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Abstract A measurement of the jet activity in t t̄ events pro-
duced in proton–proton collisions at a centre-of-mass energy
of 7 TeV is presented, using 2.05 fb−1 of integrated lumi-
nosity collected by the ATLAS detector at the Large Hadron
Collider. The t t̄ events are selected in the dilepton decay
channel with two identified b-jets from the top quark de-
cays. Events are vetoed if they contain an additional jet with
transverse momentum above a threshold in a central rapid-
ity interval. The fraction of events surviving the jet veto is
presented as a function of this threshold for four different
central rapidity interval definitions. An alternate measure-
ment is also performed, in which events are vetoed if the
scalar transverse momentum sum of the additional jets in
each rapidity interval is above a threshold. In both measure-
ments, the data are corrected for detector effects and com-
pared to the theoretical models implemented in MC@NLO,
POWHEG, ALPGEN and SHERPA. The experimental uncer-
tainties are often smaller than the spread of theoretical pre-
dictions, allowing deviations between data and theory to be
observed in some regions of phase space.

1 Introduction

Measurements of the top quark provide an important test
of the Standard Model (SM) and any observed deviation
from the SM predictions could indicate the presence of new
physics. However, many top quark measurements have large
uncertainties that arise from the theoretical description of
quark and gluon radiation in the standard Monte Carlo (MC)
event generators. Recent measurements that are affected
by such modelling uncertainties include the t t̄ production
cross-section [1–4], the spin correlations in t t̄ events [5], the
charge asymmetry [6, 7] and the top quark mass [4]. In ad-
dition, a significant disagreement between data and the pre-
diction from MC@NLO [8, 9] was observed by the D0 Col-
laboration in the transverse momentum distribution of the
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t t̄ system [10]. This disagreement obscures the interpreta-
tion of the observed forward-backward asymmetry in terms
of a deviation from SM predictions. Measurements sensitive
to the theoretical description of quark and gluon radiation
in events containing a t t̄ final state are therefore needed in
order to constrain the modelling and reduce the impact on
future experimental measurements.

In this article, a jet veto is used to quantify the jet activ-
ity that arises from quark and gluon radiation produced in
association with the t t̄ system. The events are selected in
the dilepton decay channel so that the additional jets can be
easily distinguished from the t t̄ decay products (two leptons
and two jets originating from b-quarks). The variable of in-
terest is the ‘gap fraction’, defined as

f (Q0) = n(Q0)

N
, (1)

where N is the number of selected t t̄ events and n(Q0) is
the subset of these events that do not contain an additional
jet with transverse momentum, pT, above a threshold, Q0,
in a central rapidity1 interval. The minimum jet pT used in
the measurement is 25 GeV. The measurement is corrected
for detector effects and presented in a fiducial region. The
gap fraction can then be written as

f (Q0) = σ(Q0)

σ
, (2)

where σ is the fiducial cross section for inclusive t t̄ pro-
duction and σ(Q0) is the fiducial cross section for t t̄ events
produced in the absence of an additional jet with pT > Q0 in

1ATLAS uses a right-handed coordinate system with the z-axis along
the beam line. Cylindrical coordinates (r , φ) are used in the trans-
verse plane, φ being the azimuthal angle. Pseudorapidity is defined in
terms of the polar angle θ as η = − ln[tan(θ/2)]. Rapidity is defined as
y = 0.5 ln[(E + pz)/(E − pz)] where E denotes the energy and pz is
the component of the momentum along the beam direction. Transverse
momentum and energy are defined as pT = p sin θ and ET = E sin θ ,
respectively.

mailto:atlas.publications@cern.ch
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the rapidity interval. The gap fraction is measured for multi-
ple values of Q0 and for four jet rapidity intervals: |y| < 0.8,
0.8 ≤ |y| < 1.5, 1.5 ≤ |y| < 2.1 and |y| < 2.1.

The veto criterion can be extended to probe jet activity
beyond the leading additional jet. An alternate definition of
the gap fraction is used in this case,

f (Qsum) = n(Qsum)

N
≡ σ(Qsum)

σ
, (3)

where n(Qsum) is the number of t t̄ events, and σ(Qsum) is
the cross section, in which the scalar transverse momentum
sum of the additional jets in the rapidity interval is less than
Qsum. The gap fraction defined using Q0 is mainly sensi-
tive to the leading-pT emission accompanying the t t̄ system,
whereas the gap fraction defined using Qsum is sensitive to
all hard emissions accompanying the t t̄ system.

Many of the experimental systematic uncertainties can-
cel in the ratio, as observed in the ATLAS measurement of
the gap fraction in dijet events [11]. The data are therefore
expected to constrain the modelling of quark and gluon ra-
diation in t t̄ events and provide useful information about
the general theoretical description of jet vetoes, which have
been proposed as a tool to enhance new physics signals [12–
14], and to study the properties of new fundamental parti-
cles [15–17].

