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ABSTRACT 
 

Bone Strength Multi-axial Behavior- Volume Fraction, Anisotropy and Microarchitecture 
 

by 
 

Arnav Sanyal 
 

Doctor of Philosophy in Engineering – Mechanical Engineering 
 

University of California, Berkeley 
 

Professor Tony M. Keaveny, Chair 
 
 

Trabecular bone is a major load-bearing tissue in the musculoskeletal system and 
is subjected to various multi-axial loads in vivo. For example, in the vertebral body, the 
trabecular bone is primarily subjected to uniaxial loads, in the proximal femur, trabecular 
bone is subjected to biaxial loads i.e. loads oriented at two mutually perpendicular 
directions, in distal radius, the trabecular bone can subjected to shear loads due to off-axis 
loading during a traumatic event. Understanding the multi-axial strength and underlying 
tissue-level failure mechanisms of human trabecular bone is of great clinical and 
scientific importance since age-related osteoporotic fractures primarily occur at 
trabecular bone sites, such as the hip, spine and wrist. With the onset of osteoporosis, 
there is an increase in porosity and deterioration of the microarchitecture of trabecular 
bone, which results in increased fragility and fracture susceptibility of trabecular bone.  
 

Using high-resolution, micro-CT based nonlinear finite element models, we 
investigated the strength of trabecular bone under compression, shear, biaxial and multi-
axial loading conditions. Under uniaxial loading, it was shown that the variation in both 
compressive and shear strength was primarily attributed to the volume fraction of the 
trabecular bone, but the observed scatter in the ratio of the shear and compressive 
strength was attributed to heterogeneity and anisotropy of the trabecular 
microarchitecture. At the tissue-level, it was shown that shear loading leads to 
predominantly tensile tissue failure unlike compression loading that makes trabecular 
bone much weaker under shear loading. Under biaxial loading, it was shown that the 
yield strength varied with both volume fraction and anisotropy, and most of the variation 
in biaxial strength could be primarily attributed to similar variation of the uniaxial 
strengths with minor variations due to trabecular microarchitecture. Based on these 
results, the complete multi-axial yield strength behavior of trabecular bone was 
investigated for over 200 multi-axial load cases. A new yield strength criterion was then 
formulated in the six-dimensional strain space to mathematically characterize the multi-
axial failure criterion of human trabecular bone.  
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The research presented in this dissertation has provided considerable insight into 
the variation of both apparent-level strength and the tissue-level failure mechanisms of 
trabecular bone under various loading conditions. The role of bone volume fraction, 
anisotropy and microarchitecture on the uniaxial and multi-axial strength has been 
outlined. A multi-axial failure criterion has been formulated which can be used to non-
invasively predict the strength of whole bones of osteoporotic patients using clinical CT 
scans. 
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1. INTRODUCTION 
 

Bone is the major load bearing tissue in the musculoskeletal system. Based on the 
level of porosity, bone is characterized as either cortical or trabecular (Figure 1-1). 
Cortical bone has porosity of 30% or less and is found in the diaphysis region of long 
bones. Trabecular bone is the spongy and highly porous (porosity = 60-95%) bone found 
at the end of long bones such as the proximal femur, in the center of the vertebra, and in 
flat bones such as the skull. Functionally, trabecular bone supports the articular surface of 
joints for the transfer of muscle and joint loads along the long bone. The porous structure 
provides shock absorption, allows nutrients to easily diffuse to the bone cells and serves a 
primary site for production of red blood cells. The differences in functional requirements 
of trabecular bone at different anatomic sites are reflected in differing levels of porosity 
and arrangements of the individual trabeculae, or trabecular microarchitecture. 
 

The structure and mechanical properties of trabecular bone changes in response to 
biological and mechanical stimuli in the body. This process, called bone remodeling, 
occurs continually to repair, replace, and remove damaged or aging bone tissue. Besides 
the biological stimuli, mechanical loading also plays an important role in bone 
remodeling process, which can change the bone structure and its mechanical properties. 
With onset of osteoporosis with aging, due to imbalance in bone remodeling, there is a 
decrease in bone mass and deteriorated microarchitecture of trabecular bone that leads to 
enhanced bone fragility and increased risk of fracture (Figure 1-2). The mechanical 
properties of trabecular bone are therefore, of great clinical importance because of the 
role it plays in the etiology of osteoporosis and age-related fractures. Moreover, due to 
traumatic loading or surgical procedures such as bone grafts and joint arthoplasty, can 
generate in vivo multi-axial loads in trabecular bone. This dissertation describes the 
failure of trabecular bone under compression, shear and various multi-axial loading 
conditions. In the remainder of this chapter, a description of trabecular bone is presented, 
followed by a review of its mechanical properties. A review of failure theories that have 
been applied to trabecular bone is then presented, focusing on multi-axial theories. 
Lastly, a detailed description of the objectives and scope of this dissertation is given.  
 

1.1 Trabecular Bone Structure and Morphology 
 

Trabecular bone is composed of a lattice like network of microstructural struts or 
trabeculae, which form a three-dimensional, interconnected, open porous cellular solid 
type of material. The trabeculae are composed of the trabecular tissue material, which is a 
composite of hydroxyapatite, collagen, water and other proteins arranged in the form of 
packets of lamellar bone. The morphology of the trabecular structure can vary greatly 
within individuals and with age and anatomic site. Most of the variation in morphology 
can be described by bone volume fraction (BV/TV, the fraction of the total volume that is 
occupied by trabecular hard tissue) or apparent bone density (ρ, the ratio of bone mass to 
total volume). These two properties are related by the density of the trabecular tissue 
(ρtissue = ρ / BV TV), which is relatively constant for healthy adults = 2 g/cc [1].  
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In addition to BV/TV, several parameters have been developed to quantify the 

trabecular microarchitecture [2]. The most commonly used descriptor of the trabecular 
architecture is the fabric tensor, a symmetric second rank tensor that characterizes the 
structural anisotropy of trabecular bone [3]. The fabric tensor is constructed from 
volumetric material distribution measures which are taken at various angles within a 
trabecular bone specimen in three-dimensions. The most common measure used to 
construct the fabric tensor is the mean intercept length (MIL) [4]. The eigenvalues of the 
fabric tensor quantify the degree of anisotropy (DA) of the specimen [5] and the 
associated eigenvectors are the directions of principal material orientation. Structures 
with a DA near one are relatively un-oriented, and increasing values of DA represent 
increasing levels of directional orientation. The morphological anisotropy based on the 
fabric tensor has been related to the mechanical or elastic anisotropy of the trabecular 
structure in various studies [6]. 
 

Besides the fabric tensor, other architectural indices such as the mean trabecular 
separation (Tb.Sp), trabecular thickness (Tb.Th), trabecular number (Tb.N), Structure 
Model Index (SMI) and connectivity density (Conn.Dn) have been developed to describe 
the morphology of the trabeculae [2]. Connectivity is a measure of structural redundancy 
of the trabecular structure and represents the maximal number of branches that can be 
broken before a trabecular structure is separated into two parts [7]. Tb.Th and Tb.Sp are 
defined as the average thickness of an object volume and the average thickness of a pore 
space, respectively. Tb.N is defined as the inverse of the average distance between object 
mid-axes, and is thus conceptually related to Tb.Sp. SMI describes the overall 
convexity/concavity of the trabecular surfaces with respect to interior points within the 
trabeculae [8]. Flat plate-like structures have an SMI of zero, whereas ideal cylindrical 
rods have an SMI of three. With advances in imaging technology and the availability of 
micro-computed tomography [9], these architectural indices have become readily 
available since they are automatically calculated using three-dimensional high-resolution 
images of trabecular bone specimens [10]. More recently, an individual trabeculae 
segmentation (ITS) technique [11] has been developed, which spatially decomposes the 
trabecular bone microstructure into individual trabecular plates and rods. 
 

1.2 Trabecular Bone Mechanical Properties 
 

The mechanical properties of trabecular bone has clinical relevance since most 
age-related fractures most frequently occur in anatomic sites composed of trabecular 
bone such as the proximal femur (hip), the vertebrae (spine) and the distal radius (wrist). 
In addition, joint replacement surgery involves implanting fixtures into regions of 
trabecular bone, thereby subjecting trabecular bone to complex stress states. The 
mechanical property of trabecular bone specimen, which is made up of many trabecular 
struts and has dimensions > 1mm, are called the apparent-level properties. The apparent 
properties depend on the material properties of bone tissue matrix, the relative density i.e 
the bone volume fraction and microarchitecture. The trabecular microstructure is 
typically oriented, such that there is a “grain” direction (called the principal material 
direction) along which elastic stiffness and strength are greatest. This microstructural 
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directionality gives trabecular bone anisotropy of elastic properties and is generally 
considered to be orthotropic [12]. Further, the orthotropic elastic properties of trabecular 
bone have been related to the trabecular microarchitecture parameters [3, 6].  
 

Trabecular bone failure properties have been investigated extensively for uniaxial 
loading. The uniaxial strength of trabecular bone is anisotropic with apparent elastic 
modulus and with density BV/TV [13-15]. In addition, trabecular microarchitecture 
measures have been shown to improve the density-strengths correlations [16]. Despite the 
substantial variations that exist in yield stresses, the yield strains for trabecular bone 
measured using the 0.2% offset method are found to be uniform within an anatomic site 
[14, 17]. However under off-axis loading, i.e. when loaded oblique to the principal 
material direction, the yield strains are heterogeneous [18].  

 
A few studies have investigated the multi-axial failure properties of trabecular 

bone. Combined axial-torsion loading experiments on bovine trabecular bone showed 
that under combined tension and shear, failure occurs when the principal strain reached 
the uniaxial tensile yield strain [19]. However, under combined compression and shear 
loading the principal strain at failure was greater than the uniaxial compressive yield 
strain. While this behavior was better captured by a cellular solid theory based yield 
criterion, only one axial-shear load plane was discussed and the results cannot be easily 
generalized for other combined loading cases. Theories developed for composites such as 
the Tsai-Wu failure criterion [20] have also been suggested and formulated for trabecular 
bone [21] with fabric-based anisotropy. However, this theory was found to be too 
restrictive for bovine trabecular bone. It was shown that specimens loaded under triaxial 
compression yielded nearly at their uniaxial yield stresses [22], while the Tsai-Wu 
criterion dictates a larger reduction in strength for triaxial loading. This can be explained 
by the uncoupling of the yield behavior under multiaxial loads for trabecular bone [23]. A 
complete three-dimensional yield criterion was formulated for high-density trabecular 
bone from femoral neck [24]. Others research groups have proposed a piecewise Hill’s 
criterion [25] and fit data generated from uniaxial compression, tension, torsion and 
triaxial compression on specimens from various anatomic sites [26]. More recently, a 
fabric-based Tsai-Wu criteria was formulated for trabecular bone specimens from the 
verterbral body [27]. A few other studies that model trabecular bone as a cellular solid or 
foam, have investigated the crushable foam plasticity formulation to characterize the 
pressure dependent yield behavior of trabecular bone [28-30]. 
 

1.3 Objectives and Scope of the Dissertation 
 
The overall goals of this dissertation research is to investigate the strength 

behavior of trabecular bone under different loading conditions such as compression, 
shear, torsion and multi-axial loading conditions and formulate a generic multi-axial 
failure criterion of any human trabecular bone. High-resolution micro-CT-based finite 
element modeling will be used on human trabecular bone specimens to accomplish these 
goals.  
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In Chapter 2, the strength of trabecular bone under shear loading is investigated 
and is compared against strength under compression loading. The underlying tissue-level 
failure mechanisms, the tissue-level failure type and the effects of large deformations are 
discussed. To date, very few studies have investigated the shear behavior of human 
trabecular bone, which might be relevant for loading experienced by trabecular bone at 
bone-implant interface. The study also explores strength under torsion loading, which has 
been often used to evaluate shear strength of trabecular bone experimentally.  

 
In Chapter 3, the strength of trabecular bone under biaxial loading is investigated. 

Such loading might be relevant for hip fractures in the proximal femur. The relative roles 
of volume fraction, anisotropy and microarchitecture, on the parameters of the biaxial 
strength are discussed. Specifically, the role of anisotropy independent of bone volume 
fraction is emphasized. In addition, the tissue-level failure mechanisms are discussed for 
two biaxial loading cases that typically occur in the proximal femur.   

 
In Chapter 4, a new multi-axial yield criterion for human trabecular bone is 

proposed that can be used in continuum-level whole bone models. High-resolution finite 
element models are used to analyze hundreds of multi-axial loading scenarios providing 
failure data that would be impossible to obtain experimentally. The multi-axial strength 
data is normalized by the uniaxial strength to eliminate the variations due to bone volume 
fraction and anisotropy and a mathematical yield criterion for trabecular bone is 
developed using these normalized data in a quartic functional form. 
 

Finally, conclusions of the research are presented in Chapter 5, including a 
discussion of directions of future research.  
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Figure 1-1: Internal morphology of a human proximal femur (hip) and a thoraric 
vertebral body (spine) show the typical arrangement of cortical and trabecular bone. 
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Figure 1-2: Frontal slices through the vertebra of a healthy individual and one from an 
elderly, osteoporotic individual illustrating the decrease in bone mass and deterioration of 
trabecular microarchitecture with osteoporosis 
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2. SHEAR STRENGTH BEHAVIOR OF HUMAN TRABECULAR BONE 
 

2.1. Introduction 
 

Since trabecular bone is thought to be primarily adapted to sustain compressive 
loads along its main trabecular orientation, most focus to date in biomechanical studies of 
human trabecular bone has been placed on understanding its compressive strength 
behavior [13, 31] [14, 32, 33] [15, 34]. However, obliquely oriented external loads can 
generate substantial shear stress within a bone with respect to the main trabecular 
orientation, which may be relevant for understanding bone trauma, including hip fracture 
etiology [35] [36, 37]. Likewise, large shear stresses can develop near bone-implant 
interfaces, which may influence orthopaedic implant loosening [38]. In analyzing such 
situations, the shear strength of trabecular bone may be equally or even more relevant 
than its compressive strength. 
 

