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*
OF SCATTERING AMPLITUDES

Kuo—hsiang Wa.rigJr
Lawrence Radiation Laboratory

University of California
Berkeley, California

September 15, 1969

ABSTRACT

A geﬁeral study of the space-time symmetries of

the scattering amplitude is made. The scattering amplitude

'in the c.m. frame has 0(2,1) symmetry in the physical

regions of the crossed channel§. By working in this frame,
we can use the same definition of the helicity as that
used in the usual angular momentum analysis. For ﬁhe
pairwise equal~mass case the helicity amplitude in the
forward scattéring region of the crossed channels has
0(2,2) symmetry in the c.m. frame, and 0(3,1) symmetry

in the brick-wall frame. We apply an.0(2,2) expansion

to a ﬁulﬁiparticle system. We also continue the O(k)
expansion in the brick wall frame into the 0(3,1) fegion,
and shbw the equivalence between the O(4) expansion and
-expaﬁsion. Finally, we point out thé‘diffefence

between the implications of the three-dimensional and

four-dimensional symmetries.



3

—~~

-1- UCRL-193h2

I. INTRODUCTION

Reéently,'Toller has studied the forward scattering amplitude
of the crossed channél (s channel) in the pairwise equal-mass case,l
and has expanded it in terms of the irreducible ﬁnitary represehtations
(i.u. reps.) of the symmetry group, the Lorentz group or 0(3,1). He
and Sciarrino2 have examined a model in which the Regge trajectory
functions and the reéidue functions aré assumed to be analytic functions
of a coupling constant, which they.call avtransitibn-free mddel theory.3

They'show that a Lorentz pole generates an infinite number of integrally

" spaced Régge poles. Freedman and Wangu have ihvestigated the corre-

s?onding helicity amplitude of the direct channel (% channel) at
?anishing energy, t = O, but outside the'physical regions of boﬁh
crossed channelé, and expanded the amplitude in terms of the i.ﬁ. reps
of the 0(4) group, a symmetry. group in the region considered. They
considered particularly the daughter phenomena for.the nucleon-nucleon
scéttering, and obtaiﬁed results similar to thosé in Tolier theory. So
far no oﬁe has exténded the continuation of the O(4) expansion to the
general paifwise equal-mass case, and no one has removed the restrictions
imposed by the assumptions of the transition free mbdel.

Iﬁ this paber, we wish to make a genéral study of the three-
dimensional (3-dim.) and four-dimensional (M-dim.)vsymmetfies of the
scattering amplitude, and to study the relation betweén the Toller and .
Freedman-Wang amplitudes.. The proﬁlem will involveicontinuing the |
exﬁansion corresponding to a compacﬁ.h—dim. group to the expansion of

a noncompact L-dim. group, or vice versa, as in the 3-dim. symmetry
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case in which the 0(3) part¢al-wa§e expans1on is continued 1nt§ an
0(2,1) expan31on plus some pole terms. The o(h) group is. +he only
compact 4- dlm group, and we may take it as a starting point for |
contlnuatlpn. However,"certain questions arise: Are there continuable
‘expressions for‘the O(h) representation function? What is the counter-
‘part of thé éontinued O(%) expansion? AThe 0(3,1) expansion or othefs?.
One of the purposes‘of this paper is t§ study such problems. Some
genéralizations5—8 for the unequal-mass cases and for the caseé in théh
the energy’ t is nonvanishing have Eeén made. Here, we are interested
for the h—dim; symmetries only in the pairwise equal-mass é%se at
t = 0.

The usual parameterlzatlon of the total four-momentum for the
treatment of the symmetries of the. scatterlng amplitude is not analytvc,
the amplitude has, for t >0, the symmetry Qf the rotationvgroup;
for t <‘O, the symmetfy of the 3-dim. Lorentz group. These two sub-
groups span different subspaces in fhe space-time continuumi Boyce
showed that the hélicitieg in two cases have different geometrical
interpretations;9 one ié the c.m. helicity, the other is thé brick wall
(b.w‘) helicity. We find that if the'parameterizationsxpf all the four
momenta for any s and t are defined by continuation'gn s and t
fromthe physical region of the direct channel, only one kind of the
helicity is enough to describe the scdttering system at any :s and t.
We investigate these problems in the c.m. frame and in the b}w. frame

separately.

R e RS
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In Sec. ITA, conventions and notations arevintrdduced. Then,
we introduce and discuss the criteria for the space-time symmetries of
the helicity amplitude. In Sec. IIB, we obtain the boundaries of the

regions of the symmetries of the c.m. and the b.w. helicity amplitudes

~on the Mandelstam diagram. Wé find that the boundaries are exactly the

same for these two amplitudes except for the L-dim. symmetry regions,

if any. The c.m. (or alternatively b.w.) helicity amplitude at t = O

for the pairwise equal-mass case has O(4) symmetry for

(m - m')2 < s < (m + m’)g; and 0(2,2) symmetry [or alternatively
' 0(3;1)] for_ s < (m - m’)2 or s> (m+ m')g; where s 1s the
i momentum transfer. |
_ Ih Sec. III we discuss the 3-dim. symmefries of the scattering
amplitﬁde. We introduce a pafity—consefving amplitude which hés the
SU(E) or SU(1,1) representation function as its geometrical faétor,
| and thusvis suitable to compafe with the SU(1,1) expansion obtained
| from.the group-thzoretic method with the consideration of parity
'cdnsérvation.'

