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Forward Invariance of Sets for

Hybrid Dynamical Systems (Part I)

Jun Chai and Ricardo G. Sanfelice

August 16, 2018

Abstract

In this paper, tools to study forward invariance properties with robustness to dis-
turbances, referred to as robust forward invariance, are proposed for hybrid dynamical
systems modeled as hybrid inclusions. Hybrid inclusions are given in terms of dif-
ferential and difference inclusions with state and disturbance constraints, for whose
definition only four objects are required. The proposed robust forward invariance
notions allow for the diverse type of solutions to such systems (with and without dis-
turbances), including solutions that have persistent flows and jumps, that are Zeno,
and that stop to exist after finite amount of (hybrid) time. Sufficient conditions for
sets to enjoy such properties are presented. These conditions are given in terms of
the objects defining the hybrid inclusions and the set to be rendered robust forward
invariant. In addition, as special cases, these conditions are exploited to state results
on nominal forward invariance for hybrid systems without disturbances. Furthermore,
results that provide conditions to render the sublevel sets of Lyapunov-like functions
forward invariant are established. Analysis of a controlled inverter system is presented
as an application of our results. Academic examples are given throughout the paper
to illustrate the main ideas.

1 Introduction

1.1 Background and Motivation

Forward invariance of sets for a dynamical system are key in numerous applications, including
air traffic management [1], obstacle avoidance in vehicular networks [2], threat assessment in
semi-autonomous cars [3], network control systems [4], and building control [5]. Techniques
to verify such properties are vital in the design of many autonomous systems. Such tools
are even more valuable under the presence of disturbances. Formally, a set K is said to be
forward invariant for a dynamical system if every solution to the system from K stays in
K. This property is also referred to as flow-invariance [6] or positively invariance [7]. When
solutions are nonunique and invariance only holds for some solutions from each point in K,
then K is said to be weakly forward invariant – the so-called viability in [8]. In the presence
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of disturbances, one is typically interested in invariance properties that hold for all possible
allowed disturbances, which has been referred to as robust forward invariance; see, e.g., [5],
[9, 10].

Tools to verify invariance of a set for continuous-time and discrete-time systems have been
thoroughly investigated in the literature. In the seminal article [11], the so-called Nagumo
Theorem is established to determine forward invariance (and weak forward invariance) of
sets for continuous-time systems with unique solutions. Given a locally compact set K that
is to be rendered forward invariant and a continuous-time system with a continuous vector
field, the Nagumo Theorem requires that, at each point in the boundary of K, the vector
field belongs to the tangent cone to K; see also [8, Theorem 1.2.1]. This result has been
revisited and extended in several directions. In [12], conditions for weak invariance as well
as invariance for closed sets are provided – a result guaranteeing finite-time weak invariance
is also presented. In particular, one result shows that a closed set K is forward invariant
for a continuous-time system with unique solutions if and only if the vector field and its
negative version are subtangential to K at each point in it. A similar result is known as the
Bony-Brezis theorem, which, instead of involving a condition on the tangent vectors, requires
the vector field to have a nonpositive inner product with any (exterior) normal vector to the
set K [13, 14]. Taking advantage of convexity and linearity of the objects considered, [15]
provides necessary and sufficient conditions for forward invariance of convex polyhedral sets
for linear time-invariant discrete-time systems. Essentially, conditions in [15] require that
the new value of the state after every iteration belongs to the set that is to be rendered
forward invariant. This condition can be interpreted as the discrete-time counterpart of the
condition in the Nagumo Theorem. For the case of time-varying continuous-time systems,
[6] provides conditions guaranteeing forward invariance properties of K given by a sublevel
set of a Lyapunov-like function; see also [16–18]. The analysis of forward invariance of a
set for systems under the effect of perturbations has also been studied in the literature; see
[19] for the case when K is a cone, [20, 21] when K is a polyhedral. The survey article [7]
and the book [8] summarize these and other analysis results for forward invariance of sets
in continuous-time and discrete-time systems. Thought outside the scope of this paper, the
notion of robust controlled forward invariance has also been studied in the literature, see,
e.g., [5, 9, 10].