To date, only a few studies have addressed the apparent-level shear strength 
behavior of trabecular bone, particularly for humans [39] [19, 35, 40-42] [26, 43, 44]. It 
has been proposed that the structure-function relations may differ between compression 
vs. shear loading because trabecular bone may maintain structural integrity for habitual 
(compressive) loading, but may be degraded for non-habitual (shear) loading, particularly 
for individuals prone to fracture [45, 46]. Similarly, while the shear strength of bovine 
trabecular bone may be low because of pronounced bending of individual trabeculae [19], 
little is known about the associated shear failure mechanisms in human trabecular bone—
which may differ from bovine mechanisms because of inter-species differences in bone 
volume fraction and micro-architecture. Thus, to further understanding of the shear 
strength behavior of human trabecular bone, we sought here to compare the apparent-
level shear and compressive strengths of a wide range of human trabecular bone and to 
explore the underlying failure mechanisms. 
 

2.2. Methods 
 

A total of 65 human cadaver specimens of trabecular bone, from four anatomic 
sites, were initially chosen for this analysis. These specimens, taken from prior studies in 
our laboratory [14, 17, 47], were originally machined as 8 mm-diameter cylindrical cores, 
along their principal trabecular orientation, and were scanned at a spatial resolution of 
10–22 mm using either micro-CT (n=44; µCT 20; Scanco Medical AG, Bruttisellen, 
Switzerland) or serial milling (n=21) [48]. Standard trabecular microarchitecture 
parameters [10, 49] were available for all specimens that were scanned with micro-CT. A 
subset (n=22) of these specimens were also mechanically tested to failure in compression. 
For the purposes of this study, one voxel-based finite element model was generated for 
each specimen, the model comprising a 5 mm cube (Figure 2-1) that was virtually 
extracted from the images of the central portion of the larger cylindrical specimen. An 
element size of 66 µm was used for the femoral neck specimens, and 22 µm for the 
greater trochanter, proximal tibia and vertebral body specimens. These resolutions were 
based on convergence requirements that the ratio of mean trabecular thickness to element 
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size be at least 4 [50, 51]. Individual models had between about 1–5 million elements. To 
ensure that these extracted cube specimens were adequately aligned (within ±100 of the 
principal trabecular orientation), six uniaxial linear elastic finite element analyses were 
performed on each specimen to calculate the Euler angles of misalignment [52]. Eight 
specimens from the greater trochanter and three specimens from the proximal tibia were 
eliminated because of misalignment. This resulted in a final cohort of 54 specimens, 
which together spanned four anatomic sites, were taken from 44 different cadavers, and 
displayed a wide range (0.06–0.38) of bone volume fraction (Table 2-1). For this final 
cohort, the trabecular microarchitecture parameters were available only for the specimens 
that were imaged using micro-CT (n=39). 
 

Two non-linear finite element analyses were performed on each specimen to 
calculate both the apparent-level shear and compressive yield strengths. In all analyses, 
all finite elements were assigned the same hard tissue material properties having an 
isotropic elastic modulus of 18.0 GPa, a Poisson’s ratio of 0.3, and a rate-independent 
elastic-plastic material model [53]. The models also included kinematic non-linearity 
(‘‘large-deformation’’ effects), which are important to include for specimens having low 
bone volume fraction [47]. In the voxel-level constitutive model, tissue-level failure was 
allowed to occur only by tissue-level yield. Such yielding comprised a modified von-
Mises criterion with tension-compression strength asymmetry, which was achieved by 
introducing pseudo kinematic hardening to shift the yield envelope. The tissue-level yield 
strains of 0.33% in tension and 0.81% in compression were chosen based on a prior 
calibration study [47]. This overall implementation provided excellent agreement (Y~X, 
R2=0.96) for compressive apparent-level yield strength between model and experiment 
for the 22 specimens for which we had both mechanical testing and finite element yield 
strength data (Figure 2-2). For each model, displacement boundary conditions were 
applied to impose uniaxial shear stress for shear strength assessment (Figure 2-1b) and 
uniaxial compressive stress for compressive strength assessment (Figure 2-1c). All 
analyses were performed using a highly scalable, implicit parallel finite element 
framework, Olympus [54] on a Sun Constellation Linux Cluster (Ranger; Texas 
Advanced Computing Center, TX, USA), each analysis requiring about 100 CPU hours. 
 

The main outcomes from these analyses were the apparent-level shear and 
compressive yield strengths, which were obtained using an offset of 0.2% strain applied 
to the computed apparent-level stress–strain curves. To gain insight into tissue-level 
failure mechanisms, the proportion of yielded tissue (equivalent to number of elements 
for which the maximum or minimum principal stress at the element centroid had 
exceeded the tissue-level tensile or compressive yield strength, respectively, divided by 
total number of elements) and the tissue-level yield mode (tensile or compressive) was 
calculated at the apparent-level 0.2% offset yield point. For all yielded elements, those 
elements having a ratio of maximum principal stress to tensile strength of greater than the 
ratio of minimum principal stress to compressive strength were considered to yield in 
tension at the tissue level; otherwise they were considered to yield in compression at the 
tissue level. For our statistical analyses, non-linear and general linear regression 
modeling (JMP, Version 9.0.0, SAS Institute Inc., Cary, NC) was used to determine the 
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dependence of the various apparent-level and tissue-level outcomes on apparent-level 
loading mode and on bone volume fraction, anatomic site, and microarchitecture. 
 

In a sub-study, we used the computational techniques described above to measure 
the yield strength of 15 cylindrical cores (8 mm diameter, 12–15 mm length, 
BV/TV=0.19±0.10, 0.07–0.38) under torsion loading. These cores were chosen from the 
original image set of the 54 cubes specimens. The nodes on the bottom face of the cores 
were fully constrained and a rotational displacement was applied on the nodes of the top 
face equivalent to 1.5% apparent engineering shear strain. The shear stress was calculated 
from the apparent-level torque vs. angle of twist curve using the following equation [55]: 
 

τ =
1

2πr3
θ
dT
dθ

+3T
!

"#
$

%&
 

 
where T is the calculated torque, r is the radius of the specimen and y is the angle of twist 
per unit length. The term dT/dθ was determined by fitting a fifth-degree polynomial to 
the torque vs. angle of twist curve.  

 

2.3. Results 
 

Both the apparent-level shear (R2=0.95) and compressive (R2=0.97) yield 
strengths depended on bone volume fraction in a non-linear fashion, each relation having 
an exponent of 1.7 (Figure 2-3). Because the relation between apparent-level yield 
strength and bone volume fraction relation did not depend on anatomic site (p=0.55 for 
shear; p=0.09 for compression), data from the four different anatomic sites were pooled 
in most subsequent results. Both the shear and compressive yield strengths were highly 
correlated with almost all the microarchitecture parameters (Table 2-2), which was 
expected since most microarchitecture parameters generally have high correlation with 
bone volume fraction [10]. The apparent-level yield strain decreased slightly with bone 
volume fraction for shear loading (R2=0.07, p=0.05) but clearly increased for 
compressive loading (R2=0.42, p<0.001). 
 

With the exception of one specimen, the shear strength was always appreciably 
lower than the compressive strength. Consistent with the similar exponents for shear and 
compression in the strength-bone volume fraction relation, the ratio of shear to 
compressive strengths (Figure 2-4) did not depend on bone volume fraction (p=0.24) or 
anatomic site (p=0.13). However, this ratio did vary appreciably (mean±SD = 0.44±0.16; 
range=0.25–1.00) and was partially explained by microarchitecture (Table 2-2), most 
notably the intra-specimen standard deviation of trabecular separation (Tb.Sp.SD, 
R2=0.23, p<0.005). For some specimens having low bone volume fraction 
(BV/TV<0.20), the ratio of shear to compressive strengths was close to the value of 0.58 
as predicted by a traditional (assuming isotropy and strength symmetry) von Mises 
criterion, but at higher bone volume fraction the von Mises criterion over-predicted this 
ratio. 
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Analysis of the amount of yielded tissue at the apparent-level yield point revealed 
a number of differences in the underlying failure mechanisms. While the total proportion 
of yielded tissue was only slightly lower for shear than compression loading (Figure 2-
5), there were much greater differences in the mode of tissue-level failure. For shear, 
there was predominantly tensile tissue-level yielding regardless of bone volume fraction, 
whereas for compression, there was tensile tissue-level yielding at low bone volume 
fraction and compressive tissue-level yielding otherwise (Figure 2-6). Visual inspection 
revealed that for shear loading, there was mainly tensile stretching of the obliquely 
oriented trabeculae regardless of bone volume fraction (Figure 2-7). This tensile yield 
pattern appeared to occur primarily along continuous load paths that were oriented at 
approximately 450 with respect to the main trabecular orientation. However, for 
compression loading, there was mainly tensile failure of horizontal trabeculae for 
specimens with low bone volume fraction and otherwise mainly compressive failure of 
longitudinal trabeculae (Figure 2-7). This tensile failure of the horizontal trabeculae was 
the result of kinematic large deformation-related bending of the vertical trabeculae: when 
neighboring vertical trabeculae bent away from each other in opposite directions, the 
interconnecting horizontal trabeculae were stretched. 
 

For the sub-study on torsion behavior, we found that the torsion strength varied in 
a power law fashion with bone volume fraction (Figure 2-3, R2=0.96). The constant in 
the power law regression for torsional strength was significantly different from the 
constant of the regression of shear strength (p<0.001), but the exponents were not 
different (p=0.25, Tukey HSD test). After adjusting for bone volume fraction, general 
linear regression modeling indicated that the ratio of mean torsional strength to mean 
shear strength was 0.57, confirming that the apparent-level yield strength of trabecular 
bone is much lower under torsional loading relative to pure shear loading. Likewise, the 
ratio of the adjusted mean for torsion strength to compression strength was 0.24. 
 

2.4. Discussion 
 

These results show that human trabecular bone is generally much weaker in shear 
than compression at the apparent level, reflecting different failure mechanisms at the 
tissue level. Although the ratio of shear to compressive strengths did not depend on bone 
volume fraction, it did depend on the trabecular microarchitecture, particularly at low 
bone volume fraction for which the compressive and shear strengths were almost equal 
for some specimens. This dependence reflected a change in tissue-level failure 
mechanism for compressive loading as bone volume fraction decreases whereby 
kinematic large-deformation effects become important [47, 56] as adjacent vertical 
trabeculae bend apart from each other and stretch the connecting horizontal trabeculae. 
There was not any such dependence of the failure mechanism on bone volume fraction 
for shear loading. Thus, for some specimens with low bone volume fraction, depending 
on the micro-architecture, the compressive strength could fall low enough to approach the 
shear strength. 
 

At the tissue level, one novel finding was the dominance of tensile yield of 
obliquely oriented trabeculae for pure shear loading. Because of the difficulty of probing 
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failure mechanisms using purely experimental models, most previous studies on pure 
shear [39, 42, 57] loading have described only apparent-level strength properties and 
have been unable to directly address tissue-level failure mechanisms. In general, pure 
shear loading along the main trabecular orientation, as simulated in our study, is 
equivalent to compression-tension biaxial loading at 450 to the main trabecular 
orientation. This equivalence is reflected in the observed failure pattern (Figure 2-7, left 
panels) of predominantly tensile yield due to stretching of the trabeculae oriented along 
the principal tensile stress direction at an angle of 450 with respect to main trabecular 
orientation. There is only a minor degree of compressive yield along the (perpendicular) 
principal compressive stress direction because the tissue is weaker in tension than 
compression, and thus yielding will occur preferentially for tensile loading even if tissue-
level tensile and compressive stresses are equal. Interestingly, these failure mechanisms 
appear to be different than those for uniaxial apparent-level 450 off-axis loading. For 
example, our earlier work [18] showed that uniaxial compression of human trabecular 
bone caused predominantly tissue-level tensile yielding due to bending of individual 
trabeculae (again, which fail primarily in tension because the tissue is so weak in 
tension). It is not clear how a superimposed apparent-level tensile loading perpendicular 
to such 450 off-axis uniaxial compressive loading would alter such failure mechanisms 
and study of such bi-axial failure mechanisms remains a topic for future research. 
Previously, we also proposed that torsion of bovine tibial trabecular bone causes failure 
via appreciable bending of individual trabeculae [19]. Although torsion and shear loading 
both produce shear stresses in the specimen at the apparent level, those torsion results 
cannot be directly compared to those from our pure shear simulations because shear 
stresses across the specimen are not uniform in a pure torsion test and for trabecular bone 
this may cause different tissue-level failure mechanisms. 
 

These observations on tissue-level failure mechanisms constitute computer-
generated predictions and therefore await direct experimental validation. In the 
meanwhile, microdamage in trabecular bone induced from mechanical testing has been 
correlated with the structure model index [58, 59]. Consistent with that finding, we found 
that the total amount (proportion) of yielded tissue was also significantly correlated to 
SMI (Table 2-2). For specimens with low bone volume fraction loaded under 
compression, we found that failure occurred mostly in the horizontal trabeculae. This is 
consistent with the findings from experiments on human vertebral bone [60] in which it 
was observed that complete fracture of trabeculae was confined to the horizontal 
trabeculae—presumably fracture of individual trabeculae only occurs when trabecular are 
excessively stretched primarily uniaxially. Finite element studies by other investigators 
have also shown good agreement between predicted distributions of tissue-level stress 
and directly imaged histological sections of microdamage [61, 62]. 
 

At the apparent level, we found an influence of intra-specimen heterogeneity in 
trabecular microarchitecture on the ratio of shear to compressive strengths. Interestingly, 
this intra-specimen variation contributed more to a decrease in compressive strength of 
low volume fraction specimens than to any effect on the shear strength (Table 2-2). 
Similarly, the negative correlation between the degree of anisotropy (DA) and the shear 
to-compressive strength ratio implies that a more anisotropic structure renders the bone 
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equally susceptible to shear or compressive failure, more so due to the decrease in 
compressive strength than any effect on shear strength. Other investigators have reported 
similar observations, in which an increase in intra-specimen variability of 
microarchitecture of vertebral bone decreased stiffness [63] [64] [65] and strength [63] 
under compression. Similarly, it has been proposed that heightened trabecular anisotropy 
might render the proximal femur more susceptible to fracture [45]. Our results suggest 
that these intra-specimen heterogeneity effects primarily degrade the compressive 
strength and have less influence on the shear strength. 
 