2 ATLAS detector

The ATLAS detector [18] surrounds one of the proton–
proton interaction points at the Large Hadron Collider. The
inner tracking detector is composed of silicon pixel detec-
tors, silicon microstrip detectors and a transition radiation
tracking detector. The inner detector is surrounded by a su-
perconducting solenoid that provides a 2 T magnetic field.
This allows the momentum of charged particles that pass
through the inner detector to be determined for |η| < 2.5.
Outside the solenoid are liquid-argon electromagnetic sam-
pling calorimeters (|η| < 3.2). Hadronic energy measure-
ments are provided by a scintillator tile calorimeter in the
central region (|η| < 1.7) and by liquid-argon calorimetry
up to |η| < 4.9. The muon spectrometer system surrounds
the calorimeter system and incorporates a toroidal mag-
net system, with a field of approximately 0.5 and 1 T in
the barrel and endcap regions respectively. The muon spec-
trometer provides precision measurements of the momen-
tum of muons up to |η| < 2.7, while the corresponding trig-
ger chambers are limited to |η| < 2.4.

The data are collected using a three-level trigger system.
The first level is implemented in hardware and reduces the
data rate to less than 75 kHz. The following two software
trigger levels reduce the rate to several hundred Hz. The data

passing the trigger selections are recorded for use in subse-
quent analyses.

The measurements presented in this paper use data from
proton–proton collisions at a centre-of-mass energy

√
s =

7 TeV, and rely on triggers designed to select events that
contain high transverse momentum electrons or muons. The
integrated luminosity of the data sample is 2.05 ± 0.08 fb−1

[19, 20].

3 Theoretical predictions

The theoretical predictions for t t̄ production are produced
using the MC@NLO [8, 9], POWHEG [21, 22], ALPGEN

[23], SHERPA [24] and ACERMC [25, 26] event generators.
MC@NLO provides a calculation of t t̄ production at

next-to-leading order (NLO) accuracy and is interfaced to
HERWIG [27] and JIMMY [28] for parton showering, hadro-
nisation and underlying event from multiple partonic inter-
actions. The parton distribution functions (PDF) chosen to
generate the MC@NLO events are CTEQ6.6 [29] and the
underlying event tune for HERWIG/JIMMY is chosen to be
AUET1 [30]. POWHEG also produces the t t̄ final state to
NLO accuracy using the CTEQ6.6 PDF. The parton show-
ering, hadronisation and underlying event are added by in-
terfacing to either PYTHIA [31], with underlying event tune
AMBT1 [32], or to HERWIG/JIMMY, with underlying event
tune AUET1.

ALPGEN provides leading order (LO) matrix elements
for t t̄ production with up to three additional partons in
the final state. The ALPGEN events are generated using the
CTEQ6L1 PDF [29] and interfaced to HERWIG/JIMMY for
parton showering, hadronisation and underlying event (tune
AUET1). The MLM matching procedure [33] is used to re-
move double counting between partons produced by the ma-
trix element and parton shower. SHERPA is also used to gen-
erate t t̄ events with up to three additional partons in the final
state. This provides an independent LO matrix-element cal-
culation with a different matching scheme (CKKW [34]) be-
tween the matrix element and the parton shower. The events
are generated with the default underlying event tune and the
CTEQ6L1 PDF.

ACERMC consists of a LO matrix element for t t̄ produc-
tion and is interfaced to PYTHIA to provide the hadronic
final state, using the MRST2007LO∗ PDF [35] and un-
derlying event tune AMBT1. Three samples are produced
with nominal, increased and decreased initial state radia-
tion (ISR).2 These samples have been previously used to as-
sess ISR-based modelling uncertainties in ATLAS top quark
measurements [1–3, 5, 6].

2The default ISR parameters in AMBT1 are PARP(67) = 4.0 and
PARP(64) = 1.0. To decrease ISR, the parameters are set to 0.5 and
4.0, respectively. To increase ISR, they are set to 6.0 and 0.25, respec-
tively.
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4 Simulation samples

In order to simulate the events observed in the detector,
several MC samples are passed through the GEANT4 [36]
simulation of the ATLAS detector [37] and are processed
with the same reconstruction chain as used for the data. The
MC@NLO and POWHEG samples described in Sect. 3 are
used to simulate the t t̄ events. The background contribu-
tion from single top, Z+jets and diboson production is es-
timated using MC@NLO [38], ALPGEN and HERWIG, re-
spectively. The hadronic final state for each of these back-
grounds is generated using HERWIG/JIMMY with underly-
ing event tune AUET1. The MC samples are overlaid with
additional minimum bias events generated with PYTHIA to
simulate the effect of additional proton–proton interactions.
The simulated events are re-weighted such that the average
number of interactions per proton–proton bunch crossing,
〈μ〉, is the same in data and MC simulation. This average
varies between data-taking periods and is typically in the
range 4 < 〈μ〉 < 8.

