13,908 17,828

Large residuals 34 8 74 116
Fraction of alleles 0.0181 0.0039 0.0053 0.0065
Markers involved 10 3 32 45
Fraction of markers 0.29 0.08 0.13 0.14

Markers with a non–one-to-one mapping 10 3 46 59
Alleles with a non–one-to-one mappinga 29 2 178
Percent involving adjacent alleles 82.8 100.0 50.0

Total numbers of alleles in common, markers in common, number of alleles with extreme residuals (see text), and number of markers that had
alleles with extreme residuals, broken down by base-pair repeat type of the marker.
aHere we count the number of times an allele in one data set matched with more than one other allele in the other data set.
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Figure 1 Plots of the Center for Inherited Disease Research (CIDR) alleles versus the Mammalian Genotyping Service (MGS) alleles, for the first
15 non-one-to-one markers. Here we assume that within each genotype, the smaller MGS allele should pair with the smaller CIDR allele. The
diagonal line is the linear regression line, and off-diagonal points are shaded if they had large residuals (as defined in the text).
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binations (almost all sib pairs), we observed only 37 changes
in IBS sharing. Thus, sharing status within pedigrees barely
changes at all (0.71%) between the two sets of genotypes.

Linkage analyses of data sets that are not fully genotyped
will usually be sensitive to the marker allele frequencies used
in the analyses. Thus, it is of interest to compare the frequen-
cies of the corresponding alleles in the two data sets to see
how closely matched they are. For the 262 markers that have
a one-to-one mapping, we examined the Euclidean distance
(which can range from 0 to 1) between the vectors of match-
ing allele frequencies, and the maximum absolute allele fre-
quency difference. We found that 85.5% of the 262 markers
have a maximum allele frequency difference of less than
0.050. Thus, when there is a one-to-one mapping, the allele
frequency estimates usually agree fairly well between the two
sets of genotypes. Similarly, the maximum distance seen was
0.131, with a maximum allele frequency difference of 0.111.
Even at this marker, most of the allele frequencies agreed
quite well. For the purposes of linkage analysis, it is reassuring
that we have no occurrence where an allele is scored as very
common in one data set and very rare in the other.

DISCUSSION
Multiple genome-wide scans involving sib-pairs or limited
pedigrees have been extensively used for a wide number of
complex genetic conditions. Comparing data from two or
more scans, as well as combining data, require an understand-
ing of the sources of genotyping errors and data discrepancies.
These issues can only be partially avoided by having one’s
genotype scans done in the same center, as rapidly changing
technologies can result in the generation of different allele
labels in different scans, even from the same center. Addition-
ally, the genotyping centers do not typically offer follow-up
genotyping services, so, during subsequent fine-mapping
studies, one must often deal with the issue of combining lo-
cally generated genotypes with genotypes generated at the
genotyping center. Thus, the issues discussed here are of wide
relevance to the research community.

Our results indicate that, as might be expected from the
high quality of the intralaboratory genotype calls, interlabo-
ratory genotype calls agree quite well between CIDR and
MGS. However, we note that it would not suffice to attempt to
align alleles by typing only one or two controls in common.
Our results indicate that the size difference between alleles
within a given genotype differ quite a bit across laboratories.
This is expected, not only because the allele calls are based on

gel mobility, but also because the genotyping was done on
different instruments using different analysis software at the
two centers. Similarly, Ghosh et al. (1997) found systematic
differences in allele sizing of up to nearly two bp on a 373 ABI
sequencer as compared to a 377 sequencer. However, even if
large alleles migrate more slowly in one of the laboratories
than in the other, we have shown that it is possible to estab-
lish a one-to-one mapping between the alleles across the two
centers for the majority (81.6%) of the markers examined
here. Note that our criterion for deciding whether a mar-
ker has a one-to-one mapping is rather strict, as all but a sin-
gle pair of alleles of a given marker may match one-to-one,
and that marker would still be scored as ‘non-one-to-one’ (see
Fig. 2).

