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Abstract

Leveraging the Power of a Planet Population:

Mass-Radius Relation, Host Star Multiplicity, and Composition Distribution of

Kepler ’s Sub-Neptunes

by

Angie K. Wolfgang

With the advent of large, dedicated planet hunting surveys, the search for ex-

trasolar planets has evolved into an effort to understand the properties and formation of

a planet population whose characteristics continue to surprise the provincial perspective

we’ve derived from our own Solar System. The Kepler Mission in particular has enabled

a large number of these studies, as it was designed to stare simultaneously at thousands

of stars for several years and its automated transit search pipeline enables fairly uni-

form detection criteria and characterizable completeness and false positive rates. With

the detection of nearly 5000 planet candidates, 80% of which are smaller than 4 R⊕,

Kepler has especially illuminated the unexpectedly vast sub-Neptune population. Such

a rich dataset provides an unprecedented opportunity for rigorous statistical study of

the physics of these planets that have no analogs in our Solar System.

Contributing to this endeavor, I present the statistical characterization of sev-

eral aspects of this population, including the comparison between Kepler ’s planet can-

didates and low-mass occurrence rates inferred from radial velocity detections, the re-

lationship between a sub-Neptune’s mass and its radius, the frequency of Kepler planet

ix



candidate host stars which have nearby visual companions as revealed by follow-up

high resolution imaging, and the distribution of gaseous mass fractions that these sub-

Neptunes could possess given a rock-plus-hydrogen composition. To do so, I have

used sophisticated statistical analyses such as Monte Carlo simulations and hierarchical

Bayesian modeling to tie theory more closely to observations and have acquired near

infrared laser guide star adaptive optics imaging of 196 Kepler Objects of Interest. I find

that even within this sub-Neptune population these planets are very diverse in nature:

there is intrinsic scatter in masses at a given radius, the planet host stars have visual

companions at a wide range of separations, and the composition distribution spans two

orders of magnitude, with a peak at 1% hydrogen and helium by mass. There is much

work to be done to explain this diversity quantitatively, and especially to tie these re-

sults to various planet formation scenarios; I have no doubt that many more surprises

await us.
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Chapter 1

Introduction

1.1 The Discovery of Extrasolar Planets

When I was born 28 years ago, humanity knew of 9 planets: Mercury, Venus,

Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and now dwarf planet Pluto. Today we

know of thousands (Akeson et al., 2013; Han et al., 2014). Thanks to these discoveries,

the last two decades have marked a revolution in our understanding of the “typical”

planet produced by the formation and evolution processes in protoplanetary disks, and

the implications are, simply put, astronomical. First, we do not really understand

how planets form: each new technology and detection technique that we apply to our

search reveals unexpected planets with properties that surprise us. Second, the sheer

number of extrasolar planets is astounding, fundamentally shifting our perspective on

our uniqueness and place in the Universe. And third, we have a lot yet to learn about

both these planets and the ones that have yet to be discovered. The field of exoplanetary

science is young, but its future is bright.

1



While the first observational evidence for the existence of extrasolar planets

rests with the super-Jupiters discovered by Campbell et al. (1988) and Latham et al.

(1989), our story of coming to expect the unexpected really began with PSR B1257+12

b, c, and d (Wolszczan & Frail, 1992). When precise timing of the pulsar revealed

periodic variations indicative of planetary mass bodies, we received our first hint of

the diversity of extrasolar planets. Soon afterward, 51 Peg b (Mayor & Queloz, 1995)

heralded the population of “hot Jupiters” whose tight orbits challenged planet formation

theories that had been developed to explain the architecture of our own Solar System.

Concerted efforts over the subsequent decade to push to smaller and lower-mass planets

yielded first GJ 876 d (Rivera et al., 2005) with the radial velocity detection method

and then eventually the transiting CoRoT-7b (Queloz et al., 2009; Léger et al., 2009)

and GJ 1214b (Charbonneau et al., 2009), the first examples of the super-Earths and

sub-Neptunes class of planets that is the subject of this thesis. Indeed, these discoveries

foreshadowed the momentous success of the Kepler Mission in unearthing yet another

unexpected planet population: the thousands of sub-Neptune-sized planets to which

there are no Solar System analogues (Mullally et al., 2015).

To understand the opportunities and limitations for further investigations of

these exoplanets, it is necessary to first overview the detection techniques that found

them. The large majority of the first decade of exoplanet discoveries were made by the

radial velocity (RV) technique: 120 of the 128 extrasolar planets discovered before 2005

were first detected this way (Han et al., 2014). Conceptually, this is very similar to

the well-established method of searching for close binary stars by detecting sinusoidal
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(or otherwise Keplerian) Doppler shifts that are due to the target star’s radial reflex

motion induced by its companion’s gravitational force. To push to lower masses, the

planet-hunting RV method uses echelle spectroscopy over a very large wavelength range

and the simultaneous observation of a wavelength calibrator to obtain < 3 m/s−1 RV

precision, below the ∼ 10− 50 m s−1 floor that had previously limited this technique to

detecting more massive companions (Butler et al., 1996); the use of a fiber on the front

end of the spectrograph also provides necessary stability to achieve high RV precisions

(Queloz et al., 1999; Pepe et al., 2000). After a sufficient observing time baseline has

been achieved to adequately cover enough of the orbital phase space, then the period,

minimum mass msin(i), and eccentricity of the planetary companion can be measured.

The transit detection technique, on the other hand, took several more years

to yield detections, beginning with HD 209458 b (Charbonneau et al., 2000). This

discovery justified existing efforts and instigated new work to develop serious transit

search surveys (i.e. Udalski et al., 2002; Bakos et al., 2002; Alonso et al., 2004; Pollacco

et al., 2006; Nutzman & Charbonneau, 2008; Borucki et al., 2010), which seek to find

periodic drops in the target star’s flux that indicate some object is blocking out a

portion of the host star’s light. Again, this is conceptually similar to the detection of

eclipsing binary stars, but improvements in photometric precision and observing duty

cycle and automation were needed to find the small (< 1% drop in flux), hour-long

signals among days’ worth of observations. When multiple transits are detected, they

enable measurement of the planetary radius (provided the stellar radius is well known),

the period of the orbit, and the resolution of the sin(i) degeneracy in any RV mass
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measurements that can be obtained, as the transit geometry places tight constraints on

the orbital inclination.

1.2 Unearthing the Sub-Neptune Population: the Kepler

Mission

The transit search detection technique had found a few dozen planets by the

time the Kepler Mission came online in mid-2009 (Han et al., 2014), setting the stage for

the truly astounding discoveries that Kepler would make. A 4-year search for potentially

habitable Earth-sized planets around solar-type stars (Borucki et al., 2010), Kepler

continuously monitored ∼ 200,000 stars on a 30-minute cadence in its > 100 deg2 field

of view (Koch et al., 2010) for periodic photometric dips that fit the shape and duration

of a planetary transit. The telescope’s ∼ 0.01′′ per hour pointing stability (Koch et al.,

2010) and 10-100 ppm photometric precision (Jenkins et al., 2010a) enabled, for the

first time in the short history of exoplanet searches, the detection of planets that are

Earth-sized or smaller. Furthermore, its Earth-trailing heliocentric orbit facilitated

continuous data acquisition on a single patch of sky without the diurnal or annual

cycles that generate aliases (Koch et al., 2010), enabling the detection of long-period

planets out to year-long orbits.

Due in part to these design specifications, Kepler has produced a veritable cor-

nucopia of planet detections. Over the 4-year lifetime of the mission, it discovered 4604

planet candidates (Exoplanet Archive [Akeson et al. 2013], cumulative table including

planet candidates from the latest search [DR24] through all quarters of data [Q1-17]).
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3730 of these are smaller than the size of Neptune (RNep = 4 R⊕), as displayed in Fig-

ure 1.1, and 865 of those are “confirmed” with very high statistical likelihood of being

bona-fide planets (see §1.2.2 for a discussion of this). With a productivity unrivaled

by nearly every other planet search effort, Kepler has thrown the door wide open on

a population of planets that two decades ago we had no way of knowing existed: the

super-Earths and sub-Neptunes — those exoplanets with 1 R⊕< Rpl < 4 R⊕— which

have no analogs in our Solar System.
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Figure 1.1: Periods and radii of Kepler planet candidates with Rpl < 6 R⊕, from the
latest data release (Q1-17, DR24); those with Rpl < 4 R⊕ constitute the “sub-Neptune”
population that provides the observational foundation of this thesis. The points are color
coded according to the size of the host star, as reported on the NASA Exoplanet Archive;
stars which fall below or above the color scale are colored red or purple, respectively.
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This unprecedented sample size has enabled a plethora of statistical studies

of these planets’ properties, as overviewed in §1.3. However, the development of this

planet catalog is only possible with a significant amount of automated processing, exten-

sive human inspection of the resulting transit signals, and community-driven follow-up

efforts encompassing many hours of ground-based telescope time. A detailed under-

standing, and subsequent treatment, of the complexity of the Kepler data is therefore

absolutely necessary before any statistical study that uses this catalog can be sure its

conclusions reflect the properties of the underlying population and not the detection

biases or selection effects which have shaped the catalog as currently reported. We out-

line this processing and the discuss the need for observational follow-up in the following

subsections.

1.2.1 From Photometry to Planets: Constructing the Catalog

To transform the thousands of pixel photon counts transmitted to Earth each

month by the Kepler spacecraft into a list of possible exoplanets is an enormous un-

dertaking. Much of the initial processing is done by an extensive automated pipeline

developed over many years by the Kepler Mission Science Operations Center (SOC)

and which experienced continued evolution throughout the Kepler mission to optimize

the detection of true planetary transits. This software is outlined in Jenkins et al.

(2010b); it includes modules that calibrate the raw images from the Kepler space-

craft (Quintana et al., 2010), produce raw photometry from these images (Twicken

et al., 2010b), detrend the raw photometric time series to remove systematic instrumen-

tal effects (Twicken et al., 2010a), search for transit-like signals using a wavelet-based
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adaptive-matched filter (Jenkins et al., 2010c), and then fit a transit model to further

characterize the signal (Wu et al., 2010).

The human effort continues where this automated pipeline ends: with the

list of Threshold Crossing Events (TCEs), the periodic transit-like signals which pass

the pipeline’s filter. The number of TCEs can be substantial, on the order of 104

(Tenenbaum et al., 2013, 2014; Seader et al., 2015), and a large number are produced

by astrophysical variability or instrumental noise (> 80% of Q1-8 TCEs; Burke et al.

2014). To identify these cases, the TCE list undergoes a “triage” stage where the Data

Validation (DV) summary pages produced by the last module in the SOC pipeline are

glanced over by the Threshold Crossing Event Review Team (TCERT)1, of which I am

a member. If the shape of the signal has the characteristic U- or V-shape of a planetary

transit or stellar eclipse, it is made into a Kepler Object of Interest (KOI).

The next stage of human inspection involves determining whether a KOI is

either a false positive (FP) or a planetary candidate (PC), a process referred to as

“dispositioning”. This step is necessary because there are a number of astrophysical

scenarios that can produce photometric signals that are qualitatively similar to planetary

transits. It can be difficult for automated detection algorithms to reliably and accurately

distinguish between large mass ratio eclipsing binaries and planetary transits as well

as other less common scenarios, yet they can be fairly quickly categorized by a human

considering various aspects of the data simultaneously with complex, physics-based logic

that was difficult to anticipate and preemptively automate at the start of the mission.

1The DV summary for every TCE produced since the Q1-12 pipeline run is available at the Exoplanet
Archive.

7



The data and metrics used in this dispositioning process are explained in detail

in Batalha et al. (2010a), Batalha et al. (2013), Burke et al. (2014), Rowe et al. (2015),

and Mullally et al. (2015). In general, dispositioning involves at least two TCERT mem-

bers reviewing the DV summaries in detail. These documents contain several plots and

quantitative metrics that are helpful for identifying deep secondary eclipses indicative of

stellar binaries, other out-of-transit photometric signatures, per-quarter variation in the

photometry suggesting contamination from other sources, and statistically significant

centroid offsets which place the location of the transit signal on another star. More

recent versions of the vetting reports2 used for TCERT dispositioning include detailed

pixel-level difference images to assess the quality of and systematics in the centroid off-

set measurement, measures of the red noise in the light curve to quantify the false alarm

rate3, and light curves from alternate detrending algorithms to test the robustness of

the transit signal. If the two TCERT members disagree in their dispositions, then the

decision is made by a third or fourth “master” TCERT member. The resulting list

of PCs is compared to itself and the list of known eclipsing binaries to identify recur-

ring periods and epochs which indicate signal contamination on the CCD (see Coughlin

et al. 2014 for details); if a match is identified, it is labeled as a FP. The KOIs and

their dispositions are then uploaded to the Exoplanet Archive as one of the various KOI

catalogs.

While the hope is that incorporating human decisions in this process increases

2These reports are also available on the Exoplanet Archive.
3As opposed to the false positive rate, which is the proportion of transit-like signals produced by

any astrophysical eclipsing scenario other than a planet transiting the specified target star, the false
alarm rate is the proportion of transit-like signals that are produced by the coincidental alignment of
several-hour-long negative excursions in the data due to red noise; this is particularly a problem for the
lowest SNR transit detections.
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the quality of the planet candidate catalog, in practice there is some variability in

decision-making from person to person (see Mullally et al. 2015 for an analysis of this

effect). To improve the reproducibility of this process and reduce the significant man-

hours involved, the Kepler team has begun to transition to automated vetting of the

TCEs using several complex decision trees which are heavily based on the experience of

TCERT. This automated vetting was implemented for the Q1-17, DR24 KOI catalog,

the latest KOI catalog as of the time of this writing, with spot-checks provided by the

TCERT team to tweak parameter values which increase the reliability and completeness

of the resulting catalog.

1.2.2 Crucial Considerations: Survey Reliability and Completeness

Two key characteristics of the planet candidate/false positive dispositioning

process overviewed in §1.2.1 are that it only considers data obtained by the Kepler

spacecraft and that KOIs are considered “innocent until proven guilty”. This inclusive

approach therefore includes many of the more ambiguous planet candidates which can

be statistically determined as false positives with additional modeling4, or proven to not

be planetary with additional follow-up data. False positive scenarios that are especially

difficult to rule out from the Kepler data alone include background eclipsing binaries

where chance alignments between a target star and a distant EB produce eclipse depths

that are diluted by the foreground target to ∼ 0.01%, hierarchical triple systems with

one or more eclipsing components (Gautier et al., 2010; Morton & Johnson, 2011b;

4In particular, a large transit depth or a V-shaped transit by itself is not considered sufficient evidence
for a false positive disposition.

9



Morton, 2012), and even eccentric stellar binaries oriented such that only the secondary

eclipse occurs (Santerne et al., 2013).

A number of studies have analyzed the effect of this inclusive, Kepler data-only

approach on the reliability of the PC catalog. Morton & Johnson (2011b) found that

overall the false positive probability (FPP) of KOIs labeled as planetary candidates are

low (∼ 5%); however, this FPP does increase to ∼ 10% for PCs with larger transit

depths and increases with decreasing galactic latitude and apparent magnitude of the

host star. Given the dependence of stellar multiplicity on the mass of the primary, one

would expect that the FPP also increases as the stellar mass increases; indeed for giant

star hosts, the FPP is above 50% (Sliski & Kipping, 2014). The analysis of Fressin et al.

(2013) supports the finding of a low FPP for the smallest planets with a more detailed

treatment of the unknown planet occurrence rate, finding FPP above 15% for PCs with

radii > 4R⊕ as opposed to FPP ∼ 8% for the smaller Super-Earths.

Given these studies, the sub-Neptune-sized planets around dwarf stars that we

consider here are the least likely of all the Kepler planet candidates to be false positives.

This is especially true if those planets exist in multiple planet systems, as the probability

that any one target star would be associated with multiple astrophysical false positive

signals is particularly low (Lissauer et al., 2012, 2014). Rowe et al. (2014) used this fact

to statistically validate over 700 Kepler PCs as true planets, most of which were sub-

Neptune-sized due to the observed preference for these small planets to occur in multiple

planet systems. Therefore, we proceed with our analyses without a FPP correction, as

the statistical samples of Kepler planets that we use here are reliable at the 90-95%
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level and therefore, in a population-wide sense, reliability is not a high-priority concern

for sub-Neptunes.

A more significant problem is the the converse issue of completeness: how many

planets exist in nature which Kepler did not detect, and how this sensitivity varies as

a function of planet radius, period, stellar radius, etc. This detection bias has a direct

effect on the observed planet candidate catalog: it causes the distributions of observed

planet properties to substantially differ from those in the underlying population. If

not corrected for, this survey incompleteness can therefore suggest incorrect conclusions

about the planet population. As explained below, detection bias is especially problem-

atic for the smallest planets in the catalog, the Earth- and super-Earth-sized planets,

and so we take special care to account for this effect in this research.

Kepler ’s incompleteness arises from a number of different effects. The most

obvious is arguably the transit probability: because a planet is more likely to transit its

host star when the radius of the star is larger and the line-of-sight planet-star distance is

smaller, Kepler will naturally detect more short period planets, planets around smaller

stars, and, to second order, higher eccentricity planets (Burke, 2008; Kipping, 2014) .

This effect must be corrected if the planet property of interest is expected to correlate

with stellar type, planet period, or planet eccentricity.

In addition, Kepler is not able to detect every transiting planet in its field

of view, as the stellar noise profile varies strongly from star to star. Given the range

of noise levels across the target star sample, this leads to detecting a lower fraction

of existing transiting planets at smaller radii. It is also more difficult to detect longer
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period planets, as the more transits that occur, the more data that can be binned to beat

down the noise. Fortunately, the Combined Differential Photometric Precision (CDPP)

calculated by the Kepler pipeline (Christiansen et al., 2012), provides an estimate of

the stellar noise seen by the pipeline and can be used to estimate the detectability of

individual planets. Either implementing a forward model which includes this per-star,

per-planet detection threshold as was done in Chapter 2 (published as Wolfgang &

Laughlin 2012) or limiting the considered target star sample to the least noisy stars

as was done in Chapter 5 (published as Wolfgang & Lopez 2015) can diminish both of

these effects.

Finally, Batalha et al. (2013) showed that the Kepler pipeline outlined above

detects fewer low signal-to-noise (SNR) transit-like signals than expected even when the

stellar noise detection threshold is accounted for, pointing to yet another detection bias

against small, long-period planets for which the SNR is particularly low. This pipeline

incompleteness has only been recently realized to have a significant effect, and work to

characterize it via transit injection is ongoing. First results presented in Christiansen

et al. (2013) indicate that the later modules of the pipeline do not systematically perturb

the signal strength of individual events in an individual quarter of data, although larger

perturbations are measured for lower signal-to-noise events. On the other hand, studies

over multiple quarters shows that the transit search module culls the lower signal-

to-noise events to a significant degree, due in large part to metrics that have been

implemented to discard false alarm detections (for some discussion of the inclusion

and effect of the “veto” metrics used in the pipeline, see both Tenenbaum et al. 2014
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and Seader et al. 2015). This aggressive rejection results in significant incompleteness

(< 95%) for transits with a phased and folded SNR < 15 (Seader et al., 2015). Without

detailed transit injection results at the time of the work of this thesis, we could not fully

correct for this effect, but instead offer qualitative comments about how results may

change when it is quantitatively accounted for.

1.2.3 Follow-Up Observations of Kepler Planet Candidates

Following up Kepler Objects of Interest (KOIs) with a variety of ground-based

observations is useful in several respects. First, the properties of the Kepler target stars

were characterized via photometry at the start of the mission (Brown et al., 2011), and

so spectroscopic follow-up can help constrain host stellar properties to greater precision5.

This is especially important for studies which involve the Kepler radius distribution,

such as that in Chapter 5: because Kepler actually measures the depth of the transit,

and this depth is the ratio of the planetary to stellar surface areas, the precision of

the planet’s radius measurement is directly proportional to our knowledge of the host

star’s radius. As Huber et al. (2014) find in their collation of the most up-to-date Kepler

target star observations and their subsequent uniform modeling of the stellar properties,

spectroscopy can improve stellar radius constraints by up to a factor of 10.

Second, obtaining more information about these KOIs using other techniques

and instruments is a straightforward approach to false positive identification that com-

plements the Kepler data-only studies detailed in §1.2.2. There are numerous facets to

5The most precise stellar properties are offered by asteroseismology, which uses the Kepler data
itself; however, only a few dozen of the thousands of KOIs exhibit the stellar oscillations needed for this
technique to work (Huber et al., 2013).
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this effort to identify bona-fide planets among the Kepler candidates, many of which

are listed in Gautier et al. (2010). The spectroscopy and imaging involved in this ef-

fort, along with multi-band in-transit photometry that can identify stellar blends via

wavelength-dependent transit depths (Désert et al., 2015), are useful even when they

don’t immediately rule out the KOI as a false positive. In the case of a non-detection,

which supports the KOI’s planetary nature, the observations can be incorporated into

statistical planet validation software such as BLENDER (Torres et al., 2011), PASTIS

(Dı́az et al., 2014; Santerne et al., 2015), or VALFAST (Morton et al., 2014). These

codes calculate the likelihood of the observations as well as the shape of the transit

signal given various astrophysical false positive scenarios, and outputs the posteriori

probability that the signal is due to a planetary transit. If this probability is above

some threshold, the KOI is “validated” and considered a true planet.

The Kepler follow-up program can be summarized as the acquisition of two

different kinds of observations: medium to high resolution spectroscopy, and high res-

olution imaging. The former is usually used to distinguish some of the astrophysical

false positive scenarios that involve configurations of multiple stars, either through the

measurement of large stellar radial velocity offsets over time, or for a smaller subset

of these configurations, the identification of double-peaked lines or shifted spectral line

bisectors (Gautier et al., 2010). Indeed, such radial velocity follow-up has proved invalu-

able for identifying a large number of false positives among the largest planets: Santerne

et al. (2012) finds that 35% of the deepest, shortest period PC signals have masses too

high for planetary bodies. Unfortunately, however, Kepler ’s target stars consist pri-

14



marily of 14th and 15th magnitude G dwarfs (Batalha et al., 2010b), and so obtaining

high-precision RV measurements proves prohibitively expensive for a majority of these

planet candidates. As described in Chapters 2, 3, and 5, the faintness of the average

Kepler target also proves problematic for detailed characterization of the planets’ com-

positions. While this reality of the Kepler sample motivated the bright-star emphasis of

K2 and the future TESS mission, it also motivates every chapter of this thesis research:

both the adaptive optics imaging of Kepler host stars, and the implementation of more

sophisticated statistical techniques to characterize the natures of these sub-Neptunes.

The need for high resolution imaging follow-up of Kepler targets arises from

the large spatial coverage of an individual pixel on the photometer’s CCD. Due to

the engineering trade-offs between the spacecraft-to-ground data transfer bandwidth

and the number of target stars that needed to be continuously observed to reach pro-

jected science goals, Kepler ’s pixels were designed to be 4 across (Koch et al., 2010).

While well motivated, this decision makes precise centroid positions difficult to mea-

sure; coupled with errors in the Kepler pixel response function (Bryson et al., 2010),

this results in a median 3σ upper limit of ∼ 0.5′′ for the detection of statistically sig-

nificant quarter-averaged centroids that are offset from the target star, with significant

variability from target to target (standard deviation: 0.9′′ ; Bryson et al. 2013). Even

excluding the presence of additional sources outside a radius of 2′′ , a resolution that

is effortlessly achieved with adaptive optics imaging on even modestly sized telescopes,

is extremely helpful (Morton & Johnson, 2011b; Morton, 2012). Finally, measuring

the relative brightnesses of nearby sources that could have contaminated the Kepler
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lightcurve enables a correction to the diluted observed transit depth, thereby providing

more accurate planetary parameters. Because AO imaging a particularly efficient use

of observational resources given that only a few minutes on a ground-based telescope

is required per target (versus several to many nights of high resolution spectroscopy to

calculate radial velocities), obtaining these data offer a high-impact opportunity for the

exoplanet community to contribute to this effort, as I have done in Chapter 4.

1.3 From Discovery to Characterization of a Population

The past decade has seen an extraordinary increase in our discovery of short-

period extrasolar planets, due to the transit and radial velocity (RV) detection methods

overviewed in §1.1, and especially to the Kepler Mission described in §1.2. Now with

over 1500 confirmed planets and 3000 additional Kepler planet candidates (Akeson et al.,

2013; Han et al., 2014), the state of the art has progressed to the point where statistical

studies of entire planet populations are realistically feasible. The field of exoplanetary

science is truly transitioning from an era of discovery to an era of characterization —

the effort to study the properties and explain the origins of the planet populations that

we have found.

The discovery of Kepler ’s unexpected sub-Neptune-sized population in particu-

lar poses many questions about the fundamental properties of planets, such as the range

of compositions that planet formation produces, how often they occur in multiple-planet

systems, and what physics drives differences in their orbital architectures. The answers

have profound implications for how these planets formed and evolved from their birth
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conditions, and enable us to place our Solar System into an appropriate cosmic context.

For example, these planets’ compositions have been the subject of much scrutiny (e.g.

Rogers et al., 2011; Valencia et al., 2013; Lopez & Fortney, 2014; Howe et al., 2014),

as their sizes span the gap between the rocky and non-rocky planets of our Solar Sys-

tem. However, the vast majority of these studies have been focused on constraining

such physical characteristics for individual planets. Given that over 3500 sub-Neptune-

sized planet candidates have been discovered to date (Mullally et al., 2015), we must

maximally leverage the statistical power of the entire population to answer compelling

questions about these planets and their origins. A crucial part of this endeavor is there-

fore the recognition of the wide range of statistical techniques that have been developed

for such population studies and the careful choice of those that are most appropriate to

our purposes.

Historically, radial velocity (RV) surveys provided the first opportunity to

study the characteristics of an emerging population of planets. Tabachnik & Tremaine

(2002) and Cumming et al. (2008) used a maximum likelihood approach with Poisson

statistics to infer the joint mass-period distribution of detected RV planets, while nec-

essarily incorporating RV detection thresholds to account for incompleteness (known as

“truncation” in the statistical literature). More recently, Howard et al. (2010), Witten-

myer et al. (2011), and Mayor et al. (2011) extended the analysis of survey incomplete-

ness to smaller masses, using a simple efficiency correction to obtain binned estimates of

the occurrence rate of RV planets. The eccentricity distribution of RV planets were stud-

ied by Jurić & Tremaine (2008) and Ford & Rasio (2008), among others, who performed
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K-S tests to compare the eccentricity distributions of their planet-planet scattering sim-

ulations to various sub-populations of RV planets to illuminate their origins. Hogg et al.

(2010) detailed a hierarchical Bayesian analysis of the RV eccentricity distribution, pro-

viding the first exoplanet-specific example of the framework that we use in Chapters 3

and 5 of this thesis.

These population studies expanded in scope and feasibility with the advent of

the Kepler Mission. Among them are analyses of the occurrence rate of exoplanets at

different sizes and periods (Catanzarite & Shao, 2011; Youdin, 2011; Howard et al., 2012;

Dong & Zhu, 2013; Fressin et al., 2013; Dressing & Charbonneau, 2013; Petigura et al.,

2013; Morton & Swift, 2014; Foreman-Mackey et al., 2014), the consistency between RV

and transit surveys (Wolfgang & Laughlin, 2012; Wright et al., 2012; Figueira et al.,

2012), the Kepler eccentricity distribution (Moorhead et al., 2011; Kane et al., 2012;

Wu & Lithwick, 2013), and the frequency and architecture of multiple-planet systems

(Latham et al., 2011; Lissauer et al., 2011b; Tremaine & Dong, 2012; Fabrycky et al.,

2014). The relationship between the radii and masses for sub-Neptune planets has also

received attention (Wolfgang & Laughlin, 2012; Wu & Lithwick, 2013; Weiss & Marcy,

2014), with the aim of illuminating the compositions of these planets Rogers (2015);

Wolfgang & Lopez (2015).

This thesis marks a significant contribution to this sub-Neptune population

characterization effort, consisting of two refereed publications (Wolfgang & Laughlin

2012; Wolfgang & Lopez 2015; Chapters 2 and 5, respectively), another article that has

been submitted (Chapter 3), and a sample of 200 near-infrared adaptive optics images of
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Kepler planet hosts, one of the largest such samples at those wavelengths (Chapter 4).

My focus has mainly been on topics relevant to the compositions of these sub-Neptune-

sized planets: Chapter 2 describes a forward model that I constructed to calculate the

number of planets drawn from the RV sub-Neptune population that would have been

detectable by Kepler , a crucial step of which is consideration of the relationship between

a sub-Neptune’s mass and its radius; Chapter 3 constrains this mass-radius relationship

directly with newly available transiting planet mass measurements and with the sophis-

ticated statistical framework of hierarchical Bayesian modeling (HBM); and Chapter 5

implements theoretical internal structure models directly into this HBM framework to

derive a composition distribution for these sub-Neptunes. However, the potential for

characterization of planet populations extends far beyond that of compositions, and I

will be pursing topics relevant to the origins of these sub-Neptunes for my postdoctorate

work, as I detail in Chapter 6. This thesis establishes the foundation for this research,

but there is still much to be done, especially with respect to tying planet population

formation and evolution theory directly to the sub-Neptune detections and observations.

Fortunately, the field of statistics provides us with the means to bridge this gap; it is

with this eye on the most appropriate statistical tools to enable the theory-observation

comparison that I endeavor to better understand these planets and how they came to

be.
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Part I

Data-Driven Characterization of

Sub-Neptune-Sized Planets
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Chapter 2

Cross-Survey Comparison:

Kepler and HARPS

2.1 Introduction

As outlined in §1.3, the numerous planet discoveries made by transit and radial

velocity surveys have enabled a large number of statistical surveys which provide insight

into extrasolar planetary origins. A substantial challenge, however, still lies in synthe-

sizing the results from different surveys into a cohesive picture of the Galactic planetary

population, as each technique provides different information about the planets’ physical

characteristics and is subject to different selection biases.

These cross-survey considerations are especially important when one tries to

compare the results of Doppler velocity surveys with the results of photometric transit

surveys. Not only do these two detection methods generally sample different regions
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of the Galaxy, but they also implement different observing strategies due to the intrin-

sically low geometric probability of a planetary transit and to the strict spectroscopic

requirements needed to achieve 1 m/s precision in RV (see for example Rupprecht et al.,

2004; Borucki et al., 2010; Koch et al., 2010; Batalha et al., 2010b). The result of these

fundamental differences is that most RV-detected planets don’t transit, and that most

transiting planets suffer from a dearth of high-precision Doppler follow-up measure-

ments. All is not lost, however: if these biases are properly accounted for, then one can

utilize the global properties of the two samples to draw conclusions about the Galactic

distribution of planetary properties.

A particularly valuable outcome of the transit-RV comparison originates from

the distinction between measuring a planet’s radius via a transit and measuring its

mass via RV observations. When a Doppler-characterized planet is also observed to

transit, these two quantities enable the range of possible compositions to be modeled

even in the absence of any other observational constraints, through individual mass-

to-radius relationships (M-Rs) calculated for a variety of interior planetary structures

(e.g. Fortney et al., 2007; Valencia et al., 2007a; Seager et al., 2007; Rogers et al., 2011).

However, because planets that are well-characterized by both methods are rare, one must

apply population-wide M-Rs to make some headway in understanding the compositional

distribution of planet populations. The use of these broad-brush M-Rs necessitates the

assumption that transit and RV surveys adequately sample the full range and frequency

of naturally occurring planetary compositions, once the populations are corrected for

selection bias.
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Before these population-wide M-Rs can be properly interpreted, it is essential

to understand how they are fundamentally different from the M-Rs that are calculated

using structural models of individual planets. On the most basic level, the transforma-

tion of a population of planetary masses to radii requires that a range of compositions

be included a priori. While it is certainly true that inferring an individual planet’s

composition from its mass and radius is a degenerate problem and results in a range

of possible part-iron, part-silicate, part-gas compositions, the bulk density of a planet,

ρ(M,R), is nonetheless typically well known from observations. This information is ab-

sent, however, when one compares a transiting planet population to a Doppler-detected

population and the two samples have very few planets in common. As a result, bulk

density is essentially a free parameter in transit-RV comparisons, and some assumptions

about it, or about the compositions which correspond to it, must be made.

A key issue for the transit-RV comparison is how one chooses to parameterize

planetary composition over the entire population. The simplest case would be if all

planets had the same composition, as this enables the planets’ masses to be straight-

forwardly converted to radii. However, Howard et al. (2012) have already shown that

this very simple M-R fails to match the Kepler planet candidates when a power law

is used for the planetary mass distribution, and so we consider more flexible and more

physically motivated M-Rs in this chapter.

The plethora of ongoing planet searches enables the Galactic planetary census

to be illuminated in a number of different ways. Two of the most influential surveys

to date are the Kepler Mission, which found 1,235 transiting planet candidates in its
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first four months of data (Borucki et al., 2011), and the Geneva High Accuracy Ra-

dial velocity Planet Search (HARPS), which has discovered over 85 planets during the

course of observing hundreds of the brightest stars in the solar neighborhood (Ségransan

et al., 2011). Both of these surveys are in a position to unearth the population of low-

mass short-period planets and to provide statistics about their relative frequency. The

initial results hint suggestively at the prevalence of truly Earth-like planets and are

of particular interest for planet formation theories that strive to explain or predict the

mass-distance distribution of planet populations (Ida & Lin, 2004; Kornet & Wolf, 2006;

Schlaufman et al., 2009; Mordasini et al., 2009; Ida & Lin, 2010; Alibert et al., 2011).

Alarmingly, the low-mass planet occurrence rates measured by the two surveys

appear to conflict with one another. Systematic statistical analyses of the short-period

Kepler planet candidates have yielded 0.130±0.008 planets per solar-type star (Howard

et al., 2012) or 0.19 planets per solar-type star (Youdin, 2011), with the planets having

2 ≤ Rpl ≤ 4 R⊕ and P ≤ 50 days. On the other hand, preliminary results from the

HARPS planet search (Lovis et al., 2009; Mayor et al., 2009; Udry, 2010) indicate that

30 - 50% of Sun-like stars host sub-Neptune mass planets within 50-day orbits 1 — a

planet frequency that is substantially higher than the Kepler occurrence rate. Although

these two occurrence rates do provide somewhat different information, as discussed in

§2.5.1, the following order-of-magnitude argument readily gives a sense for the apparent

discrepancy in terms of the total number of planets that Kepler would have detected in

its first four months of data.

1After our manuscript was submitted, Mayor et al. (2011) published more detailed statistical results
from the HARPS survey. Their data do not appear to be in conflict with the analysis of this investigation.
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Given a 40% occurrence rate and ∼ 150,000 Kepler target stars, there are

60,000 potentially detectable planets in Kepler ’s field of view, assuming that each host

star harbors only one planet. Not all of these planets will transit, however, as the

required star-planet-observer alignment is fairly improbable given random inclinations

along the line of sight. For planets in orbits of 50 days or less, this geometrical transit

probability works out to be 1− 15%; taking a 5% transit probability (10-day orbit) as

a benchmark, the number of sub-Neptune-mass planets that Kepler would have been

able to detect is thus approximately 3,000. If we map the Kepler planet candidate radii

to mass via the simple relation M/M⊕ = (R/R⊕)2.06 (Lissauer et al., 2011b), then we

see that about 900 of Kepler ’s planet candidates fall in the M < MNep range. Thus,

the HARPS occurrence rate appears to overestimate the number of planets that Kepler

would have detected by a factor of 3.

Order-of-magnitude arguments can be misleading, however, so in this chapter

we take care to fully account for details of the RV-transit comparison that may affect this

result, including factors such as the enhanced geometrical transit probability of elliptical

orbits, the shallower transits of more inclined orbits due to stellar limb darkening,

target star selection biases, and Kepler ’s detection incompleteness. In conducting the

comparison, we primarily investigate the effect that two different M-Rs have on the

total number of planets that could have been detected by Kepler after four months,

assuming the HARPS occurrence rate. In doing so, we identify the parameter values

for two different mass-to-radius relationships that produce agreement between the total

numbers of short-period low-mass planets observed by both RV and transit searches, and
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we examine how these M-Rs influence the interpretation of RV and transit occurrence

rates.

The layout of this chapter is as follows. In §5.2 we briefly summarize the

Kepler data set and discuss the use of planet candidates instead of confirmed planets

for our analysis. In §2.3 we describe our simulations and the Kepler planet candidate

sample we use in our comparison. In §2.4 we present our results on the total number of

planets that Kepler would have been able to detect given the HARPS occurrence rate,

and in §5.5 we discuss the implications of these results for our current understanding of

exoplanet populations.

