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Abstract—Quantized massive multiple-input-multiple-output
(MIMO) systems are gaining more interest due to their power
efficiency. We present a new precoding technique to mitigate
the multi-user interference and the quantization distortions in a
downlink multi-user (MU) multiple-input-single-output (MISO)
system with 1-bit quantization at the transmitter. This work
is restricted to PSK modulation schemes. The transmit signal
vector is optimized for every desired received vector taking into
account the 1-bit quantization. The optimization is based on
maximizing the safety margin to the decision thresholds of the
PSK modulation. Simulation results show a significant gain in
terms of the uncoded bit-error-ratio (BER) compared to the
existing linear precoding techniques.

I. INTRODUCTION

For the next generation of mobile communication, where

massive multiple-input-multiple-output (MIMO) systems are

foreseen as one of the key technologies, power consumption

is a crucial concern due to the deployment of a large number

of antennas and hence the corresponding RF chains. Green

communication aims at minimizing the carbon dioxide emis-

sions while guaranteeing the quality of service. One aspect

consists in reducing the hardware power consumption mainly

of the power amplifiers (PAs) that are considered as the most

power hungry devices at the transmitter side [1], [2]. When

the PAs are run in the saturation region high power efficiency

is achieved. However, in the saturation region strong nonlinear

distortions are introduced to the signals. To avoid the PA

distortions when run in the saturation region, we resort to PA

input signals of constant envelope. Constant envelope signals

have the property of constant magnitude. Thus, the magnitude

distortions are omitted.

In this spirit, the deployment of 1-bit digital-to-analog

converters (DACs) at the transmitter ensures on the one hand

the property of constant envelope signals at the input of the PA.

On the other hand the power consumption of the DAC itself

is minimized. Therefore, the power efficiency goal is achieved

twice: power efficient PA due to the constant envelope signals

and less power consuming DACs due to the low resolution.

The use of 1-bit DACs is also beneficial in terms of reduced

cost and circuit area and can further simplify the surrounding

RF circuitry due to the relaxed linearity constraint, leading

to very efficient hardware implementations [3]. However, the

coarse quantization causes nonlinear distortions that degrade

the performance. Therefore, mitigating the quantization distor-

tions has to be considered in the precoding task in multi-user

(MU) MIMO systems.

The contribution in [4] is an early work that addressed

the precoding task with low resolution quantization at the

transmitter. The authors in [5] introduced another linear pre-

coder that could slightly improve the system performance.

The proposed precoder is designed based on an iterative

algorithm since no closed form expression can be obtained.

Theoretical analysis on the achievable rate in systems with

1-bit transmitters were investigated in [6]–[8]. Nonlinear pre-

coding techniques in this context were introduced in [9].

The authors presented a symbol-wise precoding technique

based on a minimum bit error ratio (MBER) criterion and

made use of the box norm (ℓ∞) to relax the 1-bit constraint.

In [10] the authors presented a convex formulation of the

problem using the minimum mean square error (MMSE) and

applied it to higher modulation scheme in [11]. Recently, [12]

proposed a method to significantly improve linear precoding

solutions in conjunction with 1-bit quantization by properly

perturbing the linearly precoded signal to favorably impact

the probability of correct detection. In this work, we provide

a novel computationally efficient technique to transmit PSK

symbols through a massive MIMO downlink channel with

1-bit DACs based on linear programming. This method is

based on a distance metric for minimizing the probability of

detection errors, rather than the MMSE criterion which is

quite restrictive due to the finite data alphabet. The linear

programming type of formulation is very advantageous in

terms of complexity as it is one of the most widely applied

and studied optimization technique.

This paper is organized as follows: in Section II we present

the system model. In Sections III and IV we introduce the 1-

bit precoding problem, and formulate the design criterion and

the optimization problem as a linear programming problem,

respectively. In Sections VI and VII we show the simulation

results and summarize this work.

Notation: Bold lower case and upper case letters indicate

vectors and matrices, non-bold letters express scalars. The

operators (.)∗, (.)T and (.)H stand for complex conjugation,

transposition and Hermitian transposition, respectively. The

n × n identity (zeros) matrix is denoted by In (0n). The n
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dimensional one (zero) vector is denoted by 1n (0n). The

vector em represents a zero-vector with 1 at the mth position.