Corrections are applied to the simulation to reflect the ob-
served performance in the data. The electron reconstruction
efficiency, energy scale and energy resolution are corrected
to match the observed distributions in W → eν and Z → ee

events [39]. The muon reconstruction efficiency, momentum
scale and momentum resolution are corrected to match the
observation in Z → μμ events. The jet energy resolution
is found to be larger in the data than predicted by the sim-
ulation and additional smearing is applied to the simulated
jets to ensure the resolution matches that in the data. The
efficiency and rejection rate of the algorithm used to iden-
tify jets that have originated from b-quarks is measured in
the data and the simulation is corrected on a per-jet basis to
match the observed performance. All these corrections have
associated systematic uncertainties and the effect of these on
the measurement of the gap fraction is discussed in Sect. 7.

5 Event selection

The selection of t t̄ events closely follows the selection used
in the recent measurement of the t t̄ production cross sec-
tion [3]. Electrons are required to have transverse energy
ET > 25 GeV and |η| < 2.47, whereas muons are required
to have pT > 20 GeV and |η| < 2.5. Electrons in the tran-
sition region between the barrel and endcap calorimeters
(1.37 < |η| < 1.52) are excluded.

Jets are reconstructed using the anti-kt algorithm [40,
41], with a radius parameter R = 0.4, using clusters of adja-
cent calorimeter cells calibrated at the electromagnetic (EM)
energy scale. These jets are corrected for the calorimeter re-
sponse and other detector effects using energy and pseudora-
pidity dependent calibration factors derived from simulation

and validated using data [42]. The calibrated jets, j , used
in the analysis are required to have pT > 25 GeV, |y| < 2.4
and are required to be well separated from the selected lep-
tons � (electrons or muons) by

ΔR(j, �) =
√(

Δφ(j, �)
)2 + (

Δη(j, �)
)2

> 0.4. (4)

Jets originating from b-quarks (b-jets) are identified using
the IP3D+SV1 algorithm [43] and are referred to as b-
tagged jets. This algorithm, based on impact parameter and
secondary vertex information, has an average per-jet effi-
ciency of 70 % for jets originating from b-quarks in sim-
ulated t t̄ events and rejects approximately 99 % of jets orig-
inating from light quarks and gluons.

The scalar sum of visible transverse momentum, HT, is
calculated using the transverse momenta of all the recon-
structed jets and leptons that satisfy the selection criteria
defined above. The missing transverse momentum, Emiss

T ,
is reconstructed from EM-scale clusters corrected according
to the energy scale of associated jets/electrons and the mea-
sured muon momenta.

To create a highly enriched t t̄ sample, events are required
to have two opposite sign high-pT leptons and at least two b-
tagged jets. The analysis is then divided into the three dilep-
ton decay channels, ee, eμ and μμ, and additional channel-
dependent selection criteria are applied to reduce back-
grounds further. The background in the ee and μμ channels
arising from Z → ee/μμ events is suppressed by requiring
Emiss

T > 40 GeV and that the dilepton mass, m��, is not in the
range of the Z-boson mass, i.e. |m�� − 91 GeV| > 10 GeV.
In addition, events are required to have m�� > 15 GeV in
order to reject backgrounds from vector-meson decays. The
backgrounds in the eμ channel from Z → ττ and diboson
events are suppressed by requiring HT to be greater than
130 GeV. A summary of the event selection criteria is pre-
sented in Table 1.

The number of selected events in the three channels is
242 (ee), 436 (μμ) and 1095 (eμ). The dominant back-
ground contributions after the selection requirements are
single top (Wt) production and events in which at least one
lepton originates from heavy flavour decay or jet misidenti-
fication. The latter contribution consists of mainly W+jets
and multijet events and is estimated from the data using
a method described in reference [3]. The Wt background
is estimated using the MC sample discussed in Sect. 4.
The total background contamination is estimated to be less
than 6 %, which is smaller than the uncertainty on the the-
oretical calculation of the t t̄ cross section [44–46]. The ex-
pected background contributions are not subtracted from the
data, but are considered as a source of systematic uncertainty
on the measurement. Figure 1 shows the distribution of the
lepton and b-tagged jet pT for the selected data events com-
pared with the prediction from the MC@NLO t t̄ simula-
tion. Good agreement is seen in all such distributions.
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Table 1 Selection requirements applied to the three analysis channels