2.2 The Kepler Data Set

On February 1, 2011 Kepler released its second quarter (Q2) data, which

was soon followed by the announcement of 1,235 transiting planet candidates (Borucki

et al., 2011). It is necessary to note, however, that the vast majority of these planets are

unconfirmed and thus maintain “planet candidate” status. The current consensus is that

these candidates can be catalogued as true planets only if they exhibit transit timing

variations or are detected through the radial velocity method, as other astrophysical

events such as binary blends with background stars, eclipsing hierarchical triples with

small separations, and certain types of stellar variability can mimic planetary transits

(Gautier et al., 2010; Morton & Johnson, 2011b). Unfortunately, however, the majority

of Kepler ’s target stars have V > 11 and thus are faint for the purpose of Doppler

follow-up, making these additional RV measurements expensive and leaving the vast
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majority of the Kepler candidates unconfirmed.

To compensate for these observational limitations, the Kepler team has devel-

oped an extensive vetting process to eliminate as many of these false planetary transit

signatures as possible (Gautier et al., 2010; Borucki et al., 2011). Inevitably, however,

a small but non-negligible fraction of false positives are expected to persist in the list

of planet candidates. Borucki et al. (2011) estimates that this false positive fraction

is as high as 20%, while a detailed Bayesian analysis conducted by Morton & Johnson

(2011b) finds that the transit depth-independent false alarm probability is < 5% over

the entire field of view, given stars with Kepler magnitude Kp ≤ 16, a 30-50% planet

occurrence prior, and the assumption that follow-up astrometry can identify binaries at

any Kp with separations > 2′′. When this last assumption is relaxed, as is necessary

for the planet candidates reported by Borucki et al. (2011), the false alarm probability

increases with decreasing transit depth and can exceed 30% for Kp > 15. In proceeding

with our statistical analysis of the Kepler planet candidate population, we thus bear

in mind that the total number of true Kepler planets is likely ∼ 5% lower than that

reported by Borucki et al. (2011) for Neptune-sized planets and as much as 30% lower

for Earth-sized planets around dim stars.

2.3 The Transit-RV Comparison: Methods

Comparing the HARPS occurrence rate with Kepler ’s planet candidates in-

volves several steps. First, we require that the aggregate properties of our initial planet

population are consistent with the cumulative characteristics of the low-mass population
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detected by the HARPS survey (§2.3.1). To compare these planets to Kepler ’s public

data set, we map our initial distribution of planet masses to radii via a population-

wide mass-to-radius relationship (M-R; §2.3.2). Each simulated planet is subsequently

matched to a Kepler target star (§2.3.3) and its light curve is computed based on ana-

lytic transit formulae (Mandel & Agol, 2002). We then apply Kepler ’s detection criteria

(Batalha et al., 2010b) to assess whether or not that planet would have been detected

by the end of the second quarter (§2.3.4). Finally, for a range of parameter sets, we

tabulate the total number of planets that Kepler would detect in its first four months

of data (Ndetect) when the underlying planet population conforms to the HARPS oc-

currence rate, and compare this number to the total number of analogous planets that

Kepler actually does detect.

2.3.1 Simulations of the Radial Velocity Population

Other than stating that 30 - 50% of Sun-like stars host sub-Neptune-mass

planets with P ≤ 50 days, the HARPS overall occurrence rate does not address specific

details of the planetary mass-period distribution. Accordingly, we must select a general,

easily parameterized distribution that is able to recover the HARPS overall occurrence

rate. Power laws meet these criteria, so we follow common practice (Cumming et al.,

2008; Howard et al., 2010, 2012; Youdin, 2011) and adopt:

N(M)dM = NtotCMM
αdM, (2.1)
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where N(M)dM is the number of planets that have a mass between M and M + dM ,

Ntot is the total number of planets in the sample, CM is a normalization constant, and

α is the mass power law index. Similarly, we take for the period distribution:

N(P )dP = NtotCPP
βdP. (2.2)

We use the HARPS overall occurrence rate to determine Ntot, CM , and CP

for our simulated populations. Ntot is simply the planet occurrence rate times the

total number of stars that Kepler is observing, assuming that each star which harbors

a planet harbors no more than that one planet—the bare minimum suggested by the

prediction. Given that Kepler observed over 110,000 G and K dwarfs during its second

quarter (Q2) of data (Kepler Data Release 7, Multimission Archive at STScI), this

leads to Ntot ∼ 55000 for a 50% occurrence rate. CM and CP are determined by setting

minimum and maximum values for mass and period in our simulations. The maximum

period of 50 days is explicitly given by the stated HARPS occurrence rate, as are the

limits on planet mass if we define a sub-Neptune planet to have 1 ≤ M ≤ 17 M⊕ ∼

MNep. It is important to emphasize that we are only considering low planetary masses

here; Jupiter-mass planets are not considered in our simulations.

The minimum value on period, while not expressly indicated in the HARPS

low-mass occurrence rate, can be reasonably chosen from existing trends. Both the

census of Kepler planet candidates (Borucki et al., 2011) and the population of planets

discovered through the radial velocity method (Wright et al., 2011) suggest that there

is a dearth of planets with P < 2 days that is not due to the selection biases of the
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different detection methods. Howard et al. (2012) fit a power-law distribution with an

exponential cutoff at short periods to the Kepler planet candidates and found that the

transitional period varies from 2 to 7 days for planets with 2 ≤ R ≤ 6 R⊕. To simplify

our input distributions, we ignore the exponential cutoff and set Pmin = 2 days, keeping

in mind that any deviation from a power law for 2 ≤ P ≤ 7 days may impact our ability

to fit Kepler ’s observed distribution.

A rigorous interpretation of the HARPS statistic would include the unknown

sin(i) factor on the observed masses. We note, however, that the distribution of incli-

nations for the observed radial velocity planets is poorly understood and that spherical

isotropy cannot be assumed due to the detection biases inherent in the radial velocity

technique. Although some insight may be gleaned from statistical analysis such as that

in Ho & Turner (2011) or from the few planets which exhibit the Rossiter-McLaughlin

Effect (Schlaufman, 2010), in this analysis we take our mass limits as the bounds on the

true mass of our simulated planets, effectively ignoring any refinements stemming from

the sin(i) effect.

Simulation Parameters

To account for the ambiguity in the RV mass and period distributions, we

require that the power-law indices α and β serve as free parameters in our simulations:

we allow α to vary from -2.5 to 0 and β to vary from -0.5 to 0.5, both in increments of

0.1. We model eccentricity, e, longitude of periastron, ω, and inclination, i, as uniform

distributions, randomly drawing e from 0 ≤ e ≤ 0.2, ω from 0 ≤ ω < 2π, and i from

an isotropic sphere. Taken with P , these orbital elements serve to determine which
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planets transit, given their geometrical transit probability. We choose to include non-

zero eccentricities because elliptical orbits can enhance the probability of a transit, but

we set the upper bound at e = 0.2 with the expectation that many short-period planets

will have experienced a significant degree of tidal circularization. This bound is broadly

consistent with the observed eccentricity distribution of confirmed planets in our mass

and period range, which shows that a vast majority (∼ 80%) of low-mass planets with

P < 50 days have e <∼ 0.2 (Wright et al., 2011).

Two more free parameters are introduced for the second M-R we consider in

this chapter (§2.3.2), as we allow the fraction of rocky planets in the population to vary

as a linear function of mass. These fractions are then used to randomly assign each

planet either a gaseous or a rocky composition. In addition, we randomly allocate each

planet to a Kepler target star, as discussed in §2.3.3.

2.3.2 Population-wide Mass-to-Radius Relationships

A crucial consideration for the transit-RV comparison is the population-wide

M-R used to map an RV planet’s mass to a transiting planet’s radius. Howard et al.

(2012) have shown that applying one bulk density to an entire planet population fails

to match the Kepler candidates, so we begin our investigation with more flexible and

physically motivated M-Rs, while taking care to minimize the number of degrees of

freedom. In particular, we consider two population-wide M-Rs in this chapter: a power-

law fit to measured planetary masses and radii, and a multi-valued parameterization

that relaxes the single-valued assumption involved in fitting a power law to data.
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Single-Valued M-R

Lissauer et al. (2011b) use the following power-law fit to Earth and Saturn as

the mass-radius relation for Kepler ’s planet candidates:

M

M⊕
=

(
R

R⊕

)2.06

, (2.3)

which tacitly assumes that extrasolar planets resemble those in our Solar System. Ex-

perience has shown that such an approach requires caution, so as a check we derive a

comparable M-R for the five transiting extrasolar planets with 1 ≤ M ≤ 17 M⊕ and

2 ≤ P ≤ 50 days (Wright et al., 2011): Kepler-11 b, c, d, e, and f (Lissauer et al.,

2011a). Including the error on both mass and radius, we employ angular bisector least

squares regression to find the following best fit:

R

R⊕
= 0.95+0.66

−0.26

(
M

M⊕

)0.66±0.17
, (2.4)

which is consistent with the inverse of Equation 2.3 within 1σ. We note, however,

that the M-R computed directly from the dually-detected, low-mass extrasolar planets

has large error bars and is poorly constrained, so we proceed cautiously with R/R⊕ =

(M/M⊕)0.48 as implied by Equation 2.3.

Multi-Valued M-R

While the Lissauer et al. (2011b) M-R implicitly incorporates compositional

variation from planet to planet, it does not allow for the possibility of a multi-valued M-
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R. This is potentially a severe shortcoming, as a more complex M-R has appeared to be

necessary from the outset of observational constraints on low-mass planet compositions:

the first two such planets with measured radii and masses, CoRoT-7 b (Queloz et al.,

2009; Léger et al., 2009) and GJ 1214 b (Charbonneau et al., 2009), yielded very different

densities (6 g cm−3 and 2 g cm−3 respectively), despite having similar masses (4.9 M⊕

and 6.5 M⊕).

With this observational evidence in mind, we believe that the key to reconciling

the Kepler and HARPS occurrence rates may be a multi-valued low-mass M-R, where

more than one planetary radius is allowed at each planetary mass. Our parameterization

assumes that the simulated planets can have either a significant gaseous composition

(Neptune analogs; an extension of the gas giants to lower masses) or a rocky composition

(Earth analogs; an extension of the terrestrial planets to higher masses), and that the

admixture of these two compositions varies as a linear function of mass for 1 ≤M ≤ 17

M⊕. This admixture is quantified by the fraction of rocky planets in the population,

frocky(M): if, for example, frocky(1) = 1.0 and frocky(17) = 0.0, then frocky(8) = 0.5,

meaning that all 1 M⊕ planets would be rocky, all 17 M⊕ planets would be gaseous,

and the 8 M⊕ planets would be evenly divided between the two compositions. In our

simulations we allow frocky(1) and frocky(17) to vary between 0 and 1 in increments of

0.1, giving two more free parameters in our simulations (we also allow the same α that

is present for the single-valued M-R to vary between −2.0 and −0.6 in increments of

0.1, and the same β to vary between 0.2 and −0.2 in increments of 0.1).

For the Earth analogs in this multi-valued M-R we use the Solar System’s
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terrestrial planet population-wide mass-to-radius relationship: R/R⊕ = (M/M⊕)0.33.

We emphasize that this rocky M-R is not just a re-expression of the individual mass-

to-radius relationship for a constant-density sphere; instead, this population-wide M-R

was derived by fitting a power law to all of the Solar System’s inner planets, much like

the R ∝M0.48 relationship was derived above.

For the Neptune analogs we use the M-R curves calculated by Rogers et al.

(2011). These authors model the structure of low-mass planets with substantial gaseous

envelopes by invoking a core accretion formation history and then self-consistently in-

corporating the effect of planetary equilibrium temperature, Teq, across the range of

orbital periods and stellar fluxes that we consider here. They find, however, that the

M-R curves of constant gaseous envelope mass fraction, Menv, are remarkably insensi-

tive to planet mass above ∼ 7 M⊕. Because no single Menv provides the dynamic range

needed to explain the diversity of radii that Kepler observes, we must allow for variation

in envelope fraction to construct a population-wide M-R that can reasonably reproduce

the observed radius range. Noting that the M-R curves are roughly equally spaced in

R by approximately logarithmic bins in Menv, we randomly choose an envelope mass

fraction from a log-uniform distribution between 10−5 and 10−1. Finally, using Figure

4 of Rogers et al. (2011), we interpolate our simulated planets’ radii as a function of M ,

Menv, and Teq.

As Rogers et al. (2011) illustrates, varying Menv allows planets with masses

as small as 2 M⊕ to have a radius as large as 7 R⊕, which enables planets less massive

than Neptune to fall within the 2 ≤ R ≤ 6 R⊕ range that Kepler has found to be well
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populated (Borucki et al., 2011; Howard et al., 2012). However, these relatively low-

mass, large-radius planets are particularly susceptible to atmospheric mass loss, and so

these planets may not actually be able to hold onto their gaseous envelopes, depending

on the amount of irradiation they receive from their host star. Following the discussion

in Rogers et al. (2011), we incorporate the possibility of mass loss in our population-wide

M-R via the following timescale argument.

As illustrated by Lammer et al. (2003), one must consider the effects of X-ray

and extreme ultraviolet (XUV) irradiation on a planet’s thermal structure in order to

realistically treat atmospheric mass loss. In the regime where the amount of energy

incident on the planet determines the degree of atmospheric escape, this mass loss is

parameterized by (Lecavelier Des Etangs, 2007; Valencia et al., 2010; Rogers et al., 2011)

Ṁ = −
επFXUVR

2
XUVRp

GMpKtide
, (2.5)

where FXUV is the XUV flux incident on the planet from the host star; ε is the fraction

of incident XUV energy that is actually absorbed by the atmospheric particles; RXUV

is the planet radius at which the XUV flux is absorbed; Rp is the radius of the planet

as calculated from planetary interior structure models; Mp is the mass of the planet;

and Ktide is a tidal correction factor of order unity for planets with R <∼ RNep and

P > 2 days. Unfortunately, ε is largely unknown, so at best Equation 2.5 provides an

order-of-magnitude estimate for Ṁ . We follow Rogers et al. (2011) in setting ε = 0.1

and FXUV = FXUV,� = 4.6 × 10−3 W m−2 (Ribas et al., 2005); we scale FXUV by

the equilibrium temperature of the planet, which depends on the radius of the host
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star, the effective temperature of the host star, and the semimajor axis of the planet’s

orbit. From the mass loss timescales plotted by Rogers et al. (2011) we estimate that

R2
XUV ∼ 10R2

p for these short-period low-mass planets. With Ṁ thus determined, the

atmospheric mass loss timescale is

tloss = −
Menvelope

Ṁ
. (2.6)

If tloss < 1 Gyr, we consider the planet to have completely lost its gaseous envelope, and

we take the radius of the planet to be the radius of its 50% rock, 50% ice core (Fortney

et al., 2007).

2.3.3 Star Selection

Once we apply an M-R to the simulated RV population, we randomly allocate

planets to specific Kepler target stars. This one-to-one matching allows us to sidestep

the concern that the selection biases exhibited by different detection methods will sig-

nificantly influence computed planet occurrence rates (Howard et al., 2012), and we

can directly compare our simulated population with Kepler ’s planet candidates. Ac-

cordingly, we adopt the list of 165,000 long-cadence Q2 Kepler target stars to initiate

our star selection. We begin by extracting the photometrically-derived effective tem-

perature, Teff , the surface gravity, log(g), the radius, Rstar, and the Kepler -bandpass

apparent magnitude, Kp, from the each star’s Q2 FITS header. These data originate

from the Kepler Input Catalog (KIC; Kepler Mission Team, 2009), which has known

errors of ±200 K on Teff and ±0.4 dex on log(g) (Brown et al., 2011). Because these
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two parameters are used to calculate Rstar, the errors on the planet candidates’ radii

can be significant; in §5.5 we discuss the possible effect of these errors on our results.

In their analysis of Kepler ’s planet candidates, Howard et al. (2012) compute

Kepler ’s observed occurrence rates from a heavily vetted list of target stars, whose

total noise in one quarter of data enables detection of a R ≥ 2 R⊕ planet with SNR

≥ 10. This approach prompts them to drop all stars with Kp ≥ 15 and all planets with

R < 2 R⊕ due to concerns about sample incompleteness. By contrast, our approach

retains the entire Kepler target star sample, with only the log(g) cut discussed below.

Because we individually simulate each planet’s light curve to accurately determine its

detectability (§2.3.4) and then ask how many planets Kepler would have seen in its first

four months of data if the HARPS occurrence rate is true (§2.4), we naturally account for

the detection incompleteness in Kepler ’s first four months of data; this incompleteness

is displayed graphically in Figure 2.1 as the smallest-radius planet that each star could

have detected by the end of Q2. Thus, our simulation procedure permits us to include

dimmer stars and smaller planets with radii down to 1 R⊕, which allows us to draw

conclusions with a larger sample size and improved statistics.

The only severe cut we make to the 165,000 available Q2 target stars is in

log(g). We restrict potential planet-hosting stars to those with log(g) > 4.0 to minimize

contamination from subgiants, as the KIC’s surface gravities are poorly contrained above

Teff ∼ 5400 K (Brown et al., 2011). The resulting list consists of 131,000 stars (Figure

2.1), the vast majority (> 110, 000) of which are G and K dwarfs. Nonetheless, a small

proportion of subgiants and giants, whose radii may be underestimated in the KIC by

37



Figure 2.1: Left: apparent magnitude, Kp, and effective temperature, Teff , from the
Kepler Input Catalog (KIC) for the Kepler target stars included in our simulations
(§2.3.3). All of these stars have KIC log(g) > 4.0. Right: number of log(g) > 4.0 Kepler
target stars in each apparent magnitude bin. The color represents the smallest planet
around each target star that Kepler could have detected in its first four months of data,
assuming an orbit with P = 20 days and e = 0. With the same orbital parameters for
each size planet, this minimum detectable radius is thus determined by the radius of the
star, Rstar, and by the star’s total photometric noise on a three-hour timescale, CDPP3

(§2.3.4). In the scatterplot, note the general trend of minimum detectable radius with
both Kp and Teff , which correlate with CDPP3 and Rstar, respectively. The histogram
to the right more clearly illustrates the trend of increasing minimum detectable radius
with increasing Kp (due to increasing CDPP3). However, it is important to note that
there do exist dim target stars around which Kepler could have already detected a 1
to 1.5 R⊕ planet. This is a result of the trend of decreasing minimum radius with
decreasing Rstar and the fact that low-mass stars exist in every Kp bin.

as much as a factor of 2 (Brown et al., 2011), likely remains in our target star sample.

Without knowledge about the degree of subgiant contamination, we cannot accurately
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account for their statistical effect in our results, although we expect that this effect will

be very small based on the low numbers of possibly misclassified evolved stars found by

Basri et al. (2011).

2.3.4 Detectability of Simulated Planets

To pinpoint the simulated planets that Kepler would have identified as planet

candidates after four months of data collection, we first compute analytic light curves

(Mandel & Agol, 2002) for the simulated planets that transit according to their geo-

metric transit probability (Seagroves et al., 2003). These light curves incorporate the

planets’ eccentricity and inclination as well as the Kepler -bandpass limb darkening co-

efficients that are calculated by Claret & Bloemen (2011) for a large range of stellar

effective temperatures, surface gravities, and metallicities. Using a 30-minute cadence

over 132 days to match Kepler ’s long-cadence Q0 - Q2 datasets, we determine the tran-

sit depth, duration, and the total number of transit events directly from the simulated

light curves.

As described in Batalha et al. (2010b), Kepler ’s detectability criterion is set

such that less than one false positive planet detection over its 3.5 year mission would

be expected to result from purely statistical fluctuations in stellar photon counts. This

requirement gives a 7.1σ threshold for a transit’s statistical significance when the light

curve is folded and binned. The detectability of a planet therefore depends on both

Rpl/Rstar and a number of stellar parameters and instrumental properties which affect

the total noise (Batalha et al., 2010b; Jenkins et al., 2010a). These systematic errors are

difficult to assess without intimate knowledge of Kepler ’s performance, so we use the
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noise calculated directly by the Kepler data reduction pipeline, the Combined Differen-

tial Photometric Precision (CDPP, Christiansen et al. 2012), to reproduce as accurately

as possible the planet population that Kepler could have identified by the end of Q2.

Defined as the root mean square of stellar photometric noise on transit timescales,

the CDPP provides the most accurate estimate of the noise from each target star

that would interfere with a transiting planet’s detectability. A wavelet-based, adap-

tive matched filter is applied to the corrected Kepler light curves in the Transiting

Planet Search section of the Science Processing Pipeline (Jenkins et al., 2010c) to pro-

duce 3-hour, 6-hour, and 12-hour CDPP estimates, which are then used to calculate the

statistical significance of a possible transit event. Incorporating Kepler ’s own noise met-

ric in our simulations automatically folds in its detection biases and accounts for sample

incompleteness below 2 R⊕; therefore, we can extend our analysis down to Earth-sized

planets without reservations about hidden selection effects.

Our simulations only consider planets with 2 ≤ P ≤ 50 days, so the 3-hour

CDPP estimate is the most relevant for our purposes. Matching each planet to a Kepler

target star also matches it to a CDPP value, so we scale this noise estimate by the transit

duration and the total number of transit events observed during Q0 - Q2 (Batalha et al.,

2010b; Howard et al., 2012). Our detectability criterion therefore becomes:

SNR =
δ
√
Ntr

Ndur
6

CDPP3
> 7.1, (2.7)

where δ ∝ (Rpl/Rstar)
2 is the maximum transit depth (in ppm) identified from the

analytic light curves, CDPP3 is the Q2 3-hour Combined Differential Photometric Pre-
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cision (in ppm) associated with the planet’s host star, Ntr is the number of observed

transits in four months, and Ndur is the number of data points acquired per transit on

a 30-minute cadence. We note that δ is proportional but not equal to (Rpl/Rstar)
2 be-

cause we include a range of possible transit-producing inclinations and self-consistently

incorporate the effect of limb darkening based on the host star’s Teff and log(g).

Figure 2.1 illustrates our detectability criterion graphically, with the color scale

showing the smallest planet for each log(g) > 4.0 target star that Kepler could have

detected after four months of data collection, assuming an orbit with P = 20 days and

e = 0. As expected, this minimum detectable Rpl trends with both Kp and Teff , which

correlate with CDPP and Rstar, respectively. When the orbit is not held constant, an

individual planet’s detectability is also determined by its orbital period, as given by Ntr

in Equation 2.7.

2.3.5 Comparison with Total Number of True Kepler Planets

To fairly conduct the transit-RV comparison, we also need to filter the list

of 1,235 Kepler planet candidates to match the limits we impose on our simulated

population. Accordingly, we retain only those candidates with 1 ≤ R < 4 R⊕ ∼ RNep

and 2 ≤ P ≤ 50 days orbiting stars with Kp ≤ 16. We also impose a cut on the

candidates in multiple-planet systems, including only the first planet listed by the Kepler

Science Processing Pipeline in this mass and period range; in most cases, this is the

planet labeled “.01”. This cut conforms to our assumption of one planet per host star

and reduces the total number of Kepler planets in our radius and period range from

797 to 631, a difference of 166 (∼ 20%).
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Of course, we must also account for the probability of false positives among

Kepler ’s planet candidates. As stated in §5.2, the total number of true Kepler planets

is likely ∼ 5% lower than that reported by Borucki et al. (2011) for Neptune-sized

planets and may be as much as 30% lower for Earth-sized planets around the dimmest

stars (Morton & Johnson, 2011b). Applying the 5% false positive rate across the board

reduces the total number of actual planets in our filtered list to 599; when we take into

account the effect of planet size and stellar apparent magnitude as suggested by Figure

8 of Morton & Johnson (2011b), the 339 planets with R < 3 R⊕ and Kp > 14 contain

about 50 additional false positives. Thus, in the worst case scenario we should compare

the total number of detectable simulated planets to ∼ 550 rather than 631. Additional

studies such as Désert et al. (2015), however, suggest that the Kepler false positive rate

is even lower than 5%, and thus ∼ 600 - 630 is the appropriate number to compare to.

Considering these results, we adopt 631 for straightforwardness. In doing so, we are

also assuming that the completeness of the Kepler Science Processing Pipeline (Jenkins

et al., 2010b) is high, meaning that Kepler has detected nearly all of the planets it

should have been able to detect.
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Figure 2.2: Period vs. radius for a single realization of the simulated planet population
produced by the R = M0.48 mass-to-radius relationship with α = −1.7, β = 0.0, and
a 40% overall occurrence rate. The Kepler planet candidates are marked with the
black circles, and the detectable simulated planets are marked with the red plus signs.
There are 562 simulated planets in this realization; the total number of Kepler planet
candidates here is 631.

2.4 The Transit-RV Comparison: Results

2.4.1 Single-Valued M-R

The above procedure gives us the period-radius distribution that Kepler would

detect in its first four months of data when the underlying planet population conforms to

the HARPS occurrence rate. An example of our simulations’ output is given in Figure

2.2, which represents one realization of the single-valued mass-to-radius relationship
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(§2.3.2) computed at a 40% overall occurrence rate with the parameter values α = −1.7

and β = 0.0 (corresponding to the mass power law index and the period power law

index, respectively: §2.3.1).

Our lack of detailed knowledge about the HARPS data set necessitates that

we allow for some freedom in the population’s initial mass and period distributions.

Incorporating this freedom has a significant effect on the total number of planets that

Kepler should have been able to detect in its first four months of data, even as we hold

the HARPS overall occurrence rate constant at 40%. This effect is quantified in Figure

2.3, which summarizes the result of 100 realizations of the single-valued M-R for all

sets of parameter values that we consider (−2.5 ≤ α ≤ −1.0 and −0.5 ≤ β ≤ 0.5).

The color denotes the total number of detectable (§2.3.4) simulated planets (Ndetect)

with 1 ≤ R ≤ 3.9 R⊕ = (17 M⊕)0.48 and 2 ≤ P ≤ 50 days, averaged over all N=100

realizations with a standard deviation of roughly 30; the parameter sets with a red color

roughly produce the total number of analogous Kepler planet candidates in our filtered

list (631).

In an effort to identify which of these parameter sets best fit Kepler ’s planet

candidates, we employed the two-sample two-dimensional Kolmogorov-Smirnov (2-D

K-S) test (Fasano & Franceschini, 1987). We chose to use the 2-D K-S statistic because

it avoids binning data, unlike the more common χ2 test, and thus maximally preserves

information contained in the planets’ radius-period distributions. When we perform

parametric Monte Carlo bootstrap resampling of this statistic to compute confidence

levels, we find that all of these parameter sets are ruled out at the P < 0.001 level after
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1000 realizations, with the closest parameter set, α = −1.7 and β = 0.0, producing a K-S

statistic that is on average 10.8 standard deviations from the mean of its bootstrapped

K-S distribution. Thus, the single-valued M-R with our simplified parameterization

of the planet population is insufficient to reproduce the details of the Kepler planet

candidate period-radius distributions. Given that our primary focus is on the total

number of planets detectable by Kepler, however, we note that there is a locus of

parameter sets between −2.3 ≤ α ≤ −1.0 and −0.5 ≤ β ≤ 0.5 which can produce

Ndetect consistent with the total number of analogous Kepler planet candidates. We

also find that Ndetect varies linearly with the occurrence rate, and so this locus will

shift up and down in parameter space accordingly: a 50% occurrence rate, for example,

would produce consistent Ndetect for −2.5 ≤ α ≤ −1.3 and −0.5 ≤ β ≤ 0.5 (the purple

and maroon regions in Figure 2.3).
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Figure 2.3: The total number of detectable (§2.3.4) simulated planets (Ndetect) produced
by the R = M0.48 mass-to-radius relationship (§2.3.2) for a 40% overall occurrence rate
in the 2 ≤ P ≤ 50 days and 1 ≤ R < 4 R⊕ range; this total number is averaged over 100
of the realizations illustrated in Figure 2.2, for each parameter set, and has a standard
deviation of roughly 30. The axes denote the period power law index (β) and mass
power law index (α), which serve as free parameters in our simulations (§2.3.1). The
parameter sets with a darker red color roughly produce the total number of analogous
Kepler planet candidates in our filtered list (631).
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Figure 2.4: Period vs. radius for a single realization of the simulated planet popula-
tion produced by the multi-valued mass-to-radius relationship with α = −0.9, β = 0.0,
frocky(1) = 1.0, frocky(17) = 0.2, and a 40% overall occurrence rate. The black circles
denote the Kepler planet candidates; the red plus signs denote the detectable simulated
planets with a rocky composition; the green diamonds denote the detectable simu-
lated planets with a gaseous composition; and the blue asterisks denote the detectable
simulated planets with a half-rock, half-ice composition, which could be produced by
significant mass loss from the gaseous planets. There are 666 simulated planets in this
realization; the total number of Kepler planet candidates here is 631.

2.4.2 Multi-Valued M-R

Results analogous to those in §2.4.1 but for our multi-valued M-R are presented

in Figures 2.4 and 2.5. An example of our simulations’ output is given in Figure 2.4,

which represents one realization of the multi-valued mass-to-radius relationship (§2.3.2)
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computed at a 40% overall occurrence rate with the parameter values α = −0.9, β = 0.0,

frocky(1) = 1.0, and frocky(17) = 0.2 (corresponding to the mass power law index, the

period power law index, the fraction of all 1 M⊕ planets that have a rocky composition,

and the fraction of all 17 M⊕ planets with a rocky composition, respectively: §2.3.2).

As with the single-value M-R, Ndetect depends sensitively on the free param-

eters in our simulations. The result of 100 realizations of this multi-valued M-R is

summarized in Figure 2.5 for a subset of the parameter values that we consider. Again,

the color shows the total number of detectable simulated planets (Ndetect) averaged over

100 realizations for a 40% overall occurrence rate, with a standard deviation of roughly

30; the parameter sets with a red color roughly produce the total number of analogous

Kepler planet candidates in our filtered list (631).

When we apply the 2-D K-S test to these populations, we again find that all

of these parameter sets are ruled out at the P < 0.001 level after 1000 realizations,

with the closest parameter set, α = −0.9, β = 0.0, frocky(1) = 1.0, frocky(17) = 0.2,

producing a K-S statistic that is on average 7.7 standard deviations from the mean

of its bootstrapped K-S distribution. Thus, the multi-valued M-R with our simplified

parameterization of the planet population is still insufficient to reproduce the details

of the Kepler planet candidate period-radius distributions; the implications of this are

discussed in §5.5. As we are primarily concerned with the total number of planets that

Kepler would have observed, however, it suffices to note that there are a number of

parameter sets at realistic values of frocky(1), and frocky(17) which can produce Ndetect

consistent with the total number of analogous Kepler planet candidates.
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Figure 2.5: The total number of detectable (§2.3.4) simulated planets (Ndetect) with
2 ≤ P ≤ 50 days and 1 ≤ R < 4 R⊕ produced by the multi-valued mass-to-radius
relationship (§2.3.2) for a 40% overall occurrence rate; this total number is averaged
over 100 of the realizations illustrated in Figure 2.4, for each parameter set, and has
a standard deviation of roughly 30. The axes denote the fraction of all 1 M⊕ planets
in the simulated planet population that have a rocky composition, frocky(1), and the
fraction of all 17 M⊕ planets that have a rocky composition, frocky(17); each panel
corresponds to a different value of the mass power law index (α) at a constant period
power law index of β = 0.0. The parameter sets with a red color roughly produce the
total number of analogous Kepler planet candidates in our filtered list (631).
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2.5 Discussion

One of the most important questions driving the search for extrasolar planets is

the frequency with which planets of different sizes, masses, and semi-major axes occur in

our Galaxy. The frequency of super-Earths and sub-Neptunes is particularly interesting

for the hints it gives on the frequency of Earth-like planets. Interestingly, the two surveys

that have detected the most super-Earths/sub-Neptunes to date appear to disagree on

the overall occurrence rate of these kinds of planets: the first four months of data from

the Kepler Mission yielded 0.130± 0.008 (Howard et al., 2012) or 0.19 (Youdin, 2011)

planets with 2 ≤ Rpl ≤ 4 R⊕ and P ≤ 50 days per solar-type star, while preliminary

results from the HARPS planet search (Lovis et al., 2009; Mayor et al., 2009; Udry,

2010) indicated that 30 - 50% of Sun-like stars host sub-Neptune mass planets within

50-day orbits. While these two occurrence rates are not immediately comparable to

each other (see §2.5.1), the correction needed to make their definitions coincide actually

causes the occurrence rates to become even more discrepant. With this in mind, we

undertook a Monte Carlo study to investigate physically intuitive explanations for this

apparent disagreement, in terms of the total number of planets that Kepler would have

detected in its first four months of data given the HARPS occurrence rate (Ndetect).

To this end, we note that Kepler and HARPS measure fundamentally differ-

ent properties of the detected planets: transit surveys measure radius, while RV surveys

measure mass with an unknown inclination factor. Because super-Earth/sub-Neptune

planets lie at the detection threshold of both surveys, it seems feasible that these two

surveys could actually be observing two different populations. Given RV surveys’ detec-
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tion bias towards more massive planets and transit surveys’ bias towards larger planets,

HARPS could be detecting dense super-Earths while Kepler could be detecting volatile-

rich sub-Neptunes.

Ideally, assumptions about the bulk densities present in a population of plan-

ets would be informed by observations of planets that are detected by both methods.

Unfortunately, contemporary observations of sub-Neptune-mass planets could not yet

provide robust constraints on this issue: Kepler-11 b - f (Lissauer et al., 2011a), whose

mass measurements have significant errors (± 30 - 100%), were the only confirmed

transiting planets (as of the submission of the paper corresponding to this chapter,

Wolfgang & Laughlin 2012) that fell securely in the mass and period ranges considered

here (1 ≤M ≤ 17 M⊕ and 2 ≤ P ≤ 50 days). With the underlying planet population’s

bulk density distribution so poorly constrained, we felt it necessary to investigate how

different density distributions, via different population-wide mass-to-radius relationships

(M-Rs), affect the total number of planets that can be detected by either HARPS or

Kepler, with an eye on how this informs the interpretation of their occurrence rates.

We first investigated the power-law M-R observed in the Solar System, R/R⊕ =

(M/M⊕)0.48, the same one used in Lissauer et al. (2011b) to test the long-term stability

of multiple planetary systems. This single-valued M-R automatically incorporates the

mass-density trend between the smaller terrestrial planets and the larger ice giants in

our Solar System. When applied to the HARPS super-Earth occurrence rate, this M-R

produces a locus of parameter space where a planet population could produce the total

number of Kepler planet candidates observed in its first four months of data (see Figure
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2.3). However, the overall fit of this M-R is poor (§2.4.1), and so we turned to an

M-R that does not assume our Solar System provides sufficient insight into the possible

densities of planets that have no Solar System analogs. In particular, we investigate

the effect of allowing a range of densities to occur at each planet mass through our

multi-valued M-R (§2.3.2).

Hints of a multi-valued M-R have been present since the first two dually-

detected “Super-Earth”s were measured to have similar masses but significantly different

densities (CoRoT-7 b: 5.6 g/cm3 at 4.8±0.8 M⊕, Queloz et al., 2009, Léger et al., 2009;

GJ 1214 b: 1.9 g/cm3 at 6.55± 0.98 M⊕, Charbonneau et al., 2009). These hints have

continued to emerge with more recent detections: most of the Kepler-11 planets have

low bulk densities (0.5 - 3.1 g/cm3; Lissauer et al., 2011a), while Kepler-10 b and 55

Cnc e yield densities of 9 g/cm3 (Batalha et al., 2011) and 5 - 6 g/cm3 (Winn et al.,

2011; Demory et al., 2011), respectively. A popular explanation for this compositional

bimodality is that the high-density planets, which so far are all observed on extremely

close-in orbits (P < 2 days), constitute the special case of low-mass gas planets that

have had their atmospheres completely stripped, leaving only their solid cores behind

(Schaefer & Fegley, 2009; Jackson et al., 2010; Batalha et al., 2011). Instead, we propose

that these high-density planets might constitute a more general short-period — and thus

more easily detectable — case of an entirely different class of exoplanets: true super-

Earths that formed with a primarily refractory composition. This new interpretation has

significant implications for planet formation (i.e. Hansen & Murray, 2012), suggesting

that there may be multiple modes of formation for planets in this mass range (Léger
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et al., 2011).

The multi-valued M-R we present here (§2.3.2) adopts two compositions: rocky

planets that follow the same R/R⊕ = (M/M⊕)0.33 relationship as the Solar System’s

inner planets, and gaseous planets that follow the M-R curves presented in Rogers et al.

(2011), while a prescription for atmospheric mass loss introduces a third intermediate

composition. An admixture of these compositions over the entire 1 M⊕ ≤ M ≤ 17

M⊕ mass range is able to account for the density variation currently observed among

low-mass planets. We emphasize that the order-of-magnitude mass loss prescription we

appeal to here does not attempt to model the details of atmospheric escape; we use

it only as a way to account for the evolution of a gaseous planet’s radius in the low-

mass, large-radius regime. Interestingly, the presence of intermediate-density planets in

a period-radius parameter space unoccupied by rocky or gaseous planets suggests that

an intermediate-density planet population, however its constituent planets were formed,

is another key component of the transit-RV comparison.