Additionally, diag (a) denotes a diagonal matrix containing

the entries of the vector a. Every vector a of dimension L is

defined as a =
∑L

ℓ=1 aℓel.

II. SYSTEM MODEL
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Fig. 1. Downlink quantized MU-MISO system model

The system model shown in Fig.1 consists of a massive

MU-MISO downlink scenario with 1-bit quantization at the

transmitter. The base station (BS) is equipped with N antennas

and serves M single-antenna users simultaneously, where

N ≫ M .

The input signal s ∈ OM
D contains the symbols to be

transmitted to each of the M users, where OD represents the

set of the D-PSK constellation, We assume that E[s] = 0M

and E[ssH] = σ2
s IM . The signal vector s is mapped into the

vector x prior to the DAC. The precoder P is a symbol-wise

nonlinear precoder to reduce the distortions caused by the

coarse quantization and the channel distortions. The precoder

output reads as

x = P (s,H) , (1)

where H is the channel matrix with the (m,n) th element hmn

being the zero-mean unit-variance channel tap between the nth

transmit antenna and the mth user. The precoder output is a

function of the channel matrix H and the input signal vector

s. The precoding task will be explained in detail in Sections

III and IV.

The 1-bit quantization Q delivers then the signal vector xQ ∈
ON

4 , where O4 = {± 1√
2
± j 1√

2
}. The total transmit power

Ptx is allocated equally among the transmit antennas, which

means that the signals at each transmit antenna get scaled with√
Ptx

N
. The noiseless received signal is given by

y =

√

Ptx

N
HxQ. (2)

The received signal vector ŝ ∈ OM
D after the decision block

D can be written as follows

ŝ = D
{√

Ptx

N
HxQ + η

}

, (3)

where η ∼ CN (0M ,Cη = IM ) denotes the vector of the

additive white Gaussian noise (AWGN) vector at the M

receive antennas.

III. PRECODING TASK

The symbol-wise precoder aims to mitigate the multi-user

interference and the 1-bit quantization distortions. The task

consists in designing the transmit vector x such that ŝ = s

holds true with high probability to reduce the detection error

probability.

To mitigate the quantization distortions, we design the input

to the quantizer to belong to ON
4 . Consequently, we would get

in the ideal case an undistorted signal

xQ = x, if x ∈ ON
4 . (4)

We denote (4) by the 1-bit constraint, that ensures the non-

distorting behavior of the 1-bit quantizer Q. This constraint,

however, leads to a discrete optimization problem that cannot

be solved efficiently. Therefore, the 1-bit constraint will be

relaxed to a convex constraint as shown in Section IV-C.

The constraint relaxation does not satisfy the equality in (4)

and thus the quantization distortions are not fully omitted.

However, they are reduced significantly as shown later.

For the next derivations, we introduce the following signal

vector

y′ = y |Ptx=N,(4)= Hx. (5)

This signal vector y′ is equal to the noiseless received signal

y for a transmit power Ptx = N and when (4) is fulfilled.

The optimization is based on this special case, since the

transmit power just scales the noiseless received signal and

the constraint in (4) is approximated with a convex constraint,

that will be introduced in Section IV-C.

IV. PROBLEM FORMULATION FOR PSK SIGNALING

A. Constructive Interference Optimization

When the downlink channel and all user’s data are known

at the transmitter, the instantaneous constructive multi-user

interference can be exploited to move the received signals

further far from the decision thresholds [13]. In contrast to

this, conventional precoding methods (MMSE, Zero-forcing)

aim at minimizing the total multi-user interference such that

the received signals lie as closed as possible to the nomi-

nal constellation points. In fact, the constructive interference

optimization exploits the larger symbol decision regions and

thus leads to a more relaxed optimization. Each symbol region

(SR), as shown in Fig. 2, is a circle sector of infinite radius

and angle of 2θ, where

θ =
π

D
. (6)

The symbol region is shifted from the decision thresholds

by a safety margin denoted by δ. This safety margin has to

be maximized to make sure that the received symbols when

perturbed by the additive noise do not jump to the neighboring

unintended symbol regions.
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Fig. 2. Illustration of the symbol region.
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Fig. 3. Illustration of the symbol region in a modified coordinates system.