Selection Channel

ee μμ eμ

Electrons 2 with ET > 25 GeV,
|η| < 2.47

– 1 with ET > 25 GeV,
|η| < 2.47

Muons – 2 with pT > 20 GeV,
|η| < 2.5

1 with pT > 20 GeV,
|η| < 2.5

Emiss
T >40 GeV >40 GeV –

HT – – >130 GeV

m�� >15 GeV,
|m�� − 91 GeV| > 10 GeV

>15 GeV,
|m�� − 91 GeV| > 10 GeV

–

b-tagged jets At least 2 with pT > 25 GeV, |y| < 2.4, ΔR(j, �) > 0.4

Fig. 1 The distribution of (a) lepton pT and (b) b-tagged jet pT for the
selected events compared to the MC@NLO simulation of t t̄ events.
The data is shown as closed (black) circles with the statistical un-

certainty. The MC@NLO prediction is normalised to the data and is
shown as a solid (red) line. The overflow events at high pT are added
into the final bin of each histogram (Color figure online)

The gap fraction in each rapidity interval is computed us-

ing the additional jets in the event. To suppress jets from

overlapping proton–proton collisions, the additional jets are

required to be fully contained within the inner detector ac-

ceptance (|y| < 2.1) and the jet vertex fraction (JVF) al-

gorithm is used to identify jets from the primary interac-

tion. After associating tracks to jets (ΔR(jet, track) < 0.4),

the JVF is defined as the scalar summed transverse mo-

mentum of associated tracks from the primary vertex di-

vided by the summed transverse momentum of associated

tracks from all vertices. Each additional jet is required to

satisfy JVF > 0.75. The transverse momentum and rapidity

distributions for the highest-pT additional jet in the region

|y| < 2.1 is shown in Fig. 2. Reasonable agreement is seen

between the data and the MC@NLO t t̄ simulation.

6 Correction for detector effects

The data are corrected for detector effects to produce results
at the particle level. The particle level t t̄ events are defined in
each channel using the same event selection criteria applied
to the reconstructed data, as presented in Table 1. Final state
stable particles are defined as those that have a mean lifetime
cτ > 10 mm. Electrons are required to have ET > 25 GeV
and |η| < 2.47, whereas muons are required to have pT >

20 GeV and |η| < 2.5.3 Jets are reconstructed using the anti-
kt algorithm with R = 0.4, using all stable particles except
muons and neutrinos, and are required to have pT > 25 GeV
and |y| < 2.4. Jets originating from b-quarks are defined as

3Changing the muon selection criteria to match the electron fiducial
region (pT > 25 GeV and |η| < 2.47) was observed to have a negligible
impact on the gap fraction.



Eur. Phys. J. C (2012) 72:2043 Page 5 of 24

Fig. 2 Distribution of (a) leading additional jet pT and (b) leading ad-
ditional jet rapidity in the selected events compared to the MC@NLO
simulation of t t̄ events. The data is shown as closed (black) circles with
the statistical uncertainty. The MC@NLO prediction is normalised to
the data and is shown as a solid (red) line. In the pT distribution, the

overflow events at high pT are added into the final bin of the histogram.
In the rapidity distribution, variable bin sizes are used such that the bin
edges match the rapidity intervals used to construct the gap fractions
(Color figure online)

any jet that is within ΔR < 0.3 of a B-hadron, where the
B-hadrons are required to have pT > 5 GeV. HT is defined
as the scalar sum of jet and lepton transverse momenta and
Emiss

T is defined using all final state neutrinos.
The correction factor, C, for the gap fraction at a specific

value of x = Q0 or Qsum, is defined as

C(x) = f truth(x)

f reco(x)
, (5)

where f reco(x) is the reconstructed gap fraction and f truth(x)

is the particle level gap fraction. The use of simple correc-
tion factors is justified because the purity of the selected
events is greater than 70 % for each value of Q0 or Qsum.
The purity of the selected events is defined as the number
of events that pass the event selection at both the recon-
structed and particle level, divided by the number of events
that pass the event selection at reconstructed level, using the
MC@NLO simulation of t t̄ events.

The MC@NLO simulation is also used to derive the
baseline correction factors used in this measurement. These
correction factors depend on the rapidity interval used to
veto jet activity, with corrections of 2 %–5 % for Q0 =
25 GeV that decrease with increasing Q0. The systematic
uncertainties on these correction factors due to physics and
detector modelling are discussed in Sect. 7.

7 Systematic uncertainties

Uncertainties related to the inclusive t t̄ event selection were
found to cancel in the gap fraction and are neglected in the

final systematic uncertainty. These include the uncertainties
on the lepton momentum scale, momentum resolution and
reconstruction efficiency, the b-jet energy scale, the trigger
efficiency for each analysis channel and the integrated lu-
minosity. The dominant sources of systematic uncertainty
are those that directly affect the additional jets. These non-
negligible sources of uncertainty are discussed in this sec-
tion and a summary is presented in Fig. 3.