For our multi-valued M-R, we have placed particular emphasis on parameteriz-

ing the relative contributions from the rocky and gaseous compositions in as physically

intuitive a way as possible, while taking care to minimize the number of free parameters.

As a result, we adopt a parameterization that flows naturally from the coexistence of

rocky super-Earths and gaseous sub-Neptunes and involves only two additional degrees

of freedom: (1) the fraction of all 1 M⊕ planets in the simulated planet population that

have a rocky composition, frocky(1), and (2) the fraction of all 17 M⊕ planets that have

a gaseous composition, 1−frocky(17), with frocky varying linearly between the bounding
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masses.

As seen in Figure 2.5, this multi-valued M-R also produces agreement between

the total number of Kepler planet candidates and the total number of detectable planets

simulated from the HARPS occurrence rate, albeit for slightly different mass and period

distributions than the single-valued M-R (§2.4.2). Thus, constraints from RV surveys

on the super-Earth mass distribution can be combined with this investigation to rule

out M-Rs that do not fully describe the observed planet population in a global sense.

When the details of the simulated period-radius distributions are compared

against Kepler ’s, however, we see that the multi-valued M-R still does not sufficiently

describe Kepler ’s planet candidates (§2.4.2). This is not unexpected considering how

many variables affect the final compositions and orbital configurations of planets around

completely different stars in different environments. Given the simplifying assumptions

we applied to the input period and mass distributions (§2.3.1) and to our prescription for

atmospheric mass loss (§2.3.2), we would have been surprised if our simple 4-parameter

model was able to fully explain the diversity of low-mass planets Kepler has discovered.

It is likely that other population-wide M-Rs which do take these variables into account

could improve upon our transit-RV fit; however, it remains unclear whether these M-

Rs would be parameterizable in a reasonable number of degrees of freedom. In this

investigation, we have chosen simplicity over absolute best fits in an effort to study M-Rs

that are readily accessible and physically intuitive; correspondingly, we show only that,

for certain parameter sets, both M-Rs can explain the apparent discrepancy between

the total number of planets that Kepler has observed and the HARPS overall super-
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Earth occurrence rate, not the details of the Kepler planet candidate period-radius

distribution.

2.5.1 Caveats

Before one concludes that certain parameter sets illustrated in Figures 2.3

and 2.5 can resolve the occurrence rate discrepancy between Kepler and HARPS, a

number of other factors must be considered. First, by using the Kepler planet candidates

directly, we have implicitly assumed that the Kepler Science Processing Pipeline is very

close to 100% complete. The completeness of the transit search algorithm is a separate

issue from the detection completeness that we account for in §2.3.4: a 100% pipeline

completeness assumes that every planet which Kepler was able to detect in its first

four months of data was actually detected. If Kepler ’s list of planet candidates is not

complete in this sense, then the number we compare Ndetect to would rise, pushing the

parameter sets which produce agreement to those with an orange or yellow color.

Also of concern is our use of the true planet mass, M , rather than the ob-

servationally determined Msin(i), the quantity that RV surveys like HARPS actually

measure. Our choice arose from acknowledging that the inclination distribution of ob-

served radial velocity planets is poorly understood and that spherical isotropy cannot be

assumed due to the detection biases inherent in the radial velocity technique. However,

this assumption produces a systematic effect on Ndetect that we must consider. Because

assuming M instead of Msin(i) underestimates the observed planets’ true masses, we

include planets that would otherwise fall outside of our considered mass range, resulting

in a true Ndetect that is less than the values we report here. Although we cannot estimate
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the magnitude of this effect because we do not know the distribution of i, it qualitatively

opposes the effect that the false positive rate has on the transit-RV comparison. Thus,

the values of Ndetect ∼ 630 produced by both M-Rs appear to remain consistent with

the total number of Kepler ’s planet candidates.

Third, we must carefully examine the different definitions of “occurrence rate”

implemented in transit and RV surveys. The HARPS overall occurrence rate, which

makes a statement about the fraction of stars with planets, treats the presence of planets

around stars as a binary state: either the star hosts no planets, or it hosts one or

more planets. Because the HARPS occurrence rate offers no information about the

appropriate multiple-planet assumptions to make, we choose to restrict each host star

to only one planet (§2.3.1); we account for this by only considering the first planet

candidate in our radius and period range to be listed by the Kepler pipeline in each

multiple-planet system. On the other hand, the Kepler occurrence rates computed by

Howard et al. (2012) and Youdin (2011) include the possibility of multiple-planet systems

and give the number of planets per star (NPPS), rather than the fraction of stars with

planets (FSWP). With information about the distribution of multiple-planet systems

such as that offered by Latham et al. (2011) and Tremaine & Dong (2012), an NPPS

occurrence rate can be directly compared to a FSWP occurrence rate. For our purposes

we simply note that the occurrence rates which Howard et al. (2012) and Youdin (2011)

compute (0.13 and 0.19 planets per star, respectively, for 2 ≤ R < 4 R⊕ and P < 50

days) would become even lower when transformed to a FSWP occurrence rate, given the

presence of multiple-planet systems. As seen by the ∼ 20% overall reduction of included
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planet candidates produced by our single-planet assumption (§2.3.5), this only worsens

the apparent discrepancy between the two surveys’ occurrence rates. Youdin (2011)

does point out, however, that if planets down to 0.5 R⊕ are included, then this number-

of-planets-per-star occurrence rate may be as high as 1.36. Thus, for the full 1 ≤ R < 4

R⊕ range we consider in this chapter, the apparent occurrence rate discrepancy may

also be explained at least in part by the slight differences in the considered radius range.

Fourth, significant errors in the Kepler target stars’ radii will affect the total

number of true Kepler planets in the radius range we consider here. Assuming normally

distributed errors, the ∼ 10% uncertainty in the target stars’ radii — and thus the

planet candidates’ radii — produced by the uncertainty in the Kepler Input Catalog’s

estimates of Teff and log(g) (Brown et al., 2011) is not enough to appreciably change

the total number of planet candidates that we compare our simulations to. However,

it is probable that unaccounted-for systematic errors are at play in Rpl. Indeed, the

KIC radii are known to be severely biased in at least one instance: the presence of

unidentified subgiant stars in the target stars list can underestimate the stellar radii

by as much as a factor of 2 (Brown et al., 2011). We have attempted to minimize the

effect of such a severe systematic error by limiting the Kepler target stars we consider

to only those with log(g) > 4.0 (§2.3.3), but this does not guarantee that our sample of

potential host stars are completely free of systematic biases that could change the total

number of planet candidates we use for our transit-RV comparison.

A final but significant source of concern is the difference between each survey’s

target star selection criteria. We address the biases produced from Kepler ’s selection
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criteria by drawing from the Q2 targets stars, and we account for its detection incom-

pleteness by including the Q2 3-hour CDPP measurements; these considerations stem

from how we frame the transit-RV comparison, as we ask how many short-period, low-

mass planets Kepler would have detected in its first four months of data if the HARPS

occurrence rate is true. To make a thorough comparison, however, one also needs to

consider how these biases differ from the RV selection criteria that factor into HARPS’

overall occurrence rate. Both HARPS and Kepler preferentially choose G and K dwarfs

with high signal-to-noise ratios (Mayor et al., 2009; Udry et al., 2000; Batalha et al.,

2010b), but HARPS also targets slowly rotating, magnetically quiet stars and includes

no known spectroscopic binaries. Thus, the differences between the two survey’s selec-

tion criteria lie in the presence of binary stars in the Kepler sample and in the distinction

between RV stellar jitter and photometric noise.

According to Batalha et al. (2010b), Kepler searches for planets around all

of the known eclipsing binaries (> 600) in its field of view. While these eclipsing

binaries are not numerous enough by themselves to appreciably affect our statistics,

the unidentified spectroscopic binaries in Kepler ’s field of view potentially are, if one

reasonably allows for the possibility that the planet occurrence rate can differ between

single stars and binary systems. To get a sense for the magnitude of this effect, we refer

to Duquennoy & Mayor (1991), who estimate that as many as two thirds of all G dwarfs

have a stellar companion. The lognormal period distribution they find for spectroscopic

G-dwarf binaries indicates that roughly 8% of all G dwarfs exist in binaries separated

by < 0.5 AU and ∼ 20% in binaries separated by <∼ 10 AU; considering that Kepler ’s
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false-positive vetting process enables binaries at separations of < 1′′ (Batalha et al.,

2011) to be identified, the relative fraction of tight binaries in the Kepler target star

list could be even higher. Separations of < 0.5 AU and < 10 AU are especially of

interest for the survival and formation of planets in binary systems, as the orbits of the

planets considered in this chapter would not be stable in equal-mass binary systems

separated by < 0.5 AU, and protoplanetary disks around the primaries of <∼ 10 AU

binary systems would be truncated before the distance at which an ice line could form,

assuming an equal-mass binary of solar-type stars and thus an ice line at a distance of

approximately 5 AU. Interestingly, a difference in the planet occurrence rate for binaries

with < 10 AU separations versus those with > 10 AU separations could provide a way to

discriminate between the compositions of these close-in planets, if the terrestrial planets

formed in-situ and the gaseous planets migrated in from wider orbits.

The HARPS requirement that its target stars have low levels of RV stellar

jitter is another potentially significant difference between the two surveys’ target selec-

tion criteria. It is certainly the case that Kepler has preferentially chosen target stars

that exhibit low photometric noise (Batalha et al., 2010b), but this noise is primar-

ily correlated with the apparent magnitude of the star (i.e. Figure 2.1) and does not

necessarily reflect the degree of magnetic activity that heavily factors into the HARPS

log(R′HK) < −4.8 target selection. If we temporarily ignore this, however, and assume

that photometric noise is strongly correlated with stellar jitter, we can assess the effect

of this selection criterion on our results. We find that limiting our potential host stars

to the ∼ 35,000 Kepler targets with CDPP3 ≤ 150 ppm worsens the discrepancy be-
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tween the Kepler and HARPS occurrence rates: for α = −1.0, β = 0.0, frocky(1) = 0.9,

frocky(17) = 0.1, and a 40% overall occurrence rate, we find that Kepler would have

been able to detect 291 ± 19 planets in its first four months of data (Nrealizations = 100),

while Kepler has actually found 217 planet candidates around stars with CDPP3 ≤ 150

ppm. A 30% HARPS occurrence rate is needed to bring these numbers into agreement,

making the HARPS-Kepler consistency marginal at best, although a high spectroscopic

binary fraction in the Kepler sample could counteract this effect. In any case, system-

atically accounting for the selection of quiet stars requires the forthcoming results of

stellar photometric variation studies (i.e. Basri et al., 2011) to draw conclusions about

the Kepler target stars’ magnetic activity, given the absence of spectra for a majority

of these targets.

In short, we acknowledge that the differences in the two surveys’ target star

selection criteria could explain some of the apparent discrepancy between their occur-

rence rates. Our intent here is simply to point out plausible, testable explanations for

an overall transit-RV occurrence rate discrepancy that does not depend on the selection

criteria to produce similar numbers of observable planets.

2.6 Conclusion

In summary, we investigate the effect that two different mass-to-radius re-

lationships have on the Kepler -HARPS comparison, in terms of the total number of

planets detectable by Kepler in its first four months of data. Both the single-valued

M-R and the multi-valued M-R can bring the apparent discrepancy between the occur-
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rence rates into alignment, but for different mass and period distributions; this enables

future observations to rule out M-Rs that do not fully describe the observed planet pop-

ulation in a global sense. Furthermore, we present for the first time a multi-valued M-R,

the existence of which is hinted at by direct observations, that follows naturally from

simultaneously extending Neptune-like planets to lower masses and Earth-like planets

to higher masses. By illustrating how a number of parameter sets at realistic values of

frocky(1), and frocky(17) can produce Ndetect consistent with the total number of analo-

gous Kepler planet candidates, we show that this M-R can provide a physically intuitive

explanation for the apparent discrepancy between RV and transit surveys’ planet oc-

currence rates, wherein HARPS may be detecting a large population of dense low-mass

planets and Kepler may be detecting a large population of gaseous sub-Neptunes.
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Chapter 3

Probabilistic Mass-Radius

Relation for Sub-Neptune-Sized

Planets

3.1 Introduction

The emergence of the sub-Neptune population, which has no Solar System

analogs, poses fundamental questions about the typical compositional constituents of

planets within a few times Earth’s size. As bulk densities offer some insight into this

problem, these planets’ individual mass and radius measurements provide observational

constraints for theoretical composition studies. Recently these studies have shifted to

considering the available planets as a statistical ensemble (e.g. Rogers 2015; Wolfgang

& Lopez 2015 sans mass constraints), which motivates detailed analyses of the observed
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mass-radius distribution.

The joint mass-radius distribution, which is often couched in terms of the mass-

radius “relationship” (M-R relation), is also highly relevant for dynamical and formation

studies of the Kepler planet candidates (PCs). Mass measurements for individual PCs

are often unavailable, as the majority orbit stars too faint for Doppler follow-up (Batalha

et al., 2010b) and only ∼ 6% exhibit transit timing variations (TTVs) at high signal-

to-noise ratios (Mazeh et al., 2013). Therefore, a statistical “conversion” is necessary

to map observed radii to the masses these studies need.

To date, several M-R relations have been posed in the exoplanet literature. To

solve the practical issue described above, Lissauer et al. (2011b) fit a power law to Earth

and Saturn and found M = R2.06, where M and R are in Earth units. Wu & Lithwick

(2013) derived masses using the amplitudes of sinusoidal TTVs for 22 planet pairs, and

found M = 3R. More recently, Weiss & Marcy (2014), hitherto WM14, fit a power law

to masses and radii available in the literature, which was dominated by the 42 planets

chosen by the Kepler team to be followed up with radial velocity measurements (Marcy

et al., 2014); they found M = 2.69R0.93 for planets with 1.5 < R < 4 R⊕.

All of these results were produced via basic least squares regression, which is

commonly used in astronomy to fit lines through points. However, this classic technique

does not properly account for several issues that are relevant to the small-planet M-

R relation: measurement uncertainty in the independent variable (i.e. planet radii),

non-detections and upper limits, and intrinsic, astrophysical scatter in the dependent

variable (i.e. planet masses). Thankfully, there are solutions to these problems in both

63



the Bayesian and frequentist statistics literature (see §1 of Kelly (2007) for a concise

overview). We present an example of one of these techniques which can be executed

using existing numerical algorithms and code (§5.3.3), which is effectively a simplified

implementation of the Kelly (2007) linear regression scheme.

Of particular interest is the intrinsic scatter that has not been previously char-

acterized. Theoretical work on planet compositions suggest this scatter should ex-

ist: thermally evolved rock-hydrogen sub-Neptune internal structure models yield radii

mostly independent of mass (Lopez & Fortney, 2014), which produces significant mass-

radius scatter when a distribution of gaseous mass fractions is present in the population

(Wolfgang & Lopez, 2015). Furthermore, the mere presence of otherwise layered exo-

planets produces a range of radii at a given mass due only to differences in the layers’

compositions (e.g. Seager et al., 2007; Fortney et al., 2007; Rogers et al., 2011). This

motivates us to move beyond deterministic, one-to-one mappings, which are in a sense

“mean” relationships and which cause studies that use them to be accurate on average

only. This average accuracy is insufficient and inappropriate if one’s aim is to argue for a

particular physical process based on full distributions of parameters (versus qualitative

comparison to observations), or if the purpose is to rule out parts of parameter space,

which requires knowledge of the full mass-radius distribution. Indeed, recent formation

studies have already begun to fit probabilistic density distributions to observed masses

and radii (Chatterjee & Ford, 2015).

In this chapter we show how a probabilistic M-R relation can be constructed

(§3.2) and constrained (§5.3.3) using any subset of planetary masses and radii (§3.3).
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We also highlight the observational evidence for this expected intrinsic scatter and

quantify it in a statistically robust way that includes uncertainties on the M-R relation

parameters (§3.5). We discuss the correct usage and some major implications of these

findings in §3.6.

3.2 Modeling the M-R Relation

Power laws are often used to parameterize the M-R relation because they

are conceptually and computationally simple and can be easily fit to data using the

familiar tool of linear regression. We continue with this choice to facilitate more direct

comparisons with previous work and to illustrate how a hierarchical framework enables

straightforward extensions to entire families of M-R relations. In addition, we cast this

in terms of M(R) instead of R(M) to address the practical problem of estimating masses

from Kepler radii.

In particular, we consider three power law-based M-R relations (Eqns 3.1-3.3).

The first is the form used by most prior studies (see §5.1):

M

M⊕
= C

( R

R⊕

)γ
(3.1)

where M is the mass of the planet, R is the planetary radius, and C and γ are the

parameters to be fit to the data. This relation is deterministic in the sense that only

one mass is allowed for a given radius.

If instead we want to allow for a range — that is, if we want to incorporate

the expected intrinsic scatter — then we need to create an M-R relation which specifies
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how those masses should be distributed at a given input radius. Again, taking the most

simple, familiar, and analytically tractable approach, we choose a Gaussian distribution,

where the mean population mass µ is given by the above power-law relation and where

the standard deviation σM (units of M⊕) parameterizes the intrinsic scatter in planet

masses:

M

M⊕
∼ Normal

(
µ = C

( R

R⊕

)γ
, σ = σM

)
(3.2)

Note that ∼ means “drawn from the distribution”, thereby marking the difference be-

tween a deterministic and a probabilistic M-R relation. Figure 3.1 is the graphical model

corresponding to Eqn 3.2, and includes Gaussian error bars on the measured masses and

radii (see §5.3.3 for all details of the model).

Generalizing further, the width of the intrinsic scatter may change as planets

increase in size, so we consider a probabilistic M-R relation that allows the standard

deviation itself to vary as a function of radius via the slope β (units of M2
⊕R−1⊕ ):

M

M⊕
∼ Normal

(
µ = C

( R

R⊕

)γ
, σ =

√
σ2M1 + βR̃

)
(3.3)

where R̃ = R/R⊕ − 1 and σM1 is now the standard deviation in planet masses at 1 R⊕

(R̃ = 0).
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Figure 3.1: Graphical model used to find the best-fit parameters for the probabilistic
mass-radius relationship in Eqn 3.2. These parameters of interest are yellow while the
observed data are gray (see §3.3) and unobserved parameters are white; definitions are
below. Explicitly including the unobserved true masses and radii in the model allow us

to easily incorporate physical constraints (such as requiring M
(i)
t > 0) while preserving

all of the information contained in the data (which may allow M
(i)
ob to span 0). The full

model with details of the utilized probability distributions is displayed in Equation 5.9.
α = hyperparameters on radius distribution (see §5.3.3)
C = constant in mean M-R relation
γ = power law index of mean M-R relation
σM = intrinsic dispersion in planet masses at a given radius

R
(i)
t = true radius of the ith planet

R
(i)
ob = observed radius of the ith planet

σ
(i)
Rob = measurement uncertainty in R

(i)
ob

M
(i)
t = true mass of the ith planet

M
(i)
ob = observed mass of the ith planet

σ
(i)
Mob = measurement uncertainty in M

(i)
ob
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3.3 Data

With the statistical M-R relations defined, we turn to the problem of identify-

ing which dataset to use. Optimally we would use a subset of mass and radius measure-

ments that is uniform and complete, as any systematic biases present in the sample will

manifest as biased M-R parameter values. Unfortunately, the available masses and radii

are far from this ideal, with mass measurements made with two fundamentally different

methods by many different pipelines and chosen for follow-up by a complex, poorly

documented selection function. There is significant work to be done to understand how

these systematics affect the M-R relation, but it is outside the scope of this chapter,

as our main purpose is to show how a probabilistic M-R relation can be derived from

whichever dataset one wishes to use. Therefore, we choose a baseline dataset consisting

of radial velocity-measured masses, which somewhat reduces the heterogeneity of the

sample while preserving a fairly large number of data points.

Table 3.1 shows all of the masses and radii that we consider, with our baseline

dataset denoted with a label of 0; the list was constructed by starting with the WM14

dataset and identifying new planets and updates in the NASA Exoplanet Archive (last

accessed 1/30/2015). We manually double-checked each planet to verify that the re-

ported measurements were correct and most up-to-date, paying particular attention to

which methods and stellar parameters were used (data denoted by a label of 1 were

present in and haven’t changed since WM14). The TTV dataset (label of 2) contains

only the sub-Neptune-sized planets with photodynamical models fit to their transit tim-

ing variations, as these masses are the best constrained and therefore provide the most
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Table 3.1: Masses and Radii of Small Planets

Planet Name Period Mobs σMobs Robs σRobs First Mass, Radius Note
(days) (M⊕) (M⊕) (R⊕) (R⊕) Reference Reference

55 Cnc e 0.737 8.09 0.26 2.17 0.098 McArthur Nelson(2014), 0
(2004) Gillon(2012)

CoRoT-7 b 0.854 4.73 0.95 1.58 0.064 Queloz(2009); Barros(2014) 0
Leger(2009)

GJ 1214 b 1.580 6.45 0.91 2.65 0.09 Charbonneau Carter(2011) 0,1
(2009)

GJ 3470 b 3.337 13.73 1.61 3.88 0.32 Bonfils(2012) Biddle(2014) 0
HD 97658 b 9.491 7.87 0.73 2.34 0.16 Howard(2011) Dragomir 0,1

(2013)
HIP 116454 b 9.12 11.82 1.33 2.53 0.18 Vanderburg Vanderburg 0

(2015) (2015) 0
Kepler-10 b 0.837 3.33 0.49 1.47 0.02 Batalha(2011) Dumusque 0

(2014)
Kepler-10 c 45.294 17.2 1.9 2.35 0.06 Batalha(2011) Dumusque 0

(2014)
Kepler-19 b 9.287 -99 20.3 2.21 0.048 Borucki(2011) Ballard(2011) 0,4
Kepler-20 b 3.696 8.7 2.2 1.91 0.16 Borucki(2011) Gautier(2012) 0
Kepler-20 c 10.854 16.1 3.5 3.07 0.25 Borucki(2011) Gautier(2012) 0
Kepler-20 d 77.612 -99 20.1 2.75 0.23 Borucki(2011) Gautier(2012) 0,4
Kepler-20 e 6.098 -99 3.08 0.868 0.08 Borucki(2011) Fressin(2012) 0,4

information for the sub-Neptune M-R relation; neither circumbinary planets nor un-

confirmed planets were included, again to try to keep a somewhat more homogeneous

dataset. Finally, to enable easier comparison with previous work, we continued the

error treatment of WM14: if asymmetric upper and lower uncertainties were reported,

we used their average as a symmetric 1σ error bar1. 2σ upper limits were included if

they were < 80 M⊕ for R < 4 R⊕ and < 300 M⊕ for 4 < R < 8 R⊕.

1Future work using HBM can improve on this error treatment by using the full posteriors of the
mass and radius measurements, if these posteriors are made available in the literature.
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Table 3.1 (cont’d): Masses and Radii of Small Planets

Planet Name Period Mobs σMobs Robs σRobs First Mass, Radius Note
(days) (M⊕) (M⊕) (R⊕) (R⊕) Reference Reference

Kepler-20 f 19.58 -99 14.3 1.03 0.11 Borucki(2011) Fressin(2012) 0,4
Kepler-21 b 2.786 -99 10.4 1.635 0.04 Borucki(2011) Howell(2012) 0,4
Kepler-25 b 6.239 9.60 4.20 2.71 0.05 Borucki(2011) Marcy(2014) 0,1
Kepler-37 b 13.367 2.78 3.70 0.32 0.02 Borucki(2011) Marcy(2014) 0,1
Kepler-37 c 21.302 3.35 4.00 0.75 0.03 Borucki(2011) Marcy(2014) 0,1
Kepler-37 d 39.792 1.87 9.08 1.94 0.06 Borucki(2011) Marcy(2014) 0,1
Kepler-48 b 4.778 3.94 2.10 1.88 0.10 Borucki(2011) Marcy(2014) 0,1
Kepler-48 c 9.674 14.61 2.30 2.71 0.14 Borucki(2011) Marcy(2014) 0,1
Kepler-48 d 42.896 7.93 4.60 2.04 0.11 Borucki(2011) Marcy(2014) 0,1
Kepler-62 b 5.715 -99 9 1.31 0.04 Borucki(2011) Borucki(2013) 0,4
Kepler-62 c 12.44 -99 4 0.54 0.03 Borucki(2013) Borucki(2013) 0,4
Kepler-62 d 18.164 -99 14 1.95 0.07 Borucki(2011) Borucki(2013) 0,4
Kepler-62 e 122.39 -99 36 1.61 0.05 Borucki(2011) Borucki(2013) 0,4
Kepler-62 f 267.29 -99 35 1.41 0.07 Borucki(2013) Borucki(2013) 0,6
Kepler-68 b 5.399 5.97 1.70 2.33 0.02 Borucki(2011) Marcy(2014) 0,3
Kepler-68 c 9.605 2.18 3.50 1.00 0.02 Batalha(2013) Marcy(2014) 0,3
Kepler-78 b 0.354 1.69 0.41 1.20 0.09 Sanchis- Howard(2013) 0,1

Ojeda(2013a)
Kepler-89 b 3.743 10.50 4.60 1.71 0.16 Borucki(2011) Weiss(2013) 0,1
Kepler-93 b 4.727 4.02 0.68 1.48 0.019 Borucki(2011) Dressing(2015) 0
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Table 3.1 (cont’d): Masses and Radii of Small Planets

Planet Name Period Mobs σMobs Robs σRobs First Mass, Radius Note
(days) (M⊕) (M⊕) (R⊕) (R⊕) Reference Reference

Kepler-94 b 2.508 10.84 1.40 3.51 0.15 Borucki(2011) Marcy(2014) 0,1
Kepler-95 b 11.523 13.00 2.90 3.42 0.09 Borucki(2011) Marcy(2014) 0,1
Kepler-96 b 16.238 8.46 3.40 2.67 0.22 Borucki(2011) Marcy(2014) 0,1
Kepler-97 b 2.587 3.51 1.90 1.48 0.13 Borucki(2011) Marcy(2014) 0,1
Kepler-98 b 1.542 3.55 1.60 1.99 0.22 Borucki(2011) Marcy(2014) 0,1
Kepler-99 b 4.604 6.15 1.30 1.48 0.08 Borucki(2011) Marcy(2014) 0,1
Kepler-100 b 6.887 7.34 3.20 1.32 0.04 Borucki(2011) Marcy(2014) 0,1
Kepler-100 c 12.816 0.85 4.00 2.20 0.05 Borucki(2011) Marcy(2014) 0,1
Kepler-100 d 35.333 -4.36 4.10 1.61 0.05 Borucki(2011) Marcy(2014) 0,1
Kepler-101 c 6.03 -99 9 1.25 0.18 Borucki(2011) Bonomo(2014) 0,5
Kepler-102 d 10.312 3.80 1.80 1.18 0.04 Borucki(2011) Marcy(2014) 0,1
Kepler-102 e 16.146 8.93 2.00 2.22 0.07 Borucki(2011) Marcy(2014) 0,1
Kepler-102 f 27.454 0.62 3.30 0.88 0.03 Borucki(2011) Marcy(2014) 0,1
Kepler-102 b 5.287 0.41 1.60 0.47 0.02 Borucki(2011) Marcy(2014) 0,1
Kepler-102 c 7.071 -1.58 2.00 0.58 0.02 Borucki(2011) Marcy(2014) 0,1
Kepler-103 b 15.965 14.11 4.70 3.37 0.09 Borucki(2011) Marcy(2014) 0,1
Kepler-106 b 6.165 0.15 2.80 0.82 0.11 Borucki(2011) Marcy(2014) 0,1
Kepler-106 c 13.571 10.44 3.20 2.50 0.32 Borucki(2011) Marcy(2014) 0,1
Kepler-106 d 23.980 -6.39 7.00 0.95 0.13 Batalha(2013) Marcy(2014) 0,1
Kepler-106 e 43.844 11.17 5.80 2.56 0.33 Borucki(2011) Marcy(2014) 0,1
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Table 3.1 (cont’d): Masses and Radii of Small Planets

Planet Name Period Mobs σMobs Robs σRobs First Mass, Radius Note
(days) (M⊕) (M⊕) (R⊕) (R⊕) Reference Reference

Kepler-109 b 6.482 1.30 5.40 2.37 0.07 Borucki(2011) Marcy(2014) 0,1
Kepler-109 c 21.223 2.22 7.80 2.52 0.07 Borucki(2011) Marcy(2014) 0,1
Kepler-113 b 4.754 7.10 3.30 1.82 0.05 Borucki(2011) Marcy(2014) 0,1
Kepler-113 c 8.925 -4.60 6.20 2.19 0.06 Borucki(2011) Marcy(2014) 0,1
Kepler-131 b 16.092 16.13 3.50 2.41 0.20 Borucki(2011) Marcy(2014) 0,1
Kepler-131 c 25.517 8.25 5.90 0.84 0.07 Batalha(2013) Marcy(2014) 0,1
Kepler-406 b 2.426 4.71 1.70 1.43 0.03 Borucki(2011) Weiss(2014) 0,1
Kepler-406 c 4.623 1.53 2.30 0.85 0.03 Batalha(2013) Weiss(2014) 0,1
Kepler-407 b 0.669 0.06 1.20 1.07 0.02 Borucki(2011) Marcy(2014) 0,1
Kepler-409 b 68.958 2.69 6.20 1.19 0.03 Batalha(2013) Marcy(2014) 0,1
Kepler-4 b 3.213 24.47 3.81 4.00 0.21 Borucki(2010) Borucki(2010)
GJ 436 b 2.64 25.4 2.1 4.10 0.16 Butler(2004) Lanotte(2014)
Kepler-89 c 10.42 15.6 10.6 4.32 0.41 Batalha(2013) Weiss(2013)
HAT-P-11 b 4.888 25.74 2.86 4.73 0.157 Bakos(2010) Bakos(2010)
CoRoT-22 b 9.756 -99 35 4.88 0.28 Moutou(2014) Moutou(2014) 4
Kepler-103 c 179.61 36.1 25.2 5.14 0.14 Borucki(2011) Marcy(2014)
Kepler-101 b 3.488 51.1 4.9 5.77 0.82 Borucki(2011) Bonomo(2014)
Kepler-63 b 9.43 -99 95 6.1 0.2 Borucki(2011) Sanchis- 6

Ojeda(2013b)
HAT-P-26 b 4.235 18.75 2.23 6.33 0.58 Hartman(2011) Hartman(2011)
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Table 3.1 (cont’d): Masses and Radii of Small Planets

Planet Name Period Mobs σMobs Robs σRobs First Mass, Radius Note
(days) (M⊕) (M⊕) (R⊕) (R⊕) Reference Reference

CoRoT-8 b 6.212 69.92 9.53 6.39 0.22 Borde(2010) Borde(2010)
Kepler-89 e 54.32 35 23 6.56 0.62 Batalha(2013) Weiss(2013)
Kepler-11 b 10.304 1.90 1.2 1.80 0.04 Lissauer(2011) Lissauer(2013) 1,2
Kepler-11 c 13.024 2.90 2.3 2.87 0.06 Lissauer(2011) Lissauer(2013) 1,2
Kepler-11 d 22.684 7.30 1.2 3.12 0.07 Lissauer(2011) Lissauer(2013) 1,2
Kepler-11 f 46.689 2.00 0.9 2.49 0.06 Lissauer(2011) Lissauer(2013) 1,2
Kepler-11 g 118.38 -99 25 3.33 0.07 Lissauer(2011) Lissauer(2013) 2,4
Kepler-18 b 3.505 6.9 3.4 2.00 0.100 Borucki(2011) Cochran(2011) 1,2
Kepler-30 b 29.334 11.3 1.4 3.90 0.200 Borucki(2011) Sanchis- 1,2

Ojeda(2012)
Kepler-36 b 13.840 4.45 0.30 1.486 0.035 Carter(2012) Carter(2012) 1,2
Kepler-36 c 16.239 8.08 0.53 3.679 0.054 Borucki(2011) Carter(2012) 1,2
Kepler-79 b 13.485 10.9 6.7 3.47 0.07 Borucki(2011) Jontof- 1,2

Hutter(2014)
Kepler-79 c 27.403 5.9 2.1 3.72 0.08 Borucki(2011) Jontof- 1,2

Hutter(2014)

Kepler-79 e 81.066 4.1 1.2 3.49 0.14 Batalha(2013) Jontof- 1,2
Hutter(2014)

Kepler-88 b 10.954 8.7 2.5 3.78 0.38 Borucki(2011) Nesvorny(2013) 2
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Table 3.1 (cont’d): Masses and Radii of Small Planets

Planet Name Period Mobs σMobs Robs σRobs First Mass, Radius Note
(days) (M⊕) (M⊕) (R⊕) (R⊕) Reference Reference

Kepler-138 c 13.782 3.83 1.39 1.610 0.160 Borucki(2011) Kipping(2014) 2
Kepler-138 d 23.089 1.01 0.38 1.610 0.160 Borucki(2011) Kipping(2014) 2
Kepler-289 b 34.545 7.3 6.8 2.15 0.1 Borucki(2011) Schmitt(2014) 2
Kepler-289 d 66.063 4.0 0.9 2.68 0.17 Borucki(2011) Schmitt(2014) 2

Note. — 0. Included in baseline dataset.

1. Mass, radius values and their error bars are unchanged (within rounding error) from
WM14.

2. Mass measured via a full photodynamical fit to TTVs.

3. The Kepler-68 planets were repeated twice in the WM14 dataset, so we use the
Marcy et al. (2014) values.

4. The σMobs column contains the 2σ upper limit as reported in the second reference.

5. Only a 1σ upper limit of 3.78 was given, and no posteriors were shown; in this
analysis, we set the 2σ upper limit at 9 M⊕ to include 1.8 m/s uncertainty quoted
in RV semi-amplitude for the larger Kepler-101 b.

6. The 2σ upper limit is interpolated from given 1σ and 3σ upper limits.

3.4 Fitting the M-R Relations

We use hierarchical Bayesian modeling (HBM) to fit the M-R relations in

§3.2 to the data described in §3.3. This statistical method is described in detail in

Wolfgang & Lopez (2015) in the context of exoplanet compositions; further pedagogical

discussion and examples of HBM in the astronomical literature is provided by Loredo

(2013). A very similar approach to this HBM-enabled linear regression was detailed in

Kelly (2007); we refer the reader to that paper for an in-depth discussion of the general

advantages and improvements of this approach over the commonly used χ2 analysis for

linear regression.

For the problem at hand, HBM (or the analogous frequentist methods for

multi-level modeling) is necessary for a number of reasons:
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• It allows us to directly model and fit the astrophysical dispersion in the population

as an explicit parameter.

• It allows us to self-consistently incorporate uncertainties on the independent vari-

able (radii in this case), without the need for elaborate bootstrapping schemes.

• Most sub-Neptune mass uncertainties are large, and some are realistically only

upper limits. HBM is able to simultaneously use all likelihood distributions no

matter their width or shape, which increases the information content of the re-

sulting M-R relation and decreases the biases that binning or weighting schemes

introduce when these likelihoods are asymmetric.

• Relatedly, HBM allows us to introduce the true masses and radii as latent (un-

observed) parameters; this enables us to restrict the masses to physically allowed

parameter space (such as M > 0 or ρ < ρiron(M)) while preserving all of the

information in the observations (including the negative mass measurements that

are allowed by the data).

• As with all Bayesian methods, HBM produces posterior distributions, allowing

us to easily see the uncertainties in the M-R relation parameters. Most of the

M-R relations currently reported and used in the literature have no published

uncertainties.

The hierarchical model for our default M-R relation (Eqn 3.2) is displayed in

Figure 3.1 to clarify the structural relationships between parameters and observables.

