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Bi‑order multimodal integration 
of single‑cell data
Jinzhuang Dou1†, Shaoheng Liang1†, Vakul Mohanty1, Qi Miao1, Yuefan Huang1, Qingnan Liang2, 
Xuesen Cheng2, Sangbae Kim2, Jongsu Choi2, Yumei Li2, Li Li3, May Daher3, Rafet Basar3, Katayoun Rezvani3, 
Rui Chen2,4 and Ken Chen1*   

Background
Advances in high-throughput single-cell technology such as single-cell RNA-
sequencing (scRNA-seq) [1] and mass cytometry [2] have enabled systematic deline-
ation of cell types based on thousands to millions of cells sampled from developing 
organisms or patient biopsies [3, 4]. For example, recent application of combinatorial 
indexing-based technology has generated the transcriptomic and chromatin acces-
sibility profiles of millions of cells in developing human fetus samples [5]. Rare cell 
types and complex cellular states, however, remain challenging to discover, which 
necessitates the development of multiomics technologies to simultaneously meas-
ure other cellular features, including DNA methylation [6, 7], chromatin accessibility 
[8–10], and spatial positions [11, 12] in the same cells. Although available single-cell 
multiomics technologies [10, 13–16] can profile thousands to millions of cells per 
experiment, the cost of the experiments is still quite high [17], and the data generated 
are often of lower throughput than those generated by unimodal technologies. These 

Abstract 

Integration of single-cell multiomics profiles generated by different single-cell tech-
nologies from the same biological sample is still challenging. Previous approaches 
based on shared features have only provided approximate solutions. Here, we present 
a novel mathematical solution named bi-order canonical correlation analysis (bi-CCA), 
which extends the widely used CCA approach to iteratively align the rows and the 
columns between data matrices. Bi-CCA is generally applicable to combinations of any 
two single-cell modalities. Validations using co-assayed ground truth data and applica-
tion to a CAR-NK study and a fetal muscle atlas demonstrate its capability in generating 
accurate multimodal co-embeddings and discovering cellular identity.
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restrictions necessitate the development of computational approaches that can accu-
rately integrate multiple data matrices generated by different technologies from the 
same biological samples to acquire an accurate characterization of cellular identity 
and function.

However, different technologies create data matrices of different rows and columns, 
which correspond to different sets of cells and different types of features. How to align 
cells and features simultaneously across matrices is a core computational challenge. 
When the two sets of cells are sampled uniformly from the same biological sample, it 
is safe to assume that there exists an optimal alignment of them. However, the search 
space, whose dimensionality is the product of the numbers of cells (or the numbers of 
features) in the two sets, is extremely large. To address this challenge, existing computa-
tional approaches followed two directions [18]: (1) aligning features empirically before 
aligning cells [19–22] and (2) obtaining separate embeddings for each modality, followed 
by performing unsupervised manifold alignment [23–25]. Taking integration of scRNA-
seq and single cell assay for transposase accessible chromatin sequencing (scATAC-
seq) as an example, the first category of methods require constructing a “gene activity 
matrix” from scATAC-seq data by counting DNA reads aligned near and within each 
gene [26]. A successful alignment requires considering both basic proximal regulatory 
elements and distal regulatory relationship established via other regulatory elements 
such as enhancers, which are often critical to decipher cell identities [8]. However, cur-
rent approaches either completely rely on proximal regulatory elements, or infer distal 
elements from only scATAC-seq data (e.g., Cicero [26]) without integrating with gene 
expression data. It also substantially simplifies (or loses) multifactorial relations between 
transcription factors (TF) and target genes [27]. Based on pre-aligned features generated 
by such empirical rules, Seurat integration (referred to as “Seurat” here after; not to be 
confused with the weighted nearest neighbor (WNN) approach introduced in Seurat v4 
for clustering co-assayed data) applies canonical correlation analysis (CCA) and mutual 
nearest neighbors (MNNs) to identify cells anchoring the two data matrices [20]; LIGER 
uses an integrative non-negative matrix factorization (iNMF) to delineate shared and 
dataset-specific features [22]. Coupled NMF shares similar concept with LIGER [28]; 
Harmony projects cells onto a shared embedding using principle components analy-
sis (PCA) and removes batch effects iteratively [21]. All these programs suffer from the 
aforementioned limitations and thereby cannot yield a comprehensive, bi-order gene 
regulatory network, particularly when chromatin changes are asynchronous from RNA 
transcriptions in cells undergoing state transitions [29]. The second category of meth-
ods such as MATCHER, MMD-MA, UnionCom, SCOT, and Pamona [24, 25, 30–32] 
do not require prior feature alignment. However, they only use intramodal pairwise cell-
cell distance information and discard intermodal, trans-acting feature interaction. Thus, 
they may misalign cell types of similar abundance instead of similar biology, especially 
rare cell types.

In this study, we develop a novel method called bi-CCA (bi-order canonical correlation 
analysis) and associated computational tool called bindSC. Bi-CCA learns the optimal 
alignment among rows and columns (i.e., both cell correspondence and feature interac-
tions) from two data matrices generated by two different experiments. The alignment 
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matrix derived from bi-CCA can thereby be utilized to derive in silico multiomics profiles 
from aligned cells, which can be used as input to downstream regulatory network inference.

We first assess our method on multimodality integration tasks using benchmarking data-
sets obtained directly from multiomics technologies, including a novel mouse retinal bipo-
lar cell dataset created by the 10x Genomics Multiome ATAC+RNA kit. Unlike existing 
integration methods using shared features only, bi-CCA utilizes the full feature information 
and enables accurate alignment of bipolar cell subtypes between RNA and ATAC data. It 
also enables discovery of novel cell-type-delineating gene-protein links via integration of 
RNA and mass cytometry data. We next apply bindSC to two challenging integration tasks. 
It detects an active immune cell population in the CAR-NK cell products via integration 
of RNA and mass cytometry data; it resolves mislabeled fetal muscle cells via integration 
of RNA and ATAC profiles. Bi-CCA is implemented as an open-source R package bindSC 
available at https:// github. com/ KChen- lab/ bindSC.

