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ABSTRACT OF THE DISSERTATION

Identifying selection in differentiated populations through simulation, experimental
evolution, and whole genome sequencing

By

James Baldwin-Brown

Doctor of Philosophy in Biological Sciences

University of California, Irvine, 2016

Professor Anthony Long, Chair

Population differentiation is both one of the central processes underlying the diversity

that we observe in the natural world, and a mechanism that can be used to differen-

tiate between evolutionary forces both at the level of the polymorphism, and at the

level of the entire genome. Here, I use simulated evolution to analyze the statistical

power to detect signals of selection in artificially selected laboratory populations, and

use genomic data from wild populations of the clam shrimp Eulimnadia texana to

identify genomic signals of selection in wild populations. Several loci in the wild pop-

ulations appear to be under selection, and I analyze the types of genes that appear to

contribute to differentiation of these populations. Additionally, I describe an analysis

of genome assembly techniques that allowed for the creation of a highly contiguous

genome assembly in the clam shrimp. I find that a pipeline that uses custom software

to combine the results of several different genome assemblers is capable of producing

genomes using long-read genomic sequencing data that are orders of magnitude more

contiguous that pre-long-read methods. Simulations of experimental evolution indi-

cated that extremely high levels of replication were necessary in order to achieve high

power to detect signals of selection in experimental evolution. To this end, I describe

xiii



a set of replicate experimentally evolved populations of E. texana that can be used to

identify regions under selection with much higher power than could be accomplished

with earlier experimental evolution schemes.
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Chapter 1

1.1 Chapter Description

Introduction

1.2 Understanding population differentiation

Population differentiation is one of the central concepts in the study of evolution.

Much of the diversity of life in nature is due to the differentiation of reproductively

isolated populations over time, both with regard to within species variation and be-

tween species variation. Differentiated populations are especially useful to researchers

attempting to identify the genetic mechanisms that underlie complex traits, as popu-

lations with phenotypic differences can be genotyped to identify the genotypic changes

underlying these differences. In the following document, I will demonstrate the limits

of phenotypic differentiation for identifying quantitative trait loci in the context of

experimental evolution with resequencing, describe a set of populations that have been

experimentally evolved according to these limits, and discuss the result of analyzing

1



a set of naturally differentiated populations. In addition, I will describe the process

of adapting a non-model organism (the clam shrimp Eulimnadia texana) to use as a

model for genomics, and discuss genome assembly techniques generated in service of

this goal.

1.3 Evolve-and-resequence

Experimental evolution seems naturally well suited to the discovery of quantitative

trait loci. If a set of populations descended from a common ancestor are split into two

selection regimes, with one regime selecting upon a trait of interest, it follows that allele

frequencies at locations in the genome that influence the trait of interest will change

in a way that is consistently different between populations. These allele frequency

differences can be detected and the loci of interest can be identified. This type of study

has been performed by several groups [153, 27, 73, 157, 130, 156], but relatively little

progress has been made in understanding whether the methodology should be effective.

In practice, genetic drift due to small population sizes may lead to false positives or

low power, as may a lack of statistical power due to limited replication. I used a set of

simulation data generated by Kevin Thornton to identify the potential problems with

this type of study. Use of simulation data allowed me to compare the true causative

site loci to those that could be detected via various statistical tests under a variety

of experimental conditions. After carefully controlling for false positives, I identified

a range of experimental conditions that would produce relatively high power (> 50%,

> 80%) to localize QTL effectively. The level of replication necessary for effective

power was well above that used in most studies that occurred on macroscopic animals.

This study left open the possibility that experimental evolution and resequencing could

2



be performed successfully if replication could be increased.

1.4 Clam shrimp as a model organism

I chose to attempt to experimentally evolve populations of E. texana for salinity tol-

erance using the experimental conditions identified by my simulation work. We chose

the clam shrimp as a model organism because it is physically small, can be raised in

the laboratory easily, has short generation times, and has a small genome. We chose

salinity tolerance both because it is likely that salinity varies from population to popu-

lation in nature because of drying of ponds over time, and because it is easy to modify

in the lab.

E. texana, like all clam shrimp, is a vernal pool shrimp. Vernal pool shrimp live in

small, temporary pools in a variety of climates. All vernal pool shrimp require fresh

water to live, and so must cope with the drying out of vernal pools in the summer.

They persist by laying eggs that enter a state of diapause when dried. The eggs hatch

upon being rehydrated in the spring. Vernal pool organisms have been noted for having

a variety of modes of reproduction, including hermaphroditism, androdioecy, and stan-

dard obligate dioecy [164]. Some have speculated [164] that these unique reproductive

modes are due to the isolated nature of the shrimp, being bound in land-locked pools

where mates are not always available. Clam shrimp have not historically been used

for studying genomics or evolution. The primary research on E. texana has focused

on its reproduction and sex determination. Clam shrimp are known to be androdi-

oecious —that is, they have males and hermaphrodites, but no true females [140].

Hermaphrodites can self-fertilize or be fertilized by males, but cannot reproduce with

other hermaphrodites because they lack specialized reproductive claspers only observed

3



in males [140]. The sex determining system is known to be genetic [140], but the sex

determining locus has not been localized. Clam shrimp go through one generation

every time their pools are hydrated and are obligately sexual [165, 140], in contrast to

other vernal pool systems such as Daphnia pulex, which reproduce continually and via

both parthenogenesis and sexual reproduction. This allows the number of generations

to be precisely controlled. Additionally, the fact that the shrimp are trapped within

small pools of water allows individuals that are not highly geographically distant to

become genetically isolated, allowing for observation of the genetic differentiation of

a large number of populations. We show here that E. texana has a relatively small

genome of about 150 million basepairs, which makes whole genome sequencing highly

affordable. All of these traits lead to a system that is well suited to use as a genetic

model system, but which has no resources in place for performing genetic analysis. We

set up a set of experimentally evolved populations of E. texana and simultaneously

developed a set of genomic tools for analyzing the clam shrimp, which we then used to

analyze a set of natural clam shrimp populations, as documented below.

1.5 Experimental evolution of clam shrimp

Based on the results of our simulations, we needed to grow large number of shrimp

quickly in a large number of replicated populations. We set up a laboratory environ-

ment that would allow us to grow up to 36 populations at a time with population sizes

of up to 1,000 shrimp each, then divided those 36 populations into 18 “experimental”

populations (with salt added to the water) and 18 “control” populations with very low

salt levels. We reared these populations in a consistent set of environments on a 3-week

cycle. Tests of fitness under different salt conditions indicate that the “experimental”

4



shrimp were adapted to high salinity within 7 generations. Further experiments on

these shrimp lines should involve sequencing pools of individuals from each of the

populations and statitical comparison of allele frequencies to identify regions under

selection in a replicated way in the “experimental” population.

1.6 The necessity of genome assembly

In order to use clam shrimp as a model organism, I needed a set of genomic tools and

data that I could analyze. Chief among these is a high quality genome assembly. A

genome assembly is used by a large portion of modern genomics tools, but genome

assembly is a difficult problem. Most genome assembly techniques receive only cursory

validation before use, so I endeavored to empirically test genome assembly techniques

using the most up to date whole genome sequencing methods [33]. I ultimately pro-

duced a “roadmap” to genome assembly that could be used to identify the combinations

of data that could produce high quality assemblies. Traditional genome assemblies have

either relied on scaffolding of relatively non-contiguous assemblies derived from Illu-

mina short read data [146] using mate pair libraries (that is, libraries in which the ends

of long DNA fragments are sequenced), or on large numbers of very long reads. I used

two pipelines to generate assemblies: first, a collaborator generated a set of assemblies

using very long read data and the program PBcR, part of the Celera assembler package

[126]. At the same time, I generated a set of “hybrid” assemblies using the program

DBG2OLC [171]. These hybrid assemblies were generated using both short and long

read data. We found that a tradeoff exists between hybrid assemblies and long read

only assemblies. Specifically, hybrid assemblies work well at low levels of long read

coverage, but are quickly surpassed by long read only assemblies when the long read

5



coverage is high.

Knowing this, we developed a pipeline where we would generate a hybrid assembly

and a long read only assembly, then merge the assemblies together. My collaborator

wrote the merging program, and I tested it and wrote the wrapper program associated

with it. We found that the merged assemblies were as good as or better than the

constituent assemblies in all cases. Finally, we laid down a set of recommendations for

genome assemblies using our pipeline.

1.7 Differentiation of natural populations

Much effort has gone into identifying the differentiation of both natural populations

and laboratory populations, going back at least to the use of pairwise FST to identify

populations with more among-population differentiation than expected [168]. Popula-

tions can differ in allele frequencies for the standard evolutionary reasons: natural or

artificial selection, genetic drift, mutations, or migration. In the presence of drift alone,

allele frequencies are expected to remain constant on average, with any differentiation

being unique to individual populations. On the other hand, if natural selection is act-

ing differently on two populations due to differences in the populations’ environments,

allele frequencies at the loci under selection should differ more among these popula-

tions than we would expect in the drift-only case. Assuming the correctness of these

statements, and our ability to correct for relationships that already exist amongst a set

of natural populations, we should be able to use differences in allele frequency between

populations as a way to test for natural selection at each polymorphic location in the

genome. Numerous statistical methods [168, 68, 50] exist to attempt to detect natural

selection in this way. I gathered a set of sequencing data from natural populations of E.
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texana in order to identify regions under selection using these statistics. Before that,

however, I generated a highly contiguous genome assembly using a deeply sequenced

inbred strain of shrimp, then annotated it using RNAseq [160] data.

I analyzed the allele frequencies of the natural populations using several statistics: FST ,

Bayenv ’s XTX and Bayes Factor statistics, LFMM ’s z-values, and SweeD ’s composite

likelihood scores. I found putative evidence of selection at several loci across the

genome. Gene ontology terms associated with these regions were mostly related to

vision, leading me to hypothesize that the clarity of the water in different ponds may

be a driver of selection. Additionally, manual examination of the most significant loci

lead to the identification of a number of genes that appear to be under selection and

correlated with specific environmental variables. One such example is the clam shrimp

ortholog of Drosophila CG10413, which appears to be associated with latitude and is

predicted to have sodium/potassium/chloride symporter activity.

1.8 The following documents

What follows here are a set of documents, two of which are currently published (chap-

ters 1 and 2), one of which is being prepared for publication (chapter 3), and one of

which is unpublished (chapter 4). These documents discuss the above topics in detail

and cover the research that I have performed in my time as a graduate student at the

University of California, Irvine.
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Chapter 2

2.1 Article

The Power to Detect Quantitative Trait Loci Using Resequenced, Experimentally

Evolved Populations of Diploid, Sexual Organisms

James G. Baldwin-Brown, Anthony D. Long, Kevin R. Thornton

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA,

92697

Corresponding Author: James G. Baldwin-Brown

Email: jbaldwi1@uci.edu

2.2 Preface

This chapter was originally published in Molecular Biology and Evolution under the

title “The Power to Detect Quantitative Trait Loci using Resequenced, Experimentally
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Evolved Populations of Diploid, Sexual Organisms” [14]. It is reprinted here in its

original form. The simulation machinery used to generate the dataset was written and

run by Kevin Thornton with input from Anthony Long. I performed the statistical

analysis of the dataset, drew the primary conclusions, and wrote the text of the paper.

2.3 Abstract

A novel approach for dissecting complex traits is to experimentally evolve laboratory

populations under a controlled environment shift, resequence the resulting populations,

and identify SNPs and/or genomic regions highly diverged in allele frequency. To bet-

ter understand the power and localization ability of such an evolve and resequence

approach, we carried out forward-in-time population genetics simulations of 1Mb ge-

nomic regions under a large combination of experimental conditions, then attempted

to detect significantly diverged SNPs. Our analysis indicates that the ability to detect

differentiation between populations is primarily affected by selection coefficient, popu-

lation size, number of replicate populations, and number of founding haplotypes. We

estimate that evolve and resequence studies can detect and localize causative sites with

80% success or greater when the number of founder haplotypes is over 500, experimen-

tal populations are replicated at least 25-fold, population size is at least 1000 diploid

individuals, and the selection coefficient on the locus of interest is at least 0.1. More

achievable experimental designs (less replicated, fewer founder haplotypes, smaller ef-

fective population size, and smaller selection coefficients) can have power of greater

than 50% to identify a handful of SNPs of which one is likely causative. Likewise, in

cases where s ≥ 0.2, less demanding experimental designs can yield high power.
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2.4 Introduction

Quantitative traits are of special interest to biologists. The variation in many traits

of medical, agricultural and evolutionary relevance is due to the concerted action of

several genes and the environment. QTL mapping has been effective at explaining the

majority of the heritability of a trait, but is poorly suited to resolving the location of

QTL beyond several cM [115]. More recently, several groups have attempted to increase

the resolution of QTL mapping using advanced generation recombinant inbred lines

(c.f., [95, 11, 84]), but resolution is still limited to cM scales. Recently, genome wide

association studies (GWAS) have become a major method for investigating the genetic

basis for quantitative traits ([29, 28, 38]). Although GWAS studies have identified

replicable associations between SNPs and complex traits, associated SNPs tend to

explain only a small fraction of the heritable variation in the study trait [116], a problem

that cannot be solved by increasing sample sizes to tens of thousands of individuals

[145] or replacing SNPchips with complete resequenced genomes [150]. Clearly, it is of

value to explore novel methods for dissecting complex traits.

In systems that have short generation times and that can easily be reared in the

lab in large numbers, an alternative experimental approach to dissecting complex

traits has been to “evolve and resequence” (E&R) populations of organisms. E&R

studies have been performed with both asexual [136, 15, 86, 152, 131] and sexual

[153, 27, 73, 157, 130, 156] populations. Because asexual experimental evolution lacks

recombination and standing variation in the base population, the footprints of selection

in the genome and the means by which an investigator may hope to identify causal

variants are different in sexual and asexual systems. Thus, we limit our focus to E&R

studies in sexual systems. Under the E&R paradigm, a base population is divided into
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several replicate populations, half of which are subjected to a well-defined selection

pressure, and the other half of which are maintained without selection. Next, the DNA

pools from each population are re-sequenced using NextGen technology and allele fre-

quencies in each pool are estimated. SNPs and/or genomic regions showing consistent

differentiation between selected and control population are candidates for harboring

causative variants. Studies using this design have claimed to detect numbers of candi-

date causative sites from 662 [27] to almost 5000 [130] for various quantitative traits.

Currently, the causative sites detected by E&R methods have not been validated.

To date, the field of E&R has been almost entirely empirically motivated. Study designs

have varied greatly in terms of the number of replicate populations, the population sizes

maintained, the number of generations over which the experiment was carried out, and

the number of haplotypes in the base population from which selection was initiated.

For example, Burke et al. (2010), Teotónio et al. (2009), Turner and Miller (2012), and

Orozco-Terwengel et al. (2012) maintained population sizes in excess of 1000 individu-

als, while Turner et al. (2011) used population sizes of around 225, and Johansson et al.

(2010) used effective population sizes of 27 to 44 individuals. The number of founder

haplotypes is often not precisely known, but can vary from a few dozen individuals

[73] to 113 isofemales [130] up to 173 inbred lines [156]. The number of generations

of evolution also varies widely between experiments: Turner and Miller (2012) used

14 generations of selection, Orozco-Terwengel et al. (2012) used 37, Teotónio et al.

(2009) and Johansson et al. (2010) used 50, Turner et al. (2011) used 100, and

Burke et al. (2010) used 600. Replication varies as well: Turner and Miller (2012)

sequenced two replicate populations each for two experimental treatments, Turner et

al. (2011) sequenced two replicate populations each for two experimental treatments

and one control, Orozco-Terwengel et al. (2012) sequenced three replicate popula-
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tions undergoing domestication, Johansson et al. (2010) sequenced two populations

selected for divergence, and Teotónio et al. (2009) sequenced 29 total populations –

five control populations, four replicate populations for each of three treatments, and

four reverse-evolved populations for all three treatments. Burke et al. (2010) sequenced

five experimental and five control populations, but each treatment was sequenced as a

single pool because of technological constraints. It is of value to quantify the extent to

which these experimental design decisions impact the power to detect causative sites

and contribute to false positives.

Furthermore, there are no agreed upon statistical approaches for analyzing the sets

of pooled allele frequency estimates obtained from E&R studies. For example, Burke

et al. (2010), Johansson et al. (2010), and Teotónio et al. (2009), respectively, used

Fisher’s exact test, a Chi-squared test, and an a posteriori Dunnett test to detect

significant allele frequency differences between treatments, while Orozco-Terwengel et

al. (2012) and Turner et al. (2011) used, respectively, the Cochran-Mantel-Haenszel

test and a statistic referred to as “DiffStat” to determine if allele frequencies differed

significantly from simulated allele frequencies subject only to drift. Burke et al. (2010)

favored sliding windows of allele frequency change. Turner and Miller (2012) used a

graphical approach in which the divergence within treatments was used to establish a

null expectation, and divergence between treatments was considered significant if it fell

outside this null range. The lack of a consistent standard for statistics and experimental

conditions prevents us from confirming the numerous candidate causative sites that

these studies claim to have detected.

The exact prediction of allele frequency change at even a single locus is challenging

when both selection and genetic drift affect allele frequency. The approximation of

allele frequency probability distribution over time that is best suited to this problem,
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the Kolmogorov forward diffusion equation [49, 83], is a second-order partial differential

equation that can only be solved by numerical integration in many cases [67]. This

equation is advantageous in that, unlike the binomial sampling method [47] it does

not make the assumption that Hardy-Weinberg equilibrium is maintained, which is

crucial when modeling experimental evolution because of the small population sizes and

large selection coefficients involved. The fact that time-dependent diffusion equations

often have no closed-form solutions and make the strong assumption of very large

population size and weak evolutionary forces (e.g., small s in the case of selection)

motivates the use of simulation in this work. In order to accurately predict the results

of E&R experiments without an exact theoretical solution, we chose to quantify the

power and false positive rate of E&R studies via forward-in-time population genetic

simulations of evolving one Megabase (Mb) regions. We generated base populations

with defined numbers of preexisting haplotypes via coalescent simulation (analogous

to establishing a laboratory population from a wild caught sample), expanded the

base population, and chose diploid individuals to initiate an experimental evolution

experiment. Our simulations focused on a single causative SNP, embedded in a 1Mb

region filled with neutral SNPs, under constant selection during the course of the

experiment. We designated a single SNP to have a positive selection coefficient in the

selected population and a selection coefficient of zero in the control populations, and

then allowed each population to evolve with selection, recombination, and drift. By

simulating replicate E&R studies and then carrying out appropriate statistical tests

on the replicated data sets, we obtained an estimate of the proportion of times that a

similar experiment would detect a region (CR for causative region) harboring at least

one causative SNP and, potentially, identify a causative SNP (CS) embedded in such a

region. Because of the existence of linkage disequilibrium and strong selection during

experimental evolution, it may be easier to detect CRs than CSs. We carried out
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these simulations under a variety of conditions: we varied population size (n), number

of founder haplotypes (h), selection coefficient on the CS of interest (s), number of

replicated populations (r), and number of generations of evolution (g) (Table 1). We

termed these parameter combinations “Θ”. We included control simulations in which

the selection coefficient at the causative SNP in the selected population was zero, which

allowed us to determine a Type I error rate for CR and CS detection.

We observed that the false positive rate for CR detection (even when using a very

stringent criterion of significance) was extremely high using standard single-marker

tests under a minority of conditions when ten replicate populations were used. The

power to detect CRs was determined primarily by population size, replication, selection

coefficient, and number of generations, with an intermediate number of generations be-

ing ideal. The power to localize CSs was similar to the power to detect CRs but was

strongly affected by the number of founder haplotypes. Achieving a total power to

detect CRs and localize CSs of 80% required almost all parameters to be at their ideal

values (1000 individuals per population, 500 founder haplotypes, 25 replicate popula-

tions) for the case of a selection coefficient of 0.1, but reasonable levels of power can also

be achieved with less costly experimental designs or higher selection coefficients. Our

simulations suggest that the experimental designs that could be most effectively uti-

lized for detecting CRs and localizing CSs under the E&R paradigm are not currently

widely employed, and likely require considerable experimental effort. Still, the param-

eter space that provides reasonable power levels is not outside the realm of possibility

for E&R studies using macroscopic organisms.
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2.5 Results

2.5.1 The False Positive Rate

From the perspective of a näıve observer, any given simulated 1Mb genomic region

might or might not contain a CS. In order to determine the fraction of times that we

falsely identified a CR, we calculated for every parameter combination (Θ) where s=0

the fraction of cases in which at least one SNP was found to have a p-value of less

than 10−1, 10−2, 10−3, etc. through 10−14. We referred to this as the false positive

CR detection rate (Fig. 1); that is, the fraction of neutrally evolving regions that are

nonetheless flagged as “significantly diverged”. It is apparent from the figure that the

false positive rate is quite high for certain parameter combinations regardless of the

statistical threshold employed. False positives are especially frequent in the specific

case in which all of the following are true: there are ten experimental replicates, the

population size is only 100 individuals, and there are between 32 and 100 founder

individuals. This elevated false positive rate is likely due to the t-statistic used to

assess significance not being distributed as a t-distribution, especially in the tails, when

the number of replicates is small (Sup. Fig. 1). It is important that our 1Mb false

positive rate is essentially zero; otherwise, there is a high likelihood of identifying a false

positive CR somewhere in a genome that is several hundred Mb in size. In a genome

the size of Drosophila melanogaster (122Mb), the false positive CR detection rate

necessary to achieve a genome-wide false positive rate of 0.05 is 0.05/122 = 0.00041.

This corresponds to approximately 1 false positive in every 2439 regions tested. In

order to accurately measure the false positive rate at low values, we generated 10,000

replicate simulations at each Θ where s = 0. With this number of replicate simulations,

any Θ with 4 or fewer false positives has an acceptable error rate. At each Θ, we found
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the most lenient of our chosen significance thresholds that produced 4 or fewer false

positives and used it in power calculations for the remainder of the experiment (Sup.

Fig. 2, Sup. Table 1). This is a more fair comparison than choosing a single significance

threshold that is applied to all Θ because the false positive rate varies widely between

Θ such that a significance threshold that is reasonable for some Θ is unnecessarily

strict for other Θ, and would not provide a reasonable estimate of the maximum power

achievable in those Θ. Θ in which an acceptable false positive rate was not achieved

by our most strict significance threshold, 10−14, were discarded. This included all

experimental designs where r = 10, n = 100, h = 100, and g = 500 or 1000 were

simultaneously true. Of the 208 chosen thresholds (one for each combination of n, h,

r, and g), the distribution was as follows, with the first item in the list corresponding

to 10−1, the second corresponding to 10−2, and so on: 0, 0, 42, 0, 7, 25, 42, 62, 20, 5,

1, 1, 1, and 2. The large number of significance thresholds set to 10−3 corresponds to

the Θ in which r = 2; in these Θ, power and false positive rates are both extremely

low, so the selecting of a lenient significance threshold is unsurprising. The mean of

the -log10 of the significance thresholds is 6.71.

2.5.2 Power to Detect a Causative Region (CR)

Having controlled the false positive rate via an individualized statistical threshold, we

examined the ability to detect CRs. As in traditional QTL literature, there are two

issues at hand. First, is it possible to find an association between genetic features and

experimental treatment? This is analogous to CR detection as discussed in this section.

Second, if an association is found, to what level of precision can the polymorphism

underlying the trait be localized? This is analogous to CS localization in the following

sections. As above, we considered a CR detected if it contained at least one significantly
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diverged SNP (p ≤ significance threshold). Because we only used 500 simulations per

parameter combination where s > 0, we estimated the amount of error in estimates

of power due to limited sampling by finding the 95% confidence interval around each

power estimate using binomial sampling. We found that the mean width of the 95%

confidence interval for all nonzero power estimates was 4.64%, the standard deviation

of these widths was 3.31%, and the range of widths was 0.052% to 8.94%. The power

to detect a CR increased with increasing r, n, and s, slowly decreased with increasing

h, and was maximized at g = 500 when s = 0.05 and at g = 100 when s≥0.1 (Fig.

2). When r = 2, we observed a power of near zero in all cases. For several simulated

parameter combinations, power was quite high, especially when n was large and the s

associated with the CS was equal to or greater than 0.05. As expected from standard

population genetic theory, as decreasing s approached the reciprocal population size,

power to detect a CR decreased substantially. Interestingly, although smaller numbers

of starting haplotypes are associated with the greatest power to detect a CR, this effect

was weak (a feature of E&R experiments that will be important in identifying CSs).

Below, we disregarded parameter values where CR power with that parameter value

was always below 35%; specifically, we disregarded all Θ where s≤0.005, r = 2, n≤100,

or the specific case where n≤250 and r≤5.

2.5.3 Power to Identify a Causative Site (CS)

The goal of an E&R study is CR detection followed by the identification of a CS within

the detected CR. In order to determine most effective method of CS localization, we

examined the distance from the most significant marker to the causative SNP (MSM-

CS distance) in each simulated region in which at least one SNP was significant (Fig.

3). A large fraction of MSM-CS distances were equal to zero for cases of Θ where

17



CR detection power was high, indicating that precise localization is possible under

some circumstances. The nonzero MSM-CS distances appeared to be skewed such that

a large fraction of MSMs were within 100kb of the CS, indicating that these MSMs

are likely driven to high levels of divergence by linkage to the CS, rather than drift.

Indeed, if we take, for example, the (relatively moderately powered, drift-heavy) case

in which s = 0.05, n = 500, h = 32, r = 10, and g = 500, 95% of all non-zero MSM-CS

distances were less than 59kb when only significant regions were considered. For a large

portion of the Θ cases with high CR detection power (i.e., n = 500, s≥0.05, r≥10,

h≥100, except where n = 500, h = 32, r = 10, and g = 1000), the median MSM-CS

distance is zero, while the mean is a non-zero value. We observed a similar pattern

in the CS rank (Sup. Fig. 3). Although selective sweeps are clearly visible in the

raw significance scores (Sup. Fig. 4), the fact that a large majority of the MSMs in

most regions with high power have an MSM-CS distance of 0 seems to indicate that

a sliding window analysis would be no better than a single-SNP analysis at localizing

CSs. Indeed, our attempts to use a sliding window for CS localization by identifying

the sliding window with the largest summed -log(p) values in each region produced

lower power than single-SNP analyses (Sup. Fig. 5). Thus, we chose to localize CSs

through single-SNP analyses.

We examined several methods of precisely localizing a CS, conditional upon identifying

its CR as significant. Most strictly, we may identify a CS as being correctly localized

only if the most significant marker (MSM) in a CR is the CS. Alternatively, many

would consider any analysis that restricts the likely location of a CS to a small region

(i.e., 10kb), a small number of SNPs (i.e., 25), or within a small LOD drop of the

MSM (i.e., within 2 LOD) to have utility, as additional experiments may be capable

of identifying the CS. Figure 4 summarizes the power to localize the CS to: an exact
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location, within 10kb of the MSM, within the top 25 most significant SNPs in a region,

or within a 2 LOD drop of the MSM, all conditional on CR detection and s = 0.1. g

is set to 500 in all plots below except where specified for ease of viewing, and because

the effect of g on power was relatively small in the parameter space where power is

high. The primary factor that affected CS localization was h (the number of founding

haplotypes). When h is small, it appears that high linkage disequilibrium results in

significant allele frequency divergence at SNPs near the CS, making it difficult for the

CS to be differentiated from neighboring SNPs. From figure 4 it is apparent that the

localization power was quite high provided that h was high. h negatively affected CR

detection power, yet positively affected CS localization power. As discussed below,

the overall effect of h on power was positive due to the extreme effect of h on CS

localization power. In a best case scenario where n = 1000, s = 0.05, g = 500, and

r = 25, an h of 4 produces an exact location power of only 4.0%, while an h of 100

produces an exact location power of 76.4%.

The false positive localization rate, equal to 1−(localization power), can be considered

the fraction of CRs in which the CS is not correctly localized. At least one of the local-

ization false positive rates calculated is below 5% in 123 of our simulated Θ, including

but not limited to the entire simulated parameter space where h≥500, n≥500, r≥10,

and s≥0.05. It is not possible to calculate a genome-wide false positive localization

rate because the number of expected CRs in a genome is unknown. Note that this false

positive rate is distinct from the false positive CR detection rate. The false positive

CR detection rate indicates specifically the frequency with which CRs are detected

where they do not exist, while the false positive localization rate indicates the fraction

of the time that a true CR has its CS incorrectly localized. This value may be of

special interest to researchers attempting to assess the chance that a significant SNP
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in a study is likely to be a CS, or merely a neighbor of a CS.

2.5.4 Total Power

Total power is the product of CR detection power and CS localization power given

CR detection. Total power is then the fraction of all CSs that, starting from no prior

knowledge about the data, can be detected and localized successfully. Figure 5 gives

the total exact power, total top 25 power, and CR detection power as functions of Θ

when g = 100. The range where h = 4 is excluded because the CS localization power

conditional upon CR detection in these Θ is less than 80% for all statistics except

the within 2 LOD power, and few E&R experiments use only 4 founder haplotypes.

Total power is highest when s, n, h, and r are maximized and g is at a value of 100.

The parameters necessary to achieve at least 80% exact location power for the s = 0.1

case are n≥1000, r≥25, and h≥500 (Fig. 5, Sup. Fig. 6). This is a sobering result

because it is experimentally difficult (in a system like Drosophila) to achieve values

of Θ that reach a total exact location power above 80%. On the other hand, in the

cases where s≥0.1, the same goal of 80% exact location power is much more achievable:

21 of our simulated Θ, including but not limited to all cases in which s≥0.1, h≥500,

r≥15, n≥1000, and 100≤g≤500 produce a total exact location power greater than 80%.

Thus, exact localization requires relatively strict experimental conditions, but strongly

selected SNPs are more easily localized. Unsurprisingly, within 10kb power, top 25

power, and within 2LOD power were consistently higher than exact location power,

and were higher than 80% when s≥.05, n≥1000, r≥25, g = 500, and h≥32, except

in the case where s = 0.05 and h = 100, suggesting that ambitious, yet achievable,

experimental designs are capable of localizing causative sites to a few dozen or even

fewer candidate SNPs.
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In many experimental systems, there is a direct tradeoff between n and r when setting

up an E&R study because both of these parameters are space and resource limited.

