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Ensifer medicae strain WSM1115 forms effective nitrogen fixing symbioses with a range of annual 
Medicago species and is used in commercial inoculants in Australia. WSM1115 is an aerobic, mo-
tile, Gram-negative, non-spore-forming rod. It was isolated from a nodule recovered from the root of 
burr medic (Medicago polymorpha) collected on the Greek Island of Samothraki. WSM1115 has a 
broad host range for nodulation and N

2
 fixation capacity within the genus Medicago, although this 

does not extend to all medic species. WSM1115 is considered saprophytically competent in moder-
ately acid soils (pH(CaCl

2
) 5.0), but it has failed to persist at field sites where soil salinity exceeded 10 

ECe (dS/m). Here we describe the features of E. medicae strain WSM1115, together with genome se-
quence information and its annotation. The 6,861,065 bp high-quality-draft genome is arranged into 
7 scaffolds of 28 contigs, contains 6,789 protein-coding genes and 83 RNA-only encoding genes, 
and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Ge-
nomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project. 

Introduction 
The genus Medicago comprises 87 species of annu-
al and perennial legumes, including some that were 
formerly recognized as Trigonella and Melilotus 
species [1]. A small number of annual Medicago 
species that have been domesticated are grown 
extensively in the sheep-wheat zone of southern 
Australia, particularly where pasture regeneration 
after a cropping phase is desirable. Annual 
Medicago species are grown on more than 20 M ha 
[2] and are particularly valued for their contribu-
tion to farming systems, in which Medicago fix 
around 25 kg of N per tonne of legume dry matter 
produced [3]. 
Medicago are nodulated by two species of root 
nodule bacteria (Ensifer medicae and Ensifer 
meliloti) that are recognized as being distinct based 
on their different nodulation and N2 fixation  

phenotypes in host interaction studies and more 
detailed analyses of their genetics [4,5]. 
Ensifer medicae strain WSM1115 is used in Austral-
ia to produce commercial peat cultures (referred to 
as Group AM inoculants) for the inoculation of sev-
eral species of annual Medicago (predominantly M. 
truncatula, M. polymorpha, M. scutellata, M. 
sphaerocarpus, M. murex, M. rugosa and M. orbicu-
laris). WSM1115 has been used commercially since 
2002 [6], when it replaced strain WSM688. 
WSM1115 was isolated from a nodule from the 
roots of burr medic (Medicago polymorpha) collect-
ed by Prof. John Howieson (Murdoch University, 
Australia) on the island of Samothraki, Greece. 
WSM1115 was selected for use in commercial in-
oculants having demonstrated good N2-fixation ca-
pacity with the relevant medic hosts and adequate 
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saprophytic competence in moderately acidic soil 
(pH(CaCl2) 5). 
Saprophytic competence in acidic soils is a re-
quirement of strains used to inoculate Medicago 
because several species (M. murex, M. 
sphaerocarpus and M. polymorpha) are recom-
mended and sown into soils below pH(CaCl2) 5.5, a 
level that is known to limit both survival of medic 
rhizobia and nodulation processes [7-10]. Useful 
variation in saprophytic competence occurs be-
tween strains of medic rhizobia [9] and valuable 
insights into the mechanisms that confer acidity 
tolerance have been provided by studies using 
strain WSM419 [11], which has been recently se-
quenced [12]. However, the complex nature of soil 
adaptation means that in-situ field studies still pro-
vide the most reliable means of selecting an inocu-
lant strain and were used to select WSM1115 for 
commercial use. In a cross row experiment com-
paring 15 strains on acidic sand (pH(CaCl2) 5.0; 
Dowerin, West Australia), the nodulation of plants 
inoculated with WSM1115 was equal to or better 
than that of the other strains. This translated to 
better plant shoot weights, which were similar to 
those of plants inoculated with WSM688 (the in-
cumbent inoculant strain at time of testing) and 
48% greater when compared to former inoculant 
strain CC169 (J. G. Howieson unpublished data). 
The nitrogen fixation capacity (effectiveness) of 
Medicago symbioses is characterized by strong in-
teractions between the strain of rhizobia and spe-
cies of Medicago [13-16]. Hence, the ability to form 
effective symbiosis with the species recommended 
for inoculation is an important consideration in 
inoculant strain selection. WSM1115 satisfies this 
requirement. In greenhouse tests it formed  