Results
Bi‑order integration of multi‑omics data

Bi-CCA takes as input two single-cell data matrices (X and Y) generated uniformly from 
the same cell population by two different technologies (Fig. 1a and Additional file 1: Fig. 
S1). In most single-cell multi-omics integration tasks, neither the alignment between the 
cells in X and those in Y, nor the alignment between the features in X and those in Y is 
known (Additional file 2: Supplementary Note 1). To address this challenge, bi-CCA intro-
duces a modality fusion matrix Z to link X and Y (Fig. 1b). The modality fusion matrix has 
the same rows as does X and the same columns as does Y. To facilitate the optimization of 
Z, it is initialized based on prior knowledge linking the two modalities. Taking integration 
of scRNA-seq and scATAC-seq as an example, the modality fusion matrix can be initialized 
to the “gene activity matrix” estimated by other programs such as Seurat v3.0. Bi-CCA then 
iteratively updates Z to find an optimal solution which maximizes the correlation between 
X and Z and between Y and Z in the latent space simultaneously. Details about this iterative 
procedure can be found in Methods. In silico simulation experiments using splatter [33] 
indicate that bi-CCA can robustly align cells and discover meaningful feature interactions 
from noisy experimental data (Additional file  2: Supplementary Note 2 and Additional 
file 1: Fig. S2).

Bi-CCA outputs canonical correlation vectors (CCVs), which project cells from two data-
sets onto a shared latent space (hereafter “co-embedding”). Joint clustering, label transfer 
and network inference can be done in the latent space (Fig. 1c). Moreover, the final modal-
ity fusion Z and Y can generate a consensus multiomic profile for cells from Y directly, thus 
enable (1) characterizing gene and chromatin-accessibility relations from aligned scRNA-
seq and scATAC-seq data, (2) associating transcriptomic profiles with proteomic profiles 
from aligned scRNA-seq and CyTOF data, (3) associating transcriptomic profiles with spa-
tial locations from aligned scRNA-seq and spatial transcriptomic data, and so on (Fig. 1d).

Integration of single‑cell RNA‑seq and single‑cell ATAC‑seq data

To examine the utility of bindSC on integrating scRNA-seq and scATAC-seq data, 
we generated coassayed snRNA-seq and snATAC-seq data using the 10x Genom-
ics Multiome ATAC+RNA kit from an adult mouse retina sample. Mouse retina is 

https://github.com/KChen-lab/bindSC
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Fig. 1 Overview of bindSC. a Inputs supported by bindSC. BindSC can integrate two single-cell assays 
such as transcriptomes, epigenomes, spatial transcriptomes, and proteomes. b Bi-order integration of two 
modalities (X and Y) with unpaired cells and unmatched features using the bi-CCA approach. In the data 
matrices, each row represents a gene/locus, and each column represents a cell. Step 1: initializing a modality 
fusion matrix Z linking the two modalities (Methods). Step 2: matching both cells and features across 
modalities using CCA. Step 3: updating Z using the obtained cell-cell and feature-feature matching results. 
Steps 2 and 3 are performed iteratively to optimize Z. c Based on canonical correlation vectors (CCVs) in the 
derived latent space, bindSC can (1) jointly cluster cells in both modalities to define cell types and (2) transfer 
labels from one modality to another modality. Association of Z and Y measured in the same cell enables to 
infer gene-protein and peak-gene regulatory networks. d The integrated multiomics feature profiles enable 
us to (1) link genes to regulatory elements, (2) map RNA expressions to spatial locations, and (3) delineate 
cells by both RNA and protein signatures
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heterogeneous, composed of multiple neuronal and non-neuronal cell types [6, 34, 35]. 
Among them, bipolar cells (BC), which connect photoreceptors (cones and rods) to 
inner retina, are traditionally dissected into rare subtypes of subtle functional and mor-
phological differences. While high-resolution single-cell transcriptomic profiles of BCs 
are available [34, 36–38], little is known about the corresponding single-cell chromatin 
landscapes. Although it is now possible to directly generate multiome data, there are 
often restrictions on cost, feasibility, and data quality. Therefore, integrating single-cell 
ATAC and RNA profiles obtained independently from the same retina sample may pro-
vide an exciting opportunity to comprehensively characterize these rare cell subtypes 
and discover transcription factors (TFs) important in establishing or maintaining the cell 
identities [39–41].

After performing standard quality control, we obtained 1276 BC nuclei of high-quality 
matched ATAC+RNA profiles, which serve as an objective ground truth for quantifying 
the success of in silico integration. We first examined the RNA profile. Ten clear clus-
ters were identified and annotated unambiguously as BC1-10 (Fig.  2a and Additional 
file 1: Fig. S3). Thus, this RNA-based cell type annotation was used as a ground truth in 
the subsequent analysis. We then examined the ATAC profiles and found that cells in 
the same cell-types were largely clustered together (ARI = 0.71) although were not as 
distinctive. When we reduced the ATAC data to gene resolution based on proximity to 
nearest genes, the cell types became harder to delineate (ARI = 0.23; Fig. 2c), indicating 
that the gene activity transformation loses information.

To evaluate bindSC and three other commonly used methods (Seurat v3.0, LIGER, 
Harmony) in the task of integrating two independent single-cell dataset, we treated 
the snRNA and snATAC data as if they were obtained from two different set of cells 
and tested the ability of these methods in recovering the known pairing. A successful 
method should project the cells of the same type into the same region in the integration 
space. As shown in the co-embedding UMAPs (Fig. 2d, e), bindSC successfully achieved 
that. In the UMAPs generated from the co-embeddings, both the RNA (Fig.  2d) and 
the ATAC (Fig. 2e) data achieved relatively tight clustering and distributed correspond-
ingly by cell types. We compared cell-typing accuracy of each method (generated in the 
respective co-embeddings) with the ground truth. We found that bindSC achieved rela-
tively accurate results (Fig.  2f ). In comparison, Seurat v3.0 tended to misalign all cell 
types to BC1 and had difficulties separating BC8 and BC9. LIGER and Harmony have 
worse accuracy. These were due partly to the fact that these methods started with gene-
based ATAC profiles, which already lost useful information (Fig. 2c).