In Sec. IVA we derive the 0(2,2) expansion for particular
case;, and'apply it to the multiparticle system. It might be the only
application for the 0(2,2) expansion. In Sec. IVB we continue the

\signatﬁred 0(4) expansion into the physical region of the crossed
)chénnel. In Sec. IVC we show the equivalence between the continued
O(4) and the 0(3,1) expansions, In Sec. V, we summarize the difference

between the implications of the 3-dim. andvh—dim. symmeﬁries.
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IT. SPACE—TIME SYMMETRIES OF THE SCATTERING AMPLITUDE
- A. Criteria for the Space—Time Symmetries

Consider a two—bodyAto—tﬁo-bodyfscattériﬁg§ f
(Plsl)\l) + (P252>‘-2) - (p555>‘5) + (phs)_{}\h) . B _ (l)

‘.Thc triplet (pi,éi,xi) describes a particle of ﬁhé kind i; di.e. of
four -momentum p , spin ,sl; and‘helicﬁty A | V |
The masses of - the four: Dartlclas could be cqﬁal or unequal.
Oniy when we discuss h—dim.‘symmetries, we shall restrict ourselves to
the pairwise equal;mass casg, i.e., ml i_m2 = m{>ahd  my = ﬁ '
The helvic'ity afaplitudelo Ht[p]'-r is defined in the physical

region of the direct channel (which we hereafter call 1 charinel):

4

B T o, .
Bl = ijkhﬁ\l)\g(py b3 5,9,) = 535055 Py TRy 5105 Poopa) -
(2)
10,11 . | ) -
It transforms covariantly under the proper, orthochronous Lorentz
group:
t
H [p.,p,P,0,]
MMy 3 xl o 37TW

S . S . . . .
3 -1 b

S D,” +[Bz "(A,p;)] D i (Ap)]H , . (Ap;,Ap), 5 Ap,,AD,)
x3x3 3 Xh A, IEL ijh’kl 37" oA 1

s ' S5

xlxl . °Aé'X2[Rﬁ(A:p2)1 ’ (3)



where :the Wigner rotations RW<A’pi) are givenlo-lg by

Bheg) = 17wy ACey)
and e - | (1)

P

1]

.e_--lgfiJ3 —1@iJ2 —1aiK

- L(p;) e e () u(e;) a,(ay) -

The operators Ji and ~Ki are the rotation and the boost generators
of the Lorentz group. The parameters (ai, Gi, ¢i) are determined by

the four-momentum Pyt

7

p. = m, (cosh &, ,sinha,. cos ©,, sinha, siné, cos @, ,sinc, sin6, sin ¢ ).
i i i i - i i i i i i i

(5)

The Hall-Wightman theorem > states that Eq. (3) can be extended
analytically to any transformation A of the complex Lorentz groﬁp.
In Regge theory, the scattering amplitude is usuvally defined

in the c.m. frame, and denoted by

| H;'t(syt’) E 'Htv " - (S:t) .E H . [p} . | (6)

Conventionally, the incoming particles 1 and 2 are assigned to be

along the z axis-and‘the"utgoingVones 3 and 4 are in the xz plane.

jfs;‘the‘four-momenta p; can be expressed
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e}
[Ea
]

‘ml(éosh qi;.o, 0, sinh'ai) s

p, = me(cosh a,; sinh @, sin x, 0, sinh aé cos x),.

C mE(COSh Oy, sinh aB.s;n e, o,_sinh_ae gos'e) ,
and
P, = m, cosh_au,JSinhag sin(ﬁl—_g)_cos_n,~0,_sinh.aa.cos(n —‘Oi>;

(7)

with the restrictions

mlCOSh“al +m, cosh @, my co§h 05»+ m), Qosh Q, s

e

' sinh 0. - m. sinh Q 0.
] 1~ P

and

1t

_mBS'inh a3 - m sinh dl; o .. - | .' (8)

‘The group parameters ‘(aii.gi’ ¢i)' are relgted to the Mandelsfém_

1k

variables:™

y cosh a, =

_cosh o, = T
emts | - et

2 a2 , L |
tAhmmmy bom A
1 .

and

o)+ 0 mA e - w?)

(0~ + )P0 - (o - )l - ()P0 - (e )]

(9)

I
2

}

CYmYT

y
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. 2 ‘ 2 2
where t = (pl + pg)., s = (pl - pB) , and u = E:nﬁ, - s - t.

Similar expressions can be obtained for  cosh a. and cosh au.

3
Suppose g is an element of the rotation group 0(3), and

: _ -iij -iJ,, -16J5 ‘

parameterized as e e e . The Wigner rotations

51
D
Kiki'
(%), one obtains

t -iy %
H [p] 5

. = e .
A Ku;%lkg XBXu,XlKQ
5 .

[A(g) vl >
where the total phase ¥ is defined by
1 B e S SRR AN
| . 10
The phase anglesv Ci are. given by
~cosh gl(g) = 1,.
cos CB(M) - (cos g - éos QB(M) 095 @é(u)/sin GB(h) sin
with
cos QB(M) = =sin B cos & sin QE(M) + cos B cos @5(h) .