The validity of our computational results for apparent-level strength is supported 
by results from various previous experiments. Our compressive strength results were 
directly validated by our own experiments, and the exponent of about 1.7 in our strength-
bone volume relation is consistent with reported power law relations from various other 
compression experiments, which are in range 1.5–2.0 [14, 31]. Since many experimental 
studies have studied shear failure by testing cylindrical cores of trabecular bone in torsion 
[26, 35, 39, 41], to help interpret that body of work we performed the sub-study to 
directly compare apparent-level yield strength derived from torsion vs. pure shear 
loading. That study found statistically similar exponents in the yield strength-bone 
volume fraction relation for the two loading modes, but much lower strength for torsion 
than pure shear (ratio of mean strengths=0.57 for n=15 specimens). This ratio is close to 
the value of 0.61 obtained for the ratio of mean torsion to shear ultimate strengths as 
measured experimentally for human femoral bone [39]. Similarly, the ratio of mean 
torsion strength to mean compression strength for these 15 specimens was 0.24, which is 
in close agreement with the value of 0.22 obtained in a much larger experiment on human 
trabecular bone [26]. Further, after accounting for variations in bone volume fraction, 
average values of torsional yield strength from our simulations agreed well in an absolute 
sense with the literature data from multiple experiments (Figure 2-8). Finally, a recent 
experiment on human trabecular bone reported statistically similar exponents for the 
strength-density relation for compression vs. torsion [26], just as we did (1.74 vs. 1.85, 
p=0.25, see Figure 2-3). 
 

Our study has a number of limitations. Although our models were well validated 
for compressive yield strength, we relied on computational models to extrapolate from 
compressive strength to shear strength. In general, the models had sufficiently high 
spatial resolution for numerical convergence but did not include such micro-scale 
features as intra-specimen variations in mineral density or tissue material properties, 
anisotropy of the bone tissue, or the geometric detail of any resorption spaces. While 
inclusion of such features can affect overall behavior [66] [67] [68, 69], their exclusion is 
unlikely to appreciably alter the relation between compression vs. shear yield strengths, 
which was our main focus. Even so, it is possible that more complex tissue-level material 
behavior, such as anisotropy in tissue yielding and postyield hardening [70, 71], or 
mechanical effects of micro-damage or micro-fracture, might lead to different tissue-level 
failure mechanisms, particularly in the post yield region of the apparent-level stress–
strain curve. Further, particularly for specimens having low volume fraction, the 
apparent- level properties as estimated by these finite element models may be sensitive to 
the applied boundary condition [72, 73], which may introduce some error in these 
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estimates compared to the in vivo behavior. Finally, we only explored shear behavior in 
the axial-transverse plane and the shear failure behavior may differ for other planes some 
of which have been investigated in Chapter 4. Despite these limitations, these new results 
should provide an improved basis for assessing the role of shear failure of trabecular bone 
in structural analyses of whole bones and bone-implant systems. 
  



 14 

Table 2-1: Specimen details for the final cohort (mean ± SD) 

Anatomic Site No. of Specimens † Age Bone Volume Fraction 
  (male/female) (years)  
Femoral Neck 25 (12/13) 70 ± 10 0.25 ± 0.07 
Greater Trochanter 4 (4/0) 67 ± 12 0.11 ± 0.04 
Proximal Tibia 8 (8/0) 64 ± 10 0.12 ± 0.04 
Vertebral body 17 (12/5) 66 ± 8 0.09 ± 0.03 
Pooled 54 (36/18) 68 ± 10 0.17 ± 0.09 
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Table 2-2: Pearson correlation coefficients for yield strength, shear-to-compression yield strength ratio, and the proportion of yielded 
tissue, all versus bone volume fraction (BV/TV) and various architecture parameters (n=39). Data are shown stratified by bone volume 
fraction (Pooled, n=39; Low, BV/TV < 0.20, n=23; High, BV/TV > 0.20, n=16). Italicized values have p < 0.05 at least. 

 

Yield Strength   Shear-to-Compression Strength Ratio   Proportion of Yielded Tissue (%)  
Shear    Comp         Shear   Comp 

Pooled Low High   Pooled Low High 
 

Pooled Low  High 
 

Pooled Low  High   Pooled Low  High 
BV/TV 0.97 0.90 0.90   0.97 0.91 0.96 

 
-0.24 -0.22 -0.27 

 
0.62 0.25 0.54   0.55 0.11 0.67 

Conn-Den 0.39 0.42 -0.35 
 

0.37 0.38 -0.35 
 

-0.16 -0.19 0.04 
 

0.15 -0.29 -0.05 
 

0.09 -0.31 -0.05 
SMI -0.84 -0.38 -0.79 

 
-0.88 -0.64 -0.82 

 
0.32 0.36 0.19 

 
-0.56 -0.25 -0.36 

 
-0.53 -0.31 -0.43 

Tb.N 0.73 0.55 0.21 
 

0.73 0.64 0.15 
 

-0.29 -0.36 0.04 
 

0.45 -0.15 0.48 
 

0.39 -0.06 0.39 
Tb.Th 0.86 0.71 0.61 

 
0.88 0.67 0.72 

 
-0.22 -0.12 -0.32 

 
0.40 -0.04 0.09 

 
0.40 -0.05 0.30 

Tb.Sp -0.69 -0.52 -0.23 
 

-0.70 -0.65 -0.16 
 

0.40 0.48 -0.07 
 

-0.39 0.13 -0.51 
 

-0.39 -0.07 -0.41 
Tb.(1/N).SD -0.36 0.07 -0.29 

 
-0.41 -0.21 -0.17 

 
0.43 0.53 -0.14 

 
-0.29 0.17 -0.61 

 
-0.42 -0.26 -0.44 

Tb.Th.SD 0.59 0.77 0.06 
 

0.62 0.65 0.24 
 

-0.16 0.03 -0.34 
 

0.18 0.05 -0.26 
 

0.22 -0.05 0.02 
Tb.Sp.SD -0.53 -0.01 -0.45 

 
-0.58 -0.32 -0.37 

 
0.48 0.56 -0.01 

 
-0.34 0.16 -0.62 

 
-0.47 -0.29 -0.50 

DA 0.19 0.40 0.13   0.3 0.71 0.31   -0.41 -0.43 -0.25   0.14 0.18 0.03   0.36 0.47 0.26 
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Figure 2-1: (a) A 5mm cube trabecular bone specimen with its Z-axis oriented along the 
main material orientation (the X-axis was selected randomly in the transverse plane) (b) 
An engineering XZ shear strain of 1.5% was applied for shear strength analysis, the 
dashed lines denoting the prescribed displacement boundary condition on four faces, the 
other two faces remaining unconstrained (c) A compressive normal strain of 1.0% was 
applied for compressive strength analysis, the dashed lines denoting the prescribed 
displacement boundary condition on the top face, the bottom face minimally fixed on 
rollers and the sides faces unconstrained. 
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Figure 2-2: Validation of predictions of compressive yield strength, for the 22 specimens 
in this study that had both micro-CT scans and experimental measures of compressive 
yield strength. The same tissue-level effective modulus of 18.0 GPa was used in all 
models. Orthogonal regression was used since there were measurement errors in both 
experimental and finite element strength measures. Values in brackets represent the 95% 
confidence interval for the slope. 
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Figure 2-3: Variation of compressive (solid line), shear (dashed line), and torsion (light 
line) apparent-level 0.2% offset yield strengths with bone volume fraction. 
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Figure 2-4: Variation of the ratio of shear to compressive yield strengths with the bone 
volume fraction. This ratio (mean ± SD = 0.44 ± 0.16 for 54 specimens) displayed 
additional scatter below a bone volume fraction of about 0.20. This ratio for the 
traditional von Mises criterion is 0.58. 
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Figure 2-5: Variation of the proportion of yielded tissue (expressed as a percentage of 
total tissue in the bone specimen) at the apparent-level 0.2% offset yield point for shear 
and compression loading. 
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Figure 2-6: Variation of the ratio of tissue yielded in tension to tissue yielded in 
compression at the apparent-level 0.2% offset yield point, for compression (left) and 
shear (right) loading. Note the 10-fold difference in the vertical scales between plots. 
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Figure 2-7: Distribution of tissue-level yielding for a thin slice for two specimens, of low 
(BV/TV = 0.07) and high (BV/TV = 0.26) bone volume fraction. Red regions denote 
tissue-level yield in tension and blue regions denote tissue-level yield in compression. 
The Z-axis denotes the main trabecular orientation. 
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Figure 2-8: Literature comparison [26, 35, 39, 44] of torsional yield strength vs. bone 
volume fraction, for 15 specimens from this study. The error bars show one standard 
deviation around the mean value of bone volume fraction and yield strength. For studies 
that did not report apparent density, the bone volume fraction was calculated assuming a 
tissue density of 2.0 g/cm3. The data from [73] is unpublished (n=6 vertebral body 
specimens). 
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3. BIAXIAL STRENGTH BEHAVIOR OF HUMAN TRABECULAR BONE 
 

3.1. Introduction 
 

During both habitual and traumatic loading, trabecular bone is often subjected to 
biaxial loads i.e. loads acting simultaneously along and transverse to the principal 
trabecular orientation. During gait loading, as a result of the direct action of the obliquely 
oriented compressive joint contact force and the associated bending of the femoral neck, 
the longitudinal trabeculae all the way from the femoral head to the medial femoral 
cortex are loaded primarily in compression whereas the corresponding transverse 
trabeculae in this region are loaded primarily in tension [74].  A similar biaxial loading 
pattern is also observed during a fall to the side on the greater trochanter, but with the 
tension-compression patterns reversed [75]. The biaxial strength behavior of trabecular 
bone is therefore potentially relevant to both bone adaptation under habitual loading and 
to whole-bone failure under traumatic loading. Concerning the latter, due to the increased 
structural and mechanical anisotropy of osteoporotic trabecular bone [45, 46, 76, 77], it 
has been proposed that increased mechanical anisotropy may be an independent risk 
factor for hip fracture [78], although understanding of this issue remains incomplete.  
 

Despite much previous research on the multiaxial behavior of bone, the biaxial 
failure characteristics of human trabecular bone remain unclear for bone having a low 
bone volume fraction, in which the degree of mechanical anisotropy can be high. A 
fabric-based, ellipsoidal, Tsai-Wu-type of failure criterion has been formulated for 
trabecular bone [21]. However, triaxial compression experiments on bovine tibial bone 
did not support the quadratic ellipsoidal shape of this criterion [22] and axial-torsion 
experiments have pointed instead to a cellular-solid-type criterion having a non-
ellipsoidal shape [19]. Non-linear micro-CT based finite element simulations on bovine 
[23] and human [24] trabecular bone — all having high bone volume fraction — 
provided further evidence of the need for a multiaxial criterion that is not ellipsoidal in 
shape, due primarily to the different failure mechanisms associated with the different 
loading directions. More recently, experiments and finite element simulations were 
performed to fit a piecewise quadratic Hill’s criterion [26] and a ellipsoidal Tsai-Wu 
failure criterion, all as a function of bone volume fraction and  fabric-based 
morphological anisotropy [27]. However, since these experiments and simulations only 
included the minimum number of load cases for formulation of a quadratic criterion — 
and given the aforementioned evidence from the prior triaxial compression experiments 
on bovine tibial bone [22] —  it still remains unclear if the full biaxial failure envelope is 
indeed ellipsoidal in nature or if some alternative description would be more appropriate. 
We therefore sought to extend this previous research by further exploring the biaxial 
yield stress behavior of human trabecular bone in the axial-transverse plane, in which we 
spanned a wide range of loading conditions and focused on accounting also for a wide 
range of bone volume fraction, mechanical anisotropy, and microarchitecture. 
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3.2. Methods  
 

We analyzed 15 specimens of morphologically diverse, human trabecular bone 
(cadaver age=63±12, 48-79; 4 female, 10 male), taken from four anatomic sites: vertebral 
body (n=4), femoral neck (n=7), greater trochanter (n=2) and proximal tibia (n=2). These 
specimens were machined as 8-mm-diameter cylindrical cores along their principal 
material orientation and were scanned using micro-CT (Scanco Medical AG, Brüttisellen, 
Switzerland) at a voxel size of 10-22 microns. A 5-mm cube was virtually extracted from 
the central portion of these images and the trabecular microarchitecture parameters were 
calculated (Skyscan: CTAn software); the Euler angles of misalignment were also 
calculated by conducting six uniaxial linear elastic finite element analyses [52]. The 
angle of misalignment of each cube specimen was confirmed to be within ±100, ensuring 
the axes of the extracted cube specimens were adequately aligned with the principal 
material coordinate system.  
 

Micro-CT images of the cube specimens, down-sampled to 20-22µm, were then 
used to generate finite element models by converting each cubic voxel into an 8-noded 
brick element. First, linear elastic analysis was performed on each specimen to calculate 
the elastic modulus in the longitudinal (EL) and the two transverse directions (ET1, ET2). 
The percentage deviation from transverse isotropy (%DEV = 100(ET1-ET2)/ET1) was 
11.1±7.7 % for the 15 specimens, which we considered an acceptable error in assuming 
transverse isotropy of the specimens. Thereafter, the transverse direction for mechanical 
loading was chosen randomly for further analysis and the elastic anisotropy (EA) was 
defined as the ratio of the uniaxial moduli in the two directions (EA = EL/ET).  
 

For all models, all finite elements were assigned the same hard-tissue material 
properties having an isotropic elastic modulus of 18.0 GPa, a Poisson’s ratio of 0.3, and a 
rate-independent non-linear constitutive model with both elastic-plastic material and 
geometric kinematic non-linearities [53]. In the constitutive model, tissue-level failure 
was defined using a von-Mises yield criterion modified by a pseudo kinematic hardening 
parameter to account for the tension-compression strength asymmetry of the bone tissue. 
The tissue-level yield strains of 0.33% in tension and -0.81% in compression were chosen 
based on a prior calibration study [47]. This particular implementation has been shown to 
produce excellent agreement (R2=0.96) with experimental results from uniaxial tests [47, 
79].  
 