effective symbiosis with 16 genotypes of Medicago 
and overall produced 48% more shoot dry matter 
compared to plants inoculated with WSM688, the 
strain that it replaced (R.A. Ballard and N. Charman, 
unpublished data). 
A limitation of strain WSM1115 is its poor persis-
tence in moderately saline soils (e.g. where sum-
mer salinity levels exceed 10 ECe (dS/m)). Poor 
nodulation of regenerating pasture was first noted 
in 2004 during the field evaluation and domestica-
tion of the salt tolerant annual pasture legume 
messina (Melilotus siculus syn. Melilotus 
messanensis). Subsequent studies [17] confirmed 
that although WSM1115 was able to nodulate and 
form effective symbiosis with messina, it did not 
persist as well as other strains (e.g. SRDI554) 
through the summer months when salinity levels 
increased. 
Here we present a preliminary description of the 
general features of Ensifer medicae strain 
WSM1115 together with its genome sequence and 
annotation. 

Classification and features 
Ensifer medicae strain WSM1115 is a motile, non-
sporulating, non-encapsulated, Gram-negative rod 
in the order Rhizobiales of the class 
Alphaproteobacteria. The rod-shaped form varies 
in size with dimensions of approximately 0.5 μm 
in width and 1.0 μm in length (Figure 1A). It is fast 
growing, forming colonies within 3-4 days when 
grown on TY [18] or half strength Lupin Agar 
(½LA) [19] at 28°C. Colonies on ½LA are opaque, 
slightly domed and moderately mucoid with 
smooth margins (Figure 1B). 

 
Figure 1. Images of Ensifer medicae strain WSM1115 using  (A) scanning electron microscopy and 
(B) light microscopy to show the colony morphology on a solid medium. 
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Minimum Information about the Genome Se-
quence (MIGS) is provided in Table 1. Figure 2 
shows the phylogenetic neighborhood of Ensifer 
medicae strain WSM1115 in a 16S rRNA gene se-
quence based tree. This strain has 100% sequence 

identity (1,366/1,366 bp) at the 16S rRNA se-
quence level to the fully sequenced Ensifer 
medicae strain WSM419 [12] and 99% 16S rRNA 
sequence (1362/1366 bp) identity to the fully se-
quenced E. meliloti Sm1021 [36]. 

Table 1. Classification and general features of Ensifer medicae strain WSM1115 according  to 
the MIGS recommendations [20] 

MIGS ID Property Term Evidence code 

 

Current classification 
 

Domain Bacteria TAS [21] 

Phylum Proteobacteria  TAS [22] 

Class Alphaproteobacteria  TAS [23,24] 

Order Rhizob iales TAS [22,25] 

Family Rhizob iaceae TAS [26,27] 

Genus Ensifer TAS [28-30] 

Species Ensifer medicae TAS [29] 

Strain WSM1115  

 Gram stain Negative IDA 

 Cell shape Rod IDA 

 Motility Motile IDA 

 Sporulation Non-sporulating NAS 

 Temperature range Mesophile NAS 

 Optimum temperature 28°C NAS 

 Salinity Non-halophile NAS 

MIGS-22 Oxygen requirement Aerobic IDA 

 Carbon source  Varied NAS 

 Energy source Chemoorganotroph NAS 

MIGS-6 Habitat Soil, root nodule, on host IDA 

MIGS-15 Biotic relationship Free living , symbiotic IDA 

MIGS-14 Pathogenicity Non-pathogenic IDA 

 Biosafety level 1 TAS [31] 