One sees from (9) and (12) that the §i are functions of s and
In the physical region of the % channel,:one has -1 £ cos §i <1
all ‘i, and thus X 1is real. The amplitude Ht[p] is invariant

except for a phase factor under the transformation of the rotation

group. Since we want to include the cases in which the total angu

SBAY:

is

’[A(g)’,Pi] are diagonalized, and give some phase factors. From

(10)

(11)

(12)

O5(n)

t.

for

lar
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momen tum is;half—integral, we shall consider éU(E); the covering group
of 0(3).
Before studying the scattering emplitude away from the physical
region, we set up two criteria for the space-time symmetries:
(i) The symmetry group must be a subgroup of the complex little

group, 12 which leaves invariant the total four-momentum

p(- Py * Py =Dyt Pu)
(ii) Each,component of the four—momenta Py of the external paftiele
.must be kept either Pure'real or pure imaginary when itvis
continued in s and t  to be real or imaginaryfin the region
considered.
leier determines fhe symmetfy,group by the.first;criterion
only.8 In.his earlier papers,l Toller considers the real littie groupl
As mentioned in Sec. I, the helicities corresponding to the casee
t >0 and et <0 are defined differently itholler theof&, even'though
we can show that they are mathematieally equi.valeflt.9 The introducing
of the complex group allows.onebto keep to one ?articular frame. There-
fore, the perameteriiation of the four-momentum p remaihe unaltered
_when we pass through t = 0. The same definition of the helicities caﬁ
be used for all +t. We shall discués the amplitude infthe'e.m. frame,
except where we explicitly specify the:b.w. frame. -
The first criterion guarantees that the amplitude H [p] can

be exnressed as a function of the group element of the symmetry group.

The last criterion restricts the complex little -group to 1ts smallest




-9~ | UCRL-193k2

.vsubgréup which contains the group element uy(@) and aZ(ai) for the
h—dim: symmetry case, and thus allows one to avoid the.superfluous newi
quantum_numbérs. For an instance, in the physical region of the
t.chanhel, the amplitude in the c.m. frame has. 0(3C) symmetry by the
first criterion only, and so‘one has the new group iﬁdices in addition
to the dngular momentum; By the last criterion, the symmetry group

is 0(3), and the new group indices ére avoided. For the 3-dim. symmetry
" case, these two criteria are eguivalent to gtating that the amplitude
is invariént under the symmetry group except for a phase factor with a
‘féal phase angle ¥ [see Eq. (10)]. For the 4-dim. symmefry case, we
do‘not have equivalent statement, Wﬂether_this difference between

the 5—dim; and the 4-dim. symmetry is essential is not clear.

B. Boundaries of the Regions of the Symmetries
on the Mandelstam Diagram

" We now continue the helicity amplitude Ht(s;t) away from the
physiéal region of the t channel. During the continuation? the ampli-
fude is aiways kept in the c.m. frame, and the parameterizations (7)
and the relations (9) still hold. However, the group parametérs oy
and © may be complex for some s and t. For t # O, the total
three—ﬁomentum 'p vanishes. From the first criterion, thé_complex
little group is a comﬁlex rotation group 0(3C). We ﬂave to restrict'
it further by the second criterion.

We are particularly interested in the physicai regions of the

two crossed channels (s channel and u. channel). Hence it is sufficient
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to consider the boundafies of the regions of the symmetries on the.

Mandelstam diagram.lh

(1)

(i1)

The symmetry groﬁps’at -t % 0 are determined by the value of

Real O, i.e. -1 < cos 86 1: From (7), one has the general

form of the three-momentum

m, sinh'ai(cosh 9, sin 8;cos ¢i’ sin @ sin ¢i) .

I

(13)
By the last criterion, the symmetry group is the group which
. o 2 .
keeps invariant the form —pi5 - pil - p12 . Hence it is

0(3) or its covering group SU(2). As we showed above, the
amplitude Ht[p] is"invariant to within- a phase factor under

the transformation of the symmetry group'SU(Q),. In this case,

. the 0; can be imaginary or real.

Imaginary 6, i.e., cos 6 >1 or cos @ < -1: Suppose

ei = iei. One has, from (7),

T , o R ,
m; sinh ai(l sinh 6 cos ﬁi, i sinh 6. sin ¢i’ cosh @i)

.: (lpll’ lpiz) p:;-B)

‘The symmetry grbup is determined by'the quadratic'form

[ ! '

! 2 R : . .
Pz tPin t Py] s and it is thus 0(2,1) or its covering

group SU(1,1). One can obtain the same result by using the

S, S
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fact that a one-parameter group having a.real Lie algebra and
imaginary group parameter is equivalent tb a group of imaginary
Lie algebra and real group parameter. Replacing J2 by

iJ2 in the commutation relations of 0(3) or SU(E), one can

show that (1), J, must be replaced by iJ,, and (2), 7,

1

5 form the Lie algebra of 0(2,1) or SU(1,1).