For each cube specimen, 18-20 separate analyses were performed, each analysis 
representing a uniaxial or biaxial loading state. For the uniaxial simulations, an 
unconstrained roller displacement boundary condition was applied in the longitudinal or 
transverse direction, producing an apparent-level state of uniaxial stress. For the biaxial 
simulations, loading was defined using proportional loading in which each load path was 
uniquely defined by the ratio of the maximum applied strain in the longitudinal and 
transverse directions, the third direction left unconstrained, thereby producing a biaxial 
stress state in the principal material coordinate system. All analyses were performed 
using a highly scalable, implicit parallel finite element framework, Olympus [54] on a 
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Sun Constellation Linux Cluster (Ranger; Texas Advanced Computing Center, TX, 
USA), for a total of 275 non-linear analyses requiring around 50,000 CPU hours. 
 

The main outcome of these analyses was the apparent-level yield strength in the 
longitudinal and transverse directions, and calculated from that, the biaxial yield point. 
For uniaxial loading case, strain offset of 0.2% on the stress-strain curve in the loading 
direction was used to define the apparent-level yield point and the percentage tissue 
yielded was calculated at the apparent-level yield point, as done elsewhere [79]. 
Correlations were calculated for uniaxial yield strength and yield strains with bone 
volume fraction, elastic anisotropy and microarchitecture (Table 3-1) and regression 
equations were developed for the uniaxial yield strengths as a function of (when 
statistically significant) bone volume fraction, elastic anisotropy and/or microarchitecture 
(Table 3-2). For each biaxial loading case, the individual stress-strain curves in the 
longitudinal and transverse directions were used to define the longitudinal and transverse 
yield points, respectively, using a 0.2% strain offset criterion on each curve. A single 
biaxial yield point (referred subsequently as the “chronological” yield point) was then 
defined by the biaxial stress state at the instant of first yielding in either the longitudinal 
or transverse direction (Figure 3-1), as described elsewhere [19, 24]. In this way, biaxial 
failure was defined as the first instant of failure in either the longitudinal or transverse 
loading directions. The percentage tissue yielded was calculated at the chronological 
biaxial yield point for each loading case. 
 

A further analysis of the yield points was conducted to develop a mathematical 
description of the biaxial yield envelope expressed as a function of bone volume fraction, 
elastic anisotropy, and microarchitecture.  This analysis involved two steps. First, for all 
18–20 load cases for each specimen, we plotted both the finite element-computed yield 
points associated with each of the longitudinal and transverse loading directions, in the 
biaxial stress space, and fit a separate curve to the yield points associated with failure in 
each of the two loading directions. This analysis showed that a quadratic ellipse [80] 
worked well for failure associated with each loading direction (Figure 3-2). The overall 
biaxial failure envelope was then taken as the inner surface created by each pair of 
longitudinal and transverse ellipses. For each specimen, the percentage error between the 
resulting fitted biaxial yield surface and the direct finite element-computed biaxial yield 
points was calculated using the difference of the vector norm of the biaxial stress from 
the origin [24], as follows,    
  
σ predicted −σ FE

σ FE

×100
              (Equation 3-1) 

 
where  σ predicted  is the predicted yield point from the fitted ellipses  and σ FE  is the finite 
element-computed yield point. This error per simulated test was then averaged over all 
biaxial simulations for that individual specimen, and the resulting error per specimen was 
then averaged over all specimens in order to assess how well the fitted biaxial failure 
criterion represented the direct finite element-generated biaxial failure points. Second, to 
express the biaxial failure criterion as a function of bone volume fraction, elastic 
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anisotropy, and the various microarchitecture parameters, each resulting longitudinal and 
transverse ellipse for each individual specimen was then characterized by five 
coefficients: the diameter of the major and minor axes (a, b), the shift of the center from 
the origin (h, k) and an angle of tilt with the longitudinal axis (ϕ) (Figure 3-2); the 
equation of each ellipse given by the equation:  
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where σL, σT are longitudinal and transverse stresses respectively. We then calculated 
pairwise correlations of the five coefficients of the fitted ellipse with bone volume 
fraction, elastic anisotropy, and the various microarchitecture parameters (Table 3-1).  
 

We also developed a stress-normalized criterion. To do so, for each specimen, the 
finite element-computed longitudinal and transverse yield points, in each quadrant, were 
normalized by the respective uniaxial strengths for the specimen. For example, for a yield 
point in the longitudinal tension-transverse compression quadrant, all longitudinal 
strength values were divided by the uniaxial longitudinal tensile strength and all 
transverse strength values were divided by the transverse compressive strength of the 
specimen. A quadratic ellipse was then fit to these normalized longitudinal and transverse 
yield points (excluding the uniaxial points) and the five coefficients of each ellipse were 
calculated. Correlation analysis was then used to relate the five coefficients of the fitted 
normalized ellipses to bone volume fraction, elastic anisotropy, and the various 
microarchitecture parameters (Table 3-1). This was done for each individual specimen. 
Further, the normalized longitudinal and transverse yield points from all specimens were 
pooled together in a single plot and a quadratic ellipse was fit to each of the pooled 
normalized longitudinal and transverse yield points (referred subsequently as the “dual-
ellipse” yield surface (Figure 3-3)). The percentage error was calculated between dual-
ellipse yield surface and the pooled normalized longitudinal, transverse and chronological 
yield points using equation (3-1).  
 

To facilitate comparison with the literature, two additional fits were performed on 
the pooled normalized chronological yield points (Figure 3-4, Table 3-3) – a single 
quadratic ellipse as described in equation (3-2) and a quartic super-ellipse similar to the 
modified super-ellipsoid equation from Bayraktar et. al [24]: 
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(Equation 3-3)              

 
where  σ̂ L , σ̂ T  are normalized longitudinal and transverse stresses respectively and cL, 
cT, tL, tT, rL, rT and ϕ are parameters of the equation. The percentage error (equation 3-1) 
between the finite element-computed normalized chronological yield points and the 
corresponding predictions from the dual–ellipse yield surface, single ellipse surface and 
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the quartic super-ellipse surface were calculated. To explore the sensitivity of biaxial 
yield strength on an alternate definition of yielding, we calculated the yield point based 
on a equivalent stress-strain curve as used in a recent study [27]. The equivalent yield 
data from all analyses were normalized with the respective uniaxial strengths of each 
specimen and the pooled data from all specimens were plotted in a single plot (Figure 5) 
and a single quadratic ellipse was fit to the pooled equivalent yield data and was 
compared with the dual-ellipse surface.  
 

Finally, to gain insight into specific aspects of the biaxial failure behavior, the 
normalized dual-ellipse yield surface, coupled with its underlying regressions between 
uniaxial strength and bone volume fraction and elastic anisotropy, were used to calculate 
the variation of biaxial strength with elastic anisotropy for three constant values of bone 
volume fraction, all done for two relevant biaxial loading cases. The tissue-level yielding 
for these two biaxial compression-tension loading cases were investigated for three 
specimens from the proximal femur region (2 femoral neck, 1 greater trochanter). 
 

3.3. Results 
 

For each specimen, the yield surface in the biaxial stress space, as computed by 
the finite element analyses, was well represented by the combination of the longitudinal 
and transverse ellipses (Figure 3-2). Across all 15 specimens, the mean (± SD) error 
between the finite element-computed yield points for the longitudinal loading direction 
and the fitted longitudinal ellipse was 2.9 ± 0.7%; for the transverse loading direction the 
corresponding error was 3.3 ± 0.7%. As expected, the major and minor diameters of the 
ellipses (a,b) increased with increasing bone volume fraction (Table 3-1). We also found 
that minor diameters (b) decreased with increasing elastic anisotropy and therefore the 
aspect ratio (a/b) increased with elastic anisotropy. In addition, the angle of tilt (ϕ) of the 
ellipses decreased with increasing elastic anisotropy asymptotically tending to zero for 
highly anisotropic specimens. The elastic anisotropy was not correlated to the bone 
volume fraction (p=0.20) and was only weakly correlated to the morphological degree of 
anisotropy, DA (r=0.50, p=0.06).  
 

For uniaxial loading cases, the yield strength under longitudinal loading was 
correlated to bone volume fraction but under transverse loading was correlated to both 
bone volume fraction and elastic anisotropy (Table 3-1). Statistical analysis revealed that 
power law regressions could well describe the variation in uniaxial strength when bone 
volume fraction and/or elastic anisotropy served as the independent variables; the 
microarchitecture did not provide any additional statistical association (Table 3-2). The 
yield strain for longitudinal compression increased with bone volume fraction (r=0.80, 
p=0.0003) but for transverse compression did not (p=0.22).  
 

As a result of similar associations between uniaxial yield strengths and the various 
coefficients of the longitudinal and transverse yield ellipses, the coefficients of the 
normalized longitudinal and transverse yield ellipses depended only weakly on bone 
volume fraction, elastic anisotropy, or microarchitecture (Table 3-1). This weak 
dependence was also evident in the small amount of scatter in the normalized 
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longitudinal and transverse yield data pooled from all specimens (Figure 3-3), indicating 
that the residual variations in the biaxial strength were minor after accounting for the 
variations in uniaxial strength. This set of pooled normalized longitudinal and transverse 
yield data from all specimens was well described by a single dual-ellipse yield surface 
(Figure 3-3, Table 3-3), which had a mean (±SD) error of 3.9 ± 1.7% and 6.1 ± 2.5% for 
the fitted normalized longitudinal and transverse ellipses, respectively. The pooled 
normalized (chronological) yield points was best described by the dual-ellipse yield 
surface (Figure 3-4a, mean ± SD error = 4.8 ± 4.1%), followed by the quartic-super-
ellipse yield surface (Figure 3-4b, mean ± SD error = 5.2 ± 4.2%) and then the single-
ellipse yield surface (Figure 3-4c, mean ± SD error = 6.5 ± 4.6%). The point of 
intersection of the dual–ellipse yield surface was close to 1.0 for longitudinal tension and 
transverse tension, as expected, but was greater than 1.0 for longitudinal compression and 
transverse compression (1.04 and 1.11 for longitudinal compression and transverse 
compression respectively).  
 

The pooled equivalent yield data was well described a quadratic ellipse with a 
mean (±SD) error of 4.9 ± 4.4% (Figure 3-5). However, the point of intersection of this 
ellipse was around 1.5 for transverse tension and compression loading thereby over-
predicting the transverse uniaxial strengths. For a biaxial loading with high proportion of 
longitudinal loading, the equivalent yield points were close to the longitudinal ellipse. 
However, for a biaxial loading with high proportion of transverse loading, the equivalent 
yield points lay between the longitudinal and transverse yield ellipses (Figure 3-5).  
 

The normalized dual-ellipse yield surface, coupled with the regressions on 
uniaxial strength, revealed that the biaxial yield strength for two biaxial compression-
tension loading scenarios decreased with increasing elastic anisotropy, independent of the 
bone volume fraction (Figure 3-6). For a longitudinal compression and transverse tension 
biaxial loading having a ratio of ~5, the biaxial apparent yield point was determined by 
the transverse response for all three specimens. Visual inspection revealed that for this 
loading case, there was predominantly tensile failure of the horizontally oriented 
trabeculae (Figure 3-7) for all three specimens. Between the two femoral neck specimens 
with similar bone volume fraction, the more anisotropic specimen sustained only little 
tissue-level failure at the overall biaxial failure point.  However, for longitudinal tension 
and transverse compression in a ratio of ~5, the direction determining the biaxial yield 
point depended on anisotropy.  For example, for the highly anisotropic femoral neck 
specimen, the transverse direction yielded first whereas for the two less anisotropic 
specimens, the longitudinal direction yielded first. This is consistent with the observation 
that the biaxial failure, for this particular biaxial loading, transitions from the longitudinal 
to the transverse direction above an elastic anisotropy of around 6.0 (Figure 3-6). Visual 
inspection revealed that for this type of biaxial loading, there was predominantly tensile 
tissue failure for all specimens. This failure distribution was primarily distributed in the 
longitudinally oriented trabeculae for the less anisotropic specimens and equally 
distributed between the longitudinally and horizontally oriented trabeculae for the highly 
anisotropic specimen (Figure 3-7).  
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3.4. Discussion 
  

The results of this computational analysis suggest that the biaxial yield behavior 
of human trabecular bone, in the axial-transverse plane, can be described well by a dual-
ellipse surface, the size of which depends primarily on bone volume fraction, whereas the 
shape (i.e. aspect ratio) and orientation of which depend primarily on elastic anisotropy. 
This dependence of biaxial yield strength parameters on bone volume fraction and elastic 
anisotropy can be primarily attributed to a similar dependence of the uniaxial yield 
strengths which leads to relatively little unexplained inter-specimen variation of biaxial 
yield behavior after accounting for the uniaxial yield behavior. Using parametric study of 
this normalized failure criterion, expressed as a function of the bone volume fraction and 
elastic anisotropy, we found that, independent of bone volume fraction, an increase in the 
elastic anisotropy, which is primarily associated with a decrease in transverse strength, 
leads to a simultaneous increase in aspect ratio and decrease in orientation of the biaxial 
yield surface, which together reduce biaxial strength by making the specimen more 
susceptible to failure in the weaker transverse direction.  
 

