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Solution Compression in Mathematical Problem Solving: Acquiring
Abstract Knowledge That Promotes Transfer

Atsushi Terao
Department of Systems Science
Tokyo Institute of Technology

teraoltp.titech.ac.jp

Abstract

The purpose of this study was to find the level of ab-
straction that facilitates transfer in mathematical prob-
lem solving. Two experiments in this study showed
that subjects who made good abstraction showed bet-
ter transfer (Experiment 1), and it is possible to teach
an abstracted schema quickly (Experiment 2), although
a hint is necessary in testing. The abstracted schema
was the idea of how to construct correct equations for
target problems. This schema was at an more abstract
level than the form of equations. Thus, we argue that
the process named solution compression, in which two
or more equations are considered to be constructed from
oneidea, is needed in order to generalize this schema and
to promote transfer in mathematical problem solving.

Introduction

To become proficient in solving mathematical problems,
one of the most important skills is to transfer knowl-
edge that was acquired from examples to novel problems
(target problems). Transfer is difficult to obtain (Reed,
1993). Rather small changes in a problem can greatly
reduce the effectiveness of an example (Reed, Dempster,
& Ettinger, 1985).

The basic mechanisms that yield transfer are analogy
(Anderson, 1987; Gick & Holyoak, 1983; Pirolli & Ander-
son, 1985; Reed, 1993; Ross, 1984) and abstraction (Gick
& Holyoak, 1983; Ross & Kennedy, 1990; Suzuki, 1995;
Suzuki & Kuriyama, 1996). In this study, using algebra
word problems, we try to form transfer through abstrac-
tion. We use target problems that have elements of the
correct equation which cannot be generated by analogy.
Each of the target problems in this study can be solved
with similar equations to the one used in the example
problem. However, a problem solver has to modify the
solution of the example because part of the equation is
changed in the target problems. We will call these tar-
get problems similar target problems. In contrast to this
study, most of the studies on transfer have used somor-
phic target problems that can be solved with the same
equation as the one used in the example.

Holyoak, Novick, & Melz (1994) insisted that the pro-
cess named adaptation was needed in order to solve sim-
ilar target problems. Adaptation will be required when-
ever the underlying structures of the example and the
target problems are not completely isomorphic. If the
target problem has elements that do not correspond to
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anything in the example, additional target-generated in-
ferences (i.e., adaptation) will be required to supplement
those generated by analogy. Holyoak et al. (1994) re-
analyzed the results of Reed (1987) and showed that the
difficulty of transfer to similar target problems was due
to the difficulty of the adaptation. Novick & Holyoak
(1991) also obtained similar results. Although most of
the works on transfer have used isomorphic problems,
there is no guarantee that the underlying structures (i.e.,
the form of equations) of an example and a target prob-
lem are fully isomorphic; indeed, this will seldom be the
case for mathematical problems. Moreover, similar prob-
lems are often more difficult than isomeorphic problems
(Reed, 1987). Thus, it is quite meaningful to explore
what knowledge should be acquired and how the knowl-
edge is acquired in order to promote transfer to the sim-
ilar target problems. This is the basic aim of this study.

If problem solvers cannot solve the similar target prob-
lem by analogy, it is expected that an appropriate ab-
straction from example problems or their solutions facili-
tates transfer (Gick & Holyoak, 1983). However, there is
a little evidence that the abstraction promotes transfer
in mathematical problem solving (Reed, 1993). Gick &
Holyoak (1983) and Catrambone & Holyoak (1989), us-
ing Dunker's radiation problem and its isomorphic prob-
lems, showed that an appropriate schema abstraction
promotes transfer. Although their results are impres-
sive, it 1s unclear whether they could be duplicated for
complex problems such as algebra word problems (Reed,
1993). Indeed, a negative result that failed to support
the schema abstraction hypothesis was provided (Reed,
1989). Moreover, il is not isomorphic problems but
similar problems that we will use. Ross & Kennedy
(1990), using isomorphic probability problems, showed
that an abstraction plays an important role in transfer,
that is, the use of earlier examples promotes generaliza-
tions about problem types and affects later performance.
However, Ross & Kennedy (1990) did not examine the
contents of the knowledge (schema) that the students
acquired. In other words, it is unclear what and how
knowledge is acquired. Bernardo (1994) showed that the
problem-type schemata included both problem-specific
and abstract information. However, it is unclear whether
these schemata facilitate transfer because he used prim-
ing paradigm (he examined, not problem solving, but
recognizing problem sentences).