The experimental aspects that affect the additional jets
are the jet energy scale (JES), the jet energy resolution
(JER), the jet reconstruction efficiency and the JVF selec-
tion requirement. The uncertainty on the gap fraction due to
the JES is estimated by rescaling the jet energies in the simu-
lation by the known uncertainty [42]. The uncertainty on the
JES includes the impact of soft energy added to jets from
multiple proton–proton interactions. The uncertainty on the
gap fraction due to jet reconstruction efficiency [42] and the
jet energy resolution is estimated by varying each of these in
the simulation within the allowed uncertainties determined
from data. The relative uncertainty on the gap fraction due
to the JES and JER uncertainties is 3.5 % or less if jets are
vetoed in the full rapidity interval (|y| < 2.1), and 1.5 %
or less if jets are vetoed in the smaller sub-intervals (e.g.
|y| < 0.8). The uncertainty from the jet reconstruction ef-
ficiency is found to be negligible compared to the JES and
JER uncertainties for all four rapidity intervals.

The bias due to the JVF selection efficiency is estimated
by performing the full analysis (selection plus correction for
detector effects) with a relaxed requirement of JVF > 0.1.
The relative difference between the results obtained with the
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Fig. 3 Breakdown of the systematic uncertainties on the gap fraction
as a function of Q0 for (a) |y| < 0.8 and (b) |y| < 2.1. The step size
in Q0 was chosen to be commensurate with the jet energy resolution.
The individual systematic uncertainties are shown as labelled lines
of different styles and the total systematic uncertainty is shown as
the outer solid line. The statistical uncertainty on the data is shown

as the shaded area. The breakdown of the systematic uncertainties
above Q0 = 200 GeV is consistent with the results at Q0 = 200 GeV.
‘Pileup’ refers to the effect of jets produced in a different proton–
proton interaction. ‘Unfolding’ refers to the procedure used to correct
the measured gap fraction to particle level

standard and relaxed requirement is found to be up to 2 % at
Q0 = 25 GeV and is negligible above Q0 of approximately
100 GeV. This difference is taken as the systematic uncer-
tainty due to the JVF selection efficiency.

Jets produced by additional proton–proton interactions
are suppressed by the JVF requirement. However, those jets
that pass this requirement represent a potential bias in the
measurement. The size of this bias is evaluated by removing
those jets in the MC@NLO sample that are not matched to
a particle level jet from the pp interaction that produces the
t t̄ event. The matching criterion is ΔR < 0.3 and the particle
jet transverse momentum is allowed to be as low as 7 GeV,
to avoid resolution effects in the matching procedure. The
gap fraction is recalculated using this truth-matched sample
and the difference to the nominal gap fraction is taken as the
systematic uncertainty due to jets from additional proton–
proton interactions. The relative uncertainty on the gap frac-
tion is less than 1 % in each of the rapidity regions.

Background contamination is treated as a systematic un-
certainty. For each background source, the expected events
are subtracted from the data and the gap fraction is re-
calculated. The relative difference with respect to the nomi-
nal result is taken as the systematic uncertainty due to back-
ground contamination; the largest effect is observed to be
0.5 % for Q0 = 25 GeV.

The uncertainty on the efficiency and rejection capability
of the b-tagging algorithm impacts upon the measurement if
the additional jet is identified as a b-tagged jet instead of one
of the b-jets originating from the top-quark decay. The sys-
tematic uncertainty due to this effect is estimated by chang-
ing the baseline efficiency and rejection corrections, which

are applied to the simulation, according to the b-tagging un-
certainty (derived in calibration studies using inclusive lep-
ton and multijet final states). The relative uncertainty on the
gap fraction is less than 0.8 %.

The uncertainty on the procedure used to correct the data
to particle level due to physics modelling is estimated by
deriving alternative correction factors using the POWHEG

samples. The systematic uncertainty in the correction pro-
cedure is taken to be the largest difference between the cor-
rection factor obtained using the MC@NLO sample and
the correction factor obtained using the two POWHEG sam-
ples. In the case where this difference is smaller than the
statistical uncertainty in the MC samples, the statistical un-
certainty is taken as the estimate of the systematic uncer-
tainty. The relative uncertainty on the correction factors is
less than 2 % at Q0 = 25 GeV for the region |y| < 2.1, de-
creasing to approximately 0.3 % at Q0 = 150 GeV. The sen-
sitivity of the corrections to the physics modelling is further
assessed by reweighting the additional jet pT spectrum in
the MC@NLO sample such that the pT distribution has the
maximal change in shape that is consistent with the JES un-
certainty bands. The difference in the correction factors was
observed to be much smaller than the differences obtained
by using different MC generators and is neglected in the fi-
nal results.