The amplitude Ht[p] in this case is invariant to

_iJ2, and J

within a phase angle under the transformation of 0(2,1) or
sU(1,1). By replacing B and 6, by i and ie, in (12),
one can easily show that the phase angles gi are real and
so is the total phase aﬁgle £ in (lO).b Again, the o
can be real or pure imaginary. |
(iii) Complex 8, i.e., cos © is complex'or imaginary: The
symmetry group is no longer a 3-dim. grouﬁ, but a two-
dimensional rotation along the z axis. This case does not
cover the physical regions of the three related channels.
We shall not discuss this further.
* From the above discussions, one sees that the boundarieé of
the regions of the symmetries on the Mandelstam diagram are determined
by the conditions cos © = 1. From (9), one can obtain the equations’

of the boundary curves

t = 0 and o(s,t,u) = 0, B (1h)

7o

where the Kibblel) boundary fﬁnction\.®(s,t,u) is given by
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For fhe éeneral mass ease, fhe ampliﬁude- Ht[b] has O(B)jor Su(2)
symﬁetry in the phy31eal region of the dlrect channel (% channel) and
in the t > O parts,'lf any, of the physical region of the two crossed
(s and t fchannels), whereas it has 0(2,1) or SU(1,1) symmetry in the
t <0 parts of the physical regions of'fhe two crossed cﬁannels.’ in
the regions-other than thevthiee physicai regions, the Symmetries of
the amplltude qepend on the masses of four external partlcles We
summarlze our results-ln Figs. la-and 1b. Tn Fig. la, we take General
masses fortthe particlesl The symmetry>regions for the pairwise
equal-mass ease are shown in Fig. ib. For t = 0, we are‘interesfed in‘
the pairwise eéual—m;ss'case (ml,z"m_2 =‘m ~and my = m, = m')f In
this case, the total four-momenfuﬁ p vanishes and thus the little

group is complex Lorentz group or O(hC). From (9), one has

1 :
t2 A
cosh Oé.l = g : v- . (16)

which implies that o = i %

one has ﬁhe general form of the four-momentum

at t =0. For (m - m')2<< s < (m + m')z,
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= m,(cos i sin sin 6, cos @., i1 sin sin 6, sin @.
1( 4 i ¢1’ i gl’

R

I
2

N E

i sin = cos @i)

o=

(17)

= (piy> iPiys IPiss ipiB)

Hence the symmetry group is O(4), which keeps invariant the quadratic

. f e ' ot ' .
form pig + pig + p.i + pig. In a similar manner, one can show that

i
the symmetry group is 0(2,2) for s » (m + m')2 or s< (m - m')g.
This result leads us to study whether the O(4) expansion of the ampli-
fudé in the c.m. frame.can be continued into the 0(2,2) region. We
shall discuss it later. If the amplitude is defined in the b.w. frame,
the boundaries of the regions of the symmetries in the Mandelstam
diaérém are exactly the same aé for the helicity amplitude in-the.c;m.
frame,'except at t =0 for the pairwise equal-mass-case. In the
latter case, the amplitude has 0(3,1) or Lorentz symmetry for

s > (m + m')2 or s < (m - m')g, whereas it has O(L) symmetry for

(m - m’)2 < s < (m+ m')g. | .

That the helicity amplitude in the c.m. and the b.w. frame have

different L-dim. symmetries is another one of the differences between

the L-dim. and the 3-dim. symmetries of the scattering émplitude.
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. III. THREE-DIMENSIONAL SYMMETRIES
The expansion of the helicity amplitude HU(s,t) with respect

"to the symmetry group O(3) or SU(2) in the physical region of the

direct channel is well known.lo. This technique of expanding the hélicity

amplitude in terms of the u.i. rep. of 0(3) or SU(2) is applicable to
the other regions where the helicity amplitude has the 0(3) or SU(2)
symmetry.. The 0(2,1) or SU(1,1) partial—wave'expansions'of a square-

17

integrable function are obtained by Bargmann;6 and Andrews and Gunson.

Toller18

“and collaborators extended the 0(2,1) or su(1,1) partial—ane
expansion to the cases of non~square-integrable-amplitudef"The
continuation from the SU(2) expansion to the SU(1,1) expansion has been

performed by many people;l9

In this subsection, we emphasize intro-
duction of a parity-conserving amplitude wﬁich has the funétion Dxpj(g)
as its geometrical faétor, where the group element g belbngs to the
symmetry group of the amplitude. The function DX“j(g) denoteé the
relative orientation of the,incomihg and the outgéing particles.

We can define a trajectory of definite parity and signature by

the equatibn

tne. - - h"]é 5 ;
Mgt - ; @+ 2yl ()
dkuj(z) (1 + gei“(j‘v))/z , (18)

where hng(t,j) is the partial-wave amplitude of definite 1 and

definite parity nt, and m is the larger of u(='>\5 - xu) and
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A= xi - Ag). These parity-conserving amplitudes thé(s,t) have a
geomefrical factor dkuj(z)’ but are not free from the»kinematical
singularities.go The amplitude thg(s,t) has a meaning only if the
scattering process conserves parity. Hence its asym@totic behavior in

the J plane is known:

nE e .
h (t,3) ~ 37 (19)
ABKuklkg ’

for large |j| and Re(j + %) > 0.
By a method similar to Boyce's,21 one can perform a Sommerfeld-
Watson transform by checking the asymptotic behavior, deforming the
contour, -and picking up thé dynamicél and kinematical‘pole,terms, and
6btain
Lt+io

tng
r S (s, 0)

_ i 2 +1 ¢ _-in(j-v) 3
SR I o e rel (@)
oo -

_ 2{: (ai + % | -iﬂ(@i-V) oy i
* sin.n(di -v) [e * g]dku (2) BXBXA,Kl -
T ,

+

[terms cbrresponding to the discrete series of SU(l,l

(20)

where ~ @, 1is an abbreviation for aing(t). Equations (18) and (20)

are suitable for comparihg with the partial-wave expansions of the

(t)

)1,
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su(2) and théfSU(l,l) respectively, obtained by the group-theoretic
method. -

A similar discussion can be presented for t.he helicity amplitude

in the b.w. frame.