The purposes of this study are (1)to show evidence
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that an appropriate abstraction facilitates transfer to
similar target problems, (2)to explore what abstract
schema should be acquired, and (3)to discuss the pro-
cesses of schema abstraction and illustration. We have
carried out two experiments in order to achieve these
purposes.

Overview of Study

Both of the experiments in this study provide evidence
an appropriate abstraction from examples facilitates
transfer: in order to promote transfer, it was useful to
induce or to teach the idea of how to construct correct
equations This result is quite meaningful because little
evidence has been presented that show this effect of some
abstraction. In contrast to many previous studies which
considered the forms of correct equations themselves as
the abstract structures of algebra word problems (e.g.,
Reed, 1937, 1989; Reed et al., 1985, Ross & Kennedy,
1990), we dealt with the idea of how to construct correct
equations as an abstract structure (schema).

What are the properties of the idea 7 Are they differ-
ent from those which are included in the schema induced
from puzzle-like problems (e.g., Dunker’s radiation prob-
lem) (see Gick & Holyoak, 1983) 7 Why is it useful to
induce or teach the idea in order to facilitate transfer to
similar target problems 7 What abstract schemata are
acquired and how 7 We will discuss these questions in
general discussion, and argue that (1) to induce or teach
the idea means to form more abstract schema than the
schema induced from puzzle-like problems, (2) this type
of abstract schema is useful for complex problems such as
algebra word problems, (3) three types of the processes
of acquiring the abstract schemata are considered. We
will call the process to make more abstract schema, such
as the idea of how to construct equations, solution com-
pression.

Experiment 1

This experiment is a correlational study that shows in-
ducing an abstract schema from examples is a predictor
of the amount of transfer.

Method

Participants. 50 high-school students participated in a
collective paper-and-pencil test during their normal mathe-
matics classes.

Materials. The following three problems were used.

Pond Problem: Three person A, B, C went around a pond,
starting at the same point, to the same direction. They
started at the same time. Person A was walking at 70m
per minute, B was running at 150m per minute, and C was
going around by bicycle. It takes five minutes from starting
for C to catch up with A. Four minutes after C had caught
up with A, C caught up with B. Find the average speed of
C. (The correct equation: 5z — 70 x 5 = 9z — 150 x 9)

Clock Problem: There is a round clock that has 60 grad-
uations keeping equal angles, Now, it is twelve o'clock, the
minute hand is on top of the hour hand. When will the
minute hand be on the hour hand next again ? (The correct
equation: 6z — 0.5z = 360)
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T'rain Problem: A man walked along with rails at an aver-
age speed of 4 km/h. One group of the trains running in the
same direction of the person passed him every 10 minutes.
Also, another group of the trains running in the opposite di-
rection to the person met him every 8 minutes. All the trains
ran with keeping a constant distance and at the same speed.
I'ind the average speed of the trains. (The correct equation:
10r —4x10=8z+41x8)

The participants were given the pond problem first, and
then the clock problem second, the train problem last. The
clock problem and the train problem were the example and
the target problem, respectively. The clock problem was the
target problem for the pond problem, but was the example
problem for the train problem.

The forms of the correct equations for these three prob-
lems are different from each other. Many previous studies
have considered the forms of correct equations themselves as
the abstract structures of algebra word problems (e.g., Reed,
1987, 1989; Reed et al., 1985, Ross & Kennedy, 1990). The
form of correct equation for the pond problem (example) is
Rate C x Time C - Rate B x Time B = rate C x Time C
Rate A x Time A. This form of the equation has been con-
sidered to be the abstract structure and to have eight slots.
The form of correct equation for the clock problem (target)
is Rate H x Time H Rate M x Time M = the angle of a
round. The right side of the equation for the target problem
is changed from the one for the example. Students often show
difficulty in generating altered quantities even if the forms of
the equations become easy by this change (Reed, 1987). A
possible remedy for generating altered quantities is to build
instruction around procedures that can generate quantities
that are in the target problem but not in the example (Reed,
1993). Procedures can be attached to slots in a schema for
the purpose of generating values to fill the slot (Bobrow &
Winograd, 1977). Reed & Bolstad {1991) tried to facilitate
transfer by using this method: they taught students the ex-
ample solution, the form of the equation, and the set of pro-
cedures. However, this method was not useful for promoting
transfer to similar target problems. Moreover, it is difficult
to use this method for making transfer to the train prob-
lem because the form of equation is extremely changed (see
the right side of the equation). Indeed, previous studies on
transfer did not consider problems such as the train problem
to be a target problem for examples such as the pond prob-
lem and the clock problem because of the extremely changed
form of equation (e.g., see Reed, 1987, 1993). Our original
attempt is to try to obtain transfer to such problems as the
train problem.