Both affect the total power differently: increasing replication (r) improves the number

of degrees of freedom during statistical analysis, while increasing the population size

maintained during the experiment (n) decreases the effect of genetic drift on allele

frequencies. Both parameters are subject to diminishing returns as their values are

increased. For example, in the case where s = 0.05, g = 500, r = 10, and h = 100, a

doubling of n from 250 to 500 increases exact location power from 5% to 27%, while a

doubling of n from 500 to 1000 increases exact location power from 27% to 46%. With

the same parameters and an n of 500, an increase of r from 5 to 10 increases exact

location power from 8% to 27%, but a similar increase in r from 10 to 15 only increases

exact location power from 27% to 43%. Because diminishing returns occur, the ideal

r and n values for a given laboratory size should be balanced, with the specific values

depending on the specific conditions of the experiment (Sup. Fig. 7). Unfortunately,

it is difficult to determine an ideal r:n ratio because multiple costs are involved: the

cost of more replicates vs. more generations, the cost of sequencing vs. rearing, and

so on.

As noted above, the effect of g on the total power to detect and localize CSs was small

in the parameter space where power was high, so g was omitted from several plots for

simplicity. It was apparent that there was a strong interaction between g and s with

regard to power. At s = 0.05, an intermediate g (500) appeared to be superior to either

high (1000) or low (100) g values in terms of the power to detect CS-containing regions

and the total power to localize CSs (Fig. 6); at s = 0.1 and s = 0.2, the relationship

between g and power was generally negative. One possible explanation for this result

is that, when s = 0.05, selection had largely fixed any CS’s by generation 500, but
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drift continued to influence allele frequencies at linked markers past generation 500

resulting in increased noise after 500 generations, whereas CSs with higher selection

coefficients, i.e. s = 0.1 or 0.2, were mostly fixed by generation 100, causing power

to decrease when s>100 due to genetic drift. We found that the number of fixed or

lost CS alleles in populations where s = 0.05 increased from approximately 25% fixed

or lost when g = 100 up to approximately 100% fixed or lost when g = 500 (Fig.

7; see Sup. Fig. 8 for allele frequencies), but that the total number of fixed alleles

continued to increase even when g = 1000, implying that functional standing genetic

variation in fitness was largely exhausted by generation 500, but that drift at linked

neutral markers continued to occur. This result seems to confirm that rapid selection

and slow drift cause intermediate numbers of generations to be ideal for CS detection

and localization.

We used multiple linear regression to attempt to create a model that predicts exact

location power as a function of the s, r, g, h, and n (Sup. Table 2, Sup. Fig. 9).

We generated a table of total exact location power and the five experimental design

variables of interest, then censored it in R to only contain the Θ where 10≤r≤25,

250≤n≤1000, 32≤h≤500, 0.05≤s≤0.2, and 100≤g≤1000 in order to focus on modeling

the power curve in the area where power is highest. We then used the lm function in

R to fit the linear model below:

0.245× log10(s) + 0.668× log10(r) + 0.437× log10(n)

+0.179× log10(h)− 0.0001559× g − 1.594 = total exact location power

Before calculating the slopes, we modified s, r, h, and n by applying the log10()
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function to them as this improved the fit of the model. In the limited parameter space

examined, the linear model explains 86.9% (adjusted R2) of the variation in total exact

location power and has a standard error of 0.07782. Values produced by this formula

that are above 1 or below 0 should be assumed to be, respectively, 1 or 0. Although this

equation does not take interactions between experimental conditions into account, it

produces a relatively accurate power estimate in the aforementioned parameter range.

2.5.5 Multiple Causative SNPs

We simulated the possible case of a 20Mb chromosome containing 6, 26, or 51 CSs

in order to test the effect of multiple CSs on CR detection power and total power.

Specifically, we simulated s = 0.05, 0.1, and 0.2 (the selection coefficients that produced

reasonable power levels in the previous simulation), g = 100, 500, and 1000, and

r = 2, 5, 10, 15, and 25. We simulated two different combinations of h and n: 1)

the highest power level that we simulated (n = 1000, h = 500), and 2) a moderate

power level (n = 500, h = 100). We generated 250 replicate experiments under each

of these parameter combinations. In each replicate, one of the CSs was placed at the

center of the chromosome and the others were randomly distributed throughout the

chromosome but not within the 1Mb region surrounding the central CS. The external

CSs always had the same s as the central CS. Over the course of the forward simulation,

the allele frequencies of all SNPs in the 1Mb region surrounding the central CS were

recorded and used to calculate p values. We analyzed the resulting p values according

to the same framework used in the previous simulation. When compared with the

single CS simulation, the multiple CS simulations almost universally produced higher

CR detection power and lower CS localization power (Sup. Fig. 10). This result is

expected. A larger number of neighboring CSs should increase the average significance
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of SNPs in the region of interest by increasing the probability that an external CS is

adjacent to the focal region. This should increase CR detection power by increasing

the probability that at least one SNP will be significant, but decrease total power

by decreasing the probability that the CS will be the most significant SNP in the

region. For the three cases where the number of external CSs was equal to 5, 25, and

50, he average shortest distances from the focal CS to the closest external CS were,

respectively, 2.05Mb, 0.87Mb, and 0.68Mb.

One consequence of an increased number of CSs coexisting in a population is an increase

in the variance of that population’s fitness. We calculated the fitness of each possible

haplotype in each population and found its corresponding frequency in the population

in order to find a distribution (Sup. Fig. 11) of fitnesses at each simulated Θ in

which more than one CS is present. As expected, the distribution of fitness becomes

broader as s and the number of CSs increase. The variances that we observed (Sup.

Fig. 12) when the number of external CSs was 25 or larger seem much higher than

those observed in natural populations (Endler 1986, p. 207) and likely much higher

than those observed in laboratory experimental evolution (cf. ovary weight in Roff and

Fairbairn 2007), indicating that the presence of a large number of CSs with large s

values is not realistic under these conditions.

2.6 Discussion

This study provides insight into the experimental designs and genome-wide significance

thresholds necessary to detect CRs and localize CSs in E&R studies. Importantly, the

experimental parameters necessary for CS detection and localization are more difficult

to achieve than most experimentalists likely imagine. Researchers wishing to detect
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more than 80% of the CRs in which s = 0.05 are advised to have r≥25, n≥1000, and

g≥500. Researchers wishing to successfully both detect and localize more than 80%

of CSs should have s≥0.01, n≥1000, r≥25, and h≥500. No value of n simulated in

this study was large enough to allow for detection of a useful number of CRs where

s≤0.005. The low power to detect CSs with small fitness effects is important if we

consider than many traits of interest in E&R experiments are quantitative and may

have many loci of small effect contributing to standing variation. We have shown

that CR detection and CS localization are both improved by high values of n, r,

and s. A low h value improved CR detection but negatively affected localization,

likely because high linkage disequilibrium limited our ability to distinguish between

neighboring SNPs. We found that intermediate g values provided the highest CR

detection and CS localization because most detectable CSs have reached fixation by

generation 500, or generation 100 in cases where s≥0.1. The large effects that n, h,

and r have on power seem to indicate that the most efficient method to increase power

is to increase these parameters, especially r, which seems to increase total power at a

nearly linear rate, at the expense of g, which appears to have a small effect on power

when other conditions, such as replication, are kept high.

Although the Θ required for very high power is difficult to achieve in practice, we find

evidence that reasonable power levels can be achieved fairly easily. For instance, the

parameter space in which the total top 25 power was over 50% was quite large (176

Θ). Indeed, all Θ in which s≥0.05, h≥32, r≥15, and n≥1000 produced at least this

power level, as did numerous other Θ, such as the Θ where s≥0.2, h≥32, r≥5, n≥500,

and g = 100, except when h = n = 500, s = 0.05, and r = 5. These Θ are perhaps

more realistically approached than the Θ necessary to achieve 80% total exact location

power. This suggests that ambitious but realistic evolve and resequence experiments
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can narrow down CSs to a handful of SNPs in a small genetic region. Such SNPs could

be validated via additional experiments such as targeted gene knockout/knockin [64].

Given that the primary interest in evolve and resequence experiments is to identify the

relationship between genotype and phenotype, meaning that validation experiments

will be necessary follow-ups to such experiments, we would argue that it is critical to

design experiments with high power to localize CSs.

Our results allow us to reflect on the validity of some of the conclusions drawn in

published E&R studies by examining the CR detection power and the false positive

rate that we calculated at the Θ that most closely match published experiments. Sup-

plementary Figure 13 shows the CR detection power and false positive rate when s =

0.05 at the simulated Θ that most closely match the Θ used by existing studies. The

power levels at our chosen significance thresholds and when s = 0.05, conditional on

using our modified t-statistic, were 19%, 1.4%, 0,0,0, and 0 for Burke et al. (2010),

Teotónio et al. (2009), Johansson et al. (2010), Turner et al. (2011), Turner and Miller

(2012), and Orozco-Terwengel et al. (2012), respectively. Respective powers for s =

0.1, generated using our chosen significance thresholds, were 27.8%, 44.6%, 0, 0, 0.2%,

and 0.2%, while respective powers for s = 0.2 were 34%, 87%, 0, 0, 20.4%, and 20.4%.

Respective significance thresholds chosen by our system (see “The False Positive Rate”

in Results) were 10−7, 10−6, 10−3, 10−3, 10−3, and 10−3. For the same studies, we es-

timate that CR detection false positive rates were all equal to 0, again conditional

upon our statistical test. Notably, although we estimate a high CR detection rate for

Teotonio et al. (2009), that study genotyped only 55 loci, so the odds that any of

those loci happened to be close enough to causative SNPs to generate a detectable

signal of selection are likely low. Therefore, it may not be reasonable to conclude that

Teotonio et al. (2009) is more likely than other papers to have produced a true positive
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result. It should be noted that several of these studies [27, 130] claim that all of the

SNPs that have been detected as significant should be treated as candidate CSs, to the

extent that Burke et al. (2010) claim that they have detected, on average, a candidate

CS every 175 bp. Given that our simulation shows that it is often more difficult to

precisely localize a CS than to detect a CS-containing region, and that SNPs up to 100

kb away from a CS can be brought to significant levels of divergence by said CS, it

may be more realistic to say that these studies have detected numerous CRs but have

limited ability to precisely localize CSs or to determine the number of CSs present in

the genome. Admittedly, all of these studies used different test statistics and different

significance thresholds than our study, so it is not entirely fair to directly compare the

power levels that we estimated from our simulation to the studies in question. That

being said, the above studies tended to use a much more aggressive marginal threshold

for significance than the ones that we find properly control the false positive rate. A

more fair comparison between this simulation and former studies would require the

re-analysis of our simulated allele frequencies and the allele frequency data from each

experiment using the statistical methods used by the original investigators. Although

this is possible using our simulated data set, it is outside the scope of this investigation.

Despite our simulations suggesting low power and high false positive rate, several fac-

tors prevent the outright dismissal of published studies. First, gene ontology analysis

of genes in regions enriched for change in published studies are consistent with the

characters being selected upon. For example, the top 5 enriched gene ontology terms

from Burke et al. (2010) were imaginal disc development, smoothened signaling path-

way, larval development, wing disc development, and larval development - all have

clear causal connections to the “accelerated development” character that was selected.

Second, our simulation does not take into account selection coefficients larger than 0.2.
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Cases of very strong selection on individual CSs could therefore still allow for high

power. Even if the majority of the candidate CSs in a given study are false positives, it

is still possible that some of them are true CSs. For example, Johansson et al. (2010)

examined a small population of artificially selected chickens. Although their n of 27 to

44 should make even the detection of CSs with a selection coefficient of 0.2 difficult in

this case, artificial selection usually involves very high selection coefficients that may

be high enough to override the force of genetic drift. Johansson et al. (2010) note

that, in the candidate QTLs detected in previous studies, estimated selection coeffi-

cients (selection against the unfit allele at the candidate QTL of interest) lie in the

range of 0.19 to 0.93, well above the 0.2 simulated here. QTL mapping experiments

routinely detect a small number of CSs of relatively large effect (e.g. [84]), so it fol-

lows that under strong selection of the type used in experimental evolution, some CSs

should have selection coefficients above 0.05, which could account for Johansson et

al.’s (2010) ability (and the ability of other E&R experiments) to detect apparently

true CSs. A caveat of this line of reasoning is that routine detection implies selection

response is due to a handful of genes of large effect as opposed to dozens to hundreds

of genes of much more subtle effect as claimed in the recent evolve and resequence

literature [153, 27, 73, 157, 130, 156]. Thus, the claims of the literature of localization

of causative sites and dozen to hundreds of sites responding to selection seem mutually

exclusive given the experimental designs employed.

This study makes a number of simplifying assumptions, all of which we believe to

be realistic when describing the case of experimental evolution of small populations.

Our simulation machinery operates based on the Wright-Fisher model of population

genetics, in which the gametes of each generation are aggregated into a gene pool

to generate the next generation. The assumptions of this model, that generations
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are discrete and mating is random, are realistic for experimental evolution. A further

assumption is that all heritable variation is additive within and between loci. Although

it is certainly true that non-additive variation exists, the majority of heritable variation

is likely additive in nature [69]; therefore, the omitting of non-additive variation in our

power analysis should not dramatically affect our power estimates. Our simulations

were limited to 1Mb gene regions instead of complete genomes, and all simulated regions

have one or no selected loci. We detected CRs by determining if a region contained

a significant SNP, then localized by identifying the MSM in the region as the CS.

Importantly, we observed that the MSM could be quite distant from the CS: even

for parameter combinations with high power to detect a region as significant, a small

portion of MSMs were up to 100kb away from the CS, though few were more distant

than that (Fig. 3). While our simulations assume that the density of CSs in the genome

is relatively low (at most 1 per Mb), our observation that peaks of significant allele

frequency change may be quite distant from CSs suggests that the number of significant

markers may not be a reliable proxy for the true number of CSs in the genome and

call into question whether it is reasonable to deem any significant SNP a candidate

CS, especially when h is low. In our simulations, when h was less than or equal to 32

in a population and power was greater than 0, the average exact localization power

across our simulations was only 0.244. Although the selection of a 1Mb region for our

simulations was somewhat arbitrary, we believe it is an appropriately sized region to

consider. The selective sweeps that occurred in our simulated populations appeared to

extend less than 500kb from the CS under most circumstances (Sup. Fig. 4), and few

replicate simulations generated an MSM-CS distance greater than 100kb. Indeed, in

the parameter space where s≥0.05, 95% of all simulated regions that contained at least

one SNP significant at a 10−8 threshold had an MSM-CS distance less than or equal to

228kb. Thus, any SNPs simulated further from the CS would resemble SNPs in neutral
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regions. Similarly, our decision to use the entire simulated region as a candidate CR

instead of using only a limited area (say, 100kb) is justified in that the various powers

simulated here are virtually unchanged when one compares the power using a 1Mb

region and a 100kb region. The mean difference between the 1Mb CR detection power

and the 100kb CR detection power is 0.3%, indicating that nearly all CSs that can be

detected can be localized to an area the size of a selective sweep around the MSM;

in other words, it is reasonable to conclude that CR detection power = total within

100kb power.

Notably, our goal in simulating 1Mb regions was not to test the efficacy of the particular

CS-detection technique used here; researchers attempting to adapt this technique to

empirical use would need to first divide their genome of interest into arbitrary 1Mb

blocks in order to perform our CR detection step, which would be an unnecessarily

arbitrary method of subdividing a genome. Rather, our reasoning for choosing to

simulate 1Mb blocks was to be certain to capture all of the genetic change due to

linkage to the CS in each simulated region. Our CR detection power is thus an upper

bound on the ability of a study with a certain set of experimental parameters to detect

the presence of any particular CS. It gives no indication as to the ability of that study

to localize that CS, except perhaps to say that if a significant SNP is located, the CS

that drove its divergence must be close enough to it to have affected its allele frequency

via a selective sweep. Some problematic effects that could occur if our CR detection

method were applied as-is to real life data, such as the possibility that a CS could be

immediately adjacent to a 1Mb focal region and could thus drive a SNP to significance

in a non-CS-containing region, are not considered further here.

It is possible to imagine much more complicated models and significance tests than

the ones we used. For example, we did not attempt to use the combined p-values of
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multiple insignificant SNPs to determine the significance of a region because there is no

simple way to determine the probability of observing any particular set of multiple p-

values if, as in this case, the p-values are not independent. Further, the advantage of a

combined p-value approach (higher CR detection) would presumably be at its largest in

the Θ where linkage disequilibrium is very high, such as when h is low, but such Θ have

already been established as having very high CR detection power, so the advantage

gained from a combined p-value approach would be minimal. On a similar note, we

did not attempt to simulate a distribution of selection coefficients across the loci in

our simulated genomic regions. Recent studies have raised the question as to whether

the majority of heritability for any particular trait is best explained by a small number

of mutations of large effect [74] or a large number of small effect mutations [17, 16].

Because there is not a scientific consensus on the question of QTL effect size, and

thus selection coefficient, distributions, we chose to avoid making assumptions about

selection coefficient distributions, and instead merely simulated a range of selection

coefficients and calculated the power to detect CSs at each selection coefficient level.

Similarly, we chose not to simulate genomic regions containing multiple CSs because

they did not fit the paradigm of this study. The design of this study, in which small

genomic regions are simulated, implicitly assumes that CSs are distant enough from

each other as to not interact significantly. Were we to relax this assumption, the most

appropriate method for simulating multi-CS interactions would be to simulate an entire

chromosome and distribute CSs across it. Doing so was outside the scope of this study.

A final model we did not consider is the possibility of plateauing allele frequencies due to

diminishing selection pressure as a phenotypic optimum is approached, as hypothesized

in Burke et al. (2010) and Burke and Long (2012) (also cf. [143]), based on a model

in Chevin and Hospital (2008) and potentially observed in Orozco-Terwengel et al.
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(2012). That is, we assumed that immediately following the placement of the selected

populations into a novel environment a previously neutral SNP obtains a new fixed

positive selection coefficient. An additive CS that follows a plateauing allele frequency

trajectory could be more difficult to detect than one in which allele frequencies approach

fixation because of the lower total level of divergence expected in a plateauing allele;

however, our simulation indicates that there are diminishing returns on power from

increased allele frequency divergence over time (Sup. Fig. 8), indicating that plateauing

allele frequency trajectories will not severely reduce power. This is evidenced by the

fact that, at the Θ where n = 1000, h = 500, r = 25, and s = 0.05, a near doubling

of mean CS allele frequency over all 500 simulation replicates from 52% at generation

100 to 94% at generation 500 only increased total exact location power from 71% to

76%.

Our simulation indicates that, in spite of their inability to detect CSs of very small

effect, E&R studies should be capable of detecting and localizing the majority of CSs

of moderate to large effect under conditions that, while more labor-intensive than

traditional experimental evolution conditions, are still feasible. The effectiveness of

the next generation of E&R experiments will depend on their ability to improve upon

the experimental designs of the past by using large, well-replicated, initially diverse

populations.
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2.7 Materials and methods

2.7.1 The Simulation

We simulated replicated experimental evolution using a two-stage approach. First, we

simulated 1,000 replicates of a sample of size 2,000 chromosomes from a Wright-Fisher

population using the macs software (version 0.4b, Chen et al. 2009) using the following

parameters: macs 2000 1000000 -t 0.01 -r 0.1 -i 1000 -s $RANDOM. This com-

mand line specifies 1,000 replicate simulations of a sample of 2,000 chromosomes. The

locus length is 1 million base pairs mutating at rate θ = 4Nu = 0.01 per site and

recombining at rate ρ = 4N ∗ (recombination rate) = 0.1 per site, where N is the size

of a Wright-Fisher population and u is the mutation rate, per base pair per generation.

The mutation parameter was chosen to mimic SNP density in non-African Drosophila

melanogaster, and the recombination rate was based on estimates from Chen et al.

2009.

The outputs from macs were used to seed forward-time simulations using the first h

haplotypes from a coalescent simulation. The forward-time simulation used here is

based on a generic C++ library (Thornton, unpublished) previously used in Thorn-

ton, Foran, and Long (2013). The speed of the library compares favorably to existing

forward simulations [1, 122], but has the advantage that new models are easily imple-

mented by enabling simple code re-use via the C++ template mechanism. Haplotypes

in macs are not sorted, so choosing the first h haplotypes is equivalent to randomly

choosing h haplotypes. These h founding haplotypes were replicated r times and then

r large “base” populations of n diploids each were generated by sampling with replace-

ment from the initial coalescent simulations. A single site was assigned a positive
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selection coefficient and experimental evolution was simulated using forward-in-time

simulations. The forward in time simulations were carried out with various population

sizes (n), numbers of founder haplotypes (h), numbers of replicate populations evolved

(r), numbers of generations of experimental evolution (g), and selection coefficients

(s). Note that, due to the lack of population structure in these populations, the actual

population size should be equal to the effective population size; in a study of real data,

the effective population size would be more comparable to the n used here because

of non-random mating and population size fluctuations. The SNP under selection, or

the causative site (CS), was always the centermost SNP in the region. The selection

scheme was codominant with fitnesses 1, 1 + s/2, and 1 + s, where s is the selection

coefficient on the CS. CSs thus followed the same distribution of initial allele frequen-

cies as all other SNPs in the simulation, consistent with a SNP that is initially neutral,

but that is selected upon following a change in environmental conditions. Linkage

disequilibrium between SNPs is initially an outcome of the neutral Wright-Fisher sam-

pling process used to generate the h founder haplotypes, and subsequently determined

by the details of the forward-in-time simulation. The forward simulations assume no

further mutation in the region, and the recombination rate used was 0.025 per diploid

per generation assuming that the 1 megabase region is 5% of a “typical” 20 megabase

chromosome whose total recombination rate per generation is 0.5.

To find the experimental parameters best suited to E&R CR detection and CS lo-

calization, we arranged our simulated genomic regions as one would arrange a set of

populations for experimental evolution. In each replicate simulation, we set up an equal

number of experimental and control populations (in which the selection coefficient at

the CS is equal to zero), all containing individuals with the same genomic region.

Haplotypes were generated based on the initial allele frequencies, and individuals car-
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rying these haplotypes were created. A forward-in-time simulation was then used to

keep track of the movement of haplotypes over time with recombination and selection

applied. Allele frequencies were calculated and recorded at 100, 500, and 1000 genera-

tions. Although a true E&R experiment would have allele frequency estimation errors

that are a complex function of number of individuals sequenced, library preparation

methods, average sequence coverage, and variation in sequencing coverage, we chose to

simulate the best-case scenario where all allele frequencies are estimated without error.

Thus, our estimates of power are likely somewhat optimistic. We performed simula-

tions that varied in population size (n diploids), number of founder haplotypes (h =

twice the number of founding diploids), number of replicate populations (r), and selec-

tion coefficient (s) on the CS. In total, 500 replicate simulations were performed under

each of 840 possible combinations of experimental parameters (Θ) (Table 1). Com-

binations in which h was larger than n were not simulated because such populations

would presumably closely resemble populations in which h was reduced to the level

of n. At each number of generations (g) in which allele frequencies were recorded, a

modified t-statistic was calculated on arcsine square-root transformed SNP frequencies

using 2, 5, 10, 15, or 25 replicate populations. This empirical Bayesian t-statistic [13]

indicates the degree to which the allele frequencies of SNPs in the selected populations

have diverged from the same allele frequencies in the control populations. It differs

from a standard t-statistic in that it is not infinity in the case where a SNP of interest

is fixed in all experimental replicates and lost in all control replicates. The expression

for the modified t-statistic is

t =
x1−?x2√

1−w
r (v1 + v2) +

2w
r v́

where x1 and x2 are the mean allele frequencies across all experimental replicates in
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selected and control treatments, respectively, v1 and v2 are the respective variances,

ris the number of replicates, and w = 0.1. v́ is the average within treatment variance

in allele frequency averaged over all SNPs in the region and both treatments. v́ is then

an empirically motivated Bayesian prior on allowable variances in allele frequencies,

and has the effect of stabilizing the denominator of the t-statistic. This is especially

important in experimental evolution experiments in which a SNP could differentially

fix in the experimental versus control replicates purely due to drift alone and thus be

associated with a traditional t-statistic of infinity.

p-values were calculated from the modified t-statistic using the pt function in R, using

a 2-tailed method (see Sup. Fig. 4 for examples). A 2-tailed t-test was used in order to

avoid making a priori assumptions about the nature of the 2 alleles involved at any given

locus: since either allele could be beneficial in theory, it is not reasonable to assume

that only the allele whose frequency is being tracked could be beneficial. Degrees

of freedom were considered to be 2r−2 (because there are control and experimental

treatments, the total number of replicates is twice the number per treatment). The

threshold for significance was set independently for each Θ by calculating the false

positive rate for every whole-number power of 10 from 10−1 to 10−14 and choosing the

most lenient threshold with an acceptable false positive rate (see results section, “The

False Positive Rate”). Power was calculated by finding the fraction out of 500 times

that 1) at least one SNP was significantly diverged in a region of interest and 2) a

secondary condition was met. These secondary conditions included having the most

significant marker (MSM) in the region be the CS (exact location power), having the

MSM be within 10kb of the CS (within 10kb power), having the CS be among the top

25 MSMs (top 25 power), and having the CS’s LOD (logarithm base 10 of odds) score

be within two of the MSM’s LOD score (within 2 LOD power). The power to fulfill the
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first condition without regard for a second condition was termed “CR detection power”.

This diversity of methods of SNP localization allowed us to determine which method

would be most reliable under any particular set of experimental parameters. The CR

detection false positive rate was determined by finding the fraction of cases in which

a region with an s of zero contained at least one significant SNP. The distance from

the MSM to the CS (MSM-CS distance) and the rank of the CS’s p-value compared

to the other SNPs in its region (CS rank) were calculated in every replicate of the

500 replicate simulations per Θ in order to analyze the distribution of significant SNPs

across parameter values.

An additional 18,000 replicate genome regions were generated in macs and used to seed

forward-in-time simulations with no selection under all of our Θ where s = 0. 10,000

replicate neutral simulations were performed for each Θ where s = 0. These additional

replicates were used to more accurately calculate the false positive CR detection rate.

This high level of replication was only required for the calculation of false positive

rates because the maximum allowable false positive rate is too small (˜1/2000) to be

accurately measured with only 500 replicate experiments.

2.7.2 The Data

This simulation produced 2,205,000 semi-independent experimental results. There are

500 pure replicates of each possible permutation of five distinct experimental param-

eters’ values (Table 1) – number of replicate populations (r), number of haplotypes

in the base population (h), population size (n), selection coefficient at the selected

locus (s), and number of generations of selection (g). The resulting data sets are not

completely independent because the coalescent simulation used to generate the 1Mb
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regions used here was only run 500 times (10,000 where s = 0), and the resulting 500

(or 10,000) genome regions were re-used for the 500 (or 10,000) replicate experiments

for each parameter combination. Further, for any particular combination of n, r, s,

and h, the three g values simulated were not entirely independent because the data

associated with larger g values was derived from continuing the forward simulations of

the smaller g simulations. Values were chosen based on the specifics of the variable:

h, n, and g values were chosen based on the levels historically used in experiments of

this type. The r values were chosen based on the level of replication commonly used in

experimental evolution as well as the level of replication required for high power. Ex-

perimental evolution of sexual organisms is usually carried out with 5 or fewer replicate

populations due to the difficulty of rearing large numbers of populations, but, especially

in genomics, statistical significance is difficult to achieve with low r values because the

large number of independent comparisons require a strict significance threshold. s val-

ues were chosen based on the minimum selection strength necessary for selection to

have an effect sufficiently stronger than genetic drift to produce a measurable change

in allele frequencies: when the selection coefficient at a SNP is less than ∼ 1/(2n),

genetic drift is a more powerful force than selection (Crow and Kimura, 1970, p 425).

The s values were thus chosen to cover a range of possible sizes, from an s considerably

smaller than 1/(2n) to an s larger than 1/(2n).

2.7.3 Data Availability

The simulation code and all data and the necessary code to recreate the data are

available online at http://www.molpopgen.org/Data, as is a commented copy of the

scripts used to calculate p-values, power, and other statistics. Macs is available at

http://code.google.com/p/macs/.
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2.9 Tables

Term Values used in

simulation

Description

r Number of Repli-

cates

2,5,10,15,25 The number of independent exper-

imental populations that are used

in each trial. There are an equal

number of control populations.

n Population Size 100, 250, 500,

1000

The number of diploid individuals

that successfully reproduce every

generation.

h Number of Hap-

lotypes

4, 32, 100, 500 The number of haplotypes present

in each population at the start of

each experiment. A population

originally derived from one male

and one female would have 4 hap-

lotypes.
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g Number of Gen-

erations

100, 500, 1000 The number of generations of se-

lection that both the control pop-

ulations and the selected popula-

tions have undergone before allele

frequency calculation.

s Selection Coeffi-

cient

0, 0.0005, 0.005,

0.05, 0.1, 0.2

The strength of selection at the

causative locus in a particular ge-

nomic region.

Θ Parameter Com-

bination

The particular set of r, n, h, g, and

s used in each set of 500 simula-

tions.

MSM Most Significant

Marker

The SNP that was found to have

most significantly diverged in a

particular simulation

CS Causative SNP The SNP that was selected upon

in a particular simulation.

CR Detection

Power

The fraction of studies of a partic-

ular Θ that found at least one sig-

nificantly diverged SNP

Exact Location

Power

The fraction of studies of a partic-

ular Θ in which the MSM is the

CS.

Within 10kb

Power

The fraction of studies of a partic-

ular Θ in which the MSM is within

10kb of the CS.
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Top 25 Power The fraction of studies of a partic-

ular Θ in which the CS is one of

the 25 most significantly diverged

SNPs in the region.

Within 2 LOD

Power

The fraction of studies of a partic-

ular Θ in which the CS is within a

2 LOD drop of the MSM

Total Power The fraction of studies of a par-

ticular Θ in which the CR is de-

tected and the CS is localized ac-

cording to one of the CS local-

ization methods above. In other

words, CR Detection Power * Lo-

calization Power

MSM-CS Dis-

tance

The physical distance between the

MSM and the CS.