Because bindSC works with the full ATAC profile, it has the power to better establish 
the relationship between the RNA and the ATAC features, including potentially distal 
relationships. To elucidate this point, we calculated the correlation between imputed 
RNA profiles (i.e., the fusion matrix Z) and the observed RNA profiles. As expected, 
RNA profiles imputed from gene-based ATAC profiles (at iteration 0) was weakly cor-
related with the observed RNA profiles (Pearson’s R = 0.1). After 3 iterations, the R value 
increased to 0.5; meanwhile, the value between imputed and the initial profile decreased 
to as low as 0.2, indicating the power of associating full peak profiles to genes in a de 
novo fashion, rather than utilizing reduced profiles (Fig. 2g).
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Fig. 2 Integrating snRNA-seq and snATAC-seq data from bipolar cells in a mouse retinal sample. a–c The 
UMAP views of the snRNA-seq profiles (a), the snATAC chromatin accessibility peak profiles (b), and the 
compressed gene-based chromatin accessibility profiles (c) of 1276 mouse retinal bipolar cells. The cells 
are colored by cell types annotated based on RNA expression levels (ground truth, Additional file 1: Fig. S3). 
The Adjusted Rand Index (ARI) values are labeled in each panel. Given we use RNA annotation as the gold 
standard, the ARI for RNA clustering in (a) is 1. d, e UMAPs generated from the bindSC-integrated snRNA and 
snATAC co-embeddings. Plotted respectively are cells in the snRNA-seq data (d) and those in the snATAC-seq 
data (e). f Consistency between cell types computationally inferred from ATAC profiles by bindSC, Seurat 
v3.0, LIGER, and Harmony, respectively, with the ground truth. Darkness of the dots corresponds to degree 
of consistency while size of the dots the fraction of cells per row. Overall accuracies are shown in the subtitle 
after the method names. g Pearson correlation coefficients between the imputed and the initial gene 
score (top panel) and the ground truth RNA profiles (bottom panel) over bindSC iterations. The result at 
iteration 0 corresponds to the traditional CCA method. Each dot corresponds to the accuracy of one known 
marker gene (The full gene list is shown in Additional file 1: Fig. S3). h Downsampling schemes to generate 
imbalanced datasets between snRNA-seq and snATAC-seq data. Each value in the table denotes cell number 
available. We generated two imbalanced data integration scenarios: (1) downsampling 50% of the five major 
cell types (BC1-5) while keeping all the cells from the five minor cell types (BC6-10) and (2) removing the five 
minor cell types (BC6-10) in the snATAC-seq data. Label transfer accuracy achieved by various methods on 
these imbalanced datasets are shown for scenario 1 (i) and scenario 2 (j)
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To further examine bindSC’s performance on scenarios where cell populations have 
imbalanced abundance between two modalities, we generated two datasets: (1) remov-
ing 50% of cells in the top five major cell types (i.e., BC1, BC2, BC3, BC4, BC5) in the 
snATAC data while keeping the snRNA data intact and (2) removing the top five minor 
cell types (i.e., BC6, BC7, BC8, BC9, BC10) in the snATAC data while keeping the 
snRNA-seq data intact (Fig. 2h). The label transfer accuracy of bindSC was similar with 
that from the full paired profiles, indicating bindSC alignment is robust on imbalanced 
datasets. Again, bindSC had the best performance among all methods in these two sce-
narios (Fig. 2i–j; Additional file 1: Fig. S4d-e).

We also performed evaluation of several manifold-based methods (SCOT, UnionCom, 
Pamona, and MMD-MA). They tend to swap entire cell types (Additional file 1: Fig. S4a-
b), especially for subtypes with similar abundances, such as BC6 and BC7 (both ~7% 
abundance; see Additional file 1: Fig. S4a) for SCOT. The mappings, though mathemati-
cally plausible, are not biologically sound.

We further examined the 16,944 de novo peak-gene links inferred by bindSC. They can 
be grouped into 25 clusters. Some of these links were distinct to cell types, while oth-
ers were shared by multiple cell types (Additional file 1: Fig. S5), indicating potentially 
a hierarchical regulatory architecture resulting from staged cell lineage differentiation. 
Specific distal regulatory relations were found in those links, such as Nfib interacting 
with peaks up to 1Mb away and Car8 interacting with peaks up to 250kb away [37] 
(Additional file  1: Fig. S6). The integration also enhanced the analysis of correlation 
between the RNA expression levels of transcription factors (TFs) and their activities 
inferred from DNA-binding motif enrichment analysis of the ATAC-seq profile (Meth-
ods; Additional file 1: Fig. S7).

Overall, our study demonstrated the power of bindSC in generating more accurate in 
silico multiomics profiles than other existing methods, and the potential in better delin-
eating cell types and associated regulatory signatures.

Integration of single‑cell RNA and epitope expression data

Complex interplay exists between mRNAs and proteins [42]. Single-cell proteomic 
methods such as mass cytometry (CyTOF) [2, 43] measure abundance of a small set of 
(often 10–50) surface proteins (epitopes) and provide functional quantification of vari-
ous cell populations. Integrating single-cell RNA and protein data from the same sample 
can potentially achieve higher resolution characterization and enable discovery of novel 
cellular states and associated regulatory signatures. This task is challenging because the 
mRNA and protein expression levels derived from the same genes are not well corre-
lated, due to complex post-transcriptional modifications and technological limitations 
[44]. CITE-seq [45] performs joint profiling of epitope and mRNA levels in the same 
cells and can be used to evaluate the results of in silico integration.

We used a CITE-seq dataset consisting of 30,672 human bone marrow cells with a 
panel of 25 proteins [20]. Unsupervised clustering of the RNA profiles revealed cell types 
largely consistent with those in the protein profiles, except for some noticeable differ-
ences (Fig.  3a, b). CD8+ and CD4+ T cells were partly blended together in the RNA 
data (ARI = 0.43) but separated clearly in the protein data (ARI = 0.82). On the other 
hand, conventional dendritic cells (cDC2) were separated from other clusters in the 
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RNA profiles but were intermixed with other cell types in the protein profile. In contrast, 
the gene expression levels of the 25 RNAs encoding the 25 proteins lacked delineat-
ing power and could not yield meaningful classification (ARI = 0.09; Fig. 3c). We ran-
domized the orders of the cells in the RNA matrix and the protein matrix, then tested 
the ability of each method in generating meaningful co-embeddings and recovering the 
correct pairing. Seurat v3.0, LIGER and Harmony, which work with only data matrix of 
25 homologous features, failed to produce meaningful co-embeddings (Additional file 1: 
Fig. S8a): the cells from the protein data were well clustered, but those from the RNA 
data were not meaningfully clustered.