Figure 3 shows the breakdown of the systematic uncer-
tainties on the gap fraction as a function of Q0, for the veto
regions |y| < 0.8 and |y| < 2.1. This figure also shows the
total systematic uncertainty, which is calculated by adding
in quadrature all the individual systematic uncertainties. The
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Fig. 4 The measured gap fraction as a function of Q0 is compared
with the prediction from the NLO and multi-leg LO MC generators
in the three rapidity regions, (a) |y| < 0.8, (b) 0.8 ≤ |y| < 1.5 and
(c) 1.5 ≤ |y| < 2.1. Also shown, (d), is the gap fraction for the full ra-
pidity range |y| < 2.1. The data is represented as closed (black) circles

with statistical uncertainties. The yellow band is the total experimental
uncertainty on the data (statistical and systematic). The theoretical pre-
dictions are shown as solid and dashed coloured lines. The gap fraction
is shown until Q0 = 300 GeV or until the gap fraction reaches one if
that occurs before Q0 = 300 GeV (Color figure online)

total systematic uncertainty is largest at low Q0 and is domi-
nated by the jet related uncertainties (JES, JER and JVF) and
the uncertainty on the correction factors. The measurement
is most precise in the central region, where the jet energy
scale uncertainty is smallest. The breakdown of uncertain-
ties for the gap fraction as a function of Qsum is similar, but
the uncertainties are slightly larger and fall more slowly as
a function of Qsum. This is due to low transverse momen-

tum jets, which have the largest systematic uncertainties and
therefore affect all values of Qsum.

8 Results and discussion

The gap fraction is measured for multiple values of Q0 and
Qsum in the four rapidity intervals defined in Sect. 1. The
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step size in Q0 and Qsum was chosen to be commensurate
with the jet energy resolution. The results are corrected to
the particle level as described in Sect. 6.

The measured gap fraction as a function of Q0 is com-
pared with the predictions from the multi-leg LO and NLO
generators in Fig. 4. In general, all these generators are
found to give a reasonable description of the data if the
veto is applied to jets in the full rapidity interval, |y| < 2.1
(Fig. 4(d)). The difference between the MC@NLO and
POWHEG predictions is similar to the precision achieved in
the measurement and as such the measurement is probing
the different approaches to NLO plus parton-shower event
generation.

In the most central rapidity interval, |y| < 0.8, the gap
fraction predicted by MC@NLO is too large (Fig. 4(a)).
The tendency of MC@NLO to produce fewer jets than
ALPGEN at central rapidity has been discussed in the lit-
erature [33] and the measurement presented here is sensitive
to this difference. In the most forward rapidity interval, none
of the predictions agrees with the data for all values of Q0

(Fig. 4(c)). In particular, although MC@NLO, POWHEG,
ALPGEN and SHERPA produce similar predictions, the gap
fraction is too small, implying that too much jet activity is
produced by these event generators in the forward rapidity
region.

The predictions from the ACERMC generator with the
variations of the PYTHIA parton shower parameters are
compared to the data in Fig. 5 and are found to be in poor
agreement with the data. The spread of the predicted gap

fraction due to the parameter variations is found to be much
larger than the experimental uncertainty, indicating that the
variations can be significantly reduced in light of the mea-
surement presented in this article.

The measured gap fraction as a function of Qsum is com-
pared with the multi-leg LO and NLO generators in Fig. 6.
The gap fraction is lower than for the case of the Q0 vari-
able, demonstrating that the measurement is probing quark
and gluon radiation beyond the first emission. As expected,
the largest change in the gap fraction occurs when jets are
vetoed in the full rapidity interval, |y| < 2.1. However, the
difference between the data and each theoretical prediction
is found to be similar to the Q0 case. This implies that, for
this variable, the parton shower approximations used for the
subsequent emissions in MC@NLO and POWHEG are per-
forming as well as the LO approximations used in ALPGEN

and SHERPA.
The gap fraction is a ratio of cross sections and all the

events are used to evaluate this ratio at each value of Q0 or
Qsum. This means that there is a statistical correlation be-
tween the measured gap fraction values in each rapidity in-
terval. The correlation matrix is shown in Fig. 7 for the gap
fraction at different values of Q0 for the |y| < 2.1 rapidity
region. Neighbouring Q0 points have a significant correla-
tion, whereas well separated Q0 points are less correlated.