CS Rank The significance rank of the CS

when compared to all other SNPs

in the region

Table 2.1: Useful terms

2.10 Chapter 1 Figures
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Figure 2.1: The false positive CR detection rate versus replication. This plot depicts the
fraction out of 10,000 cases in which a region containing no CS contained at least one
significantly diverged SNP for four different per SNP -log10(p-value) thresholds. The
black line indicates the maximum allowable false positive rate (4/10, 000). n represents
population size, while h represents the number of founder haplotypes. The variable
significance threshold used in our later power analysis is also included for comparison.
When two lines overlap, the line representing a more strict significance threshold is the
visible line.
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Figure 2.2: CR detection power. This plot depicts the power to detect regions contain-
ing one or more significantly diverged SNPs. The Θ in which all of the following are true
simultaneously: r = 10, n = 100, h = 100, and g = 500 or 1000 would be omitted due
to high false positive rates, but only g = 100 is shown for ease of viewing. n represents
population size. h represents the number of founder haplotypes. The p-value threshold
for significance was determined for each Θ by finding the most lenient threshold that
sufficiently limited false positives. Each point represents 500 independently replicated
sets of populations. All lines that are not visible overlap with s = 0.005. The black
lines indicate power levels of 50% and 80%.
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Figure 2.3: A histogram depicting the distribution of the distance from the MSM to
the CS (MSM-CS distance) after 500 generations of selection with 500 individuals per
population and a selection coefficient at the CS of 0.05 in all cases where the MSM
was significant. Variation in population size is not shown because its effects are similar
to variation in replication. The MSM-CS distance is shifted by one base pair so that
MSM-CS distances of 0 are visible after logarithmic transformation. The count refers
to the number of pure replicates out of 500 that fell into a given range. Note the
increase in low-MSM-CS-distance hits due to selective sweeps when h is low.
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Figure 2.4: Localization power conditional on regional significance. In other words,
the fraction of all significant SNP containing regions in which the CS could be either
exactly identified or localized to a small number of candidate SNPs. For clarity, only
cases where s = 0.1 are shown, but similar patterns occur for s = 0.05 and s = 0.2. This
set of plots shows the fraction of experiments that correctly identified the location of
the CS out of all experiments in which at least one SNP was significant. Exact location
power refers to cases in which the MSM is the CS, top 25 power refers to cases in which
the CS is among the 25 most significant SNPs, within 10kb power refers to cases in
which the MSM is within 10kb of the CS, and within 2 LOD power refers to cases in
which the CS is within 2 LOD of the MSM. The population size is represented by n,
while the number of founder haplotypes is represented by h. Non-visible within 10kb
power points overlap with top 25 power points. The black lines indicate 80% power
and 95% power.
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Figure 2.5: Total power to detect and localize CSs. The ability to detect a CS-
containing region and either correctly identify the exact location of a CS or decrease
the number of candidate loci to a manageable number after 1000 generations with a
selection coefficient at the CS of 0.05, 0.1, or 0.2. In other words, the fraction of all
simulations in which a region contains a significant SNP and one of two methods of
detecting a CS is successful: the MSM is the CS (Total Exact Location Power) or
the CS is one of the 25 most significantly diverged SNPs in the region (Total Top 25
Power). Also shown is the CR Detection Power, which is the fraction of regions that
contained at least one significant SNP. Other measurements of power are excluded for
clarity. By design, all total powers listed here must be lower than the CR detection
power. The black lines indicate 50% and 80% power. Where CR detection power is
not visible on the plot, it overlaps with total top 25 power.
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Figure 2.6: The total power to detect and localize SNPs when s≥0.05 and h = 100
versus the number of generations of selection. For simplicity, only CR detection power
and total exact location power are shown. Variation in h is not shown because there
are no visible interactions between h and g. The black lines indicate 50% and 80%
power.
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Figure 2.7: The fraction of alleles that have fixed versus number of generations of
selection. The blue line indicates the fraction of all CS alleles that reached an allele
frequency of 1 or 0, while the red line indicates the fraction of all alleles in the region
that reached an allele frequency of 1 or 0. Note that this plot makes use of all available
replicates for every Θ. Circles represent s = 0, while triangles represent s = 0.05.
Regions with an s of 0 have no CS, but the fixation frequency of the centermost SNP
is included (the blue lines) for comparison with the CS when s = 0.05.
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3.2 Preface

This chapter was originally published in Nucleic Acids Research under the title “Con-

tiguous and accurate de novo assembly of metazoan genomes with modest long read

coverage”. It is reprinted here in its original form. Anthony Long and J.J. Emerson ad-

vised all aspects of this publication. Mahul Chakraborty performed the whole genome

assemblies using PacBio only assemblers, while I performed the whole genome assem-

blies using hybrid (that is, PacBio plus Illumina data) assemblers. Dr. Chakraborty

was the primary author of the quickmerge program, but the concept for the program

was generated in collaboration amongst the four authors; I was the author of the wrap-

per program that executes the quickmerge pipeline. Dr. Chakraborty and I contributed

equally to the writing of the document and creation of the figures.

3.3 Abstract

Genome assemblies that are accurate, complete, and contiguous are essential for iden-

tifying important structural and functional elements of genomes and for identifying

genetic variation. Nevertheless, most recent genome assemblies remain incomplete

and fragmented. While long molecule sequencing promises to deliver more complete

genome assemblies with fewer gaps, concerns about error rates, low yields, stringent

DNA requirements, and uncertainty about best practices may discourage many in-

vestigators from adopting this technology. Here, in conjunction with the platinum

standard Drosophila melanogaster reference genome, we analyze recently published

long molecule sequencing data to identify what governs completeness and contiguity

of genome assemblies. We also present a hybrid meta-assembly approach that achieves
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remarkable assembly contiguity for both Drosophila and human assemblies with only

modest long molecule sequencing coverage. Our results motivate a set of preliminary

best practices for obtaining accurate and contiguous assemblies, a “missing manual”

that guides key decisions in building high quality de novo genome assemblies, from

DNA isolation to polishing the assembly.

3.4 Introduction

De novo genome assembly is the process of stitching DNA fragments together into

contiguous segments (contigs) representing an organism’s chromosomes [146]. Until

recently, genomes were often assembled using fragments shorter than 1,000 bp. How-

ever, such assemblies tend to be highly fragmented when they are generated using

sequencing reads shorter than common repeats [146, 125, 24, 12]. Paired end short

reads from different sized longer inserts can improve contiguity, but uncertainty of

fragment length and the lack of sequence between the insert ends makes resolving

many repetitive structures challenging [93]. Longer reads can circumvent this problem,

even when such reads exhibit errors rates as high as 20% [93, 100, 124]. Importantly,

error-prone reads can be corrected, provided there is sufficient coverage and the errors

are approximately uniformly distributed. Single molecule sequencing, like that offered

by Pacific Biosciences (PacBio), meets these criteria with reads that are routinely tens

of kilobases in length [93, 92, 82, 133]. While PacBio sequences have high error rates

(˜15%), errors are nearly uniformly distributed across sequences [93]. With sufficient

coverage, these sequences can be used to correct themselves [36]. Assemblies using such

correction are referred to as PacBio only assembly [20]. Alternatively, hybrid assembly

can be performed using a combination of noisy PacBio long molecules and high quality
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short reads (e.g. Illumina) [133, 94].

Recently, the value of long molecule sequencing has been definitively demonstrated with

the release of several high quality reference-grade genomes assembled from PacBio se-

quencing data [82, 20, 59]. Indeed, the Drosophila PacBio assembly closed gaps in the

reference genome assembly [20], which is often considered the most contiguous meta-

zoan genome assembly. Despite these successes, shepherding a genome project through

the process of DNA isolation, sequencing, and assembly is still a challenge, especially

for research groups for whom genomes are a means to another goal rather than the goal

itself. For example, because high quality genome assembly relies upon long sequenc-

ing reads to bridge repetitive genomic regions [100, 97, 25, 126] and high coverage to

circumvent read errors [12, 124, 36], the stringent DNA isolation requirements (size,

quantity, and purity) for PacBio sequencing [82] intended for genome assembly are

higher than those typically employed. Moreover, at present, the low average read qual-

ity produced by PacBio sequencing causes coverage requirements to be at least 50-fold

[93, 20, 59]. This requirement, combined with the comparatively expensive sequenc-

ing, makes striking the right balance between price and assembly quality important.

Exacerbating the problem is the fact that rediscovering the optimal approach for a

genome project is itself expensive and time consuming. As a consequence of these

challenges and uncertainties, many groups may opt out of a long molecule approach,

or worse, sink scarce resources into an approach ill-suited for their goals because the

consequences of many decisions involved in long molecule sequencing projects have not

been synthesized.

In order to optimize a strategy for genome assembly we investigated the consequences

of sample preparation (i.e. DNA isolation, quality control, shearing, library loading,

etc.), assembly strategies, and properties of the data (i.e. read quality, length, and
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read filtering). We first evaluate strategies for assembling PacBio reads, and how they

perform with differing amounts of sequence coverage. Then, we assess the contribution

of read length and read quality to assembly contiguity. We also introduce quickmerge,

a simple, fast, and general meta-assembler that merges assemblies to generate a more

contiguous assembly. Additionally, we describe the protocols, quality-control practices,

and size selection strategies that consistently yield high quality DNA reads required

for reference grade genome assemblies. Our strategy is flexible enough to yield high

quality assemblies using as little as 25X long molecule coverage or as much as >100X.

3.5 Materials and methods

3.5.1 Preparing high quality DNA library for long reads

Obtaining high quality, high molecular weight (HMW) genomic DNA

We used Qiagen’s Blood and Cell culture DNA Midi Kit for DNA extraction. As single

molecule technologies (PacBio and Oxford Nanopore) do not require any sequence

amplification step, a large amount of tissue is required to ensure enough DNA for

library preparations that opt for no amplification (as is standard for genome assembly

sequencing). For flies, 200 females or 250 males flies is sufficient for optimal yield

(40-60µg DNA) from a single anion-exchange column. For other organisms, number of

individuals need to be adjusted based on the tissue mass. A good rule of thumb is to

keep the total amount of input tissue 100-150mg for optimal yield from each column.

To extract genomic DNA, 0-2 days old flies were starved for two hours, flash frozen

in liquid nitrogen, and then ground into fine powder using a mortar and pestle pre-
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chilled with liquid nitrogen. The tissue powder was directly transferred into 9.5 ml

of buffer G2 premixed with 38µl of RNaseA (100mg/ml) and then 250 µl (0.75AU) of

protease (Qiagen) was added to the tissue homogenate. The volume of protease can

be increased to 500 µl (1.5AU) to reduce the time of proteolysis. The tissue powder

was mixed with the buffer by inverting the tube several times, ensuring that there were

no large tissue clumps present in the solution. The homogenate was then incubated

at 50[2DA?]C overnight with gentle shaking (with 500µl protease, this incubation time

can be reduced to 2 hours or less).

The next day, the sample was taken out of the incubator shaker and centrifuged at

5000xg for 10 minutes at 4[2DA?]C to precipitate the tissue debris. The supernatant

was decanted into a fresh 15ml tube. The little remaining particulate debris in the

tube was removed with a 1 ml pipette. The sample was then vortexed for 5 seconds

to increase the flow rate of the sample inside the column and then poured into the

anion-exchange column. The column was washed and the DNA was eluted following

the manufacturer’s protocol. Genomic DNA was precipitated with 0.7 volumes of

isopropanol and resuspended in Tris buffer (pH 8.0). For storage of one week or less,

we kept the DNA at 4[2DA?]C to minimize freeze-thaw cycles; for longer storage, we

kept the DNA at -20[2DA?]C.

Shearing the DNA

1.5” blunt end needles (Jensen Global, Santa Barbara, CA) were used to shear the

DNA. The needle size can be varied to obtain DNA of different length distribution:

24 gauge needles produces a size range of 24-50 kb. To obtain larger fragments, <24

gauge needles need to be used. For the DNA we have sequenced, up to 200µg of
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high molecular weight raw genomic DNA was sheared using the 24 gauge needle (Fig.

1). Additionally, we have also sheared DNA with 21, 22, and 23 gauge needles to

demonstrate the size distribution they generate (supplementary Fig. 1). In brief, the

entire DNA solution is drawn into a 1mL Luer syringe and dispensed quickly through

the needle. This step is repeated 20 times to obtain the desired distribution of fragment

sizes.

Quality Control using FIGE

We verified the size distribution of unsheared and sheared genomic DNA using field

inversion gel electrophoresis (FIGE), which allows separation of high molecular weight

DNA. The DNA is run on a 1% agarose gel (0.5x TBE) with a pulse field gel ladder

(New England Biolabs, Ipswich, MA). The gel is run at 4[2DA?]C overnight in 0.5 x

TBE. To avoid temperature or pH gradient buildup, a pump is used to circulate the

buffer. The FIGE was run using a BioRad Pulsewave 760 and a standard power supply

with the following run conditions:

Initial time A: 0.6s, Final time B: 2.5 s, Ratio: 3, Run time: 8 h, MODE: 10, Initial

time A: 2.5s, Final time B: 8s, Ratio: 3, Run time: 8 h, MODE: 11, Voltage: 135 V.

Library preparation

The needle sheared DNA is quantified with Qubit fluorometer (Life Technologies,

Grand Island, NY) and NanoDrop (Thermo Scientific,,Wilmington, DE). Following

quantification, 20 µg of sheared DNA was optionally run in four lanes of the Blue Pip-

pin size selection instrument (Sage Science, Beverly, MA) using 15-50 kb as the cut-offs
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for size selection (Fig. 1). This optional size selection step increases final library yield

at the cost of requiring more input DNA. This size selected DNA is then used to pre-

pare a SMRTbell template library following PacBio’s protocol. A second round of size

selection is performed on the SMRTbell template using a 15-50 kb cutoff to remove the

smaller fragments generated during the SMRTbell library preparation step (Fig. 1).

The second step minimizes the number of DNA fragments less than 15kb subjected to

sequencing.

3.5.2 DNA Sequencing

PacBio sequencing was conducted to establish length distributions (D. simulans Fig.

2a) and evaluate the impact of library preparation on quality (Fig. 3), and was per-

formed at the UCI High Throughput Core Facility using DNA isolated using the pro-

tocol described above. We note that the D. simulans reads were not used for as-

semblies reported here – all of our assemblies are constructed with publicly available

D. melanogaster [82] and Homo sapiens data [133]. We sequenced one SMRTcell of

Drosophila genomic DNA with the following conditions to obtain sequences with stan-

dard quality and length distribution: 10:1 polymerase to template ratio, 250 pM tem-

plate concentration, and P6C4 chemistry. The movie time and other conditions were

standard for RSII P6C4 chemistry. To demonstrate the tradeoff between yield and qual-

ity, we sequenced one SMRTcell each for polymerase:template ratios of 40:1,80:1,100:1

with template concentration held constant at 200pM, and one SMRTcell each with

300pM and 400pM template concentration with the polymerase:template ratio being

held constant at 10:1.
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3.5.3 PacBio only Assembly

For PacBio sequences, the assembly pipeline is divided into three parts: correction,

assembly, and polishing. Correction reduces the error rate in the reads to 0.5-1% [20],

and is necessary because reads with a high (˜15%) error rate are extremely difficult

to assemble [126]. Correction is facilitated by high PacBio coverage, which allows the

error corrector to successfully ‘vote out’ errors in the PacBio reads. For self correction,

we used the PBcR pipeline [20] as implemented in wgs8.3rc1 which, by default, corrects

the longest 40X reads. The second step involves assembling the corrected reads into

contigs. We used the Celera assembler [126], included in the same wgs package, for

assembly. A third optional step involves polishing the contigs using Quiver and Pilon

[34, 159], which brings the error rate down to 0.01% or lower. All of the assemblies

described in this paper were generated with the same PBcR command and spec file

(commands and settings, Supplementary materials).

For PacBio only assembly of D. melanogaster ISO1 sequences, we used a publicly avail-

able PacBio sequence dataset which was generated using the standard P5C3 chemistry.

A complete description of this data is available in Kim et al. [82]. We chose the D.

melanogaster dataset for our experiments and simulations because D. melanogaster

is widely used in genetics and genomics research and its reference sequence (release

5.57,http://www.fruitfly.org) is one of the best, if not the best, eukaryotic multicel-

lular genome assemblies in terms of assembly contiguity. This is true for both the

PacBio generated assembly (21Mb contig N50) [82] and the Sanger assembly (23Mb

scaffold N50) of ISO1. The remarkable contiguity of these assemblies becomes more

tangible when the theoretical limits of D. melanogaster chromosome arms’ lengths are

considered (20): N50 of both assemblies lie very close to the theoretical maximum N50

(˜28Mb). This high quality assembly serves as a reference for evaluating assemblies
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presented here.

We evaluated assembly qualities using the standard assembly statistics (average contig

size, number of contigs, assembled genome size, N50, etc.) using the Quast and GAGE

[66, 138] packages.

3.5.4 Hybrid Assembly

PacBio only assembly of high error, long molecule sequences depends upon redun-

dancy between the various low quality reads to ‘vote out’ errors and identify the

true sequence in the sequenced individual. An alternative approach to this prob-

lem is to use known high quality sequencing reads to correctly call the bases in the

sequence, and then to use PacBio reads to identify the connectivity of the genome.

In order to achieve the best possible assembly results, we tested several different hy-

brid assembly pipelines before choosing DBG2OLC (https://arxiv.org/abs/1410.2801,

https://sites.google.com/site/dbg2olc/) and Platanus [75]. In our early tests, the next

highest performing hybrid assembler, a combination of ECTools

(https://github.com/jgurtowski/ectools) and Celera, achieved a highest N50 of 616kb

in Arabidopsis thaliana using 19 SMRT cells of data; in contrast, using 20 SMRT cells

of the same data, the DBG2OLC and Platanus pipeline produced an N50 of 4.8Mb.

We aslo tested the alternative error corrector, LoRDEC [137], along with the Celera

assembler, but found that the LoRDEC -corrected Celera assembly of our standard D.

melanogaster dataset (26X of PacBio data and 67.4X of Illumina data [101]) produced

an NG50 of only 109KB. Consequently we adopted DBG2OLC as our choice for hybrid

assembly. We were not able to exhaustively test all hybrid error correction approaches

of PacBio reads followed by overlap assembly and acknowledge that other tools that
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may operate quite differently (e.g. LSC [9]) could potentially lead to further improve-

ments in the assembly. Using the standard 67.4X of Illumina data discussed above

and 26X of PacBio data, we compared DBG2OLC runs using three different De Bruijn

graph assemblers: SOAP [112], ABySS [147], and Platanus. The NG50s for the three

assemblies were, respectively, 2.43Mb, 0.167Mb, and 3.59Mb. Based on this result, we

chose to use Platanus for the remainder of the assemblies.

We used the pipeline recommended byDBG2OLC to perform hybrid assemblies. In this

pipeline, we used Platanus to perform De Bruijn graph assembly on the Illumina reads.

We used 8.36 Gb (67.4X) of Illumina sequence data of the ISO1 D. melanogaster inbred

line generated by the DPGP project [101] to generate a De Bruijn graph assembly

using Platanus. We used DBG2OLC to align our PacBio reads to the De Bruijn

graph assembly to produce a ‘backbone’, then, according to the DBG2OLC standard

pipeline, used the backbone to generate the consensus using the programs BLASR

[32] and PBDagCon (https://github.com/PacificBiosciences/pbdagcon). As with the

PacBio only assemblies above, we evaluated assembly quality using the Quast and

GAGE packages.

3.5.5 Assembly merging

Hybrid assembly and PacBio assembly were merged using a custom C++ program

called quickmerge (Fig. 4A, available at https://github.com/mahulchak/quickmerge).

The program takes two fasta files (containing contigs from a PacBio only assembly and

contigs from a hybrid assembly) as inputs and splices contigs from the two assemblies

together to produce an assembly with higher contiguity. As the two assemblies used

for merging come from the same genome, gaps in one assembly can be bridged using
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corresponding sequences from the other assembly The first stage of the assembly merg-

ing process involves correctly aligning the corresponding sequences (contigs), which in

the second stage are exchanged at the sequence gaps so that the part of the sequence

with the gap is replaced with a contiguous sequence from the other assembly. The

program MUMmer [96] is used to find the correct alignment between the assemblies

and assembly merging is handled by quickmerge.

First, the program MUMmer [96] is used to compute the unique alignments between

the contigs from the two assemblies, one of which is used as the reference, or donor,

assembly and the other is used as the query, or acceptor, assembly. Distinction between

the two assemblies is important because, as described below, the user may choose the

more reliable, i.e. with fewer errors, of the two assemblies to bridge gaps in the other

assembly. Accurate merging occurs when true correspondance between two sequences is

high; conversely, pairing between incorrectly matching regions leads to incorporation

of incorrect sequences. Hence, identification of the correct pairing is necessary for

error-free sequence merging. Presence of repeats may complicate the situation, but the

problem can largely be overcome if the two aligned sequences containing repeats come

from the same genome and only the unique best alignments are considered. To obtain

the unique best alignment between the reference and the query assembly, spurious

matches introduced by gene duplications and repeats are removed using the delta-filter

utility (with –r and –q options) of the MUMmer package.

Following the repeat filtering step, the alignments are partitioned using a scoring metric

called high confidence overlaps (HCO) (Fig. 4B). The program identifies HCOs by

dividing the total alignment length between contigs by the length of unaligned but

overlapping regions of the alignment partners (Fig. 4B). The metric was chosen under

the assumption that the length of the overlapping but unaligned portion between the
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two sequences relative to the length of the overlapping and aligned parts is high for

two unrelated sequences. After the alignment partitioning is done based on a HCO

cutoff, only the contig alignments above the HCO cutoff are kept for assembly merging.

For fly assemblies, we found that an HCO value of 1.5 was an appropriate default for

assembly merges. This cutoff can be increased further, as we did for merging human

assemblies. The tradeoff is that increasing HCO cutoff will gradually deplete the pool

of matching alignments, thereby leading to a reduction in merging events. Thus, the

“HCO” parameter controls merging sensitivity at the cost of increased false positives:

the higher the HCO parameter value, the more stringent is the cutoff for HCO selection.

The next step involves searching and ordering the contigs that will be merged. To

accomplish that, by default quickmerge assigns nodes in the HCO alignment graph with

even higher HCO values (>5.0) and reference sequences exceeding a length cutoff (1Mb)

as anchor nodes. The high HCO and the length cutoff are used here to ensure that

subsequent searches for contigs for merged contig extension do not begin at spurious

alignment nodes. Following the assignment of the anchor nodes, a greedy search is

initiated on both the left and the right sides (5’ and 3’ of the reference contig) of the

anchor node, in order to find the longest unbroken path through the HCO nodes. In

other words, quickmerge looks for contigs that connect two adjacent HCO nodes in the

graph and this process is continued until no contig can be found to connect two HCO

nodes (e.g. a genomic region where both assemblies are broken). For the search, each

contig is used only once to connect two HCO nodes, so once a contig from the HCO

alignment pool has been used, it is removed from the alignment pool. Query contigs

that are completely contained within a reference contig are also removed from the final

merged assembly to prevent sequence duplication in the merged assembly.

In the final step, the ordered chain of contigs found in the previous step is joined by
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swapping portions of the reference assembly into the query assembly in a manner that

maximizes retention of sequences from the reference assembly (Fig. 4A). Gap filling

within the query assembly occurs as a byproduct of this replacement of sequences; in

this way, the process resembles genome editing using homologous recombination.

For coverages of 40X, 53X, 62X, and 77X, merged assemblies were generated using

the PacBio only assembly and their corresponding hybrid assemblies. For the 99x and

121x (all reads) SMRTcells datasets, the PacBio only assemblies were merged with the

hybrid assembly obtained from the 77X SMRTcells dataset. All hybrid assemblies used

for merging were generated without downsampling by read length or quality. The time

to merge was limited only by the time required to run MUMmer, as quickmerge runs

in less than 30 seconds on Drosophila-sized genomes, and requires less than 2GB of

memory.

3.5.6 Downsampling

We used a number of different downsampling schemes on the D. melanogaster data:

first, we randomly downsampled the data by drawing a random set of SMRTcells of

data from the entire set of 42 SMRTcells; second, from those datasets, we downsampled

the longest 50% and 75% of the reads. Next, we downsampled the D. melanogaster

data to match the read length distributions of PacBio reads from a pilot Drosophila

pseudoobscura genome project that was produced using a standard protocol without

aggressive size selection (generously made available by Stephen Richards). Finally,

we downsampled based on read quality to test the effect of read quality on assembly

contiguity. Please see the supplementary text for more details.
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3.6 Results

3.6.1 DNA isolation for long reads

As the remainder of the paper will show, read length is an important determinant of

genome assembly contiguity. We identified simple and consistent method for isola-

tion of large genomic DNA fragments necessary for PacBio sequencing to achieve long

reads. The existing alternative method used for DNA isolation to generate the pub-

lished PacBio Drosophila assembly involved DNA extraction by CsCl density gradient

centrifugation and g-Tube (Covaris, Woburn, MA) based DNA shearing [82]. CsCl

gradient centrifugation is a time-consuming method that requires expensive equipment

that is not routinely found in most labs. Additionally, g-Tubes are expensive, require

specific centrifuges, and are extremely sensitive to both the total mass of DNA input

and to its length. We circumvented these problems by using a widely available DNA

gravity flow anion exchange column extraction kit in concert with a blunt needle shear-

ing method [63]. Because the DNA fragment size distribution is so important, field

inversion gel electrophoresis (FIGE) is an essential quality control step to validate the

length distribution of the input DNA (Fig. 1) (see Methods for details). Sequences

generated from libraries constructed from this isolation method are comparable to or

longer than the published Drosophila PacBio reads [82] (Fig. 2a). The length distri-

bution of the input DNA can potentially be improved further by using wider gauge

needles that generate even longer DNA fragments (supplementary Fig. 1).
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3.6.2 Long read assembly

PacBio self correction has been used to assemble the D. melanogaster reference strain

(ISO1) genome so contiguously that most chromosome arms were represented by fewer

than 10 contigs [20]. This assembly was generated by using the PBcR pipeline [20]

and 121X (15.8 Gb), or 42 SMRTcells’ worth, of PacBio long molecule sequences [20].

However, currently, such high coverage may be too expensive for many projects, espe-

cially when the genome of the target organism is large. Consequently, we set out to

determine how much sequence data is required to obtain assemblies of desired conti-

guity. We first selected reads from 15, 20, 25, 30, and 35 randomly chosen SMRTcells

(40X, 53X, 62X, 77X, and 99X assuming a genome size of 130×106 bp – coverages

calculated by dividing total bases of sequence data by total bases in genome) from the

42 SMRTcells of ISO1 PacBio reads [82]. Our sampling method was inclusive and addi-

tive: for example, to obtain 20 SMRTcells, we took the 15 previously randomly chosen

SMRTcells and then added 5 more randomly selected SMRTcells to it. We then as-

sembled these datasets using the PBcR pipeline. As shown in Fig. 5, the contig NG50

(NG50; G =130×106 bp) continues to improve across the entire range of coverage. At

extremely high coverage (121×), the NG50 surges again, approaching the theoretical

N50 limit of D. melanogaster genome [71]. Notably, despite the extreme contiguity of

these sequences, we are still discussing complete contigs, not scaffolds with gaps.

3.6.3 Hybrid assembly

As Fig. 5 makes clear, PacBio only assembly leads to relatively fragmented genomes

at lower coverage (Fig. 5), we investigated whether another assembly strategy could

perform better with similar amounts of long molecule data. We chose DBG2OLC for
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its speed and its ability to assemble using less than 30X of long molecule coverage (cf.

PacBio only methods, which typically require higher coverage [93]). DBG2OLC is a

hybrid method, which uses both long read data and contigs obtained from a De Bruijn

graph assembly. We used contigs from a single Illumina assembly generated using

67.4X of Illumina paired end reads [101]. As shown in Fig. 5, the assembly NG50

increases dramatically as PacBio coverage increased, plateauing near 26X. Beyond this

point, NG50 remained relatively constant. Alignment of the test assemblies to the

ISO1 reference genome showed that some of the contiguity in the 26X hybrid assembly

without downsampling was due to chimeric contigs (ie contigs that possess non-syntenic

misjoins), and that these errors are fixed as coverage increases (supplementary Fig. 2-

3). Chimeras were also absent when only the longest 50% or 75% of reads from the

26X dataset were used.

To measure the impact of read length on hybrid assembly contiguity, we down-sampled

the datasets by discarding the shortest reads such that the resulting datasets contained

50% and 75% of initial total basepairs of data. We then ran the same assembly pipelines

using these downsampled datasets and compared to the assemblies constructed from

their counterparts that were not downsampled. Our downsampling shows that with

high levels of PacBio coverage (> 50x), modest gains in assembly contiguity can be

obtained by simply discarding the shortest reads (Fig. 5, green lines). Our hybrid as-

sembly results indicate that improvements in contiguity above 30X are modest, though

hybrid assemblies remain more contiguous than PacBio only assemblies up until above

60X coverage. For projects limited by the cost of long molecule sequencing, a hybrid

approach using ˜30X PacBio sequence coverage is an attractive target that minimizes

sequencing in exchange for modest sacrifices in contiguity that are in any event available

only at higher coverages.
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3.6.4 Assembly merging

With modest PacBio sequence coverage (≤50X), hybrid assemblies are less fragmented

than their self corrected counterparts, but more fragmented than self corrected assem-

blies generated from higher read coverage (Fig. 5). Despite this, for lower coverage,

many contigs exhibit complementary contiguity, as observed in alignments (e.g. Sup-

plementary Fig. 4a) between a PacBio only assembly (53X reads; NG50 1.98 Mb) and

a hybrid assembly (longest 30X from 53X reads; NG50 3.2 Mb; not featured in Fig. 5).

For example, the longest contig (16.8 Mb) in the PacBio only assembly, which aligns

to the chromosome 3R of the reference sequence (Supplementary Fig. 4c), is spanned

by 5 contigs in the hybrid assembly (Supplementary Fig. 4b). This complementarity

suggests that merging might improve the overall assembly.