This structure is also present in the written version below, along with details of the
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distributions we used (“N” represents a normal distribution with the listed parameters

in order of µ and σ; “U” represents a uniform distribution with the listed numbers

bounding the interval; and “|” means “given”, i.e. the parameter to the left depends on

the parameters to the right):

γ ∼ N(1, 1)

ln(C) ∼ U(−3, 3)

log(σ2M ) ∼ U(−4, 2)

R
(i)
t ∼ U(0.1, 10)

µ
(i)
M |R

(i)
t , C, γ = γln(R

(i)
t ) + ln(C)

M
(i)
t |R

(i)
t , C, γ, σM ∼ N

(
eµ

(i)
M , σM

)
R

(i)
ob |R

(i)
t , σ

(i)
Rob ∼ N(R

(i)
t , σ

(i)
Rob)

M
(i)
ob |M

(i)
t , σ

(i)
Mob, R

(i)
t , C, γ, σM ∼ N(M

(i)
t , σ

(i)
Mob) (3.4)

For the deterministic M-R relation of Eqn 3.1, Eqn 5.9 remains the same except there

is no σM parameter, and

M
(i)
t |R

(i)
t , C, γ = eµ

(i)
M
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while for the M-R relation of Eqn 3.3, there was an additional parameter β such that:

β ∼ U(−10, 10)

M
(i)
t |R

(i)
t , C, γ, σM1, β ∼ N

(
eµ

(i)
M ,

√
σ2M1 + βR̃

(i)
t

)

For all M-R relations we consider, we truncated the M
(i)
t distribution such that 0 <

M
(i)
t < ρiron ∗ (R

(i)
t )3 where ρiron(M

(i)
t ) was computed using the 0% rock mass fraction

analytic fits to the Fortney et al. (2007) rock-iron internal structure models. Addi-

tionally, we tested several end member cases for the Rt distribution, and the choice

for this prior had a negligible effect on the result, primarily because Rob is fairly well

constrained throughout the sample. A wide normal distribution was used in the first

line of the model because there was some prior information provided by Wu & Lithwick

(2013) and WM14 which indicated that γ ≈ 1 for sub-Neptunes; this distribution is

wide enough that a uniform distribution produces very similar results. Note that the

normal distributions in the last two lines of the model are the same likelihoods that are

assumed when using χ2 to perform linear regression.

To produce the results shown in §3.5, we evaluate each model with JAGS

(Just Another Gibbs Sampler; Plummer 2003), an R code for numerically evaluating

hierarchical Bayesian models with MCMC. For each set of posteriors in Figures 3.2 and

3.3, we ran 10 chains consisting of 500,000 iterations each. The first half of each chain

is discarded as “burn-in”, and the resulting half is thinned by a factor of 250, such that

we retain 10,000 posteriors samples of each parameter. JAGS computes the MCMC

convergence diagnostic R̂ of Gelman & Rubin (1992) at run-time; our models are fully
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converged, with all parameters having R̂ ≤ 1.002.

3.5 Results

Table 3.2 shows the results of this modeling; in particular lines 2− 6 show our

best-fit parameters for our probabilistic M-R relation (Eqn 3.2) for various datasets (see

§3.5.2), with those for our baseline dataset (see §3.3) in the second line. In all cases the

reported “best fit” values correspond to the mode of the joint posterior distribution,

and are denoted by the triangles in Figures 3.2-3.3. The uncertainties in the parameters

are represented by the displayed 68% and 95% posterior contours, with the contours

corresponding to the parameters of Eqn 3.2 evaluated with our baseline dataset colored

blue.

3.5.1 Deterministic vs. Probabilistic M-R Relations

The primary motivation for this work was to assess the observational evidence

for intrinsic scatter in the sub-Neptune M-R relation, and to characterize this scatter if

Table 3.2: Best-Fit Parameters of the M-R Relation

Equation Dataset C γ σM β

1 RV only, < 4 R⊕ 2.1 1.5 — —
2 RV only, < 4 R⊕ 2.7 1.3 1.9 —
2 dynamical TTVs only, < 4 R⊕ 0.6 1.7 1.7 —
2 Weiss (< 4 R⊕) 2.8 0.9 2.5 —
2 RV only, < 1.6 R⊕ 1.4 2.3 0.0 —
2 RV only, < 8 R⊕ 1.6 1.8 2.9 —
3 RV only, < 4 R⊕ 2.6 1.3 2.1 1.5

Note. — These “best fit” values correspond to the mode of the joint
posterior distributions.
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Figure 3.2: Posteriors for the parameters in our family of M-R relations (row 1: Equa-
tions 3.1-3.3; row 2: Equations 3.2-3.3; row 3 and gray posterior samples in all panels:
Equation 3.3) when fit to our baseline dataset. 68% and 95% contours are shown for
each, and demarcate the uncertainties on these M-R relation parameters; the triangles
denote best-fit values. Panels b and c show that σM = 0 is strongly excluded for R < 4
R⊕, and so astrophysical scatter exists in the sub-Neptune M-R relation. Therefore,
theoretical studies which require an M-R relation should use a probabilistic one like
that of Eqn 3.2 with one of the sets of parameter values in Table 3.2.

warranted. To do so, we compare the posteriors for our three M-R relations in Figure

3.2 (note that not all relations have all parameters: for example, the deterministic M-R

relation of Eqn 3.1 is described only by C and γ, so it only appears in panel a). Panels

b and c show that this intrinsic scatter exists: because the posteriors lie away from zero,
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σM = 0 is strongly excluded by the data, even with the currently large individual mass

error bars. This is not a result of our choice of priors: the parameterization in Eqn 5.9

is equivalent to σ2M ∼ 1/σ2M , which is the (uninformative) Jeffrey’s prior for such scale

parameters. This prior is strongly weighted toward zero, in contrast to the posterior we

compute.

Comparing the different M-R relations, we see that the C, γ posterior for the

model given by Eqn 3.1 is much tighter than that for Eqns 3.2-3.3. This is expected:

when we keep the dataset fixed but add more parameters, especially one like σM that

by construction allows wiggle room around a deterministic relation, the observational

information content per parameter decreases, and the posteriors widen. Given this

expectation, what is arguably more notable are the small differences between Eqn 3.2

and 3.3’s model posteriors for the parameters they have in common: most of the extra

width of Eqn 3.3’s joint posterior is contained in the new parameter β (Figure 3.2,

panels d-f), which spans zero. There is therefore not enough evidence in the current

dataset to justify an intrinsic scatter that changes as a function of radius in the way

that we have parameterized it2.

3.5.2 Changing the Dataset

The results in §3.5.1 are for our baseline dataset, an RV-only sample with

Robs < 4 R⊕. However, all Bayesian results depend on the data that are used, so it

is important to carefully consider what the dataset contains. To demonstrate this, we

2While outside the scope of this work, future analyses of the M-R relation can address this and other
questions of model selection more quantitatively by computing posterior Bayes factors. Regardless, the
results for the statistical models represented by Eqns 3.1 and 3.3 can serve as a sensitivity test for that
of Eqn 3.2, as we describe.
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present some illustrative examples of the M-R relation posteriors under different mass

and radius selection functions (Figure 3.3).
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Figure 3.3: Posteriors for Eqn 3.2’s M-R relation parameters when we change the input
dataset (68% and 95% contours shown; triangles are best-fit values). The blue contours
represent the baseline dataset and are the same as those in panels a and b of Figure 3.2.
The green TTV M-R relation is systematically shifted downward (lower C) compared
to the default M-R relation, while the red WM14 dataset, a hybrid of the two, produces
a posterior which falls between them (the black point is the WM14 result itself). When
we consider different radius ranges, we see that Robs < 8 R⊕ (cyan) produces a slightly
down-shifted, steeper, and more dispersed M-R relation than the default Robs < 4 R⊕
(lower C and higher γ, σM , although the posteriors do overlap), while the M-R relation
for Robs < 1.6 R⊕ (orange) is not well constrained (although σM ≈ 0 for reasonable
values of C).

The left side of Figure 3.3 displays results for samples of planets that have

had their masses measured in different ways. A number of prior studies (e.g. Jontof-
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Hutter et al. 2014, WM14) have noted that planets with high SNR TTVs tend to be

systematically less dense than RV-detected planets. Our results confirm this: the green

TTV-only posterior is shifted towards lower C with similar γ and σM , which produces on

average lower masses for a given radius. Furthermore, the hybrid WM14 dataset yields

the red posterior, which falls between the TTV-only and RV-only posteriors yet peaks

at lower γ, illustrating that posterior modes (Bayesian “best fits”) for joint datasets

are not necessarily averages of the modes for separate subsets. This behavior can be

understood when one considers that these TTV planets are preferentially larger than

the RV planets: this bias pulls the joint M-R relation down at higher radii because the

TTV planets there have lower masses (which lowers γ) but affects the relation at lower

radii very little because there are few small TTV planets in our sample (which keeps C

roughly the same).

The right side of Figure 3.3 displays results for samples of planets spanning

different radius ranges, illustrating the effect that a somewhat arbitrary radius cut can

have on one’s results. Compared to our default sub-Neptune range, a Robs < 8 R⊕ cut

produces an M-R relation that is overall shifted down, is steeper, and has more intrinsic

scatter (the cyan posterior has lower C and higher γ, σM ). This is consistent with the

Lissauer et al. (2011b) fit to Earth and Saturn over a similar radius range, although

neither of these Solar System planets were included in our dataset. Meanwhile, the

M-R relation is poorly constrained for the Robs < 1.6 R⊕ sample, the radius range

outside of which rocky planets likely do not occur (Rogers, 2015). This is because our

0 < M
(i)
t < ρiron ∗ (R

(i)
t )3 restriction is most severe for these small planets, allowing
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only a small range of physically plausible masses. This range is completely spanned by

most of the mass measurements (see right side of Figure 3.4), so there is little empirical

extrasolar information for Robs < 1.2 R⊕, and the orange posteriors are dominated

by the few larger planets with well measured masses. With this sample, there is not

currently enough observational evidence in this radius range to rule out a deterministic

relation.

3.6 Discussion

3.6.1 Visualizing the M-R Relation

While the posterior contours in Figures 3.2-3.3 show the best-fit M-R relation

parameters and their uncertainties, visualizing the M-R relation itself requires that they

be mapped from parameter space to mass, radius space. There are at least two ways to

do this with Bayesian analysis, and they are displayed in Figures 3.4-3.5.

First, one can simply take the best-fit values and plot the resulting relation, as

was done in Figure 3.4. Here the 1σ width of the probabilistic relation, as parameterized

by σM , is denoted by the faded colored region while the mean relation, as parameterized

by C and γ, is the thick line of the same color. Note that the mean M-R relations

extend into unphysical regimes for R < 1 R⊕; this is because the mass observations

span the physically allowed region, as discussed in §3.5.2, leaving the M-R relation

to be constrained primarily by the locations of the larger, higher mass planets. The

presence of intrinsic scatter in our M-R relation nevertheless allows physically realistic

masses to be assigned to the smallest planets; to force this requirement, we recommend
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Figure 3.4: The best-fit M-R relations from the right column of Figure 3.3. For each,
the solid line denotes the mean relation µM while the faded region denotes the standard
deviation of the intrinsic scatter (vertical height of region to either side of line = σM ;
note σM = 0 for the smallest planets). The M-R relation of WM14 is the dashed black
line while the baseline dataset is overplotted as the thin black lines with triangles for
the upper limits (note that WM14 was calculated with a dataset that includes TTV
planets).

adding a density constraint to Eqn 3.2 such that the probability of a planet being drawn

outside this range is 0, or to use a different M-R relation for sub-Earth-sized planets.

The different colors in the left panel correspond to the M-R relations in the right column

of Figure 3.3; these mostly overlap in the sub-Neptune regime. Note that the RV-only

dataset produces a steeper relation than one which also contains high SNR TTV planets

(i.e. the black dashed WM14 relation), as discussed in §3.5.2.
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Figure 3.5: The default M-R relation (Eqn 3.2 with the baseline dataset) marginal-
ized over the corresponding posterior distribution and subjected to our physical mass
range restriction. The blue region now corresponds to the central 68% of planet masses
that were drawn at a given radius. The posterior true masses and radii of individual
planets are plotted red (the same Rob and Mob as in Figure 3.4 are plotted in gray for
comparison). A sample of planets from the planet population synthesis studies of Jin
et al. (2014) are overplotted, color-coded by the fraction of the planet’s mass that is in
a hydrogen and helium envelope.

While these best-fit M-R relations are easy to use, they do not take into ac-

count the fact that the posteriors have non-zero width and therefore a range of M-R

relation parameters are allowed by any one dataset. A more thorough implementation

of these results would incorporate these uncertainties by ranging over all of the posterior

samples. This marginalization, which also incorporates the physical restrictions on Mt,
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is displayed in Figure 3.5: now the blue region corresponds to the central 68% of planet

masses that were drawn for a given radius. Note that this region is wider than that in

Figure 3.4 and that the masses no longer extend into unphysical regimes. The posterior

true masses and radii of individual planets in the baseline sample are plotted red, while

the same Rob and Mob as on the left are plotted in gray. As expected3, the posteriors

have “shrunk” toward the mean relation within the uncertainties provided by the data.

Furthermore, a sample of planets from the planet population synthesis studies

of Jin et al. (2014) are shown color-coded by the fraction of the planet’s mass that is in a

hydrogen and helium envelope. The qualitative agreement provided by this comparison

motivates a more detailed, quantitative treatment of the characterization of the sub-

Neptune population via the framework provided by theoretical modeling. This is the

subject of Part II of this thesis; in particular, we use sophisticated statistical modeling

to tie the observed planet radius distribution directly to the composition distribution of

these planets, as parameterized by this same envelope mass fraction, fenv, in Chapter

5.

3.6.2 Using the M-R Relation to Predict Masses

The most straightforward and computationally simple way to map a sub-

Neptune’s radius to a mass while accounting for intrinsic scatter is to adopt Eqn 3.2

with one of the sets of parameters in Table 3.2 and impose a density constraint for

the smallest planets. This best-fit M-R relation is analytic and represents a substantial

3Shrinkage is a well-known feature of hierarchical modeling, and is often desirable as it produces
lower rms errors across the population than modeling individuals separately.
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improvement over the previous deterministic relationships in capturing the full mass-

radius distribution. However, it does not incorporate uncertainties in the M-R relation

parameters or uncertainties in the measured planet radius itself. Depending on how

detailed one’s analysis needs to be, a more accurate predictive mass distribution may

be needed.

To account for these issues, one must compute the posterior predictive dis-

tribution, which marginalizes over both the posteriors displayed here and the radius

posterior produced by one’s light curve modeling. This mass distribution will be wider

than that produced by simply applying Eqn 3.2 (see right side of Figure 3.4) because it

incorporates the above sources of uncertainty and thus more accurately reflects our state

of knowledge about these planets’ masses. Kepler-452 b (Jenkins et al., 2015) provides

an example of an individual planet’s posterior predictive mass distribution that has

been calculated with this probabilistic M-R relation; because its computation requires

the numerical posterior samples that we have produced, the resulting mass distribution

is also numerical in nature. To enable more calculations like this one, we have posted

our posterior samples in the github repository dawolfgang/MRrelation along with R

code that uses them to compute and plot the posterior predictive mass distribution for

individual planets.

3.7 Conclusions

In this chapter we have defined and constrained a probabilistic mass-radius

relationship for sub-Neptune planets (Eqn 3.2 with parameter values in Table 3.2). In
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particular, we demonstrate that there is intrinsic, astrophysical scatter in this relation,

and that, except for the smallest planets, this scatter is nonzero for all considered

datasets. For the first time in the exoplanet literature, we display the uncertainties

in the M-R relation parameters through posterior distributions and explain how to

properly incorporate these uncertainties into a predictive distribution of masses for

individual planets. This M-R relation will be useful for anyone who wishes to perform

large-scale dynamical or planet formation studies with the Kepler planet candidates.
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Chapter 4

Adaptive Optics Follow-up of

Kepler ’s Sub-Neptunes

4.1 Introduction

As outlined in §1.2.3, acquiring follow-up observations of Kepler Objects of In-

terest (KOIs) is useful for a number of reasons, including the identification of likely false

positives, i.e. transit signals which were dispositioned (see §1.2.1) as planet candidates

but which are not actually planets transiting the specified target star. High-resolution

imaging is especially valuable for such statistical validation of KOIs (as opposed to

dynamical confirmation via the radial velocity method; see e.g. Torres et al. 2011; Mor-

ton 2012; Dı́az et al. 2014), given the relative faintness of the typical planet candidate

host star and the large on-sky spatial coverage of the Kepler pixels. Furthermore, the

relatively small amount of telescope time and data processing that is required to iden-
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tify possible contaminating sources compared to radial velocity follow-up makes high

resolution imaging a particularly efficient observational technique for the validation of

Kepler candidates as true planets. Even better, the sub-2′′ resolution required for useful

contributions to this effort is easily achieved with adaptive optics (AO) on 2-4m class

telescopes, which facilitates a truly community-driven follow-up program which has the

real potential to obtain the required telescope time to observe every identified KOI.

Helping to statistically validate KOIs is not the only application for measuring

the fraction of KOIs that have close visual companions. When these sources, which may

or may not be serendipitously projected unassociated background objects, are proven

to be bound to the target star, the resulting fraction of planets present in multiple

stellar systems can be used to constrain the range of environments in which typical

planet formation processes occur, and to quantify the effect that stellar multiplicity has

on these processes. Indeed, a number of theories even require the presence of a bound

massive, distant companion to explain the existence of exoplanets with∼day-long orbital

periods, where full (both gas and solid) in-situ formation of these planets is particularly

difficult. This class of planet formation and evolution theory includes planet-planet

scattering (e.g. Rasio & Ford, 1996; Nagasawa & Ida, 2011), secular chaos (Wu &

Lithwick, 2011), and secular evolution due to the long-term gravitational perturbations

of an inclined distant companion (Holman et al., 1997; Wu & Murray, 2003; Fabrycky

& Tremaine, 2007; Naoz et al., 2012; Batygin, 2012; Dawson & Chiang, 2014). While

these are all reasonable proposals to explain close-in exoplanets, the question of how

often they actually occur in nature remains. Comparing the fraction of short-period
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planets that occur in multiple stellar systems to the fraction of those that don’t can

provide a highly valuable observational constraint on this question (further discussion

of the theoretical application of observations like these is provided in §6.3).

4.1.1 Previous High-Resolution Imaging

Realizing the clear potential for high-impact contributions to the Kepler follow-

up effort, a number of authors have undertaken high resolution imaging surveys of

various subsets of Kepler Objects of Interest, including four major undertakings that

involve > 100 targets, in addition to the one here. Other smaller samples include those

of Wang et al. (2014), who characterized the stellar multiplicity of 56 KOIs with both

radial velocities and near infrared (NIR) AO imaging at Keck, Palomar, and MMT

for the purpose of comparing occurrence rates of planets in single and multiple stellar

systems, and Everett et al. (2015) who obtained optical speckle imaging at Gemini

North for 18 KOIs, along with a subset observed with NIR AO at Palomar and Keck,

for the purpose of validating planetary candidates.

The first major effort is reported in Howell et al. (2011), who perform speckle

imaging on 156 KOIs with the upgraded Differential Speckle Survey Instrument on the

WIYN 3.5m telescope on Kitt Peak. This technique involves acquiring thousands of

∼ 30 ms exposures per object and combining them with significant post-processing

to identify recurring binary patterns in the resulting speckles; the result is ∼ 0.2 ′′

resolution images of these KOIs with a typical limiting magnitude of ∆m = 4 in three

optical filters centered at 562, 692, 880 nm. With these data, they find 10 stars have

detected additional sources within 1.4′′, the completeness limit of their FOV, yielding

91



a KOI visual companion fraction of 6%. However, their sample of KOIs were drawn

from the earliest set of announced planet candidates (Borucki et al., 2011), which had

a less mature vetting process and so included a number of signals later identified as

false positives; correcting for this knowledge as of April 2014, this fraction drops to 3%

(Lillo-Box et al., 2014). More recent results from this effort is presented in Horch et al.

(2014); 49 companions were found around 623 stars, for a visual companion fraction of

8%. The host star sample has a Kepler apparent magnitude distribution that extends

to Kp ∼ 15, peaking at Kp ∼ 12.5.

The second continuing effort is that of Lillo-Box et al. (2012) and Lillo-Box

et al. (2014), who had obtained Sloan i -band “lucky imaging” of 234 KOIs as of April

2014 using the AstraLux instrument on the Calar Alto Observatory 2.2m telescope.

This technique also involves taking thousands of very short exposures (100-200 ms) and

combining the atmosphere-induced shifts during post-processing. As opposed to speckle

imaging, however, only the top 10% of images with the best seeing, as quantified by the

Strehl ratio (Strehl, 1902), are used, and the frames are combined by relatively simple

centroid shifting. They are able to detect companions as close as 0.3′′ from the target

star, and have typical limiting magnitudes of ∆m ∼ 6− 7. Lillo-Box et al. (2014) find

that, of the 174 planet candidate KOIs in their total sample, 117 are isolated (67.2%),

34 have at least one (visual) companion at separations of 3-6 ′′ (20.1%), and 30 have

companions closer than 3′′ (17.2%). Their KOI sample was selected on the basis of how

interesting the planet candidates’ properties were, and the distribution of the host stars’

Kepler magnitudes peaks at Kp ∼ 13.5, extending down to Kp ∼ 16.
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High-resolution imaging in the optical continued with (Law et al., 2014), who

used Robo-AO, the laser guide star adaptive optics system on the fully robotic Palomar

60-inch telescope, to observe 715 KOIs in either the Sloan i -band or a special “LP600”

filter which emulates the Kepler passband (Kp) between 600 and 900nm, with some

additional transmission out to 1000nm; this cuts out the bluest end of the Kp filter.

Consisting of by far the largest sample of high resolution follow-up images, these are the

first results of an effort to uniformly observe every single KOI. For Law et al. (2014), they

report that they randomly select KOIs from the Q1-6 planet candidate catalog (Batalha

et al., 2013), which results in a host star apparent magnitude distribution that peaks

at Kp ∼ 13.5 and extends down to Kp ∼ 15.5. Ranking the quality of their images as

“low” (∆m ∼ 3), “medium” (∆m ∼ 4), and “high” (∆m ∼ 6) with most images in the

“medium” or “high” categories, they found 53 KOIs with visual companions between

0.2 and 2.5′′ (7%); when the target list is corrected to remove KOIs now known to be

false positives, this becomes 49 out of 697 planet candidates (still 7%; Lillo-Box et al.

2014).

Finally, Adams et al. (2012), Adams et al. (2013), and Dressing et al. (2014)

continue this effort in the NIR, the only large survey to do so, with natural guide star

AO using ARIES on the 6.5m MMT and some earlier observations from PHARO on

the Palomar Hale 200-inch telescope. They observed a total of 189 KOIs as part of the

officially coordinated Kepler follow-up effort; imaging in J and Ks, they obtained an

average spatial resolution of ∼ 0.2′′, with typical limiting magnitudes of ∆m ∼ 5 − 6

in Ks. Because they only use natural guide star AO, they are restricted to Kp < 14,
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with their host star apparent brightness distribution peaking around Kp ∼ 12. Across

the three studies, they found that 32 KOIs (17%) had visual companions within 2 ′′ ;

after false positives are removed and a different radius is considered to facilitate easier

comparisons with the other surveys, this becomes 45 out of 165 KOIs (27%) having

visual companions within 3′′.

Given the relative abundance of optical imaging among the large-scale Kepler ’s

high resolution follow-up campaigns, there is a valuable opportunity to contribute to

the characterization of these planet candidates’ stellar environments in the NIR. This is

especially true for the faintest PC host stars that are out of the reach of natural guide

star adaptive optics. Recognizing this potential for a high-impact contribution to this

effort, I have acquired J , H, or Ks images for 196 KOIs with laser guide star AO on

the Shane 3m telescope at Lick Observatory over the 2012, 2013, and 2014 observing

seasons of the Kepler field.

4.2 Target Selection

My target selection strategy evolved from year to year as both as my science

goals shifted focus and the above results were published; this was needed to provide the

sample required for the analysis outlined in §4.6 and §6.3.2 while remaining complemen-

tary to the existing follow-up efforts detailed in §4.1.1. For the 2012 season, I focused

on new KOIs from the Q1-6 catalog (Batalha et al., 2013) that had large ( >∼ 0.5′′) yet

statistically insignificant (< 3σ) centroid offsets measured by the Kepler pipeline (this

information was provided in the DV summaries; see §1.2.1). I also gave higher priority
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to targets whose transit durations relative to their periods indicated either non-circular

orbits or mischaracterized stellar radii (high impact parameters were ruled out upon

visual inspection of the transit shape); this simultaneously identifies the KOIs most

in need of follow-up and, if blends are ruled out and the stellar properties are further

verified with spectroscopy, the KOIs that could have experienced a significant amount

of post-formation dynamical evolution (e.g. Dawson & Johnson, 2012).

Starting with the 2013 season I began prioritizing the single-planet systems for

two reasons. First, official Kepler follow-up efforts were focusing on the multiple-planet

systems, an understandable choice given the richness of the information they provide;

after all, several planets orbiting the same star produce additional constraints on the

average stellar density and thus on their orbital eccentricities (Kipping et al., 2012), and

they offer a window into the frequency of different modes of planet formation via the

presence of mean motion resonances and the observed distribution of mutual inclinations

(Lissauer et al., 2011b; Fabrycky et al., 2014). Interestingly, they also have a low a priori

probability of being astrophysical false positives (Lissauer et al., 2014), a finding that has

allowed the statistical validation of hundreds of multiple-system planetary candidates

(Rowe et al., 2014); one could interpret this as as even stronger reason to follow up

the single-planet systems that need follow-up observations the most to be statistically

validated as bona fide planets.

Second, the population of single-planet systems also provides valuable insight

into planet formation mechanisms, even if it is much less appreciated as such. As noted

by Latham et al. (2011), the Jupiter-sized planets that Kepler has found tend to be
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solitary, while the multiple-planet systems tend to be dominated by sub-Neptune-sized

planets. At the same time, Kepler has found an enormous number of single Neptune-

sized planet candidates — over 2200 with R < 6 R⊕ as of the Q1-17 DR24 planet

candidate catalog (Akeson et al., 2013) — that cannot be explained by invoking Ke-

pler ’s detection biases with a well-behaved inclination distribution (Hansen & Murray,

2013). This hints suggestively at a different formation scenario for these single-planet

systems: rather than these planets reaching their current small spatial distance from

their host stars by slow, orderly migration through a protoplanetary disk, these planets

instead could have come to their current locations by Kozai-Lidov oscillations (Kozai,

1962; Lidov, 1962), a secular process involving a hierarchical triple system where eccen-

tricity and inclination of the inner planetary orbit oscillate back and forth to extreme

values. When the eccentricity becomes large enough that the planets periapse enters

the regime where tidal interactions with the star become important, the planets orbital

energy will quickly dissipate, leaving the planet in a very compact orbit around its

host star (Holman et al., 1997; Fabrycky & Tremaine, 2007; Naoz et al., 2012). While

there are other dynamical evolution mechanisms which qualitatively produce this same

result, only Kozai-Lidov oscillations require that the gravitational perturber still be

present and bound to the host star. Fortunately, this constraint is testable by observa-

tions, and in particular high resolution images like the ones we obtain here. Extending

observations into the NIR is especially important, as it is more sensitive to low-mass

stellar companions compared to the optical bandpasses used by Robo-AO or the lucky

imaging technique.
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The promise of using the large sample of single-Neptune-sized planetary sys-

tems to test the importance of the Kozai mechanism for planetary orbital evolution (see

§6.3.2) motivates the rest of our target selection. In particular, we prioritized KOIs with

R < 6 R⊕ that were the only observed planet candidate in their system. Given that

there were over 1700 of these by the start of the 2013 observing season, we narrowed

our target list further by choosing two subsets of planets: those with signal-to-noise

ratios >∼ 30− 50, which have the highest potential for being statistically validated (cf.

Dı́az et al., 2014), and those with very long or very short transit durations, which may

be eccentric and could represent a class of “failed Kozai” planets (Dawson & Johnson,

2012; Dawson & Chiang, 2014). We also observed some of the KOIs that Robo-AO dis-

covered to have close companions to provide color information that could constrain their

spectral types and assist efforts to determine whether or not these additional sources are

gravitationally bound to the target star. We also include some of the fainter multiple-

planet KOIs to provide a control sample that may not yet have been observed in the

NIR.

4.3 Observations

Given our goal to provide a large, complementary sample of NIR follow-up

observations, we needed a facility that can provide both a significant amount of observing

time over an extended period and a laser guide star-enabled adaptive optics (LGS AO)

system to facilitate imaging objects dimmer than 14th magnitude, which constitutes

most of Kepler ’s single Neptune KOIs (see Figure 4.1). Lick Observatory’s Shane 3m
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telescope meets both of these requirements; furthermore, as a UC graduate student I

could P.I. the proposals, thereby lowering the barrier to entry on this effort.

Kepler magnitude
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Figure 4.1: Kepler magnitude distribution of our AO sample versus all planet candidates
in the Exoplanet Archive cumulative table as of the Q1-17 DR24 release (the counts in
our sample have been inflated by a factor of 10 to facilitate easier comparison). Note
the focus of our observing strategy on KOIs with 13.5 < Kp < 16.

During the 2012 and 2013 observing seasons, we acquired high resolution im-

ages with the Lick LGS AO system (Brase et al., 1994; Max et al., 1997) and IRCAL,

the associated NIR camera (Lloyd et al., 2000). For KOIs with r′ < 13.5 we operated

the system in natural guide star (NGS) mode and guided off the target itself, which is

possible when the star provides enough signal on the wavefront sensor to measure the

atmospheric distortion along its own line of sight. LGS mode enabled observations of

the dimmer KOIs, for which high-order corrections are infeasible without an additional
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light source; however, this mode still requires low-order correction be provided by a

“tip-tilt” r′ < 16 star. Fortunately, the vast majority of KOIs are above this magnitude

limit, meaning that we have on-axis correction for all of our targets, thereby achieving

the highest Strehl ratios that are possible with the system (0.4 in Ks with good natural

seeing conditions; Olivier et al. 1994; Srinath et al. 2014).

In practice we performed most of our imaging inH on IRCAL, as that bandpass

best balanced the low sky background of the shorter NIR wavelengths with the higher

Strehl ratios possible in the longer wavelengths. Along with 1-2 ′′ native seeing, we

obtained corrections that on average corresponded to Strehl ratios of ∼ 0.2. While this

is fairly low for modern AO systems, a pixel scale of ∼ 0.075′′ and a typical corrected

FWHM of ∼ 5 pixels nevertheless allowed us to resolve companions as close as 0.5 ′′.

Furthermore, the field of view of the 256 x 256-pixel detector was 20′′ x 19′′, allowing

detections of companions out to > 15′′ in our combined dithered images; this spans the

area covered by a typical Kepler “optimal” aperture (6-10′′ across) from which a given

target star’s photometric time series is calculated.

As the Lick LGS AO system approached its 20th anniversary, it experienced

a major upgrade. The new ShaneAO system (Gavel et al., 2014) with ShARCS, a

camera with grism spectroscopy and a 2k x 2k HAWAII-2RG detector (McGurk et al.,

2014), produces higher Strehl ratios (up to 0.8 in Ks with a new laser currently under

development; up to 0.6 for our observations) and a full magnitude lower sky background

(Srinath et al., 2014). In practice, this has allows us to achieve the same ∆m ∼ 5 − 7

between our target and the detected companions in a factor of 2-3 less time, including
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the overhead involved in reading out the much larger detector and the slightly longer

acquisition time between telescope nods. Accordingly, we were able to triple our sample

size during the 2014 season alone. Furthermore, the new system allows us to achieve

higher resolutions; with typical 1− 1.5′′ native seeing we are able to clearly resolve the

0.25′′ binaries detected by Robo-AO and lucky imaging.

In total, we were awarded 9 nights of observing time on IRCAL in August

2012, 5 nights in June 2013, 8 nights of ShARCS shared-risk observing in May and

July 2014, and 4 full nights and 5 half-nights in August-October 2014. Factoring in

weather and engineering-associated losses, we obtained the equivalent of 23 nights of

good observing, with 21 of those dedicated to imaging follow-up of Kepler planet host

stars. We performed most of our IRCAL imaging in H, as explained above, and our

ShARCS observing in Ks, given the excellent correction and much lower sky background

provided by the new instrument. For a few select targets, usually those for which a close

companion was immediately visible upon read-out of the detector, we obtained either Ks

(IRCAL) or J (ShARCS) images for color information that can constrain the spectral

type of the detected source; along with the measured apparent magnitude, this can help

determine whether the visual companion is at the same distance from us as the target

star. We also performed standard 5-point dithering for each target with 4 − 5′′ offsets

to accurately characterize and then subtract the sky background in the vicinity of the

target.
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4.4 Data Reduction

For both the IRCAL and ShARCS data we used a modified version of an IDL

data reduction pipeline that was originally written to reduce and combine dithered

Keck NIRC2 images (Rosalie McGurk, private communication). The pipeline performs

standard dark subtraction and flat fielding, computes and subtracts a sky background

image using the extra area covered by the frame-to-frame dithers, corrects for bad pixels

with an optional bad pixel map, and combines the images with subpixel centroiding that

is guided by interactive source identification from the user.

Once reduced, the images are processed with PyRAF to identify and perform

photometry on all stars in the field of view. In particular, we use the imexamine task

to identify sources by eye and to calculate initial centroid positions, then the phot and

psf routines of the PyRAF-bundled DAOPHOT package (Stetson, 1987) to perform

aperture photometry and point spread function (PSF) fitting, respectively. For close

binaries, the PSF fitting is performed iteratively: the dimmer star is subtracted from

the image and the PSF that is fit to the brighter star is recomputed until its parameters

converge to a single set of values. We fit the data with an analytic PSF only, using no

look-up tables (see discussion below); specifically, for IRCAL we allow the psf task to

choose which profile best fits the data (usually a Gaussian core with Lorentzian wings),

but due to computational concerns force the ShARCS data to be fit to a Lorentzian.

Both of these functions are decent approximations for the observed PSFs, as adaptive

optics by design produces a sharp central core with broad, dim wings. In practice our

PSF fitting leaves both positive and negative residual structure that, pixel-by-pixel, is
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usually ∼ 10% of the original photon counts.

Because DAOPHOT was developed for crowded field photometry, it is not the

ideal software package for measuring the magnitudes of stars in AO images that have

been dithered and combined. In particular, the point spread function of an AO image is

not guaranteed to be constant across the entire field of view due to the less accurate real-

time measurement of atmospheric turbulence that is off-axis from the guide star (this

effect is known as anisoplanatism). Additionally, there can be non-negligible variation

of the PSF from frame to frame, so that if a star falls outside of our 5′′ dithering box, the

combined PSF may be different of that from our target. With these caveats in mind, we

make no attempt to perform absolute photometry on our images, limit ourselves only

to the analytic PSF fitting described above, and offer the relative magnitudes in Table

4.1 with typical errors of ± 0.1 mag.