The measured values of the gap fraction at Q0 = 25,
75 and 150 GeV are presented in Table 2 for the differ-
ent rapidity intervals used to veto jet activity. The statisti-
cal correlations between these measurements and the pre-

Fig. 5 The measured gap fraction as a function of Q0 for (a) |y| < 0.8
and (b) |y| < 2.1 is compared with the prediction from the ACERMC
generator, where different settings of the PYTHIA parton shower pa-

rameters are used to produce samples with nominal, increased and de-
creased initial state radiation (ISR). The data and theory predictions
are represented in the same way as in Fig. 4
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Fig. 6 The measured gap fraction as a function of Qsum is compared
with the prediction from the NLO and multi-leg LO MC generators
in the three rapidity regions, (a) |y| < 0.8, (b) 0.8 ≤ |y| < 1.5 and
(c) 1.5 ≤ |y| < 2.1. Also shown, (d), is the gap fraction for the full

rapidity range |y| < 2.1. The data and theory predictions are repre-
sented in the same way as in Fig. 4. The gap fraction is shown until
Qsum = 420 GeV or until the gap fraction reaches one if that occurs
before Qsum = 420 GeV

dictions from the multi-leg LO and NLO generators are also
given. The measured values of the gap fraction at Qsum =
55,150 and 300 GeV are presented in Table 3 for the differ-
ent rapidity intervals used to veto jet activity. The complete
set of measurements presented in Figs. 4–7 have been com-
piled in tables that can be obtained from HEPDATA.

The precision of the data, coupled with the large spread
of theory predictions, implies that higher-order theory pre-
dictions may be needed to describe the data in all regions

of phase space. For example, the NLO plus parton shower

predictions provided by MC@NLO and POWHEG have LO

accuracy in the first parton emission and leading logarith-

mic (LL) accuracy for subsequent emissions. Similarly, the

ME plus parton shower predictions provided by SHERPA

and ALPGEN are accurate to LO for the first three emissions

and LL thereafter. Possible improvements on this accuracy

include NLO calculations that account for the decay prod-
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ucts of the top quarks [47, 48] and calculations of t t̄ + j (j)

at NLO [49–54].

Fig. 7 The correlation matrix (statistical) for the gap fraction mea-
surement at different values of Q0 for |y| < 2.1

9 Conclusions

Precision measurements of the jet activity in t t̄ events were
performed using proton–proton collisions recorded by the
ATLAS detector at the LHC. The t t̄ events were selected in
the dilepton decay channel with two identified b-jets. Events
were subsequently vetoed if they contained an additional jet
with transverse momentum above a threshold, Q0, in a cen-
tral rapidity interval. The fraction of t t̄ events that survive
the jet veto was presented as a function of Q0 for four dif-
ferent central rapidity interval definitions. An alternate mea-
surement was also performed, in which the t t̄ events were
vetoed if the scalar transverse momentum sum of the ad-
ditional jets in each rapidity interval was above a defined
threshold, Qsum.

The data were fully corrected for detector effects and
compared to the predictions from state-of-the-art MC event
generators. MC@NLO, POWHEG, ALPGEN and SHERPA

are observed to give a reasonable description of the data,
when the additional jets are vetoed in the rapidity inter-
val |y| < 2.1. However, all four generators predict too
much jet activity in the most forward rapidity interval,

Table 2 The measured values of f (Q0) for Q0 = 25, 75 and 150 GeV
for the different rapidity intervals used to veto jet activity are presented.
The predictions from the NLO and multi-leg LO generators are also
presented; the statistical uncertainty due to limited sample size is

shown if this uncertainty is larger than 0.1 %. In each rapidity interval,
the statistical correlations (ρi

j ) between measurements at Q0 = i and
Q0 = j are given

Q0 [GeV] f (Q0) (%) ρi
j

Data ± (stat.) ± (syst.) MC@NLO POWHEG

+ PYTHIA

POWHEG

+ HERWIG

SHERPA ALPGEN

+ HERWIG

veto region: |y| < 0.8

25 76.9 ± 1.1+2.0
−2.1 79.5 ± 0.1 75.0 ± 0.3 74.3 ± 0.3 74.9 ± 0.3 76.7 ± 0.3 ρ25

75 = 0.52

75 92.3 ± 0.7 ± 0.5 94.3 91.8 ± 0.2 92.2 ± 0.2 93.4 ± 0.2 93.4 ± 0.2 ρ75
150 = 0.51

150 97.8+0.3
−0.4 ± 0.4 98.4 97.2 ± 0.1 97.6 ± 0.1 97.8 ± 0.1 98.0 ± 0.1 ρ150

25 = 0.27

veto region: 0.8 ≤ |y| < 1.5

25 80.4 ± 1.0 ± 1.7 82.0 ± 0.1 79.5 ± 0.2 79.5 ± 0.3 79.8 ± 0.3 81.3 ± 0.3 ρ25
75 = 0.49