We first attempted to merge the hybrid assembly and the PacBio only assembly using

the existing meta assembler minimus2 [155], but the program often failed to run to

completion when merging a hybrid assembly and a PacBio only assembly, and when it

did finish, the run times were measured in days. We therefore developed a program,

quickmerge, that merges assemblies using the MUMmer [96] alignment between the

assemblies. Assembly contiguity improved dramatically when we merged the above

hybrid and PacBio only assemblies (assembly NG50 9.1 Mb; supplementary Fig. 5);

however, assembly contiguity can also be increased with false contig joining. To inves-

tigate whether merging leads to false joins or introduces assembly errors at the splice

junctions, we investigated the result of merging at base pair resolution for the longest

merged contig in the aforementioned assembly.

The longest contig (27.9 Mb) in the merged assembly, which aligns to chromosome arm

3R of the reference sequence (supplementary Fig. 6), was longer than the longest 3R

66



contig in the PacBio assembly based on 42 SMRTcells (25.4Mb) [20] (supplementary

Fig. 6). The increased length resulted from closing of gaps present in the published

PacBio assembly (supplementary Fig. 6) [20]. All joined contigs map to the chromo-

some arm 3R in the correct order; we take this as evidence that quickmerge does not

incorporate spurious sequences or large scale misassemblies Nonetheless, small scale

misassemblies could still be introduced at the splice junctions. To check for such er-

rors, we manually inspected a high resolution dot plot between the merged contig and

the 3R reference sequence. A total of 18 regions were found where the merged contig

differed from the reference sequence (supplementary Table 2). The affected regions

ranged from 3bp to 20 kb and involved sequence insertion, deletion, and duplication.

All identified misassemblies had a buried Pacbio coverage of 15 or higher, indicating

that misassemblies were due not to lack of coverage, but some other factor (for example,

repetitive regions of the genome). For buried coverage calculations, reads are mapped

to the genome, and only mapped regions supported by 2kb contiguous read coverage

on both sides are counted towards buried coverage, ensuring any feature exhibiting

buried coverage is strongly supported by the reads overlapping it. That said, such

discordance between the merged contigs and the reference could have been carryover

from assembly errors from the hybrid and PacBio only assemblies that were used for

merging. Indeed, 11 of the 18 errors in the merged contigs came from the PacBio only

assembly, whereas the rest came from the hybrid assembly. Additionally, sequences

201bp in length from each of the 29 splice joints (break point is the101th base pair,

see Supplementary text) from the aforementioned merged assembly were aligned to

the reference sequence. None of the sequences revealed any misassemblies introduced

by the merging process. Thus, for this dataset, the quickmerge approach splices and

merges contigs accurately without introducing any new assembly errors. This indicates

that the contiguity of even high coverage PacBio only assemblies can be increased by
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the addition of inexpensive Illumina reads, and gaps in hybrid assembly can be closed

by PacBio only assembly even when the PacBio only assembly quality is suboptimal.

3.6.5 Assessment of assembly quality

We assessed assembly quality using the Quast software package [66] and the quality

assessment scripts used in the GAGE study [138]. We confined our assessment to

assemblies related to application of the quickmerge meta assembler, leaving the assess-

ment of PBcR and DBG2OLC assemblies to their respective publications [20]. Quast

quantifies assembly contiguity and additionally identifies misassemblies, indels, gaps,

and substitutions in an assembly when compared to a known reference. We found that,

compared to the D. melanogaster reference, all assemblies had relatively few errors,

with the primary difference among the assemblies being genome contiguity (NG50).

Hybrid assemblies tended to have fewer assembly errors than PacBio only assemblies:

the total number of misassemblies and the total number of contigs with misassemblies

tended to be higher in PacBio only assemblies compared to hybrid assemblies. Still,

PacBio only assemblies tended to have slightly fewer mismatched bases compared to

the reference, and slightly fewer small indels. Merged assemblies, being a mix of PacBio

only and hybrid assemblies, tended to have intermediate Quast statistics; however, the

merged assemblies improved upon the source assemblies in terms of misassemblies and

misassembled contigs (Supplementary Fig. 8). Overall, the rate of mismatches was low

at an average (across all assemblies) of 47 errors per 100kb (Supplementary Table 1,

Supplementary Fig. 8). Mismatches and indels can be further reduced using existing

programs, such as Quiver [34]. We used Quiver to polish all non-downsampled hybrid,

self, and merged assemblies that used at least 40X of data. After Quiver, the average
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mismatch rate of the selected assemblies decreased from 24 per 100kb to 15, while the

average indel rate decreased from 180 per 100kb to 32 (Supplementary Fig. 9). We

also performed post-Quiver polishing on these selected assemblies using Illumina data

via the Pilon program [159]. Pilon polishing further reduced the average indel rate per

100kb from 32 to 16 (Supplementary Fig 10).

One concern generated by the pre-polished assemblies was that their N50s were high,

but their corrected N50s [138] after accounting for errors were low; however, Quiver and

Pilon polishing dramatically improved the corrected N50s of the assemblies, indicating

that the low corrected N50 values were due to small local errors that were easily resolved

by polishing. The average corrected N50 before polishing was 67kb, while the average

corrected N50 after polishing was 530kb. It is evident from the corrected N50s that

the first polishing step, Quiver, was responsible for most of the change in corrected

N50 (Supplementary Fig. 11). Moreover, Supplementary Fig. 11 shows that, after

correcting for misassemblies, polished versions of quickmerge are almost always more

contiguous than polished versions of the component assemblies.

3.6.6 Size selection and assembly contiguity

Long reads generated by library preparation with aggressive size selection [82] can

generate extremely contiguous and accurate de novo assemblies [20]. Unfortunately,

some DNA libraries with less stringent size selection produce considerably shorter reads

(Fig. 2a). Longer reads are predicted to generate more contiguous genomes [100,

124]. We tested this hypothesis by assembling genomes using randomly sampled whole

reads (see Materials and Methods) from the ISO1 dataset to simulate a read length

distribution comparable to, but slightly longer than what is typical when size selection
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is not aggressive. Due to the long read length distribution of the ISO1 dataset relative

to the shorter target distribution above, a maximum of 53X of ISO1 data could be

sampled.

Consistent with the theoretical prediction that, all else being equal, shorter reads

produce more fragmented assemblies [100, 124], reads from the downsampled 53X ISO1

data produced a PacBio only assembly with an NG50 of 1.38 Mb, which is shorter than

the NG50 (1.98 Mb) of the assembly from the same amount of ISO1 long read data

(Fig. 2c). In addition, nearly all long contigs present in the original 53X assembly are

fragmented in the assembly from the shorter reads (Supplementary Fig. 13), although

the amount of sequence data (53X) used to build the assemblies is the same.

For hybrid assembly, the shorter dataset also produced significantly less contiguous

assemblies, consistent with predictions from theory [124] (Fig. 2b). The NG50 achieved

with 26X coverage of the shorter dataset was 1.62Mb, compared to an NG50 of 3.58Mb

with the original ISO1 data. This is consistent with the PacBio only result – longer

read lengths lead to higher assembly contiguity. Thus, a library preparation procedure

that aggressively size selects DNA is crucial in delivering long contigs.

3.6.7 The effects of read quality on assembly

As with reduction in read length, increased read errors are predicted to worsen assembly

quality because noisier reads increase the required read length and coverage to attain

a high quality assembly [36]. When a PacBio sequencing experiment is pushed for

high yield through either high polymerase or template concentration, the data exhibits

lower quality scores (Fig. 3). Thus, with equal coverage and read length distribution,

reads with higher error rates should result in a more fragmented assembly. To measure
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this effect, we partitioned the ISO1 PacBio read data into three groups with equal

amounts of sequence without changing the read length distribution (see Materials and

Methods) (Supplementary Fig. 14). For the first two groups, the data was split in half,

with one half comprising the reads from the bottom 50% of phred scores and the other

comprising the top 50%. The third dataset was generated by randomly selecting 50%

of the reads in the full dataset. We then performed PacBio only and hybrid assemblies

with these data.

Low read quality had a particularly dramatic effect on assembly by self correction

(Fig. 6): the high quality and randomly sampled reads produced substantially better

assemblies (6.23 Mb and 6.15 Mb, respectively) than the assembly made from low

quality reads (NG50 146 kb). Hybrid assembly contiguity was far more robust to

low quality reads (Fig. 6: NG50 of 3.1Mb for the high quality reads, 2.5Mb for the

unfiltered reads, and 2.2Mb for the low quality reads), showing only moderate variation

amongst different quality datasets. Throughout this study, we avoided altering the

settings from their default states in the various assemblers used in order to do fair

comparisons; however, in this case, we chose to also run PBcR in ‘sensitive’ mode to see

if it would improve contiguity when data quality is low. We found assembly contiguity

was improved (NG50=4Mb), but was still lower than the assembly generated from

unselected reads without the sensitive parameters (NG50=6.23Mb).

3.6.8 Merging of human assemblies of the CHM1 cell line

One challenge in a study of this type is determining whether merging performed on

a very different genome, like that of Homo sapiens, would perform as well as on D.

melanogaster. To do this, we used publicly available sequence data and assemblies
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for the human hydatidiform mole (CHM1 [133]) to generate a merged assembly for H.

sapiens, both to gauge the performance of quickmerge on a different species than it was

developed on, and to observe its performance on a larger and more repetitive genome

(the human genome is ˜3.2Gb, approximately 25X the size of the D. melanogaster

genome).

Of the available CHM1 data, we chose to re-use the data used in Berlin et al. 2015 [20]

(the P5C3 chemistry). We ran our genome assembly pipeline on the 30X longest reads

of PacBio data from the 54X in the CHM1 dataset, plus 40.66x of publicly available

human CHM1 Illumina data (NCBI accession: PRJNA176729). The hybrid assembly

produced an NG50 of 2.4Mb, which is in line with the results observed in Fig. 5. Along

with this, we used the PacBio assembly contigs produced by Berlin et al. [20], which

had an NG50 of 4.1Mb. We merged the two assemblies with more strict parameters

because of the larger genome size: we set HCO to 15, c to 5, and l to 5Mb. Merging the

two assemblies produced a final assembly NG50 of 8.85Mb, a substantial improvement

upon the PacBio only assembly. This more than doubling of NG50 is in line with

our expectations based on the D. melanogaster results; all available data indicate that

this pipeline improves contiguity for CHM1 to the same extent that it does for the D.

melanogaster ISO1 strain. We did not polish this assembly with Quiver and Pilon due

to computational constraints, but it stands to reason that the gains vis--vis SNP and

indel rates would be similar between human and D. melanogaster. In order to evaluate

misassemblies, we produced a MUMmer dnadiff report by comparing the PacBio only,

DBG2OLC, and merged assemblies to the most recent and highest contiguity CHM1

PacBio only assembly available (GenBank accession number: GCA 001420765.1). The

results show that the large increase in contiguity is not a consequence of merging

induced misassembly, mirroring the results in Drosophila (Supplementary Fig. 12).
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Additionally, we generated MUMmer dot plots that indicated that contig orientation

and ordering were correct, with the exception of some inversions and translocations

that were inherited from the component assemblies (Supplementary Fig. 7). While we

attempted to run the Quast and GAGE assessment pipelines on the human assemblies,

we found that, in all cases, the programs either crashed or failed to finish successfully

in a reasonable time frame.

3.7 Discussion

Genome assembly projects must balance cost against genome contiguity and quality

[12]. Self correction and assembly using only long reads clearly produces complete and

contiguous genomes (Fig. 5; supplementary Table 1). However, it is often impractical

to collect the quantity of PacBio sequence data (>50X) necessary for high quality

self correction either because of price or because of scarcity of appropriate biological

material, especially when assembling very large genomes. For example, at least 40 µg of

high quality genomic DNA is required for us to generate 1.5 µg of PacBio library when

we use two rounds of size selection in the library preparation protocol. A 1.5 µg library

produces, on average, 15-20 Gb of long DNA molecules. This dramatic loss of DNA

during library preparation limits the amount of PacBio data that can be obtained for a

given quantity of source tissue. When a project is limited by cost or tissue availability,

a hybrid approach using a mix of short and long read sequences is an alternative to

self corrected long read sequences.

Our results show that when 67.4X of 100bp paired end Illumina reads is used in combi-

nation with 10X –30X of PacBio sequences, reasonably high quality hybrid assemblies
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can be obtained, with approximately 30X of PacBio sequences yielding the best as-

sembly. In fact, as our results show, a 30X hybrid assembly is less fragmented and

higher quality than even a 50X self-corrected assembly (Fig. 5). However, our results

also show that with the same long molecule data, PacBio only and hybrid assemblies

often assemble complementary regions of the genome. The implication here, that dif-

ferent assemblers are joining complementary contigs, suggesting that future assemblers

could generate higher quality assemblies with modest coverage data. The merging of a

PacBio only and a hybrid assembly results in a better assembly than either of the two

alone (Figure 5, supplementary table 1), regardless of the total amount of long molecule

sequences (≥30X) used. Thus, projects for which ≥30X of single molecule sequence

can be generated are well-served by collecting an additional 50-100X of Illumina data.

These data can then be used to generate both a self-corrected assembly and a hybrid

assembly, which can then be merged to obtain an assembly of comparable contiguity to

PacBio only assemblies using twice the amount of PacBio data (Fig. 5). This merged

assembly approach produced the highest NG50 of any assembly at all coverage levels

at which it could be tested, with little or no tradeoff in base accuracy or misassemblies

(Supplementary Fig. 8-10).

Nonetheless, it is clear that the tools available for genomic assembly have inherent

technical limitations: DBG2OLC assembly contiguity asymptotes as PacBio read cov-

erage passes about 30X, and the PBcR pipeline produces the best assembly when the

longest reads that make up 40X (of genome size) of data are corrected and only the

longest 25X from the corrected sequences are assembled [20]. Indeed, when coverage

greater than 25X is used for PacBio only assembly, there is a real loss of assembly

quality as coverage increases (data not shown). This may be because an increase in

coverage leads to the stochastic accumulation of contradictory reads that cannot be
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easily reconciled, a limitation of the overlap-layout-consensus (OLC) algorithm used in

assembling the long reads [125, 123].

Long read sequencing technologies, such as those offered by PacBio, Oxford Nanopore

[58], and Illumina TrueSeq [119] promise to improve the quality of de novo genome

assemblies substantially. However, as we have shown using PacBio sequences as an

example, not all long read data is equally useful when assembling genomes. We pro-

vide empirical validation, perhaps for the first time, of length and quality on assembly

contiguity. Additionally, our results provide a novel insight: high throughput short

reads can still be useful in improving contiguity of assemblies created with long reads,

even when long read coverage is high. In light of our results, we have a compiled a

list of best practices for DNA isolation, sequencing, and assembly (Supplementary Fig.

15 and Supplementary Fig. 16). Particularly important for DNA isolation is qual-

ity control of read length via pulsed field gel electrophoresis. Regarding assembly, we

recommend that researchers obtain between 50x and 100x Illumina sequence. Next,

researchers must determine how much long molecule coverage to obtain: between 25x

and 35x, or greater than 35x. With coverage below 35X, PacBio only methods often fail

to assemble, and produce low contiguity when they do assemble, and thus, we can only

confidently recommend a hybrid assembly. Above 35X, we recommend meta assembly

of a hybrid and a PacBio only assembly. In this case, we recommend downsampling

to the 30X longest PacBio reads when generating the hybrid assembly because hybrid

assembly contiguity decreases above this coverage level, but this has not been exten-

sively tested. We show that this approach is effective both in Drosophila and human

genomes, which differ in size and extent of repetitive regions.

One challenge in assembly is posed by analyzing data from heterozygous individuals.

Heterozygosity is known to make assembly more challenging [93]. All of the data eval-
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uated in this study were produced from either isogenic or highly inbred populations

(Drosophila) or from a single haploid cell line (human CHM1). Because there is not

a comparable dataset available that was produced using heterozygous individuals, we

cannot test the effect of heterozygosity on assembly quality. That said, some assemblers

(Platanus [75] and Falcon (https://github.com/PacificBiosciences/FALCON)) were de-

signed to produce diploid assemblies from heterozygous sequence data [93]. It stands

to reason that substituting Falcon in the place of PBcR in this pipeline could improve

assembly quality for highly heterozygous samples, but that claim will require further

testing.

The recent rapid development of short read sequencing technology has fostered an

explosion of genome sequencing. However, as a result of the cost effectiveness and

concomitant popularity of short read technologies, the average quality and contiguity of

published genomes has plummeted [4]. Indeed, short read sequences are poorly suited

to the task of assembly, especially when compared with long molecule alternatives.

While long molecule sequencing has rekindled the promise of high quality reference

genomes for any organism, it is currently substantially more expensive than short read

alternatives. In order to mitigate uncertainties inherent in adopting this technology, we

have outlined the most salient features to consider when planning a genome assembly

project. We have recommended effective DNA isolation and preparation practices that

result in long reads that take advantage of what the PacBio technology has to offer. We

have also provided a guide for assembly that leads to extremely contiguous genomes

even when circumstances prevent the collection of large quantities of long molecule

sequence data recommended by current methods.
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3.10 Figure Legends
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Figure 3.1: An example of
correctly extracted and sheared
DNA visualized using field inver-
sion gel electrophoresis. The lad-
der is the NEB low range PFG
marker (no longer produced).
The lanes of the gel are as fol-
lows: (A) ladder, (B) unsheared
DNA, (C) DNA sheared with a 24
gauge needle, (D) sheared DNA
size selected with 15-50kb cut-off,
(E) SMRTbell template library
after 15-50kb size selection. From
the gel, it is evident that there
is a minimal ‘tail’ of DNA below
˜15kb, the preferred size selection
minimum.

78



0.00

0.25

0.50

0.75

1.00

10242048409681921638432768
Read length

Cu
m

ul
at

ive
 re

ad
 p

ro
po

rti
on

Read Source
D. melanogaster
D. melanogaster d.s.
D. pseudoobscura
D. simulans

●

●

●

●

●

●

●

●

●

●

●

●
●

●

0

1

2

3

10 20 30 40 50
Coverage (X)

NG
50

 (M
b)

Data source
●

●

ISO1
ISO1 downsampled
to Pseudo

0

50

100

150

051015
Contig length (Mb)

Cu
m

ul
at

ive
 c

ov
er

ag
e 

(M
b)

Data source
ISO1
downsampled
lengths

A

B C

Figure 3.2: (a) The cumulative read length of various data sets, where D. melanogaster
refers to the original ISO1 data set, D. pseudoobscura refers to a publicly available D.
pseudoobscura dataset with a shorter average read length, D. melanogaster d.s. refers
to the D. melanogaster data, downsampled to have read lengths resembling the D.
pseudoobscura dataset, and D. simulans is a D. simulans dataset sequenced using our
DNA preparation technique. (b) A plot of NG50 versus coverage of hybrid assemblies,
as in Fig. 5. This plot depicts the effect of reduced read length on NG50, while holding
read quality and coverage constant. (c) Cumulative contig length distribution of 53X
of PacBio only assemblies created with the original ISO1 reads and the ISO1 reads
downsampled to resemble Pseudoobscura. Contig lengths in the shorter/downsampled
reads assembly are considerably shorter than the contigs in the original reads assembly.
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Figure 3.3: The distribution of
read quality in sequencing runs
performed at the UCI genomics
core using our DNA prepara-
tion technique. “P” here refers
to polymerase loading during se-
quencing (the proportion of poly-
merase to template, where 10
would indicate a 10:1 ratio of
polymerase to template), while
“T” refers to template loading
concentration during sequencing
(in picomolarity).
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Figure 3.4: A) A diagram representing the algorithm employed by quickmerge to im-
prove genome contiguity. (A) MUMmer is used to identify overlaps between the two
assemblies. High confidence overlaps (HCOs) identified by MUMmer will be the pri-
mary signal to quickmerge that two contigs should be joined. Quickmerge clusters
contigs according to HCOs. Quickmerge identifies seed contigs (contigs in a cluster
above a certain size and HCO), and identifies a path that connects it to all other con-
tigs in its cluster by walking from one contig to the next, only stepping to the next
contig if the quality of the HCO between the current and next contigs is above the set
thresholds. Once the graph connecting available contigs to the seed contig has been
constructed, the contigs in the graph are spliced together, with the “Donor” genome’s
content preferred over the “acceptor” genome. B) Description of the HCO parameter.
HCO represents the ratio between overlapping aligned and overlapping unaligned parts
between two contigs.
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Chapter 4

4.1 Article

Whole genome sequencing of pooled populations reveals signals of differential selection

at known genes in the vernal pool clam shrimp Eulimnadia texana

Authors:

James G. Baldwin-Brown, Anthony D. Long
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4.2 Preface

This chapter is unpublished, but is planned to be submitted in the future under the

title “Whole genome sequencing of pooled populations reveals signals of differential

selection at known genes in the vernal pool clam shrimp Eulimnadia texana” with

minor changes. Anthony Long advised all aspects of this publication. Stephen Weeks

contributed in the following ways: 1. generation of the JT4(4)5 inbred E. texana

strain, from which I derived the JT4(4)5-L sequencing strain; 2. collection of all wild

populations and ecological data associated with the populations. I was the primary

author of this chapter.

4.3 Abstract

Vernal pool clam shrimp (Eulimnadia texana) are a promising model system due to

their ease of culturing in the lab, short generation time, modest sized genome, and a

requirement to produce dessicated resting eggs each generation. Here, we present a

genome assembly, annotation, and analysis of pooled population sequencing data for a

set of Eulimnadia texana clam shrimp populations. We generated a highly contiguous

genome assembly using a custom assembly pipeline, 46X of PacBio long read data, and

216X of Illumina short read data; additionally, we annotated the genome using Illumina

RNAseq data obtained from adult males or hermaphrodites. 85% of the 120Mb genome

is contained in the largest 8 scaffolds of the assembly, the smallest of which is 4.6Mb.

Furthermore, the assembly contains 98% of transcripts predicted via RNAseq. Clam

shrimp live in small vernal pools in the desert southwest of the USA that differ in

many properties. We reasoned that shrimp populations could show local adaptation
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to the pools in which they live. We then collected 844X of pooled population sequence

data from 11 wild E. texana populations separated from one another by distances

ranging from 0.36 to 253 km, and identified regions of the genome that are putatively

locally adapted to the pools they live in as evidenced by extreme allele frequency

differences between ponds relative to the bulk of the genome. We looked for excess

population subdivision between all the pools, or excess subdivision relative to ecological

or physical differences between pools. We identify 12 regions of the genome that are

strongly implicated as showing local adaptation and identify genes in these regions that

may be responding to selection, including an apparent ortholog of CG10413. Allele

frequency at CG10413 differences correlate with latitude, and this gene is predicted to

be involved in sodium/potassium/chloride symporter (i.e., active transport of one ion

to drive passive transport of another) activity.

4.4 Introduction

The clam shrimp Eulimnadia texana has, along with other vernal pool shrimp, been

noted for its unique sex determining system [140], its rare (in Metazoa) requirement

to reproduce via dessicated diapaused eggs [140], and its unique habitat. This an-

drodioecious [140] species has three common arrangements of sex alleles[140]. Males

are always homozygous for the “Z” male allele, while hermaphrodites may be “ZW”

or “WW”, with WW females only capable of producing female offspring. Much ef-

fort [163] has gone into attempting to identify the E. texana sex locus because of this

unique arrangement; this, coupled with the fact that close relatives of the species have

ordinary male-female sexual dimorphism [164], has led researchers to speculate that

the sex locus is recently evolved. The ability of eggs to remain in diapause for years at
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a time [140] is especially valuable to geneticists because very few macroscopic animals

exist in which populations can be archived for long periods without changes occurring

in the genetics of the population (genetic drift, loss of linkage disequilibrium, etc.).

That said, one of the more remarkable aspects of vernal pool shrimp is the pools in

which they live. The naturally limited migration from pool to pool expected of such

organisms makes them apparently well suited to the study of populations evolving in

relative isolation.

Here, we lay out our attempt to extend genetic research on E. texana into the world of

whole genome sequence analysis using the latest genomics techniques. We used a com-

bination of short read Illumina [144] and long read PacBio [43] sequencing to generate

a high quality draft genome assembly, performed an annotation of genes using RNAseq

[160], and used pooled population sequencing [52] to tentatively identify regions and

genes that may be under selection in natural populations.

Genome assembly of non-model organisms was financially unrealistic until the advent

of high-throughput next generation sequencing. Unfortunately, next generation se-

quencing methods such as Illumina are limited to short read sequencing, which is not

ideal for genome assembly; assemblies produced using Illumina-type short read data

tend to have low contiguity [155]. This problem can be overcome by using PacBio[43],

Oxford Nanopore [102], or other long read sequencing technologies to supplement or

replace Illumina sequencing. A hybrid approach to sequencing and assembly using

both short and long reads has been shown to produce highly contiguous assemblies in

Drosophila-sized genomes[33]. Genome annotation of de novo assemblies is routinely

performed using RNAseq data [160], and tools for that purpose are already available

[151, 62]. We generated a genome assembly for clam shrimp using PacBio data and

the genome assembly method developed in Chakraborty et al. 2015 [33], and tools for
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that purpose are already available [151, 62].

Pooled population sequencing has been in use essentially since the advent of next-

generation sequencing [27]. From its first uses, it has not been without controversy –

critics have questioned whether the increased cost effectiveness is worth the sampling

bias due to uneven coverage [113]; others have argued that the increased sequencing

required to account for unevenness of coverage is a minor cost [52]. Although the

decision to use pooled population sequencing limits the ability to use haplotype-based

inference when founders are unknown, we chose to use pooled population sequencing

in this case because it allows for relatively inexpensive estimation of genome-wide

allele frequency differences between populations, which was the information we judged

most valuable to identify local adaptation. We generated a set of pooled population

sequencing runs using populations of individuals found in natural ponds for the purpose

of identifying regions of the genome under selection. Two populations were sequenced

to approximately 200X coverage, while the remaining populations were sequenced to

an average coverage of 48X. We set strict minimum thresholds on coverage in order to

reduce the effects of variable coverage. Here, we present the first genome wide estimates

of site frequency spectra and population differentiation statistics, as well as Θ, ρ, and

other basic population genetics statistics for E. texana.

We used pooled population sequencing to estimate FST [168], Bayenv2 ’s [68] XTX and

Bayes factors, and LFMM ’s [50] z-values in order to identify regions of the genome

that have differentiated due to local adaptation; additionally, we used composite like-

lihood ratios from SweeD [132] to identify site-frequency-spectrum evidence of recent

selection on these populations. Various methods ([50, 68, 168, 128, 158]) have been

proposed for identifying signals of selection in wild populations. Haplotype focused

methods [158] and site frequency spectrum methods [128] rely upon the availability of
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individual genotypes. There have been numerous attempts to detect population differ-

entiation by identifying allele frequency differences localized to specific regions of the

genome. The most venerable of these methods is FST , an estimator of the probability of

identity by descent of individuals within a population. The statistic can be calculated

by estimating the variation in allele frequency both within and between populations

in order to identify whether structure exists between populations. A higher FST value

than expected (more population structure than expected based on the genome-wide

FST estimate) is an indicator that a force outside of genetic drift and migration is

acting upon variation in an area of the genome [2]. Numerous statistics analogous to

FST have been developed, each with advantages and disadvantages. Recently, several

different statistics, including Bayenv2 ’s Bayes factors [68] and LFMM ’s z-values [50],

have been developed that used Bayesian statistical methods to identify the likelihood

or probability that a given polymorphism’s pattern of allele frequencies across sub-

populations is explained by the shared ancestry of the populations. These statistics

have an advantage over raw FST in that they account for existing relationships between

populations. Although there is no perfect method for detecting selection in wild popu-

lations, several studies [109] indicate that Bayenv2 and LFMM are especially powerful

in this type of analysis. We used both Bayenv2 and LFMM to analyze this data, and

compare the results of the two methods, as well as standard FST . Through Bayenv2 ’s

statistics, we identified 13 loci that appear to be locally adapted in the pools that

we surveyed, and identified correlations between these loci and various environmen-

tal variables, including collection year, geographic location, pool dimensions, pH, and

others.
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4.5 Methods

4.5.1 Shrimp collection and rearing

Clam shrimp populations were sampled from New Mexico and Arizona as previously

described [166]. We acquired 11 soil samples, each from a different natural clam shrimp

pool, to grow shrimp for sequencing (Figure 4.1, Supplementary data table 1); addi-

tionally, we sequenced one laboratory population (EE) that is directly descended from

the WAL wild population, but has been reared in the lab for six generations. We

hydrated the soil samples, then collected 100 individuals from each population on day

10 of their life cycles. These particular clam shrimp populations were chosen because

ecological data were already available for these sites (Sup. Table A.5 ). Clam shrimp

populations were reared in 50 × 30 × 8 cm disposable aluminum foil catering trays

(Catering Essentials, full size steam table pan). In each pan, we mixed 500mL of soil

with 6L of water purified via reverse osmosis. 0.3 grams of aquarium salt (API aquar-

ium salt, Mars Fishcare North America, inc.) were added to each tray to ensure that

necessary nutrients were available to the shrimp. Trays were checked daily for non-clam

shrimp, especially the carnivorous Triops longicaudatus, and all non-clam shrimp were

immediately removed from trays. We identified the following non-clam shrimp: Triops

longicaudatus, Daphnia pulex, and an unknown species of Anostraca fairy shrimp.
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4.5.2 Library preparation and sequencing

Illumina library for assembly

DNA for Illumina sequencing was extracted from 50 inbred monozygotic hermaphrodites

from the JT4(4)5-L strain. We performed the Illumina Truseq library preparation pro-

tocol. We chose this method over Nextera library preparation for the library for genome

assembly for two reasons: first, Nextera library preparation has been shown to produce

a bias in coverage that can cause problems during genome assembly[99]; second, the

Covaris shearing used in the Truseq protocol allowed us to control the fragment length

of the DNA to produce sequencing reads that could be joined into read pairs, or ‘pon-

tigs’. In order to produce an average fragment length of 150bp, we used the following

Covaris shearing settings: 60 seconds × 6 at 10% duty cycle. 5 intensity, 200 cycles

per burst. We size selected the final library on an agarose gel to get the desired 150bp

read length. We ran one lane of paired-end 100bp Illumina sequencing on an Illumina

HiSeq 2500, producing 124.9Gb of sequence data.