«l
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- IV. FOUR-DIMENSIONAL SYMMETRIES
For t = 0, the scattering amplitude has h—dim.‘symmetries,
the types of which depend on which frames it is defined in. In this
sectioh, we‘discuésbthe relationships between the expansions of thé
different symmetry groups, in the c.m. frame andAin the b.w. frame.
We also dérive an 0(2,2) ekpansion for the multiparticle scattering

process.

A. The 0(2,2) Expansion for the Multiparticle System
 As we have shown in Sec. IIA, if we discuss the symmetry of
the helicity amplitude in the c.m. frame, the amplitude'at 't = 0 has

the 0(k4) or 0(2,2) s;y'mmetryg2 depending on whether. the four-momentum

‘transfer s is inside or outside the region (m - m')2~s s < (m + m')g.

We shaii investigate whether the O(L4) partial-wave expansion of the c.m.
helicity amplitude can be continued into the 0(2,2) expansion when the
s is continued from the O(4) region to the 0(2,2) region.

We first review the algebraic structures and the u.i. reps.u’23
of the grouﬁs O(k) and 0(2,2). Let Iy ana K, - be the rotation and

the boost generators of the two groups. We may define new Lie

algebra
1
A = 505 K)
and ' - (21)
1
'Bi = 5 (J - K)



-18- o . UCRL-193k2

so that the Ai and the Bi cqm@ute with each other, and form a Lie
algebra of 0(3) and 0(2,1) for the group O(4) and 0(2,2) respectively.

Thus 6ne has

It

" 0(3) '®0(3)
and _ o . : . . (22)

0(2,1) & o(2,1)

o(k)

0(2,2)

1l

The Casimir operators ég and 52 héve the eigenvalues

e ala + 1) }'

b
i
=

l_.v
+

Ca
+
m
=
!

: (23)
eb(d +1),

bgve]
Il
td

.+

Sy

+
m
jss}
it

where € = +1 for O(4) and -1 for 0(2,2). Another set (n, M) is

definedghvby'

and | ’ | v : (2k)

nM —1(JlKl IR, e'JBKB)

From (21)-(24) one can relate™’ the quantum numbers a and b to n

and M by

o]
i

a + b + 1
and : ' | o (25)

M = -a+bd
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From (2) and (17), the helicity amplitude at t = O for the
» pairwise equal-mass case can be expressed in terms of the gfoup
element of the symmetry groups,
-t .

. ’ ~ - = - -1 - . —_
HXBXu;KlXQ(s’t_O) = (p K5; 1S Xh{U(g ) Ti(px, px2>i’ (26)

where the state vector lﬁXi, -D, xg) is defined by

_ _ _ . inK _ .
A5 D5 As) = o, A) @ e 313, “Ao? . ‘ (27)

and p = (m, O, O, 0). The group element g is given by

—1'.(-—;‘-)1(5 -18J, -i% Ky

g - e . 2o = e (Due)a@ . ()

It is important to note that az(i %) in (28) is an element of the

symmetry groups.
In the O(L4) region, the helicity amplitude can be e.xpa.ndtedLL

in the form

t 3 _ .2 oM n J nM
RPN EE. (a0 - n%) @t () a o) e M

ss'nMj

)

R

S+S) ~A~=A ' ’
2L 2 : _
' C(S5)Sl¥)s 5 >\5’->\h> C(sl’sg)s; >\l}_>\«2) 2

(29)

where = A\,
HE s

expansion comes from the result that the 4-dim. partial-wave amplitude

- Kh and A= xl - xg. The importance of'this
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T is independent of the'héiiciﬁiegfof the external particles;

s's
this result stems ffom'the factjﬁhaf;fhé‘sfate vector sand@iching the v : u
scattering operator T is a basis vector of the u.i. rep.:of 0(3)
corresponding to the eratioﬁsfin.ﬁhé j—dim, space.

In the 0(2,2) region,?fheiéofresponding‘véctor'is not a basis
vector of the u.i. rép. bf o(é;iﬁ,’%nd thus if one directl& expands
the helicity amplitude vH:'uég<§;O)  in térmsbof the: representation
functions of,0(2,2) the h-dim{ §artial-wa§§7amplitude may depend on
the helicities of the eXternaltpa?ticles..?ﬁence we éhall not continue
the O(4) expansion into the 0(2;2)'region§§" |

One siﬁ?le arguﬁent‘ﬁoksh§w that the O(h) expansion can probably
not be coﬁtinued into aﬁ'o(é?E):expansion iguﬁhat the asymptotic
expression in s of thé scatteriﬁgrémplifude would depend_oﬁ the poles
in:the' M pléne‘if such a contiﬁuétion were ?oséible.. |

The result of the 0(3,1) expansion shows that the ésymptotic
behavior in the s plane does not depeﬁd on the poles in M. Hence the
two expansions would contradict each ofher, Since we knowffrom Téller's‘
work that the 0(3%,1) eipansion is correct, and since the results have
been confirmed by the analyticity—factorization method,26 Qe have to
give up any attempt to continue the O(L) expansion into an.O(E,E)
expansion. ‘