The study of forward invariance in systems that combine continuous and discrete dy-
namics is not as mature as the continuous-time and discrete-time settings. Certainly, when
the continuous dynamics are discretized, the methods for purely discrete-time systems men-
tioned above are applicable or can be extended without significant effort for certain classes
of hybrid models in discrete time; see, in particular, the results for a class of piecewise affine
discrete-time systems in [22]. Establishing forward invariance (both nominal and robust) is
much more involved when the continuous dynamics are not discretized. Forward invariance
of sets for impulsive differential inclusions, which are a class of hybrid systems without dis-
turbances, are established in [23]. In particular, [23] proposes conditions to guarantee (weak
– or viability – and strong) forward invariance of closed sets and a numerical algorithm to
generate invariant kernels. For hybrid systems modeled as hybrid automata, safety specifica-
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tion is often recast as a forward invariance problem. In such context, several computational
approaches have been proposed for hybrid automata with nonlinear continuous dynamics,
disturbances, and control inputs. In [24], a differential game approach is proposed to com-
pute reachable sets for the verification of safety in a class of hybrid automata. In [25], an
algorithm is proposed to approximate invariant sets of hybrid systems that have continuous
dynamics with polynomial right-hand-side and that can be written as hybrid programs.

1.2 Contributions

Motivated by the lack of results for the study of robust and nominal forward invariance
in hybrid systems, we propose tools for analyzing forward invariance properties of sets. In
particular, formal notions of invariance and solution-independent conditions that guarantee
desired invariance properties of sets are established for hybrid dynamical systems modeled
as

Hw

{
(x, wc) ∈ Cw ẋ ∈ Fw(x, wc)

(x, wd) ∈ Dw x+ ∈ Gw(x, wd)
(1)

which we refer to as hybrid inclusions [26] and where x is the state and w = (wc, wd) is the
disturbance; see Section 2 for a precise definition. In the upcoming second part of this work,
tools for the design of invariance-inducing controllers for hybrid system with disturbances
are proposed based on the results presented in this paper. The main challenges in asserting
such forward invariance properties of a set K, subset of the state space, include the following:

1. Combined continuous and discrete dynamics: given a disturbance signal and an initial
state value, a solution to (1) may evolve continuously for some time, while at certain
instances, jump. As a consequence, the set K must have the property that solutions stay
in it when either the continuous or the discrete dynamics are active.

2. Potential nonuniqueness and noncompleteness of solutions: the fact that the dynamics
of (1) are set valued and the existence of states from where flows and jumps are both
allowed (namely, the state components of Cw and Dw may have a nonempty overlap with
points from where flows are possible) lead to nonunique solutions. In particular, at points
in K where both flows and jumps are allowed, conditions for invariance during flows and
at jumps need to be enforced simultaneously.

3. Presence of disturbances for systems with state constraints: for it to be interesting, forward
invariance of a set K for a hybrid system with disturbances is an invariance property that
has to hold for all possible disturbances. In technical terms, for every x such that (x, wc)
belongs to Cw, the vectors in the set Fw(x, wc) need to be in directions that flow outside
of K is impossible for all values of wc. Similarly, for each x such that (x, wd) belongs to
Dw, the set Gw(x, wd) should be contained in K regardless of the values of wd.

4. Forward invariance analysis of intersection of sets: when provided a Lyapunov-like func-
tion, V , for the given system, conditions to guarantee forward invariance properties will
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need to take advantage of the nonincreasing property of V . In such a case, the state com-
ponent of the sets Cw andDw will be intersected by sublevel sets of the given Lyapunov-like
function, which require less restrictive conditions than for general sets.

In this paper, we provide results that help tackle these key issues systematically. For
starters, we present a result to guarantee existence of nontrivial solutions to the system
modeled as in (1), which also provides insights for solution behaviors based on completeness.
Then, we introduce the notions and sufficient conditions for forward invariance in hybrid
dynamical systems. The proposed notions of robust forward invariance are uniform over all
possible disturbances, and allow for solutions to be nonunique and to cease to exist in finite
(hybrid) time (namely, not complete). For each notion, we propose sufficient conditions that
the data of the hybrid inclusions and the set K should satisfy to render K robustly forward
invariant. Results for hybrid systems without disturbances are derived as special cases of
the robust ones. Compared to [23], which studies the nominal systems exclusively, we focus
on a more general family of hybrid systems, for example, we do not always insist on the flow
map to be Marchaud and Lipschitz; see, e.g., [8, 23, 27]. As an application of the results
for generic sets K, we present a novel approach to verify forward invariance of a sublevel
set of a given Lyapunov-like function intersected with the sets where continuous or discrete
dynamics are allowed. Such a result lays the groundwork for the second part of this paper.
Because of the nonincreasing properties of the given Lyapunov-like function along solutions,
the developed conditions are less restrictive and more constructive when compared to the
ones for a generic set K. Moreover, our results are also insightful for systems with purely
continuous-time or discrete-time dynamics. In fact, because of the generality of the hybrid
inclusions framework, the results in this paper are applicable to broader classes of systems,
such as those studied in [6–8, 12, 15, 28].