4.5 Results

In short, 42 KOIs in our sample (21%) have visual companions within 3 ′′ ,

and 90 (46%) have them within 6′′ . These proportions are consistent with the results

from the deepest high resolution follow-up surveys detailed in §4.1.1. The separations

and relative magnitudes of every source that has been detected in our AO images are

provided in Figure 4.3; the details for those within 10′′ of the KOI in question, which are

sources that could have contaminated the Kepler photometry given the typical 6-10′′

aperture size, are listed in Table 4.1. The KOIs which we did not observe to have visual

companions within 10 ′′ are listed in Table 4.2. We emphasize that we do not expect

102



all, or even most, of these sources to be bound to the KOIs; this is especially true for

the farthest sources. Fortunately, the color information that we have obtained as well

as optical-NIR colors that are available when the KOI was observed by other studies

can help constrain their radial distances. This endeavor, which is part of the effort to

quantify the probability of companionship, is outlined in §4.6.
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Figure 4.2: Magnitude difference vs. separation between each KOI in our sample and
the additional sources detected in our AO images, denoted by the associated observing
filter. 42 KOIs in our sample (21%) have visual companions within 3′′, and 90 (46%)
have them within 6′′; the details of those within 10′′ are listed in Table 4.1.
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Table 4.1: Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

49 9527334 130604 H 9.62 75.8 5.58
70 6850504 120828 H 3.81 54.0 4.34

Ks 4.10
103 2444412 130604 H 3.96 47.3 6.99
103 2444412 130604 H 9.76 278.9 6.18
119 9471974 141006 J 1.05 118.0 0.16

141005,141006 Ks 0.22
119 9471974 141006 J 8.09 269.5 6.20
119 9471974 141006 J 9.58 210.1 3.63

141005,141006 Ks 3.32
162 8107380 140819 Ks 0.28 123.7 0.10
162 8107380 130605 H 3.27 356.6 5.35

140819 Ks 4.95
162 8107380 130605 H 6.06 200.9 5.19

140819 Ks 4.77
162 8107380 130605 H 7.37 127.1 5.60
162 8107380 130605 H 7.95 198.9 5.84
165 9527915 130603 H 4.52 98.4 7.36
165 9527915 130603 H 7.39 345.9 6.90
165 9527915 130603 H 7.72 242.4 6.35
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

177 6803202 141005 Ks 0.24 218.8 0.11
177 6803202 141005 Ks 6.61 108.4 3.22
240 8026752 140818 Ks 2.53 4.4 5.14
240 8026752 140818 Ks 2.74 270.8 2.93
242 3642741 140818 Ks 4.55 128.6 3.80
242 3642741 140818 Ks 9.12 106.8 2.37
242 3642741 140818 Ks 9.80 65.9 4.23
257 5514383 140816 J 4.45 113.4 8.54

Ks 8.80
268 3425851 140818 J 1.78 265.2 3.11

130602 H 3.01
140818 Ks 2.52

268 3425851 140818 J 2.53 307.4 4.34
130602 H 5.95

268 3425851 140818 J 9.75 276.8 8.65
130602 H 7.82
140818 Ks 7.86

284 6021275 120801 H 0.87 96.6 0.29
Ks 0.29

284 6021275 120801 H 5.96 174.0 8.06
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

305 6063220 140717 Ks 5.56 94.4 6.43
306 6071903 140816 J 2.13 244.1 2.25

Ks 1.85
306 6071903 140816 J 4.62 325.2 7.75

Ks 7.77
306 6071903 140816 J 5.56 139.2 6.94

Ks 6.81
306 6071903 140816 J 9.17 255.7 6.12

Ks 6.26
306 6071903 140816 J 9.45 48.5 7.47
346 11100383 130601 H 1.56 351.7 5.19
346 11100383 130601 H 7.18 59.2 7.38
346 11100383 130601 H 7.30 17.9 7.99
355 11621223 130603 H 4.59 304.3 7.09
355 11621223 130603 H 6.25 296.7 5.98
355 11621223 130603 H 6.67 325.4 3.37
361 12404954 141007 Ks 8.57 104.8 3.79
429 10616679 140819 Ks 6.46 142.9 5.24
432 10858832 140817 Ks 9.70 202.2 3.23
480 11134879 140718 Ks 4.86 1.7 5.19
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

531 10395543 130601 H 8.31 169.7 6.15
531 10395543 130601 H 9.99 59.5 5.24
535 10873260 140819 Ks 6.62 172.7 2.82
535 10873260 140819 Ks 7.31 176.9 2.44
578 8565266 140910 Ks 2.93 240.9 4.92
578 8565266 140910 Ks 6.98 339.6 5.27
578 8565266 140910 Ks 8.45 127.9 3.33
618 10353968 140708 Ks 7.08 224.3 0.70
618 10353968 140708 Ks 8.36 217.0 3.12
640 5121511 140708 J 0.42 300.6 -0.01

130604 H 0.10
130604,140708 Ks -0.12

640 5121511 130604 H 5.77 24.3 4.40
130604,140708 Ks 4.60

640 5121511 140708 J 5.82 25.3 4.37
640 5121511 140708 J 8.26 196.6 5.26

130604 H 5.31
130604 Ks 5.05

640 5121511 130604 H 8.58 2.4 5.56
Ks 5.42
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

652 5796675 130602 J 1.23 272.4 0.76
H 0.51
Ks 0.37

652 5796675 130602 J 6.82 351.0 3.35
H 3.29
Ks 3.48

652 5796675 130602 J 8.59 187.5 5.43
H 5.14
Ks 5.27

666 6707835 130604 H 7.48 356.8 4.05
666 6707835 130604 H 8.59 227.4 4.57

672* 7115784 130604 H 9.05 105.6 3.56
687 7976520 140818 Ks 8.04 88.8 1.88
697 8878187 140708 Ks 0.67 53.8 -0.03
697 8878187 140708 Ks 7.31 94.5 2.00
714 9702072 130603 H 8.34 163.4 4.41
714 9702072 130603 H 9.61 31.3 4.32
746 10526549 140718 Ks 4.23 2.8 4.80
747 10583066 130605 H 4.02 176.3 6.12
747 10583066 130605 H 8.95 283.5 6.31
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

769 11460018 140718 Ks 1.19 166.0 3.88
769 11460018 140718 Ks 6.94 336.6 0.80
769 11460018 140718 Ks 8.49 206.9 2.64
826 5272878 140816 Ks 1.07 205.9 4.28
843 5881688 140816 Ks 7.93 8.1 1.70
843 5881688 140816 Ks 8.75 28.7 4.24
875 7135852 130601 H 1.32 278.7 5.28

140718 Ks 4.09
875 7135852 130601 H 5.15 221.2 4.47

140718 Ks 4.18
875 7135852 130601 H 8.77 64.3 5.93
914 8552202 140817 Ks 4.79 183.9 0.42
922 8826878 141006 Ks 2.70 221.6 4.89
922 8826878 141006 Ks 8.44 133.7 2.88
923 8883593 140817 Ks 4.59 312.1 1.57
923 8883593 140817 Ks 8.45 301.6 3.14
984 1161345 130601 H 1.76 223.1 0.08

Ks 0.06
984 1161345 130601 H 4.85 144.1 7.05
987 7295235 130601 Ks 1.96 227.0 2.18
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

987 7295235 130601 Ks 8.21 3.3 5.01
988 2302548 130601 H 7.17 186.0 6.73
988 2302548 130601 H 9.13 179.7 5.12

1002 1865042 140818 Ks 0.29 173.7 1.04
1109* 3235672 120830 H 3.84 56.7 5.91
1109* 3235672 120830 H 4.77 302.9 5.44
1109* 3235672 120830 H 8.35 194.2 4.53
1116 2849805 130605 H 5.89 40.2 6.30
1116 2849805 130605 H 6.88 196.8 5.22
1116 2849805 130605 H 8.50 252.4 5.83
1150 8278371 140718 Ks 0.40 320.7 1.37
1150 8278371 130605 H 7.17 167.0 5.39
1274 8800954 130601 H 1.08 243.5 3.22

130601,140708 Ks 242.6 2.39
1315 10928043 130601 Ks 1.79 26.2 5.51
1357 6719086 140816 Ks 2.85 84.4 3.26
1357 6719086 140816 Ks 3.83 164.7 3.34
1357 6719086 140816 Ks 9.75 124.6 2.55
1397 9427402 140818 Ks 6.42 41.7 4.85
1397 9427402 140818 Ks 8.62 44.0 0.82
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

1425 11254382 141006 J 5.19 342.4 0.87
Ks 0.85

1425 11254382 141006 J 7.34 275.5 2.37
Ks 2.08

1428 11401182 140817 Ks 2.63 168.7 3.64
1442 11600889 130604 H 2.12 71.4 4.74

130604,140708 Ks 3.82
1442 11600889 130604 H 9.76 270.6 6.97
1481 9597806 141006 Ks 4.14 170.8 4.82
1515 7871954 130601 H 9.38 154.6 6.78
1588 5617854 140816 Ks 4.84 169.7 5.65
1597 5039228 140817 Ks 4.44 245.0 6.55
1597 5039228 140817 Ks 5.75 329.5 6.49
1597 5039228 140817 Ks 7.59 138.6 4.65
1597 5039228 140817 Ks 8.81 309.2 7.16
1606 9886661 130604 H 3.62 100.5 4.82
1606 9886661 130604 H 6.33 166.9 4.13
1606 9886661 130604 H 9.63 286.4 3.83
1615 4278221 130604 Ks 4.81 266.3 6.13
1615 4278221 130604 Ks 7.50 172.1 5.54
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

1615 4278221 130604 Ks 8.12 168.5 5.12
1615 4278221 130604 Ks 9.45 253.2 5.63
1615 4278221 130604 Ks 9.98 77.4 3.64
1619 4276716 140526 J 2.06 224.3 2.12

H 2.06
Ks 1.95

1626 6387542 120831 H 9.14 154.6 0.48
1639 10749128 120829 H 8.58 250.8 4.90
1665 4932442 120807 H 5.81 12.1 4.79
1665 4932442 120807 H 8.87 36.2 6.12
1665 4932442 120807 H 9.27 238.4 6.87
1665 4932442 120807 H 9.94 31.4 2.75
1701 7222086 140819 Ks 7.06 248.8 7.34
1701 7222086 140819 Ks 8.20 153.1 6.84
1702 7304449 141005 Ks 8.44 200.4 5.29
1747 7032421 120828 H 9.98 220.8 5.11
1751 9729691 140819 Ks 2.89 196.9 5.16
1751 9729691 140819 Ks 5.73 30.2 3.59
1781 11551692 141007 J 3.45 329.7 2.51

120802 H 2.42

112



Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

141007 Ks 2.24
1781 11551692 120802 Ks 3.48 329.9 2.24
1784 10158418 140819 Ks 0.28 287.5 0.77
1786 3128793 120830 H 9.75 245.7 5.26
1802 11298298 140819 Ks 5.42 238.0 5.36
1821 8832512 140818 Ks 3.83 88.1 4.46
1835 9471268 141007 Ks 7.09 148.0 2.51
1838 5526527 130601 H 4.73 180.6 4.54
1838 5526527 130601 H 7.81 182.3 4.00
1843 5080636 141006 Ks 3.15 263.4 7.60
1849 9735426 140817 Ks 9.19 71.4 3.14
1858 8160953 120802 H 6.72 289.4 6.15
1860 4157325 120802 H 7.04 255.3 5.81

Ks 5.66
1860 4157325 120802 Ks 7.19 136.0 5.81
1860 4157325 120802 H 7.34 266.0 4.83

Ks 4.85
1860 4157325 120802 H 8.48 227.7 7.06
1860 4157325 120802 H 9.32 237.4 7.44

Ks 5.32
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

1860 4157325 120802 H 9.88 91.8 5.59
Ks 5.22

1868 6773862 130601 H 4.88 356.5 5.60
1868 6773862 130601 H 8.35 4.8 4.57
1877 10454632 130605 H 3.60 152.0 7.42
1877 10454632 130605 H 6.51 357.4 7.11
1877 10454632 130605 H 8.61 81.5 6.64
1880 10332883 140718 Ks 1.73 97.2 4.21
1886 9549648 140819 Ks 4.94 249.6 4.27
1886 9549648 140819 Ks 8.48 28.8 4.47
1890 7449136 140816 Ks 0.40 142.3 2.02
1890 7449136 140816 J 7.97 14.9 6.40

Ks 6.09
1890 7449136 140816 J 8.16 269.1 7.41
1904 8766650 130603 H 7.90 289.3 5.54
1904 8766650 130603 H 8.88 282.3 5.01
1915 9101496 141006 Ks 0.95 272.9 5.70
1916 6037581 120830 H 6.77 302.8 5.95
1937 10190777 130603 H 2.34 243.9 6.35
1957 10028352 140817,140819 Ks 2.26 83.2 5.40
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

1957 10028352 140817,140819 Ks 8.83 74.3 4.54
1957 10028352 140817 Ks 9.45 61.8 6.27
1964 7887791 140718 J 0.38 359.9 2.18

Ks 2.03
1973 4917596 130605 H 0.77 24.1 1.71

Ks 1.51
1973 4917596 130605 H 4.33 47.0 6.54
1973 4917596 130605 H 4.73 153.0 6.75
1973 4917596 130605 H 8.47 282.0 5.95
1973 4917596 130605 H 9.81 223.4 4.13
1985 8142942 140718 Ks 2.81 152.3 2.80
1985 8142942 140718 Ks 8.55 126.5 4.37
1988 9044228 140819 Ks 9.00 335.4 4.97
2009 2449431 140818 J 1.52 175.3 3.09

Ks 2.71
2020 9349482 120830 H 8.59 339.6 3.70
2034 3657758 140718 Ks 5.94 341.3 3.67
2034 3657758 140718 Ks 7.18 212.1 1.59
2034 3657758 140718 Ks 9.19 285.6 2.93
2036 6382217 120806 H 6.31 204.3 7.23
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

2036 6382217 120806 H 6.82 110.0 5.32
2036 6382217 120806 H 7.29 87.1 4.88

Ks 4.96
2036 6382217 120806 H 8.45 231.4 6.69
2036 6382217 120806 H 9.51 75.3 6.27
2036 6382217 120806 Ks 9.55 43.8 2.36
2036 6382217 120806 H 9.58 279.2 5.28
2036 6382217 120806 H 9.67 343.5 6.94
2038 8950568 120801 H 1.80 308.7 6.26
2038 8950568 120801 H 4.55 175.5 6.23
2038 8950568 120801 H 7.62 258.6 6.07
2038 8950568 120801 H 8.39 294.9 3.60
2038 8950568 120801 H 9.67 94.8 6.48
2038 8950568 120801 H 9.92 183.8 2.68
2169 9006186 120806 H 3.52 68.3 3.09

Ks 2.77
2174 8261920 120806 H 1.51 238.0 4.42

Ks 3.77
2174 8261920 120806 Ks 3.06 198.3 5.74
2174 8261920 120806 H 3.88 132.4 1.27
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

Ks 1.39
2174 8261920 120806 H 3.95 145.1 1.39

Ks 1.49
2174 8261920 120806 H 4.62 41.1 6.79
2174 8261920 120806 H 5.50 292.0 6.19
2174 8261920 120806 H 8.78 172.5 5.45

Ks 5.88
2174 8261920 120806 H 9.22 106.7 1.50

Ks 1.58
2174 8261920 120806 H 9.50 140.4 7.10
2174 8261920 120806 H 9.58 81.2 7.07
2215 7050060 120831 H 3.92 147.6 6.09
2215 7050060 120831 H 4.76 265.4 4.57
2215 7050060 120831 H 6.31 66.0 2.18

Ks 2.28
2215 7050060 120831 H 9.46 330.9 4.47
2215 7050060 120831 Ks 9.88 280.9 2.07
2215 7050060 120831 H 9.90 175.2 4.00
2219 5357545 130603 H 4.53 237.8 4.79
2219 5357545 130603 H 5.41 296.3 3.66
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

2219 5357545 130603 H 6.73 224.9 3.66
2219 5357545 130603 H 8.72 211.8 6.62
2224 8892157 120830 H 8.18 246.1 5.43
2248 11030475 120801 H 3.94 198.4 3.52

Ks 3.50
2248 11030475 120801 H 6.09 82.2 2.62

Ks 2.64
2248 11030475 120801 H 6.29 66.0 6.09
2248 11030475 120801 H 8.51 169.0 3.75

Ks 4.18
2248 11030475 120801 H 8.81 167.9 3.54

Ks 3.64
2311 4247991 120802 H 6.91 46.9 8.53
2311 4247991 120802,120803 H 8.79 309.1 7.06
2311 4247991 120802,120803 H 8.88 324.9 6.23

120802 Ks 6.02
2324 7746958 140708 J 5.38 267.8 2.59

Ks 2.39
2324 7746958 140708 J 6.88 13.6 4.66

Ks 4.81
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

2410 8676038 120807 H 4.69 330.3 5.94
2470 9108085 120828 H 3.01 178.1 6.26
2470 9108085 120828 H 9.58 229.9 5.63
2477 6846911 120830 H 4.63 83.7 3.57
2486 8074328 141005 Ks 0.24 250.4 -0.14
2486 8074328 141005 Ks 6.07 83.9 4.29
2519 4047631 120828 H 2.89 345.1 4.96

120831 Ks 4.95
2519 4047631 120828 H 6.32 211.9 6.39
2519 4047631 120828 H 8.66 290.4 7.01
2519 4047631 120828 H 9.63 178.5 2.45

120831 Ks 2.45
2521 7183745 120828 H 7.58 123.9 1.94

Ks 2.08
2522 9177629 120828 H 7.86 290.2 7.68
2587 5546691 120831 H 9.61 139.6 1.20
2650 8890150 120828 H 6.13 10.6 5.37

Ks 5.58
2678 6779260 130602 J 3.36 25.2 8.02

H 8.34
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

2678 6779260 130602 J 8.31 147.0 7.64
H 7.60

2678 6779260 130602 J 8.71 259.9 8.61
H 8.07

2678 6779260 130602 J 9.73 100.2 8.54
H 8.35

2699 6690836 140817 J 3.94 291.9 3.04
Ks 3.14

2700 8639908 140708 Ks 6.80 303.3 0.66
2705 11453592 140910 J 1.98 302.8 2.76

Ks 2.52
2705 11453592 140910 J 5.98 290.9 6.42
2707 5480640 120831 H 3.35 217.8 3.80

Ks 3.91
2707 5480640 120831 H 3.77 181.5 3.55

Ks 3.72
2707 5480640 120831 H 5.82 198.5 3.76

Ks 3.84
2707 5480640 120831 H 8.21 350.9 5.22
2707 5480640 120831 H 8.67 224.5 2.34
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

Ks 2.07
2707 5480640 120831 H 9.89 112.9 4.41

Ks 4.80
2717 9467404 140819 Ks 8.71 332.7 6.50
2755 3545135 120807 H 6.81 194.7 4.86

Ks 4.77
2771* 11456382 130603 H 3.71 309.5 5.98
2771* 11456382 130603 H 4.36 77.4 7.78
2771* 11456382 130603 H 8.01 133.9 8.63
2771* 11456382 130603 H 9.90 21.0 7.78
2795 5041569 140910 J 4.30 137.7 4.59
2795 5041569 140910 J 6.88 235.0 1.68

Ks 1.63
2795 5041569 140910 J 7.52 25.7 2.44

Ks 2.37
2795 5041569 140910 J 8.60 88.1 4.40
2795 5041569 140910 J 8.95 196.7 3.75

Ks 4.30
2795 5041569 140910 J 9.81 194.2 2.99

Ks 2.85
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

2835 5436338 130603 H 4.87 223.2 5.68
2835 5436338 130603 H 5.40 158.8 5.12
2838 6607357 120802 H 1.81 197.8 4.40

Ks 4.91
2838 6607357 120802 H 5.16 342.0 7.60
2838 6607357 120802 H 7.23 155.7 5.37
2838 6607357 120802 H 7.98 134.3 2.79

Ks 4.54
2838 6607357 120802 H 7.98 25.9 6.44
2838 6607357 120802 H 8.49 103.4 6.83
2838 6607357 120802 H 8.67 327.5 6.80
2838 6607357 120802 H 9.96 24.8 7.73
2857 6345732 120807 H 8.39 280.8 6.89

2991* 4848424 130605 H 4.01 90.5 6.14
2991* 4848424 130605 H 4.63 262.3 5.27
2991* 4848424 130605 H 6.83 222.1 4.61
2991* 4848424 130605 H 7.05 153.6 4.46
2991* 4848424 130605 H 7.90 252.2 6.19
3029 5903749 120801 H 0.24 263.2 0.39
3029 5903749 120801 H 1.75 355.6 5.72
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Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

3029 5903749 120801 H 2.56 3.8 3.95
Ks 3.97

3029 5903749 120801 H 3.85 255.0 6.62
3029 5903749 120801 H 4.73 309.2 7.02
3029 5903749 120801 H 5.51 244.2 5.92
3029 5903749 120801 H 5.61 95.8 4.45
3029 5903749 120801 H 6.22 285.8 7.32
3029 5903749 120801 H 6.60 176.8 6.66
3029 5903749 120801 H 7.52 100.0 3.39

Ks 3.62
3029 5903749 120801 H 8.60 326.8 5.58
3029 5903749 120801 H 8.74 59.1 3.93

Ks 4.30
3029 5903749 120801 H 8.84 5.2 6.93
3029 5903749 120801 H 9.12 104.9 6.12
3029 5903749 120801 H 9.61 222.9 5.69
3029 5903749 120801 H 9.87 92.4 4.45
3246 9885417 140718 Ks 3.77 127.5 7.41
3818 6515722 140817 Ks 1.84 271.0 5.43
3818 6515722 140817 Ks 3.75 75.2 6.65

123



Table 4.1 (cont’d): Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter Separation Pos. Angle ∆m
(#) (#) (YYMMDD) (arcsec) (deg) (mag)

3818 6515722 140817 Ks 9.77 159.7 2.24
3913 10281221 140708 J 9.95 250.4 5.24
4928 1873513 140718 Ks 8.82 303.1 4.78

Note. — * indicates a KOI that is no longer a planet candidate. Typical errors are
0.05′′ for separation, 1 degree for position angle, and 0.1 mag for ∆m.

Table 4.2: KOIs with No Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter
(#) (#) (YYMMDD)

92 7941200 130602 H
110 9450647 140817 Ks
142 5446285 130602 Ks
144 4180280 140708 Ks
161 5084942 130602 H
174 10810838 130602 H
318 8156120 130603 H
323 9139084 130603 Ks
367 4815520 130429 H
388 3831053 140816 Ks
432 10858832 140817 Ks
470 9844088 140818 Ks
503 5340644 140816 Ks
526 9157634 140819 Ks
537 11073351 140718 Ks
580 8625925 140817 Ks
585 9279669 140819 Ks
660 6267535 140910 Ks
766 11403044 140718 Ks
783 12020329 140817 Ks
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Table 4.2 (cont’d): KOIs with No Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter
(#) (#) (YYMMDD)

844 6022556 140816 Ks
851 6392727 140816 Ks
916 8628973 140910 Ks
991 10154388 130604 H,Ks

1164* 10341831 120831 H
1303 10867062 120829 H
1430 11176127 130602 H
1647 11153121 120831 H,Ks
1688 6310636 120830 H
1747 7032421 120828 H
1786 3128793 120830 H
1813 9455325 140909 Ks
1815 9872283 140910 Ks
1820 8277797 140708 Ks
1832 11709244 141005 Ks
1833 11853878 141007 Ks
1839 5856571 141007 Ks
1867 8167996 120829,141005 H,Ks
1925 9955598 130429 H
1930 5511081 120806 H,Ks
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Table 4.2 (cont’d): KOIs with No Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter
(#) (#) (YYMMDD)

1960 6949061 130604 H
1962 5513648 130429,130604,140816 H.Ks
2005 6665512 130603 H
2035 9790806 141007 Ks
2037 9634821 120806 H,Ks
2046 10663396 120830 H
2069 11360571 130603 H
2148 6021193 120829 H,Ks
2175 9022166 120831 H

2233* 8963721 120831 H
2272 9654875 120829 H
2276 3458028 140819 Ks
2287 9718066 120830 H,Ks
2306 6666233 130604,141007 H,Ks
2352 8013439 120831 H
2593 8212002 130601 Ks
2668 5513012 141006 Ks
2675 5794570 120829 H,Ks
2687 7202957 120803 H,Ks
2694 9475552 140816 Ks
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Table 4.2 (cont’d): KOIs with No Visual Companions Within 10′′

KOI Kepler ID Date of observation Filter
(#) (#) (YYMMDD)

2875 12170648 141006 Ks
2950 6028860 140910 Ks
3097 7582689 120801 H
3848 12784167 140819 Ks
3913 10281221 140708 J,Ks
6188 8822421 140817 Ks
7016 8311864 140708 Ks

Note. — * indicates a KOI that is no longer a
planet candidate.

4.6 Further Work

The unique combination of our single-planet target selection (§4.2) and the

depth of our detections (Table 4.1) open many possibilities for future science, some of

which are discussed in §6.3.2. Our underlying statistical framework, which is able to

incorporate large error bars and non-detections, grounds our endeavor to observationally

constrain the importance of dynamical evolution processes that produce single-planet

systems through interactions with a bound companion. As such, we must carefully

quantify our errors and upper limits. The first effort to this end will be to test the

dependence of our ∆m measurements on both the inclusion of individual image frames

and the photometry pipeline that we have used; with this information, we will be

able to compute error bars that include some of the systematic PSF modeling error.

Detection lower limits will be provided by sensitivity curves calculated from the residual

images that we have already constructed; relatedly we will compare the information

content of our observations to those from other work by computing the BSC parameter

introduced in Lillo-Box et al. (2014). Combining our color information with that from
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the optical follow-up surveys will provide a preliminary companionship probability based

on co-location in the three spatial dimensions and the density of background sources

provided by galactic stellar population models. Finally, to assist the Kepler planet

characterization effort, we will provide a correction to the planetary radii given the

contamination from the detected nearby sources.

With the companionship probability constrained, we can then start to test

for differences between the planet population around stars with and without likely

bound companions. An example of this is provided below, where we have compared

the period distribution of the innermost planet orbiting KOIs with or without visual

companions at various distances. According to two of the most common non-parametric

two-sample tests used to test for differences between observed population distributions

(the Kolmogorov-Smirnov test and the Anderson-Darling test), none of the samples’ dis-

tributions are different on a statistically significant level (all p-values > 0.5). However,

it is not yet clear whether the period distribution of planets with bound large-distance

perturbers is the same as that for planets without these perturbers; this statistical

null result could be due to the fact that the effort described above has not yet been

completed, and so there are non-binary stellar systems present in all of these samples.

Combining the results from all the follow-up surveys listed in §4.1.1 can also augment

the statistical power of this sample size and help test for differences between the planet

radius, stellar radius, and other physically relevant distributions of the binary and non-

binary host star samples. On the other hand, comparing the transiting planet properties

with Kepler ’s eclipsing binary distributions provides another test of the false positive
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rate for these single-planet systems that is very complementary to the efforts outlined

in §1.2.3. With these detailed analyses we can start to place quantitative constraints on

the fraction of planetary systems which experienced secular dynamical evolution due to

a distant, massive companion, and the probability that an individual planetary system

could have undergone this process in its past.
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Figure 4.3: Cumulative period distributions of the planets orbiting KOIs with or without
visual companions. According to both the Kolmogorov-Smirnov and the Anderson-
Darling two-sample tests, the null hypothesis that the distributions come from the same
population cannot be rejected: the < 3′′ vs. > 6′′ comparison gives p-values of 0.57 and
0.83 for the two different tests, respectively, and the < 6′′ vs. > 6′′ comparison gives
p-values of 0.66 and 0.63.
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Part II

Theory-Driven Characterization

of Kepler ’s Sub-Neptunes

130



Chapter 5

The Composition Distribution of

Kepler ’s Sub-Neptunes

5.1 Introduction

The Kepler Mission has found thousands of planetary candidates with sizes

between that of Earth and Neptune (Rowe et al., 2015; Burke et al., 2014; Batalha

et al., 2013; Borucki et al., 2011). Considering that no such planets exist in our own

Solar System, this discovery elicits fundamental questions about their nature: are these

planets scaled-up versions of Earth, scaled-down and irradiated versions of Neptune, or

something in-between? What is the “typical” composition of this planet population,

and what is the range of possibilities, as constrained by the planets we have observed?

At what radius is the expected transition between rocky and gaseous compositions?

Addressing such population-wide inquiries about bulk compositions requires
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two tools: first, models of internal structures which relate an individual planet’s com-

position to its measured radius, and second, a statistical framework which combines in-

formation about individual members of a population into an inference about the whole,

all while appropriately accounting for individual uncertainties. The former has been

studied by a number of authors, as summarized below; the latter, however, has received

limited treatment in the exoplanet literature. Here we provide an exoplanet-specific ex-

ample of one such statistical tool commonly used for population studies in other fields,

and in doing so answer questions about the range and distribution of compositions for

these sub-Neptune-sized planetary candidates.

5.1.1 Modeling Sub-Neptune Interior Structures

Theoretical modeling of exoplanet interiors has a substantial history, starting

with models that were developed to understand the structure and evolution of gas giants

(e.g. Fortney et al., 2007; Marley et al., 2007). As recent surveys have uncovered ever

smaller extrasolar planets, these models have been extended to the new population of

sub-Neptune-sized planets. Studies of such low-mass planets include investigations of

“ocean worlds” (Léger et al., 2004), low-density irradiated exo-Neptunes (Rogers et al.,

2011), and scaling relations between mass and radius for sub-Jovian planets of varying

compositions, including iron, silicates, water ice, carbon compounds, hydrogen/helium,

and various combinations thereof (Seager et al., 2007; Fortney et al., 2007; Valencia

et al., 2007a).

These models have been applied to numerous individual Neptunes and sub-

Neptunes, such as GJ 876d (Valencia et al., 2007b), CoRoT-7b (e.g. Léger et al., 2009;
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Valencia et al., 2010; Jackson et al., 2010), GJ1214b (e.g. Charbonneau et al., 2009;

Rogers & Seager, 2010b; Nettelmann et al., 2011; Valencia et al., 2013), and the Kepler-

11 system (Lopez et al., 2012). As the number of transiting planets with well-determined

masses has grown, these models have been applied to ever-larger samples (e.g. Howe

et al., 2014; Lopez & Fortney, 2014). However, these studies have fallen short of quanti-

fying the relative numbers of planets at each composition in the underlying population,

as such an effort requires correcting for Kepler ’s survey biases and incompleteness and

accounting for the uncertainties in the individual planet parameters. Fortunately, the

statistical tool presented in §5.1.2 and described in detail in §5.3 enable us to take these

crucial considerations into account, and to derive a quantitative composition distribu-

tion for the first time.

Inferring a planet’s bulk composition from its mass and radius is of course

a highly degenerate problem made worse by the possible choices for the number and

type of layers in the planet’s interior (Valencia et al., 2007a; Rogers & Seager, 2010a).

Nevertheless, we can derive some guidance for how to best address this problem and

make progress on answering these population-wide composition questions by noting

a few salient characteristics of the overall low-mass planet population. First, a sub-

stantial fraction of these planets have radii that are just too large to be explained by

rock/ice/water combinations (e.g, Lopez & Fortney, 2014; Rogers, 2015). Second, mass

constraints for a few dozen sub-Neptunes indicate that planets at the same radii can

vary in mass by a factor of ∼ 2−4 (Marcy et al., 2014; Weiss & Marcy, 2014), hinting at

significant compositional variability within this population. Finally, conclusively rock-
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like bulk density constraints have been obtained for a few small planets, most notably

Kepler-36b (Carter et al., 2012) and the highly irradiated Kepler-78b (Pepe et al., 2013;

Howard et al., 2013) and Kepler-93b (Dressing et al., 2014).

Based on these observations, we adopt a few key assumptions which allow us

to move forward with our work to infer statistical (versus individual) compositions for

Kepler ’s sub-Neptune population. First, the existence of measured masses and radii

that can be fit with decisively rocky compositions while others require non-negligible

amounts of hydrogen and helium motivates us to assume that all of these low-mass

planets are a part of the rocky/H+He continuum. By framing the problem in this

way, we are effectively considering the end-member case where all planets contain some

amount of hydrogen gas over a rocky core. Therefore, we approach these planets as

gaseous until their envelope mass fractions are so low that they can be called rocky1.

Of course, this does not mean that “water worlds”, i.e. planets with either

a distinct water layer or with water vapor comprising a substantial percentage of the

gaseous envelope, could not exist. Indeed, if photoevaporation plays a significant role in

shaping this irradiated planet population, planets which are shown to exclusively lie in

the radius-flux “occurrence valley” predicted by Lopez & Fortney (2013) and Owen &

Wu (2013) are likely such water worlds. Nevertheless, with core accretion as a reason-

able proposal for the formation of these sub-Neptunes and with protoplanetary disks

composed primarily of hydrogen, the most straightforward explanation for the substan-

tial compositional variation implied by measured masses and radii is variation in the

1From an astronomer’s perspective, this is determined by the typical error bars on the planets’ radii
in the best-case scenario where the stars are well characterized, which translates to a gaseous mass
fraction of <∼ 0.1%
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accretion and loss of hydrogen (given that water atmospheres have smaller scale heights

than H+He, a somewhat extreme dynamic range in the processes of rock/ice coagu-

lation, disk migration, and water differentiation and evaporation is needed to produce

an entire population of water worlds which match the full range of these observations).

Before venturing too far with philosophical invocations of Occam’s Razor, however, we

acknowledge that a sub-population of planets with water-dominated atmospheres could

very well exist. We will investigate this idea in future work, but first need to lay our

groundwork for a statistical treatment of planet compositions using the simpler scenario

that we assume here.

With the postulate that gaseous envelopes tend to dominate the non-rocky

portion of the planet’s structure, we can adopt a two-component interior structure and,

for now, set aside the problem of compositional degeneracy that arises from models with

three or more layers. Even so, a large amount of theoretical uncertainty in the intrinsic

luminosity of these planets remain. Fortunately, coupling interior structure models to

atmospheric radiative transfer models (e.g. Fortney et al., 2007; Guillot, 2010) enables

tracking of the thermal cooling of a planet’s interior as it ages, eliminating the need

to marginalize over the internal energy (Lopez et al., 2012; Lopez & Fortney, 2014).

When applied to highly irradiated sub-Neptunes as done in Lopez & Fortney (2014),

these thermally evolving models result in radii that are more sensitive to the fraction of

a planet’s mass that is in a hydrogen and helium envelope than to the total mass. This

has significant implications, as mass measurements are not needed to get a sense for this

composition parameter, and the information content in the Kepler radius distribution
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can be maximally leveraged for such studies.

5.1.2 Statistical Treatment of Planet Populations

The population characterization studies outlined in §1.3 use a range of statis-

tical techniques, including the intuitive yet idealized inverse efficiency method (Howard

et al., 2012; Petigura et al., 2013); linear regression on binned, mean estimates of very

uncertain, intrinsically dispersed individual points (Weiss & Marcy, 2014); Monte Carlo

approaches (Wolfgang & Laughlin, 2012; Fressin et al., 2013); maximum likelihood that

incorporates survey incompleteness (Youdin, 2011; Tremaine & Dong, 2012; Dong &

Zhu, 2013); and non-parametric kernel density estimation (Morton & Swift, 2014). Each

of these studies treat error in the observed quantities of individual planets differently,

but none incorporate them in a way that produces rigorous posterior estimates of the

population parameters of interest. Given that the goal of such population studies is to

characterize the population given the observed data, the quality of this data should play

a large role in the inference of the population parameters.

Hierarchical Bayesian modeling (HBM) is very naturally suited to this problem,

and has been in use for decades by many fields, including bioinformatics and political

science, whose key science questions involve inferring characteristics of a population from

noisy observations of individual members. The HBM framework is very general, and

its usefulness extends to a number of commonly encountered problems in astronomy;

we refer the reader to Loredo (2007) and Loredo (2013) for a discussion of multi-level

modeling in a general astronomical context, and to §5.3 for an overview of its capabilities

for the science goals of this work.
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The promise that HBM holds for exoplanet population studies has only recently

been realized. The first instance of HBM in the exoplanet literature is Hogg et al. (2010);

they derive an importance sampling algorithm which incorporates posterior samples that

have already been computed for individual planets into inferences about the population,

and they apply this algorithm to the planetary eccentricity distribution. Foreman-

Mackey et al. (2014) and Rogers (2015) use this algorithm to infer the occurrence

rate of planets as a function of period and radius, and to infer the radius at which

super-Earths transition from gaseous to rocky compositions, respectively. This work,

on the other hand, is the first study to perform full hierarchical Bayesian modeling

where simultaneous inferences on both the population and the individuals are made;

the details are laid out in §5.3.4 - 5.4.2.

In this chapter we present the first quantitative distribution of sub-Neptune

compositions, which we define as the fraction of a planet’s mass that exists in a hydrogen

and helium envelope around an Earth-like rocky core that can vary in mass. In §5.2,

we describe how the Kepler planet candidates sample used for this work was selected.

In §5.3 we explain what hierarchical Bayesian modeling is and detail the specifics of

the model that we use to obtain the sub-Neptune composition distribution presented in

§5.4. We discuss the implications of these results in §5.5, and conclude in §5.6.

5.2 Using the Kepler Objects of Interest

The composition distribution that is the subject of this work is solely con-

strained by the Kepler planet candidates and their radius distribution; no additional
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follow-up observations, such as radial velocity measurements, were used to obtain these

results. As discussed in §5.1.1, this simplification is enabled by the theoretical discovery

of Lopez & Fortney (2014), which found that when the thermal evolution of a rock-

dominated body is coupled with an internal structure model of its gaseous envelope, its

radius is primarily determined by the mass fraction of that envelope (we denote this

quantity as fenv). The construction of the Kepler Objects of Interest (KOIs) catalog

that we use here is detailed in §1.2.

5.2.1 Selecting a Complete Subsample

As described in §1.2.2, all statistical surveys, and especially those which en-

deavor to obtain quantitative comparisons with theory, must account for the survey

reliability and completeness. We detail those efforts here. To select our sample, we be-

gin with the cumulative Kepler Objects of Interest (KOI) table available at the NASA

Exoplanet Archive (Akeson et al., 2013), which at the time of access (December 2, 2013)

consisted of the Q1-12 catalog (Rowe et al., 2015), a heterogenous list of KOIs identi-

fied in the first 12 quarters or less of Kepler data. The heterogeneity arises from the

fact that, in general, the higher signal-to-noise (S/N) events are identified with fewer

data and a less mature vetting process (overviewed in §1.2). Furthermore, the reported

planet parameters in the cumulative catalog are derived from different total amounts of

data.

Even though this list does not yet represent the uniform sample that is ideal

for statistical studies, it is the best-knowledge catalog to date. Uniformity in planet

parameters, if not in the planet candidate (PC) disposition itself, can be improved by
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matching the KOIs to the latest Threshold Crossing Events (TCEs) (Tenenbaum et al.

2014; see §1.2 for a discussion of the differences between these lists; vetting for the Q1-16

planet candidate catalog had not yet started at the time of this analysis). Matching Q1-

12 PCs to Q1-16 TCEs also ensures that the planet parameters used in our analysis are

those derived with the best-knowledge stellar parameters: the Q1-16 stellar properties

are described in Huber et al. (2014), hereafter referred to as Hub14.