The i.u. reps. of the SU(l,l) group are given by Bargmann.
The representation function has the same form as the SU(2)'group.
Their basis vectors have the following spectra in . j and X: For

continuous sories, we have
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There are two discrete series, positive and negative. The spectra

o for the positive discrete éeries are
7 v
Jd = 5 1, %)
and
>\' = j+l,j+2"

and for the negative discrete series they are

)l)

g

[}

il
o]
PO

and

ANo=o=d -1, =3 -2,

The particle states of the scattering system are.not the
basis vectors in the carrier spaces of the i.u. reps. of the Su(1,1)
groﬁp, since either the spin or the helicity does not belong to the
categories above for the i.u. reps. of the_SU(l,l)/group. Hence we
cannot expand it in the usual sense. If we expand if by freating‘the
u.i. reps. of -the 0(2,2) group as a complete set of fhe orthonormal

function, we have

B

£ o (5:0) = >_ 0F - n%) ok, 1,35 A - )

Mo Ay 3Aq A
. SNt abjkk'
. . ,
\1%5
» (e et S ' | ‘_‘ ' nM S J
X C(}\.'k )J’ >\-.’))K x_‘s) d‘k’“‘j< 2) dU\ ( ) ( ) |1kk's )\ >\. )\ 2

173
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23

where the summations sum or integrate the dummy indiees?accordihg to
the SU(1,1) group.  The coefficient gives no restrietions’en the
ecatteriﬂg emplitude. However, we can apply the 0(2,2) expansion to
a multiparticle system. |

For a multlpartlcle system, the external partlcles can.be
collected into four groups (see Figs. %a and 3b). Each gnoup is
characterized by the four-momentum**pi, the little ’groupl’l_g’27 85
and the helicity x,. The total mass s (;pig) of‘thegparticles,
in the ith group can be:negatiVe otjpositive, real or_complex. Suppose
that for some ti there are no Regge peles in the right ei half-
plane_correspending to the little greups gi. The total amplitude

can be expressed in terms of the four submatrices Ti and a reduced

matrix - T:

’ v -§+loo s, ‘
i .
NI -3 i

-lw

; t(s,)  _ L
X Tt = T (p ,8.)

i .sin n(si - v) K5Xh’x Mo *

b
+ [terms including at least one discrete series

of .0(2)1)] )»‘ . B (56)

where the signature factors and the reduced amplitude are given by
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in(s, -v)
E(s;) = 1+t e *

and | ~ ()

EXBxu,xlx2<Pi’si) = (pgsphss phshxh}flplslxl’p282x2> .
The reducéd amplitude f(pi,si) has allbthe four legs as basis.vectors
of'the'u.i. reps. of the SU(1,1) grbup. By means of the techniques
such as used in the 0(k) and the 0(3,1) c:ases,l’Ll we have in the |
0(2,2) symmetry region the parfial—wave amplitudé whi ch is independent
of the helicities of the e#ternal legs. It is prObab%y the'only_

appliéation we know of so far. In the c.m. frame of the +t channel,

12

the four-momenta of the four external legs in the reduced matrix can
be parameterized as in Eq. (7) and the relationships (9) between the

group parameters and the invariant variables still hold, except that

v : : _ _ 2
we replacg ms, S, and t by Li, 313, and tl2’ where 815 = (pl pg)

v 5 '
and t,, = (pl + pg) - When t; =t, =t, t3 =t), =t ) and t = 0,

_ . = 1
the amplitude T has 0(2,2) symmetry if SlBJ> —[(—tl)g— (—tg)?]2 or

i 1
813 < - [(—tl)? + (—t2)2]2 for negative t and t'; similar conditions

can be obtained if tl’ t2 > 0. Following the procedures in deriving

Eq. (29) for the O(4) group, the reduced matrix can be reexpressed by
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1

(p,s)

T - ¥ : . .
Faghyanghg P10 C (55,8,,k" 5 A0) (a) ()

kk'abj

‘

SANCOIEIC) dJXK HeS Cs155K5 20,) Too®® (52)

where the summationsg3 sum orbintegrate o&er the.indégés according ﬁo

the 0(2,1) group, and ﬁ(a)’ ahdb n(b) .are the Plancherel measures of:
su(1,1) corresponding to the u.i. reps.QB: a ana b respectively. In
deriving the Eq. (32), Qe-have assumed that the a@plitude T is square

integrable. The amplltude may not be square 1ntegrable, since the

'scattering operators T may not be unltary outside the physical ‘region

of the t channel. If not, we may take some models such as Toller's

12
transition-free mddei.5

In the physical reglon of some channels correspondlng to the
’multlpartlcle system “the total scatterlng amplltude can be expressed
in terms of the t12 channel amplltude through a cro§s1ng m@tr1x.?8 »29

Thus the’o(e;é) expansion in these cases may be useful for the

phenomenological analysis.
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B. The Continuation of the O(L) Expansion Into
the 0(3,1) Region
In the.b.w. frame, we have shown that the b.w. helicity
amplitude at t = O for the pairwise equal-mass case has 0(3,1)

symmetry in the physical region of the crossed channel, outside which

. it has the O(4) symmetry. Hence these b.w. helicity amplitudes at

t = 0 can be shown to be a function of the element of the symmetry

groups,

t . = 1 -1 - ey :
HXBXA,KlKE[p] = <_p kB’ P XAIU(g _) Tlp >\]_’ 1% xh> P (55)

where the group element g is the boost along the x axis:

~-1iEK. -
g = ¢€ = = ax(g) s
and v (3h)

cosh & = cos© = 2z .