75 93.9 ± 0.6+0.5
−0.4 94.7 93.5 ± 0.2 93.8 ± 0.2 94.8 ± 0.1 94.7 ± 0.2 ρ75

150 = 0.55

150 97.9+0.3
−0.4 ± 0.2 98.4 97.7 ± 0.1 98.0 ± 0.1 98.4 ± 0.1 98.2 ± 0.1 ρ150

25 = 0.29

veto region: 1.5 ≤ |y| < 2.1

25 86.8+0.8
−0.9

+1.2
−1.1 86.1 ± 0.1 85.4 ± 0.2 85.5 ± 0.2 85.6 ± 0.2 86.4 ± 0.2 ρ25

75 = 0.42

75 97.6 ± 0.4 ± 0.4 95.8 95.9 ± 0.1 96.0 ± 0.1 96.5 ± 0.1 95.9 ± 0.1 ρ75
150 = 0.48

150 99.4+0.2
−0.3 ± 0.2 98.8 98.7 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 ρ150

25 = 0.20

veto region: |y| < 2.1

25 56.4 ± 1.3+2.6
−2.8 57.0 ± 0.1 52.7 ± 0.3 52.5 ± 0.3 54.0 ± 0.3 55.2 ± 0.3 ρ25

75 = 0.48

75 84.7 ± 0.9 ± 1.0 85.7 ± 0.1 82.7 ± 0.2 83.6 ± 0.2 86.0 ± 0.2 85.1 ± 0.2 ρ75
150 = 0.50

150 95.2+0.5
−0.6 ± 0.4 95.6 93.9 ± 0.1 94.5 ± 0.1 95.3 ± 0.1 95.1 ± 0.1 ρ150

25 = 0.24
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Table 3 The measured values of f (Qsum) for Qsum = 55, 150 and
300 GeV for the different rapidity intervals used to veto jet activity are
presented, excluding any measurements of f (Qsum) = 1.0. The pre-

dictions from the Monte Carlo event generators and the statistical cor-
relations (ρi

j ) between measurements are presented in the same way as
in Table 2

Qsum [GeV] f (Qsum) (%) ρi
j

Data ± (stat.) ± (syst.) MC@NLO POWHEG

+ PYTHIA

POWHEG

+ HERWIG

SHERPA ALPGEN

+ HERWIG

veto region: |y| < 0.8

55 88.1+0.8
−0.9

+1.3
−1.4 91.4 ± 0.1 88.0 ± 0.2 88.4 ± 0.2 89.9 ± 0.2 90.1 ± 0.2 ρ55

150 = 0.45

150 97.4+0.4
−0.5

+0.8
−0.9 98.4 97.2 ± 0.1 97.6 ± 0.1 97.8 ± 0.1 98.0 ± 0.1 ρ150

300 = 0.46

300 99.4+0.2
−0.3 ± 0.3 99.7 99.4 99.6 99.6 99.6 ρ300

55 = 0.20

veto region: 0.8 ≤ |y| < 1.5

55 89.3 ± 0.8 ± 0.9 92.0 90.6 ± 0.2 91.1 ± 0.2 92.2 ± 0.2 92.0 ± 0.2 ρ55
150 = 0.48

150 97.3 ± 0.4 ± 0.3 98.4 97.7 ± 0.1 98.0 ± 0.1 98.4 ± 0.1 98.2 ± 0.1 ρ150
300 = 0.34

300 99.6+0.1
−0.2 ± 0.1 99.8 99.6 99.6 99.7 99.6 ρ300

55 = 0.15

veto region: 1.5 ≤ |y| < 2.1

55 95.2+0.5
−0.6 ± 0.6 93.8 93.6 ± 0.2 93.9 ± 0.2 94.6 ± 0.2 94.1 ± 0.2 ρ55

150 = 0.40

150 99.3+0.2
−0.3 ± 0.2 98.8 98.7 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 –

veto region: |y| < 2.1

55 72.7 ± 1.1+2.3
−2.5 79.0 ± 0.1 75.3 ± 0.3 76.5 ± 0.3 79.6 ± 0.3 78.6 ± 0.3 ρ55

150 = 0.47

150 92.1 ± 0.7 ± 0.8 95.6 93.9 ± 0.1 94.5 ± 0.1 95.3 ± 0.1 95.1 ± 0.1 ρ150
300 = 0.46

300 98.1+0.3
−0.4

+0.2
−0.3 99.4 98.8 ± 0.1 99.1 ± 0.1 99.2 ± 0.1 99.1 ± 0.1 ρ300

55 = 0.21

1.5 ≤ |y| < 2.1. Furthermore, MC@NLO produces too lit-
tle activity in the central region |y| < 0.8.

The data were compared to the predictions obtained after
increasing (or decreasing) the amount of initial state radia-
tion produced by the PYTHIA parton shower when applied
to ACERMC events. These initial state parton shower vari-
ations have been used to determine modelling uncertainties
in previous ATLAS top quark measurements. Although the
data are within the band of these predictions, the size of
the band is a factor of two or more larger than the experi-
mental precision. The results presented here can be used to
constrain model-dependent uncertainties in future measure-
ments.
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