Pacbio library for assembly

We followed the general protocol outlined in [33] to generate the PacBio library used

here. We homogenized 265 inbred monozygotic hermaphrodites from the JT4(4)5-L

strain in liquid nitrogen using a mortar and pestle. We then extracted DNA using the

Qiagen Blood and Cell culture DNA Midi Kit (Qiagen, Valencia, CA, USA). We made

two modifications to the protocol: first, we incubated the tissue powder in the mixture

of G2 buffer, RNaseA, and protease for 18 hours, rather than the 2 hours listed in the

protocol; second, we doubled the RNaseA added from 19ul up to 38ul, and halved the
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protease added from 500ul to 250ul. We made these changes based on the presence

of RNA in earlier attempts to use this kit. After gDNA extraction, we sheared the

gDNA using a 1.5-inch, 24-gauge blunt tipped needle for 20 strokes. We visualized both

the original gDNA and the sheared DNA using field inversion gel electrophoresis as in

Chakraborty and Baldwin-Brown et al. 2016 [33]. We size selected the DNA using

a 15kb-50kb cutoff using the BluePippin gel electrophoresis platform (Sage Science,

Beverly, MA). We prepared the sequencing library using 5ug of this product, then

size selected again using a 15kb-50kb cutoff using the BluePippin gel electrophoresis

platform. This produced a total of 0.149nmol of library. We sequenced this library

using 10 SMRTcells on the PacBio RS II sequencer, producing 6.7Gb of sequence data

and a read length N50 of 15.2kb.

Illumina libraries from wild populations

These libraries were produced using the Nextera Library Preparation Kit. We collected

100 random individuals from each population and pooled the individuals from each

population to make each of the 12 libraries (one library per population). 13 cycles

of PCR were used during the Nextera protocol, except in the case of the LTER and

Tank 011 populations, where 15 cycles of PCR were used due to low yield. Each

library was barcoded (Table A.2). Equal aliquots of each library were pooled, and

the pooled samples were size selected on a Pippin (Sage Science, Beverly, MA) size

selection instrument. The pooled libraries were sequenced over four runs of paired end

100bp Illumina sequencing, producing a total of 127Gb of data, or 844× of coverage.

Full coverage statistics for each library are included in Supplementary Table A.3.
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RNA sequencing

Individuals for RNA sequencing were derived from the WAL wild population. Adult

males and hermaphrodites were sequenced separately. RNA extraction was performed

using Trizol [35]. We cleaned the RNA using RNeasy Mini columns (74104, Qia-

gen) following the manufacturer’s protocols, then used this RNA to generate Illumina

TruSeq RNAseq libraries according to the standard Illumina protocol. The male and

hermaphrodite libraries were sequenced using 1 lane each of paired end 100 bp Illumina

sequencing. We generated 23Gb of sequence data for males and 23Gb of sequence data

for hermaphrodites.

4.5.3 k-mer counting

We generated k-mers using Jellyfish, v. 1.1.6 [118]. We counted all 25-mers in the

joined, but uncorrected, pontigs, then identified a local maximum coverage of 76×,

then computed the genome size using the following formula:

Genome size =
T × (L−M)

L

C

Where T = 15.7Gb = total basepairs of pontig data, L = 112.7 = mean read length,

M = 24 = mer length− 1, and C = 76 = coverage (cf. [98]). This produced a genome

size estimate of 144Mb. We used this genome size estimate throughout this work.
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4.5.4 Genome Assembly

Hybrid assembly

Genome assembly was performed according to the protocol established in [33]. We

first generated pontigs from the PE100 reads obtained from the 150bp insert library

by assembling individual read pairs. There is some evidence (cf. read joining with a

third read in [56]) that such long, contiguous, error-free reads are slightly better for

genome assembly than trimmed paired reads. We generated pontigs using the fq-join

function in ea-utils [8], then used Quake [79] to error correct the pontigs. We then

assembled the corrected pontigs using Platanus [75], a De Bruijn graph assembler, with

its default settings. This produced an assembly with an N50 of 5.2kb. We input this

assembly, plus the raw PacBio reads, into DBG2OLC [171]. In order to identify the

input dataset that would produce the highest contiguity assembly, we generated a set

of hybrid assemblies using a range of quality cutoffs – we tested every whole numbered

quality cutoff from 82% to 92%, and, in keeping with [33], downsampled each dataset

down to the longest 30×. The 85% cutoff produced the highest N50 of 1.92Mb and an

assembly size of 120Mb. All N50s are summarized in table A.1.

PacBio-only assembly

We used Celera 8.2, release candidate 3[126], to generate the PacBio-only assembly,

using the specfile listed in the supplementary materials (Supplementary Text A.3.1).

The assembly had an N50 of 3.4Mb, and a genome size of 126Mb.
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Assembly merging

We used Quiver [34] to correct both the hybrid assembly and the PacBio assembly,

then performed merging using quickmerge [33]. We used the following command line

settings:

python merge wrapper.py -pre merged quivered shrimp assemblies

-hco 5.0 -c 1.5

/path/to/quivered/hybrid /path/to/quivered/pbonly

Here, -hco refers to the stringency with which seed high confidence overlaps are filtered,

and -c refers to the stringency with which other HCOs are filtered. After merging,

we corrected the resultant assembly using Quiver again. In keeping with the Quiver

standard practices, we ran Quiver on this assembly one more time, then quantified

differences between the assemblies using MUMmer [96]. We noted a decrease in the

number of SNPs and indels identified between the final two Quiver runs, so we took

the final quivered assembly as our final assembly.

4.5.5 Annotation

We used Trinity [62] and Augustus [151] to generate the annotation for the genome as-

sembly. We ran Trinity three times: once for the male data, once for the hermaphrodite

data, and once for the combination of both males and hermaphrodites. We used a cus-

tom script to convert Augustus data into a generic gff3 file, and another custom script

to identify 4-fold degenerate sites based on the same annotation. We used BLAST [5]

to align the entire Drosophila melanogaster proteome against the Augustus-generated

shrimp CDS and vice-versa. Mutual best hits with an e-value below 10−5 were consid-

ered significant. We tentatively assert that these genes are correctly annotated, and
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that they are orthologous or paralogous to genes in D. melanogaster.

4.5.6 Differential expression analysis

We identified differences in expression between males and hermaphrodites using Tophat

[154] and the DESeq package [110] (Fig. 4.2). Tophat was used for transcript counting,

while DESeq was used for differential expression analysis. Because we did not have

replicated RNAseq data, we used the ‘blind’ method to estimate dispersion using the

following R code:

cds <- estimateDispersions(cds,method='blind',sharingMode=c("fit-only"))

We then identified differences between the base means of the ‘male’ and ‘herm’ groups

using the modified binomial test featured in DESeq, using the following R code:

res=nbinomTest(cds,"herm","male")

4.5.7 Identification of repetitive regions

We used Repeatmasker (Smit, AFA, Hubley, R & Green, P. RepeatMasker Open-4.0.

2013-2015<http://www.repeatmasker.org>.) and Repeatmodeler (Smit, AFA, Hub-

ley, R. RepeatModeler Open-1.0. 2008-2015 <http://www.repeatmasker.org>.) to

identify repetitive regions of the genome.
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4.5.8 Comparison of wild populations

Data preparation

Our pipeline for cleaning Illumina sequencing data, aligning to the reference, and calling

SNPs was as follows: deduplicate data using Picard tools (https://sourceforge.net/

projects/picard/), align using BWA [108], and call SNPs using GATK [120]. After

SNP calling, we censored SNPs by coverage using the following protocol: after merging

the WAL and EE populations, remove all SNPs that have a mapped coverage of less

than 10 or more than 200 in any population (in the two deeply sequenced samples, the

200 cutoff was applied to the coverages after random downsampling of reads to match

the less well covered populations), and remove all SNPs that, in any population, have

a coverage more than 3 standard deviations from the population’s mean coverage.

We performed this censoring separately for each of the three population comparisons

examined in section 4.6.6. This removed a variable number of SNPs from the population

depending on the coverages in each comparison, leaving a total of 1.4 million SNPs for

further analysis in the full 11-population comparison. Command line options for Picard

tools, BWA, and GATK are included in Supplementary Texts A.3.1, A.3.1, and A.3.1.

Calculation of population genetics statistics

Our simple, genome wide Θ was calculated by:

Θ =
SNPs per base

∑n−1
i=1

1
i

Where Θ is the frequency of polymorphisms and n is the sample size (approximately

the average coverage of the genome). Here, Watterson’s estimator is used to estimate Θ
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[161]. We calculated the genome-wide average Θ per basepair using the entire dataset

independently for each of our populations, then averaged the result to produce our

reported Θ value. Note that Watterson’s estimator will be inherently biased in cases

where SNP ascertainment is imperfect: rare alleles may be underrepresented if SNP

detection has strict standards, but may be overestimated if sequencing errors are called

as SNPs. We accounted for this error by fitting the neutral site frequency spectrum

expected by chance [51] to all SNPs with a minor allele frequency above 0.1, then using

that projected allele frequency spectrum to identify the expected number of SNPs. Fu

1995 notes that the expected minor allele count, for coverage n, is equal to φΘ, where

Θ is an estimator of 4Neµ, and

φ =
1

1 + δi,n−i

(
1

i
+

1

n− i

)

For each population, we computed the expected φ based on the average coverage of

that population, then used that to calculate the proportion of SNPs expected for each

allele count class i using p(i) = φ. From there, we computed the fraction of the

total distribution contained in the SNPs with a frequency above 0.1, and divided our

empirical SNP count by this value to arrive at a projected number of SNPs. We then

used the first equation to calculate the projected Θ per basepair based on this estimate

of the SNP count.

We calculated ρ by first estimating the short-distance linkage disequilibrium using

LDx [48]. We then estimated ρ by modeling decay of linkage disequilibrium (r2) with

distance in basepairs using a non-linear model, as in [117] (Sup. text A.3.1). See results

for more detail on ρ.

98



Fourfold Degenerate Sites

We generated a custom Python script for identifying fourfold degenerate sites for use in

Bayenv2. This script identified sites based on the codon contents of the CDS in all Au-

gustus-identified candidate genes. Naturally, candidate sites would not be considered

fourfold degenerate if even one transcript disagreed with that assessment. Fourfold

degenerate sites were used for Bayenv2 ’s covariance matrix generation step because

fourfold degenerate sites have been shown to be under selection less often than any

other class of genomic site [170].

Identifying differentiation

We calculated FST via the Weir and Cockerham method [168] using a custom R script.

We found pairwise FST for each pair of wild populations, then reported the mean at

each locus. We also calculated Bayes factors using Bayenv2 [68] both for population

differentiation and ecological factor correlation. We did not use Bayenv2 ’s option to

incorporate pooled sequencing variation into the Bayes factors because we could not

get the program to finish when using that setting (Supplementary Text A.3.1). In the

case of population differentiation, we did not use the pooled sequence option because

it hasn’t been correctly formulated[68].

Sliding window calculations

We performed windowed analyses by averaging values across SNPs with all statistics

except LFMM ’s z-values, which were combined in windows using the Fisher-Stouffer

method, as detailed in the manual for LFMM [50]. We note that the Fisher-Stouffer
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method assumes independence of the values of the combined statistics, which is not

necessarily true in this case due to linkage, so the window averaging should be taken

with a grain of salt. In any case, we largely disregard LFMM ’s results due to coverage

as discussed below, and window averaged statistics are not used in any of the values

reported here, but are merely used in plotting where indicated. We used 25-SNP

windows in all cases except LFMM, where 100-SNP windows were used. We chose all

of these based on visual examination of the statistics – these window sizes appeared to

reduce noise while making peaks more visible.

Testing for overlap between selection detection methods

We used the hypergeometric distribution in R to test for overlap between detection

methods. We first divided the SNPs in the genome into 100,000 equal-sized bins, then

took the top 0.1% of ‘hits’ from each method. If a bin contained even a single such

SNP, the bin was considered a detected region. We assumed that this corresponded to

a hypergeometric distribution, where hits from one method correspond to one of the

colors of balls in the urn, and the other method’s hits correspond to the draws from

the urn. Significance is achieved if more of the ‘hit’ balls are drawn than expected,

or if more of the drawn balls are ‘hit’ balls than expected. We used the following R

command for this test:

phyper(overlap - 1, xhitcount, totalregions - xhitcount,

yhitcount, lower.tail = FALSE)

where xhitcount is the number of hits via method 1, yhitcount is the number of hits

via method 2, overlap is the number of regions that are hits for both methods, and

totalregions is the total number of blocks that could be hits.
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4.6 Results

4.6.1 Inbred shrimp populations sampled for genome assem-

bly

An inbred population of clam shrimp, here referred to by its numerical title JT4(4)5,

was derived from the JT4 wild population and used for Illumina sequencing for the

genome assembly. This population was generated by collecting a set of JT4 monogenic

hermaphrodites and raising them in the laboratory for 6 generations [162]. Because

monogenic hermaphrodites cannot interbreed and can only produce hermaphroditic

offspring, this population was the exclusive product of selfing for 6 generations. Al-

though diversity may between individuals exists in this population, each individual

is highly homozygous. Thus, we generated an isohermaphrodite line from one indi-

vidual (JT4(4)5-L) and used it for sequencing. We sequenced a pool of 262 inbred

isohermaphrodite individuals to produce the sequencing data for genome assembly.

4.6.2 Genome assembly

We assembled the genome using both the hybrid approach suggested by DBG2OLC

[171] and the PacBio-only approach used in PBcR [20], then merged the two assemblies

using quickmerge [33] to produce the final assembly. The genome assembled into 112

contigs totaling 120Mb. These contigs had an N50 of 18Mb. A plot of cumulative

coverage versus contig length (Sup. Fig. A.30) demonstrates that a substantial portion

(85%) of the genome is contained in only a few (8) contigs, the largest of which is 41Mb

in length and the smallest of which is 4.6Mb. This level of contiguity is a dramatic
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improvement for vernal pool research: the highest quality vernal pool species currently

assembled is Daphnia pulex, with a genome size of 227Mb and a scaffold N50 of 470kb

(from wfleabase, [37]). Note that scaffold N50 differs from contig N50 in that scaffolds

are inferred by joining contigs with gaps, while contigs are gapless; thus, the difference

between the assemblies is more dramatic than the numbers seem to indicate.

The fact that the estimated genome size is 144Mb, and the final assembly size is 120Mb,

indicates that some portions of the genome were not assembled. This is ordinary in

genome assembly, as highly repetitive heterochromatin regions tend to be impossible to

assemble with current technology. For instance, the Drosophila melanogaster genome

is estimated to consist of 175Mb [45], yet the D. melanogaster assembled genome is

only 143Mb [39].

Two lines of evidence lead us to have confidence in this genome: the quality of other

genomes produced under the same circumstances, and empirical evidence of the quality

of this assembly. The genome assembly pipeline used in Chakraborty 2016 [33] has been

thoroughly evaluated under a variety of genome size and coverage circumstances, and

the genome size and coverage of these test assemblies match very closely to the genome

size and coverage of our E. texana assembly. In particular, the Chakraborty 2016 as-

sembly that used 39X of coverage to assemble a 140Mb genome and was corrected

using Quiver had an assembly N50 of 6.69Mb, only 3194 misassemblies, and 12.25 mis-

matched bases per 100kb. Empirical evidence of the quality of a never-before-assembled

genome is difficult to acquire, but we can report on the fraction of the Trinity-assembled

[62] RNAseq-derived transcripts that are present within the final assembly. We find

that, if we use transcripts assembled entirely from RNA from hermaphrodites of the

reference strain JT4(4)5-L, 98.9% of the transcripts align with above 92% identity, ac-

cording to BLAT [80]. Interestingly, using the entire RNAseq dataset, which contained
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both the hermaphrodites from the reference strain and males from the WAL strain,

produced 95.5% successful alignment, which opens the possibility that some genes are

present only in males (unfortunately, they may also be strain-specific rather than male-

specific, with no simple way to differentiate those possibilities beyond carrying out a

second assembly from males).

Repeatmasker identified 624 SINEs, 16,044 LINEs, 2302 LTRs, 24817 DNA elements,

and 88928 unclassified elements, together making up 26.4% of the genome. This con-

trasts with the relatively low rate of repetitive elements in D. melanogaster, at 3.9%

[76]. That said, a large portion of this repetitive sequence is ‘unclassified’; if we re-

move the unclassified repeats from the count, only 9.8% of the genome consists of

interspersed repeats. Other (non-interspersed) repeats make up 5.1% of the genome.

4.6.3 Annotation and differential expression

We collected one lane of RNAseq data from 25 male clam shrimp from the WAL wild

population, and another lane from 25 inbred monozygotic females from the JT4(4)5-L

population (the reference population used for the assembly). We used a combination

of Trinity [62] and Augustus [151] to generate an annotation based on our collected

RNAseq data. We did three runs of trinity – one run using only the males, one run

using only the hermaphrodites, and one run using both together. The combined run

produced 85,721 transcripts, while the male and hermaphrodite runs produced 77,257

and 55,845 transcripts, respectively. We ran Augustus using the combined run to

generate gene predictions for E. texana. This generated a total of 17,667 genes and

23,965 transcripts. Of these genes, 5,438 were found to be mutual best hits with known

D. melanogaster genes.
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Of the 17,667 genes, 486 are identified as being differentially expressed between males

and hermaphrodites (the Benjamini-Hochberg-Yekutieli [19] adjusted p-value below

0.05) (Fig. 4.2). 40 of these genes are amongst the genes with D. melanogaster or-

thologs. Gene ontology enrichment analysis with GOrilla [42] indicates an enrichment

of the following GO terms based on the rank order of significance of differential expres-

sion (GO terms with a Benjamini-Hochberg corrected P-value below 0.05 are listed):

structural contituent of cuticle, chitin binding, structural constituent of chitin-based

larval cuticle, structural constituent of chitin-based cuticle, carboxypeptidase activity,

chitin deacetylase activity, and association with the condensin complex, extracellular

region, and DNA packaging complex (Sup. Table A.5). Hermaphrodites have both

testes and ovaries, while males have only testes; additionally, hermaphrodites typically

store up to several hundred large, eggs in their carapace prior to ovipositioning [165].

These two large phenotypic differences between males and females are likely to drive

many of the observed expression differences.

4.6.4 Sex locus localization

The quality of the clam shrimp genome assembly allows for a more thorough examina-

tion of the sex locus in E. texana. Previous analyses of allozymes and microsatellites

[163] seem to indicate the presence of a sex determining locus that is linked to several

markers, with at least three markers so tightly linked that they can be used to genotype

the sex locus status of individuals (ZZ vs. ZW vs. WW) with relatively high accuracy.

In one study [162], researchers used the Fum, Idh-1, and Idh-2 allozymes as markers to

identify the sex locus genotype of eggs from several populations. 24 egg banks from a

variety of populations, including three (WAL, JD1, and JT4) used in this study, were

typed as monogenic using these allozymes; 18 of these were actually monogenic. In
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another study [163], these allozymes, plus a set of microsatellites, were examined for

evidence of linkage to the sex determining locus. Of the loci studied, four were found

to be associated with the sex determining locus, and these four (the allozyme Fum

and microsatellites CS8, CS11, and CS15 ) were used to build a linkage map for the

sex chromosome. We used BLAST [5] to align the sequences of these known, linked

markers to the E. texana genome in order to identify the approximate location of the

sex locus (Sup. Fig. A.38). We found that many of the microsatellite loci, including

the ones linked to the sex locus, aligned to the 41Mb largest chromosome in the genome

in the following order, with other microsatellites being found elsewhere in the genome:

CS19 —CS8 —CS11 —CS15 —CS12

Additionally, of the allozymes that we aligned to the genome (minus Idh-1, for which

we could not find a sequence), the two that are believed to be linked to the sex locus

(Idh-2 and Fum) were located on a 1Mb contig that we postulate is likely part of the

same chromosome as the 41Mb contig, given that they both contain sex locus linked

markers.

These results do not fully agree with the results of Weeks 2010 [163]. Their mapping

study produced the following order for the mapped markers:

Fum —CS11 —CS15 —CS8

This ordering of markers, specifically markers CS8, CS11, and CS15, is incompatible

with our BLAST results, indicating either a problem with mapping or a problem with

our assembly. While we are relatively confident in the quality of our assembly for the

reasons stated above, there is one reason to think that the mapping in this case could

be incorrect. Weeks 2010 found a very high rate of recombination between the four
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mapped loci when looking at males (in fact, approximately 50%; the map pattern of

recombination was not significantly different from a lack of linkage between the loci). In

contrast, in hermaphrodites, adjacent markers were separated by a very small number

of recombinants (3% crossing over rate, 170 individuals —approximately 5 crossover

events). We posit that recombination does not occur in amphigenic hermaphrodites,

or occurs very seldom, and that much of the inference of marker order may actually

be due to genotyping errors. This would also explain the relatively large span of the

genome covered by these apparently tightly linked markers – 22.8Mb.

An additional complication here is that the genome assembly was produced using data

from WW hermaphrodites. Thus, the male version of the sex determining locus is

not expected to be present in the genome assembly. This may make detection of the

sex determining locus more difficult, depending on the divergence of the ‘Z’ and ‘W’

versions of the sex locus. If the two are highly diverged, they may not align to each

other; on the other hand, if they are not highly diverged, they may align to each other,

but show a signal of increased polymorphism. Future studies may benefit by assembling

the existing whole genome data of the pooled populations to attempt to isolate such a

contig.

4.6.5 Population Genetic Statistics

We aligned the Illumina data from the inbred JT4(4)5-L line (the one used for assem-

bly) to the reference genome and produced a SNP rate of 0.00018 per bp, indicating,

as expected, a very low SNP rate within the inbreed strain we sequenced. Further

investigation revealed that there were no SNPs in this population where the minor

allele was the result of more than one sequencing read. Thus, while it is possible that
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heterozygosity exists in the genome, it is likely that the majority of the SNPs observed

in the inbred line are actually the result of sequencing errors. We find no evidence of

the existence of blocks of high heterozygosity, as would be expected if there were a

segregating polymorphic haplotype in the inbred line.

In addution to the JT4(4)5-L inbred population, we also sequenced pools of individuals

from a set of natural clam shrimp populations. Populations were sampled from 11

wild pools (Supplementary data table 1). In addition, a population derived from

the WAL population was kept in the laboratory for 6 generations and sequenced.

This lab population was maintained at a minimum of 250 individuals per generation.

All sequenced populations were sequenced as pools of 100 individuals. We collected

pooled population sequencing data from these 12 populations (11 natural populations,

and 1 lab population, EE, descended from the WAL natural population) (Fig. 4.1),

calculated allele frequencies at each SNP using GATK [120], and used these allele

frequencies to compare the populations. We first compared the allele frequencies of the

entire genome across the populations to identify relationships that exist amongst the

populations, then attempted to identify genomic regions that show a greater degree of

differentiation than expected based on the existing relationships. A simple hierarchical

clustering tree indicated that many of the populations were quite similar to each other

(Fig. 4.1): the populations EE and WAL, being directly related by only 6 generations

of laboratory maintenance, should be quite similar; many of the natural populations

appear to be as closely related to each other as EE and WAL are. This similarity

seems to go against some conventional wisdom in the vernal pool world, where vernal

pool shrimp are believed to have difficulty crossing from one pool to another, but also

increases the difficulty of identifying genomic regions of high differentiation.

We initially calculated Watterson’s theta [161] to be 0.0017 per bp, or about 1 SNP
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per 100 basepairs. This estimate is in the same order of magnitude as Drosophila

melanogaster [148] and many other invertebrates. This estimate does not take into

account the problem of re-sequencing individuals: in pooled sequencing of a finite

sample of 2k individuals, some of the 2k alleles will be sequenced multiple times.

Treating all reads as being from different individuals will thus underestimate theta.

Popoolation [88] solves this problem, among others, by assuming that the number of

copies of the 2k allele sample is a hypergeometric distribution, and corrects for this

effect; however, popoolation does not take into account another problem that is likely

more problematic: in order to avoid mistacenly calling sequencing errors as SNPs,

practitioners typically censor SNPs lower than some arbitrary frequency (or count).

Of course, if coverage is much less than 2k it is totally reasonable to expect true

positive SNPs to only be observed a single time in the sample. This mis-estimation of

Θ due to ascertainment bias is problematic because, under, neutrality we expect low

allele frequency SNPs to be more common throughout the genome than intermediate

frequency SNPs.

Supplementary Figure A.31 plots the observed minor allele frequency spectrum and

the expected allele frequency spectrum under neutrality for a Θ that matches the

frequency distribution for SNPs at a frequency greater than 10% (see the methods for

a description of this correction). Although we calculated Θ independently for each of

our 12 sequenced populations, supplementary figure A.31 displays the result produced

if all alleles from all populations are aggregated for ease of viewing. The results in

each population are qualitatively the same. As the figure shows, the expected neutral

allele frequency spectrum contains a large number of rare alleles that are not correctly

identified as SNPs by our SNP calling pipeline.

We calculated Θ separately for each of the populations in order to generate unbiased
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estimates. Pooling alleles from all populations to calculate one meta-populationΘ value

is appealing, but allows the site frequency spectrum to be dominated by populations

that are sequenced more deeply, and does not account for relationships that among the

populations.

A look at the allele frequency spectrum (Sup. Fig A.31) indicated a lack of rare alleles,

most likely due to ascertainment bias where rare SNPs are written off as errors, reducing

the SNP density. We accounted for this by re-computing Θ using only high frequency

SNPs and inferring the existence of a number of rare SNPs by assuming wright-fisher

neutrality [51]. This method, which we hold to be the most accurate, produced a Θ

per basepair of .00387 if Θ is calculated independently for each population and then

averaged. We use this 0.00387 value throughout the following equations.

We note that this value of Θ is fairly typical for invertebrates, and is close to the Θ

observed in Drosophila melanogaster of 0.0053 [6].

Under population genetic theory, the expected value of theta is equal to 4Neµ, assuming

a mutation rate (µ) of 2.8× 10−9 (the Drosophila melanogaster mutation rate per site

per generation, from [78]), we estimate the effective population size of the clam shrimp

to be Θ/(4× µ) = 3.45× 105.

We used the result of LDx to estimate average linkage disequilibrium at various dis-

tances up to about 400bp, then identified the recombination rate based on decay of

linkage disequilibrium according to equations in [117]. We estimated the population

average “rho” ρ per basepair, the population-adjusted recombination rate per base-

pair, to be 0.0036, which would make ρ for the entire genome equal to 436,000. We

can estimate the recombination rate per basepair per mutation by dividing ρ by Θ.

This produces ρ/Θ = (4Ner/bp)/(4Neµ/bp) = r/µ, where r is the total map distance
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(genome wide recombination rate), bp is the number of bases in the genome, and µ is

the genome-wide, i.e. not per-base, mutation rate. We did this independently for each

population and averaged. We get an average r/µ value of 0.94 and an r value of 0.33.

Because we do not know the number of chromosomes that make up the genome, and

whether or not recombination happens in all individuals, it is difficult to know if this

is an accurate estimate of recombination, but assuming that the estimate is correct, it

is quite low.

Note that this may or may not reflect that the putative sex chromosome, or the entire

genome, may not recombine in amphigenic hermaphrodites, as noted in section 4.6.4.

A straightforward reading of the genome-wide apparent map distance of 0.33 seems to

imply very limited recombination in the population, which would be consistent with a

lack of recombination in amphigenic hermaphrodites, which are all but guaranteed to be

the most common sex in a population. The value of 33 centimorgans of recombination

is used in supplementary figure A.38 to scale the physical and linkage maps of the

putative sex chromosome. It is interesting to note that the total length of the mapped

region is approximately similar between the physical map and the scaled hermaphrodite

linkage map, but very differenti between the physical map and the scaled male linkage

map. This may indicate that the hermaphrodite recombination rate is indeed low

and does indeed dramatically influence the average recombination rate across entire

populations. That said, because the linkage disequilibrium was estimated using short

reads, LD was estimated out to only 450bp; thus, if LD does not follow the decay rate

predicted in [70], long distance LD may not be well estimated.

In performing these calculations, we found a SNP rate of 0.0165 for the wild JT4 (i.e.,

non-inbred) line. We note that, as mentioned above, the inbred JT4 line had a SNP

density of 0.00018, which is a reduction in heterozygosity of 91X, and, in fact, we expect
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that most of the polymorphisms observed in our sequencing data are due to sequencing

errors, rather than actual polymorphisms. The standard model of inbreeding predicts

a reduction in heterozygosity of only 64X, so all indications are that inbreeding did

effectively remove heterozygosity from the inbred JT4(4)5-L shrimp line.

4.6.6 Genome-wide Selection Detection

Pairwise population differentiation comparisons

We began our comparison of the sequenced natural populations by comparing the WAL

and EE populations. Because the EE population is a direct descendant (6 generations

in the laboratory at ≥ 250 individuals per generation) of the WAL population, there

are several reasons that a pairwise comparison of WAL and EE are of interest: first,

if minimal differences between WAL and EE exist, then they can be combined to

increase coverage of WAL in the 11-population analysis; second, if there are substantial

differences between them, there may be evidence of selection due to domestication in

the EE population (that is, selection due to being reared in laboratory conditions);

third, the level of differentiation between the WAL and EE populations, which have a

known history, could inform inferences about the history and relatedness of the wild

populations. We computed FST for this pair of populations. In order to test if the

WAL and EE populations were sufficiently similar to each other that they could be

pooled, we compared the FST distribution generated from the WAL vs. EE comparison

to the theoretical FST expected. FST is expected to be exponentially distributed with a

lambda that can be calculated from the empirical FST distribution [44]. We generated

the correct exponential distribution, then compared it to the observed data using a

quantile-quantile (Q-Q) plot (Sup. Fig. A.34). In a Q-Q plot, all data points from two
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datasets are put into rank order and plotted against each other. This test is often used

as a way to see if two datasets have similar distributions. One common practice is to

plot the distribution of an experimentally determined statistic against a theoretical or

simulated distribution that represents the null hypothesis for the statistic in question.

If the two distributions match exactly, the line formed by these points will lie along

the x = y 1:1 line. If the distributions have the same shape, but one is linearly scaled

compared to the other, then we expect to see a straight line that is off of the 1:1 line.

We would expect to see this if the populations are differentiated from each other due

to random genetic drift. If there are differences in the distributions, the points will not

form a straight line, but a more complex shape, with “hockey stick” shaped changes

(that is, sudden increases) in slope at the tails being the most common disturbance.