 Isolation Root nodule IDA 

MIGS-4 Geographic location Samothraki, Greece IDA 

MIGS-5 Time of sample collection May, 1987 IDA 

MIGS-4.1 Latitude 40.4900 IDA 

MIGS-4.2 Longitude 25.6500 IDA 

MIGS-4.3 Depth <10 cm IDA 

MIGS-4.4 Altitude 325 m IDA 

Evidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a di-
rect report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly ob-
served for the living , isolated sample, but based on a generally accepted property for the spe-
cies, or anecdotal evidence). These evidence codes are from the Gene Ontology project [32]. 
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Figure 2. Phylogenetic tree showing the relationship of Ensifer medicae WSM1115 (shown in bold print) to other 
Ensifer spp. in the order Rhizobiales based on aligned sequences of the 16S rRNA gene (1,290 bp internal reg ion). 
All sites were informative and there were no gap-containing  sites. Phylogenetic analyses were performed using 
MEGA, version 5 [33]. The tree was built using  the Maximum-Likelihood method with the General Time Reversi-
ble model [34]. Bootstrap analysis [35] with 500 replicates was performed to assess the support of the clusters. 
Type strains are indicated with a superscript T. Brackets after the strain name contain a DNA database accession 
number and/or a GOLD ID (beginning  with the prefix G) for a sequencing  project reg istered in GOLD [32 ]. Pub-
lished genomes are indicated with an asterisk. 
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Table 2. Compatibility of Ensifer medicae WSM1115 with various Medicago and allied genera for nodulation (Nod) 
and N2-fixation (Fix) 

Species Name Cultivar or line Common Name Growth Type Nod Fix Reference 

M. polymorpha Santiago/Cavalier/Scimitar Burr Annual + + IDA 

M. truncatula. Caliph/Jester Barrel Annual + + IDA 

M. murex Zodiac Murex Annual + + IDA 

M. sphaerocarpus Orion Sphere Annual + + IDA 

M. scutellata Sava/Silver/Essex Snail Annual + + IDA 

M. rugosa Paraponto Gama Annual + + IDA 

M. littoralis Herald/Harbinger Strand Annual + Poor IDA 

M. orbicularis Estes Button Annual + +  [15] 

M. rigiduloides Accession PI 227850 Rigid Annual +(w) -  [15] 

M. rigidula  Accession PI 495552 Tifton Annual +(w) -  [15] 

M. arabica Local ecotype Spotted Annual + +  [15] 

M. minima Devine Woolly burr Annual + +  [15] 

M. sativa SARDI Ten Lucerne Perennial + + IDA 

M. lupulina ‘BEBLK’ Black Perennial + +  [15] 

Melilotus siculus Accessions SA40006 & 39909 Messina Annual + +  [17] 

Melilotus albus various accessions Bokhara clover Biennial + + IDA 

(w) indicates nodules present were white. 

IDA: Inferred from Direct Assay from the Gene Ontology project [37]. 

 
Symbiotaxonomy 
Ensifer medicae strain WSM1115 forms nodules 
(Nod+) and fixes N2 (Fix+) with a range of annual 
and perennial Medicago species and Melilotus spe-
cies (Table 2). Levels of N2 fixation in combination 
with Medicago littoralis is suboptimal, that species 
generally forming more effective associations with 
strains of Ensifer meliloti including strain RRI128 
[38]. The level of N2 fixation with Melilotus albus is 
also noted as positive, but has been observed to 
vary markedly with different plant accessions. 

Genome sequencing and annotation 
information 
Genome project history 
This organism was selected for sequencing on the 
basis of its environmental and agricultural rele-
vance to issues in global carbon cycling, alterna-
tive energy production, and biogeochemical im-
portance, and is part of the Community Sequenc-
ing Program at the U.S. Department of Energy, 
Joint Genome Institute (JGI) for projects of rele-
vance to agency missions. The genome project is 
deposited in the Genomes OnLine Database [32] 
and a high-quality-draft genome sequence in 
IMG/GEBA. Sequencing, finishing and annotation 
were performed by the JGI. A summary of the pro-
ject information is shown in Table 3. 
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Table 3. Genome sequencing  project information for Ensifer medicae strain WSM1115 
MIGS ID  Property Term 

MIGS-31 Finishing  quality Permanent high quality draft 

MIGS-28 Libraries used 2× Illumina libraries; Std short PE & CLIP long PE 

MIGS-29 Sequencing platforms Illumina HiSeq 2000 

MIGS-31.2 Sequencing coverage 530× Illumina  

MIGS-30 Assemblers with Allpaths, version 38445, Velvet 1.1.05, phrap 4.24 

MIGS-32  Gene calling  methods Prodigal 1.4, GenePRIMP 

 Genbank ID AQZC01000000 

 Genbank Date of Release April 22, 2013 

 GOLD ID Gi08906 

 NCBI project ID 74391 

 Database: IMG-GEBA 2512875026 

 Project relevance Symbiotic N2 fixation, agriculture 

Growth conditions and DNA isolation 
Ensifer medicae strain WSM1115 was cultured to 
mid logarithmic phase in 60 ml of TY rich medium 
on a gyratory shaker at 28°C [39]. DNA was isolat-
ed from the cells using a CTAB (Cetyl trimethyl 
ammonium bromide) bacterial genomic DNA iso-
lation method [40]. 