1.3 Organization and Notation

The remainder of the paper is organized as follows.1 Robust and nominal forward invariance
are formally defined in Section 3. Sufficient conditions to guarantee nominal and robust
notions are presented in Section 4.1 and Section 4.3, respectively. In Section 5, a Lyapunov-
like function is used to ensure forward invariance of sublevel sets. An application of our
results for the analysis of a controlled inverter system is presented in Section 6. Academic
examples are provided to illustrate major results.
Notation: Given a set-valued mappingM : Rm ⇒ Rn, we denote the range ofM as rgeM =
{y ∈ Rn : y ∈M(x), x ∈ Rm} and the domain ofM as domM = {x ∈ Rm :M(x) 6= ∅}. The
closed unit ball around the origin in Rn is denoted as B. Given r ∈ R, the r-sublevel set of
a function V : Rn → R is LV (r) := {x ∈ Rn : V (x) ≤ r}, and V −1(r) = {x ∈ Rn : V (x) = r}
denotes the r-level set of V . Given a vector x, |x| denotes the 2-norm of x. We use |x|K to
denote the distance from point x to a closed set K, i.e., |x|K = inf

ξ∈K
|x − ξ|. The closure of

1Preliminary version of the results in this paper appeared without proof in the conference articles [29] and
[30]. This work considers a more general class of disturbance signals than [29]. Some conditions from [29]
to guarantee invariance are further relaxed in this paper. In addition, compared to [30], this work includes
results to verify forward invariance of sublevel sets of Lyapunov-like functions.
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the set K is denoted as K. The set of boundary points of a set K is denoted by ∂K and the
set of interior points of K is denoted by intK. Given vectors x and y, (x, y) is equivalent to
[x⊤ y⊤]⊤.

2 Preliminaries

In this paper, we present results on robust and nominal forward invariance properties for
hybrid system modeled using the hybrid inclusions framework. More precisely, for hybrid
system Hw given as in (1), we are interested in robust forward invariance properties of a
set that are uniform in the allowed disturbances w; while the notions of nominal forward
invariance are studied for hybrid systems H as in [26], which is considered as a special case
of Hw with constant zero disturbance, i.e., w ≡ 0. We further explore the relaxed conditions
to guarantee nominal forward invariance of sublevel sets of Lyapunov-like functions. In this
section, we present basic definitions and properties of Hw that are important for deriving
the forthcoming results.

Following [26], a solution to the hybrid system Hw is parameterized by the ordinary time
variable t ∈ R≥0 := [0,∞) and by the discrete jump variable j ∈ N := {0, 1, 2, ...}, and
defined on a hybrid time domain E ⊂ R≥0 × N; see [26, Definition 2.3]. The set E is a
hybrid time domain if, for each (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ..., J}) can be written as
∪J−1
j=0 ([tj , tj+1], j) for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ . A hybrid

arc φ is a function on a hybrid time domain if, for each j ∈ N, t 7→ φ(t, j) is absolutely
continuous on the interval Ij := {t : (t, j) ∈ domφ}.

The data of hybrid systemHw in (1) is defined by the flow set Cw ⊂ Rn×Wc, the flow map
Fw : Rn ×Wc ⇒ Rn, the jump set Dw ⊂ Rn ×Wd, and the jump map Gw : Rn ×Wd ⇒ Rn.
The space for the state x is Rn and the space for the disturbance w = (wc, wd) is W =
Wc ×Wd ⊂ Rdc × Rdd. The sets Cw and Dw define conditions that x and w should satisfy
for flows or jumps to occur. In this paper, we assume domFw ⊃ Cw and domGw ⊃ Dw. A
hybrid disturbance w is a function on a hybrid time domain that, for each j ∈ N, t 7→ w(t, j)
is Lebesgue measurable and locally essentially bounded on the interval {t : (t, j) ∈ domw}.
When w(t, j) = 0 for every (t, j) ∈ domw (which means that there is no disturbance), the
system Hw reduces to the nominal hybrid system introduced in [26], which is given by

H

{
x ∈ C ẋ ∈ F (x)

x ∈ D x+ ∈ G(x).
(2)

For convenience, we define the projection of S ⊂ Rn×Wc onto Rn as Πw
c (S) := {x ∈ Rn :

∃wc ∈ Wc s.t. (x, wc) ∈ S}, and the projection of S ⊂ Rn ×Wd onto Rn as Πw
d (S) := {x ∈

Rn : ∃wd ∈ Wd s.t. (x, wd) ∈ S}. Given sets Cw and Dw, the set-valued maps Ψw
c : Rn ⇒ Wc

and Ψw
d : Rn ⇒ Wd are defined for each x ∈ Rn as Ψw

c (x) := {wc ∈ Wc : (x, wc) ∈ Cw} and
Ψw

d (x) := {wd ∈ Wd : (x, wd) ∈ Dw}, respectively.
As an extension to the definition of solution to (2), namely, Definition .1, solution pairs

to a hybrid system Hw as in (1) are defined as follows.