In the 0(3,1) region, |z| > 1; in the 0(4) region lz] < 1.

We define two new b.w. helicity amplitudes:

t Sp¥8) oM "
HS'HSK(S’O) = Z ('l) C(SB’S)-&’S 5 }\3)” - }\5)

Xakl

&

5 (8,0) (35)

X C(Sl}sg)s; >\l)>‘- - >\l) H



-26- : . UCRL-193%42

S .
Hs'usx<s?o)

T Sty | ‘ - | '
L( l) | C(Sj’sh’s'; >\-3)H - >\5) C(Sl;52135 7\-11>\ = 7\1)

DN

3™
X fo 1My MMy (S O) o .<56) :
They are related™’ by
qus K( ,0) = Z a5 (D HS " Sx.(s 0) 4,,,°(3) (57)

1

L

From (34)-(37), we have

v N . .
' -i(-3)3 -iZ3
S : g’ ] 2 2 ’ 2 2 -
Hs.usx(s,é) = (p's ulU(é a (£) e JHEDS
| (38)
= (ps’ulU<éZ(Ei)Tlpsx)
Hence we can 1 expand the amplltude H: (s,O) in terms of the repre-

sentation . functlon of 1ts symmetry groups Thug one . has, in the 0(3,1)

reglon,
. . q ioo :
1 (s5,0) = -8 B ian(u? - n2) o M g (o)
s'psxt? P ss' = Ts'As .
: - "iOO

(39)

and in the 0(4) region,
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B (500 = 8, T Y (M2—n)T S 2y, (o)

==q n= q+l

where ¢q 1is the smaller of the s and sﬂ. Akyeampong, Boyce, and
RashidBo have shown that, by introducing a.signature, these two expan-
.sions of the s-channel amplitude can be continued into each other. We
shall discuss the continuation of the Fréédman—Wang expansion (40) into
the 0(3,1) région.

Using an identity
/ L 7 _ . '
2 (6) = 2,(-5) u(e) 2,3 )

for the 0(4) group, one has, from (33)-(%5),

2 2y oM, x 3 oMy
(™ - n%) ag) 5(=5) a,9(8) a5 T(5) - (42)

X
]

M=-q n=q+1 j=!M,

From (42), we change the dummy variable Jj to ~r by the relation

r=n - j, and obtain

t .
HS’[.J,S}\‘(S’O)
8 @ :
i i i
5 S ] <M? ") o un LB 4, e T B
=—q N= q+l r=0 ’

X v M. (43)
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The leading term corresponding to a‘particular r in the above
equation is z" ©. We are interested in a few leading terms which’
control the asymptotic behaviors in z. We may consider a component

of Eq. (43) corresponding to definite M -and r, and define

Hzgisx - EE:Z(NF ) s un r(-_) (9) dg¥r xs(%)

n=q-+1

Ko

Let us‘examlné the as&mptotlc behav1or of the right hand side
(Mh) in the .n plane,'w1th the aim of cénvertlng the summatlon to a
.Sommerfeld—watsbn integral. VFreedman and Wang showu that the s1gnatured
scattering émplitudexhés fhe fqllqw1ng asymptotic behav1or;1n;the-n

" plane:

TS;;nMi"~' 0(45_ “;?as .1n!:f>& .
The=matrix.fun0tionsb dggn_réi§)~'can be expressedu in a simple
form: ' A E ’
| % o' r(d) r(n - & +1)

nM o (Enl; or + 1)r(r + 1) ; n-r 2 2
Goon-r(#2) = [(n " l) Fen - x + éj} () r{r + 1) P(% h %T)

S i .
Thus the produc# dOOn r( ). - rOO(2) falls down exponentially when

Re n > 0:

RS .‘ -1 : :
oon-r("3) & o~(5) ~ 0[n"Z exp(-n fa 2)]
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since _d:¥j(6) = dg%S(S)‘ for the O(L4) group. In deriving this, we have
31

used the reiation

-1 ’
*Fr(n -0+ 1) Mn - Fe 4 3)

2n-r+2
2 5 5

"r(en - r+2) =

The asymptotic behavior in the n plane of the general function

nM

s’x'n—r(t%) differs from that of dggnAr(i%) only by a polynomial

in n, since s, s', A, and p are finite, and the coefficients in the
recursion relations between d?%s(6> behave at worst like polynomials
in n and - j. |
We have thus shown that the asymptotic behavior of our function
nM

allows us to perform a Sommerfeld-Watson transform. If Tss' has a
pole at n = Q,, we have
' ; in{@=-r-v)
STusA p sin w(@ - v - v) s'po-r' 2/ “ur a-r A8'2
oM . oM : ,
X By Bg (45)
for z = |cos @] >> 1. This is the rth daughter contribution from a
© Lorentz family with Toller quantum number M.
Substituting (45) into (43), we have
| g N N o
H, [p] o~ | 1 s 8O oy (-Z) a % (o)
S'HSNT sin x(a - v) s'u a-r' 27 Tux
' m=-q r=0 ' ‘
oM Tt oM oM » -
X G s(3) By B s (46)
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where N is a finite integer. The signéture in (46) is the same as
that at '£ % 0. The analyticity;factoriiation hethod?8 shéws that only
one vélue of M -and o 1is allowed. ;Thegroup—theoreﬁicmethod.shdws
the factqrization éroperty of the residue fﬁnctions of the daughter

Reggeons. 

c. Equivélence Between the Continued O(4) Expansion -
and the 0(3,1) Expansion
At first sight, Eq. (46) differs from Eq. (7.2) of Sciarriﬁo
and TQller.,2 However,. we shall show thét they.are equivalent. |
' SinceHToller did not introduce fhe signature - in hié'0(3,l) -
expansion, we shall continue Eg. (46) without introducing a signature.