We then tested bindSC on this task. The matrix X was set as the protein matrix, Y 
the RNA matrix of 3000 highly variable genes, and Z the RNA matrix containing only 
the 25 protein-homologous genes. Remarkably, the majority of the cells from the two 
modalities became well aligned in the co-embedding (Fig.  3d, e). Notably, the bulk of 
CD4+ and CD8+ T cells mixing together in the RNA data became well separated in the 
co-embedding. We calculated the label transfer accuracy (Methods) between the protein 
and the RNA cells deriving from the same original cells in the co-embedding. The overall 
label transfer accuracy for bindSC was significantly higher than those obtained by Seu-
rat, LIGER, and Harmony (Fig. 3f ). Overall, the protein levels imputed by bindSC from 
the entire set of RNAs (i.e., the modality fusion matrix Z) showed consistently higher 
correlation with the measured epitope levels than the homologous RNA expression 
levels, indicating meaningful inference of post-transcriptional regulation (Fig.  3g). For 
example, protein levels for CD19, CD14, and CD11c, markers overexpressing on B cells, 
monocytes, and DCs, are not highly correlated with the observed RNA expression levels 
in the same cells (Fig. 3h), however, had much higher correlation with the levels imputed 
by bindSC from the whole set of RNA expressions. The imputed profile has high correla-
tion with the true protein levels (Pearson’s R = 0.6) and low correlation with the initial 
gene scores (Pearson’s R < 0.3) (Additional file 1: Fig. S8d), again indicating the power 
of associating two modalities de novo. We then used the modality fusion matrix Z to 
infer a gene-protein correlation network (Fig. 3i and Additional file 1: Fig. S9, Methods), 
in which we see canonical RNA-protein interaction modules centering around CD14 
(CD14) and CD79b (CD79B), respectively. Other proteins such as CD19 (CD74, MS4A1, 
etc.) and CD11a/CD11c (LYZ etc.) have stronger correlation with the RNAs of their 
upstream or downstream genes, rather than the RNAs of their own coding genes. This 
result demonstrates the power of bindSC in discovering biologically meaningful regula-
tory relations and pathways through scRNA-seq and mass cytometry data integration.

Integration of scRNA‑seq with CyTOF data revealing activated CAR‑NK cells

To further understand the utility of bindSC, we applied it to integrate scRNA-seq and 
CyTOF data generated from an immunotherapy study. Chimeric antigen receptor 
(CAR)-transduced natural killer (NK) cells have demonstrated promising efficacy and 
safety in killing cells in CD19-positive lymphoid tumors [46]. To understand why cer-
tain NK cells are more effective than others, we compared the molecular profiles of 
three groups of NK cells: (1) wildtype non-transduced (NT-NK), (2) transduced with 
CD19CAR, and (3) transduced with interleukin-15 (IL15).
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Fig. 3 Integrating single-cell RNA with protein data produced by a CITE-seq assay. a–c UMAPs of 30,672 
human bone marrow cells based on abundance of the 25 surface proteins (a), RNA expression levels of 3000 
highly variable gene (b), and RNA expression levels of the 25 protein-coding genes (c). Labels and dots are 
colored synchronously by cell type information from the original study. The ARI values are labeled in each 
panel. d, e UMAPs of the protein (d) and the RNA (e) expression data in the co-embedding generated by 
bindSC. Each dot in the boxplot denotes one cell type. f Label transfer accuracy of bindSC, Seurat v3.0, LIGER, 
and Harmony. Each dot in the boxplot denotes one cell type. g Improvement in accuracy of imputed protein 
level. Each dot represents a protein. X-axis is the Pearson correlation between the ground truth protein level 
and the RNA level of its coding gene. Y-axis is the Pearson correlation between the ground truth protein 
level and bindSC imputed protein level. h Comparison of the epitope abundance of CD19, CD14, and CD11c 
(x-axes) with the RNA expression levels of their coding genes (i.e., CD19, CD14, and ITGAX; y-axes; first row) and 
with the bindSC imputed protein levels (y-axes; second row). i Gene-protein network inferred from Pearson 
correlation between genes and bindSC inferred protein levels. A cutoff of 0.55 is used and top five highly 
correlated genes of each protein are kept
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We obtained scRNA-seq data (1341 cells × 33,538 genes) and CyTOF data (2000 cells 
× 29 proteins) from the three groups. Clustering the CyTOF and scRNA-seq data by 
themselves revealed nine and seven clusters (called rClusters and pClusters hereafter), 
respectively (Fig. 4a, b). After performing bindSC integration, seven integrated clusters 
(iClusters) were revealed (Fig. 4c, d). Notably, portions of the rClusters R0 and R2, deriv-
ing from a subset of CD19CAR NK cells, were reassigned to iCluster 2 (Fig.  4e). Dif-
ferential expression analysis shows that scRNA-seq cells assigning to iCluster 2 express 

Fig. 4 Integration of CyTOF and scRNA data of CD19-CAR NK, IL15 NK, and NT-NK cells. a, b Cells from 
CD19-CAR NK, IL15 NK, and NT-NK products, clustered independently by CyTOF (a) and scRNA (b) data. 
There is no correspondence between protein clusters (pClusters) and RNA clusters (rClusters). c, d Integrated 
clusters (iClusters) after running bindSC on the CyTOF and the scRNA data. CyTOF (a) and scRNA-seq (b) 
are emphasized, respectively, for better visualization. Cells in the non-emphasized modality are shown in 
light gray. iCluster 2 is circled out by dashed lines. e Correspondence of iClusters and rClusters. The colors 
denote the proportion of iCluster in each protein cluster, normalized by each column. The top annotation 
shows frequencies of three cell groups (cyan: NT-NK, blue: IL15, green: CD19) in each iCluster. f Differentially 
expressed (Wilcoxon test) genes between iCluster 2 and iClusters 3 and 4. Highlighted genes are known NK 
cell activation (upregulated). g Gene expression levels of CCL4 and CCL3 in iCluster 2 and rClusters R0 and R2. 
The p values shown are from the Wilcoxon test. h Protein expression levels of 2B4 and DNAM-1 in iCluster 2, 3, 
and 5. The p values shown are from the Wilcoxon test
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significantly higher level of inflammation marker TNF, cytokine genes CCL4 and CCL3, 
and TF genes including JUN and FOS, all indicating activation [47] (Fig. 4g and Addi-
tional file 1: Fig. S10). Meanwhile, CyTOF cells assigning to iCluster 2 showed signifi-
cantly higher levels of 2B4 and DNAM-1 expressions (Fig. 4h), also indicating activation 
[48]. Importantly, this subset of cells can be identified from neither the scRNA-seq clus-
ters (Fig. 4g), nor the CyTOF clusters alone (Additional file 1: Fig. S11). Thus, integrat-
ing scRNA-seq and CyTOF data using bindSC led to the discovery of a subset of highly 
activated CD19CAR NK cells. This finding may help quantify the therapeutic value of a 
CAR-NK cell project and reveal mechanisms that can be further leveraged to improve 
the efficacy of the treatment.