6



Definition 2.1 (solution pairs to Hw) A pair (φ, w) consisting of a hybrid arc φ and a
hybrid disturbance w = (wc, wd), with domφ = domw(= dom(φ, w)), is a solution pair to
the hybrid system Hw in (1) if (φ(0, 0), wc(0, 0)) ∈ Cw or (φ(0, 0), wd(0, 0)) ∈ Dw, and

(Sw1) for all j ∈ N such that Ij has nonempty interior

(φ(t, j), wc(t, j)) ∈ Cw for all t ∈ int Ij,

dφ

dt
(t, j) ∈ Fw(φ(t, j), wc(t, j)) for almost all t ∈ Ij,

(Sw2) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

(φ(t, j), wd(t, j)) ∈ Dw

φ(t, j + 1) ∈ Gw(φ(t, j), wd(t, j)).

In addition, a solution pair (φ, w) to Hw is

• nontrivial if dom(φ, w) contains at least two points;

• complete if dom(φ, w) is unbounded;

• maximal if there does not exist another (φ, w)′ such that (φ, w) is a truncation of (φ, w)′

to some proper subset of dom(φ, w)′. �

We use SHw
to represent the set of all maximal solution pairs to the hybrid system Hw and,

given K ⊂ Rn, SHw
(K) denotes the set that includes all maximal solution pairs (φ, w) to

the hybrid system Hw with φ(0, 0) ∈ K.

3 Robust and Nominal Forward Invariance

In this section, we formally introduce the notions of robust and nominal forward invariance
of sets for system Hw given as in (1) and H given as in (2), respectively. In particular, a
set K enjoys robust forward invariance when the state evolution begins from K and stays
within K regardless of the value of the disturbance w. First, we introduce weak versions of
such forward invariance notions for Hw.

Definition 3.1 (robust weak forward (pre-)invariance of a set) The set K ⊂ Rn is said to
be robustly weakly forward pre-invariant for Hw if for every x ∈ K there exists one solution
pair (φ, w) ∈ SHw

(x) such that rgeφ ⊂ K. The set K ⊂ Rn is said to be robustly weakly
forward invariant for Hw if for every x ∈ K there exists a complete (φ, w) ∈ SHw

(x) such
that rgeφ ⊂ K. �

The following notions are considered stronger than the ones in Definition 3.1 because all
maximal solution pairs that start from the set K are required to stay within K.
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Definition 3.2 (robust forward (pre-)invariance of a set) The set K ⊂ Rn is said to be
robustly forward pre-invariant for Hw if every (φ, w) ∈ SHw

(K) is such that rgeφ ⊂ K. The
set K ⊂ Rn is said to be robustly forward invariant for Hw if for every x ∈ K there exists a
solution pair to Hw and every (φ, w) ∈ SHw

(K) is complete and such that rgeφ ⊂ K. �

In the upcoming second part of this paper, Definition 3.1 and Definition 3.2 are presented
in the context of robust controlled invariance properties of sets for Hu,w under the effect of
a given state-feedback pair.

For hybrid systems without disturbances, i.e., H given as in (2), the forward invariance
notions introduced above reduce to the ones below; see also [30, Definition 2.3 - Definition
2.6].

Definition 3.3 (nominal forward invariance of a set) The set K ⊂ Rn is said to be

• weakly forward pre-invariant for H if for every x ∈ K there exists one φ ∈ SH(x) with
rgeφ ⊂ K;

• weakly forward invariant for H if for every x ∈ K there exists one complete solution
φ ∈ SH(x) with rgeφ ⊂ K;

• forward pre-invariant for H if every φ ∈ SH(K) has rgeφ ⊂ K;

• forward invariant for H if for every x ∈ K there exists one solution, and every φ ∈ SH(K)
is complete and has rgeφ ⊂ K.

The relationship among these four notions is summarized in the diagram in Figure 1.