A “hockey stick” in one of the tails indicates that the distributions do not match each

other, and is consistent with a small number of data points in one dataset being drawn

from a different distribution than the rest of the dataset. We would expect to see this

if there is a signal of differentiation due to selection at a small number of loci. In

this case, we plotted the distribution produced by our FST test against the theoretical

distribution of an FST statistic, which has been demonstrated to be exponential with

a lambda that can be calculated from the empirical distribution [44]. Q-Q plots of

FST (Sup. Fig. A.34, panel A) indicate that, while there may be a small bias toward

higher allele frequency differences between WAL and EE compared to the theoretical

expectation, the datasets are approximately Q-Q-linear, assuming that FST is indeed

exponentially distributed [44]. Panel B of supplementary figure A.34 represents the

same Q-Q plot arrangement as panel A, but uses a 25-SNP-windowed average of FST

rather than raw FST , with lambda being calculated from the windowed dataset for the

purpose of producing the exponential distribution for Q-Q plotting. In a trend that

we observe throughout our Q-Q plotting, we find that this plot closely resembles the
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un-windowed “A” plot, but has a much lower slope. FST , like many of the statistics we

examine here, is skewed toward a long tail in the positive direction, so it is not surprising

that the average of a set of FST values is lower than the raw values (more extreme values

are averaged away). We decided to pool the WAL and EE populations based on this

result. That is, for the duration of this study, we treat the two population samples as

being randomly drawn from a larger sample, and generate our allele frequency statistics

using read data from both populations. This is advantageous because it allows us to

take advantage of more of the available data and make up for somewhat low coverage

of the WAL population.

We next examined the two high coverage lines, LTER and Tank011. Because these

populations are more deeply sequenced than other populations, it is possible that they

will have reduced allele frequency noise and, thus, a higher power to detect differences

in allele frequencies at locally adapted sites. We generated Q-Q plots of FST in this pair

of lines according to the same scheme used to compare WAL and EE (Sup. Fig. A.35).

As demonstrated in panel A of the figure, the Q-Q line is not on the 1:1 line, but it is

quite linear. This seems to indicate that there is differentiation between the populations

due to random genetic drift, but there is no evidence of local adaptation in these lines

because there is no “hockey stick” to the Q-Q line. There is a dramatic decrease in the

slope of the line as FST approaches 0.5, but that appears to be due to FST approaching

its maximum value, and does not seem informative. As an aside, the difference in the

scale of this Q-Q plot versus the WAL vs. EE one should be expected because there

should be more isolation due to distance between these populations (Fig. 4.1). That

said, a look at the 25-SNP-windowed “B” panel seems to tell a slightly different story.

There, in the same manner as with the WAL and EE, the overall slope is lower than

in the “A” panel. On top of this, we see what appears to be the “hockey stick” shape
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that we expect to see if there is differentiation amongst the populations. That said,

the power for FST to detect differences between populations seems to be weak here

if windowing is necessary in order to find a signal of local adaptation. We will later

show that FST seems to do a poor job of identifying local adaptation even when all 11

populations are taken into account.

Site frequency spectrum derived inference of selection

From here, we moved on to analyzing all 11 populations together. We began by per-

forming a scan for selection based on site frequency spectra using SweeD. SweeD iden-

tifies variation in the site frequency spectrum (specifically, a lack of rare alleles) and

takes this as evidence of a selective sweep in the recent past. We ran SweeD both for

each individual population and for all populations together, but owing to the similarity

between the results, and the fact that we believe the results are not highly informative,

here we present only the full 11-population result. We plotted SweeD ’s CLR (com-

posite likelihood ratio) and alpha (significance) statistics both as Q-Q (Fig. 4.3) plots

and as Manhattan plots (Sup. Fig. A.32). The Q-Q plots (plotted against a uniform

distribution) seem quite promising, with both plots showing a strong “hockey stick”

shape at the upper tail, which should be indicative of a signal of local adaptation.

SweeD superficially seemed to discover numerous regions that had heightened signals

of selection, but because we know that the site frequency spectrum is not accurately

represented by the SNPs that we have identified (see the section on population genetics

for more detail), SweeD should produce many false positive calls under these condi-

tions. Since rare SNPs are difficult to distinguish from errors, many rare SNPs are

never called, leading to an allele frequency spectrum that is skewed toward common

alleles. Because SweeD identifies selection by finding regions of the genome whose
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site frequency spectra deviate dramatically from neutrality, we should expect (and do

indeed find – Sup Fig. A.32) that a large portion of the genome appears be under

selection. Thus, the results of SweeD should be treated with skepticism in this case,

and perhaps in other cases where pooled sequencing data has been used to ascertain

SNPs.

Population differentiation in all 11 wild populations

We next carried out an analysis to identify population differentiation using all 11

natural populations. We chose to use FST and Bayenv2 ’s XTX statistic to scan for

differentiation. For all of the 11-population analyses to follow (except for FST which, as

above, is still compared to the exponential distribution), we used a set of simulated read

count values as the control values both for Q-Q plotting and for setting significance

thresholds (we consistently use a genome-wide significance threshold of 0.05). We

generated this neutral distribution using simulation machinery from Gautier 2015 [54].

This machinery uses a covariance matrix produced by Bayenv2, plus information on

sampling and coverage, to generate the distribution of allele frequencies that we would

expect if the sequenced populations are evolving neutrally and are related in the way

that the covariance matrix describes. We then calculated our statistics on both the

simulated and actual allele count values. We first examined Q-Q plots comparing

these simulated and actual values in order to determine whether or not a signal of local

adaptation was present. Q-Q plots of experimental FST vs. the exponential distribution

(Fig. 4.3) did not demonstrate any evidence of population differentiation. Indeed, the

FST distribution here seems to be poorly approximated by the exponential distribution,

as the Q-Q plot both of single SNPs and 25-SNP windows is highly nonlinear, and

gradually curves in the direction of depressed significance. Regardless of the reasons
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for this, it appears that there is no strong signal of local adaptation visible through FST

analysis. On the other hand, XTX seemed to display a signal of selection (Fig. 4.3).

The Q-Q plots of both single SNPs and 25-SNP windows seem to be essentially linear

with the simulated control statistic (with a slight depression in the 25-SNP window, in

keeping with our theme), with an uptick in the slope at the upper tail. The increased

power in XTX compared to FST is perhaps unsurprising if we take into account the

level of relatedness amongst the populations. A simple UPGMA tree comparing the

populations based on genome-wide allele frequencies (Fig. 4.1) indicates that several of

the populations are very similar to each other. In fact, knowing that “EE” is directly

descended from “WAL” and separated by only 6 generations of laboratory breeding,

the UPGMA tree makes it evident that some of the populations are nearly identical

in terms of allele frequencies. Thus, statistics such as XTX that take into account

the relationships between the populations should perform better when attempting to

identify differentiated loci.

We then proceeded to generate Manhattan plots of FST and XTX, and used the same

simulated data to set significance thresholds, with the genome wide false positive rate

set to 0.05 (Fig. 4.4. FST (panel E) stands out here as having no peaks that indicate

local adaptation. As discussed above, this may be unsurprising in the case of a set of

populations that are closely related to each other in complex ways (Fig. 4.1). Thus, we

will not discuss FST in great detail. On the other hand, 13 large peaks, plus a handful

of smaller peaks that we will not discuss in detail, are immediately evident in the

Manhattan plot for XTX (panel A). These peaks extend well above our significance

threshold, and consist of, in most cases, tens to hundreds of SNPs in regions small

enough to contain one to three gene candidates, as discussed in more detail below.

The 25-SNP sliding window average of XTX (panel B) seems to produce a result
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broadly consistent with the single SNP Manhattan plot, with some peaks becoming

more pronounced (i.e., peak 4). We note that there is nothing special about the 25-

SNP window size, as it was chosen arbitrarily based on the ability to resolve the peaks

clearly. All numbers reported throughout this document (the number of significant

SNPs, etc.) rely upon the un-windowed statistics.

Although it is tempting to use the simulation-derived significance threshold as the pri-

mary indicator of the differentiation of a SNP, there is an undeniable trend in the data

wherein a small number of loci have clusters of highly differentiated SNPs. These are

detailed in figures 4.4 and 4.5, as well as in table 4.1, and seem to be more dramatic

when examined with windowed statistics (Fig. 4.4). We performed a manual analysis

of these sites which, while not statistically rigorous, provides some insight into the

function of these sites and may explain their differentiation in some cases. The resolu-

tion of these peaks is quite narrow, with peak widths in the range of 1kb to 15kb, and

most peaks containing one to three genes. Thus, this may be classified as a relatively

high resolution test for selection, which is likely capable of identifying individual genes

under selection in many cases.

Seeing as these loci stand out quite dramatically in our analysis, the genes that underlie

them may have important effects on the fitness of clam shrimp in various environments.

We identified the probable identities of genes in these regions that did not have mutual

best BLAST hits in Drosophila melanogaster by taking the most significant BLAST hit

for each gene (identified using blastp against the D. melanogaster nr protein database)

and assigning that putative identity to the gene of interest. We compiled a table (Table

4.2) of these genes and identified their exact locations relative to the peaks nearby to

them (Fig. 4.5). We found several genes with well documented functions, including

Rumpelstiltskin, okra, Cp1, SNS, Dscam2, pyridoxal kinase, Ublcp1, and many more.
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Manhattan plots of this and other statistics are presented in figure 4.4. In addition, A

total of 501 SNPs were found to be significant according to the significance threshold

we set for the XTX statistic. 198 well-annotated genes were within 5kb of these SNPs;

GOrilla indicates that genes related to external visual stimuli are overrepresented in

this set (Sup. Table A.6).

Associations of population differentiation and environmental variables

In addition to genomic data, we collected 24 environmental and biological variables re-

lating to the pools in which the wild clam shrimp were found (Supplementary data table

1, Sup. table A.4). We generated Bayes factors and LFMM z-values for all of these

variables, but acknowledge that many of the variables tested are not likely to influence

the fitnesses of individuals in these populations. Additionally, some of the values may

be measured inaccurately, or may have a large number of missing data points. Thus,

in the following section, many of our measured variables are excluded from thorough

discussion. Some variables deserve special description. Date is a measure of the day

of collection of the soil. Percent males refers to the fraction of individuals that were

male in hydrated samples. Surface area and volume were calculated based on mea-

surements taken on-site at these pools. Streptocephalus mackeni and Thamnocephalus

platyurus refer to the presence or absence of these species of Anostraca fairy shrimp,

and “Fairy shrimp” refers to all fairy shrimp where the species was unknown. Variables

that produced no strong signals of differentiation, such as the presence or absence, or

the counts, of Triops tadpole shrimp, are left out of this discussion (Sup. table A.4).

We note that, because of the relatively small number of assayed populations, many

of the environmental variables measured here are highly correlated. Thus, it will be

difficult to distinguish between the effects of certain environmental variables, and cer-
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tain environmental variables that are perfectly correlated cannot be distinguished at

all (Sup. Fig. A.37)

We used Bayenv2 to generate Bayes factors at each SNP, and for each ecological vari-

able. Bayes factors differ from XTX and other measures of population differentiation

in that they are only elevated when the allele frequencies at a SNP are, broadly put,

correlated with the environmental variable in question. For each ecological variable,

we generated Bayes factors [57] at each polymorphic site in the genome to compare two

hypotheses: either that the observed allele frequencies are due to ancestry alone, or

that they are due to a combination of ancestry and selection that is correlated with an

environmental variable of interest. Our Bayes factors were elevated if the “selection”

hypothesis was more likely than the “ancestry alone” hypothesis. We began our analy-

sis of the Bayes factors by subjecting them to the same Q-Q plotting test that we used

with XTX, wherein we plot the Bayes factor values against the distribution of Bayes

factors generated by running Bayenv2 on our simulated neutral dataset. We present

here Q-Q plots for a single Bayes factor (association with pool surface area, Figure 4.3,

panel C), because other Bayes factors had nearly identical Q-Q plots. We find that

the simulated and empirical results are highly linear, and have a strong “hockey stick”

shape in the upper tail, indicating a set of SNPs that may be a signal of population

differentiation above what is expected by neutrality. We find that, while the line is

highly linear, it does not sit on the 1:1 line as we would expect. We have no intu-

itive explanation for that in this case. The Q-Q plot of the 25-SNP windowed Bayes

factor is qualitatively identical to the single SNP plot. Across the 24 environmental

variables, we found 1,663 SNPs associated with one or more environmental variables,

and 645 of our annotated genes were associated with at least one significant SNP. The

Bayes factors thus seem to have picked up more significant hits than XTX, although
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some of that may be due to multiple testing. We show a select set of Bayes factors

Manhattan plots in figure 4.6. Although there were a variety of random SNPs that

were marginally significant, all of the major peaks that were present in these Bayes

factor analyses were already detected in the XTX analysis. This seems to imply that

the power to detect population differentiation is as high as or higher than the power

to associate SNPs with environmental variables, which speaks to the power of these

statistical techniques. A sample Bayes factor plot is included in figure 4.4 because of

the striking similarity between the Bayes factor results and the XTX results. In one

sense, this agreement between XTX and the Bayes factors is not surprising because the

Bayes factors used by Bayenv2 are derived, in part, from XTX values that are com-

puted during the Bayes factor calculations, with the distinction that XTX does not

take environmental variables into account, but merely indicates divergence from the

model based on known relationships between populations. On the other hand, studies

have historically had much higher power when comparing allele frequencies to envi-

ronment, rather than merely to each other, with some selected loci being identifiable

only when examined in the context of correlation to environment [21]. This seems to

be a demonstration that modern statistical techniques, combined with whole-genome

SNP discovery and analysis, have a much higher power to detect differentially selected

sites without knowledge of the ecology of the organisms in question. We indicate which

peaks are present in which Bayes factor analyses in figure 4.7. We note that several

of the environmental variables seem to share the same pattern of significant peaks.

In particular, the date of collection seems to match the percent of males, presence of

Streptocephalus seems to match with presence of Thamnocephalus, and volume seems

to match with surface area. A heat map of correlations can be found in supplementary

figure A.37, and a table of correlation coefficients is available in supplementary data

table 2. The correlation coefficients between the three pairs listed here are, respec-
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tively, -0.32, 1 (they are identical), and 0.99 (they are nearly identical). This seems

to indicate that the correlation of the environmental variables explains the similarity

of the peaks, which is unsurprising in a system where only 11 populations have been

surveyed. Thus, it may be difficult to precisely identify the environmental variable

explained by any given trait. We also discuss an alternative to Bayes factors, LFMM ’s

z values, but only in limited detail, because LFMM does not take into account cov-

erage, and so seems to produce inflated values in regions where coverage is low and

allele frequency estimates are inaccurate. Again, we begin by generating Q-Q plots

of all LFMM p-values, though for the sake of brevity, we only report one sample plot

here, as all others were similarly shaped. Our Q-Q plot of the p-values produced by

LFMM for the environmental variable of pool surface area (Fig. 4.3, panel A) against

the same statistic calculated from our simulated neutral dataset was highly linear and

somewhat above the 1:1 line, with no “hockey stick” shape to it. This indicates differ-

entiation amongst the populations that may exceed somewhat what is predicted in the

neutral case, but with no signal of extreme differentiation at specific loci. The 25-SNP

windowed Q-Q plot was superficially simlar, but with a lower slope, in keeping with

many of the other Q-Q plots generated here. Genome wide analysis of our data with

LFMM produced conclusions superficially similar to the Bayes factor results, which

may be somewhat surprising, given that the Q-Q plot did not indicate the presence of

strongly differentiated loci: a relatively small number of loci had visibly large numbers

of strongly significant SNPs adjacent to each other (Sup. Figs. A.33,A.36). That said,

while a few LFMM hits seem to correspond to Bayes factor hits, many hits are unique

to one of the two methods. Where there is disagreement, we believe Bayenv2 is a more

reliable indicator of the presence of local adaptation. Bayenv2 incorporates count data

into its significance calculations, while LFMM uses only allele frequencies. Comparison

to coverage indicates that many of LFMM ’s strongest hits are in areas of low sequenc-
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ing coverage. This is unsurprising, as inaccurate estimates of allele frequencies should

produce allele frequencies that are not in agreement with the existing relationships

between the populations (Fig. 4.5). For this reason, we do not here report the LFMM

peaks except in supplementary figures (Sup. Figs. A.36,A.33).

We searched for trends in the genes underlying the highly significant loci with regard

to Bayes factor associations with environmental variables. In spite of the problem of

correlations noted above, many of these loci produced significant Bayes factor signals

only in relation to specific environmental variables. In particular, the surface area of

the vernal pools was associated with numerous loci. Other factors that have strong

Bayes factor hits include latitude, the percent of males in the population (notably,

the one major locus hit by this factor occurs on contig 1, which is believed to con-

tain the sex determining locus), and the presence or absence of various species of fairy

shrimp (Figs. 4.4, 4.6, 4.5; Sup. Table 4.2). Specific regions of the genome appear to

be correlated with multiple environmental variables. Region 3 (the region aside from

regions 12 and 13 that was clearly significant in the largest number of comparisons)

displays a strong peak when compared with the date of collection, latitude, the frac-

tion of males in the sample, the presence or absence of Triops tadpole shrimp, the

surface area of the ponds, the volume of the ponds, and more. Region 4 correlated

with longitude, presence/absence of Streptocephalus fairy shrimp, presence/absence of

Thamnocephalus fairy shrimp, and pH, among other, smaller peaks. It is difficult,

therefore, to conclusively say that any one locus corresponds with one environmental

variable. That said, some gene functions do seem to suggest a relationship between

genotype and phenotype —for example, CG10413, a gene in region 11, is believed

to have sodium/potassium/chloride symporter activity; one might speculate this influ-

ences salinity tolerance in these shrimp, though we do not have salinity data to confirm
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this. Most strikingly, regions 12 and 13 display elevated Bayes factors for every en-

vironmental variable we have measured. Because these loci occur in a small contig

that is more likely to contain repetitive content, they should be viewed with some

skepticism, but the putative genes identified at these regions (Cp1, CG7627, CG4562,

multidrug resistance-like protein 1, octopamine β-1 Receptor), which relate to various

nervous system functions and wound healing, are likely worthy of further study. The

precise cause of the significance of regions 12 and 13 is unknown, but one possibility

that would explain the repeated significance for all environmental variables could be

that one population has extreme allele frequencies at this locus.

4.7 Discussion

4.7.1 On non-model organisms and genome assembly

One of the long standing assumptions in genomics is that high quality whole-genome

genetic analysis is not possible with non-model organisms because of the lack of genet-

ics resources available for such systems, such as genome assemblies, annotations, and

accurate estimates of population genetics parameters. Here, we demonstrate that the

generation of a genomic resource for a new model organism is not necessarily difficult

or costly. Modern sequencing techniques (i.e., PacBio) allow for de novo genome as-

sembly on a budget on the order of $10K USD. Pooled population sequencing allows

for the measurement of essential population genetics statistics in a reasonably large

number of populations for a similar cost. Genome annotation with RNAseq is now

more reasonable than it has ever been. This combination of factors makes genomics

in non-model systems an attractive target for evolutionary biologists. Admittedly, this
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study was performed on an organism with a relatively small genome of about 150Mb,

but the cost of sequencing the whole genome is merely linear with genome size, and

RNA sequencing costs vary little between organisms.

We present here a de novo whole genome assembly for E. texana with an N50 of 18Mb.

We hope that this genome will be a useful resource for the vernal pool research commu-

nity, and that clam shrimp will be a useful model organism in the future. Sequencing of

wild populations revealed approximately 1.5 million SNPs that can be used as markers

in future studies. Additionally, we present a draft annotation of the genome that allows

for accurate identification of genic, intergenic, etc. regions, as well as homology-based

comparisons with genes in other species.

4.7.2 Sex-driven differential expression

We used the DEseq package in R to identify genes that were differentially expressed in

males and hermaphrodites. We may expect our power to detect differential expression

to be low in this case because of the lack of samples: we have only two samples, one of

which is a pooled set of males, and the other of which is a pooled set of hermaphrodites.

In addition, hermaphrodites share more in common with males than females do: both

males and hermaphrodites must have testes and produce sperm. Thus, we expect that

differences between the sexes are most likely to be associated with egg production and

laying. Our test for outliers produced a set of 486 genes that are differentially expressed,

40 of which could be matched to D. melanogaster genes with mutual best hit BLAST.

Interestingly, the GO terms in this group of genes were enriched for terms relating to

chitin structure in D. melanogaster. While it is difficult to know the function of these

genes in vernal pool shrimp, it is notable that there are significant differences in body

124



shape between males and hermaphrodites that make hermaphrodites differentiable from

males. Specifically, a hermaphrodite has a ‘hump’ on its dorsal region that provides a

space for the brood pouch that holds eggs before laying. Further studies might compare

structural morphology of hermaphrodites after gene knockouts to that of males and

wild type hermaphrodites.

4.7.3 The sex locus

Much effort has gone into identifying the structure of the sex locus in individuals with

recently-derived sex chromosomes. E. texana is androdioecious, but is believed [164]

to be descended from a dioecious ancestor that was ancestral to the entire Eulimnadia

clade. Prior evidence has indicated that the sex determining locus may be autosomal,

and that known markers may have incomplete linkage with the sex determining lo-

cus. We identified a single contig that contained all but one of the sex-linked markers,

indicating that this contig is likely the sex determining chromosome. That said, the

markers were spread across the entire 42-Mb contig, and the order of the markers dif-

fered from the order predicted by linkage mapping. Thus, we were unable to identify a

small region of the chromosome associated with sex determination. One explanation for

this discrepancy may be that the inferred linkage between known linked markers near

the sex determining locus is due to a lack of recombination in the heterogametic sex,

as is the case in Drosophila melanogaster [106] and other organisms. This is supported

somewhat by the low rate of recombination in amphigenic E. texana hermaphrodites

inferred in previous studies [163], though this is unconfirmed.

We observed that there was a lower rate of successful mapping of RNAseq-derived tran-

scripts to the genome when male-specific transcripts were included in the transcripts
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to map. Based on this, we posit that there are transcripts present in males that are too

distinct to map to the hermaphrodite derived genome assembly. This suggests one of

three possibilities: first, there may be a genomic region that only occurs in males, which

is thus absent from our current assembly; second, that there is a region present in both

male and hermaphrodite versions of the genome, but that is so far diverged that the

male version fails to map to the assembly; third, that there are differences among the

sequenced strains that account for the difference, because the male individuals and the

hermaphrodites were sampled from different strains. A further study could elucidate

which of these is the cause of the difference by generating a whole genome assembly of

the male genome.

4.7.4 Wild populations and selection

We used FST , Bayenv2 ’s XTX and Bayes factors, and LFMM ’s z-values to identify sig-

nals of selection in these populations. We largely disregarded FST in this case because

there were clear relationships between the populations that made FST poorly suited

to identifying selection. Additionally, we largely disregarded the results of LFMM be-

cause it fails to take into account coverage when computing significance, and many

of LFMM ’s peaks appear to occur in areas of suspiciously low coverage, where esti-

mates of allele frequencies are inaccurate. Therefore, we relied largely on the results of

Bayenv2 ’s XTX and Bayes factor statistics when dissecting this data.

Conventional wisdom indicates that vernal pool organisms are not capable of a great

deal of migration under most circumstances —indeed, Bohonak (1998) [22] indicates

that a geographic distance of only a few hundred meters should be sufficient for a

high degree of differentiation of populations in the Anostracoda (fairy shrimp). The
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inability of vernal pool shrimp to escape the pools in which they are born seems to

prohibit migration between distinct pools. In fact, we find here (Figs. 4.1, 4.1) that

there is a great deal of migration between pools, both across short and long geographic

distances, with shorter distances leading to increased migration. Mean pairwise FST is

0.038 across these samples. The source of this ability to migrate, whether it be animal

tracking, wind dispersal, periodic flooding, or some other mechanism, should be the

subject of further study.

We identify several genomic loci that appear to be under selection, as well as several

variables in the environment that appear to be correlated with these selected loci.

Of note are two regions that appear to be subject to selection that are both related

to RNA-to-protein translation, including CG10306, which is expected to be involved

in regulation of translation initiation (Flybase Curators, personal communication to

Flybase), La, which is experimentally validated as binding to rRNA primary transcript

[172], and rumpelstiltskin, which is experimentally validated as binding to the 3′ UTR

of mRNAs. It is not clear what would drive protein translation machinery to be under

differential selection in different pools, though we note that not all genes in our assembly

have orthologs in D. melanogaster, so it is possible that unannotated genes, or even

undiscovered genes, could drive these signals of local adaptation.

Correlation with environmental variables seems to indicate that certain variables have

a larger effect on allele frequencies than others. For example, there are a number

of loci whose allele frequencies are strongly correlated with surface area of the pool

in which the shrimp reside. Pool surface area could be influential for a number of

reasons, including the persistence of water over longer periods (though the surface

area to volume ratio is not strongly correlated with pool differentiation), the presence

of predatory shrimp (there may be a relationship between pool size and presence of
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predatory shrimp), consistency of food availability, mate choice, etc. That said, there is

not an obvious pattern in the genes associated with surface area. Surface area correlates

with latitude, the other most strongly influential environmental variable, with r=0.36,

suggesting conflation of latitude and surface area in our analysis; that said, many other

aspects of the ecology of these pools have higher correlations with latitude, and not all

have obvious signals of differentiation. Overall, although a large number of SNPs were

significantly differentiated according to our comparison to simulated data, a small

number of loci showed visibly strong signals reminiscent of selective sweeps, while

other significant loci were often individual SNPs with no evidence of allele frequency

change in the surrounding SNPs. These few, strongly differentiated loci certainly seem

to be worthy of further study. The clam shrimp ortholog of CG10413 in region 11,

for example, is predicted to have sodium/potassium/chloride symporter activity: it

has long been believed [135] that sodium/potassium pumps and chloride pumps with

passive sodium diffusion are important for regulating osmotic stress in vernal pool

shrimp. We have no data on salinity in these pools, but it is tempting to speculate

that salinity is correlated with the significant region 9 hits, especially date and latitude.

4.7.5 The future

We identified a relatively small number of candidate genes that appear to be associated

with differentiation of these populations. Genetic studies, perhaps using CRISPR-Cas

[139] or gene knockouts/knockdowns, could reveal much about the effect of these genes

on phenotype, especially if wild type and mutant alleles could be swapped in an individ-

ual. The approach employed in this study acts as an effective template for establishing

a non-model organism as a viable system for genomic study. The observation that

somewhat reproductively isolated populations living in different ecological or physical
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settings can show strong geographical isolation in isolated genomic regions suggests a

powerful paradigm for identifying the genes contributing to adaptation in the wild. We

hope that future studies will gain insight into the genetics of never-before-sequenced

species using the methodology of high quality genome assembly and whole genome

short read sequencing of natural populations.

4.8 Data Availability

All sequencing data is available at the NCBI All data will be made available at the

NCBI Sequencing Read Archive under the Bioproject “PRJNA352082”. Additional

files are available at the following URL:

http://www.wfitch.bio.uci.edu/~tdlong/PapersRawData/BaldwinShrimp.tar.gz.

Additionally, all scripts used for analysis will be made available at the following GitHub

page: https://github.com/jgbaldwinbrown/jgbutils
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4.9 Tables

Locus

index

Contig Range Width Maximum

XTX

1 1 7960415:7961229 814 52.6524

2 1 11807825:11808199 374 47.6688

3 1 18205259:18209499 4240 70.4348

4 1 28626427:28634469 8042 75.102

5 1 41068868:41081593 12725 71.9472

6 3 5849714:5855825 6111 65.5048

7 4 2920923:2921932 1009 64.5828

8 4 8446194:8447185 991 53.1936

9 5 2113388:2117449 4061 59.1548

10 5 3903600:3908963 5363 61.8584

11 6 1318370:1320640 2270 96.1406

12 14 369627:420280 50653 89.70358

13 14 791617:817899 26282 67.7304

Table 4.1: Major significant sites according to the 11-way XTX population differenti-
ation analysis.

Site Name Function Citation

1 SNS (sticks

and stones)

Actin filament related. Absence of

body wall muscles and presence of

unfused myoblasts in mutants. An

IgSF.

[23, 41]
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2 Dscam1,

Dscam2

An IgSF. Overexpression in fetal

brain leads to down syndrome. Ev-

ery D. melanogaster neuron has a

unique Dscam1 isoform mix.

[141]

2 mini chro-

mosome

maintenance

2

Helicase. MCM is a polymer of

MCM2 through MCM7.

[105].

3 no signifi-

cant hits

3 CG10306 regulation of translational initia-

tion (predicted by Flybase)

3 CG4049 ATP binding, DNA repair (pre-

dicted by Flybase)

4 chondroitin

synthase-

like protein

(CG9220 )

synthesizes chondroitin sulfate, a

glycosaminoglycan expressed on

most cell surfaces. Regulates many

processes.

[87]

4 rumpelstiltskin mRNA 3-UTR binding [72], ante-

rior/posterior axis specification in

embryo [72], intracellular mRNA

localization, mitotic nuclear divi-

sion, pole cell development, pole

plasm oskar mRNA localization,

segmentation

[72, 149, 40]
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4 okra Helicase. Homologous DNA re-

pair. Meiotic recombination. Mu-

tant females sterile. Oogene-

sis, response to ionizing radia-

tion, double-stranded break repair,

dorsal appendage formation, chro-

matin remodeling.

inferred from

various mutants.

[142, 3, 90, 167,

111, 60]

4 CG43370 cilium assembly [10]

5 kinesin-like

protein 67a

Localization of mitochondria

in undifferentiated cells. E.

coli moves mitochondria toward

KLP67A. Causes movement along

microtubules (+ direction). Drives

disassembly of microtubule arrays.

[53, 134, 61]

5 pyridoxal ki-

nase

Enzyme that generates pyridoxal-

5-phosphate (Vit. B6).

[121]

5 CG5514 Non associative learning, synaptic

growth at neuromuscular junction.

[46]

5 Ublcp1 26S proteasome phosphatase. Reg-

ulates nuclear proteasome activity.