Genome sequencing and assembly 
The genome of Ensifer medicae strain WSM1115 
was sequenced at the Joint Genome Institute (JGI) 
using Illumina [41] data. An Illumina standard 
paired-end library with a minimum insert size of  
270 bp was used to generate 23,080,558 reads 
totaling 3,462 Mbp and an Illumina CLIP paired-
end library with an average insert size of 9,584 + 
2,493 bp was used to generate 2,163,668 reads 
totaling 324 Mbp of Illumina data (unpublished, 
Feng Chen). 
All general aspects of library construction and 
sequencing performed at the JGI can be found at 
the JGI user home [40]. The initial draft assembly 
contained 57 contigs in 11 scaffolds. The initial 
draft data was assembled with Allpaths, version 
38445, and the consensus was computationally  
shredded into 10 Kbp overlapping fake reads 
(shreds). The Illumina draft data was also as-
sembled with Velvet, version 1.1.05 [42], and the 
consensus sequences were computationally  
shredded into 1.5 Kbp overlapping fake reads 

(shreds). The Illumina draft data was assembled 
again with Velvet using the shreds from the first 
Velvet assembly to guide the next assembly. The 
consensus from the second VELVET assembly 
was shredded into 1.5 Kbp overlapping fake 
reads. The fake reads from the Allpaths assembly 
and both Velvet assemblies and a subset of the 
Illumina CLIP paired-end reads were assembled 
using parallel phrap, version 4.24 (High Perfor-
mance Software, LLC). Possible mis-assemblies 
were corrected with manual editing in Consed 
[43-45]. Gap closure was accomplished using re-
peat resolution software (Wei Gu, unpublished), 
and sequencing of bridging PCR fragments. The 
estimated total size of the genome is 6.9 Mbp and 
the final assembly is based on 3,654 Mbp of  
Illumina draft data, which provides an average 
530× coverage of the genome. 

Genome annotation 
Genes were identified using Prodigal [46] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [47]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, 
UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and 
InterPro databases. These data sources were 
combined to assert a product description for each 
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predicted protein. Non-coding genes and miscel-
laneous features were predicted using tRNAscan-
SE [48], RNAMMer [49], Rfam [50], TMHMM [51], 
and SignalP [52]. Additional gene prediction anal-
yses and functional annotation were performed 
within the Integrated Microbial Genomes (IMG-
ER) platform [53]. 

Genome properties 
The genome is 6,861,065 nucleotides with 61.16% 
GC content (Table 4) and comprised of 7 scaffolds 
(Figures 3a,3b,3c,3d,3e,3f and Figure 3g) From a 
total of 6,872 genes, 6,789 were protein encoding 
and 83 RNA only encoding genes. The majority of 
genes (76.25%) were assigned a putative function 
whilst the remaining genes were annotated as hy-
pothetical. The distribution of genes into COGs 
functional categories is presented in Table 5. 

 

Table 4. Genome Statistics for Ensifer medicae strain WSM1115 
Attribute Value % of Total 

Genome size (bp) 6,861,065 100.00 

DNA coding reg ion (bp) 5,918,651 86.26 

DNA G+C content (bp) 4,196,062 61.16 

Number of scaffolds 7  

Number of contigs 28  

Total gene 6,872 100.00 

RNA genes 83 1.21 

rRNA operons  3 0.04 

Protein-coding genes 6,789 98.79 

Genes with function prediction 5,240 76.25 

Genes assigned to COGs 5,168 75.20 

Genes assigned Pfam domains 5,424 78.93 

Genes with signal peptides 571 8.31 

Genes coding  membrane proteins 1,483 21.58 

CRISPR repeats 0  
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Figure 3a. Graphical maps of SinmedDRAFT_Scaffold1.2 of the Ensifer 
medicae strain WSM1115 genome sequence. From bottom to the top of 
each scaffold: Genes on forward strand (color by COG categories as de-
noted by the IMG platform), Genes on reverse strand (color by COG cat-
egories), RNA genes (tRNAs green, sRNAs red, other RNAs black), GC 
content, GC skew. 