In contrast to these previous studies, we consider an idea
of how to construct correct equations as an abstract schema
induced from example. The idea is as follows: when an ob-
ject catches up with another object, a difference between the
two distances is equal to a particular distance. Although this
idea may look like the form of equation itself, there are some
important differences. First, this idea teaches us how to find
the solutions to the problems. In other words, students can
learn from the idea to construct the left side of the equation
first, then to find the rnght side. But the form of equation
itself does not tell us this order. Second, this idea is available
for all three problems, but it is difficult to find common form
of the three equations. Especially, the form of the equation
for the train problem is different from the one for the pond
problem or the clock problem. Indeed, the above-mentioned
method by Reed et al. (1991) is not available for facilitat-
ing transfer to the train problem from the examples in our



study. In short, this method cannot accept the changing of
arithmetic signs (changing from — to +) in the right sides
of the equations because the method docs not consider the
arithmetic signs as slots. Third, the idea i~ a more abstract
schema than the form of the equations because twa o1 more
slots of the equations are changed to one component. For
example, the right side of the equation for the pond problem,
having four slots, is changed to one component: a particular
distance.

Procedure. As mentioned above, the participants tried
to construct correct equation for the pond problem first, and
then the clock problem second, the train problem last. They
were given five minutes for each problem. In testing, the fol-
lowing hint was given to the students: this problem is similar
to the problem which has just been learned.

After the attempt to solve the pond problem, the solution
was provided. The participants were required to understand
the solution for four minutes. The same procedure was re-
peated after the attempt to solve the clock problem. For the
clock problem, the provided solutions had the following con-
tents: in comparison with the hour hand, the minute hand
will go around the clock one time more, thus, the difference
between two angles ( 6z — 0.5z ) is equal to the angle around
the clock, that is, 360. Similar explanation was provided for
the pond problem.

The participants were asked the following question after
they understood the solution to the pond problem: please
describe what you learned (or found) from the problem as to
(1) what is important in order to solve this problem, (2) why
did you fail to solve this problem if you failed to do so, (3)
what do you need to notice when you meet similar problems.
These questions are used in cognitive counseling for learn-
ers to induce useful lessons after problem solving (Ichikawa,
1991). Four minutes were spent on this task. The partici-
pants' responses to this question were expected to reflect the
contents of schemata that the students acquired from the ex-
ample. We assigned the participants to two groups based
on the responses to this question. The participants who re-
ferred to the above-mentioned idea of how to construct the
correct equation were assigned to the good-abstraction stu-
dents’ group. The participants who did not refer to the idea
were assigned to poor-abstraction students” group. We ex-
pected that the good students would show better transfer to
the clock problem than the poor students did.

Then a test that measured the degree of the understanding
of the provided solution was done for four minutes. The test
asked the students what each element of the correct equa-
tion (for example, 350, 9, 9x-350, and so on) represented.
An example of an item of this test was as follows: what does
“5x—350" represent 7 The participants were prohibited from
seeing the solution. If a participant correctly answered one of
the items, he or she received one point. This test was marked
on a maximum scale of seven points. The reason that we
carried out this test was to check the above-mentioned as-
signment of the participants. It was possible that the good
students were able to understand the solution to the pond
problem better than the poor students did. That meant that
the assignment was not based on the participants’ responses
to the question about acquired schemata. To deny this pos-
sibility, we had to check the degree of the participants’ un-
derstanding. It was also possible that the good students had
better ability in mathematics than the poor students did. To
check this possibility, we collected the participants’ score of
a test of mathematics that had been done two weeks before
this experiment was carried out.

'I'he procedure similar to the one for the pond problem
was repeated for the clock problem before the participants
tried to solve the train problem. In short, the participants
were asked the question about their schemata acquired from
the clock problem, and given the test of understanding, after
the solution to the clock problem was learned. The test of
understanding the solution to the clock problem was marked
on a maximum scale of five points. The participants were re-
assigned to the two groups, that is, good students and poor
students, based on the responses to the question about ac-
quired schemata. We expected that the good students would
show better transfer to the train problem than the poor stu-
dents did.

The participants were required to solve the pond problem
and the clock problem again, one week after their first at-
tempts. Five minutes were given for each problem.

Results and Discussion

Data from seven participants were discarded because
they succeeded in solving the pond problem.