[65]

6 CG8500 Mutations are viable and fertile

[18]; small GTPase mediated sig-

nal transduction

GTPase inferred

from similar-

ity with mouse

Rap1a (Flybase

curators 2008)
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6 no signifi-

cant hits

7 no signifi-

cant hits

7 no signifi-

cant hits

8 LqfR-L cell proliferation; oogenesis; pos-

itive regulation of Wnt signaling

pathway; sensory perception of

pain

inferred from

mutant. [104,

107, 103, 127]

11 CG10413 Predicted to have sodium/potassi-

um/chloride symporter activity.

See Flybase.

11 branchless Drosophilas only known FGF (fi-

broblast growth factor). Influences

branching morphogenesis in tra-

chea, lungs. Receptor for bac-

ulovirus FGF in Lepidoptera.

[55, 77]

12 CG7627 wound healing inferred from

mutant pheno-

type, [30]

12 CG7627,

CG4562,

multidrug

resistance-

like protein

1

wound healing (CG7627 ),

methotrexate resistance in

malpighian tubules

inferred from

mutant [30].
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12 Octopamine

Beta1 Re-

ceptor

octopamine receptor activity, neg-

ative regulation of synaptic growth

at the neuromuscular junction

inferred from

mutant pheno-

type. [91]

13 Cp1 Cp1 mutants do not exhibit retinal

degeneration when exposed to six

days of constant light.

[85]

13 CG4847 no significant hits

Table 4.2: A table indicating the putative functions of orthologs of genes under the
major XTX peaks.
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4.10 Figures

Figure 4.1: A map of the sampling locations for all populations sequenced in this
experiment, and UPGMA tree corresponding to the relationships of the populations
based on genome-wide allele frequency similarity. Colors correspond between the map
and the tree. All populations were taken as soil samples from field sites in New Mexico
and Arizona. Note that the “EE” strain is descended from the WAL population.
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Figure 4.2: A heat map of expression in genes that are significantly differentially ex-
pressed (adjusted p = 0.05). Note the small portion of genes that have nearly 0
expression in males, and high expression in hermaphrodites.
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Figure 4.3: Quantile-
quantile plots of five
different statistics used
to identify regions under
selection in the clam shrimp
genome. Left hand plots
are single SNP statistics,
while right hand plots are
25-SNP windows. Plots are
as follows: A,B: LFMM
p-values for the trait of
pool surface area versus a
uniform distribution; C,D:
Bayenv2 Bayes factors for
the same trait, log-log plot-
ted against Bayes factors
for the same trait com-
puted from our simulated
neutral dataset; E,F: mean
pairwise FST versus an ex-
ponential distribution with
λ = 1/ ¯FST ; G,H: Bayenv2
XTX values versus XTX
values calculated from
our neutral simulation; I:
SweeD CLR values vs. a
uniform distribution; J:
SweeD alpha values vs. a
uniform distribution.
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Figure 4.4: Manhattan plots of all statistics of population differentiation. Plots are as
follows: A,B: Bayenv2 XTX values (B is a 25-SNP windowed statistic); C,D: Bayenv2
Bayes factors associating pool surface area with allele frequency differences (D is a
25-SNP window); E: mean pairwise FST .
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ctg7180000000558|quiver|quiver.g6406.t1

ctg7180000000558|quiver|quiver.g6407.t1
ctg7180000000558|quiver|quiver.g6408.t1

ctg7180000000558|quiver|quiver.g6409.t1
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ctg7180000000550|quiver|quiver.g752.t1
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Figure 4.5: A set of Manhattan plots showing XTX values for a select set of loci with
high XTX values, as indicated in figure 4.4. The order of these plots corresponds to
the numbered loci as depicted in figure 4.4.
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Figure 4.6: Un-windowed Manhattan plots of Bayes’ factors across the entire genome,
for all examined environmental variable. The environmental variable is printed below
each plot. Here, Ap, He, and f refer, respectively, to average number of allele per
polymorphic locus, expected number of heterozygotes, and inbreeding coefficient, as
presented in [166].
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Figure 4.7: A matrix associating loci of interest with environmental variables. The
same loci and variables are represented here as is figure 4.6. A black square indicates
the presence of a peak at that locus, when associations are tested using Bayes factors
for that variable. A white square indicates no peak.

141



Chapter 5

5.1 Chapter description

Experimental evolution toward salinity resistance in the clam shrimp Eulimnadia tex-

ana

5.2 Preface

This chapter is not planned to be published outside of this dissertation document. The

experimental evolution and all experiments associated with it were carried out by me.

Soil samples containing clam shrimp were graciously provided by Stephen Weeks. The

improved simulation machinery used herein was written by Kevin Thornton and run

and analyzed by me.
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5.3 Abstract

Highly replicated experimental evolution of a macroscopic, non-model organism is a

novel experimental paradigm that allows for precise detection of loci underlying quan-

titative traits. I describe here a set of replicate populations of the clam shrimp Eulim-

nadia texana that have been experimentally evolved for approximately 10 generations.

I demonstrate that there are repeated phenotypic differences between the experimental

populations, which are under selection for salinity tolerance, and the control popula-

tions, which are not. Finally, I lay out a set of genomic experiments that could be

performed to identify the genetic loci underlying salinity tolerance in the clam shrimp

using these populations.

5.4 Introduction

Experimental evolution and resequencing of populations has been proposed as a method

for identifying genomic regions that govern a trait under selection. [14]. In an ideal-

ized case where selection is applied precisely to a single quantitative trait of interest,

this would allow for the identification of genes that influence that trait; in reality, it is

often likely that multiple traits are (knowingly or not) under selection. Thus, it is in

some ways analogous to QTL mapping and GWAS, other methods for understanding

quantitative traits, but not totally so. In terms of its ability to detect loci of interest

(whether or not they are QTL underlying the expected trait), there is some evidence

that, under certain conditions [14], experimental evolution and resequencing may have

both high power to detect loci of importance, and high resolution to accurately local-

ize them. This is in contrast to other QTL-related methodologies: traditional QTL

143



mapping has resulted in high power to explain the heritability of a trait of interest,

but low resolution [115]; on the other hand, genome-wide association studies (GWAS)

have produced high resolution, but low power [116]. Unfortunately, several evidences

[14, 89, 81] indicate that the power to detect selected loci via experimental evolu-

tion and resequencing (E&R) is limited except under conditions of large population

sizes and high replication. This lack of power is due to the prevalence of genetic drift

in relatively small populations of the type generally used in experimental evolution

of macroscopic organisms. Although experimental evolution of microorganisms can

and has been performed with very high population sizes and/or levels of replication

[136, 15, 86, 152, 131], E&R studies in macroorganisms have historically been limited

by replication. Here, I detail a set of experimentally evolved populations of the clam

shrimp Eulimnadia texana, which I have carried through between 8 and 13 generations

of evolution (depending on the population). I show that there is an effect of selection

for salinity tolerance on the phenotypes of the shrimp, and describe the procedure that

would allow for detection of the loci underlying salinity tolerance in E. texana. I also

describe the rearing methods used to maintain a high volume of large populations of

clam shrimp in parallel, which is the first instance of such rearing of which I am aware.

5.5 Methods and Results

5.5.1 Clam shrimp collection and rearing

Clam shrimp populations have been sampled in New Mexico and Arizona in previous

experiments [166]. This series of experiments was performed entirely with individuals

derived from the WAL population (collected in 2005) (Figure 5.1). We generated the
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initial population to be used for experimental evolution by simultaneously hydrating a

number of soil samples, then collecting all 265 individuals from the initial sample in a

single rearing tray. We then allowed these shrimp to have sex and lay eggs together,

maintaining a simple population structure. We carried this population through six

generations of laboratory survival in order to “acclimate” the shrimp to the laboratory

environment. Populations were check each generation to ensure a consistent population

size above 250 adults. I performed this check after at least 7 days (time to adulthood is

approximately 7 days [165]). In this check, I performed a cursory visual examination of

the shrimp and a statistical estimate of the population size. In the visual examination, I

determined if a large portion of the population consisted of egg carrying hermaphrodites

(egg carrying is, naturally, an indicator of reproductive maturity). I performed the

estimate of population size using a sampling without replacement methodology [129].

Soil containing these 6th-generation eggs was used as the progenitor stock of all 32

experimentally evolved lines.

Clam shrimp populations were reared in 50 × 30 × 8 cm disposable aluminum foil

catering trays (Catering Essentials, full size steam table pan). In each pan, we mixed

500mL of soil with 6L of water purified via reverse osmosis. 0.3 grams of aquarium salt

(API aquarium salt, Mars Fishcare North America, inc.) were added to each tray to

ensure that necessary nutrients were available to the shrimp. Trays were checked daily

for non-clam shrimp, especially the carnivorous Triops longicaudatus, and all non-clam

shrimp were immediately removed from trays. We identified the following non-clam

shrimp: Triops longicaudatus, Daphnia pulex, and an unknown species of Anostraca

fairy shrimp. Trays of shrimp were raised in shelving units containing standard “cool

white” fluorescent bulbs (T12 bulb, 40 watt, 1220mm). The top edges of the shrimp

trays were within 6cm of the fluorescent lights, and there were 3 trays per light. In
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order to facilitate hatching [165], lights were switched on upon hydration of the shrimp,

and were switched off 48 hours after hydration in order to prevent algal growth. This is

in keeping with [165], which indicates that most shrimp hatch within the first 48 hours

of hydration. I allowed each generation of shrimp to grow unimpeded for one week (14

days) with a constant water level; after one week, water was allowed to dry naturally,

and tanks were completely dry within 21 days of hydration. I maintained a temperature

of 28°C in the shrimp rearing room: first, for the health of the shrimp (Stephen Weeks,

personal communication), and second, to increase the rate of evaporation of the tanks.

5.5.2 Serial dilution of saline water

I tested the effects of water salinity on clam shrimp survivorship through a serial

dilution. I added various quantities of aquarium salt to the shrimp’s water upon

hydration, then tracked survivorship for 5 days to identify the death rate of the shrimp.

I double checked salinity using a standard salinity meter, calibrated against known

standard salt concentrations. I estimated the 5-day and 7-day survivorship rates at

intervals of .5 ppt NaCl, and found that approximately 75% of individuals died before

adulthood in the case of a salinity of 1.2 ppt. I used this salinity as the “experimental”

salinity throughout the experiment and used a very low salinity of 0.16 ppt for the

“control” salinity.

5.5.3 Experimental evolution setup

Results from Baldwin-Brown et al. 2014 [14] indicated the importance of replication

and population size on the power to detect loci under selection in E&R experiments.
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The number of circulating haplotypes, likewise, influences the power to resolve these

loci accurately. I endeavored to match the quantitative results of this study to the

best of my abilities. I seeded 32 populations with soil from the master population

described above (raised for 6 generations in the laboratory). I visually inspected each

tank after 1 week (approximately the time to adulthood of the clam shrimp [165]);

any populations that had a suspicious population size (that is, not obviously in the

range of several hundred individuals) was restarted with a fresh soil sample from the

previous generation of that population. Population sizes were sporadically checked

using capture-without-replacement methods [129] in order to establish that visual in-

spections of the shrimp populations were not drastically underestimating population

sizes. In such a test, a fixed amount of sampling effort is repeatedly used to remove

individuals without replacement, with the number of individuals removed counted each

time. The distribution of the counts establishes a curve that allows statistical estima-

tion of the number of individuals in a population in cases where the population is too

large to manually count. My sampling method was to pass a net through the shrimp-

containing tank in five circles over the course of five seconds. As long as this is done

consistently, relatively accurate estimation is possible [129]. Although the control pop-

ulations proceeded relatively smoothly, the experimental populations were subject to

more necessary re-runs of low-population generations: the control populations reached

an average of 9.05 generations in 422 total hydrations of soil, while the experimental

populations reached an average of 5.6 generations in 430 total hydrations (Table 5.1).

This may be due to the salinity stress on experimental populations.
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5.5.4 Predicted experimental design power

Baldwin-Brown et al. 2014 [14] indicates that, with population sizes in excess of 500,

a quantity of founding haplotypes greater than 100, and replication of 15 populations,

power to detect the exact location of a causative SNP is just over 50%. That said,

Baldwin-Brown et al. 2014 never simulated less than 100 generations, and while gen-

erations were found to have a small effect on causative site localization, that may not

remain true when generation times are much, much less than 100. The linear model

from that paper, which provides a rough estimate of the power to localize causative

polymorphisms down to single-SNP resolution, indicates, under very conservative con-

ditions of only 10 generations of selection, 10 populations, 300 individuals per popu-

lation, 500 founding haplotypes, and a selection coefficient of 0.05 at the hypothetical

selected locus, produces a power of 31%. Increasing the number of populations to 14

(a more realistic number, given the number of populations at close to 10 generations)

produces a power of 41%.

Still, using the linear model outside of the range in which the original simulations

were done leaves some questions open. We generated a more realistic set of simulated

data (unpublished) using an updated version of the same simulation machinery from

Baldwin-Brown et al. 2014 [14] to test this. This version of the simulation machinery

simulates an entire chromosome with multiple causative sites Rather than using a fixed

selection coefficient as in the original study, we generated a phenotypic value for each

individual as an additive trait summed up from the effect sizes of its causative sites.

A gaussian curve was placed around an arbitrarily determined optimum phenotype,

and fitness for each individual was determined by calculating the value of this gaussian

function for the distance of this individual’s phenotype from the optimum phenotype.

The options were as follows:
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e x p e v o l r e g i o n q t r a i t a dd i t i v e o n e r e p −−s e l e c t e d − i

↪→ s t o n e f i n a l t a b l e m i n o r f i x e d . bin −I i nd ex f i l e n 1 000 d0

↪→ . 1 . txt −o ou t f i l e n 1 0 0 0 d0 . 1 . bin −−r e p l i c a t e $REP −S

↪→ $SEED1 −S $SEED2 −m 100 −N 1000 −t 10 −−h e r i t a b i l i t y 0 . 5

↪→ −d 0 .1 −O 5 −C 0.2 −V 10 −− f l i e s −−weight 0 . 1

where “m” is the number of funding chromosomes, “N” is the population size per gen-

eration, “t” is the number of generations, “heritability” is the heritability of the trait,

“d” is the density of causative sites per centimorgan (0.1 corresponds to an average

of 5 causative sites per chromosome), “O” indicates the phenotypic optimum value,

“C” indicates the fraction of the genome occupied by the chromosome of interest, and

V indicates the ratio of the gaussian fitness function’s variance to the variance of the

phenotypic variation (phenotypic standard deviation is equal to 1). The recombina-

tion map used here is from the Drosophila melanogaster X chromosome from release

5 of the D. melanogaster reference genome [31], and the starting allele frequencies are

derived from those of the DGRP [114] X chromosome. The number of causative sites

was poisson distributed, and sites were placed randomly throughout the genome. We

generated 100 simulated replicates of a conservative set of experimental values (100

initial haplotypes, a population size of 500, 10 generations of selection, 10 replicate

populations, 5 causative sites across the chromosome). After correcting for false posi-

tives by setting a cyber-t threshold of 10−7 (this reduced the number of false positive

SNPs in our control simulations, where no sites were selected, to 0), we found that

44% of causative sites were significant, and 99% of causative sites were within 1Mb of

a significant polymorphism. This seems to indicate that the power to detect regions

containing a causative site is quite high, but should not be taken as evidence that
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localization will be easy or possible. As a 1Mb region might contain numerous genes

and polymorphisms, the power to detect that such a region is under selection may not

be of great value.

We now consider the ability of a study using this experimental design to localize the

causative sites precisely. We note one indicator that exact localization of causative

sites is low in this case: the number of significant sites with our significance threshold

is 103,000. Raising the significance threshold to reduce the number of these pseudo

false positive sites to less than 10 required an increase of the significance threshold to

10−20, which reduced the power to detect causative sites to 0.006. Further analysis

could determine the precise resolution under these conditions. I speculate that the

small number of generations of selection reduces the amount of recombination available

during selection, preventing the independent segregation of polymorphisms and causing

a small number of large haplotype blocks to be selected. Thus, while the power to detect

causative sites at all is likely quite high in these lines, there are good reasons to think

that localization of the causative sites here may be low.

5.5.5 Detecting adaptation to salinity

We performed a 2-way nested ANOVA to identify adaptation to salinity in the ex-

perimental populations [7]. We identified the two healthiest stocks from the experi-

mental and control populations (EEX11-7 and EEC8-7, respectively) and grew small

populations of individuals in cups under both high salt (1.2 ppt) and control salt

(0.16ppt) conditions. This formed a set of 4 treatments (88 cups; 22 cups for each

treatment; treatments: high salt shrimp in high salt environment, low salt shrimp in

low salt environment, high salt shrimp in low salt environment, low salt shrimp in
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high salt environment, Figure 5.2). We measured the body length of each shrimp

in each cup (length being a correlate of fitness [165]) and found that there were

several factors with effects on body size: the strain of shrimp and the salt environ-

ment were both (unsurprisingly) found to have effects, but most importantly, there

was an interaction effect indicating that, compared to the control shrimp, the ex-

perimental shrimp had a much higher fitness in the salt environment compared to

the control environment (Table 5.1; Fig. 5.3. This indicated that the experimental

shrimp were adapted to the salt environment, though there was no evidence that the

control shrimp were better adapted to the control environment. We performed this

ANOVA in r using the following command: aov(popbodysize (strain*treat) +

Error(popnum/(strain*treat)), data=alldata)

5.5.6 organization of samples

We organized all samples systematically to simplify future use of this system. All

samples are stored in plastic zip-sealing bags, inside of cardboard boxes. Each box is

labeled with its contents (one box with wild samples, one box with the first generation of

experimental evolution lines, etc.). The ancestral stock for the experimental evolution

is in a set of bags labeled “Big population 7”, with generations 1 through 6 each

stored separately. Each set of soil that was ever hydrated is separately stored in a

plastic bag. “Experimental” lines (those that have been subjected to high salinity) are

labeled with the following scheme: EEXna-g, where “n” is the (numerical) stock ID,

“g” is the generation number, and “a” is a letter corresponding to the instance of the

particular combination of stock and generation. For instance, EEX3b-7 would refer to

the seventh generation of the third experimental line. The “b” indicates that this is

the second attempt to produce this population from the previous (EEX3-6) population.
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The control (freshwater) lines are labeled similarly, but with “EEC” in the place of

“EEX”.

5.6 Discussion

One of the crucial difficulties in experimental evolution has been identifying a model

organism with complex traits that can easily be used for experimental evolution and

resequencing. Here, we show an example of experimental evolution performed on the

clam shrimp Eulimnadia texana using extremely high replication to generate a set

of populations that will allow for high power to detect regions under selection under

a regime of salinity stress. We have documented the techniques used to maintain

large numbers of clam shrimp at a low cost, and have shown that adaptation toward

resistance of high salinity is occurring in the clam shrimp.

Based on the results of [14] and follow up simulations, this population should be fairly

well suited to resequencing and detection of genomic sites of selection via simple statis-

tics. A survey of population allele frequencies, carried out via pooled population se-

quencing or sequencing of individuals, should produce data well suited to identification

of loci under selection. Thus, a fairly straightforward study could likely identify some

of the major loci underlying salinity tolerance in the shrimp, though it is possible that

more precise localization will not be possible without more generations of selection.

It is likely that, using allele frequency estimates of these populations, at least some

causative sites would produce a detectable signal, but that the signal would be broad

enough that precise localization was not possible. Additionally, because of the exis-

tence of an archive of eggs from each generation of evolution, follow-up studies could

examine the trajectories of alleles, both selected and not, in these shrimp lines.
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We demonstrate here that E. texana has a fairly low salinity tolerance in the wild, and

that adaptation to higher salinity is possible; however, we do not know what physio-

logical mechanism underlies the difference between these shrimp lines. Evidence exists

that osmotic regulation in vernal pool shrimp occurs through specialized neck organs

that putatively allow passive transport of sodium and chloride through an outer mem-

brane, and control osmotic levels through active transport of sodium and potassium

through a membrane that faces the interior of the organism [135]. One might specu-

late that this is the region most likely to be physiologically differentiated between the

experimental and control shrimp lines. Alternatively, osmotic potential differences are

the signal that drive the hatching of newly hydrated shrimp [26]. It is possible that

selection in these lines is occurring at this stage of development, or any other. Fol-

low up studies could benefit from direct physiological observation of osmotic potential

across the membranes of these neck organs in the various evolved lines, or observation

of hatching rates of eggs in solutions of varying salinity.

5.7 Listings

Listing 5.1: ANOVA sum-of-squares table

Error : popnum

Df Sum Sq Mean Sq

s t r a i n 7 1 4 .134 4 .134

Error : popnum : s t r a i n 7

Df Sum Sq Mean Sq
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s t r a i n 7 1 177 .8 177 .8

Error : popnum : t r e a t 7

Df Sum Sq Mean Sq

s t r a i n 7 1 34 .91 34 .91

Error : popnum : s t r a i n 7 : t r e a t 7

Df Sum Sq Mean Sq

s t r a i n 7 1 58 .08 58 .08

Error : Within

Df Sum Sq Mean Sq F value Pr(>F)

s t r a i n 7 1 2 .0 2 .008 2 .961 0 .08547 .

t r e a t 7 1 5 .3 5 .280 7 .785 0 .00532 ∗∗

s t r a i n 7 : t r e a t 7 1 2 .6 2 .577 3 .800 0.05141 .

Res idua l s 1884 1277 .8 0 .678

−−−

S i g n i f . codes : 0 ∗∗∗ 0 .001 ∗∗ 0 .01 ∗ 0 .05 . 0 . 1 1

5.8 Tables

Stock ID Control Experimental

1 9 7

2 5 4

3 4 4
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4 11 8

5 8 7

6 13 8

7 NA NA

8 13 7

9 14 9

10 13 4

11 NA 9

12 10 6

13 12 4

14 9 NA

15 11 6

16 9 8

17 10 9

18 12 9

19* NA 4

20* NA 4

21* NA 5

22* NA 4

23* NA 3

Table 5.1: A table showing the number of successful generations of experimental evo-
lution of clam shrimp populations. IDs with an asterisk are those started late into
the experiment, after recognizing the slow progress of the salt challenged lines and the
possibility of attrition of lines over time.
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5.9 Figures

Figure 5.1: A map of the sampling locations for all populations sequenced in this
experiment. Note that lab ancestor strain is descended from the WAL population. All
populations were taken directly from field sites in New Mexico and Arizona.
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Experimental setup to identify 
adaptation to salinity

Salt 
(7 gens)

No salt 
(7 gens)

No salt 
(1 gen)

Salt 
(1 gen)

!!!

No salt 
(1 gen)

Salt 
(1 gen)

Figure 5.2: A diagram depicting the arrangement of the clam shrimp populations used
to identify adaptation to a high salinity environment. Each shrimp picture represents
a population of shrimp. The initial population of clam shrimp was divided into sub-
populations, which were raised independently for 6 generation, one in salt and one in
non-salt. Offspring of these adapted lines were split into 88 groups. 22 “salt” shrimp
populations were raised in salt water (SS), 22 “salt” populations were raised in fresh
water (SF), 22 “fresh” populations were raised in salt water (FS), and 22 “fresh”
populations were raised in fresh water (FF). We performed an ANOVA that showed
that the ratio of FF body size to FS body size was significantly larger than the ratio
of SF body size to SS body size, because fresh water shrimp raised in salt water are
not adapted to the high salinity, and therefore grow poorly.
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Figure 5.3: A box-and-whisker plot indicating the distribution of body length by treat-
ment, where “experimental” refers to shrimp adapted to salt water, “control” refers
to shrimp adapted to fresh water, and “salt” and “no salt” respectively refer to the
absence or presence of high salt in the growing medium of the cups. Values used to
generate these figures are the mean values of each cup of shrimp in order to minimize
the effect of any individual cup, as some cups contained more individuals than oth-
ers. The tree-like diagram indicates the significance of different comparisons. Namely,
the comparison of salt vs. non-salt treatments is highly significant, and the other
two comparisons (salt strain vs non-salt strain and the interaction of the other two
comparisons) are significant, but not highly so.
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Chapter 6

6.1 Chapter description

Conclusion

6.2 Using population differentiation to identify se-

lection

In the previous chapters, I have demonstrated the value and limitations of population

differentiation in identifying and understanding selection where it occurs differentially

between populations. I demonstrated via simulation that the power to detect loci under

selection using statistical tests of allele frequencies in a set of replicated experimentally

evolved populations was only high under a narrow set of experimental parameters that

have infrequently been met in experimental evolution of macroscopic species. I showed

that it was possible to use analyses of allele frequency to identify differentiated loci in

the genomes of highly related populations of individuals through the example of a set
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of natural Eulimnadia texana vernal pool clam shrimp populations, where we found

a set of loci that we strongly suspect to be under selection in these populations. In

service of this E. texana analysis, I also developed a new pipeline for genome assembly

and compared it to existing assembly methods in an extensive power analysis, then

demonstrated its effectiveness on a non-model organism via assembly of the E. texana

genome. Finally, I developed a set of experimentally evolved populations of E. texana

that is highly replicated and, matches the levels of replication and population size laid

out in my power analysis of experimental evolution, though the number of generations

of selection is currently well below the simulated number. I evolved the populations

in the laboratory for approximately 10 generations and demonstrated statistically that

the experimental populations were phenotypically differentiated from the control pop-

ulations after only 7 generations of selection.

Many of these projects suggest further studies. My power analysis of experimental

evolution indicates a setup for experimental evolution that is very likely to result in

highly precise localization of polymorphisms underlying quantitative traits. Since the

publication of that first chapter, several other studies [89, 81] have been published

that broadly agree with these results, but more sophisticated models of quantitative

traits could be applied to such analyses in the future, possibly taking into account

the relationship between genotype, phenotype, and fitness, or incorporating optimum

phenotype [169] fitness models into the simulations. Additionally, these studies suggest

the practical application of experimental evolution and resequencing of macroscopic

species, including my experimentally evolved set of E. texana populations.

My analysis of genome assembly techniques indicates a gap in current techniques that

is waiting to be filled. The central result of the paper, that different genome assembly

techniques fail to assemble the genome for different reasons and at different locations
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in the genome, suggests that it should be possible to write an assembler that can

produce considerably higher quality genome assemblies using the same data that is

available now. Additionally, our genome assembly merging tool, quickmerge, should

allow for higher contiguity genome assemblies under a range of circumstances, using

only existing data and tools. I hope that this tool will be used by future researchers

to improve genome contiguity.

Finally, my examination of natural populations of E. texana suggests three further

avenues of research. First, our results with the clam shrimp suggest there is much to

learn about the ecology and evolution of vernal pool shrimp through genome sequenc-

ing and analysis. This small-scale study successfully identified a set of genomic loci

that appear to be under selection based on only 11 natural populations, most of which

are geographically and genetically very similar to each other. A larger scale experi-

ment, with more thorough measurement of ecological variables and a wider sampling of

natural populations, is very likely to identify more loci under selection, and to be able

to precisely identify the ecological variables associated with each locus. Second, the

loci that we identified present several tempting candidate genes whose effects on phe-

notype have not been thoroughly examined in E. texana, but which appear to be under

selection. Gene knockout or swapping studies, performed with CRISPR [139] or some

other gene manipulation technology, could reveal a great deal about the traits under

selection in these shrimp. Third, this study provides a template for the exploration of

population, quantitative, and ecological genetics of non-model organisms using whole-

genome sequencing and assembly to identify and compare polymorphism in natural

populations. This template can be applied, at a relatively low cost, to any organism

that can be reliably sequenced, and we hope that this study design will inform other

researchers working on non-model organisms in the future.
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Figure A.1: This figure depicts a set of Q-Q plots illustrating the distribution of the
t statistic used in this study versus a theoretical t distribution. In each case, the
t values were calculated from a single, randomly chosen replicate simulation. In all
cases, s = 0 so that the plots will illustrate the effect of drift alone on the generated
t values. Purple, brown, green, blue and red points correspond, respectively, to the
cases where r = 2, r = 5, r = 10, r = 15, and r = 25.
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Figure A.2: The log10(p) value chosen as the significance threshold for every simulated
parameter combination. Because false positive rates are independent of s, s is not
shown. Parameter combinations that produced unacceptably high false positive rates
even when the significance threshold was p10− 14 are depicted as missing points.
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Figure A.3: A histogram depicting the distribution of the rank order position of the
CS when all SNPs in a region are ordered from most significant to least significant
after 500 generations of selection with 500 individuals per population and a selection
coefficient at the CS of 0.05 in all cases where the MSM was significant. Variation in
population size is not shown because its effects are similar to variation in replication.
The count refers to the number of pure replicates out of 500 that fell into a given range.
Note the increase in low-CS-rank hits due to selective sweeps when haplotype number
is low.
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Figure A.4: Sample plots of significance across genome regions under various . The
blue point is the CS, while the red points represent all other SNPs. Top left is a plot
of relatively ideal conditions, where the CS is the MSM and no selective sweeps are
evident. Top right is a plot showing diminished n. Bottom left shows the blocks of
linkage disequilibrium found when h is low. Bottom right shows the inability to detect
the causative SNP when r is low.
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Figure A.5: The ability (total power) to detect a CS-containing region and either
correctly identify the exact location of a CS or decrease the number of candidate loci
to a manageable number after 1000 generations with a selection coefficient at the CS
of 0.05 or higher. In other words, the fraction of all simulations in which a region
is a region contains a significant SNP and one of three methods of detecting a CS is
successful: the MSM is the CS (Total Exact Location Power), the CS is included in
the most significant 1kb window in the region (Total 1kb window power) or the CS is
included in the most significant 10kb window in the region (Total 10kb window power).
Also shown is the CR Detection Power, which is the fraction of regions that contained
at least one significant SNP. By design, all total powers listed here must be lower than
the CR detection power. In every instance where at least one SNP was significant,
the window with the largest sum of log10(p) values was found. If the most significant
window in the region contained the CS, the CS was considered correctly detected. The
black lines indicate 50% power and 80% power.
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Figure A.6: The ability (total power) to detect a CS-containing region and either
correctly identify the exact location of a CS or decrease the number of candidate loci
to a manageable number under all . In other words, the fraction of all simulations
in which a region is a region contains a significant SNP and one of three methods of
detecting a CS is successful: the MSM is the CS (Total Exact Location Power), the CS
is within 10kb of the MSM (Total Within 10kb Power), the CS is one of the 25 most
significantly diverged SNPs in the region (Total Top 25 Power), or the CS is within
2 LOD of the MSM (Total within 2 LOD power). Also shown is the CR Detection
Power, which is the fraction of regions that contained at least one significant SNP. The
black lines indicate 50% power and 80% power.
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Figure A.7: Heat map depicting exact location power rate at various levels of n and h.
s = 0.05, h = 100, g = 500. The power where n = 100 and r = 10 is missing because
none of our tested significance thresholds was strict enough to sufficiently limit false
positives in that .
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Figure A.8: Average allele frequency versus number of generations of selection. r = 25,
s = 0.05. The red line indicates the average allele frequency of CS alleles, while the
blue line indicates the average allele frequency for every SNP across regions. The
green and purple lines correspond to these same values, but in the non-selected control
populations. Note that this plot makes use of all available replicates for every .
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Figure A.9: A comparison of the total exact location power estimates generated by our
simulations and the power estimate generated by our linear model. Only the space in
which the model is relatively accurate is shown. Simulated estimate type refers to the
total exact location power generated by our simulation. Model estimate type refers
to the total exact location power from our mathematical model. Variation in g is not
shown for clarity.
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Figure A.10: A comparison of CR detection power and total power when the number
of external CSs is varied. External CSs here refer to CSs that are outside of the
1Mb region surrounding the focal CS. These external CSs are randomly distributed
throughout a 20Mb region and have the same selection coefficient as the focal CS.
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Figure A.11: This histogram illustrates the distribution of fitnesses across all simulated
populations at a given . All fitnesses shown here are relative to the base (mutation free)
fitness, which was assigned a relative fitness of 1.
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Figure A.12: This plot demonstrates the change in variance in fitness caused by the
increase in the number of external CSs in a simulated chromosome. Each point rep-
resents the mean of the variances from 250 independent simulations. Note that, as
these values were computed at the beginning of the forward simulation, number of
generations is not taken into account.