 
Figure 3b. Graphical maps of SinmedDRAFT_Scaffold2.1 of the Ensifer 
medicae strain WSM1115 genome sequence. From bottom to the top of 
each scaffold: Genes on forward strand (color by COG categories as 
denoted by the IMG platform), Genes on reverse strand (color by COG 
categories), RNA genes (tRNAs green, sRNAs red, other RNAs black), 
GC content, GC skew. 

 
Figure 3c. Graphical maps of SinmedDRAFT_Scaffold5.3 of the Ensifer 
medicae strain WSM1115 genome sequence. From bottom to the top 
of each scaffold: Genes on forward strand (color by COG categories as 
denoted by the IMG platform), Genes on reverse strand (color by COG 
categories), RNA genes (tRNAs green, sRNAs red, other RNAs black), 
GC content, GC skew. 
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Figure 3d. Graphical maps of SinmedDRAFT_Scaffold3.7 of the 
Ensifer medicae strain WSM1115 genome sequence. From bottom 
to the top of each scaffold: Genes on forward strand (color by COG 
categories as denoted by the IMG platform), Genes on reverse 
strand (color by COG categories), RNA genes (tRNAs green, sRNAs 
red, other RNAs black), GC content, GC skew. 

 
Figure 3e. Graphical maps of SinmedDRAFT_Scaffold6.5 of the 
Ensifer medicae strain WSM1115 genome sequence. From bottom 
to the top of each scaffold: Genes on forward strand (color by COG 
categories as denoted by the IMG platform), Genes on reverse 
strand (color by COG categories), RNA genes (tRNAs green, sRNAs 
red, other RNAs black), GC content, GC skew. 

 
Figure 3f. Graphical maps of SinmedDRAFT_Scaffold4.6 of the 
Ensifer medicae strain WSM1115 genome sequence. From bottom 
to the top of each scaffold: Genes on forward strand (color by COG 
categories as denoted by the IMG platform), Genes on reverse 
strand (color by COG categories), RNA genes (tRNAs green, sRNAs 
red, other RNAs black), GC content, GC skew. 
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Figure 3g. Graphical maps of SinmedDRAFT_Scaffold7.4 of the Ensifer 
medicae strain WSM1115 genome sequence. From bottom to the top 
of each scaffold: Genes on forward strand (color by COG categories 
as denoted by the IMG platform), Genes on reverse strand (color by 
COG categories), RNA genes (tRNAs green, sRNAs red, other RNAs 
black), GC content, GC skew. 

Table 5. Number of protein coding genes of Ensifer medicae strain WSM1115 associated 
with the general COG functional categories. 

Code Value %age COG Category 
J 186 3.23 Translation, ribosomal structure and biogenesis 

A 0 0.00 RNA processing  and modification 

K 527 9.16 Transcription 

L 269 4.68 Replication, recombination and repair 

B 3 0.05 Chromatin structure and dynamics 

D 43 0.75 Cell cycle control, mitosis and meiosis 

Y 0 0.00 Nuclear structure 

V 55 0.96 Defense mechanisms 

T 244 4.24 Signal transduction mechanisms 

M 272 4.73 Cell wall/membrane biogenesis 

N 68 1.18 Cell motility 

Z 0 0.00 Cytoskeleton 

W 1 0.02 Extracellular structures 

U 112 1.95 Intracellular trafficking and secretion 

O 195 3.39 Posttranslational modification, protein turnover, chaperones 

C 335 5.82 Energy production conversion 

G 575 10.00 Carbohydrate transport and metabolism 

E 609 10.59 Amino acid transport metabolism 

F 106 1.84 Nucleotide transport and metabolism 

H 194 3.37 Coenzyme transport and metabolism 

I 205 3.56 Lipid transport and metabolism 

P 286 4.97 Inorganic ion transport and metabolism 

Q 164 2.85 Secondary metabolite biosynthesis, transport and catabolism 

R 726 12.62 General function prediction only 

S 577 10.03 Function unknown 

- 1,704 24.80 Not in COGS 

- 5,752  Total 
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