Starting with the 3601 KOIs listed as PCs in the Q1-12 catalog, we retain

3322 PCs whose stars have a Q1-16 TCE within 1% of the PC period P and an epoch

modulo P within 0.05 ∗P days of the PC epoch. Half of the discarded PCs do not have

any Q1-16 TCEs identified for that target star. This could be due to the pipeline’s mis-

taken removal of short-period, high-S/N transits via the narrow-band oscillation filter

described in Tenenbaum et al. (2014), or to strong transit timing variations (TTVs),

or to PCs that are actually false alarm detections. The other half of the discarded

PCs with non-matching periods and epochs can also be explained by TTVs or false

alarms, or by the more common circumstance where the pipeline identifies a harmonic

or sub-harmonic of the true transit signal (Tenenbaum et al., 2014).

In this work we characterize the compositions of sub-Neptune planets, so we

limit ourselves to the 2572 PCs with 1 R⊕ < Rpl < 4 R⊕. Because we are using the Q1-

16 TCE parameters, these radii are derived from the Q1-16 data using the Q1-16 stellar

parameters of Hub14. The remainder of our sample cuts arise from concerns about the

completeness of this sub-Neptune sample. Because our analysis method (overviewed in

§5.3, detailed in §5.3.4) automatically folds the shape of the PC radius distribution into
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our result on the composition distribution of sub-Neptunes, we must take precautions to

ensure that this PC radius distribution is as close to the true planet radius distribution

as possible. Figure 5.1 shows the radius distribution of our final sample compared with

the total distribution of Q1-12 PCs. Per the discussion in §1.2.2, we expect that the

full sample is less complete at smaller radii; the black points, which denote the effective

completeness correction made by choosing a complete subsample, illustrate that this is

indeed the case. Thus, the cuts described below are effective in minimizing the detection

biases present in the larger catalog.

To define a host star sample around which the detection of sub-Neptune planets

should be complete, we use the standard S/N calculation for a transiting planet (see,

for example, Wolfgang & Laughlin 2012) and Kepler ’s detection criteria of 7.1σ. We

find that a R? < 1.2 R� star with noise < 100 ppm on transit duration timescales

that had been observed continuously for three years should be complete for planets

with P < 25 days and Rpl > 1.2 R⊕. This radius cut encompasses the vast majority

of planets which are conservatively expected to still have a gaseous envelope, and so

preserves completeness of the planets which contribute to our composition distribution.

We therefore restrict our sample to main-sequence host stars (log(g) > 4.0) with R? <

1.2 R� and a CDPP value that when scaled to the duration of the planet’s transit is

less than 100 ppm. We further require that the host star have been observed for all

12 quarters. With the final cut on period, we retain a sample size of 215 sub-Neptune

sized planets within ∼ 0.15 AU of their host stars (Figure 5.1).

Although this careful selection of the host star sample accounts for detection
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Figure 5.1: Radius distribution of our subsample (blue; N = 215) of sub-Neptune planet
candidates (PCs) compared with the total distribution of Q1-12 PCs in this size range
(red; N = 2572). Detection biases cause fractionally fewer small planets to be found,
especially at longer periods. Carefully restricting the parent star sample and imposing
a period cut, as was done to create the subsample, can mitigate these biases (see §5.2.1
for details). The black points corresponding to the right y-axis quantify this mitigation,
showing the fraction of PCs in that radius bin from the total Q1-12 catalog which made
it into our more complete subsample.

bias, pipeline incompleteness is still a concern. To assess how much of an effect this

could have on our results, we scale the Q1-16 transit model SNRs of our Q1-12 sample

to the time baseline over which they were detected, and display the results in Figure 5.2.

We note that only 15% of our sample has SNR < 15, where pipeline incompleteness

becomes significant; of these, 95% have Rpl < 1.6 R⊕, which we show in §5.5.3 are

most probably rocky given our “best-fit” composition distribution. Therefore, pipeline

141



incompleteness does not affect the distribution of gaseous mass fractions that we infer

from Kepler ’s irradiated sub-Neptune population (§5.4.1).
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Figure 5.2: Distribution of the Q1-16 signal-to-noise ratios of the majority of our sample,
scaled to the Q1-12 detection baseline (14 PCs have scaled SNR > 100 and are not
displayed). 32 PCs have SNR < 15, where pipeline incompleteness becomes significant;
of these, two have Rpl > 1.6 R⊕. Because only ∼ 1% of our sample suffers from pipeline
incompleteness while having nonzero gaseous envelope mass fractions, our composition
distribution (§5.4.1) is not affected by this otherwise problematic sample bias.

5.3 Methods: Characterizing Planet Compositions via Sta-

tistical Modeling

The goal of this work is to understand the range of gaseous envelope mass

fractions that Kepler ’s super-Earths and sub-Neptunes can possess. In this section,
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we motivate why hierarchical Bayesian modeling (HBM) is such a natural approach

to this problem, discuss some of its advantages over other methods, and detail the

specific model that we use to infer the sub-Neptune composition distribution. Due to

the limited use of HBM in the exoplanet literature we spend significant time explaining

the reasons, context, and application of this choice, but for the hurried reader we provide

the following summary:

• Hierarchical Bayesian modeling is the natural choice for constraining the popu-

lation distributions of exoplanet properties (such as compositions or radii), when

those properties are either unobserved (compositions) or possess significant errors

(radii).

• HBM is also the natural choice when the priors on individual exoplanet properties

are expected to have an intrinsic scatter instead of one true value, where the

scatter is due to some physical variation among the population and is of scientific

interest.

• HBM provides posteriors on both the population parameters (e.g., the mean of

the composition distribution) and on the individual parameters (e.g. an individ-

ual planet’s composition), thereby enabling simultaneous inference on individual

planets and the population as a whole.

• By relating individuals to each other through this hierarchical framework, HBM

provides posterior estimates of individual exoplanet properties which have smaller

variance than if multiple individual Bayesian analyses were performed indepen-
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dently. This is called “shrinkage” and is illustrated in §5.4.3.

• HBM is a straightforward extension of regular Bayesian modeling, requiring only

the definition of conditional probability and a slight shift in interpretation, and

so uses the same basic computational algorithms such as Markov Chain Monte

Carlo.

• As with all Bayesian analysis, HBM enables prediction of future observations by

marginalizing the likelihood over the posterior distributions. We present the sub-

Neptune posterior predictive composition distribution in Figure 5.5.

The discussion below details the application of hierarchical, or multi-level,

modeling to exoplanet compositions; for a more general discussion of the past use and

future promise of multi-level modeling in astronomy, we refer the reader to Loredo (2007,

2013).

5.3.1 Choosing an Appropriate Statistical Framework

To understand why we have chosen HBM to solve this problem, we must

first understand how these planets’ compositions relate to the quantities that Kepler

measures. Most simply, a sub-Neptune’s gaseous mass fraction sets its radius, as Lop14

showed that these planets’ compositions dominate over other factors in determining their

size; the radius, in turn, is primarily derived from the depth of the transit signal, which is

the quantity that Kepler directly observes. In practice, however, several other quantities

become important to include in order to accurately infer planetary compositions from

their transit parameters; the relationships between them for a single planet candidate
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are shown in Figure 5.3.

The hierarchical structure of this problem is immediately apparent. Having

such a multi-tiered relationship between relevant quantities does not necessarily require

a hierarchical Bayesian framework, however. Simple inversion of the problem and stan-

dard error analysis is sufficient if the relationships are deterministic (that is, they can

be summarized as a function that maps one set of input values onto one output value)

and if the values of the quantities themselves are well known with errors that are either

small or well-behaved (i.e. symmetric and uncorrelated).

For the problem outlined in Figure 5.3, the relationships could indeed be de-

terministic (but see the discussion about likelihoods below and the full problem outlined

in Figure 5.4 and Equations (5.8) - (5.9)). On the other hand, the values of many of the

quantities in Figure 5.3 are neither well known nor are their uncertainties well-behaved.

For example, the Kepler pipeline described in §1.2 produces biased and poorly con-

strained estimates for impact parameter b (Rowe, private communication). Even more

problematic is the dependence of these quantities on stellar parameters: Hub14 illus-

trates that the current state of the observations of Kepler ’s target stars leads to large,

asymmetric uncertainties on R? and M?, and can even make them multimodal (see Fig-

ure 8 of that paper). As a result, the envelope fractions fenv cannot be straightforwardly

calculated from the observed transit depths δ under the assumption of small errors, and

a more sophisticated analysis is warranted.

To incorporate our observational uncertainty, we must relax the requirement

of deterministic relationships and allow probabilistic, or stochastic, relationships within
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Figure 5.3: The relationships between the quantities that Kepler observes (gray ellipses)
and the quantity of interest in this work (highlighted in yellow). This diagram represents
the flow of information for a single planet candidate. First-order relationships, i.e. those
that dominate the value of the resulting quantity, are denoted as solid lines whereas
second-order relationships are represented by dashed lines. Note that the mapping from
the second line to the planet radius is given by the models of Lop14. These quantities
are defined as follows:

Teff = effective temperature of host star
P = period
e = eccentricity
M? = mass of host star
Mpl = total mass of planet
fenv = fraction of Mpl existing in a gaseous H+He envelope
F = stellar flux incident on the planet
tpl = age of planet
b = impact parameter
Rpl = radius of planet
R? = radius of host star
δ = transit depth

the structure of Figure 5.3. This is accomplished by computing the likelihood function,

which describes how probable the data are under their measurement uncertainty, given
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different values for the model parameters. Choosing the appropriate likelihood function

requires knowledge about how the measurement errors behave; often it is assumed that

they follow a Gaussian distribution, meaning that the measured values are normally

distributed around the true value. Answering the question of interest, i.e. “what is

the gaseous envelope mass fraction of planet X”, then involves inference, where one

identifies the parameter values which “best fit” the data.

“Best fit” parameter values can be found by maximizing the likelihood function

directly, which gives an estimate of the “true” value exhibited by nature. Alternatively,

by shifting one’s interpretation of the likelihood to allow for uncertainty in the true

parameter values, one can combine the likelihood with some prior information to create

a posterior distribution of likely parameter values. In practice, the former method of

maximum likelihood (ML) often manifests as calculating χ2, which requires the afore-

mentioned assumption of normally distributed errors (note, however, that ML can be

performed for any arbitrary likelihood function, by solving for the parameter values

at which such a likelihood is maximized). In contrast, the latter method of Bayesian

inference usually involves Markov Chain Monte Carlo (MCMC) simulations, wherein

a sequence of posterior probabilities is numerically computed in a way that optimally

explores the range of parameter values allowed by the data.

While the choice between using ML and Bayesian inference is often a matter of

philosophical preference (see Loredo 2013 for an in-depth discussion on the philosophical

differences between frequentist and Bayesian approaches), ML has the strongest com-

putational advantage over Bayesian methods when one has no prior information and
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when the likelihoods are easy to write down, analytically tractable, and do not involve

too many parameters. In that case, the matrix inversion required to find the best-fit

values can be performed quickly and efficiently, and the confidence intervals in those

best-fit values can be analytically computed.

Unfortunately, such an analytic treatment is not possible for the problem we

endeavor to solve in Figure 5.3, given the necessarily numerical calculation of the stellar

parameters and their errors, which are non-Gaussian. In such a situation, ML would

involve computing likelihoods on a grid of parameter values, and error bars would be

interpreted as the range of parameter values which enclose the maximum likelihood

estimate for 68% of the datasets. Not only is the latter task difficult to do with a sin-

gle dataset, but this approach is much less computationally efficient than a Bayesian

treatment involving MCMC, as the Markov Chain spends less time exploring parameter

space that has low probability of matching the data. This computational consideration,

in combination with the realization that a Bayesian approach is better suited to our

problem, where we only have a single list of planet detections from Kepler and signif-

icant uncertainty about the true physical parameters of the planet population, guides

our choice of a Bayesian framework for this study. In doing so, we also enable the in-

corporation of prior information, which can naturally be extended into the hierarchical

structure appropriate for this problem, as explained in §5.3.3.

5.3.2 Applying Bayes’ Theorem

The basic Bayesian framework is readily summarized with the following inter-

pretation of Bayes’ Theorem:
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p(θ|X) =
p(X|θ)p(θ)

p(X)
, (5.1)

where θ is the set of parameters that define the model (i.e. the quantities circumscribed

by ellipses in Figure 5.3), X is the set of data values (i.e. the quantities circumscribed

by rectangles in Figure 5.3), and p(x|y) denotes the probability distribution function of

quantity x at a given value of quantity y (in other words, the probability of x condi-

tional on y). Inference occurs via the posterior distribution p(θ|X), which yields the

probability of various parameter values given the data; the “best fit” values can be

the mode, median, or some other central statistic of this distribution. Computing the

posterior requires specifying the likelihood p(X|θ) as described above and the prior

distribution p(θ), which reflects previous information about how intrinsically likely dif-

ferent parameter values are; the normalizing constant p(X) can be ignored when one

uses MCMC to compute the posterior numerically, as the core of the MCMC algorithm

involves computing posterior probability ratios within which this constant cancels.

To apply this framework to our problem, we note that transit depth δ is our

primary observable quantity, so we set X = {δ}. θ therefore denotes the rest of the

unobserved quantities in Figure 5.3. A full Bayesian treatment would require specifying

the joint prior probability function p(Rpl, R?, b,Mpl, fenv, F, e, Teff ,M?, tpl) along with

our likelihood p(δ|Rpl, R?, b,Mpl, fenv, F, e, Teff ,M?, tpl), but in practice the varying lev-

els of importance in the relationships between the different quantities, as denoted by
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the dashed vs. solid lines in Figure 5.3, allow us to simplify the problem. Accordingly,

we hold constant the values of parameters that are related to a second-order quantity,

thereby setting P to the observed value, e = 0,2 and Teff and M? to the best-fit values

determined by Hub14. We also set to fiducial values second-order parameters such as

b(= 0) and tpl(= 5Gyr) that are not well constrained by the data.

With these modifications, our prior probability has simplified to

p(Rpl, R?,Mpl, fenv, F ), but still has a nontrivial functional form given the hierarchical

dependence between the parameters. Fortunately, we can put this intrinsic structure

to use: rather than specify one distribution containing all of these parameters, we

instead use the definition of conditional probability to derive a joint prior probability

distribution in terms of conditional distributions. This definition states that

p(x, y) = p(x|y)p(y), (5.2)

where p(x, y) is the joint probability distribution of x and y (i.e. it states the proba-

bility of both of those x and y values occurring), p(x|y) is the conditional probability

distribution of x given y (i.e. at a set value of y, it states the probability of an x value),

and p(y) =
∫
p(x, y)dx is the marginal probability distribution of y (i.e. it states the

probability of the y value occurring under all conditions). Therefore, we can split our

joint prior probability distribution into a series of conditional and marginal distributions

as appropriate given the structure of our problem:

2For these small planets which don’t have measurable occultations and which yield relatively low
SNR transits, individual eccentricities are not well constrained by the transit data alone.
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p(Rpl, R?,Mpl, fenv, F )

= p(Rpl|R?,Mpl, fenv, F ) (5.3)

× p(R?|Mpl, fenv, F )p(Mpl, fenv, F )

= p(Rpl|Mpl, fenv, F )p(R?)p(Mpl)p(fenv)p(F ).

Note that in simplifying the right-hand side we have assumed that Mpl, fenv, and F are

independent of each other, that R? is independent of Mpl, fenv, and F , and that the

true, intrinsic radius of the planet Rpl is independent of R?; this is also reflected in the

structure of Figure 5.3. The usefulness of this framework is that such dependencies can

be effortlessly included in subsequent analysis should there be good reason to expect

that they exist or are important.

To make any further progress, we must specify what functional forms these

prior probabilities should take. p(R?) is the distribution of allowed radius values for

the host star, and is equivalent to the likelihood numerically calculated by Hub14 after

it has been marginalized over all other stellar parameters; inclusion of this distribution

among our prior information is how we are able to account for uncertainties in the stel-

lar parameters. p(Rpl|Mpl, fenv, F ) represents the Lop14 sub-Neptune internal structure

models. Because these models map a planet’s mass, envelope fraction, and incident flux

to a single radius value, this probability distribution is actually a delta function; this
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is how we allow for deterministic relationships in our probabilistic model. Due to the

simplifying choices we made above, we have also forced p(F ) to be a delta function.

Implicit marginalization over these last two parameters with delta function probability

distributions then allows us to write:

p(Rpl, R?,Mpl, fenv, F ) = p(R?)p(Mpl)p(fenv), (5.4)

where Rpl will show up in the likelihood as a deterministic function of Mpl, fenv, and

F .

This leaves specifying p(Mpl) and p(fenv). First we address planet mass: while

the result of Lop14 — that sub-Neptune radii are relatively insensitive to their masses

compared to the effect of the gaseous envelope mass fractions — is what inspired this

work, considering the planets’ mass is still important for the smallest envelope fractions

and thus for the posited transition between gaseous and rocky planets. It is therefore

necessary to retain consideration of the planet masses for this study. Unfortunately, we

do not have mass measurements for every individual planet in our complete subsample

of Kepler ’s small planet candidates, and so we cannot specify a per-planet probability

distribution for Mpl as we did for R?. However, we do have an idea of the mass dis-

tribution of the low-mass planet population from radial velocity surveys. Therefore, we

can base our individual planet mass prior on the population distribution of masses; if

we follow the RV surveys and choose a power law that is parameterized with the index
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α, then:

p(Mpl) =

∫
p(Mpl|α)p(α)dα

= C

∫
Mαp(α)dα. (5.5)

Parameterizing the prior of an individual quantity based on the distribution within the

population is exactly what makes this particular Bayesian formalism hierarchical, and

is why we have turned to HBM to solve this problem.

5.3.3 Hierarchical Bayesian Modeling

Mathematically, the general framework of HBM is a deceptively simple adjust-

ment to Equation 5.1:

p(θ,β|X) =
p(X|θ,β)p(θ|β)p(β)

p(X)
, (5.6)

where the difference between the set of individual parameters θ and the set of population

parameters β, referred to as “hyperparameters”, has been made explicit. Nevertheless,

this rewrite, which is based only on the definition of conditional probability, makes

a substantial difference in the interpretation of the problem, as one can now group

individuals into populations, which both facilitates the characterization of the individual
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and allows the individual data to inform the population hyperparameters. HBM thereby

allows simultaneous inferences on both the parameters of the individual and of the

population.

That said, HBM is not always necessary to answer the question that has been

posed. In particular, the hyperparameters may not always be of interest, in which case

they can be treated as “nuisance parameters” and marginalized over, as Equation 5.5

implies. Therefore, many hierarchical structures such as that in Figure 5.3 do not nec-

essarily need an HBM treatment. The aspect of our problem which does require HBM

is the specific question we have asked regarding compositions: because we want to infer

the population distribution of compositions, we are interested in the analogous hyper-

parameters for fenv, and need the posterior to contain their distribution. Only HBM

can provide such a posterior that incorporates both the parameters of the individual

planets and the population hyperparameters.

Applying this general framework specifically to fenv means that we replace

p(fenv) with p(fenv|µ, σ)p(µ, σ), where µ and σ are the hyperparameters characterizing

the composition distribution. The combination of computational convenience, the need

for a distribution that can span several orders of magnitude, and the intuition that there

should be fewer sub-Neptune planets with high envelope fractions leads us to choose a

lognormal distribution for fenv (see §5.5.1 for an in-depth discussion of this choice), so

that µ and σ are the mean and standard deviation of the population of log(fenv) values.

This distribution does not factor in the expectation that significantly irradiated

planets should have lost their envelopes, which we expect given the well-constrained
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rocky compositions of Corot-7b (Jackson et al., 2010; Valencia et al., 2010), Kepler-10b

(Batalha et al., 2011; Kurokawa & Kaltenegger, 2013), and Kepler-78b (Pepe et al.,

2013; Howard et al., 2013). Ignoring the physics of evaporation could therefore lead

to an unrealistic composition distribution for these close-in planets. That said, the

photoevaporation of sub-Neptunes is an active area of theoretical research (e.g. Owen

& Jackson 2012; Lopez et al. 2012; Lammer et al. 2013), and so we err on the side

of a simple yet theoretically motivated prescription to arrive at a realistic result. In

particular, we implement the mass loss threshold of Lopez & Fortney (2013), which is

a scaling law for the incident flux a planet would need to have received from its host

star to have lost half of its initial H+He envelope after several Gyr (Fthresh); it is based

on the assumption of energy-limited hydrodynamic escape and depends primarily on

the mass of the planet’s core, to a power that varies slightly depending on the planet’s

composition. We model this irradiated sub-Neptune population by assigning a rocky

composition (fenv = 0) to a planet if

F > Fthresh = (Mcore)
γ , (5.7)

where F is the incident flux on the planet from its host star. Otherwise, the planet has

a non-zero fenv which contributes to constraining the composition distribution. Given

the theoretical uncertainties in this treatment of photoevaporation, we also allow γ to

vary, thereby adding a fourth hyperparameter to our model.
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5.3.4 Our Hierarchical Model

When written in the context of Bayes’ Theorem, our full statistical model is

the following:

p(θ,β|X)

∝
N∏
i=1

{
p(δi|σδ,i, Rpl,i, R?,i,Mcore,i, fenv,i, Fi, α, µ, σ, γ)

}
×

N∏
i=1

{
p(R?,i)p(Mpl,i|α)p(fenv,i|µ, σ)

}
× p(α)p(µ)p(σ)p(γ), (5.8)

where X = {δi, σδ,i},θ = {Rpl,i, R?,i,Mcore,i, fenv,i, Fi} and β = {α, µ, σ, γ} are defined

in the caption of Figure 5.4 and in the above text, and we are now considering all of

the planet candidates, with sample size N=215. Note that the normalizing constant

p(X) has not been written down, necessitating the expression of proportionality, and

that we have assumed that all of the hyperparameters are independent of each other.

To illuminate how this follows Bayes’ Theorem, we point out that the first line of this

equation is the posterior, the second line is the likelihood, the third line contains the

prior distributions for the individual parameters, and the fourth line contains the priors

on the hyperparameters.

Needless to say, this equation is unwieldy, as is the case with most hierar-

chical models. Graphical representations are therefore more often used to succinctly
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communicate the problem; the graphical model corresponding to Equation 5.8 is shown

in Figure 5.4. However, neither equation nor figure contain the details of the various

probability distributions, and so we introduce another, more informative way of writ-

ing down our hierarchical model. In what follows, the quantities on the left-hand side

are sampled from the distributions on the right-hand side; in other words, “q ∼” is

shorthand for “p(q) =” where p(q) is the probability distribution of the quantity q. The

parameters which directly specify each probability distribution are located after the “|”:

δi|σδ,i,θ,β ∼ Normal
(
δi

∣∣∣(Rpl,i/R?,i)2, σ2δ,i)
Rpl,i|Mcore,i, fenv,i, Fi,β = g(Mcore,i, fenv,i, Fi, γ)

R?,i ∼ Gamma
(
R?,i

∣∣∣ai, bi)
fenv,i|µ, σ ∼ LogNormal

(
fenv,i

∣∣∣µ, σ)
Mcore,i|α ∼ Pareto

(
Mcore,i

∣∣∣− (α+ 1), 0.5
)

µ ∼ Uniform(−3.5,−1)

log(σ2) ∼ Uniform(−4, 2)

γ ∼ Uniform(1, 4)

−(α+ 1) ∼ Beta(−(α+ 1)|2, 2) (5.9)

Equation 5.9 shows the details of our hierarchical Bayesian model, with the

likelihood of the transit depth given the radius ratio and the transit depth measurement

error in the first line; the interior structure models of Lop14 which map various planet
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Figure 5.4: The graphical representation of our final hierarchical model (see Equation 5.9
for details). The hyperparameters, i.e. those which define population-wide distributions,
are located outside the rectangle (called a “plate”), which represents the structure of
individual parameters and data that is repeated for all of the planets in our sample (i =
1, ..., N=215). The yellow parameters are of interest in this work; they are constrained
by the observed data (gray) through MCMC simulations (Section §5.3.5).

Data (X):
δi = modeled transit depth
σδ,i = transit depth uncertainty

Parameters (θ):
Mcore,i = mass of Earth-like rocky core
fenv,i = fraction of total mass in H+He envelope
Fi = incident stellar flux
Rpl,i = planet radius
R?,i = stellar radius

Hyperparameters (β):
α = index of the Mcore,i power law distribution
µ = mean of the fenv,i lognormal distribution
σ = standard deviation of the fenv,i lognormal
γ = exponent of the envelope mass loss threshold
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properties to radius in the second line; an analytic fit to the marginal Hub14 likelihood

of each host star’s radius in the third line; the priors on the individual planet property

parameters in lines 4 - 5; and the priors on the hyperparameters in lines 6 - 9.

We have followed common practice and assumed a normal distribution for our

likelihood, which is the equivalent assumption that one makes when using χ2. Specifi-

cally this means that we have assumed that the measured transit depth δi is normally

distributed around the “true” transit depth equal to the planet-star radius ratio squared,

with standard deviation set by the error on the transit depth. The internal structure

models are the power-law approximations given in Lop14; we did not use the full grid

of models as the computational cost of interpolating a multi-dimensional grid was pro-

hibitive within JAGS. Although this imposes a factor of ∼ 2 theoretical uncertainty in

our inferred fenv values, the width of the fenv posteriors is still dominated by the sub-

stantial radius uncertainties, and we proceed with the more computationally efficient

choice. Due to similar concerns, we approximated the Hub14 stellar radius likelihoods

that had been marginalized over all other stellar parameters as a gamma distribution

by fitting its parameters a and b to each individual star.

As discussed above, we have assumed a lognormal distribution for the planets’

gaseous envelope mass fractions (see §5.5.1 for an in-depth discussion of this choice),

where µ and σ are the mean and standard deviation of the population of log(fenv) values.

For the planet core masses we also follow convention and use a power-law distribution,

which is known as a Pareto distribution in statistics; it is parameterized by the power-

law index α and a lower limit which we have set to 0.5 M⊕. We have truncated this
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power law so that all Mcore,i < 20 M⊕; this is motivated by both the work of Marcy

et al. (2014), who find that planets in this size range have total masses between the mass

detection threshold and 15-20 M⊕ (see Figure 49 of that paper), and the measurement

of the most massive dense super-Earth found to date, Kepler-10c, at Mpl ≈ 17± 2 M⊕

(Dumusque et al., 2014).

As for the priors on the hyperparameters, we use a uniform distribution for

the “location” parameter µ and a log-uniform distribution for the “scale” parameter

σ2. These distributions are equivalent to Jeffreys prior for these parameters and thus

represent non-informative prior information (note that the uniform distribution is not

always non-informative, especially for scale parameters or under parameter transfor-

mations). For the core mass power law index α, which must be > −1 for the power

law to be proper3, we use previous results from radial velocity surveys (i.e. Howard

et al. 2010) and the intuition that smaller core masses must be more common to limit

0 < −(α + 1) < 1 with diffuse but higher probability density around 0.5 (an index

transformation is needed due to the way statisticians define the Pareto distribution).

This is naturally accomplished with the Beta distribution4 whose parameters have both

been set to 2. Finally, we allow for theoretical uncertainties in the evaporation threshold

power law index by allowing γ to vary under a uniform prior distribution.

3A proper probability distribution cannot integrate to ∞ over its support.
4The Beta distribution is defined as pBeta(x|αB , βB) ∝ xαB−1(1 − x)βB−1 so that pBeta(x|2, 2). ∝

x(1− x)

160



5.3.5 JAGS: MCMC with Hierarchical Models

Having fully specified this hierarchical model and motivated our choices for

specific distributions, we can now run Markov Chain Monte Carlo (MCMC) simulations

to give us posteriors on all of our parameters of interest. Rather than write our own

MCMC sampler, we use JAGS (Just Another Gibbs Sampler5; Plummer 2003), which

was written specifically to analyze hierarchical Bayesian models via MCMC. Its platform

independence and compatibility with the R computing language builds upon the BUGS

project (Lunn et al., 2000), which was historically developed for analyzing hierarchical

models on Windows platforms.

As its name suggests, JAGS uses Gibbs sampling to proceed from step to step

in the Markov chain, which requires the ability to write down the full conditional proba-

bility distribution of each parameter. In practice, JAGS assigns different distributional

families of Gibbs samplers to each parameter based on which sampling method is most

efficient for the families of distributions involved in that region of the hierarchical model.

Many full conditionals are algebraically complicated and become expensive to evaluate,

in which case JAGS implements Adaptive Rejection Metropolis Sampling. The accepted

parameter values are then stored and interpreted as samples from the target posterior

distribution.

To produce the results shown in §5.4, we run our model with 10 chains, each

for 500,000 iterations. The first half of each chain is discarded as “burn-in”, and the

resulting half is thinned by a factor of 250, such that we retain 10,000 posteriors samples

5JAGS code and user manuals can be downloaded at http://sourceforge.net/projects/mcmc-jags/.
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of each parameter. JAGS computes the Gelman-Rubin convergence diagnostic (Gelman

& Rubin, 1992) at run-time; the convergence of our MCMC simulations is analyzed in

§5.4.3.

5.4 Results

Here we present the results of the hierarchical MCMC simulations for the

parameters of interest in this work (highlighted yellow in Figure 5.4).

5.4.1 Population Composition Distribution

Figure 5.5 shows the results for the top-most level of our model (see §5.3.4):

the population-wide composition parameters. More specifically, the left panel displays

the marginal posterior distribution for µ and σ; these hyperparameters determine the

mean and standard deviation, respectively, of the population distribution of log(fenv)

values. As fenv denotes the fraction of a planet’s mass that exists in a hydrogen and

helium envelope around an Earth-like rocky core, these parameters set the composition

distribution of Kepler ’s sub-Neptune planet candidates under our assumed internal

structure. The “best-fit” µ and σ values, i.e. the mode of this posterior, are denoted by

the large triangle and correspond to -2.2 dex (≈ 0.7%) and 0.6 dex, respectively; they

were found by performing two-dimensional kernel density estimation on a 50x50 grid

and identifying the grid point with the highest density of posterior samples. This 2D

KDE also gives us the drawn contours enclosing 68% and 95% of the posterior density.

As the points in Figure 5.5 range over the allowed values of every parameter, utilizing
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all of the posterior samples in the above calculation effectively marginalizes over all of

the other parameters in Figure 5.4.
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Figure 5.5: Left: Marginal posterior distribution for the mean µ and standard deviation
σ of the log(fenv) population distribution, with 68% and 95% contours. The “best-fit”
mean log envelope fraction, denoted by the vertical line at the large triangle, is -2.2
(fenv ≈ 0.007). Right: The posterior predictive composition distribution of Kepler ’s
sub-Neptune planet candidates (solid line), with a 68% coverage band. The peak of this
fenv distribution corresponds to the “best-fit” value of µ, which shows that planets with
1 R⊕ < Rpl < 4 R⊕ and an incident stellar flux low enough to retain a gaseous envelope
are most likely to be composed of ∼ 1% H+He by mass.

To elucidate what the hyperparameter posterior implies for the sub-Neptune

composition distribution, we must map the allowed (µ, σ) values onto fenv space. This is

shown in the right panel of Figure 5.5, where we plot the posterior predictive distribution

of log(fenv) in solid blue. This distribution is computed by drawing (with replacement)

10,000 sets of (µ,σ) values from the posterior in the left panel of Figure 5.5, which

defines 10,000 fenv distributions. From each of these we randomly draw one log(fenv)
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value; combining all of these values into one histogram effectively marginalizes over

the uncertainty in µ and σ and produces the log(fenv) posterior predictive distribution.

To compute the 68% coverage band in light blue6, we draw several thousand log(fenv)

values from each set of (µ,σ), which results in 10,000 log(fenv) histograms. On a bin-by-

bin basis, we then find the range of counts which enclose 68% of the histograms. Note

that this distribution does not include rocky planets; see Figures 5.6, 5.9, and 5.10 for

discussion about the gas-rock transition. Additionally, fenv ∼ 0.1% corresponds to a

gaseous envelope that extends ∼ 0.1 R⊕ above the rocky core, which is below the radius

precision for these planets; the constraints on the distribution for the smallest fenv arise

from the lognormal assumption.

The posterior predictive distribution (right panel of Figure 5.5) illustrates that

the most likely composition for these sub-Neptune planet candidates is ∼ 1% H+He by

mass. This distribution represents the probability that, given the currently observed

planet sample, the next observed planet in our considered size range (1-4 R⊕) will have

a certain envelope fraction. It therefore marginalizes over planetary radius, meaning

that the shape of the observed radius distribution for this complete subsample of planet

candidates is encoded in the shape of the envelope fraction distribution. It is important

to note that this distribution does not predict a planet’s envelope fraction based on its

measured radius; rather, it gives the distribution of envelope fractions over the entire

population of sub-Neptunes. To see how well radius maps to composition for individual

planets, see Figures 5.6 and 5.9.

6The coverage band is analogous to a confidence band in frequentist statistics, albeit with the requisite
difference in interpretation, as it represents parameter uncertainty rather than variation between data
sets.
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5.4.2 Individual Planet Compositions

While Figure 5.5 gives the marginalized population distribution of composi-

tions and so does not facilitate inferences that use knowledge of an individual’s radius,

our hierarchical model enabled us to compute individual composition posteriors for the

215 planet candidates in our complete Kepler subsample. These posteriors are summa-

rized in Table 5.1. Matching an arbitrary Kepler planet’s radius and radius uncertainty7

to those given in Table 5.1 will give, to first order, the range of allowed compositions

for that planet. Note that the radii given here are not exactly the same as the radii

reported at the NExSci Exoplanet Archive, as the latter values do not use the full Hub14

stellar radius likelihood like we do here (also, see discussion about shrinkage in §5.4.3).

Additionally, there will be some variation in composition for individual planets that

are at different periods or that are hosted by stars of different spectral types, as these

parameters do affect composition but to a lesser degree than radius. We include periods

and stellar radii in Table 5.1 for these more detailed comparisons.