194



Figure A.13: CR detection power and false positive rate versus significance threshold.
The that most closely correspond to the experimental parameters used in existing
E&R experiments are depicted. Burke et al. 2010: h = 500, n = 1000, r = 5, g = 500.
Johansson et al. 2010: h = 32, n = 100, r = 2, g = 100. Orozco-Terwengel et al. 2012
and Turner and Miller 2012: h = 100, n = 1000, r = 2, g = 100. Turner et al. 2011:
h = 100, n = 250, r = 2, g = 500. When a parameter value was unknown, the value
that provided the highest power was chosen. Only s = 0.05 is shown. Any points that
are not visible are overlapping at y = 0.
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A.2 Chapter 2 supplementary figures

Figure A.14: A FIGE gel showing the size distribution of sheared genomic DNA frag-
ments generated using different sized needles. From left to right: lane 1 ladder, lane 2
DNA sheared with 21 gauge needle, lane 3 DNA sheared with 22 gauge needle, lane 4
DNA sheared with 23 gauge needle, lane 5 DNA sheared with 24 gauge needle.

196



Figure A.15: An alignment plot between the 10 SMRT cell hybrid assembly and the D.
melanogaster reference genome version 5. Red lines indicate correctly oriented contigs,
while blue lines indicate inversions. A single major inversion/translocation is visible
on the X chromosome. This plot was generated using MUMmer version 3.23 using the
‘fat’ and ‘filter’ plotting options.
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Figure A.16: An alignment plot between the 10 SMRT cell hybrid assembly and the D.
melanogaster reference genome version 5. Red lines indicate correctly oriented contigs,
while blue lines indicate inversions. A single major inversion/translocation is visible
on the X chromosome. This plot was generated using MUMmer version 3.23 using the
‘fat’ and ‘filter’ plotting options.
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Figure A.17: a) A mummer plot depicting the alignment of the 20 SMRT cell PacBio
only assembly of D. melanogaster to the hybrid assembly of the 50% longest reads
from the same data. This plot demonstrates that large contigs produced by the PacBio
only assembly are not necessarily contiguous in the complementary hybrid assembly,
and vice versa. This indicates that a meta-assembly of the hybrid and PacBio only
assemblies should produce a higher NG50 than either individual assembly. (b) is a
zoomed in portion of (a) illustrating a PacBio only contig that contains five hybrid
contigs. (c) The PacBio only contig in (b) aligns to the reference chromosome 3R.

Figure A.18: A side by side comparison of the alignment of a hybrid assembly to
the reference versus a merged assembly to the reference. These assemblies are both
produced using the same 20 SMRTcells of data, and conform to each other closely.
It is evident that the merged assembly has increased contiguity without increased
misassembly.
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Figure A.19: A comparison of a portion of the assembly from Berlin et al. [20] (121×
PacBio reads) to our merged assembly (52× PacBio reads), demonstrating increased
contiguity when merging hybrid and PacBio only assemblies as compared to PacBio
only alone.
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Figure A.20: Mummer dotplots between the human hybrid assembly (top row), PacBio
only assembly (second row from the top), and merged assembly (bottom row) versus
an extremely contiguous human genome assembly from NCBI (GenBank assembly
accession GCA 001420765.1). The reference contigs are on the X-axis and the contigs
from the assemblies reported here are on the Y-axis. From left to right: the first
column represents the dotplots of the entire assemblies. The second column shows a
magnified view of the dotplot where the most conspicuous misassembly is present in the
merged assembly and the same regions in the PacBio and hybrid assemblies. The third
column shows the same view as the second column after deliberately splitting contigs
(indicated by the arrows) in the component assemblies that contained inversions. The
contigs were split at the inversion breakpoints (at positions 2618934 and 2099497 in
the PacBio only contigs utg7180000013520 and utg7180000000047, respectively, and
position 3292143 in the hybrid contig Backbone 94), and the component assemblies
were merged, producing a final merged assembly that did not contain the inversions
present in column two. This demonstrates that at least this set of misassemblies in the
merged assembly was due to misassemblies in the hybrid and PacBio assemblies and
was not introduced by the merging process. The merged assembly was produced using
quickmerge parameters hco = 15, c = 5, l = 5000000.
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Figure A.21: Summary of unpolished assembly quality metrics from Quast. All hybrid
and PacBio only assemblies are based on non-downsampled reads. The merged assem-
blies based on up to 77× data are generated by merging the hybrid and the PacBio only
assemblies made using the same amount of PacBio reads. For PacBio only assemblies
made with PacBio reads > 77× coverage, the hybrid assembly based on 77× PacBio
reads were used for assembly merging.

Figure A.22: Summary of Quiver -polished assembly quality metrics from quast. All
assemblies are same as in Supplementary Fig. A.21. As evidenced here, polishing by
Quiver improved all assemblies.
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Figure A.23: Following Supplementary Fig. A.22, quality metrics after both Quiver
and pilon polishing.

Figure A.24: Summary of GAGE adjusted N50 before polishing, and with polishing
either by Quiver only or by both Quiver and Pilon.
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Figure A.25: DNAdiff results for hybrid, PacBio, and merged human assemblies. The
conservative merged assembly is from merging the hybrid and the PacBio assembly
using the parameters: hco = 15,c = 5.0,l = 5000000.
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Figure A.26: A) Cumulative contig length distribution of a PacBio only assembly
produced using the ISO1 long reads2 and a PacBio only assembly using the same
reads downsampled to resemble the length of the shorter D. pseudoobscura data. B)
A mummer alignment dot plot illustrating the difference in contiguity between PacBio
only assemblies produced using the same assemblies as in A.
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Figure A.27: Read quality distributions of the ISO1 dataset after downsampling to
produce low (50% lowest quality reads), medium (a random 50% of reads), and high
(50% highest quality reads) quality distributions.
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Figure A.28: Flow chart showing the key steps involved in generating long reads for
optimal genome assembly.
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Figure A.29: Flow chart showing the key steps involved in assembling the long reads
into a highly contiguous reference grade assembly.
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A.3 Chapter 3 supplement

A.3.1 Chapter 3 supplementary texts

Bayenv settings

Bayenv was run in two modes: one with population differentiation statistics and non-

parametric statistics switched on, and one with pooled population analysis turned on.

The command line options for these, respectively, are as follows:

. / bayenv2 − i $ f −m $MATFILE −e $ENVFILE −n 24 −p $POPNUM −k

↪→ 100000 −t −f −X −c −r $RSEED

./ bayenv2 − i $ f −m $POOLMATFILE −e $tempenv −s $ s amp l e f i l e −n

↪→ 1 −p $POPNUM −k $ITNUM −t −x −r $RSEED

PBcR settings

PBcR, from the Celera WGS version 8.3, release candidate 1, was used. We used the

following command line options:

PBcR −s e n s i t i v e −l ibraryname shr imp pacbio round2−3−4 −s

↪→ pacbio . spec − f a s t q l i n e b r e a k shr imp pb data . f a s t q

Where the file pacbio.spec contained the following:

asmOvlErrorRate=0.1
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asmUtgErrorRate=0.1

asmCnsErrorRate=0.1

asmCgwErrorRate=0.1

asmOBT=1

asmObtErrorRate=0.08

asmObtErrorLimit=4.5

utgGraphErrorRate=0.05

utgMergeErrorRate=0.05

ovlHashBits=24

ovlHashLoad=0.8

utgMergeErrorLimit=5.25

useGrid=1

scr iptOnGrid=1

ovlCorrOnGrid=1

frgCorrOnGrid=1

ovlMemory=128

ovlStoreMemory=128000

threads=32

ovlConcurrency=1

cnsConcurrency=32

merylThreads=32

merylMemory=128000

frgCorrThreads = 16

f rgCorrBatchS ize = 100000

ovlCorrBatchSize = 100000}
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DBG2OLC settings

We ran DBG2OLC with the following command line options:

. /DBG2OLC Linux k 17 KmerCovTh 2 MinOverlap 20 AdaptiveTh

↪→ 0 .002 LD1 0 MinLen 200 Contigs l i n eb r e ak

↪→ p l a t anu s c on t i g s . f a RemoveChimera 1 f pacb io data . f a

quickmerge settings

We ran quickmerge with the following command line options:

python merge wrapper . py −pre merged qu ivered shr imp assembl i e s

↪→ −hco 5 .0 −c 1 . 5 − l 1000000 l i n eb r e ak hybr id assembly .

↪→ f a s t a . s e l f a s s emb l y . f a s t a

BWA settings

BWA and samtools command line settings for aligning and filtering reads were as

follows:

bwa aln −t ${CORES} $REFPATH $FDATAPATH > ${OUTPATH} .F . s a i

bwa aln −t ${CORES} $REFPATH $RDATAPATH > ${OUTPATH} .R. s a i

bwa sampe ${REFPATH} ${OUTPATH} .F . s a i ${OUTPATH} .R. s a i

↪→ $FDATAPATH $RDATAPATH | samtools view −q 20 −bS − |

↪→ samtools s o r t − data/bam/$PREFIX
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picard-tools settings

picard-tools command line settings for deduplication were as follows:

java −j a r p i card . j a r MarkDuplicates INPUT=${ p r e f i x } .bam OUTPUT

↪→ =${ p r e f i x } . dedup .bam METRICS FILE=${ p r e f i x } . dedup .

↪→ metr i c s . txt REMOVEDUPLICATES=true }

GATK settings

GATK command line settings for calling SNPs were as follows:

java −d64 −Xmx128g −j a r GenomeAnalysisTK . j a r −T

↪→ Unif iedGenotyper −nt ${CORES} −R ${REFPATH} −I merged−

↪→ r ea l i gned−deduped .bam −gt mode DISCOVERY −

↪→ s t a n d c a l l c o n f 30 −s t and emi t con f 10 −o rawSNPS−Q30 v2

↪→ . v c f

java −d64 −Xmx128g −j a r GenomeAnalysisTK . j a r −T

↪→ VariantAnnotator −nt ${CORES} −R ${REFPATH} −I merged−

↪→ r ea l i gned−deduped .bam −G StandardAnnotation −V: var iant ,

↪→ VCF rawSNPS−Q30 v2 . vc f −XA SnpEff −o rawSNPS−Q30−

↪→ annotated v2 . vc f

java −d64 −Xmx128g −j a r GenomeAnalysisTK . j a r −T

↪→ Unif iedGenotyper −nt ${CORES} −R ${REFPATH} −I merged−

↪→ r ea l i gned−deduped .bam −gt mode DISCOVERY −glm INDEL −

↪→ s t a n d c a l l c o n f 30 −s t and emi t con f 10 −o inDels−Q30 v2 .

↪→ vc f
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java −d64 −Xmx20g −j a r GenomeAnalysisTK . j a r −T

↪→ Var i an tF i l t r a t i o n −R ${REFPATH} −V rawSNPS−Q30−

↪→ annotated v2 . vc f −−mask inDels−Q30 v2 . vc f −−

↪→ maskExtension 5 −−maskName InDel −−clusterWindowSize 10

↪→ −−f i l t e r E x p r e s s i o n ”MQ0 >= 4 && ((MQ0 / ( 1 . 0 ∗ DP) ) >

↪→ 0 . 1 ) ” −−f i l t e rName ”BadValidation ” −−f i l t e r E x p r e s s i o n ”

↪→ QUAL < 30 .0” −−f i l t e rName ”LowQual” −−f i l t e r E x p r e s s i o n ”

↪→ QD < 5 .0” −−f i l t e rName ”LowVQCBD” −−f i l t e r E x p r e s s i o n ”FS

↪→ > 60” −−f i l t e rName ”FisherStrand ” −o Q30−SNPs v2 . vc f

cat Q30−SNPs v2 . vc f | grep ’PASS | t e x t a s c i i c i r c um#’ > only−PASS

↪→ −Q30−SNPs v2 . vc f

java −d64 −Xmx20g −j a r GenomeAnalysisTK . j a r −T

↪→ Var i an tF i l t r a t i o n −R ${REFPATH} −V inDels−Q30 v2 . vc f −−

↪→ clusterWindowSize 10 −−f i l t e r E x p r e s s i o n ”MQ0 >= 4 && ((

↪→ MQ0 / (1 . 0 ∗ DP) ) > 0 . 1 ) ” −−f i l t e rName ”BadValidation ”

↪→ −−f i l t e r E x p r e s s i o n ”QUAL < 30 .0” −−f i l t e rName ”LowQual”

↪→ −−f i l t e r E x p r e s s i o n ”QD < 5 .0” −−f i l t e rName ”LowVQCBD” −−

↪→ f i l t e r E x p r e s s i o n ”FS > 60” −−f i l t e rName ”FisherStrand ” −

↪→ o Q30−INDEL v2 . vc f

cat Q30−INDEL v2 . vc f | grep ’PASS | t e x t a s c i i c i r c um#’ > only−

↪→ PASS−Q30−INDEL v2 . vc f

R code to estimate ρ from LDx data

R code for estimating ρ using r2 estimates at various distances is as follows:
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l d i n f o <− read . t ab l e (” r2 data . txt ”)

l d i n f o$bp <− 1 : nrow ( l d i n f o )

colnames ( l d i n f o ) [ 1 ] <− ” r2 ”

d i s tance<− l d i n f o$bp

LD. data<−l d i n f o $ r 2

n<−844

HW. st<−c (C=0.1)

HW. non l inear<−n l s (LD. data ˜((10+C∗ d i s t anc e ) / ((2+C∗ d i s t anc e )

↪→ ∗(11+C∗ d i s t anc e ) ) ) ∗ (1+((3+C∗ d i s t ance ) ∗(12+12∗C∗

↪→ d i s t ance+(C∗ d i s t anc e ) ˆ2) ) / (n∗(2+C∗ d i s t anc e ) ∗(11+C∗

↪→ d i s t ance ) ) ) , s t a r t=HW. st , c on t r o l=n l s . c on t r o l ( maxiter

↪→ =100) )

tt<−summary(HW. non l i n ea r )

new . rho<−t t$parameters [ 1 ]
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A.3.2 Chapter 3 supplementary tables

cutoff n50 contigs length largest

82 1420491 253 120342282 4450974

83 1450029 251 120059725 4448668

84 1424862 230 119347677 10883472

85 1926101 210 118647318 10769207

86 1886292 183 116223020 7955201

87 219999 864 106905299 1281479

88 34294 1080 29263120 130428

89 9895 20 156585 21076

90 14014 3 22150 14014

91 12650 3 21171 12650

92 12644 3 21161 12644

Table A.1: Assembly statistics for hybrid genome assemblies using various quality
thresholds.
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populationoligo

used

adapter sequence index se-

quence

All hb501 5’-AATGATACGGCGACCACCGA

GATCTACACTAGATCGCTCGTCGGCAGCGTC

TAGATCGC

Cassidy hb701 5’-CAAGCAGAAGACGGCATACG

AGATTCAAGTGGTCTCGTGGGCTCGG

CACTTGA

WAL hb702 5’-CAAGCAGAAGACGGCATACG

AGATATTCCGGGTCTCGTGGGCTCGG

CCGGAAT

Hayden hb703 5’-CAAGCAGAAGACGGCATACG

AGATCGGTCTAGTCTCGTGGGCTCGG

TAGACCG

JT4 hb704 5’-CAAGCAGAAGACGGCATACG

AGATGAGATACGTCTCGTGGGCTCGG

GTATCTC

Forsling hb705 5’-CAAGCAGAAGACGGCATACG

AGATCTATAGCGTCTCGTGGGCTCGG

GCTATAG

ARES hb706 5’-CAAGCAGAAGACGGCATACG

AGATGACGGAAGTCTCGTGGGCTCGG

TTCCGTC

LTER hb707 5’-CAAGCAGAAGACGGCATACG

AGATGCACTCTGTCTCGTGGGCTCGG

AGAGTGC

AMT1 hb708 5’-CAAGCAGAAGACGGCATACG

AGATAAGAACGGTCTCGTGGGCTCGG

CGTTCTT

SWP4 hb709 5’-CAAGCAGAAGACGGCATACG

AGATCGTCGAAGTCTCGTGGGCTCGG

TTCGACG

JD1 hb710 5’-CAAGCAGAAGACGGCATACG

AGATTGCTGGTGTCTCGTGGGCTCGG

ACCAGCA
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Tank

011

hb711 5’-CAAGCAGAAGACGGCATACG

AGATACATTCCGTCTCGTGGGCTCGG

GGAATGT

EE hb712 5’-CAAGCAGAAGACGGCATACG

AGATTCCATCGGTCTCGTGGGCTCGG

CGATGGA

Table A.2: Oligos used in Nextera library construction for the wild populations.

Number Name read (mil-

lion)

sequence

(Mb)

coverage

1 cassidy 82 8209 54

2 wal 30 3000 19

3 hayden 62 6173 41

4 jt4 45 4542 30

5 forsling 49 4877 32

6 ares 56 5568 37

7 lter 271 27108 180

8 amt1 108 10753 71

9 swp4 111 11141 74

10 jd1 49 4881 32

11 tank011 348 34836 232

12 ancestor 64 6351 42

Table A.3: Coverage of sequenced populations.

Number Name Description

1 Date The date of collection
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2 Males The total number of males in hydrated sam-

ples

3 Hermaphrodites The total number of hermaphrodites in hy-

drated samples

4 Percent Males The fraction of observed individuals that

were male

5 Latitude Latitude of collection site

6 Longitude Longitude of collection site

7 Elevation Elevation of collection site

8 Surface area Surface area of collection site pool

9 Depth Depth of collection site pool

10 Volume Volume of collection site pool

11 S/V ratio Ratio of surface area to volume in collection

site pool

12 pH pH of tank after hydrating soil

13 Ap Average number of alleles per polymorphic

allozyme locus

14 He Expected number of heterozygotes based on

allozyme polymorphism

15 f Inbreeding coefficient, based on allozyme

data

16 Fairy shrimp Presence or absence of unclassified fairy

shrimp in hydrated soil

17 Cladocerans Presence or absence of cladocerans in hy-

drated soil
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18 Leptestheria Presence or absence of Leptestheria clam

shrimp in hydrated soil

19 Triops longicau-

datus

Presence or absence of Triops longicaudatus

tadpole shrimp in hydrated soil

20 Tadpole Presence or absence of unclassified tadpole

shrimp in hydrated soil

21 Streptocephalus

mackeni

Presence or absence of Streptocephalus

mackeni fairy shrimp in hydrated soil

22 Thamnocephalus

platyurus

Presence or absence of Thamnocephalus

platyurus fairy shrimp in hydrated soil

23 Eocyzicus Presence or absence of Eocyzicus clam

shrimp in hydrated soil

24 Tadpole shrimp

count

Number of tadpole shrimp observed in hy-

drated soil

Table A.4: A key of abbreviations for the measured environmental variables.

GO type GO term Description P-value FDR q-value

Function GO:0042302 structural constituent of

cuticle

2.44E-06 5.32E-03

Function GO:0008061 chitin binding 3.1E-06 3.38E-03

Function GO:0008010 structural constituent of

chitin-based larval cuticle

5.31E-06 3.87E-03

Function GO:0005214 structural constituent of

chitin-based cuticle

2.34E-05 1.28E-02

Function GO:0004180 carboxypeptidase activity 2.52E-05 1.1E-02
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Function GO:0004099 chitin deacetylase activity 8.21E-05 2.99E-02

Function GO:0016490 structural constituent of

peritrophic membrane

1.93E-04 6.03E-02

Function GO:0070026 nitric oxide binding 4.34E-04 1.19E-01

Function GO:0070025 carbon monoxide binding 4.34E-04 1.05E-01

Function GO:0019826 oxygen sensor activity 4.34E-04 9.49E-02

Function GO:0030594 neurotransmitter receptor

activity

8.06E-04 1.6E-01

Function GO:0008094 DNA-dependent ATPase

activity

9.34E-04 1.7E-01

Component GO:0000796 condensin complex 4.7E-06 4.54E-03

Component GO:0005576 extracellular region 1.77E-05 8.55E-03

Component GO:0044815 DNA packaging complex 2.36E-05 7.6E-03

Component GO:0008074 ”guanylate cyclase com-

plex

soluble” 4.34E-04

Component GO:0044421 extracellular region part 9.8E-04 1.89E-01

Process GO:0006022 aminoglycan metabolic

process

3.79E-05 2.12E-01

Process GO:1903046 meiotic cell cycle process 4.48E-05 1.25E-01

Process GO:0006030 chitin metabolic process 5.61E-05 1.05E-01

Process GO:1901071 glucosamine-containing

compound metabolic

process

1.08E-04 1.51E-01

Process GO:0006040 amino sugar metabolic

process

1.32E-04 1.47E-01

Process GO:1903047 mitotic cell cycle process 1.98E-04 1.84E-01
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Process GO:0040003 chitin-based cuticle devel-

opment

2.63E-04 2.1E-01

Process GO:0007366 periodic partitioning by

pair rule gene

3.96E-04 2.76E-01

Process GO:0006721 terpenoid metabolic pro-

cess

5.05E-04 3.13E-01

Process GO:0007512 adult heart development 6.52E-04 3.64E-01

Process GO:0007376 cephalic furrow formation 6.52E-04 3.31E-01

Process GO:0042335 cuticle development 9.47E-04 4.4E-01

Table A.5: GO terms for differentially expressed genes between males and
hermaphrodites.

GO type GO term Description p-value FDR q-value

Function GO:0051606 detection of stimulus 6.50E-05 3.63E-01

Function GO:0009582 detection of abiotic stim-

ulus

1.46E-04 4.07E-01

Function GO:0009581 detection of external stim-

ulus

1.46E-04 2.71E-01

Function GO:0007602 phototransduction 1.80E-04 2.52E-01

Function GO:0009583 detection of light stimulus 4.68E-04 5.23E-01

Table A.6: GO terms for genes with differential allele frequencies according to XTX.
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A.3.3 Chapter 3 supplementary figures

Figure A.30: a plot of cumulative genome coverage of the E. texana genome assembly
by contig. As the plot progresses from left to right, the contig lengths are added to the
cumulative coverage in order from largest to smallest. A high quality assembly should
achieve a high cumulative coverage with a small number of contigs.
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Figure A.31: An allele frequency histogram of all SNPs that passed coverage censoring,
both with and without the projection of rare SNPs. Unsurprisingly, extremely low
frequency SNPs are rare because of coverage limitations. The overall site frequency
spectrum approximately matches the site frequency spectrum expected by chance,
except when comparing low frequency SNPs.
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Figure A.32: Manhattan plot of SweeD CLR (composite likelihood ratio) values and al-
pha values. The CLR values (left) represent the ratio of the likelihood of non-neutrality
vs. neutrality, while the alpha values (right) represent the − log10(p) probability that
the region is neutral, based on its site frequency spectrum. It is evident that a large
portion of the genome appears to be non-neutral, but that is likely due to a lack of
rare alleles in the sample because of SNP ascertainment bias.

Figure A.33: Manhattan plots of −log10(p)-values from LFMM, in 100-SNP windows,
across the entire genome, for all examined environmental variable. The environmental
variable is printed below each plot.
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Figure A.34: A quantile-quantile plot of the pairwise FST of the WAL population
and the EE population versus the FST expected via an exponential distribution with
λ = 1/ ¯FST . Left: single-SNP values; Right: 25-SNP averages.

Figure A.35: A quantile-quantile plot of the pairwise FST of the LTER population and
the Tank011 population versus the FST expected via an exponential distribution with
λ = 1/ ¯FST . Left: single-SNP values; Right: 25-SNP averages.
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ctg7180000000570|quiver|quiver.g147.t1

ctg7180000000570|quiver|quiver.g148.t1

ctg7180000000570|quiver|quiver.g149.t1

ctg7180000000570|quiver|quiver.g150.t1

ctg7180000000570|quiver|quiver.g151.t1

ctg7180000000570|quiver|quiver.g152.t1

ctg7180000000570|quiver|quiver.g152.t2

ctg7180000000570|quiver|quiver.g152.t3

ctg7180000000570|quiver|quiver.g153.t1

ctg7180000000570|quiver|quiver.g154.t1

ctg7180000000570|quiver|quiver.g155.t1

ctg7180000000570|quiver|quiver.g156.t1

ctg7180000000570|quiver|quiver.g157.t1

ctg7180000000570|quiver|quiver.g158.t1

ctg7180000000570|quiver|quiver.g159.t1

ctg7180000000570|quiver|quiver.g159.t2

5.36 mb

5.37 mb

5.38 mb

5.39 mb

5.4 mb

5.41 mb

5.42 mb
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ctg7180000000808|quiver|quiver.g780.t1

ctg7180000000808|quiver|quiver.g780.t2

ctg7180000000808|quiver|quiver.g780.t3

ctg7180000000808|quiver|quiver.g780.t4

ctg7180000000808|quiver|quiver.g781.t1

ctg7180000000808|quiver|quiver.g782.t1

ctg7180000000808|quiver|quiver.g783.t1

ctg7180000000808|quiver|quiver.g783.t2

ctg7180000000808|quiver|quiver.g783.t3

ctg7180000000808|quiver|quiver.g783.t4

ctg7180000000808|quiver|quiver.g783.t5

ctg7180000000808|quiver|quiver.g784.t1

ctg7180000000808|quiver|quiver.g785.t1

ctg7180000000808|quiver|quiver.g786.t1

ctg7180000000808|quiver|quiver.g787.t1

ctg7180000000808|quiver|quiver.g788.t1

1.34 mb

1.35 mb

1.36 mb

1.37 mb

1.38 mb

1.39 mb

1.4 mb
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 2ctg7180000000570|quiver|quiver.g216.t1

ctg7180000000570|quiver|quiver.g216.t2

ctg7180000000570|quiver|quiver.g216.t3

ctg7180000000570|quiver|quiver.g217.t1

ctg7180000000570|quiver|quiver.g218.t1

ctg7180000000570|quiver|quiver.g219.t1

ctg7180000000570|quiver|quiver.g219.t2

ctg7180000000570|quiver|quiver.g220.t1

ctg7180000000570|quiver|quiver.g220.t2

ctg7180000000570|quiver|quiver.g220.t3

ctg7180000000570|quiver|quiver.g221.t1

ctg7180000000570|quiver|quiver.g222.t1

ctg7180000000570|quiver|quiver.g223.t1

8.36 mb

8.37 mb

8.38 mb

8.39 mb

8.4 mb

8.41 mb

8.42 mb
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ctg7180000000550|quiver|quiver.g1130.t1

ctg7180000000550|quiver|quiver.g1131.t1

ctg7180000000550|quiver|quiver.g1132.t1

ctg7180000000550|quiver|quiver.g1133.t1

ctg7180000000550|quiver|quiver.g1133.t2

ctg7180000000550|quiver|quiver.g1134.t1

ctg7180000000550|quiver|quiver.g1135.t1

ctg7180000000550|quiver|quiver.g1136.t1

ctg7180000000550|quiver|quiver.g1137.t1

ctg7180000000550|quiver|quiver.g1138.t1

ctg7180000000550|quiver|quiver.g1139.t1

ctg7180000000550|quiver|quiver.g1140.t1

ctg7180000000550|quiver|quiver.g1140.t2

ctg7180000000550|quiver|quiver.g1141.t1

ctg7180000000550|quiver|quiver.g1141.t2

ctg7180000000550|quiver|quiver.g1142.t1

6.05 mb

6.06 mb

6.07 mb

6.08 mb

6.09 mb

6.1 mb

6.11 mb
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Figure A.36: A set of manhattan plots showing LFMM z-values for a select set of loci
with high z-values. Note that regions with few data points tend to be areas of low
coverage.
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Figure A.37: A heatmap depicting the correlation coefficients between the measured
environmental variables, plus, dummy variables indicating the various populations.
Black indicates a high level of correlation, while white indicates a lack of correlation.
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Figure A.38: A set of line diagrams indicating the mapping of a set of markers onto
the putative sex chromosome using a variety of methods. The methods are as follow,
from top to bottom: 1. BLAST alignment results of the markers onto the genome
assembly contigs that we hypothesize make up the sex chromosome. 2. A map of
the sex chromosome using linkage mapping information from a hermaphrodite cross,
as performed in Weeks 2010. 3. A map of the sex chromosome using linkage map-
ping information from a male cross, as performed in Weeks 2010. The lengths of the
hermaphrodite linkage map here is to the assembly contig lengths according to the
genome-wide recombination rate calculated in this paper. Note that the total mapping
distance in hermaphrodites resembles the total physical distance in the assembly, but
the total mapping distance in males is much longer.
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