Table 1 shows the proportions of participants who suc-
ceeded in constructing correct equations for each prob-
lem. The participants could attempt to solve the clock
problem by using the schemata acquired from the pond
problem (see the second column in Table 1) and to solve
the train problem by using the schemata acquired from
the pond problem and the clock problem (see the third
column). When they were required to solve the pond
problem and the clock problem again, they could solve
these problems by using the schemata acquired from the
pond problem and the clock problem (see the fourth
and fifth column). The hypothesis is that the good-
abstraction students show better transfer than the poor-
abstraction students. We also expected that the good
students would show better performance on the retest
one week later., The overall tendency of the data sup-
ported these expectations.

Transfer to the Clock Problem. The goodstudents
showed better transfer to the clock problem (See table 1).
In contrast to 27 % of the poor students (N = 11) suc-
ceeding in solving this problem, 56 % of the goodstudents
(N = 32) constructed the correct equations. This differ-
ence is significant (y?(1) = 2.75,p < .05, one tailed).
This result supports the above-mentioned hypothesis.

There were no difference as to the scores of under-
standing the solution for the pond problem. The mean
scores of the good and poor students were 6.78 and 6.55,
respectively (1(41) = 0.96,p = .34). The difference as
to the scores of ability in mathematics was also not sig-
nificant. The mean scores of the good and poor students
were 28.2 and 28.3, respectively (1(36) = 0.05,p = .96).
Thus, the data to doubt that the assignment was based
on another criterion was not provided. !

Transfer to the Train Problem. The train problem
was a very difficult problem because only six of 43 par-

'In Experiment 1, we collected the students who were on
a certain level of achievement in their schoolwork, because we
needed to show that the assignment was based, not on general
math ability, but the contents of abstraction. In general,
students with good abstraction skills may perform better on
a general math ability test.
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Clock  Train Pond  Clock
Groups (retest)  (retest)
Good .06 20 BT 63
Poor 27 00 A6 31

Table 1: Performance on each problem

ticipants (30 were good, 13 were poor) were able to solve
this problem. Notice that all of the six students were in
the good group (see Table 1). (Two of the six participants
failed to solve the clock problem, and the rest succeeded
in solving it. Of course, all of them failed to solve the
pond problem.) The difference between the two groups
was marginally significant (p = 0.10, Fisher's exact test,
one tailed). This result supports the hypothesis that
good-abstraction students show better transfer. There
was no difference as to the scores of understanding the
solution for the clock problem. The mean scores of the
good and poor students were 4.53 and 4.23, respectively
(t(41) = 1.00,p = .32). However, the difference as to
the scores of ability in mathematics was marginally sig-
nificant. The mean scores of the good and poor students
were 30.3 and 23.3, respectively (1(36) = 2.00, p = .052).
We met the limitation of correlational study. In the sec-
ond assignment, it is possible that the participants were
assigned to the two groups based, not on the contents of
acquired schemata, but their ability in mathematics. We

have to carry out a controlled experiment: Experiment
2.

Performances on Retest. Asshown in Table 1, 87 %
of the good-abstraction students ? answered correctly to
the retest of the pond problem in contrast to 46 % of
the poor-abstraction students. There was a significant
difference as to these percentages between the two groups
(p < 0.01, Fisher's exact test, one tailed). All of the
participants had failed to solve this problem on their
first attempt. As to the retest of the clock problem,
63 % of the good studenis gave the correct equation in
contrast to 31 % of the poor students. This difference
was significant (x2(1) = 3.86, p < .05, one tailed). Thus,
we can say that the effect of good abstraction remained
for one week.

Experiment 2

The results of Experiment 1 show that acquiring the
idea of how to construct equations facilitates transfer.
Although this experiment has the advantage of exam-
ining directly the schemata that students acquired (we
can know the contents of schemata from participants’ re-
sponses directly), there is a well-known limitation of cor-
relational study: the correlational study can not prove
a causal relationship. Thus, we will teach students the
idea of how to construct equations and confirin the re-
sults of Experiment 1 by doing a controlled experiment:
Experiment 2. As mentioned above, the idea is a more

®The second assignment was used because the re-
assignment reflects the final contents of the acquired
schemata
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abstract scheina than the forms of equations themnselves,
No researcher has tried to teach students to represent
problems at a more abstract level than the forms of equa-
tions (Reed, 1993, p.62).

Method
Participants. Participants were 76 high-school students.
Materials. Participants were given the clock problem as

an example and the pond problem as a target problem.