Figure 5.6 displays the information in Table 5.1, showing the individual planet

compositions as a function of radius. Points denote the mode of the fenv and Rpl

posteriors, while the lines denote the central 68% coverage interval (C.I.). If more than

half of an individual’s fenv posterior samples are zero, indicating that the stellar flux

incident on the planet breached the mass loss threshold more than half of the time,

we label that planet as “rocky” and give it a triangular symbol. For some of these

planets, the 68% C.I. includes non-rocky compositions; these planets have fenv errors

7Uncertainties are expressed in terms of the coverage intervals which enclose the central 68% of the
marginal posteriors (68% C.I.s).
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Figure 5.6: Individual planet compositions as a function of radius. Points denote the
mode of the fenv and Rpl posteriors, while the lines denote the central 68% coverage
intervals (C.I.s) of each parameter (the two-dimensional C.I.s are actually ellipses that
are covariant along the direction of the Rpl, fenv locus, but for the sake of having all
the points visible we choose to plot the marginal C.I.s as lines). Triangles denote
rocky planets, for which more than half of the fenv posterior samples are zero. Color
corresponds to the flux incident on the planet; we predict that the two planet candidates
that have gaseous envelopes despite incident fluxes F ≥ 400 F⊕ must have massive
rocky cores, likely > 10 M⊕ (KOI 171.01 and KOI 355.01). There is a locus of allowed
compositions and radii, such that planets with Rpl < 2 R⊕ have fenv < 1%, planets
with 2 < Rpl < 3 R⊕ have fenv ∼ 1%, and planets with Rpl > 3 R⊕ have fenv ∼ a few
%.

bars which extend into the gaseous region of parameter space. Color corresponds to

the flux incident on the planet, given the period and the stellar parameters reported in

Hub14; red points denote planets with F ≥ 400 F⊕.
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Table 5.1: Compositions of Individual Sub-Neptune-sized Planets in Sample

KOI # Kepler ID Rpl 68% C.I. P R? fenv 68% C.I.
(R⊕) (R⊕) (days) (R�) (%) (%)

49.01 9527334 3.25 ( 3.08 , 3.57 ) 8.31 1.03 4.0 ( 3.4 , 6.1 )
69.01 3544595 1.63 ( 1.59 , 1.69 ) 4.73 0.92 Rocky ( 0 , 0 )
70.01 6850504 3.05 ( 2.97 , 3.57 ) 10.85 0.92 3.6 ( 3.1 , 6.5 )
70.02 6850504 1.74 ( 1.75 , 2.36 ) 3.70 0.93 0.1 ( 0.0 , 0.6 )
70.05 6850504 0.98 ( 0.92 , 1.18 ) 19.58 0.91 Rocky ( 0 , 0 )
82.01 10187017 2.59 ( 2.52 , 2.74 ) 16.15 0.76 2.1 ( 1.2 , 2.7 )
82.02 10187017 1.37 ( 1.34 , 1.43 ) 10.31 0.77 Rocky ( 0 , 0 )
84.01 2571238 2.47 ( 2.35 , 2.76 ) 9.29 0.86 1.0 ( 0.7 , 2.2 )
103.01 2444412 2.88 ( 2.79 , 3.27 ) 14.91 0.91 2.9 ( 2.3 , 4.9 )
104.01 10318874 2.66 ( 2.57 , 2.81 ) 2.51 0.64 1.7 ( 1.2 , 2.3 )
112.02 10984090 1.30 ( 1.22 , 1.59 ) 3.71 1.06 Rocky ( 0 , 0 )
116.01 8395660 2.46 ( 2.32 , 2.86 ) 13.57 1.02 0.9 ( 0.6 , 2.5 )
116.04 8395660 1.15 ( 1.06 , 1.34 ) 23.98 0.99 Rocky ( 0 , 0 )
139.02 8559644 1.57 ( 1.45 , 1.82 ) 3.34 1.12 Rocky ( 0 , 0 )
148.01 5735762 2.15 ( 2.06 , 2.37 ) 4.78 0.90 0.2 ( 0.1 , 0.8 )
148.02 5735762 3.02 ( 2.92 , 3.33 ) 9.67 0.88 3.5 ( 2.8 , 5.1 )
150.01 7626506 2.28 ( 2.19 , 3.02 ) 8.41 0.85 0.4 ( 0.3 , 3.1 )
153.01 12252424 2.44 ( 2.37 , 2.63 ) 8.93 0.71 1.2 ( 0.7 , 2.0 )
153.02 12252424 2.16 ( 2.09 , 2.32 ) 4.75 0.71 0.3 ( 0.2 , 0.8 )
157.01 6541920 3.12 ( 3.00 , 3.56 ) 13.02 1.09 3.9 ( 3.2 , 6.3 )
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Table 5.1 (cont’d): Compositions of Individual Sub-Neptune-sized Planets in Sample

KOI # Kepler ID Rpl 68% C.I. P R? fenv 68% C.I.
(R⊕) (R⊕) (days) (R�) (%) (%)

157.02 6541920 3.51 ( 3.37 , 4.00 ) 22.69 1.09 6.4 ( 5.6 , 9.8 )
157.06 6541920 2.14 ( 1.99 , 2.33 ) 10.30 1.07 0.2 ( 0.1 , 0.7 )
159.01 8972058 2.37 ( 2.26 , 2.79 ) 8.99 1.05 0.7 ( 0.4 , 2.0 )
159.02 8972058 0.99 ( 0.93 , 1.24 ) 2.40 1.04 Rocky ( 0 , 0 )
161.01 5084942 2.69 ( 2.63 , 2.84 ) 3.11 0.82 1.6 ( 1.2 , 2.2 )
162.01 8107380 2.64 ( 2.48 , 3.47 ) 14.01 1.08 1.5 ( 1.1 , 5.8 )
165.01 9527915 2.66 ( 2.56 , 2.87 ) 13.22 0.81 1.9 ( 1.3 , 2.9 )
166.01 2441495 2.25 ( 2.18 , 2.43 ) 12.49 0.77 0.3 ( 0.3 , 1.3 )
167.01 11666881 1.76 ( 1.74 , 2.63 ) 4.92 1.19 0.2 ( 0.0 , 1.2 )
171.01 7831264 2.39 ( 2.29 , 3.18 ) 5.97 1.18 0.5 ( 0.4 , 3.4 )
171.02 7831264 2.21 ( 1.76 , 2.70 ) 13.07 1.16 0.2 ( 0.0 , 1.7 )
172.01 8692861 2.28 ( 2.18 , 2.71 ) 13.72 0.90 0.5 ( 0.3 , 2.0 )
177.01 6803202 2.22 ( 2.03 , 2.49 ) 21.06 1.14 0.3 ( 0.2 , 1.3 )
180.01 9573539 2.62 ( 2.54 , 2.96 ) 10.05 0.94 1.6 ( 1.2 , 3.0 )
238.01 7219825 2.58 ( 2.48 , 3.03 ) 17.23 1.11 1.5 ( 1.1 , 3.4 )
273.01 3102384 2.09 ( 2.04 , 2.21 ) 10.57 1.08 0.2 ( 0.1 , 0.6 )
280.01 4141376 2.15 ( 2.09 , 2.26 ) 11.87 1.04 0.2 ( 0.1 , 0.6 )
282.02 5088536 1.11 ( 1.08 , 1.19 ) 8.46 1.13 Rocky ( 0 , 0 )
283.01 5695396 2.34 ( 2.25 , 2.61 ) 16.09 1.03 0.8 ( 0.4 , 1.7 )
299.01 2692377 1.42 ( 1.36 , 1.59 ) 1.54 0.94 Rocky ( 0 , 0 )
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Table 5.1 (cont’d): Compositions of Individual Sub-Neptune-sized Planets in Sample

KOI # Kepler ID Rpl 68% C.I. P R? fenv 68% C.I.
(R⊕) (R⊕) (days) (R�) (%) (%)

305.01 6063220 1.79 ( 1.75 , 1.86 ) 4.60 0.76 0.07 ( 0.0 , 0.2 )
306.01 6071903 2.45 ( 2.36 , 2.75 ) 24.31 0.87 1.4 ( 0.8 , 2.6 )
307.01 6289257 1.82 ( 1.56 , 2.01 ) 19.67 1.06 0.06 ( 0.0 , 0.3 )
307.02 6289257 1.19 ( 1.11 , 1.33 ) 5.21 1.04 Rocky ( 0 , 0 )
312.01 7050989 2.11 ( 1.91 , 2.41 ) 11.58 1.16 0.1 ( 0.1 , 0.8 )
312.02 7050989 2.15 ( 1.91 , 2.38 ) 16.40 1.18 0.1 ( 0.1 , 0.8 )
313.01 7419318 2.28 ( 2.19 , 2.50 ) 18.74 0.86 0.5 ( 0.4 , 1.6 )
313.02 7419318 1.92 ( 1.80 , 2.11 ) 8.44 0.86 0.1 ( 0.1 , 0.4 )
314.01 7603200 1.59 ( 1.50 , 1.72 ) 13.78 0.51 0.1 ( 0.1 , 0.3 )
314.02 7603200 1.43 ( 1.35 , 1.54 ) 23.09 0.52 0.08 ( 0.0 , 0.2 )
321.01 8753657 1.42 ( 1.33 , 1.62 ) 2.43 1.03 Rocky ( 0 , 0 )
323.01 9139084 2.27 ( 2.20 , 2.50 ) 5.84 0.89 0.5 ( 0.3 , 1.1 )
327.01 9881662 1.56 ( 1.48 , 1.71 ) 3.25 1.11 Rocky ( 0 , 0 )
333.01 10337258 2.26 ( 2.12 , 2.91 ) 13.29 1.14 0.3 ( 0.2 , 2.6 )
352.02 11521793 2.15 ( 1.79 , 2.57 ) 16.01 0.99 0.2 ( 0.1 , 1.4 )
354.01 11568987 2.59 ( 2.49 , 2.86 ) 15.96 1.04 1.6 ( 1.1 , 2.7 )
354.02 11568987 1.25 ( 1.19 , 1.39 ) 7.38 1.03 Rocky ( 0 , 0 )
355.01 11621223 2.30 ( 2.19 , 2.60 ) 4.90 1.13 0.3 ( 0.2 , 1.1 )
361.01 12404954 1.55 ( 1.48 , 1.76 ) 3.25 0.98 Rocky ( 0 , 0 )
369.01 7175184 1.32 ( 1.18 , 1.71 ) 5.89 1.16 Rocky ( 0 , 0 )
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Table 5.1 (cont’d): Compositions of Individual Sub-Neptune-sized Planets in Sample

KOI # Kepler ID Rpl 68% C.I. P R? fenv 68% C.I.
(R⊕) (R⊕) (days) (R�) (%) (%)

369.02 7175184 1.33 ( 1.15 , 1.67 ) 10.10 1.14 Rocky ( 0 , 0 )
385.01 3446746 2.16 ( 1.91 , 2.59 ) 13.15 1.00 0.1 ( 0.1 , 1.5 )
409.01 5444548 2.61 ( 2.46 , 3.25 ) 13.25 1.04 1.5 ( 1.0 , 4.5 )
568.01 7595157 1.58 ( 1.44 , 2.11 ) 3.38 0.89 Rocky ( 0.0 , 0.2 )
568.02 7595157 1.05 ( 0.96 , 1.38 ) 2.36 0.87 Rocky ( 0 , 0 )
623.01 12068975 1.36 ( 1.31 , 1.41 ) 10.35 1.11 Rocky ( 0 , 0 )
623.02 12068975 1.33 ( 1.29 , 1.39 ) 15.68 1.11 Rocky ( 0 , 0 )
623.03 12068975 1.16 ( 1.14 , 1.23 ) 5.60 1.11 Rocky ( 0 , 0 )
627.01 4563268 2.43 ( 2.34 , 2.86 ) 7.75 1.17 0.8 ( 0.5 , 2.3 )
627.02 4563268 1.42 ( 1.31 , 1.64 ) 4.17 1.16 Rocky ( 0 , 0 )
628.01 4644604 2.22 ( 2.05 , 2.60 ) 14.49 0.97 0.3 ( 0.2 , 1.6 )
632.01 4827723 1.53 ( 1.49 , 2.01 ) 7.24 0.89 Rocky ( 0.0 , 0.2 )
639.01 5120087 2.38 ( 2.20 , 2.94 ) 17.98 1.14 0.5 ( 0.4 , 2.9 )
647.01 5531694 1.68 ( 1.46 , 2.19 ) 5.17 1.11 Rocky ( 0.0 , 0.2 )
650.01 5786676 2.53 ( 2.38 , 2.93 ) 11.96 0.81 1.4 ( 0.8 , 3.1 )
662.01 6365156 2.25 ( 2.10 , 2.50 ) 10.21 1.16 0.2 ( 0.2 , 1.1 )
664.01 6442340 2.04 ( 1.55 , 2.25 ) 13.14 1.05 0.1 ( 0.0 , 0.6 )
664.02 6442340 1.20 ( 1.11 , 1.45 ) 7.78 1.04 Rocky ( 0 , 0 )
664.03 6442340 1.09 ( 1.01 , 1.30 ) 23.44 1.04 Rocky ( 0 , 0 )
665.01 6685609 2.29 ( 2.15 , 2.98 ) 5.87 1.10 0.3 ( 0.2 , 2.6 )
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Table 5.1 (cont’d): Compositions of Individual Sub-Neptune-sized Planets in Sample

KOI # Kepler ID Rpl 68% C.I. P R? fenv 68% C.I.
(R⊕) (R⊕) (days) (R�) (%) (%)

665.02 6685609 1.15 ( 1.05 , 1.75 ) 1.61 1.11 Rocky ( 0 , 0 )
665.03 6685609 1.15 ( 1.02 , 1.68 ) 3.07 1.11 Rocky ( 0 , 0 )
666.01 6707835 2.84 ( 2.73 , 3.10 ) 22.25 1.04 2.9 ( 2.1 , 4.1 )
673.01 7124613 1.76 ( 1.72 , 2.61 ) 4.42 1.14 0.2 ( 0.0 , 1.1 )
691.02 8480285 1.24 ( 1.12 , 1.44 ) 16.23 1.02 Rocky ( 0 , 0 )
692.01 8557374 1.43 ( 1.29 , 1.78 ) 2.46 0.98 Rocky ( 0 , 0 )
692.02 8557374 1.65 ( 1.63 , 2.43 ) 4.82 0.97 0.1 ( 0.0 , 0.8 )
693.02 8738735 2.27 ( 2.09 , 2.80 ) 15.66 1.10 0.3 ( 0.2 , 2.3 )
694.01 8802165 2.87 ( 2.68 , 3.54 ) 17.42 0.94 2.5 ( 2.0 , 6.5 )
700.02 8962094 1.45 ( 1.41 , 2.14 ) 9.36 0.91 Rocky ( 0.0 , 0.3 )
700.03 8962094 1.39 ( 1.30 , 1.94 ) 14.67 0.93 Rocky ( 0.0 , 0.2 )
701.01 9002278 2.26 ( 2.18 , 2.38 ) 18.16 0.66 0.4 ( 0.3 , 1.4 )
701.02 9002278 1.47 ( 1.44 , 1.56 ) 5.71 0.66 Rocky ( 0 , 0 )
704.01 9266431 2.35 ( 2.20 , 2.98 ) 18.40 0.91 0.7 ( 0.5 , 3.5 )
708.01 9530945 2.47 ( 2.38 , 3.29 ) 17.41 1.08 1.1 ( 0.8 , 4.8 )
708.02 9530945 2.21 ( 1.90 , 2.66 ) 7.69 1.11 0.2 ( 0.1 , 1.4 )
709.01 9578686 2.30 ( 2.15 , 2.92 ) 21.39 0.89 0.5 ( 0.4 , 3.1 )
711.02 9597345 1.64 ( 1.49 , 1.82 ) 3.62 1.04 Rocky ( 0 , 0 )
714.01 9702072 2.76 ( 2.68 , 3.17 ) 4.18 0.88 1.8 ( 1.5 , 3.6 )
717.01 9873254 2.09 ( 1.92 , 2.40 ) 14.71 1.11 0.2 ( 0.1 , 1.0 )
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Table 5.1 (cont’d): Compositions of Individual Sub-Neptune-sized Planets in Sample

KOI # Kepler ID Rpl 68% C.I. P R? fenv 68% C.I.
(R⊕) (R⊕) (days) (R�) (%) (%)

719.01 9950612 1.95 ( 1.83 , 2.04 ) 9.03 0.71 0.2 ( 0.1 , 0.5 )
984.01 1161345 3.05 ( 2.97 , 3.26 ) 4.29 0.91 3.1 ( 2.6 , 4.1 )
987.01 7295235 1.40 ( 1.34 , 1.60 ) 3.18 0.92 Rocky ( 0 , 0 )
1002.01 1865042 1.30 ( 1.21 , 1.58 ) 3.48 1.00 Rocky ( 0 , 0 )
1116.01 2849805 1.68 ( 1.49 , 2.03 ) 3.75 1.14 Rocky ( 0.0 , 0.1 )
1118.01 2853446 1.58 ( 1.49 , 2.05 ) 7.37 1.02 Rocky ( 0.0 , 0.2 )
1128.01 6362874 1.15 ( 1.10 , 1.30 ) 0.98 0.88 Rocky ( 0 , 0 )
1150.01 8278371 1.12 ( 1.05 , 1.51 ) 0.68 1.16 Rocky ( 0 , 0 )
1151.01 8280511 1.39 ( 1.29 , 1.53 ) 10.44 0.87 Rocky ( 0 , 0 )
1165.01 10337517 2.29 ( 2.10 , 2.86 ) 7.05 0.94 0.3 ( 0.2 , 2.2 )
1216.01 3839488 1.54 ( 1.49 , 2.17 ) 11.13 1.07 Rocky ( 0.0 , 0.4 )
1245.01 6693640 2.22 ( 2.05 , 2.78 ) 13.72 1.16 0.3 ( 0.2 , 2.0 )
1279.01 8628758 2.18 ( 1.99 , 2.45 ) 14.37 1.00 0.2 ( 0.2 , 1.1 )
1279.02 8628758 1.16 ( 1.08 , 1.41 ) 9.65 1.03 Rocky ( 0 , 0 )
1315.01 10928043 1.55 ( 1.45 , 1.69 ) 6.85 1.14 Rocky ( 0 , 0 )
1379.01 7211221 1.29 ( 1.22 , 1.54 ) 5.62 0.88 Rocky ( 0 , 0 )
1438.01 11193263 1.53 ( 1.36 , 2.24 ) 6.91 1.05 Rocky ( 0.0 , 0.4 )
1529.01 9821454 2.15 ( 1.51 , 2.47 ) 17.98 1.10 0.2 ( 0.0 , 1.1 )
1529.02 9821454 1.23 ( 1.10 , 1.62 ) 11.87 1.08 Rocky ( 0 , 0 )
1531.01 11764462 1.38 ( 1.24 , 1.87 ) 5.70 1.02 Rocky ( 0 , 0 )
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Table 5.1 (cont’d): Compositions of Individual Sub-Neptune-sized Planets in Sample

KOI # Kepler ID Rpl 68% C.I. P R? fenv 68% C.I.
(R⊕) (R⊕) (days) (R�) (%) (%)

1533.01 7808587 1.55 ( 1.32 , 2.06 ) 6.24 1.09 Rocky ( 0.0 , 0.1 )
1534.01 4741126 1.42 ( 1.42 , 2.53 ) 20.42 1.20 0.2 ( 0.0 , 1.3 )
1534.02 4741126 1.02 ( 0.97 , 1.62 ) 7.64 1.13 Rocky ( 0 , 0 )
1606.01 9886661 1.65 ( 1.62 , 1.96 ) 5.08 0.94 Rocky ( 0.0 , 0.1 )
1608.01 10055126 1.55 ( 1.48 , 2.11 ) 9.18 1.05 Rocky ( 0.0 , 0.3 )
1608.02 10055126 1.37 ( 1.26 , 1.59 ) 19.74 1.06 Rocky ( 0 , 0 )
1628.01 6975129 2.61 ( 2.50 , 2.94 ) 19.75 1.13 1.8 ( 1.1 , 3.1 )
1629.01 8685497 1.43 ( 1.31 , 1.71 ) 4.41 1.15 Rocky ( 0 , 0 )
1632.01 9277896 1.37 ( 1.13 , 1.73 ) 4.59 1.15 Rocky ( 0 , 0 )
1738.01 4365645 1.13 ( 1.07 , 1.48 ) 4.17 0.80 Rocky ( 0 , 0 )
1792.03 8552719 1.33 ( 1.26 , 1.50 ) 9.11 1.03 Rocky ( 0 , 0 )
1802.01 11298298 2.43 ( 2.35 , 3.21 ) 5.25 1.09 0.6 ( 0.5 , 3.6 )
1806.02 9529744 1.39 ( 1.25 , 2.18 ) 17.93 1.17 Rocky ( 0.0 , 0.4 )
1806.03 9529744 1.20 ( 1.02 , 1.58 ) 8.37 1.12 Rocky ( 0 , 0 )
1809.01 8240797 2.32 ( 2.12 , 2.88 ) 13.09 1.17 0.3 ( 0.3 , 2.6 )
1809.02 8240797 1.63 ( 1.53 , 2.43 ) 4.92 1.18 Rocky ( 0.0 , 0.7 )
1819.01 9597058 2.03 ( 1.85 , 2.23 ) 12.06 0.73 0.1 ( 0.1 , 0.7 )
1820.01 8277797 1.53 ( 1.45 , 2.52 ) 4.34 0.82 Rocky ( 0 , 1 )
1837.02 10657406 1.22 ( 1.09 , 1.70 ) 1.68 0.94 Rocky ( 0 , 0 )
1850.01 8826168 2.15 ( 2.02 , 2.58 ) 11.55 0.97 0.2 ( 0.2 , 1.5 )
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Table 5.1 (cont’d): Compositions of Individual Sub-Neptune-sized Planets in Sample

KOI # Kepler ID Rpl 68% C.I. P R? fenv 68% C.I.
(R⊕) (R⊕) (days) (R�) (%) (%)

1886.01 9549648 1.64 ( 1.51 , 1.78 ) 5.99 1.12 Rocky ( 0 , 0 )
1893.01 8689793 1.62 ( 1.42 , 1.96 ) 3.56 0.97 Rocky ( 0 , 0 )
1898.01 7668663 1.59 ( 1.49 , 2.24 ) 6.50 1.14 Rocky ( 0.0 , 0.4 )
1899.01 7047922 2.26 ( 2.07 , 2.90 ) 19.76 1.14 0.3 ( 0.2 , 2.7 )
1909.01 10130039 1.47 ( 1.40 , 1.85 ) 12.76 1.02 Rocky ( 0.0 , 0.1 )
1909.02 10130039 1.14 ( 1.08 , 1.38 ) 5.47 1.01 Rocky ( 0 , 0 )
1913.01 9704384 1.44 ( 1.38 , 1.61 ) 5.51 0.95 Rocky ( 0 , 0 )
1916.01 6037581 2.16 ( 1.91 , 2.54 ) 20.68 0.99 0.2 ( 0.2 , 1.5 )
1916.02 6037581 1.51 ( 1.51 , 2.42 ) 9.60 0.99 0.2 ( 0.0 , 0.9 )
1937.01 10190777 1.21 ( 1.15 , 1.29 ) 1.41 0.61 Rocky ( 0 , 0 )
1955.01 9892816 2.18 ( 1.64 , 2.60 ) 15.17 1.17 0.2 ( 0.0 , 1.4 )
1960.01 6949061 2.19 ( 1.56 , 2.54 ) 8.97 1.13 0.2 ( 0.0 , 1.1 )
1960.02 6949061 2.15 ( 1.46 , 2.46 ) 23.22 1.05 0.1 ( 0.0 , 1.2 )
1963.01 10917681 2.23 ( 2.08 , 2.78 ) 12.90 1.02 0.3 ( 0.2 , 2.2 )
1972.01 11253711 2.21 ( 2.06 , 2.80 ) 17.79 1.06 0.3 ( 0.2 , 2.4 )
1979.01 7273277 1.00 ( 0.96 , 1.52 ) 2.71 0.75 Rocky ( 0 , 0 )
2007.02 11069176 1.35 ( 1.29 , 2.32 ) 21.13 1.07 0.1 ( 0.0 , 0.8 )
2011.01 5384079 1.37 ( 1.19 , 1.86 ) 7.06 1.15 Rocky ( 0 , 0 )
2011.02 5384079 1.10 ( 0.99 , 1.57 ) 17.27 1.21 Rocky ( 0 , 0 )
2017.01 8750043 1.28 ( 1.14 , 1.72 ) 2.30 0.87 Rocky ( 0 , 0 )
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Table 5.1 (cont’d): Compositions of Individual Sub-Neptune-sized Planets in Sample

KOI # Kepler ID Rpl 68% C.I. P R? fenv 68% C.I.
(R⊕) (R⊕) (days) (R�) (%) (%)

2026.01 11923284 1.72 ( 1.50 , 2.03 ) 2.76 1.12 Rocky ( 0 , 0 )
2029.01 9489524 1.35 ( 1.37 , 2.00 ) 16.33 0.82 0.07 ( 0.0 , 0.4 )
2032.01 2985767 1.27 ( 1.14 , 1.94 ) 14.08 0.91 Rocky ( 0.0 , 0.2 )
2033.01 2304320 1.31 ( 1.28 , 1.71 ) 16.54 0.67 Rocky ( 0.0 , 0.2 )
2049.01 9649706 1.49 ( 1.31 , 1.93 ) 1.57 1.12 Rocky ( 0 , 0 )
2053.01 2307415 1.55 ( 1.56 , 2.20 ) 13.12 1.09 0.08 ( 0.0 , 0.4 )
2053.02 2307415 1.41 ( 1.30 , 1.64 ) 4.61 1.11 Rocky ( 0 , 0 )
2059.01 12301181 0.98 ( 0.95 , 1.06 ) 6.15 0.79 Rocky ( 0 , 0 )
2087.01 6922710 1.37 ( 1.30 , 1.83 ) 23.13 1.05 Rocky ( 0.0 , 0.1 )
2105.01 8165946 1.44 ( 1.32 , 2.15 ) 6.42 1.07 Rocky ( 0.0 , 0.2 )
2110.01 11460462 1.01 ( 0.99 , 1.73 ) 5.04 1.16 Rocky ( 0 , 0 )
2137.01 9364609 1.35 ( 1.36 , 2.50 ) 14.97 0.91 0.2 ( 0.0 , 1.3 )
2159.01 8804455 1.26 ( 1.15 , 1.50 ) 7.60 1.01 Rocky ( 0 , 0 )
2246.01 9458343 1.43 ( 1.31 , 2.23 ) 11.90 1.05 Rocky ( 0.0 , 0.5 )
2278.01 3342794 2.04 ( 1.80 , 2.32 ) 14.17 1.03 0.1 ( 0.1 , 0.7 )
2278.02 3342794 1.01 ( 0.94 , 1.26 ) 4.92 1.03 Rocky ( 0 , 0 )
2281.01 9221517 0.97 ( 0.90 , 1.23 ) 0.77 0.84 Rocky ( 0 , 0 )
2331.01 12401863 1.23 ( 1.12 , 1.74 ) 2.83 1.09 Rocky ( 0 , 0 )
2333.01 11121752 1.18 ( 1.10 , 1.44 ) 3.93 1.07 Rocky ( 0 , 0 )
2333.02 11121752 1.38 ( 1.13 , 1.54 ) 7.63 1.06 Rocky ( 0 , 0 )
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Table 5.1 (cont’d): Compositions of Individual Sub-Neptune-sized Planets in Sample

KOI # Kepler ID Rpl 68% C.I. P R? fenv 68% C.I.
(R⊕) (R⊕) (days) (R�) (%) (%)

2342.01 10212441 1.15 ( 1.04 , 1.37 ) 15.04 1.00 Rocky ( 0 , 0 )
2389.01 8494617 1.32 ( 1.23 , 1.49 ) 22.92 1.02 Rocky ( 0 , 0 )
2403.01 2142522 1.20 ( 1.10 , 1.60 ) 13.32 1.07 Rocky ( 0 , 0 )
2414.01 8611832 1.10 ( 1.03 , 1.30 ) 22.60 0.85 Rocky ( 0 , 0 )
2443.01 9209624 1.26 ( 1.07 , 1.61 ) 6.79 1.11 Rocky ( 0 , 0 )
2443.02 9209624 1.29 ( 1.06 , 1.56 ) 11.84 1.11 Rocky ( 0 , 0 )
2555.01 5350244 1.24 ( 1.05 , 1.54 ) 12.57 1.17 Rocky ( 0 , 0 )
2559.01 6605493 1.31 ( 1.21 , 1.52 ) 9.31 1.10 Rocky ( 0 , 0 )
2563.01 5175024 1.37 ( 1.28 , 2.27 ) 23.48 1.16 Rocky ( 0.0 , 0.6 )
2675.01 5794570 2.24 ( 1.91 , 2.58 ) 5.45 0.85 0.2 ( 0.1 , 1.3 )
2693.03 5185897 0.98 ( 0.92 , 1.07 ) 6.83 0.68 Rocky ( 0 , 0 )
2711.01 5272233 1.55 ( 1.51 , 2.48 ) 9.02 1.13 0.2 ( 0.0 , 0.9 )
2711.02 5272233 1.42 ( 1.36 , 2.38 ) 17.34 1.09 0.1 ( 0.0 , 0.8 )
2730.01 8415200 1.18 ( 1.05 , 1.61 ) 4.52 1.06 Rocky ( 0 , 0 )
2732.01 9886361 1.13 ( 1.08 , 1.35 ) 7.03 1.15 Rocky ( 0 , 0 )
2732.02 9886361 1.25 ( 1.16 , 1.43 ) 13.61 1.15 Rocky ( 0 , 0 )
2743.01 8095441 1.26 ( 1.17 , 1.88 ) 11.88 0.82 Rocky ( 0.0 , 0.1 )
2906.01 6716545 1.19 ( 1.04 , 1.51 ) 13.91 1.13 Rocky ( 0 , 0 )
2971.01 4770174 0.96 ( 0.93 , 1.48 ) 6.10 1.14 Rocky ( 0 , 0 )
2984.01 7918652 0.98 ( 0.95 , 1.42 ) 11.46 1.13 Rocky ( 0 , 0 )
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Table 5.1 (cont’d): Compositions of Individual Sub-Neptune-sized Planets in Sample

KOI # Kepler ID Rpl 68% C.I. P R? fenv 68% C.I.
(R⊕) (R⊕) (days) (R�) (%) (%)

3020.01 8241079 1.22 ( 1.03 , 1.57 ) 10.92 1.13 Rocky ( 0 , 0 )
3075.01 3328080 0.93 ( 0.93 , 1.49 ) 4.77 0.98 Rocky ( 0 , 0 )
3209.01 7017274 1.34 ( 1.18 , 1.71 ) 11.91 1.12 Rocky ( 0 , 0 )
3301.01 8301878 1.26 ( 1.14 , 2.05 ) 20.71 0.97 Rocky ( 0.0 , 0.3 )
3346.01 11241912 1.26 ( 1.15 , 1.44 ) 14.43 1.05 Rocky ( 0 , 0 )
3384.01 8644365 1.22 ( 1.12 , 1.43 ) 10.55 1.12 Rocky ( 0 , 0 )
3384.02 8644365 1.40 ( 1.31 , 1.64 ) 19.92 1.11 Rocky ( 0 , 0 )
3438.01 6599975 1.27 ( 1.12 , 2.08 ) 14.56 1.17 Rocky ( 0.0 , 0.2 )
3876.01 3440118 2.31 ( 2.16 , 2.89 ) 19.58 1.16 0.4 ( 0.4 , 2.8 )
3880.01 4147444 1.15 ( 1.00 , 1.68 ) 1.80 1.12 Rocky ( 0 , 0 )
4022.01 7733731 1.06 ( 0.95 , 1.44 ) 4.86 1.06 Rocky ( 0 , 0 )
4053.01 1718958 0.98 ( 0.95 , 1.58 ) 1.42 1.10 Rocky ( 0 , 0 )
4320.01 5095082 0.97 ( 0.91 , 1.28 ) 20.66 0.86 Rocky ( 0 , 0 )
4335.01 10730070 1.27 ( 1.10 , 1.70 ) 7.62 1.08 Rocky ( 0 , 0 )
4505.01 8493354 1.27 ( 1.04 , 1.94 ) 18.01 1.20 Rocky ( 0.0 , 0.1 )

Note. — The reported Rpl is the peak of the marginal posterior planet radius distribu-
tion, and the 68% C.I. is the coverage interval which encloses its central 68% probability
region, which is dominated by the stellar radius uncertainties. Note that these are not
exactly the same as the radii reported at the NExSci Exoplanet Archive, as those values
do not use the full Hub14 stellar radius likelihood like we do here. Furthermore, the
two-dimensional C.I.s are actually ellipses that are covariant along the direction of the
Rpl, fenv locus shown in Figure 5.6; for reporting simplicity, the marginal C.I.s are given
here.

5.4.3 Posterior Checks and Convergence

An important part of Bayesian analysis is testing for the convergence of the

MCMC simulations, which we check for in a number of ways. To begin, we compare

the prior distributions for individual planet parameters to their posteriors for a quick

yet illustrative reality check that our hierarchical MCMC simulations are producing

reasonable results. If we have strong prior information about the parameters, then the

hyperparameter posteriors and the structure of the statistical model should preserve

this information via posteriors that are similar in shape and location to the priors.

Figure 5.7 shows this check for the planet radii, which we treat as a parameter
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in our model and have strong prior information for (see Figure 5.4 and Equation 5.9).

On the x-axis we plot the “prior” radius distribution for each planet in our sample8,

which we compute by scaling the Hub 14 stellar radius likelihoods by the observed

transit depth, and on the y-axis we plot the posterior radius distribution that result

from our MCMC simulations. The modes of the distributions are denoted as points,

with the 68% coverage interval spanned by the lines. The color of the points denote the

value of the Gelman-Rubin convergence diagnostic (Gelman & Rubin, 1992) for each

planet’s fenv posterior, which we discuss in greater detail below. The diagonal green

line is the 45◦ line, which we expect all of our individual radius distributions to span if

our model is behaving as required. We immediately see that this is the case, indicating

that our model is incorporating our prior radius information appropriately and that our

posteriors are accurate given our data and its assumed hierarchical structure.

We also see a few salient features of our model manifest in this figure. First,

there is a zone of avoidance between 1.7 and 2.0 R⊕ where the posterior radius distribu-

tions have been pushed to either side of the corresponding prior distributions (but not

unreasonably so, given that each planet has a 68% coverage interval spans the one-to-one

line). This is due to our incorporation of photoevaporation, as with periods < 25 days

it is difficult to retain the tenuous gaseous envelope needed to produce these planetary

radii. Note that the planet radius priors are wide enough that this model feature does

not pose significant problems for inferring a H+He envelope composition for each planet;

however, if the planet parameters were more tightly constrained, as is the case for those

8The input planet radius (Rpl,i) distributions plotted here are not priors in the strictest sense of
the definition, as the stellar radius is actually the quantity that has a distribution determined a priori ;
however, since the transit depth uncertainties are small, the prior Rpl,i distributions can be reasonably
approximated as described here.
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orbiting brighter host stars with spectroscopic follow-up, a radius falling solidly within

this narrow range would be better explained with a water-dominated composition, as

we discuss in §5.1.1.
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Figure 5.7: Comparison of the “prior” planet radius distributions to the posterior dis-
tributions, with convergence diagnostics for the corresponding fenv posterior. The 45◦

line where posterior estimates equal prior estimates is green. Each planet has a 68%
coverage interval that spans the one-to-one line, indicating that our model is behaving
appropriately.

Second, a general feature of hierarchical Bayesian models is evident in Figure

5.7: the posteriors on these individual parameters are much narrower than the priors.

While this is expected for all Bayesian analyses given the role of data in constraining
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posterior estimates from prior information, the hierarchical structure of our problem

contributes to this effect: by relating individuals to each other, HBM provides posterior

estimates of individual exoplanet properties which have smaller variance than if multiple

individual Bayesian analyses were performed independently. This is called shrinkage,

as this effect is achieved by “shrinking” the posterior estimates toward the population

mean (see Loredo 2007 for a more detailed discussion). Indeed, Figure 5.7 shows that

the points above 2.5 R⊕ fall slightly below the one-to-one line, and the points below 2

R⊕ fall slightly above it, as the mean envelope fraction of about 1% roughly corresponds

to a radius of ∼ 2.2 R⊕.

We continue the discussion of convergence with Gelman-Rubin convergence

statistic (R̂) for the individual fenv posteriors. This diagnostic calculates the ratio of

the total variance across all chains in the MCMC simulation to the variance within

individual chains; R̂ within a percent or so of 1 indicates convergence, where each

individual chain probes about the same volume of parameter space as all of the chains

taken together. Most of the individual fenv posteriors have R̂ ≤ 1.01, but there are some

planets whose R̂ values indicate that the MCMC should be run longer. One immediately

notices that these planets have small radii; in fact, every planet with R̂ > 1.01 has a

fenv posterior that spans 0. Given the discrete nature of the switch between rocky and

gaseous compositions, the fact that mixing between fenv chains is worse for the planets

which cross this transition is not a surprise; additionally, we expect R̂ to be biased high

simply as a numerical artifact of representing rocky compositions with fenv = 0, as this

imposes a gap between rocky and non-rocky fenv chains. Noting that the planets with
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rocky compositions do not contribute to constraints on the composition distribution

hyperparameters, we conclude that these R̂ values are not a cause for concern.

Similarly, we must assess the convergence of the composition hyperparameters

in our simulation. The R̂ values for µ and σ are 1.08 and 1.03, respectively. However,

as we see above, R̂ does not always convey the full picture of convergence, so we turn

to other common diagnostics such as trace plots and autocorrelation functions (Figure

5.8, top and bottom rows respectively) to more fully investigate the issue. In the trace

plots, the values of a parameter’s chain is plotted as a function of location along the

chain, with different colors indicating different chains. We see that there is good mixing

between the chains for both parameters, indicating that we have arrived at the stationary

distribution for the joint posterior displayed in Figure 5.5.

The average chain autocorrelation functions further support the convergence of

our simulations, as they quickly reach a low level of autocorrelation. The slightly higher

autocorrelation present in µ explains the slightly higher R̂ calculated for that parameter,

but the difference is not strong enough to be visible in the trace plots. Given that the

mode of the µ posterior distribution has been well established through the mixing of

the existing chains, our conclusion that the most likely sub-Neptune composition is

∼ 1% H+He by mass would not change by running the simulation longer. With such

diminishing returns regarding convergence, we take our (µ,σ) posterior as the stationary

distribution and continue with a discussion of these results.
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Figure 5.8: Graphical convergence diagnostics for our composition hyperparameters µ
(left column) and σ (right column); the first row displays the value of all 10 MCMC
chains as a function of location in the chain (a “trace plot”), while the bottom row
displays the average chain autocorrelation at increasing offsets. Both parameters have
good mixing between the chains and quickly reach a low level of autocorrelation, in-
dicating that we have converged to the stationary distribution for the joint posterior
displayed in Figure 5.5.