Integration of sci‑ATAC‑seq and sci‑RNA‑seq data revealing true identities of rare fetal cells

Bi-CCA alignment may also help identify rare cell populations that are hard to identify 
in one modality. Recent study used sci-ATAC-seq3 technology to generate the chroma-
tin accessibility profile of ~800,000 human fetal cell atlas from 15 organs [5]. The types 
of cells in the sci-ATAC-seq data can be annotated by matching clusters with those in 
the sci-RNA-seq data (Additional file 1: Fig. S12a-b). However, this approach requires 
good alignment between sci-RNA-seq and sci-ATAC-seq clusters, which is challeng-
ing to acquire for rare cell types of limited number of cells. Thus, additional manual 
review and examination of marker gene expressions are likely required to ensure accu-
rate annotation result. For example, the fetal muscle cell ATAC dataset, consisting of 
27,181 cells, has a cluster of cells (3.55% abundance) labeled as unknown (Additional 
file 1: Fig. S12b), using the above annotation strategy based on gene activity score (ATAC 
peaks collapsed to genes based on genomic proximity) matrix in the original study. After 
integrating the sci-ATAC-seq and the sci-RNA-seq data using bindSC, we obtained joint 
ATAC and RNA profiles (Fig. 5a, b), in which clusters 7 and 8 were annotated as stro-
mal cells (Fig. 5c), different from the previously reported ones (Fig. 5d). We then per-
formed pathway enrichment analysis based on the differentially expressed genes (DEGs) 
in this cluster (Fig.  5e) and found that these genes are significantly associated with 
immune (p = 0.003), vascular (p = 0.012), placenta (p = 0.010), and adipose (p = 0.005), 
indicating that these clusters are highly likely stroma cells surrounding muscle cells. The 
DEGs are also enriched in biological processes related to extracellular matrix organiza-
tion (p <  10−4), regulation of exocytosis (p <  10−4) and platelet degranulation (p <  10−4). 
In comparison, gene activity scores only indicated moderate similarity between clusters 
0, 7, and 8, but failed to cluster them together in unsupervised hierarchical clustering 
(Additional file 1: Fig. S12c-d).

To examine bindSC’s scalability in large-scale datasets, we created ten benchmark 
datasets with cells number ranging from 22,552 to 834,424 by resampling cells in the 
fetal muscle atlas (Additional file 1: Fig. S12e). The block size was set to 1000 for bindSC 
in each dataset. We obtained the elapsed run time and maximum memory for all the 
benchmarks using one thread (with a 28-core Intel Skylake CPU@2.6GHz). As expected, 
bindSC runtime appeared linear to the number of cells, ranging from 4 min for analyzing 
23,000 cells to 184 min for 800,000 cells. The maximum memory usage was <10GB in all 
the datasets, regardless of cell numbers.
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Discussion
Despite the ground-breaking advances in single-cell technologies including multi-
omics technologies, there always exists a need to computationally integrate multiple 
data matrices of different modalities sampled from the same biological population to 
derive a more comprehensive characterization of cellular identities and functions.

Our method bi-CCA and an associated tool bindSC have addressed this impor-
tant analytical challenge without compromising biological complexity in the data. In 
our experiments, bindSC successfully integrated data obtained from a wide variety 
of vastly different technologies covering transcriptomes, epigenomes, and proteomes 

Fig. 5 Results for fetal muscle sci-RNA-seq and sci-ATAC-seq data integration. a, b UMAPs generated 
from bindSC co-embedding of the sci-RNA (a) and the sci-ATAC (b) data. Dots and labels are colored 
synchronously by cell type. Gray dots represent cells from the other omics (i.e., ATAC cells in a and RNA cells 
in b). c, d Cell types identified respectively using bindSC (c) and based on gene activity scores in the original 
publication (d). Clusters 7 and 8, which are classified differently by bindSC, are highlighted by black boxes. e 
DEGs for each cluster. DEGs specific for clusters 0, 7, and 8 are highlighted by a black box
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and clearly outperformed existing tools such as Seurat v3.0, LIGER and Harmony, 
when being evaluated objectively using true single-cell multiomics data derived from 
the same cells with broad parameter settings (Additional file  1: Figs. S4i and S8e). 
In particular, Seurat v3.0, LIGER, and Harmony are essentially first-order solutions 
that can be applied to only rows or columns. Our approach can further improve inte-
gration performance by leveraging distal regulatory relations [8] (Fig. 2g; Additional 
file 1: Figs. S8d and S13), as exemplified in the interaction between Nfib and a 1Mbps 
upstream putative enhancer site discovered by bindSC. Other scATAC-seq analysis 
pipelines such as MAESTRO [19], Cicero [26], and ArchR [49] can consider distal 
interactions, but only via co-accessibility patterns within scATAC-seq profiles. How-
ever, gene activity scores generated by them did not improve integration results in our 
benchmarking experiments (Additional file 2: Supplementary Note 5 and Additional 
file  1: Fig. S16). This highlights the challenge of performing de novo gene regula-
tion network inference from scATAC-seq data. On the other hand, bindSC outper-
forms cell-cell similarity-based methods including MMD-MA, UnionCom, SCOT, 
and Pamona, which align cells based on manifolds only and do not explicitly model 
feature interactions (Additional file 1: Figs. S2, S4 and S8). Collectively, the ability to 
obtain de novo alignment between both cells and features enables simultaneous dis-
covery of novel cell populations and associated multimodal features.

Similarly, bindSC was able to meaningfully associate expression levels of mRNAs 
with those of surface proteins, a very challenging task due to complexity in post-
transcriptional modification. The resulting co-embedding offered deeper biological 
insights than embeddings derived from single modalities or by using existing integra-
tive approaches. For example, RNA-protein relationships specific to monocytes and 
B cells were found de novo by integrating RNA and protein expression data obtained 
from bone marrow samples. A hyperactive subset of CAR-NK cells was found by inte-
grating scRNA-seq data with CyTOF data.

In addition, bindSC can potentially be applied to integrate single-cell sequencing 
data with spatially resolved molecular profiling data, such as 10x scRNA-seq with 
multiplexed error-robust fluorescence in situ hybridization data (MERFISH), in which 
feature dimensions are different between two modalities. The generic framework of 
bi-CCA also makes it possible to align multiple datasets acquired from more than 2 
modalities, for example, aligning scATAC-seq data with scRNA-seq data and subse-
quently with spatial transcriptomics data. Although further experimentation is clearly 
required, the clean definition of CCA may warrant relatively straightforward inter-
pretation of the complex integration results.