One advantage of performing such investigations using high-resolution, 
specimen-specific finite element simulation is that insight can be obtained into the 
underlying failure mechanisms, which would be difficult to achieve using just 
experimental techniques. For example, under a combined longitudinal-compression and 
transverse-tension biaxial loading, as might typically occur in the proximal femur during 
gait [74], we found that trabecular bone is likely to yield first due to failure associated 
with the transverse tensile loading component because of predominant failure at the tissue 
level of the horizontally oriented trabeculae via tensile failure (bone tissue is particularly 
weak in tension). However, for a combined longitudinal-tension and transverse-
compression biaxial loading, that might typically occur in the proximal femur during a 
sideways fall [75] , the microstructurally weaker direction (transverse) is now loaded in 
the stronger tissue-failure mode (compression) and the microstructurally stronger 
direction (longitudinal) is loaded in the weaker tissue-failure mode (tension). Therefore, 
the apparent-level yield can occur either in the longitudinal or transverse direction, 
depending on the degree of mechanical anisotropy of the specimen. For a less anisotropic 
specimen, the apparent-level yield points in the longitudinal and transverse directions are 
similar but for a highly anisotropic specimen, we found that apparent-level yield occurs 
first in the transverse direction. Further, in a highly anisotropic specimen, since there are 
proportionately fewer and thinner horizontally oriented trabeculae [45, 81] [82], the 
trabecular microstructure can sustain only a small amount of tissue failure before overall 
apparent-level yield in the transverse direction. Therefore, in the context of osteoporosis, 
under the biaxial loading of the trabecular bone within the proximal femur that might 
typically occur during a sideways fall, for a given bone volume fracture, a specimen 
having increased mechanical anisotropy can be susceptible to premature yield in the non-
primary loading direction. This mechanism might help explain results from previous 
studies showing that when matched for bone volume fracture, patients with hip fractures 
had a more anisotropic trabecular microstructure compared to non-fracture controls [45, 
78]. 
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The results from these biaxial simulations also lend insight into the yield behavior 
of human trabecular bone under off-axis compression loading. According to principles of 
stress transformation, a 450 off-axis compression at a stress σ is equivalent to a 
combination of on-axis longitudinal and transverse compression loading at σ/2 and shear 
loading at τ=σ/2. The on-axis longitudinal compressive yield strains depend on bone 
volume fraction, but since transverse compressive yield strains do not depend on bone 
volume fraction and shear yield strains depend only weakly on bone volume fraction 
[79], taken together it helps explain why 450 off-axis compressive yield strains do not 
depend on bone volume fraction although on-axis longitudinal compressive yield strains 
do [18].  
 

Our new results are consistent with previous studies that have defined the multi-
axial failure envelope for trabecular bone as an intersection of multiple surfaces as 
opposed to just a single quadratic-type surface.  Our yield envelope consisting of two 
intersecting ellipses in stress space is similar to what has been proposed previously for 
bovine bone in strain space, based on micro-CT-based finite element analysis [23]. Two 
intersecting ellipses has also been used to define a failure envelope for cellular solids [28] 
under biaxial loading, based on assumptions of plastic collapse of cell walls as the 
primary failure mode, while others also proposed two separate ellipsoidal envelopes 
based on a generalized Hill’s failure criterion [25]. Alternatively, the inner surface of the 
two intersecting ellipses can be defined by a super-ellipsoid equation as done previously 
for human femoral bone in strain space [24]. The equation employed in the current study 
is similar in form to the modified super-ellipsoid equation [24], with exponents equated 
to four and an additional parameter introduced to quantify the angle of tilt. The angle of 
tilt is introduced since the biaxial yield was defined in stress space as opposed to strain 
space in the previous study [24]. While both strain- and stress-based criteria can be 
incorporated into computational models, we are reporting the criterion in stress space 
since a stress-based criterion facilitates direct comparison with multi-axial experiments 
because it is not necessary to measure any Poisson effects. We also observed that the 
angle of tilt of the yield ellipses varies with elastic anisotropy, which is consistent with 
previous studies on fiber-reinforced composite materials [83] that have suggested the 
angle of tilt as a function of anisotropy.  
 

One prominent question concerning multi-axial behavior of human trabecular 
bone remains whether the yield behavior can be described by the quadratic Tsai-Wu 
criterion. A recent study [27], specifically addressing the failure behavior of human 
vertebral trabecular bone, used Cowin’s [21] type of formulation to propose a single Tsai-
Wu ellipsoidal criterion as a function of both bone volume fraction and fabric based 
anisotropy. However, that study fit data generated from finite element simulations using 
just a few loading cases and as such did not have a sufficient number of degrees of 
freedom to detect more complex behavior. In a previous study on tri-axial compressive 
behavior of bovine trabecular bone, it was found that although one can indeed fit a single 
Tsai-Wu quadratic yield envelope to triaxial data, the fit was not general and therefore 
did not work well for altered loading conditions [22]. Alternatively, as shown here, the 
yield surface could be well described by a quartic super-ellipse equation. That yield 
surface has box-like shape, which is also supported by theoretical and experimental 
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studies on open-cell foams [28, 84]. In the normalized stress space, we observed that the 
angle of tilt of the longitudinal ellipse is close to 900, which suggests that failure 
responses in the longitudinal direction occur around a constant principal stress. On the 
other hand, the transverse ellipse had an angle of tilt of 220, which, at around halfway 00 
and 450, suggests that failure in the transverse direction is somewhere between a principal 
stress type failure and quadratic von-Mises type failure (the angle of tilt for a von-Mises 
yield equation = 450). These results taken together therefore suggest that the biaxial 
failure of human trabecular bone in the axial-transverse plane is not entirely quadratic. 
Studies on other porous materials like polymeric foams have used non-quadratic forms 
for yield function [85] which is well supported by experiments. 
 

One unique challenge in comparing different multi-axial failure criteria across 
studies is to account for the failure in the multiple different loading directions. While in 
this study we chose to define the apparent–level yield point based on two individual 
stress–strain curves in the longitudinal and transverse directions as done previously in 
other studies [19, 23, 24], Wolfram et.al [27] defined the apparent-level yield point based 
on an “equivalent” stress-strain curve constructed from the components of the stress and 
strain tensor. Similarly, other studies on multi-axial behavior of cortical bone [86], 
cellular solids [87] and polymers [88] have used equivalent stress and/or strain definitions 
to define a composite-type yield point under multi-axial loading. Our results show that 
while the equivalent approach works well for a biaxial loading having a high proportion 
of longitudinal loading, such biaxial yield points are overestimated when there is 
substantial transverse loading (Figure 3-5). This is reflected in a 50% over-prediction of 
the uniaxial transverse yield strengths from the elliptical fit to the equivalent yield points 
(Figure 5). Using the chronological yield definition leads to only a minor over-prediction 
of uniaxial compressive yield strengths which can be attributed to edge effects of discrete 
trabeculae on the boundary [89]. Under predominantly longitudinal loading, the 
transverse stress is negligible due to the anisotropic nature of trabecular bone and 
therefore the biaxial equivalent stress-strain response closely resembles the uniaxial 
longitudinal stress-strain response. However, under a more predominantly transverse type 
of biaxial loading, the magnitude of transverse stress becomes comparable to the 
magnitude of longitudinal stress, and therefore the equivalent yield point lies somewhere 
between the yield points obtained from the longitudinal and transverse directions 
individually. The use of two separate stress-strain responses, one for each principal 
material direction, is more mechanistic in nature and allows one to interpret the mode of 
apparent-level yield in either the longitudinal or transverse trabecular orientation.  
 

While we assumed trabecular bone to behave as a transversely isotropic material 
as assumed in previous studies [22, 27], its behavior is truly orthotropic [90]. The large 
scatter and error observed in elliptical fit in the transverse direction can be possibly 
explained by the random choice of the transverse direction. If we assume a significant 
difference in the elastic moduli in the two transverse directions, the observed scatter in 
the normalized chronological yield data can vary depending on the choice of the 
transverse plane, which may lead to higher or lower error estimates of the proposed dual-
ellipse yield surface. It would be worthwhile to further explore the yield behavior in other 
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planes and include other loadings such as shear loading to get a complete picture of the 
yield behavior.   
 

Our study has some limitations. First, at the tissue level we considered only 
plastic yielding as the failure mechanism under all biaxial loading modes. Based on 
cellular solid theory, different failure mechanisms such as brittle cracking under tension 
or elastic buckling under compression can lead to different failure envelopes under 
biaxial loading [28, 91]. While our elastic-plastic constitutive model was shown to give 
good agreement for both apparent-level and tissue-level yield for longitudinal 
compression loading (refer Chapter 2), there remains a need to investigate more 
sophisticated tissue-level constitutive models in these types of multi-axial computational 
studies since bone tissue material properties may change with age and disease [92, 93]. 
Second, we considered the bone tissue to be homogeneous and isotropic. The anisotropy 
of the bone tissue (i.e. material anisotropy) likely only has a small influence on the 
overall anisotropy of trabecular bone at the apparent level since the apparent level 
anisotropy is primarily due to the trabecular structure [7, 94, 95] (i.e. structural 
anisotropy). Likewise, the effects of mineral heterogeneity on the apparent behavior 
should be also minor [67, 96]. Third, we used displacement boundary conditions for 
generating the biaxial stress states in our finite element simulations. This may provide an 
upper bound on the effective biaxial strength whereas use of force boundary condition 
may provide a lower bound on the effective biaxial strength [97]. However, the effect of 
bone volume fraction and anisotropy should still reflect on the size, shape, and 
orientation of the yield ellipses irrespective of the boundary condition used.  
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Table 3-1: Correlation coefficients for the five ellipse parameters for each of the longitudinal and transverse yield ellipses, the four 
uniaxial strengths and the five ellipse parameters for each of the normalized longitudinal and transverse yield ellipses, with bone 
volume fraction (BV/TV), elastic anisotropy (EA), and a variety of microarchitecture parameters, for the n=15 specimens analyzed. 
Bold values have p < 0.05. 

Variable 

 Biaxial Yield Strength  Uniaxial Yield Strength  Normalized Biaxial Yield Strength 

 
Longitudinal Ellipse 

 
Transverse Ellipse 

 
Longitudinal 

 
Transverse 

 
Longitudinal Ellipse 

 
Transverse Ellipse 

 a b h k φ  a b h k φ  Tens Comp  Tens Comp  a b h k φ  a b h k φ 

BV/TV  0.99 0.96 -0.99 -0.91 0.40  0.99 0.91 -0.98 -0.89 0.59  0.99 0.99  0.91 0.90  -0.32 -0.71 0.77 0.01 0.56  -0.47 -0.56 0.22 0.20 0.40 

EA  -0.37 -0.55 0.36 0.59 -0.78  -0.33 -0.61 0.49 0.60 -0.68  -0.34 -0.37  -0.62 -0.61  0.82 0.29 -0.45 -0.15 -0.67  0.19 0.56 0.27 -0.61 0.10 

SMI  -0.90 -0.86 0.89 0.82 -0.45  -0.88 -0.83 0.88 0.82 -0.64  -0.90 -0.90  -0.83 -0.82  0.40 0.63 -0.72 -0.06 -0.62  0.57 0.56 -0.30 -0.08 -0.56 

Tb.Th  0.87 0.77 -0.88 -0.69 0.02  0.89 0.67 -0.82 -0.66 0.24  0.88 0.87  0.68 0.66  -0.01 -0.60 0.58 -0.21 0.22  -0.27 -0.39 0.12 0.05 0.28 

Tb.N  0.94 0.92 -0.94 -0.89 0.51  0.93 0.89 -0.93 -0.88 0.69  0.94 0.94  0.90 0.89  -0.42 -0.70 0.78 0.09 0.66  -0.55 -0.59 0.26 0.19 0.47 

Tb.Sp  -0.84 -0.77 0.84 0.71 -0.42  -0.84 -0.72 0.80 0.70 -0.59  -0.84 -0.84  -0.73 -0.72  0.34 0.76 -0.87 -0.20 -0.55  0.58 0.58 -0.50 -0.14 -0.54 

DA  0.36 0.16 -0.35 -0.05 -0.40  0.37 0.08 -0.25 -0.05 -0.15  0.39 0.35  0.10 0.07  0.26 -0.09 0.10 -0.31 -0.09  -0.39 -0.07 0.05 -0.41 0.37 

Conn-Dens.  0.73 0.70 -0.72 -0.68 0.43  0.71 0.68 -0.72 -0.67 0.56  0.72 0.72  0.68 0.67  -0.37 -0.56 0.64 0.31 0.51  -0.49 -0.52 0.19 0.36 0.25 

Tb.Th.SD  0.71 0.56 -0.72 -0.47 -0.22  0.74 0.44 -0.64 -0.42 0.02  0.71 0.70  0.42 0.40  0.17 -0.62 0.51 -0.25 -0.01  -0.23 -0.34 0.24 -0.11 0.29 

Tb.Sp. SD  -0.66 -0.60 0.66 0.53 -0.37  -0.65 -0.55 0.62 0.53 -0.50  -0.66 -0.65  -0.57 -0.55  0.34 0.69 -0.82 -0.31 -0.46  0.62 0.54 -0.62 -0.10 -0.53 

DA=Degree of Anisotropy, SMI=Structure Model Index, Tb.Th=Trabecular Thickness, Tb.N=Trabecular Number, Tb.Sp=Trabecular Separation, Conn-Dens.=Connectivity 
Density, Tb.Th.SD=Standard Deviation of Trabecular Thickness, Tb.Sp.SD=Standard Deviation of Trabecular Separation 
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Table 3-2: Power law regressions relating the four uniaxial yield strengths with bone 
volume fraction (BV/TV) and elastic anisotropy (EA) for n=15 specimens analyzed. 
(p<0.001 for all regressions) 
 

 
c (BV/TV)m1(EA)m2 

   c m1 m2 R2 
 Longitudinal Tension (σ LT

y ) 81.2     1.53 0 0.99 
 Longitudinal Compression (σ LC

y ) 183 1.73 0 0.99 
 Transverse Tension (σ TT

y ) 76.3 1.33 -1.07 0.99 
 Transverse Compression (σ TC

y ) 164 1.41 -1.30 0.99 
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Table 3-3: Coefficients of the single ellipse (equation 3-2), dual-ellipse and quartic 
super-ellipse fits (equation 3-3) to the pooled normalized chronological yield strength 
data 
 

 a b h k ϕ 
Single Ellipse 2.70 2.08 0.0220 -0.0496 40.6 

      
Dual Ellipse      
Longitudinal 5.94 2.04 -0.0065 0.1019 84.9 
Transverse 3.19 2.03 0.1381 -0.0233 21.6 

 

 cL cT rL rT tL tT ϕ 
Quartic 

SuperEllipse 0.0014 -0.0547 1.05 1.42 0.84 1.98 102.9 

 
  



 37 

 
 