We would emphasize that allele calling for STRs is based
purely on gel mobility, not on actual sequences of the ampli-
fied fragment (as discussed by Weber and Broman 2001).
When one uses mobility of an amplified fragment relative to
a ladder of standard fragments, then differences in fragment
mobilities that are dependent upon sequence and not on ab-
solute numbers of nucleotides can dramatically confound re-
sults. If allele labels represent true allele sizes, one could get
the alleles to agree by computing the best bp shift which,
when applied to both CIDR alleles in each genotype at once,
minimizes the number of differences in genotypes between
CIDR and MGS. However, after applying the best possible bp
shift, 16.8% (1495/8914) of the genotypes differ between
MGS and CIDR. Furthermore, even if one were to apply dif-
ferent bp shifts to different genotypes within a given marker
(e.g., used a shift of two bp for both alleles within some geno-
types and a shift of one bp for both alleles within the rest of
the genotypes), 13.7% (1220/8914) of the genotypes would
disagree; therefore, this approach is not recommended.

A few previous studies examined rates of errors when
genotypes were done in duplicate. Brzustowicz et al. (1993)
examined 21 individuals within the CEPH collection who
were members of more than one CEPH family and so were
genotyped more than once; they found an error rate of about
3%. Ghosh et al. (1997) genotyped 50 individuals in duplicate
for 105 markers, and, using a variety of quality control mea-
sures, obtained an allele-specific error rate of 0.08%. More
recently, Ewen et al. (2000) found, based on duplicate geno-
typing, a discordance rate of 0.76% when testing within gels
and discordance rates of 2.36% (with a fine mapping set of
nonoptimized markers) and 0.16% (with a commercially op-
timized set of markers) when testing across gels. These studies
examined the rate of discordance when the markers are re-
done within the same laboratory. Here, it is encouraging and
gratifying that we observed similarly low discordance rates
between two different genotyping laboratories.

As discussed above, the majority of the disagreements
appear to be due to different binning decisions into adjacent
bins. For example, D1S3728 was scored by MGS as having
alleles that all followed perfectly the expected 4-bp ladder,
while the CIDR allele size histograms clearly show two groups
of ‘noninteger’ alleles that do not fit into the expected 4-bp
ladder. Similarly, MGS and CIDR fail to agree on several geno-
types for D12S391, but this is not surprising since both MGS
and CIDR scored this marker as having some noninteger al-
leles that differed by only one bp from their more common
counterpart in the expected allele ladder. Clearly, differing
decisions about ‘lumping’ or ‘splitting’ could lead to many of
the disagreements we observed. Indeed, it is well recognized
that binning of alleles is a difficult and challenging problem,

Figure 2 Histogram of the number of large residuals per marker
among 45 non-one-to-one markers. The height of each bar indicates
the number of markers with the given number of large residuals (e.g.,
the short bar at the right indicates that there is one marker with 19
large residuals).
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with binning errors accounting for 21% to 40% of allele call-
ing errors in a recent study (Ewen et al. 2000). Several groups
have proposed improved protocols for binning alleles (Ghosh
et al. 1997; Idury and Cardon 1997; Li et al. 2001).

Those involved in large, multicenter consortiums have
recognized that it can be challenging to obtain consistent
scoring of alleles across centers. Solutions to this problem
have included using arbitrary allele frequencies for each
marker (Easton et al. 1993), matching and renaming alleles by
frequency across studies (Dorr et al. 1997), and using center-
specific marker allele frequencies (Xu 2000). We initially
thought that we could simply align the genotypes by a simple
bp shift, but our results indicate that this was too simplistic.
Similarly, many laboratories use a few CEPH genotypes to
align genotyping calls across gels. However, our results indi-
cate that while this might work fine for intralaboratory align-
ment, it is unlikely to work well for interlaboratory align-
ments. It seems clear that the best way to combine marker
data from different laboratories is not to try to adjust allele
labels to match, but rather to use center-specific marker alleles
with center-specific allele frequencies in the statistical analy-
ses. Unfortunately, this approach has been a bit cumbersome
to implement in practice. For example, Daly et al. (1997) ac-
complished this by creating duplicate fictitious markers lo-
cated on top of each other, and, at each marker, specifying
everyone as untyped except for pedigrees from a particular
population. Fortunately, it is fairly straightforward to modify
existing software to allow for center-specific marker alleles,
and already the authors of VITESSE (O’Connell and Weeks
1995) and Allegro (Gudbjartsson et al. 1999, 2000) have
made useful improvements in this regard.