Bi-CCA made two assumptions: (1) the two sets of cells are sampled uniformly from 
the same biological sample and (2) the features of the two datasets are linearly corre-
lated. These two assumptions are met under many scenarios of current investigations, 
however, could be violated when there are insufficient number of cells obtained from a 
rapidly developing cell population. In addition, although we did not observe obviously 
mismatched clusters because most datasets we studied are derived from biological sam-
ples of limited heterogeneity, it is possible to observe modality-specific clusters that 
cannot be well aligned by bi-CCA. That means the two modalities may not have evenly 
represented molecular heterogeneity in the sample, violating the second assumption. 
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Identifying and interpreting those data will require in-depth analyses from both biologi-
cal and technical perspectives. Consequently, the accuracy of the co-embedding could 
vary, depending on sampling density and complexity of the population. We measured 
accuracy with respect to data complexity in the simulation experiments (Additional 
file 1: Fig. S2); however, accuracy on a real dataset could be complex to gauge a priori 
and will require case by case investigation in the context of a specific study, followed by 
necessary experimental validation. Nonetheless, in this study, we clearly proved based 
on objective ground truth data that bi-CCA substantially avoided biases introduced by 
existing methods and that bindSC is a robust implementation that can be applied to 
derive meaningful results on most recent datasets containing thousands to tens of thou-
sands of cells (Additional file 3: Table S1).

BindSC is efficiently implemented in R with a low memory footprint and fast con-
vergence speed, e.g., <15 iterations, 10 min (Additional file 1: Figs. S4c, S8c and S15). 
The major computational cost for bindSC is from calculating cell/feature co-embedding 
coordinates using singular value decomposition (SVD) (Methods). It typically requires 
O(MNL) floating-point operations to construct MN cell-cell distance matrix as input 
to SVD decomposition, where M and N are cell numbers of the two modalities and L 
is the number of overlapped features. To address this computational challenge, bindSC 
implements the “divide-and-conquer eigenvalue algorithm”. The divide part first splits 
cells into different blocks specified by users, which can be solved in parallel with lower 
memory usage (Additional file 1: Fig. S1b). The conquer part then merges results from 
each block recursively. Therefore, the maximal memory usage of bindSC is independent 
of the total cell number (Additional file 1: Fig. S12e).

Conclusions
Taken together, we believe that bindSC is likely the first tool that has achieved de novo 
bi-order integration of data matrices generated by different technologies and can be 
applied in broad settings. In the single-cell domain, bindSC can clearly be applied to 
align cells and features simultaneously, which are important for ongoing investigations 
in the Human Cell Atlas [50], the NIH HubMap [51], the Human Tumor Cell Network 
[52], and on remodeling of tumor microenvironment [53]. Further, bindSC can poten-
tially be applied to other domains, such as integrating patient sample mRNA profiles 
with cell-line drug-sensitivity data [54].

Methods
BindSC workflow

BindSC workflow for creating in silico single-cell multi-omics embeddings consists of 
four steps:

1. Individual dataset preprocessing including variable feature selection and cell cluster-
ing

2. Initializing feature matching across modalities (i.e., constructing modality fusion 
matrix)

3. Identifying cell correspondence using the bi-cca algorithm
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4. Jointly clustering cells between two modalities in the co-embedding latent space and 
constructing multi-omics profiles for various downstream analysis.

We formulate our method for the case of two modalities. Let X ∈ RM × K be a single-cell 
dataset of features g1, g1, ⋯, gM by cells c1, c1, ⋯, cK and Y ∈ RN × L be a single-cell data-
set of feature p1, p2, ⋯, pN by cells d1, d1, ⋯, dL. M and N are the numbers of features 
(e.g., gene expression, chromatin accessibility, protein abundance level) in the two data-
sets, and K and L are the numbers of cells. Using integrating genes with ATAC peaks as 
an example, g1, ⋯, gM represent the gene expression levels and p1, …, pN represent the 
ATAC peaks, with M ≤ N.

It is worth noting that mathematically, Z may be defined in two ways depending on 
which modality is used as X. However, because Z is the predicted features in X for cells 
in Y, the process is usually only meaningful in one way. Biologically, it is meaningful 
to predict gene expression from ATAC peaks (i.e., X: RNA, Y: ATAC, Z: ATAC cells × 
genes), or proteins from the RNA expression profile (i.e., X: protein, Y: RNA, Z: RNA 
cells × proteins), but not the other way around. In addition, it is more stable to project 
more features to fewer, which is consistent with the above notions.

The important component of each step is described as follows.

Individual modality preprocessing

For each modality, we follow their standard processing pipelines, which usually include 
variable feature selection and unsupervised cell clustering. The cluster information 
derived from all modalities is used for downstream parameter optimization.

Initializing feature matching across modalities

Because features in the two datasets are generally different, bindSC requires an addi-
tional modality fusion matrix Z ∈RM × L to bridge X and Y. The modality fusion matrix Z 
can be considered as the projection of Y to the feature space of X. Taking the integration 
of scRNA-seq and scATAC-seq as an example, Z can be derived from scATAC-seq pro-
files by summing reads in gene bodies [20, 22, 26] and is commonly referred to as a gene 
score matrix. In bi-CCA, Z is updated iteratively. In the following text, the initial value 
of Z is denoted by Z(0). In addition, for scRNA-seq and scATAC-seq data, Z(0) can be 
inferred differently using the regulatory potential (RP) model in MAESTRO [19], or the 
co-accessibility model in Cicero (Additional file 1: Fig. S16). Users can select proper Z(0) 
based on the three metrics of integration mentioned in Parameter optimization below.

Bi‑order canonical correlation analysis (Bi‑CCA)

The key algorithm implemented in bindSC is bi-CCA, the concept of which extends tra-
ditional CCA [20, 27, 55] to both rows and columns to enable capturing of correlated 
variables in cells and features simultaneously. Bi-CCA introduces two cell-level projec-
tion matrices U ∈ RK × E, S ∈ RL × E such that the correlations between indices XU and ZS 
are maximized, and two feature-level projection matrices T ∈ RM × E, V ∈ RN × E such that 
the correlations between indices Z′T and Y′V are maximized. E is the dimensionality of 
the latent space, which is empirically set to the number of principle components (PCs) 
as in other analyses. The general optimization framework can be formulated as follws:
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subject to U′U = I, S′S = I, T′T = I, V′V = I.
If the modality fusion matrix Z was known, the objective (1) would be divided into two 

disjoint traditional canonical correlation analysis (CCA) problems. The left term identi-
fies cells of similar (aligned) features, while the right term identifies features shared by 
the (aligned) cells.

Given that Eq. (1) is a multi-objective optimization problem, we design the following 
weighted optimization to balance the importance of each modality.
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The update process (4) ~ (7) are repeated until it reaches convergence. Because each of 
the subproblems is convex with respect to the block variables being optimized, the algo-
rithm is guaranteed to converge to a fixed point (local minimum).