Figure 3-1: Definition of the chronological yield point. This graph depicts the stress-
normalized strain responses in the longitudinal (solid line) and transverse (dotted line) 
directions for a single specimen loaded biaxially in the longitudinal and transverse 
directions. The normalized strains occur at the same instant in time for both responses. 
For this specimen, the ratio of maximum strain for the longitudinal to transverse 
directions was 0.73, and yielding first occurred along the transverse direction, which 
defined the chronological yield point. 
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Figure 3-2: The longitudinal (solid) and transverse (open) yield points and the respective 
yield ellipses for one specimen. Each ellipse is represented by five parameters, the major 
and minor diameters (a and b, respectively), the coordinates of the center (h,k), and the 
angle of tilt of the major axis with respect to the horizontal (ϕ). The shaded region 
bounded by the two intersecting ellipses defines the elastic region. 
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Figure 3-3: A dual-ellipse fit to the normalized longitudinal and transverse yield strength 
data pooled from all specimens. The yield strength in each quadrant was normalized by 
the respective uniaxial strengths of a given specimen. 
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Figure 3-4: (a) Dual-Ellipse Fit (b) Single Ellipse Fit and (c) Quartic Super-Ellipse Fit to 
the pooled normalized chronological yield strength data. 
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Figure 3-5: Comparison of dual-ellipse fit (solid) and a quadratic fit (dotted) to the 
pooled normalized equivalent yield strength data. 
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Figure 3-6: Variation of biaxial strength with elastic anisotropy at a constant bone 
volume fraction of 0.09, 0.18 and 0.20 for two biaxial loading cases: longitudinal 
compression and transverse tension in a ratio of 5:1 (dotted line) and longitudinal tension 
and transverse compression, also in a ratio of 5:1 (solid line). For longitudinal 
compression and transverse tension, biaxial strength was defined by the transverse 
direction. For longitudinal tension and transverse compression, the biaxial strength was 
defined by the longitudinal direction up to an elastic anisotropy of ~6, beyond which the 
biaxial strength was defined by the transverse direction. 
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Figure 3-7: Distribution of failed tissue at the biaxial yield point in thin (~0.45 mm) 
longitudinal slices taken from three 5-mm cube specimens subjected to two biaxial 
loading cases (top row: longitudinal compression and transverse tension in a ratio of about 
5:1; bottom row: longitudinal tension and transverse compression, also in a ratio of about 
5:1). The percentage value denotes the proportion (percentage) of total tissue failed in the 
overall cube specimen at the biaxial yield point. Red regions denote tissue failed in tension 
and blue regions denote tissue failed in compression.  
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4. MULTI-AXIAL STRENGTH CRITERION OF HUMAN TRABECULAR 
BONE 

 

4.1. Introduction 
 

Although the structure of trabecular bone is primarily adapted to sustain uniaxial 
loads along its principal material orientation, it can be subjected to multi-axial loads in 
vivo, during traumatic activities such as fall and during surgical procedures such as bone 
grafts and joint arthoplasty [38, 98, 99]. The multi-axial strength behavior has been 
studied for bovine and human trabecular bone using both experiments [43] [19, 22, 26] 
and micro-CT based finite element simulations [23, 24, 27]. Based on these studies, 
various failure criterion such as the fabric anisotropy based Tsai-Wu failure criterion [21, 
27], the piecewise Hill’s criterion [25, 26, 100] and the modified super-ellipsoid criterion 
[24] have been proposed. Such multi-axial failure criteria have been used in clinical 
studies to non-invasively predict strength of whole bones and their susceptibility to 
fracture using QCT-based finite element models [101, 102].  
 

Trabecular bone is often idealized as a cellular structure consisting of a network 
of rods and plates[103], and therefore its multi-axial mechanical behavior is similar to 
that of other cellular materials such as polymeric foams [28, 104, 105]. While some 
studies have used the quadratic Tsai-Wu failure criterion [20] to define the multi-axial 
failure behavior of foams [106] and trabecular bone [27], other studies on foams [29, 85, 
107] and trabecular bone [24], suggest that the failure under multi-axial loads may not 
quadratic. The biaxial study (Chapter 3) established that the behavior for trabecular bone 
is decoupled in the longitudinal and transverse direction due to its anisotropic and porous 
nature and therefore the biaxial yield behavior in the axial-transverse plane is not 
quadratic and could possibly be quartic in nature. It was also found that the variation in 
biaxial strength due to bone volume fraction, anisotropy and microarchitecture after 
accounting for such variations in the uniaxial strength, is minor. Therefore, based on our 
results of the biaxial study, the overall goal of this study was to define a complete three-
dimensional multi-axial yield strength criterion of human trabecular bone from various 
anatomic sites covering a wide range of bone volume fraction and microarchitecture. 

4.2. Methods 
 

For this study, micro-computed tomography (µCT-20, Scanco Medical AG, 
Bassersdorf, Switzerland) images—10µm spatial resolution—of 10 human trabecular 
bone specimens were obtained (cadaver age=64±10, 48-79; 3 female, 7 male), from three 
anatomic sites: vertebral body (n=3), femoral neck (n=5), and proximal tibia (n=2). These 
specimens were originally machined as 8mm-diameter cylindrical cores along their 
principal material orientation. A 5-mm cube was virtually extracted from the images of 
the cylindrical specimen and finite element model was created for each specimen by 
converting each bone voxel to a solid brick element with an element size of 20µm to 
ensure numerical convergence [51, 108]. The Euler angles of misalignment were 
calculated by conducting six uniaxial linear elastic finite element analyses [52]; the angle 
of misalignment of each specimen from the orthotropic axes was confirmed to be within 



 45 

±100, ensuring the extracted cube specimens were adequately aligned with the principal 
orthotropic trabecular orientation. The elastic moduli in the longitudinal direction (E3) 
and the transverse directions (E2, E1, E2 > E1) were calculated and three anisotropy ratios 
(E3/E1, E3/E2, E2/E1) were defined for each specimen. The cohort of 10 specimens 
covered a wide range of bone volume fraction (BV/TV=0.19±0.09, range=0.09-0.36) and 
anisotropy ratios (E3/E1=6.7±3.1, range=3.0-12.0; E3/E2=3.7±2.1; range=2.1-7.6; 
E2/E1=1.9±0.7; range=1.2-3.1).  

 
For all nonlinear analyses, all finite elements were assigned the same hard tissue 

material properties having an isotropic elastic modulus of 18.0 GPa, a Poisson’s ratio of 
0.3, and a rate-independent elastic-plastic material model [53] with geometric kinematic 
non-linearity and tension-compression strength asymmetry of the bone tissue. [47]. 
 

The yield surface was obtained in the three-dimensional normal strain and stress 
space and in the nine normal-shear strain planes by analyzing various multi-axial loading 
cases for each specimen. Nonlinear (geometrically and materially) finite element analysis 
was conducted using proportional loading where each loading case was uniquely defined 
by the maximum strains applied in each direction for a total of 231 loading cases (Table 
4-1) per specimen. For each loading case, stress-strain curves were obtained in each 
direction and 0.2% offset yield strains were calculated. The first chronological yield 
point—in loading history—was used to define the multi-axial yield stress and yield strain 
as done in previous studies [24]. The yield stress and yield strain data from the multi-
axial analyses were normalized by the three uniaxial yield stresses and six uniaxial yield 
strains respectively to define the normalized normal strain, normalized shear strain and 
normalized normal stress as follows: 
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where εij,γ ij,σ ij  (i,j,k=1,2,3) are normal strain, shear strain and normal stress respectively 
and the quantities with subscript yt and yc are the uniaxial yield strain/stress in tension 
and compression respectively. The regressions of the yield quantities with bone volume 
fraction and anisotropy ratios were calculated (Table 4-2) (microarchitecture did not 
have significant effect).  
 

The finite element-computed yield data in the strain space, normalized strain 
space and normalized stress space, were fit to various criteria in order to identity which 
criterion best fit the observed behavior (by finite element analysis). For each criterion, an 
error norm between the criterion and the finite element data was calculated for each finite 
element simulation, as follows   
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x predicted − xFE
xFE

×100  

in which x predicted  is the predicted yield point from the fitted criterion  and xFE is the finite 
element-computed yield point. For each criterion, this error norm was first averaged over 
all simulations for each specimen, and then averaged again over all ten specimens. Unless 
noted otherwise, the latter averaged error is reported (the reported SD is that describing 
the variation of the specimen-specific average values across the ten specimens). Also, 
unless noted otherwise, we report errors for both a specimen-specific criterion, in which 
any fitted coefficients in the criterion are specific to an individual specimen, and an 
averaged criterion, in which any fitted coefficients in the criterion are averaged across all 
specimens and therefore are not specific to an individual specimen.  
 

The finite element-computed yield data in the normal strain space of each 
specimen was fit to three criteria. The first criterion evaluated was the nine-coefficient 
"modified super-ellipsoid" yield criterion [24], formulated in normal strain space: 
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  (Equation 4-1) 

 
We used the previously published coefficients of the criterion to prospectively test the 
published criterion to the data generated in this study.  In addition, we calibrated this 
criterion using data from the current study to define specimen-specific coefficients for 
each specimen. The second criterion was a "quartic" yield criterion, which was 
mathematically similar to the modified super-ellipsoid criterion: 
 

(Equation 4-2)
 

 
Here ε11, ε22, ε33 are normal strains (in percentage) and (c1, c2, c3, r1, r2, r3, t1, t2, t3) are the 
parameters of the equation. The criterion was evaluated in specimen-specific form (using 
specimen-specific coefficients) and also in averaged form. For the latter, the mean value 
of the specimen-specific coefficients for the ten specimens was calculated for each of the 
nine coefficients, and the resulting mean values were then used to define a single, 
averaged quartic yield criterion in the normal strain space (Table 4-3). The third criterion 
evaluated, included for reference purposes, was the nine-coefficient quadratic Tsai-Wu 
criterion [20], evaluated in both specimen-specific and averaged form: 
 

g(ε11,ε22,ε33) = Fiεii +Fijεiiε jj −1           (i, j =1,2,3)                     (Equation 4-3) 

On observing that the quartic yield criterion was a good fit to the normal strain 
data, we extended it to include both normal (εij) and shear (γij) strains and formulated it in 
(six-dimensional) normalized strain space ( ): 
 

g ε11,ε22,ε33( ) = ε11 − c1
r1

"

#
$

%

&
'

4

+
ε22 − c2
r2

"

#
$

%

&
'

4

+
ε33 − c3
r3

"

#
$

%

&
'

4

+
t1ε11 + t2ε22 + t3ε33

r1 + r2 + r3

"

#
$

%

&
'

4

−1

ε̂11, ε̂22, ε̂33, γ̂12, γ̂23, γ̂13



 47 

g ε̂( ) = ε̂11 − c1
r1

"

#
$

%

&
'

4

+
ε̂22 − c2
r2

"

#
$

%

&
'

4

+
ε̂33 − c3
r3

"

#
$

%

&
'

4

+
t1ε̂11 + t2ε̂22 + t3ε̂33

r1 + r2 + r3

"

#
$

%

&
'

4

+
u1ε̂11 + v1γ̂23 +w1(γ̂13 + γ̂12 )

r1 + r2 + r3

"

#
$

%

&
'

4

+

u2ε̂22 + v2γ̂13 +w2 (γ̂12 + γ̂23)
r1 + r2 + r3

"

#
$

%

&
'

4

+
u3ε̂33 + v3γ̂12 +w3(γ̂13 + γ̂23)

r1 + r2 + r3

"

#
$

%

&
'

4

−1
(Equation 4-4)

 

 
in which c1, c2, c3, r1, r2, r3, t1, t2, t3, u1, u2, u3, v1, v2, v3, w1, w2, and w3 are the fitted 
coefficients. This 18-coefficient criterion was first fit in a specimen-specific manner. The 
18 coefficients obtained for each specimen were correlated to bone volume fraction, 
microarchitecture and anisotropy ratios and regression equations were obtained for each 
of these parameters (Table 4-4). In addition, the mean value of the specimen-specific 
coefficients for the ten specimens were used to define a single, averaged quartic yield 
criterion in the normalized strain space.   
 

Since the quartic yield criterion (equation 4-4) did not fit the normalized normal-
shear strain yield data in the  planes, based on previously published 
experimental work on axial-shear behavior [19], the finite element-computed normalized 
normal-shear strain data in the  planes was fit to two linear fits to define a 
linear yield criterion of the form:  

 
 (i=1,2) in the compression quadrant and  
 (i=1,2) in the tension quadrant     (Equation 4-5) 

 
where ric, rit, sic, sit (i = 1,2) are 8 parameters equivalent to the slope and intercept of the 
linear fits. The linear yield criterion was fit individually for each specimen and specimen-
specific coefficients were obtained. These coefficients were correlated to bone volume 
fraction, microarchitecture and anisotropy ratios. The mean value of the specimen-
specific coefficients for the ten specimens were then used to define a single, averaged 
linear yield criterion in the normalized normal-strain space in the  planes. 
Therefore, the full multi-axial yield behavior in the normalized strain space was defined 
as the combination of the quartic yield criterion (equation 4-4) and the linear yield 
criterion (equation 4-5). 
 

In the normalized stress space, the following equation was fit to the finite 
element-computed normalized yield stress data for each specimen: 
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   (Equation 4-6) 

where σ̂11,σ̂ 22,σ̂ 33are the normalized normal stresses and (c1, c2, c3, r1, r2, r3, t1, t2, t3, m1, 
m2, n2, n3, p1, p3) are 15 coefficients of the equation. For reference purposes, a quadratic 
yield criterion (equation 4-3) was also fit to the normalized stress data for each specimen.  