For a linkage study to be successful, one needs consistent
allele identity within families, and an ability to assign proper
allele frequencies. Thus, one could use different sets of alleles
(and allele frequencies) in different subsets of families. How-
ever, although maintaining allele identity across all families is
not crucial for the success of a linkage analysis project, it is
vital if one wishes to test for association. Thus, based on the
results presented here, we would strongly advocate that,
when exploring a narrow region of interest for association
using multiallelic STR markers, all genotyping be carried out
in a single laboratory, preferably on the same instrument. The
forensic community uses marker-specific allelic ladders to im-
prove allele calls (Puers et al. 1993; Griffiths et al. 1998), but
it is not clear if such a costly approach is justified based on the
low levels of error noted here. Even within an allelic ladder,
one may not necessarily obtain correct relative allele sizes
(Haberl and Tautz 1999).

One could probably reduce the genotyping error to
nearly zero by duplicate typing, but that would cut in half the
number of projects that could be genotyped. Instead, we
would recommend explicitly allowing for genotype error in
the analyses. This can be done by altering the penetrances at
each marker to permit the observed genotype to correspond
to several alternative genotypes (Ott 1985; Lincoln and
Lander 1992), or via error filtration with multiple pairwise
analyses (Shields et al. 1991), or by using hypercomplex-
valued recombination fractions (Göring and Terwilliger
2000). Alternatively, one can attempt to identify those geno-
types with a high posterior probability of being in error, given
all the marker data (Douglas et al. 2000; Papp et al. 2000;
Sobel and Lange 2000), as we have done in our recent ge-
nome-wide scan for genes influencing age-related macular de-
generation (Weeks et al. 2000).

METHODS

Family Selection and Genotyping
As part of our large linkage study of age-related macular de-
generation, we had our first set of 225 families genotyped at
MGS (Weeks et al. 2000), and our second set of 196 families
genotyped at CIDR. The DNA was extracted from leukocytes
using a salting-out procedure (Miller et al. 1988), diluted to
40ng/µL and shipped out to the genotyping services. Al-
though both centers utilized much of the same set of markers,
different experimental methods were used by the two geno-
typing centers: the markers at MGS were genotyped on a cus-
tom-built scanning fluorescence detector, which is wider and
shorter (14 cm long) than the ABI 377XL sequencers (36 cm
long) used at CIDR. Genotyping controls were used by each
center: MGS used CEPH samples in duplicate to align gels,
while CIDR used four samples supplied by us as quality con-
trols along with CEPH samples to align gels. Regarding the
families that we sent to CIDR, we included 30 samples from
15 families (12 of these have more than one member geno-
typed) who had been previously genotyped by MGS. These
individuals were selected because they were members of fami-
lies that had been expanded since the first genome-wide scan
by MGS.

Linear Regression
To generate an objective count of the number of off-diagonal
points, we applied a linear regression approach across all 321
markers. Under the assumption that, within each genotype,
the smaller MGS allele should correspond to the smaller CIDR
allele, we used linear regression to derive the best straight line
through the CIDR versus MGS plot, and then looked for
points with large deviations from that line. A point was
counted if the point’s residual differed from the median of the
residuals by more than a constant; we defined this constant as
the base-pair repeat size of the marker minus one. This should
identify, in an objective manner, those disagreements that
generate points that deviate from the diagonal line; however,
it will not count discrepancies involving small differences in
called allele sizes, such as the discrepancy at D1S1679 (Fig. 1).

SUPPLEMENTARY INFORMATION
Additional supplementary information about our results are
at our web page at http://watson.hgen.pitt.edu/compare/ and
Supplementary Table 1 is available online at http://www.
genome.org.
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