Fast integration in the low‑dimension space

The feature dimensionality of the matrix Y is usually more than 100,000 for single-cell 
epigenetic profiles, which will take longer time/larger memory for integration. In addi-
tion, the single-cell epigenetic profiles are usually sparse and noisy. Therefore, we pre-
sent a modified version of bi-CCA, which takes low-dimension profiles rather than 
original matrices on integrating high-dimension datasets. We first perform CCA on 
matrix pair (X, Z(0)) to derive the low-dimension embeddings as (PX, Pz0) (Algorithm 1) 
and then perform dimension reduction on original matrix Y to derive the low-dimension 
embeddings as PY. Then, the updated matrix Pz could be solved based on the following 
equation:
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multiomics profiles
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neighbors (20 by default) based on the Euclidean distance in the L2-normlized space. 
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nected clusters (termed meta-cluster) based on constructed SNN graph with a resolu-
tion parameter set by users (default 0.5).
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We can understand the molecular-level interaction among modalities by associating 
the modality fusion matrix Z ∈ RM × L with Y directly, which are measured in the matched 
cell population.

Label transfer between modalities

Co-embeddings U, V are used to conduct cell type label transfer. A support vector 
machine (SVM) model (svm function in R package e1071) was trained with cell coordi-
nates U and their corresponding cell type from the first modality as input. A normalized 
cell-type score (ranges from 0 to 1 and sums up to 1) for each cell is returned. Cells are 
classified as the type achieving the highest score.

To assess the accuracy of label transfer on cell types, we first build a confusion matrix 
C with element Ci, j representing the number of cells of type  i predicted as type  j. The 
matrix is then normalized by rows (so that each row sums up to 1). The cell type label 
transfer accuracy is the percentage of correct prediction. We average label transfer accu-
racy across all cell types to obtain an overall accuracy.

Algorithm 1. Calculating CCVs using SVD
Take a subproblem from Eq. (4) as an example, the goal of this module is to find projec-
tion matrix U ∈ RK × E and S ∈ RL × E such that the correlations between two indices XU 
and ZS are maximized.

We define �X
′
Z := X

′
Z . By letting U ∈ RK × E and S ∈ RK × E be the matrices of the first 

E left- and right singular vectors of �X
′
Z , the optimum in Eq. (11) is solved with a direct 

analogy of Eq. (6). E represents the number of singular vectors in the latent space, a user-
definable parameter that can be further optimized (detailed in Parameter optimization).

Algorithm 2. Updating modality fusion matrix Z
This algorithm is used to solve Z in Eq. (3), assuming that CCV pairs (U, S) and (T, V) are 
obtained. We denote the objective function as

Therefore,

Equation (12) is maximized when ∇f(Z) = 0. Therefore, we can update Z as
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Parameter optimization

There are three key hyperparameters when running bindSC for integration. The dimen-
sionality E in the latent space, the couple coefficient α representing the weight of the 
initial modality fusion matrix Z(0), and the factor λ to balance the contribution of each 
modality. Similar to previous integration methods, E is very important on cell type clas-
sification. As a general suggestion, we recommend starting E at the minimal number of 
principle components (PCs) used in performing single modality clustering. Selection 
of λ allows us to adjust the size of modality-specific effects to reflect the divergence of 
the datasets being analyzed, and selection of couple coefficient α depends on whether 
the initial Z(0) can represent the “true” gene score of Y. To aid the selection of λ, α, we 
devise two metrics to measure integration performance on accuracy (no mixing of cell 
type) and alignment (mixing of datasets) as defined below. Their applications to the data 
are shown in Additional file 2: Supplementary Notes 3-5 and Additional file 1: Fig. S14. 
These metrics do not rely on cell type labels or cell-cell correspondence and thus can be 
applied to new unlabeled data.

Silhouette score

To measure integration accuracy, we use the Silhouette score. Cluster for each cell is 
defined using the cell type labels assigned from single dataset clustering. The Silhouette 
score assesses the separation of cell types, where a high score suggests that cells of the 
same cell type are close together and far from cells of a different type. The Silhouette 
score s(i) for each cell is calculated as following. Let a(i) be the average distance of cell i 
to all other cells within i’s cluster and b(i) the average distance of i to all cells in the near-
est cluster, to which cell i does not belong. Cell-cell distance is computed in the L2-nor-
malized co-embeddings (Eq. 10). s(i) can be computed as follows:

We average values across all cells to obtain an overall silhouette score for integration 
task.

Alignment mixing score

To measure integration mixing level, we use an alignment mixing score similar to those 
of previous studies [57]. We first build a 20-nearest neighbor graph for each cell from 
L2-normalized co-embeddings (Eq.  10). For cell i, assuming proportions of cells from 
two modalities are p1i and p2i, respectively, the alignment mixing score is calculated as

This corresponds to a mixing metric per cell, and we average values across all cells to 
obtain an overall mixing metric.

We run bindSC by ranging a from 0 to 1 (with step size 0.1) and λ from 0 to 1 (with 
step size 0.1). Silhouette score and alignment mixing score are calculated for each 

(15)s(i) =











1− a(i)
b(i)

if a(i) < b(i)

0 if a(i) = b(i)
b(i)
a(i) − 1 if a(i) > b(i)

.

(16)H(i) = −p1ilog2p1i − p2ilog2p2i
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scenario. We select appropriate parameters that generally has best performance in Sil-
houette score and alignment mixing score. On any dataset, the optimal a can be deter-
mined using the BiCCA_para_opt functions in bindSC. Parameter values used in this 
study can be seen in Additional file 3: Table S1.

Performance and benchmarking

In our evaluation, in addition to Silhouette score and alignment mixing score, we also 
consider anchoring distance for evaluation datasets from multi-omics technologies, in 
which each cell has paired profiles. For cell i from the first data, we calculate its distance 
(Euclidean distance) with all cells in the second data as Di, and its distance with cell i in 
the second data as di. The anchoring distance for cell i is calculated as 2di/ max (Di). We 
then average anchoring distance across all cells to obtain an overall anchor distance met-
ric. The anchoring distance of cell i is 0 when it is anchored correctly.