ε̂33 − γ̂13 ε̂33 − γ̂23

ε̂33 − γ̂13 ε̂33 − γ̂23

γ̂ i3 = ricε̂33 + sic
γ̂ i3 = ritε̂33 + sit

ε̂33 − γ̂13 ε̂33 − γ̂23
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4.3. Results 
 

For the three biaxial planes, the distribution of the finite element-generated yield 
points resembled a box-like shape in the normalized strain space ( , ,

) (Figure 4-1). The scatter in these failure data across specimens was reduced 
substantially, when the failure data were expressed as normalized strains (Figure 4-1, 
middle panel) versus (un-normalized) strains (Figure 4-1, top panel) or normalized 
stresses (Figure 4-1, bottom panel), particularly in the transverse  plane. The 
normalized normal-shear yield strain data also displayed some scatter especially in the 
ε̂11 − γ̂12, ε̂11 − γ̂13, ε̂22 − γ̂12, ε̂22 − γ̂13 transverse planes (Figure 4-2). In the normalized normal-
shear strain space, the distribution of yield points in the ε̂11 − γ̂23 , ε̂22 − γ̂13 , ε̂33 − γ̂12  planes 
resembled a rectangular box-like shape, in the ε̂11 − γ̂12 , ε̂11 − γ̂13 , ε̂22 − γ̂12 , ε̂22 − γ̂23planes 
resembled a rhomboidal box-like shape, whereas in the ε̂33 − γ̂13 , ε̂33 − γ̂23  planes 
resembled a triangular shape (Figure 4-2).  
 

The error of the specimen-specific fits of the modified super-ellipsoid criterion 
(equation 4-1), the quartic yield criterion (equation 4-2) and the quadratic Tsai-Wu 
criterion (equation 4-3) 4.2±0.6% , 3.5±0.5% and 8.0±0.4% respectively. The error of fit 
of the single, averaged quartic yield criterion based on the mean value of coefficients 
listed in Table 4-3 was 5.3±1.5%, whereas the error of fit of the modified super-ellipsoid 
equation (equation 4-1) with previously published coefficients [24] was 5.6±1.6%, 
suggesting that the quartic equation gives an equally good fit as the modified super-
ellipsoid criterion.  
 

The six-dimensional quartic yield criterion (equation 4-4) in the normalized strain 
space gave a good fit to the finite element-computed normalized yield points with a mean 
error of 4.0±0.7% across all specimens. The error in the normalized normal strain space 
was 3.7±0.6%. In the normalized axial-shear strain space, the error was much larger in 
ε̂33 − γ̂13 , ε̂33 − γ̂23  planes (7.5±1.8%) compared to the other axial-shear planes (3.3±0.8%). 
Combining the quartic yield criterion (equation 4-4) and the linear yield criterion 
(equation 4-5), the error in and  planes reduced to 2.4±0.5%. While some 
of the 18 coefficients of the quartic yield criterion (equation 4-4) depended weakly on the 
bone volume fraction and/or the anisotropy ratios (Table 4-4), the 8 coefficients of the 
linear yield criterion (equation 4-5) did not depend on the bone volume fraction, 
microarchitecture or anisotropy ratios (Table 4-5). The average single quartic yield 
criterion based on mean value of coefficient listed in Table 4-4, along with the average 
single linear yield based on mean value of coefficients listed in Table 4-5, resulted in an 
error of 4.8±0.7%.  
 

In the normalized stress space, the mean error of fit of the quartic yield criterion 
(equation 4-5) to the finite-element computed normalized normal stress data was 
4.1±0.7%, whereas for the quadratic yield criterion was 5.6±0.7%.  

ε̂11 − ε̂22 ε̂22 − ε̂33
ε̂11 − ε̂33

σ̂11 − σ̂ 22

ε̂33 − γ̂13 ε̂33 − γ̂23
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4.4. Discussion 
 
 The result of this computational study suggests that a combination of a quartic 
yield criterion and a linear yield criterion can be used to define the multi-axial yield 
behavior of human trabecular bone after accounting for variations in the uniaxial yield 
strengths due to bone volume fraction, anisotropy and microarchitecture. The yield 
behavior is homogeneous in the normalized strain space with negligible inter-specimen 
variations. However, there is a greater degree of heterogeneity in yield behavior in the 
normalized stress space. We therefore propose the multi-axial yield criterion in the six-
dimensional normalized strain space for human trabecular bone. 
 
 The form of the proposed quartic yield criterion proposed captures the interaction 
between the three normal strains and three shear strains. In the normalized normal strain 
space, there is little interaction of the longitudinal normal strain and the transverse normal 
strains, which leads to a rectangular box-like flat shape of the yield surface, whereas there 
is some degree of interaction in transverse plane, which leads to a slightly rhomboidal 
shape of the yield surface. In the normalized normal-shear strain space, the interaction is 
minimal when the normal strain is out of the plane of shear (i.e. ε̂11 − γ̂23 , ε̂22 − γ̂13 , 
ε̂33 − γ̂12 ) leading to a rectangular flat box-like shape, whereas the interaction of the 
normal and shear strains is higher when the normal strain is in the plane of shear leading 
to either a rhomboidal box-like shape when normal strain is in the transverse plane (i.e. 
ε̂11 − γ̂12 , ε̂11 − γ̂13 , ε̂22 − γ̂12 , ε̂22 − γ̂23 ) or a triangular shape when the normal strain is in the 
longitudinal direction (i.e. ε̂33 − γ̂13 , ε̂33 − γ̂23 ). The proposed quartic yield criterion is able 
to capture the rectangular or rhomboidal shape of the yield surface but is unable to 
capture the triangular shape in the two normalized axial-shear planes. The triangular 
shape of the yield surface in these planes has been observed previously in axial-torsion 
experiments on bovine trabecular bone [19]. While the rectangular shape of yield surface 
due to decoupling of the normal and shear loading modes is straightforward and has been 
discussed previously [24], the two different shapes of yield surface observed when the 
normal and shear loading modes are coupled can be explained by the fact that in the 
ε̂33 − γ̂13 , ε̂33 − γ̂23  planes, the multi-axial yield is dominated by the shear direction which 
leads to a triangular shape, whereas in the ε̂11 − γ̂12 , ε̂11 − γ̂13 , ε̂22 − γ̂12 , ε̂22 − γ̂23  planes, the 
multi-axial yield is dominated by the normal direction which leads to a rhomboidal shape. 
We therefore defined a linear yield criterion specifically for loading in the , 

 planes, whereas the quartic yield criterion worked well for all other loading 
cases. 
 
 The effect of applying displacement-controlled boundary condition on porous and 
heterogeneous trabecular bone cube specimens resulted in more heterogeneity in the 
normalized yield stress data compared to the normalized yield strain data. This can be 
explained by the unconfined nature of the stress simulations which allow the trabeculae at 
the edges to deform freely and independently of each other resulting in more scatter as 

ε̂33 − γ̂13
ε̂33 − γ̂23
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opposed to confined nature of the strain simulations which restrict the trabeculae at the 
edges to deform together in a predetermined manner resulting in much less scatter.  The 
small overshoot of the biaxial normal yield stress data near the uniaxial axes, can be 
explained by the stiffening effect of a biaxial stress simulation when four faces of the 
cube are constrained over a uniaxial stress simulation when only two faces of the cube 
are constrained. In addition, the large scatter in the σ̂11 − σ̂ 22  transverse plane can be 
attributed to the thin trabeculae in the transverse plane undergoing large deformations. 
Due to the large scatter in the normalized stress space, the quartic yield criterion required 
15 parameters as opposed to 9 parameters in normalized strain space. Therefore, the yield 
strength analyses in the axial-shear stress space were not pursued. 
 
 Our results are supported by previous studies. The multi-axial failure of foams has 
been characterized previously [28] using a quartic equation that gives the failure envelope 
a box-like shape for a biaxial loading. Similarly, a quartic yield surface has been 
proposed for anisotropic plates [109] and other researchers have proposed non-quadratic 
yield criteria for anisotropic metals [110, 111] and foams [85] that include higher order 
terms to capture the flat regions of the yield surface. Gol'denblat and Kopnov [112] had 
proposed a generalized tensor polynomial criterion, the quadratic version of which 
proposed by Tsai and Wu [20] has been widely used for anisotropic materials. While 
yield criteria of quadratic form [20, 113-116] are widely used in computational studies, 
our results clearly suggest that use of higher order terms better captures the multi-axial 
yield behavior of trabecular bone. Bower and Koedam [117] have explored the 
application of quadratic, cubic and quartic versions of the generalized tensor polynomial 
failure criterion and suggested the use of the quartic version for convexity requirements. 
The form of the six-dimensional quartic yield criterion proposed in this study is similar to 
the modified super-ellipsoid yield criterion, but when expanded, it can be written in a 
quartic tensor polynomial form as follows: 
 

Fiε̂i +Fijε̂iε̂ j +Fijkε̂iε̂ jε̂k +Fijklε̂iε̂ jε̂kε̂l  

where (i, j, k, l = 1,2,3,4,5,6). The suggested form of the proposed six-dimensional 
quartic yield criterion also ensures its convexity, which is a desirable numerical trait in 
the implementation of plasticity algorithms.  
 
 This study has some limitations. First, the use of small cube specimens of 
trabecular bone results in truncated trabeculae at the edges that induces side-artifact 
effects [118]. In addition, the small size of the cubes can overestimate the effective 
mechanical properties [72, 119] due to suppression of large deformation bending of 
truncated trabeculae. A second major limitation of the study was that the form of the 
proposed quartic yield criterion did not capture the yield behavior in two normal-shear 
planes and we had to define a piecewise yield criterion in these two planes. An alternative 
could be to explore the form of the full quartic tensor polynomial yield criterion subjected 
to the convexity constraints on the coefficients [117] which could provide more 
flexibility in the variation of the yield surface in different planes. Thirdly, the angle of 
misalignment of a few specimens was close to 100, which could have caused some scatter 
in the normalized normal-shear strain space and the normalized stress space. Lastly, 
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although the multi-axial failure criterion was proposed in the principal orthotropic 
coordinate system with loading along the main trabecular orientation, the applicability of 
this criterion for off-axis loading [18] scenario remains open for investigation. 
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Table 4-1: Details of Multi-axial Analyses 

Type of Analysis 
/ Boundary 
Condition 

Analysis Details Number of 
Analysis 

Normal Strain and Normal Stress Analyses   

Uniaxial Strain 3 Directions: Tension + Compression 6 

Biaxial Strain (3 biaxial planes) x (4 quadrants per plane) 
x (3 analysis per quadrant)  36 

Uniaxial Stress 3 Directions: Tension + Compression 6 

Biaxial Stress (3 biaxial planes) x (4 quadrants per plane) 
x (3 analysis per quadrant) 36 

Triaxial 
Stress/Strain (8 octants) x (9 analysis per octant) 72 

    156 

Normal-Shear Strain Analysis   

Shear Strain 3 Directions 3 

Axial-Shear 
Biaxial Strain 

(9 planes) x (2 quadrants per plane) x (4 
analysis per quadrant) 72 

    75 
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Table 4-2: Multivariate regression of uniaxial yield strains (in percentage) and uniaxial 
yield stresses (in MPa) with bone volume fraction and anisotropy ratios of the form Y = 
a0 + a1(BV/TV) + a2(E3/E1) + a3(E3/E2) + a4(E2/E1) for the yield strains and the form Y= 
a0(BV/TV)a1(E3/E1)a2(E3/E2)a3(E2/E1)a4  for the yield stresses. The mean values are listed 
in the last column. By convention, direction 3 is the longitudinal direction and directions 
1 and 2 are in the transverse plane, such that the elastic modulus are ordered as E3 > E2 > 
E1 
 

Y  a0 a1 a2 a3 a4  R2  Mean 

ε11
yt

  0.683 0 0 0 0  -  0.683 

ε22
yt

  0.582 0 0 0.0152 0  0.46  0.639 

ε33
yt

  0.582 0 0 0 0  -  0.582 

ε11
yc

  0.909 0 0 0 0  -  0.909 

ε22
yc

  0.952 0 0 0 -0.0476  0.43  0.860 

ε33
yc

  0.816 0.278 0 0 0  0.69  0.871 

γ12
y

  1.21 0 0 0 0  -  1.21 

γ23
y

  1.10 0 0 0 0  -  1.10 

γ13
y

  1.13 0 0 0 0  -  1.13 

σ11
yt

  53.9 1.46 -0.658 0 0  0.98  2.03 

σ 22
yt

  70.9 1.57 0 -0.632 0  0.99  3.20 

σ 33
yt

  73.2 1.46 0 0 0  0.97  7.19 

σ11
yc

  105 1.58 -0.752 0 0  0.99  2.94 

σ 22
yc

  131 1.64 0 -0.796 0  0.99  4.59 

σ 33
yc

  153 1.61 0 0 0  0.98  12.1 
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Table 4-3: Mean value (± SD)  of the coefficients of the quartic yield criterion (equation 
4-2) and published coefficients of the modified super-ellipsoid yield criterion (equation 
4-1) 

Quartic Criterion  Modified Super-Ellipsoid Criterion 
c1 -0.159 (0.029)  c1 -0.145 
c2 -0.122 (0.014)  c2 -0.152 
c3 -0.148 (0.019)  c3 -0.169 
r1 0.869 (0.094)  r1 0.728 
r2 0.779 (0.031)  r2 0.719 
r3 0.740 (0.018)  r3 0.753 
t1 1.829 (0.555)  

t 1.396 t2 1.263 (0.477)  
t3 1.044 (0.285)  

Exponent 4  2/n2 4.695 

 2/n1 5.764 
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Table 4-4: Multivariate regression of 18 coefficeints of the quartic yield criterion 
(equation 4-4) with bone volume fraction and anisotropy ratios of the form Y = a0 + 
a1(BV/TV) + a2(E3/E1) + a3(E3/E2) + a4(E2/E1). The mean values of the parameters are 
listed in the last column. 

Y  a0 a1 a2 a3 a4  R2  Mean 
c1  -0.0171 0 0 0 0  -  -0.0171 
c2  0.0176 0 -0.00658 0 0.0101  0.92  -0.00694 
c3  0.0218 0 -0.00131 0 0  0.62  0.0131 
r1  1.54 -1.65 0 0 0  0.63  1.22 
r2  1.01 0 0.00486 0 0  0.48  1.04 
r3  1.06 0 0 0 0  -  1.06 
t1  3.89 -6.21 0 0 0  0.54  2.67 
t2  1.11 0 0 0 0  -  1.11 
t3  0.689 0 0 0 0  -  0.689 
u1  0.910 0 0 0 0  -  0.910 
u2  0.986 0 0 0.112 0  0.46  1.41 
u3  2.13 0 0 0 0  -  2.13 
v1  1.11 0 0 0.104 0.567  0.79  2.59 
v2  0.513 0 0 0 0  -  0.513 
v3  0.812 0 0 0 0  -  0.812 
w1  3.60 -1.90 0 0 0  0.50  3.23 
w2  2.96 0 0 0 -0.195  0.55  2.59 
w3  3.04 -1.26 0 0 -0.305  0.78  2.20 
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Table 4-5: Mean value of the slope and intercepts of the linear yield criterion fits in the 
 and  planes of the form and 

 
(i=1,2).   