Procedure. Participants were randomly assigned to three
conditions, that is, control condition, formula condition, and
compression condition,

At first participants were required to solve the example.
The correct solution to the example was shown to the par-
ticipants after they tried to solve it for five minutes. The
contents of the solution was the same as the one given in
Experiment 1.

After the solution instruction, an explanation about this
problem was presented. In the control condition, the subjects
were taught that we call these kinds of problems “catching-
up-with” problems. In the formula condition the following
explanation was added to the one given in the control condi-
tion: the formula of the equation of this kind of problem is
Rate A x Time A - Rate B x Time B = a particular distance.
In the compression condition the following explanation was
added to the one given in the control condition: the point of
this kind of problem is that the difference between the two
distances is equal to a particular distance.

The participants then proceeded to the target problem.
They were given five minutes to solve it without any hints.
After this first attempt, the participants were given four min-
utes to solve this problem again with the hint: this problem
is similar to the clock problem which has just been learned.

Results and Discussion

Data from four participants were discarded because they
succeeded in solving the example. Table 2 shows the
number of participants who succeeded in constructing
the correct equation to the target problem.

There were no differences among the three conditions
without hint (x*(2) = 3.32,p > .10). This result is in
line with the results of previous studies that showed the
difficulty of transfer without hint (e.g., Gick & Holyoak,
1983). The proportions of participants who succeeded in
solving the target problem with hint were significantly
slanted (x*(2) = 6.54,p < .05). Thus we can say that
participants succeeded in constructing correct solution
more in the formula condition and compression condition
than in control condition (see Table 2).

This means that the appropriate abstraction with hint
facilitates transfer in the complex domain such as math-
ematical problem solving.

Although the participants in the formula condition
showed good transfer, note that they were not taught the
form of the equation itself. (see the right side. see also
discussion in the explanation of materials in Experiment
1.) Participants in the formula condition would be able
to interpret the explanation about the example just as
the explanation in the compression condition. In Experi-
ment 1, we have already shown that the good-abstraction
students who had succeeded in making good abstract



Before hint After int
Conditions Success  Fail Success  Fail
Control (N=26) 2 24 3 2
Formula (N=23) 6 17 N 15
Compression (N=23) 3 20 10 14

Table 2: The number of participants who can solve the
target problem.

schema themselves showed good transfer. No geod stu-
dents referred to the form of equation itself. Therefore,
we can conclude that students have to acquire the knowl-
edge that is instructed in the compression condition in
order to promote transfer.

General Discussion

What Knowledge Should Be Acquired ?
Compressed Solution

Both experiments in this study show that acquiring the
idea of how to construct correct equations facilitates
transfer to similar target problems. This finding is quite
meaningful because there is hittle evidence to show that a
schema abstraction from examples facilitates transfer in
mathematical problem solving. Moreover we succeeded
in facilitating transfer to similar target problems which
is difficult to obtain (Reed, 1987, Reed & Bolstad, 1991).
In this section, we will examine what the properties of
the idea are, in other words, what knowledge should be
acquired in order to promote transfer, especially to sim-
ilar target problems. The previous studies have consid-
ered the forms of equations as the abstract structures of
problems, but it must be difficult to memorize the form
of an equation itself because it sometimes has many slots
and there are various forms of equations in the domain
of algebra word problems. Moreover, transfer to simi-
lar target problems is difficult to obtain even if students
learn the forms of equations (Reed & Bolstad, 1991).
The idea of constructing equations is a more abstract
schema than the forms of equations as we have already
mentioned (see Materials in Experiment 1). Students
can construct various forms of equations from one idea
as shown in Experiment 1. In short, two or more slots
of an equation are compressed into one component. For
example, the right side of the equation of the train prob-
lem, having four slots, are compressed into one concept:
a particular distance. We will call this compression in
abstraction “selution compression”. The compressed so-
lution in this study teaches students to construct the left
side of the equation first, then to find the right side,
Solution compression is defined as compressing a
whole procedure of a solution. Mathematical problems
often have a long and complex solution procedure. It
is difficult to memorize the whole procedure. Indeed,
the transfer difficulty seems to stem from a tendency by
many learners to memorize a solution procedure from
examples rather than a more meaningful organization
(Catrambone, 1996). Thus, students have to compress
the procedure. This teaches us that a compressed solu-

tion is different from the abstract schema that is induced

rom a puzzle-like problem. For example, consider the
transfer from Dunker’s radiation problem to the fortress
problem (Gick & Holyoak 1983). The tumor is changed
to a “target” in the abstract schema, that corresponds
to the form of equation in an algebra word problem.
The notion of “target” is directly changed to “fortress”
in the fortress problem. Although it is needed to cre-
ate super-ordinate concepts (e.g., “target”) to describe
a more general schema (Reed, 1993), we could memorize
the whole solution procedure to a puzzle-like problem.
It is usually short and simple. For example it seems to
be relatively easy to memorize the following abstract so-
lution: if a target is difficult to overcome because a large
force cannot be aimed at the target from one direction,
divide the force into convergent small forces. Thus, the
solution compression is not needed.