The optimization problem can be written in general as

follows

max
x

δ (7)

s.t. y′m ∈ SR, ∀m (8)

and x ∈ ON
4 . (9)

In the next sections a mathematical expression for the SR is

derived. In addition, the 1-bit constraint in (9) is relaxed to

get a convex solution set.

B. Symbol Regions (SR)

To determine the SR, a modified coordinates system is

considered as illustrated in Fig. 3. The coordinates system

is rotated by the phase of the symbol of interest sm. The

coordinates of the noiseless received signal y′m in the modified

coordinates system are given by

zmR
= ℜ{y′ms∗m} 1

|sm| , (10)

zmI
= ℑ{y′ms∗m} 1

|sm| . (11)

Since PSK signals have unit magnitude, plugging in (5) into

the above equations gives

zmR
= ℜ{eTmHxs∗m} = ℜ{eTmH̃x}, (12)

zmI
= ℑ{eTmHxs∗m} = ℑ{eTmH̃x}, (13)

where H̃ = diag(s∗)H. We define H̃ as the modified channel.

The symbol region can be hence described by

zmR
≥ τ (14)

|zmI
| ≤ (zmR

− τ) tan θ, ∀m, (15)

where τ = δ
sin θ

. Note that the inequality in (14) is already

fulfilled if the inequality in (15) is satisfied. Plugging in (12)

and (13) into (15), the symbol regions for all M users can be

defined by

|ℑ{H̃x}| ≤
(

ℜ{H̃x} − τ1M

)

tan θ. (16)

When using the following real-valued representation

ℜ{H̃x} =
[

ℜ{H̃} −ℑ{H̃}
]

︸ ︷︷ ︸

=A

[
ℜ{x}
ℑ{x}

]

︸ ︷︷ ︸

=x′

= Ax′ (17)

ℑ{H̃x} =
[

ℑ{H̃} ℜ{H̃}
]

︸ ︷︷ ︸

=B

[
ℜ{x}
ℑ{x}

]

= Bx′, (18)

the constraint in (8) can be rewritten as
[
B− tan θA 1

cos θ1M

−B− tan θA 1
cos θ1M

] [
x′

δ

]

≤ 02M . (19)

C. Relaxed 1-Bit Constraint

The 1-bit constraint, x ∈ ON
4 makes sure that the quan-

tization distortions are avoided since it leads to xQ = x.

However, this constraint is non-convex. Thus, the constraint

is relaxed such that the entries of the vector x belong to the

filled box built by the QPSK symbols. We can describe the

relaxed convex constraint as follows

x′ ≤ 1√
2
12N and − x′ ≤ 1√

2
12N . (20)

Hence, the constraint in (9) is replaced by the following

relaxed convex constraint
[
I2N 02N

−I2N 02N

] [
x′

δ

]

≤ 1√
2
14N . (21)

D. Optimization Problem with the Relaxed Constraint

Combining (7), (19) and (21), the optimization problem

can be finally expressed by the following real-valued linear

programming problem

max
v

[
0T
2N 1

]
v

s.t.







B− tan θA 1
cos θ1M

−B− tan θA 1
cos θ1M

I2N 02N

−I2N 02N






v ≤

[
02M
1√
2
14N

]

, (22)

where vT =
[
x′T δ

]
. This linear programming problem has

(2N + 1) unknowns and (2M + 4N) inequalities to satisfy.



V. COMPLEXITY

The linear programming is a very popular convex optimiza-

tion technique, that is efficiently solvable using a wide variety

of methods [14]. With the use of interior-point methods the

number of iterations almost always lies between 10 and 100

[14]. Each iteration requires a number of arithmetic operations

on the order of

c = max{(2N + 1)3, (2N + 1)2(2M + 4N), 4NM}
= (2N + 1)2(2M + 4N). (23)

The complexity of linear programming is therefore bounded,

which makes it attractive for hardware implementation.