The partial-wave amplitude can be reexpressed as

nM M, . oM o
TSS' =. 'A‘S‘SV_ + (-l) B‘SS" 2 . o ()‘4’7>
where Asé,nM and BSS,nM are bounded by a constant separately.
Substituting (47) into (Lk), and replacing (-1)* dukn-r(e) by
(-1)* du-hé-r(ﬁ - 8), we have
. 00 . )
t Mr : N 2 2y .nM (_xy JOM 7
Hs,usx(s,Q) =/ (m n ) Aory n-r(B) &0 63
nM . n-r O\ - nM n-r
X [ ™ a7 ¢ () Ma 2] L ()
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Continuing the two terms in Eq. (48) separately, we obtain

ﬁlaM'B oM

t Mr 5 s' -r oM b1

Hs'usx(s’o) sin n(a - v) g L o= r( k (2) doper XS(Q)
(49)

for |z| >>1.
We now continue in the n plane an identity
nM _ 5 T j nM, i

o (e) = ) w( 2 a, ) e, M@, (50)

J

which holds true for the O(L) group, by taking a few leading terms in

z, and by replacing j by n - r. We then obtain

D, usx( (&) ~ Z (B & T(a) @, 6D

r=

O

where N is a finite integer. From Egs. (42), (49), and (51), we have

q B oM B oM

t < Bg ot
HS'HS}\,@X(QD ~ L Slrsl (o f V7 DS'}J.S}\,(aX(g.)> (52)
Mg

~for | cos 6| >> 1. From Hg. (52) and the inverse relation of Eq.. (35),

one has
% . d s2+sbr " h
Hx%xu,xlx2<éx(gz> - § Ezj( -1) C(SB,Su:S's XB,-Xh)
- M=-gq s's
' M oM aM
X C(sl,sg,s; xl,-xg) By a 8 s uS)\[a, ()]

(53)
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This expression is equivalent to Eq. (7.1) in Sciarrino and Toller's

paper.2 ‘Thus the vertex function VMa and W can be rélated to that

in Eq. (53); i.e.,

. SA—A
Moy oM 7 . 272
VS)\ @ dOC—I‘ }\,S(E) C(Sl,SE,S, >\l) >\~2> ('l) b4
(5%)
Sy Ay
Mo oM T . Loy
wS'u- @ -1 HS<—2) C(SB’SLF’S 3 7\-3: >\-u) ( vl)

These relationships show the equivalence between the 0(3,1) and the 0(k)

expansions.

We may also reformulate the Toller asymptotic expansion in terms
of s-channel helicity states. From an identity
7

ax‘@) = uy(-g) aZ(Q) uy(g) = az(—%) uy(@)_az(%) ,

which holds true for the O(4) group, we have the formula

alt (8) = Z a5 (Bl (B e D) e,

s'AS AL 2 s'u'J In's 2
IJ.‘)\_'JL .

which can be continued into the n plahe by taking' j=n~r7r and by

considering only a few leading terms in 2z:

& (g) ~ N & STy Ry Ty My

s'\s Lo ! 27 Ts'u' a-rt 27 Tu'A" o-r A's 2
“f>\'r .
s x _
X 4., 3) | (55)
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for |z| >>1. From Egs. (37), (L9), and (55), we obtain

q B oM 5 oM .
] S s' oM
Hs.usx(S,O) B, g TR R SR (56)
M=-q .
for fcos o] = [z] >> 1. This result is the same as that from the

2
analyticity~factorization method.
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V. CONCLUSION

The 3-dim. symmetries of a scattering amplitude provide a guide

for céntinuation through the Sommerfeld-Watson transform. "For the h-dim.

symuetry, we were not able to continue the O(k) éxpansionbto.the 0(2,2)
region iﬁ the c.m. frame. In the b.w. frame, we have to répléce J by
n - r in the continuvation. Here we point out fhe differences,betwegn
the %-dim. and the b-dim. symmetries, which may'add té the underétanding
of thiS'situationf .

With the criteria stated in Seé. ITA, we found that the amplitudé
has the same kind of 3-dim. symmetries in a'particular region, indepen-
dently of whether the amplitude is defined in the c¢.m. frame or in the
b.w. frame (see Sec. IIB). For thelhfdim.\symmetries; the type of
symmetry depends on the'framés in which the amplitude is defined. At
t = 0, the aﬂplitude always has the symmetry associated with the cémpiéx
Lorentz group.8 However,.this introduces many new quantum numbers, and
complicates the p;oblems. One may'have difficulty in identifying the
new quantum numbers with physical quantities. |

As stated in Sec. ITJA, the helicity amplitude is inveriant
except for a real phase factor under its symmetry groups in tﬁe 3-dim.

regions, but it is covariant only in the k-dim. symmetry regions.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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