Preparation of the mouse retina 10x Genomics Multiome ATAC+RNA data

One mouse retina was dissociated by papain-based enzymatic digestion as described 
previously [58] with slight modifications. Briefly, 45 U of activated papain solution (with 
1.2 mg L-cysteine (Sigma) and 1200U of DNase I (Affymetrix) in 5ml of HBSS buffer) 
was added to the tissue and incubated at 37 °C for 20 min to release live cells. Post-incu-
bation, papain solution was replaced and deactivated with ovomucoid solution (15 mg 
ovomucoid (Worthington biochemical) and 15 mg BSA (Thermo Fisher Scientific) in 10 
ml of MEM (Thermo Fisher Scientific)). The remaining tissue clumps were further tritu-
rated in the ovomucoid solution and filtered through a 20-nm nylon mesh. After centrif-
ugation at 300g 10min at 4C, the singe cells were resuspended PBS with 0.04% BSA and 
checked for viability and cell count. About 1 million cells were pelleted and resuspend 
in chilled lysis buffer (10x Genomics), incubate for 2 min on ice while monitored under 
microscope. One milliliter of chilled wash buffer (10x Genomics) was added, and the 
sample was spun down at 500g 5min at 4C and washed before resuspended in diluted 
nuclei buffer (10x Genomics). Nuclei concentration was determined using countess and 
proceed with transposition according to manufacturer’s recommendation (10x Genom-
ics). After incubation for 1h at 37C, the transposed nuclei were combined with barcoded 
gel beads, RT mix, and partition oil on chromium to generate gel beads in emulsion 
(GEMs). Single-cell ATACseq library and 3’RNAseq library were subsequently generated 
following recommended protocol from 10x Genomics. Libraries were quantified and 
loaded on Novaseq 6000 and run with the following parameter: 151, 8, 8, and 151bp. 
Data was analyzed using bcl2fastq (to generate fastq files) and CellRanger pipeline (10x 
Genomics). Among 9383 detected high-quality nuclei, 1276 are gated as BCs by known 
markers for further analysis.

Preparation of human bone marrow cell dataset

We examined the performance of bindSC in integrating the single-cell RNA and pro-
tein data derived from human bone marrow tissue. This dataset was generated using the 
CITE-seq technology [45], which included 30,672 cells that have joint profiles of RNA 
and a panel of 25 antibodies. We extracted the RNA expression of the coding genes for 
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the 25 proteins profile from the RNA data and kept cells that have total expression count 
> 2.

The final protein matrix includes 28,609 cells with 25 protein abundance levels. The 
gene expression matrix includes 28,609 cells with 3000 genes. The protein-homologous 
RNA matrix includes 28,609 cells with the RNA levels of the 25 genes encoding the 25 
proteins. To measure anchoring accuracy for each cell type, we used the third metric, 
anchoring distance, which measures the distance of protein and gene expression for 
each cell in co-embeddings.

Preparation of CAR‑NK dataset

The retroviral vectors encoding iC9.CAR19.CD28-zeta-2A-IL-15 and firefly luciferase 
(FFLuc) were generated as previously described [59]. Transient retroviral supernatant 
was produced, collected, and used for transduction of NK cells. CD56+ NK cells were 
isolated from cord blood units which were provided by MDACC Cord Blood Bank. Cord 
blood-derived NK cells were stimulated and transduced as previously described [60].

We used the paired scRNA-seq sequencing and mass cytometry (CyTOF) to charac-
terize the NK cells that are (1) transduced with CD19CAR, (2) transduced with inter-
leukin-15 (IL15), and (3) wildtype non-transduced (NT). Briefly, scRNA-seq data was 
pre-processed using the default pipeline Cell Ranger recommended by 10x Genom-
ics. Mass cytometry data was saved in FCS files by a CyTOF instrument (Helios). We 
also excluded cells that were CD3+ to focus on NK cells only. Data from 3 groups were 
merged together using the R package cytofkit [61] on a set of 33 surface protein markers. 
Transformation using arcsinh with a cofactor of 5 were performed to facilitate compari-
son between samples. For each surface marker, the maximum intensity observed over 
the 99.5th percentile across all samples was excluded to avoid high-intensity outliers. 
Data from all samples were divided by these maximum values. As a result, intensity val-
ues for each marker ranged from 0 to 1. Finally, we obtained scRNA-seq data matrix 
having (1341 cells × 33,538 genes) and CyTOF data matrix (59,510 cells × 29 proteins) 
from the three groups. For bindSC integration, we downsampled 2000 cells from CyTOF 
data to avoid the integration bias driven by imbalanced cell numbers.

Analysis of the fetal muscle dataset

The fetal muscle sci-RNA-seq dataset was downloaded from https:// desca rtes. brotm 
anbaty. org/ bbi/ human- gene- expre ssion- during- devel opment/, and the fetal muscle 
sci-ATAC-seq dataset was downloaded from https:// desca rtes. brotm anbaty. org/ bbi/ 
human- chrom atin- during- devel opment/.

We obtained sci-RNA-seq data (47,537 cells by 63,561 genes) and sci-ATAC-seq data 
(27,181 cells by 1,084,870 peaks). For quality control, we further removed cells with less 
than 100 genes expressed and genes that exist in less than 500 cells from the sci-RNA-
seq data. We also removed cells with less than 1000 peaks expressed and peaks that exist 
in less than 500 cells from the sci-ATAC-seq data. The final RNA matrix includes 30,872 
cells by 5000 highly variable genes and the ATAC matrix includes 22,552 cells by 43,889 
peaks.

https://descartes.brotmanbaty.org/bbi/human-gene-expression-during-development/
https://descartes.brotmanbaty.org/bbi/human-gene-expression-during-development/
https://descartes.brotmanbaty.org/bbi/human-chromatin-during-development/
https://descartes.brotmanbaty.org/bbi/human-chromatin-during-development/
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To validate cell type assignment for cells from sci-ATAC-seq data, we performed gene 
set enrichment analysis on differentially expressed genes and differentially chromatin 
accessible genes using Enrichr [62] (https:// maaya nlab. cloud/ Enric hr/). We obtained 
GO biological processes pathways and Janseen Cell Type Topology with at least 4 genes 
and adjusted p value < 0.1.

Calculating the correlation between imputed molecular profiles and the ground‑truth

The modality fusion matrix Z in bindSC can be considered as the imputed profiles of 
cells from Y on the first modality. Given mouse retina bipolar dataset and human bone 
marrow dataset are from co-assayed profiles, the Pearson correlation between updated 
Z and X (they share the same dimension) can reflect the accuracy of bindSC integration. 
The overall Pearson correlation was calculated by treating X and Z as vectors. The cell-
type level Pearson correlation was calculated by using entries of X and Z from a specific 
cell type.

Motif‑based TF activity estimation

To estimate transcription factor activity from scATAC-seq data, we used default settings 
in chromVAR [63] package. This approach quantifies accessibility variation across sin-
gle cells by aggregating accessible regions containing a specific TF motif. It calculated 
motif-based TF activity by comparing the observed accessibility of all the peaks con-
taining a TF motif to a background set of peaks normalizing against known technical 
confounders.

Building and visualizing protein‑gene networks

For human bone marrow dataset measured with CITE-seq technology, we calculated the 
Pearson correlation of each pair of protein and gene based on updated Z (from bindSC) 
and Y. A cutoff of 0.55 is used to filter the relations. For visualization purpose, we further 
keep no more than five genes for each individual protein.
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