VI. SIMULATION RESULTS

For the simulations, we assume a BS with N = 128
antennas serving M = 16 single-antenna users. The channel

H is composed of i.i.d. Gaussian random variables with

zero-mean and unit variance. All the simulation results are

obtained with Nb = 103 transmit symbols per channel use

with σ2
s = 1 and averaged over 100 channel realizations.

The additive noise is also i.i.d with variance one at each

antenna. The performance metric is the uncoded BER. The

considered modulation schemes are QPSK, 8PSK and 16

PSK. We compare our proposed design maximum safety

margin (MSM) with the linear precoder quantized Wiener

Filter (QWF) from [4], the symbol-wise precoder SDRℓ2
∞

in

(47) from [11], the symbol-wise precoder MBER from [9] and

the ideal case denoted by ”WF, unq.”, where the WF precoder

is used and no quantization is performed. The MBER precoder

is restricted to QPSK symbols. The comparison is conducted

for two scenarios

• perfect CSI and

• imperfect CSI.

Assuming full CSI, the uncoded BER is plotted as function

of the available transmit power Ptx for three modulation

schemes: QPSK (Fig. 4), 8 PSK (Fig. 5) and 16 PSK (Fig. 6). It

can be seen from the results that the proposed precoder MSM

outperforms the linear precoder QWF and the MBER precoder

(for QPSK). The gain in dB compared to QWF increases

when the order modulation increases. However, for higher

order PSK modulation, the proposed symbol-wise precoder

still presents an error floor, meaning that potentially higher

number of antennas are needed in this case.

The loss due to the 1-bit quantization compared to the ideal

case ”WF, unq.” increases with higher order modulation, 2dB,

3dB and 6dB at BER of 10−2 for QPSK, 8 PSK and 16 PSK,

repectively.

The MSM precoder performs almost the same as the SDRℓ2
∞

precoder. However, the complexity of the proposed method is

very low as the simulations show that only 14 iterations in

average are needed to solve (22).

Next, the effect of imperfect CSI on the performance of the

proposed precoder is considered. To this end, we assume that

the channel matrix H is perturbed with an error matrix Γ, that

0 2 4 6 8 10 12 14 16 18 20 22 24
10−4

10−3

10−2

10−1

Ptx (dB)

U
n

co
d

ed
B

E
R

MSM

SDRℓ2
∞

MBER

QWF

WF, unq.

Fig. 4. BER performance for a MU-MISO system with N = 128 and M =

16 with QPSK signaling.

0 2 4 6 8 10 12 14 16 18 20 22 24
10−4

10−3

10−2

10−1

100

Ptx (dB)

U
n

co
d

ed
B

E
R

MSM

SDRℓ2
∞

QWF

WF, unq.

Fig. 5. BER performance for a MU-MISO system with N = 128 and M =

16 with 8 PSK signaling.

has i.i.d. entries with zero mean and variance υ2. The channel

estimate can be then written as

He = H+ Γ. (24)

The optimization problem in (22) is then run with He for

υ2 = 0 (full CSI), υ2 = 0.1 and υ2 = 0.2 for the three

modulation schemes. The simulation results are shown in Fig.

7. As can be concluded, the MSM precoder is more robust

against imperfect CSI for QPSK. For higher order modulation,

the loss due to channel estimation errors increases.

VII. CONCLUSION

We proposed a symbol-wise precoder to transmit PSK sig-

nals in MU-MISO systems when 1-bit quantization is applied

at the transmitter. The design of the transmit vector is based

on maximizing the safety margin to the decision thresholds of

the PSK modulation. The 1-bit constraint is relaxed to the box

constraint and we end up with a linear programming problem

that can be efficiently solved. The simulation results show a

significant improvement compared to the linear precoder QWF

[4]. The proposed method performs almost the same as the

method presented in [11] but with very low complexity.
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Fig. 6. BER performance for a MU-MISO system with N = 128 and M =

16 with 16 PSK signaling.
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