  
 

Mean 
r1c 

 
1.02 

s1c 
 

1.49 
r1t 

 
-0.868 

s1t 
 

1.12 
r2c 

 
0.916 

s2c 
 

1.43 
r2t 

 
-0.714 

s2t   1.04 
 
  

ε̂33 − γ̂23 ε̂33 − γ̂23 γ̂ i3 = ricε̂33 + sic γ̂ i3 = ritε̂33 + sit
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Figure 4-1: Distribution of normal yield strain data (top panel), normalized normal yield 
strain data (middle panel) and normalized normal yield stress data (bottom panel) from 
all specimens in the three normal biaxial planes. 
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Figure 4-2: Distribution of normalized normal-shear yield strain data from all specimens 
in the nine normal-shear biaxial planes.  
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Figure 4-3: Yield envelopes in the three biaxial normal strain planes for a specimen from 
the vertebral body (BV/TV=0.09) using the modified super-ellipsoid criterion (equation 
4-1) and the quartic yield criterion (equation 4-2). 
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Figure 4-4: Yield envelopes in the three biaxial normalized normal strain planes and the 
nine normalized normal-shear strain planes for a specimen from the vertebral body 
(BV/TV = 0.11) using the proposed quartic yield criterion (equation 4-4) and linear yield 
criterion (equation 4-5). The mean error of fit of the quartic yield criterion in the , 

,  planes was 4.2%, in the , , , , , 
,  planes was 3.1% and in the , planes was 7.5%. The 

mean error of fit of the combination of quartic and linear yield criterion in the , 
 planes was 2.4±0.5%. The solid circles fail in the mode denoted by horizontal 

axis and the hollow circles fail in the mode denoted by vertical axis. 
 

  

ε̂33 − ε̂11
ε̂33 − ε̂22 ε̂22 − ε̂11 ε̂11 − γ̂12 ε̂11 − γ̂13 ε̂11 − γ̂23 ε̂22 − γ̂12 ε̂22 − γ̂13
ε̂22 − γ̂23 ε̂33 − γ̂12 ε̂33 − γ̂13 ε̂33 − γ̂23

ε̂22 − γ̂23
ε̂33 − γ̂12
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5. CONCLUSIONS 
 

In this dissertation, the strength of human trabecular bone under different loading 
conditions were investigated. The findings of this research are of both scientific and 
clinical significance: Scientifically, the high-resolution finite element models provide 
insight into the underlying tissue-level failure mechanisms under various loading 
conditions such as uniaxial compression, shear and biaxial loading.  The variation of 
these tissue-level failure mechanisms with bone volume fraction, anisotropy and 
microarchitecture and their influence on the apparent-level mechanical strength 
properties improves the understanding of the structure-function relationship of human 
trabecular bone. Clinically, the mathematical characterization of the multi-axial failure 
behavior of human trabecular bone has the potential to improve the predictive capability 
of whole bone continuum-level finite element models for fracture risk assessment.  
 

The results presented on the shear strength show that trabecular bone is especially 
weak under shear loading since it induces predominantly tensile tissue failure. This also 
holds true for any other loading condition that causes tensile tissue failure such as torsion 
loading. Although the shear strength of trabecular bone has been primarily characterized 
by testing cylindrical cores of trabecular bone under torsion loading, torsion loading 
induces non-uniform shear stresses in a specimen. At the microstructure level, torsion 
causes bending of trabeculae unlike under pure shear loading and therefore strength under 
torsion loading is lower than the strength under pure shear loading. At the apparent-level, 
the bone volume fraction of the specimen explains most of the variation in compressive, 
shear and torsional strengths.  The trabecular microarchitecture that characterizes the 
heterogeneity and anisotropy of the trabecular network explains the relative difference in 
strength under compression and shear loading.  
 

While the bone volume fraction, i.e. the porosity of the trabecular bone might be 
relevant for variation of strength under uniaxial loading conditions; the structural 
anisotropy also becomes relevant under biaxial loading conditions. We observed that the 
strength of trabecular bone when loaded along the primary trabecular orientation depends 
on bone volume fraction, whereas the strength when loaded transverse to the primary 
trabecular loading depends on both bone volume fraction and anisotropy. Therefore, the 
increase in anisotropy of trabecular bone is primarily due to loss of stiffness/strength in 
the transverse direction, which is also supported by previous studies [78, 81]. The 
trabecular bone in the hip and the wrist is loaded in the non-primary direction during a 
traumatic event such as fall, which often results in fractures in osteoporotic patients.  
Therefore, these results suggest that age-related changes in trabecular microarchitecture, 
which includes changes in anisotropy, along with age-related decrease in bone density, 
should be taken into account to understand the etiology of osteoporotic fractures.   
 

The multi-axial yield behavior was found to be homogeneous in the normalized 
strain space when the inter-specimen variation in the uniaxial strength variations due to 
bone volume fraction, microarchitecture and anisotropy was decoupled from the multi-
axial strength. While the yield behavior for loading in two normal-shear planes was 
triangular and linear in shape, the yield behavior for any other loading mode was box-like 
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in shape. The proposed yield criterion defined as a combination of a quartic and linear 
yield criterion, can be used in continuum-level finite element models obtained from 
clinical QCT scans to non-invasively predict strength of whole bones. 
 

There still remain a few unanswered questions regarding the multi-axial failure 
behavior of trabecular bone. Firstly, the applicability of the criterion to off-axis loading 
needs further investigation. While the on-axis and off-axis loading of composite 
laminates has been investigated in many studies [120], only one study has investigated 
and compared the on-axis and off-axis behavior of human trabecular bone [18]. Secondly, 
our results are only restricted to yield strength and not ultimate strength behavior of 
trabecular bone. Under uniaxial loading, trabecular bone exhibits softening behavior, 
after reaching the ultimate stress until failure[60, 121]. The implementation of the multi-
axial yield surface in continuum level finite element models should take into account the 
post-yield ultimate strength behavior, to accurately predict fracture of whole bones. 
Thirdly, the heterogeneity in the yield behavior in the stress space needs to be 
investigated further. It may be worthwhile exploring application of force boundary 
conditions for the stress-based simulations for the multi-axial behavior.    
 

One important area of future research is the implementation of other tissue 
material constitutive models for trabecular bone tissue. While in this dissertation, the 
bone tissue was assumed to be homogeneous, isotropic with plastic behavior post-yield; 
in reality bone tissue is heterogeneous, anisotropic and may not be have a perfectly 
plastic behavior post yield. Recently, studies have investigated the post yield damage 
behavior of trabecular bone tissue [122, 123] and it may be worthwhile looking into 
effects of different post-yield behavior on the multi-axial strength.  In addition, material 
models with viscoelastic and viscoplastic behavior should be also implemented in finite 
element models since high strain rate effects may be relevant for modeling impact 
loading of whole bones during traumatic fracture. Another important area of research 
would be the validation of the tissue-level failure regions with experiments on trabecular 
bone specimens [61, 124]. While there was some level of agreement of the tissue-level 
failure patterns for compression loading with previous experimental studies, the 
comparison was more qualitative and requires more rigorous quantitative validation of 
region-specific failure patterns in the trabecular bone volume.  

 
In closure, this dissertation research has increased knowledge regarding the multi-

axial behavior and micromechanics of trabecular bone subjected to various loading 
conditions. A new multi-axial yield criterion of human trabecular bone has been 
proposed. In particular, decoupling the uniaxial strength behavior from the multi-axial 
strength behavior eliminated the effects of bone volume fraction, anisotropy and 
microarchitecture on the multi-axial strength. 
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7. APPENDIX 
 
Introduction 
 
High-resolution micro-CT based finite element modeling provides an accurate 
reconstruction of bone trabecular microstructure and has been widely used to assess bone 
strength in-silico [24, 96, 125]. While the yield strength estimates from these models 
have been validated for uniaxial compression loading [47, 79], the fidelity of these 
models to predict strength under multi-axial loading is still an open question. The overall 
goal of this study was to establish validity of high-resolution nonlinear finite element 
models for strength prediction of cylindrical cores of trabecular bone subjected to multi-
axial loading. 
 
Methods 
 
Fifteen cylindrical cores of human femoral neck trabecular bone (~8 mm diameter, 25 
mm length) were taken from 15 donors (age=69±8, 52-81 years; n=10 male, n=5 female) 
with a wide range of bone volume fraction (BV/TV = 0.29±0.06, 0.17-0.38). All 
specimens were cored such that the main trabecular orientation was aligned with the axis 
of the cylinder [14]. Specimens were kept hydrated, wrapped in plastic, and stored at 
−200C in airtight containers until mechanical testing. Before mechanical testing, 
specimens were taken out of the freezer and thawed. Then, the two ends of each 
specimen (around 3-4 mm) were submerged in 10% bleach solution to dissolve the bone 
marrow. The specimen was then water jet to remove any remaining bone marrow 
followed by air jetting the ends. For mechanical testing, each specimen core was affixed 
in brass endcaps to avoid end-artifacts [126]. Circular wells (~2 mm deep, and 10 mm 
diameter) were machined at one end of a solid brass rod and specimens were affixed in 
the wells using PMMA while being held in a custom jig to ensure that the endcaps were 
aligned.  Before testing, the total length, diameter, and exposed length of bone between 
the end-caps were measured. All tests were performed in strain control at room 
temperature using a servohydraulic axial-torsion load frame (858 mini-bionix, MTS, 
Eden Prairie, MN) equipped with a multiaxial load cell (Figure A1). First, non-
destructive testing was performed for each specimen under compression (to 0.2% 
apparent strain) and torsion (to 0.4% engineering shear strain). A 25 mm gage length 
axial extensometer, attached to the end-caps, was used to measure axial displacement, 
and the load frame rotational variable displacement transducer was used to measure 
angle-of-twist. After non-destructive testing was completed, specimens were tested to 
failure in either uniaxial loading: compression (n=1), tension (n=1), torsion (n=1), or 
multiaxial loading: combined compression-torsion (n=6), combined tension-torsion 
(n=6). For the multiaxial loading cases, the ratio of shear to axial strains (and strain rates) 
was kept constant during each combined axial-torsion test.  
 
Prior to mechanical testing, each specimen was micro-CT scanned at an isotropic spatial 
resolution 10 µm. Images were coarsened to 20 µm using a region-averaging technique. 
High-resolution finite element models were created from each image that explicitly 
modeled the experimental boundary conditions specific for each specimen.  A linear 
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elastic finite element analyses were performed for each specimen to simulate non-
destructive mechanical testing in compression and torsion, and the effective trabecular 
tissue elastic modulus was computed by comparing the slope of the force-deformation or 
torque-theta curve with experiment. Nonlinear finite element analyses was performed for 
each specimen with axial and torsion strain boundary conditions applied in the same 
proportion as applied in the experiments. For the nonlinear analysis, trabecular tissue was 
assumed to an elastic-plastic material with von Mises yielding with tissue strength 
asymmetry as assumed in Chapters 2, 3 and 4.  The force-vs-displacement curve was 
used to calculate the axial stress-strain response. The torque-vs-angle of twist curve was 
used to calculate the shear stress-strain response as described in chapter 2. The yield 
stress and strain were calculated individually for the axial and shear response. The first 
direction to yield was used to define the chronological yield point. 
 
Results 
 
The effective tissue elastic modulus measured from the non-destructive compression and 
torsion tests was 18.9±2.4 GPa (14.1-22.0 GPa). Under combined tension-torsion 
loading, most specimens broke near the endcaps (Figure A1), whereas under 
compression-torsion loading, the specimens broke somewhere in the middle. Under 
combined loading, failure first occurred in the axial direction unless the applied torsion 
load was very high.  
 
The distribution of yield strains obtained from experiments and yield strains computed 
from the respective finite element analyses, had a good agreement for some specimens 
but had a significant difference for other specimens (Figure A2). In addition, the 
predicted mode of yield (axial v/s torsion) was not in agreement for most of the 
specimens. While the yield point predicted from the stress-strain response of the finite 
element models was in close agreement with the experimentally obtained yield point, the 
finite element models did not capture the post-yield response such as strain softening 
especially in the torsion mode (Figure A3).  
 
Conclusion 
 
Although high-resolution finite element models have been widely used to predict the 
strength of both cylindrical cores of trabecular bone and whole bone, the results of this 
study shows that the validity of such models is still inconclusive under multi-axial 
loading. This could be due to errors introduced in the experiments. Due to machine 
compliance and due to the presence of a layer of PMMA around the perimeter of the bone 
in the brass endcaps, we suspect the angle of twist measurements may not have been 
accurate. We designed the new endcaps to accommodate a thin layer of PMMA around 
the bone specimen to avoid slipping of the specimen within the endcaps during testing. 
Also, due to heterogeneous nature of trabecular bone structure, there could have been 
local failure within the trabecular structure before the overall failure, which could have 
caused variations in the force and torque responses. Future research can involve 
designing new endcaps, testing specimens from other anatomic sites and investigating 
other material models that capture the post-yield strain softening response.   
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Figure A1. A broken specimen tested under combined tension-torsion after testing. 
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Figure A2. Distribution of yield points obtained from experiments (left) and non-linear 
finite element analysis (middle). A red mark indicates chronological yield in torsion 
whereas blue mark indicates chronological yield in tension/compression. The data points 
from experiments and finite element analysis are plotted together on the right-hand chart. 
The values shown are the BV/TV of specimens.  
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Figure A3. Experimentally obtained and finite element computed axial stress-strain 
response (left) and torsional shear stress-stress response (right) for a specimen subjected 
to a combined compression-torsion loading (BVTV = 0.329). The highlighted point on 
each curve is the yield point obtained using a 0.2% strain offset. 
 
 
 
 
 