5.5 Discussion

The results in §5.4 have numerous implications for characterizing the sizable

sub-Neptune population discovered by Kepler. We discuss several in detail below, but

first we address some of the more constraining choices that we have made in our sta-

tistical model (see §5.3.2 - 5.3.4 for further description and motivation for all of the

assumptions we make).
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5.5.1 Motivation for Salient Model Assumptions

Arguably the most obvious assumption we’ve made other than the rock/H+He

interior structure is that the composition distribution can be reasonably described with

a lognormal distribution. There is currently very little theoretical guidance regarding

the expected shape of this distribution; in the absence of such predictions, we turn to

our driving science questions (see §5.1) to inform this choice. Because we are inter-

ested in characterizing the “typical” sub-Neptune envelope fraction as well as the range

present in the population, the most natural choice is a distribution that straightfor-

wardly parameterizes the mean and variance of a population: a normal distribution. In

addition, we expected a large dynamic range of gaseous envelope fractions, which the

lognormal in particular is able to accommodate. We acknowledge that different choices

for this composition distribution can affect the result we present here, as the particular

parametric form drives the quantitative details of the shrinkage we observe in §5.4.3.

Alternatively, one could completely sidestep this concern by adopting a nonparametric

approach; however, doing so involves solving for a much larger number of free parame-

ters, which simultaneously reduces the predictive power and expands the computational

expense of such a study. Our choice therefore best balances the current demands of our

scientific goals, our computational considerations, and the desire to limit the number of

free parameters in an already fairly complex statistical model. That said, there is no

reason why one could not assume a mixture of lognormals or any other more flexible

distribution in the future with a larger planet sample and more computing power.

We also make several assumptions that are not explicit in our statistical model.
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First, we assume that all of the planet candidates in our sample are true planets. If

we were concerned with an absolute occurrence rate of planet compositions, we would

need to correctly account for the presence of false positives; however, in this work we

are interested in the shape and location of the composition distribution and can safely

ignore the normalization constant needed for occurrence rate studies. For our purposes

it is therefore sufficient to note that the probability of a given planet candidate being a

false positive is roughly constant over our radius range (∼ 5− 10%; see §1.2.2), and so

the presence of false positives are not expected to affect our results.

Second, we do not correct for transit probability, which is acceptable under the

same conditions and for the same reason that we can ignore the false positive probability:

our derivation of the composition distribution, which is a probability density function

by definition, ignores the normalization factor central to occurrence rate studies. How-

ever, this is no longer the case if the planet radius is correlated with period, stellar

type, or eccentricity, which would produce different transit probabilities for different

radii. Of course, there are a number of reasons to expect that these correlations could

exist due to the conditions under which these planets form and evolve; even our own

incorporation of photoevaporation predicts a slight dependence between incident flux

and composition (see Figure 5.10). Fortuitously, our results remain insensitive to the

transit probability correction despite this: γ, which controls the rock-gas flux transition

(Equation 5.7), is not correlated with the composition hyperparameters. Furthermore,

it is a free parameter (which in our posterior samples varies between 2.2 and 3.0 to ac-

count for theoretical uncertainty in this threshold), and so much of the flux-composition
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Figure 5.9: The radius distribution of our complete subsample, color coded according to
the median composition in each bin and using the radii reported by Kepler (as opposed
to the posterior radii in Table 5.1 and Figure 5.6) to facilitate comparison with Figure
5.1. The squares denote the full range of compositions within the bin: the lowest fenv in
each bin corresponds to the left colored box, and the highest fenv the right. On average,
interpreting radius as a proxy for composition is reasonable, although the large radius
errors do allow some dispersion.

dependence present for individual planets gets washed out over the marginalized fenv

posteriors in Table 5.1. Nevertheless, these concerns represent an interesting area for

future work; correctly accounting for them requires modeling the underlying period,

eccentricity, and host star radius distributions. Therefore, further development of this

statistical model will require adding several additional layers of complexity to Figure
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5.4.

Finally, we revisit the possibility that some of these planets may be water

worlds. In §5.1.1 we motivated from an observational perspective why we assume all

of these planets have a composition consisting of a rocky core and a hydrogen/helium

envelope: for the first investigation of this population’s composition distribution, it

is natural to extend a two-component composition to the mid-range planetary sizes

between the small, highly irradiated planets known to be rocky and the large low-mass

sub-Neptunes which must have at least some H+He. Given these limits, it is difficult to

motivate a population of sub-Neptunes that must all be characterized as water worlds.

However, this does not mean that there cannot be a sub-population of water worlds,

especially at periods longer than the planet candidates we consider in this work, and so

this proposal is rich in possibilities for future work. Nevertheless, given the degeneracy

(discussed in §5.1.1) between detailed compositions and measured mass and radius, an

additional observable that can reliably distinguish between water-poor and water-rich

bulk compositions will need to be measured and introduced to a statistical model like this

one in order to get a quantitative handle on the extent of this possible sub-population.

5.5.2 Radius as a Proxy for Composition

A locus through (Rpl, fenv) space is immediately apparent in Figure 5.6, illus-

trating that “radius as a proxy for composition” is a reasonable interpretation to adopt

for planets with Rpl > 2 R⊕, even with the current large, asymmetric errors on the

planet radii. However, more variability is evident for smaller planets, especially in the

1.2 < Rpl < 1.8 R⊕ range, where planets can either have rocky or gaseous compositions
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(see §5.5.3 for a more detailed discussion). Given that the realistic radius errors in-

cluded in this study does widen this locus, the following summary provides a reasonable

rule-of-thumb when interpreting the composition of planets based on their radii: planets

with Rpl < 2 R⊕ have fenv < 1%, planets with 2 < Rpl < 3 R⊕ have fenv ∼ 1%, and

planets with Rpl > 3 R⊕ have fenv ∼ a few %.

Figure 5.9 further illustrates how the strong monotonic relationship between

radius and composition can be extended to interpreting compositions from an observed

radius histogram. We plot the radius distribution of our complete subsample (also shown

in blue in Figure 5.1), but now color-code each bin according to the median composition

of those planets, where a single value for composition, the mode of the fenv posterior,

has been used for each planet. Taking radius as a proxy for composition would result in

a monotonic increase in composition across the bins, which is exactly what we see. The

picture complicates a bit when we consider the full range of compositions present in

each bin, as illustrated by the colored boxes: the color of the left box corresponds to the

lowest fenv in that bin, and the color of the right box corresponds to the highest fenv.

The range within each bin illustrates the dispersion accommodated by the substantial

errors on the planet radii. While the dispersion is currently non-negligible, it does not

disrupt the average relationship between radius and composition.

5.5.3 The Rock-Gas Transition

Figure 5.6 also has implications for the expected transition between rocky and

gaseous planets, assuming these planets do not have an appreciable mass fraction of

water. In particular, we see that planets with 1.2 < Rpl < 1.8 R⊕ can be either rocky
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or gaseous, with fenv posteriors that span both compositions. This is consistent with

the finding of Rogers (2015), which places the transition between rocky and gaseous

planets at 1.5 R⊕ based on ∼ 50 Kepler confirmed planets with radial velocity mass

measurements, primarily from Marcy et al. (2014). It is notable that internal structure

models combined with the back-of-the-envelope parametrization of photoevaporation

that we employ here (Equation 5.7) is able to reproduce this result within the context

of these hierarchical MCMC simulations, given that we use no mass measurements to

provide constraints as does Rogers (2015).

Our implementation of photoevaporation further predicts that there is some

flux dependence to this transition, as seen in the color variation as a function of radius

for the planets that could have either composition. Figure 5.10 more clearly illustrates

this dependence: we plot the cumulative fraction of planets that are rocky in four flux

bins, each containing 54 planets; the black line is the cumulative fraction for the entire

sample. A planet is considered rocky if more than half of its fenv posterior occurs at

0, as is the case for the triangles in Figure 5.6. We see that the maximum radius for

a rocky planet, denoted by the dotted vertical lines, increases slightly with increasing

incident flux.

Rogers (2015) addressed this possibility by computing the marginal likelihood

of the data under different hypothetical gas/rock transitions, including a sharp step

function, a gradual linear relationship for the fraction of rocky planets as a function

of radius, and a transition that depended on incident flux. With the existing large

mass uncertainties, they find that the sharp transition is slightly favored over both
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Figure 5.10: The cumulative fraction of planets that are rocky in four flux bins colored
at the same scale as Figure 5.6 according to their labeled median flux values. Each
colored bin contains 54 planets; the black line is the cumulative fraction for the entire
sample. A planet is considered rocky if more than half of its fenv posterior occurs at
0. We see that the maximum radius for a rocky planet, denoted by the dotted vertical
lines, increases slightly with increasing incident flux.

other options with a Bayes factor of ∼ 2. We note that this Bayes factor is actually

quite small for the purposes of inference, as one’s prior belief in the realism of each

of these transitions can still be a large factor in inferring which model best reflects

what happens in nature. Furthermore, this factor can depend strongly on the choice

of hyperprior, particularly when the prior is formally an improper distribution like the

uniform distributions that were used. Therefore, we echo the author’s caution that this
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result does not mean the arguably more realistic transitions are ruled out, but rather

that the currently large mass uncertainties do not allow one to distinguish between these

possibilities.

Given the result of Rogers (2015), more precise mass measurements are needed

before we can conclusively test the prediction that large rocky planets must have high

incident stellar fluxes (for a complementary test of the rock-gas transition based on

the differing tidal dissipation rates and resulting eccentricity distributions of rocky and

gaseous planets, see Barnes (2014)). In particular, radial velocity follow-up of Kepler

planet candidates can most effectively contribute to our understanding of photoevapora-

tion by targeting 1.2 < Rpl < 1.8 R⊕ planets at incident fluxes near this flux threshold.

Two such planets are immediately identifiable in Figure 5.6, due to their high incident

fluxes compared to the other similarly sized planets: KOI 171.01 (Kepler-116 b) and

KOI 355.01, at 2.4 and 2.3 R⊕, and 470 and 440 F⊕, respectively. Because the mass loss

flux threshold, and therefore the retention of the planet’s envelope, is dependent on the

core mass of the planet, we predict these planets must have fairly massive rocky cores,

likely > 10 M⊕ (note that our simulations do not provide useful mass constraints for the

rest of the smaller, less irradiated planets analyzed here, as the Lop14 internal structure

models by themselves do not produce strong correlations between planet mass and ra-

dius — recall that this model feature allows us to derive compositions based mostly on

radii in the first place). These planet candidates also happen to have fairly bright host

stars, at a Kepler magnitude of 13.7 and 13.2, respectively, and so this prediction could

in theory be tested with radial velocity measurements. Even if other observational
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considerations cause mass measurements to be prohibitive for these specific planets,

analogously large, highly irradiated super-Earths provide excellent leverage for testing

theories of photoevaporation.

Regarding planets with massive cores, it is interesting to note that the most

massive dense super-Earth found to date, Kepler-10c (Dumusque et al., 2014), would

not in fact be rocky according to the models we use here. Based on its measured mass

and radius (≈ 17 ± 2 M⊕ and 2.35 R⊕), Kepler-10c should have a gaseous envelope

fraction of ∼ 0.5% (Lop14), or a relatively massive water steam envelope9. Rather than

representing an extreme on the spectrum of possible super-Earth compositions, Kepler-

10c instead exemplifies what we predict to be a fairly typical if somewhat massive

sub-Neptune in terms of the envelope mass fraction it could possess.

5.5.4 No Deterministic Mass-Radius Relationship

Figure 5.11 illustrates what the sub-Neptune composition distribution that we

find implies for the mass-radius relationship of these planets. Specifically, we gener-

ate a population of 10,000 planets using our “best fit” composition distribution (µ =

0.7%;σ = 0.6 dex) and a core mass distribution ∝ M−1, then randomly match these

planets to the host stars and periods of the planets in our sample to apply the rock-gas

transition flux threshold. The color corresponds to the generated planets’ incident flux

as in Figure 5.6, with the gradation at the low-mass end arising from our core mass-

dependent prescription for photoevaporation. There is also a higher number density of

9For more examples of gaseous envelope fractions for planets with well measured masses, please see
Table 7 of Lop14.
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Figure 5.11: The masses and radii of a population of 10,000 planets generated from our
“best fit” composition distribution (see Figure 5.5). Each point is colored according
to its incident flux, at the same scale as Figure 5.6. Immediately we see that there
is no clear mass-radius relationship for these sub-Neptune planets, although there are
disallowed regions due to the maximum density of a rocky planet (at high masses and
small radii) and to photoevaporation (at low masses and large radii). There is also a
higher number density of planets between 2 and 2.5 R⊕; this is a direct result of our
composition distribution peaking around fenv ∼ 1%.

planets between 2 and 2.5 R⊕; this is a direct result of our composition distribution

peaking around fenv ∼ 1%.

Immediately we see that there is no clear one-to-one relationship, although

there is a disallowed region at high masses and small radii, which is due to the max-
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imum density of a rocky planet, and another at low masses and large radii, which is

due to photoevaporation. While one could certainly fit a line to these points in mass

and radius space, we argue that the more physically interesting variable at play is the

composition. Because having a range of compositions dominates the spread in this plot

(that is, the vertical extent of the mass-radius “relationship” is controlled by the dis-

tribution of compositions; see Figure 5.9 for another illustration of this), understanding

planetary compositions in a population-wide sense requires robust statistical modeling

that incorporates distributions rather than just mean relationships.

The lack of a deterministic mass-radius relationship for these sub-Neptune

planets, which compose the majority of the planets that Kepler has detected, also has

major implications for dynamical studies which require Kepler radii to be mapped to

masses. Namely, such studies must adopt a probabilistic approach such as the one

proposed in §3.5 to allow for a distribution of masses at a given radius. Without a way

to incorporate the dispersion between mass and radius, the authors could be mislead

by results that are seemingly more precise than they actually are. Similarly, theoretical

studies could mistakenly rule out different parts of parameter space that may actually

be allowed given the intrinsic uncertainty in the planet’s mass based only on its radius.

5.5.5 Implications for Population Formation Models

Via our physically informed statistical modeling (§5.3.4) we have inferred the

mean and variance of the present-day compositions of planets with 1 R⊕ < Rpl < 4

R⊕, finding an average fenv of ∼ 1% and standard deviation of ∼ 0.5 dex, respectively

(§5.4.1). As this result is derived directly from Kepler data, it offers a strong observa-
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tional constraint for studies of planet formation which strive to characterize not only the

average behavior of a few planets, but the range and distribution of various physically

interesting variables across an entire planet population. Key diagnostics such as the

range of compositions for these small planets can, for example, inform the degree of gas

accretion during the planet formation process, and can therefore provide constraints on

the relevant local protoplanetary disk parameters such as temperature and viscosity.

Of course, planetary evolution could also affect these planets’ present-day com-

positions, and so the composition distribution we infer here has also encoded information

about any of these processes which may have occurred. These quantitative constraints

provide a first step in enabling comparisons between the effect that disk migration vs.

multi-body interactions vs. in-situ formation could have on the amount of gas retained

by super-Earths and sub-Neptunes, the most common kind of planets in our Galaxy.

Much work remains to be done to disentangle these effects, and many other observa-

tional indicators such as spin-orbit misalignment and period ratios within multi-planet

systems are being scrutinized. Nevertheless, with this analysis, planetary compositions

can also enter into the conversation in a quantitative way.

5.6 Conclusions

In this paper we present the first quantitative distribution of sub-Neptune

compositions. We find that, if these planets are composed of an Earth-like rocky core

with a hydrogen and helium envelope, the “typical” sub-Neptune has ∼ 1% of its mass

in the gaseous envelope, while the population has a spread of ±0.5 dex. We arrive at
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this result by carefully choosing a subsample of Kepler planet candidates (§5.2) that is

complete above 1.2 R⊕ (§5.2.1) and adopting a hierarchical Bayesian framework (§5.3)

with a realistic yet relatively simple statistical model (§5.3.4) which incorporates the

internal structure models of Lopez & Fortney (2014) and the stellar radius likelihoods

derived by Huber et al. (2014). This approach simultaneously accounts for the lack

of mass measurements and substantial radius measurement errors while describing the

population-wide behavior with only four free parameters.

Our hierarchical Markov Chain Monte Carlo simulations (§5.3.5) result in pos-

teriors on both the compositions of individual planets (§5.4.2) and on the composition

distribution of the population (§5.4.1). Therefore, in addition to finding that the mean

and standard deviation of the present-day compositions of planets with 1 R⊕ < Rpl < 4

R⊕ is ∼ 1% and ∼ 0.5 dex, we can identify an honest the rule-of-thumb that relates ra-

dius to composition: planets with Rpl < 2 R⊕ have fenv < 1%, planets with 2 < Rpl < 3

R⊕ have fenv ∼ 1%, and planets with Rpl > 3 R⊕ have fenv ∼ a few %.

Finally, we discuss the implications that these results have for various issues

related to the compositions of sub-Neptune planets. First, we verify that taking radius

as a proxy for composition does hold up in the average sense even considering the large

radius errors that exist for the majority of Kepler planet candidates (§5.5.2). We also

address the rock-gas transition and discuss how carefully chosen and precise mass mea-

surements could help test the theory of photoevaporation by elucidating a transition

that is a function of incident flux (§5.5.3). In §5.5.4 we illustrate how this composi-

tion distribution means that there is no deterministic mass-to-radius relationship for
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sub-Neptunes, and so dynamical studies must derive masses from Kepler radii proba-

bilistically rather than with a simple one-to-one function. Finally, we discuss the rich

opportunity these results offer for comparisons of planet formation studies with Kepler ’s

observed planetary candidates.
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Chapter 6

Future Work

The thousands of irradiated super-Earth and sub-Neptune planets that Kepler

has unearthed are extremely puzzling: they have no Solar System analogs in either size

or period, yet they occur just as frequently as Earth-sized ones (Petigura et al., 2013)

and could represent the default mode of planet formation. Their completely unexpected

presence poses challenges to established paradigms of planetary accretion and migration,

but even a zeroth-order understanding of why they are there and what they are like is

elusive for several reasons:

• These planets are shaped by their radiative and gravitational environments after

their natal protoplanetary disks have dispersed. Therefore, the late-stage evolution

in these planets’ radii and periods must be taken into account in order to tie

currently observed properties to those that were a direct result of formation.

• Systematic effects, such as radius- and period-dependent detectability and incom-

plete performance of the automated detection software (Batalha et al., 2013),
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permeate the Kepler sample. These effects manifest themselves in the observed

distributions, and failure to account for them can mislead theoretical conclusions.

• There are substantial uncertainties on the planetary radii, masses, eccentricities,

and other physical properties, often driven by the uncertainties in the host stars’

properties. Errors can be as large as 100% (e.g. Huber et al., 2014; Marcy et al.,

2014) and frustrate observers’ efforts to draw statistically significant physical in-

sight from their data.

With both TESS and CHEOPS slated for launch in 2017, the Kepler planet

catalog will remain the preeminent dataset for comparison with theory for several years.

Postdoctoral work to address these three issues is therefore very timely, and I am in

a particularly good position to do it, given my joint expertise in the Kepler dataset

and in the sophisticated statistical tools needed to address the last two issues above.

I plan to use my NSF Postdoctoral Fellowship, which I am taking to Penn State, to

start bridging the gap between observations and theory that is manifest in the first

problem: how do super-Earths evolve after they form? In particular, I plan to investigate

compositional evolution through photoevaporation and orbital evolution through Kozai-

Lidov oscillations. By using the probabilistic framework developed for my thesis work,

I will quantify, with realistic uncertainties, the fraction of planets which experienced

these processes, therefore clarifying the possible end conditions to planet formation.
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6.1 Framework for the Analysis of Planet Populations

My thesis work implements a framework that enables robust answers to population-

wide questions about fundamental planet properties. In particular, Chapter 5 illustrates

the need for a higher level of statistical sophistication than the current state of the art

and uses hierarchical Bayesian modeling to infer the amount of gas that a typical sub-

Neptune-sized planet possess. Chapter 3 applies this method to sub-Neptune-sized

planets with measured masses to obtain a probabilistic mass-radius distribution.

In general, this hierarchical Bayesian framework establishes probabilistic rela-

tionships between data that are directly observed (i.e. transit depths) and quantities

of theoretical interest (i.e. the fraction of a planet’s mass that exists in a gaseous en-

velope, and the parameters which describe its distribution over the entire population).

This necessarily involves other quantities that are either unobserved or have substantial

observational uncertainties (i.e. planetary radii and masses). Due to its probabilis-

tic construction, we can quantitatively derive population-wide distributions within this

framework while correcting for both the systematic effects that permeate the Kepler

planet candidate catalog (detailed in §1.2.2) and the substantial uncertainties on these

planets’ individual physical properties.

At the core of this work is a data-centric approach to the characterization of

theoretically relevant planet properties. We endeavor to straddle the boundary between

theory and observations: we use physically motivated arguments to synthesize theory

into modules that are scalable to planet populations, and we incorporate observational

uncertainties into the constraints on the theoretical parameters of interest (Chapter 5
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provides a specific example of how this is done). I plan to continue to study Kepler ’s sub-

Neptune population to help answer the large number of fundamental science questions

this unexpected population poses for planet formation and evolution, with the added

benefit of its impressive sample size.

6.2 Compositional Evolution of Sub-Neptune-Sized Plan-

ets

With no Solar System analogs, the typical compositions of sub-Neptune-sized

planets is a compelling question. Unfortunately, the difficulty in observing these extra-

solar planets leads to relatively little information about them being available, especially

compared to the Solar System planets; accordingly, we only have access to these planets

bulk properties to provide insight into their structures and composition. Given the state

of the observations, one common means of constraining these planets’ interior composi-

tions is to apply models of their internal structures to their measured masses and radii

(e.g. Fortney et al., 2007; Rogers et al., 2011; Lopez & Fortney, 2014). This is usually

accomplished for individual planets to gain insight into the range of possible composi-

tions specific to that planet. However, the presence of intrinsic survey detection biases

which cause planets with certain properties to be more easily detected and significant

observational uncertainties for most sub-Neptune masses and radii make solving for the

distribution of these compositions across an entire population of planets difficult.

In Chapter 5 I present the first study to rigorously account for these issues

across an entire population; however, it treats only the present-day compositions of Ke-
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pler ’s sub-Neptunes. Given their tight orbits around their host stars, photoevaporation

of these planets’ atmospheres are expected to be an important physical process for their

past evolution. This is especially true in light of evidence for the hydrodynamic escape

of hydrogen from HD 209458b (Vidal-Madjar et al., 2003), a hot Jupiter with a higher

surface gravity, and thus a higher potential energy barrier, than these sub-Neptune-sized

planets.

Because we aim to connect the current physical properties of these planets to

the end conditions of their formation, we must assess how much mass these irradiated

planets have lost since the dispersal of the protoplanetary disk. This investigation

necessarily involves several inter-related projects, each targeting a different observational

probe of this process. Systematic biases pervade each observational probe and must be

corrected, which I will do with the population-wide statistical framework I discuss in

§6.1. I will adopt the details of the framework, i.e. how the specific observables relate

to the theoretical parameters of interest, to most appropriately address the problem at

hand, as discussed below.

6.2.1 Dependence of Composition on Incident Flux

One of the most salient predictions of photoevaporation theory is that the

composition of these sub-Neptunes should be correlated with the degree of irradiation

they receive from their host star (e.g. Owen & Wu, 2013; Lopez & Fortney, 2013). A

suggestive dearth in the Kepler period-radius distribution within P ∼ 3 days for planets

with 2 R⊕ < Rpl < 4 R⊕ has been noticed by these and other authors, and have been

used to qualitatively guide appropriate choices for free parameters in the theory, such
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as the efficiency of the thermal energy conversion needed to drive mass loss. However,

these constraints are degenerate with the planets’ masses, which are largely unknown,

and do not incorporate uncertainties in the stellar parameters, which are substantial

(Huber et al., 2014). Moreover, a recent study on the transition between rocky and

gaseous planets finds no evidence for a transition that depends on incident flux, given

the current mass measurements and a small sample size (Rogers, 2015).

A systematic search for variations in these planets’ compositions as a function

of incident flux is needed to clarify the picture; this will only be possible when the full

sample of sub-Neptune-sized planets is used and when the uncertainties in planetary

masses and stellar effective temperatures are taken into account through the framework

described here. I plan to incorporate a bias- and completeness-corrected period dis-

tribution into my thesis work on sub-Neptune compositions to quantify the degree to

which planetary radii (and by proxy, composition) depend on stellar irradiation. In do-

ing so, I will relate the critical mass loss efficiency parameter to observed quantities and

derive quantitative constraints on it based on the data. These results will also facilitate

comparisons between photoevaporation studies employing the simplifying assumption

of energy-limited mass loss, and more accurate yet computationally intensive simula-

tions involving radiative transfer. Assessing the relative importance of such theoretical

concerns requires a robust, quantitative application of theory to observations — the

kind that only this framework can offer.
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6.2.2 Population of Water-Dominated Planets

Studies investigating the compositions of sub-Neptune-sized planets must adopt

a specific internal structure to establish quantitative constraints on the relative sizes of

each layer within the planet. Unfortunately, the freedom in this choice makes the study

of compositions a highly degenerate one (Valencia et al., 2007a). A rocky core plus a

hydrogen envelope is a reasonable structure to assume for the sub-Neptune-sized pop-

ulation, given the highest and lowest densities that have been measured for these small

planets. However, this does not mean that exoplanets which possess a substantial wa-

ter layer do not exist, as both hydrogen-rock and water-rock compositions have been

shown to be able to explain the observed masses and radii (Rogers & Seager, 2010a).

With three free parameters and only two measured quantities, additional observational

insight is needed to make concrete headway on this issue.

Optimally, observations of planetary atmospheres would reveal their dominant

chemical species and offer valuable observational constraints on the extent of the water-

dominated planet population. However, these measurements are currently pushing the

limits of existing astronomical instrumentation and can only be performed in a limited

number of cases, where the host star is bright, the planets surface gravity is low, and

no high-altitude clouds or hazes are present. This last requirement is proving to be

especially problematic, as clouds appear to envelop the majority of sub-Neptune-sized

irradiated planets (e.g. Kreidberg et al., 2014). Even when features are observed in the

wavelengths where one would expect water absorption, their interpretation is degenerate

with a partly cloudy hydrogen-dominated atmosphere (Fraine et al., 2014).
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In the absence of insight from studies of exoplanet atmospheres, photoevap-

oration theory offers a handle on this issue. Because hydrodynamic escape of water-

dominated atmospheres is more difficult than it is for hydrogen-dominated atmospheres,

highly irradiated planets that are measured to have fairly low densities (∼ 1− 3 g/cm3)

are most likely such “water worlds” (e.g. Lopez et al., 2012). The above project feeds

naturally into this investigation, as the lack of a radius-flux correlation can indicate the

presence of a substantial water world population.

We can also gain insight into this problem by incorporating knowledge about

where these planets had formed within their host stars’ protoplanetary disks. This is

possible because the available disk material at a planets’ birth location sets its initial

composition, and the disks own composition changes as a function of distance from

the star (Aikawa & Herbst, 1999). As described in 6.3, we expect these planets to

have experienced substantial orbital migration since their formation; if these planets

originated from beyond the “snow line”, i.e. the distance from the star at which water

ice can condense (see, for example, Sasselov & Lecar 2000), then they could have water-

dominated compositions. Therefore, the research outlined in the next section will also

illuminate which planets could have substantial amounts of water, given their present-

day orbital architectures.

With details contingent on the results of the other investigations detailed in

this chapter, I plan to incorporate a population of water-dominated planets into our

study of sub-Neptune-sized planet compositions. Our statistical framework can easily

adjust to incorporate multiple groups of planets which possess qualitatively different
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compositions. In particular, it will assign a probability that any given planet falls into

each of these groups based on the likelihood that photoevaporation was inefficient and

that the planet originated from beyond the snow line.

6.3 Orbital Evolution of Sub-Neptune-Sized Planets

It has been a challenge to explain the existence of the close-in planet popula-

tions revealed by various planet searches. As increasing numbers of hot Jupiters were

discovered, the standard core accretion paradigm needed to be adjusted to incorporate

significant orbital evolution (Lin et al., 1996). Two primary classes of theories emerged

to fill this hole: disk migration (e.g. Goldreich & Tremaine, 1980; Ward, 1997; Ida &

Lin, 2004; Alibert et al., 2005) and high eccentricity excitation mechanisms coupled

with tidal dissipation and circularization of the planetary orbit (e.g. Rasio & Ford,

1996; Fabrycky & Tremaine, 2007; Wu & Lithwick, 2011). While these mechanisms

have been applied to specific systems to show their feasibility (e.g. Holman et al., 1997;

Lee & Peale, 2002; Wu & Murray, 2003), the picture is much less clear when the entire

Hot Jupiter population is considered (e.g. Ford & Rasio, 2008), with varying levels of

importance reported for various scenarios (Fabrycky & Winn, 2009; Morton & Johnson,

2011a; Naoz et al., 2012).

The plethora of sub-Neptune-sized planets that Kepler has unearthed provides

an unrivaled opportunity to test the dominant mode of orbital evolution for a somewhat

smaller yet prevalent planet population. Some groundwork has already been established.

For example, Rein (2012) analyzed the period ratios of Kepler multiple-planet systems
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and found that stochastic migration forces needed to be introduced to disk simulations

to explain the observations. Later, Schlaufman (2014) used the frequency of long-period

gas giant planets to argue that in-situ formation is not sufficient to explain the observed

period distribution, assuming a disk with a smooth dust surface density profile.

6.3.1 Characterizing Distributions Relevant to Dynamics Studies

While these studies are a start, a significant amount of work is still needed to

accurately characterize the current Kepler period, eccentricity, and multiplicity distri-

butions themselves, as well as other observational indicators relevant to testing different

migration mechanisms. There are a number of systematic effects present in the Kepler

data that can easily mislead such comparisons to theory, including the heterogeneously

selected target star sample (Batalha et al., 2010b), substantial uncertainties on stellar

properties (e.g. Gaidos & Mann, 2013; Huber et al., 2014), lower detection efficiency at

smaller radii and longer periods (e.g. Wolfgang & Laughlin, 2012; Howard et al., 2012),

incomplete performance of the automated detection software (Batalha et al., 2013; Pe-

tigura et al., 2013), and the presence of false positives (Morton & Johnson, 2011b;

Fressin et al., 2013). Without careful correction for each of these effects, the population

distributions of these planets’ physical properties will be biased, and conclusions with

implications for theory are suspect.

To address this, Profs. Eric Ford (Penn State) and Darin Ragozzine (Florida

Tech) have a funded program called SysSim to account for these effects and obtain the

true period, eccentricity, and multiplicity distributions of Kepler ’s planet candidates.

As an NSF AA Postdoctoral Fellow at Penn State, I will contribute to this effort,
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specifically by extending SysSim to include observational constraints on the presence of

wide-binary companions. Afterwards, I will use the results as observational anchors for

the dynamical calculations described below.

6.3.2 Probabilistic analysis of Kozai-Lidov oscillations

The hallmark of the high eccentricity migration family of theories mentioned

in §6.3 is the presence of a stellar companion. A key distinguishing feature of one

subclass of these theories, Kozai-Lidov cycles (Lidov, 1962; Kozai, 1962) with tidal

friction (KCTF), is that the perturber which caused the migration should still be present

within the system; furthermore, it should have a semimajor axis much greater than that

of the planet, which ensures the long-term stability of this secular interaction. Given

that the average distance to a Kepler target star is 1 kpc (Brown et al., 2011) and

that the peak of the stellar binary period distribution lies at a separation of about 1000

AU (Duquennoy & Mayor, 1991), this prediction is directly and uniquely testable with

adaptive optics (AO) follow-up observations of the Kepler field, such as that presented

in Chapter 4.

While KCTF has largely been invoked to explain the presence of hot Jupiters

and the observations of significant misalignment between these planets’ orbits and the

spin of their host stars (e.g. Fulton et al., 2013), this mechanism is independent of

the planet’s mass in the limit of a distant, massive perturbing companion (Fabrycky

& Tremaine, 2007; Dawson & Chiang, 2014). Accordingly, star-induced KCTF could

also be an important mechanism for Kepler ’s Neptune-sized planets. KCTF further-

more requires the planet’s eccentricity to achieve very high values at moderate planet-
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star distances before experiencing tidal circularization to its present orbit, which could

destabilize any other planets present at the distances that are observable by Kepler.

Therefore, KCTF predicts that a higher proportion of Kepler single-planet systems

should have stellar companions compared to multiple-planet systems, if it is in fact

a dominant mechanism for orbital evolution. As it happens, Kepler has produced a

significant population of Neptune-sized single planet candidates (Mullally et al., 2015),

and we have preferentially observed these KOIs as part of our adaptive optics follow-up

(Chapter 4). We therefore have a rich opportunity to test the generality of this evolution

mechanism for Kepler ’s single Neptunes.

While discovering bound stellar companions can provide constraints on the a

priori likelihood that KCTF operated in this population, further characterization of

these companions enables detailed dynamical simulations: the Kozai oscillation period

depends on the mass, period, and eccentricity of the binary orbit, while the maximum

eccentricity of the planet, and thus the final circularized semi-major axis, depends on

the initial inclination between the binary and planetary orbits (Kiseleva et al., 1998).

Comparing the output of these simulations with SysSim’s true period, eccentricity, and

multiplicity distributions (§6.3.1) within the analysis framework described here will

provide both the probability that a given planet has undergone this type of orbital

migration in its past, and the fraction of single Neptune systems which have experienced

these cycles. Therefore, we can assess the overall importance of this mechanism for

planetary orbital migration.

Of course, not all of these binary orbital quantities will be able to be tightly
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constrained from our AO observations. Even worse, few, if any, of these stars will be

confirmed as bound companions to begin with, given their large radial distances from

Earth and the long time baselines of their potential orbits. Finally, AO non-detections

do not rule out the present of fainter, closer companions to these host stars. These

unfortunate realities are precisely why we need the statistical framework discussed in

this chapter. In particular, HBM can:

• quantitatively and rigorously account for these individual systems’ uncertainties,

for example by incorporating probability distributions of inclination, eccentricity,

and period given the observations;

• utilize additional information available for only a subset of the sample, such as

relative color information that can constrain the physical distances between these

targets and the detected sources, or forthcoming proper motion catalogs of Kepler

targets that will provide evidence for common space motions of these stars;

• directly apply information about the population that is provided by previous work,

such as the period and mass distributions of additional companions that have been

found with radial velocity follow-up observations of Hot Jupiters (e.g. Knutson

et al., 2014) and of Kepler planetary candidates (e.g. Marcy et al., 2014); and

• incorporate upper limits, as in the case where no stellar companions are detected,

when sensitivity curves from the AO images can be used to place an upper limit

on the mass of a potential perturber.

All told, the application of sophisticated, easily generalizable statistical frame-
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works like hierarchical Bayesian modeling can lead to significant advances in the field

of exoplanet astronomy. I am truly excited about the opportunities that will arise from

more quantitative comparisons between theory and observations, and look forward to

the improved understanding of planet formation that will no doubt result.
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Ribas, I., Guinan, E. F., Güdel, M., & Audard, M. 2005, ApJ, 622, 680

Rivera, E. J., Lissauer, J. J., Butler, R. P., et al. 2005, ApJ, 634, 625

221



Rogers, L. A. 2015, ApJ, 801, 41

Rogers, L. A., Bodenheimer, P., Lissauer, J. J., & Seager, S. 2011, ApJ, 738, 59

Rogers, L. A., & Seager, S. 2010a, ApJ, 712, 974

—. 2010b, ApJ, 716, 1208

Rowe, J. F., Bryson, S. T., Marcy, G. W., et al. 2014, ApJ, 784, 45

Rowe, J. F., Coughlin, J. L., Antoci, V., et al. 2015, ApJS, 217, 16

Rupprecht, G., Pepe, F., Mayor, M., et al. 2004, in Society of Photo-Optical Instrumen-

tation Engineers (SPIE) Conference Series, Vol. 5492, Ground-based Instrumentation

for Astronomy, ed. A. F. M. Moorwood & M. Iye, 148–159

Santerne, A., Fressin, F., Dı́az, R. F., et al. 2013, A&A, 557, A139

Santerne, A., Dı́az, R. F., Moutou, C., et al. 2012, A&A, 545, A76

Santerne, A., Dı́az, R. F., Almenara, J.-M., et al. 2015, ArXiv e-prints, arXiv:1505.02663

Sasselov, D. D., & Lecar, M. 2000, ApJ, 528, 995

Schaefer, L., & Fegley, B. 2009, ApJ, 703, L113

Schlaufman, K. C. 2010, ApJ, 719, 602

—. 2014, ApJ, 790, 91

Schlaufman, K. C., Lin, D. N. C., & Ida, S. 2009, ApJ, 691, 1322

Seader, S., Jenkins, J. M., Tenenbaum, P., et al. 2015, ApJS, 217, 18

222



Seager, S., Kuchner, M., Hier-Majumder, C. A., & Militzer, B. 2007, ApJ, 669, 1279

Seagroves, S., Harker, J., Laughlin, G., Lacy, J., & Castellano, T. 2003, PASP, 115,

1355
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