Another difference between compressed solution from
mathematical problem and abstract schema from puzzle-
like problem is found in the process of illustrating ab-
stract schemata. Only one step is needed in the illustra-
tion of an abstract schema acquired from a puzzle-like
problem. As to the above-mentioned example, the no-
tion of “target” is directly changed to the “fortress”. In
contrast to this case, at least two steps are needed in
order to solve a similar target problem. In our study,
the idea of constructing equations would be expanded
to a form of equation at first (the form of equation cor-
responds with abstract schemata from puzzle-like prob-
lems), and then the values to fill the slots of the equation
are generated.

Student can construct the form of equation for a simi-
lar target problems before they generate values to fill the
slots of the equation, by acquiring the idea of construct-
ing equations. This is the reason why the compressed
solution, the idea of constructing equations, are useful
for facilitating transfer to similar target problems that
cannot be solved just like the example.

We may be able to say that to acquire the compressed
solution allows students to set a subgoal. For exam-
ple, in this study, students can set the following subgoal:
construct the left side of the equation at first and then
find the right side. Prior work with the subgoal learning
demonstrated that if a student learns the subgoal strue-
ture for solving problems in a domain, then he or she is
more likely to adapt old procedures for novel problems
(Catrambone, 1994, 1995, 1996) although the subgoal is

set at a more abstract level in our study.

How Is the Knowledge Acquired ?

We have discussed what schema should be acquired.
Now we will speculate how the schema or compressed
solution is acquired. We do not have enough data to
clarify the process of acquiring the compressed solution
yet. However, we can begin to speculate on it.

We can consider three ways as processes of solution
compression. The first is instruction by others (teachers,
printed materials, and etc.). Experiment 2 is an example
of this case. We taught students the compressed solution
directly. This instruction was effective for facilitating
transfer. The second is inducing schemata by learners
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themselves. As shown in Experument 1, lehikawa (1091)
employed the questions to have learners induce useful
lessons after problem solving. Ichikawa (1991) called this
activity to induce lessons by learners themselves “lesson
induction”. The good students in Experiment | were
considered to do good lesson induction, or to generate
good sell-explanations (Chi, Bassok, Lewis, Reimann, &
Glaser, 1989). Note that many participants were able Lo
acquire the compressed solution from only one problem:
the pond problem (see the first assignment in Experi-
ment 1). Abstract schemata have often been considered
to be induced from making an analogy between two prob-
lems (Gick & Holyoak, 1983; Novick & Holyoak, 1991;
Ross & Kennedy, 1990), but the results of Experiment
1 shows that doing lesson induction or self-explanations
from only one example problem is also a good way to
acquire an abstract schema. The third is to use analogy
from different domain. Suzuki(1995) has tanght his par-
ticipants the solution for the “work” problem by using
the following analogy: two persons start to eat a stick
candy from each side. The participants who were given
this analogy showed good transfer. An important point
of the solution to the work problem becomes clear by this
analogy. The point, compressed solution, is that the sum
of the amount of work (stick candy) that each person did
(eat) is equal to the whole amount of the work. In many
previous studies, Analogies were always made between
an example and a target problem (Gick & Holyoak, 1983;
Novick & Holyoak, 1991; Ross & Kennedy, 1990). In
contrast to these studies, Suzuki (1995) used an analogy
between an example problem (work problem) and an-
other example in a different and familiar domain (eating
stick candy).

In this study, we have shown that an appropriate ab-
straction, to acquire the compressed solution, facilitates
transfer to similar target problems. The compressed so-
lution i1s a more abstract schema than the form of equa-
tion itself, which has been considered to be the abstract
structure of solutions to algebra word problems. Our
study contributes to clarifying what schema should be
acquired in order to promote transfer, but do not have
enough data yet to clarify the process of acquiring the
compressed solution. Further research is needed in or-
der to examine the process of acquiring the compressed
solutions.
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