+ Completeness+ Completeness

+∀φ ∈ SH(K)

+∀φ ∈ SH(K)

Weak Forward

pre-Invariance

Weak Forward

Invariance

Forward

pre-Invariance

Forward

Invariance

Figure 1: Relationships of the notions of forward invariance for a set K.

Note that some of the proposed notions require solutions to exist and maximal solutions
to be complete. Hence, inspired by the conditions guaranteeing existence of solutions to H
(see Proposition .2), we provide the following result for guaranteeing existence of nontrivial
solution pairs to Hw and characterizing their possible behavior.

Proposition 3.4 (basic existence under disturbances) Consider a hybrid system Hw =
(Cw, Fw, Dw, Gw) as in (1). Let ξ ∈ Πw

c (Cw) ∪ Πw
d (Dw). If ξ ∈ Πw

d (Dw), or
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(VCw) there exist ε > 0, an absolutely continuous function z̃ : [0, ε] → Rn with z̃(0) = ξ,
and a Lebesgue measurable and locally essentially bounded function w̃c : [0, ε] →
Wc such that (z̃(t), w̃c(t)) ∈ Cw for all t ∈ (0, ε) and ˙̃z(t) ∈ Fw(z̃(t), w̃c(t)) for
almost all t ∈ [0, ε], where w̃c(t) ∈ Ψw

c (z̃(t)) for every t ∈ [0, ε],

then, there exists a nontrivial solution pair (φ, w) from the initial state φ(0, 0) = ξ. If
ξ ∈ Πw

d (Dw) and (VCw) holds for every ξ ∈ Πw
c (Cw) \Π

w
d (Dw), then there exists a nontrivial

solution pair to Hw from every initial state ξ ∈ Πw
c (Cw) ∪ Πw

d (Dw), and every solution pair

(φ, w) ∈ SHw
(Πw

c (Cw) ∪ Πw
d (Dw)) from such points satisfies exactly one of the following:

a) the solution pair (φ, w) is complete;

b) (φ, w) is not complete and “ends with flow”: with (T, J) = sup dom(φ, w), the interval IJ

has nonempty interior, and either

b.1) IJ is closed, in which case either

b.1.1) φ(T, J) ∈ Πw
c (Cw) \ (Π

w
c (Cw) ∪Πw

d (Dw)), or

b.1.2) from φ(T, J) flow within Πw
c (Cw) is not possible, meaning that there is no ε > 0,

absolutely continuous function z̃ : [0, ε] → Rn and a Lebesgue measurable and
locally essentially bounded function w̃c : [0, ε] → Wc such that z̃(0) = φ(T, J),
(z̃(t), w̃c(t)) ∈ Cw for all t ∈ (0, ε), and ˙̃z(t) ∈ Fw(z(t), w̃c(t)) for almost all
t ∈ [0, ε], where w̃c(t) ∈ Ψw

c (z̃(t)) for every t ∈ [0, ε], or

b.2) IJ is open to the right, in which case (T, J) /∈ dom(φ, w) due to the lack of existence
of an absolutely continuous function z̃ : IJ → Rn and a Lebesgue measurable and
locally essentially bounded function w̃c : [0, ε] → Wc satisfying (z̃(t), w̃c(t)) ∈ Cw for
all t ∈ intIJ , ˙̃z(t) ∈ Fw(z̃(t), w̃c(t)) for almost all t ∈ IJ , and such that z̃(t) = φ(t, J)
for all t ∈ IJ , where w̃c(t) ∈ Ψw

c (z̃(t)) for every t ∈ [0, ε];

c) (φ, w) is not complete and “ends with jump”: with (T, J) = sup dom(φ, w) ∈ dom(φ, w),
(T, J − 1) ∈ dom(φ, w), and either

c.1) φ(T, J) /∈ Πw
c (Cw) ∪ Πw

d (Dw), or

c.2) φ(T, J) ∈ Πw
c (Cw),

2 and from φ(T, J) flow within Πw
c (Cw) as defined in b.1.2) is not

possible.

Proof To prove the existence of a nontrivial solution pair from ξ, we show that under the
given assumptions, a solution pair (φ, w) satisfying the conditions in Definition 2.1 can be
constructed such that dom(φ, w) contains at least two points. We have the following cases:

i) If ξ ∈ Πw
d (Dw), then there exist w∗

d such that (ξ, w∗
d) ∈ Dw by definition of Πw

d (Dw).
Let the hybrid disturbance w1 = (wc, wd) be defined on domw1 := {(0, 0)} ∪ {(0, 1)} as
wd(0, 0) = w∗

d and wd(0, 1) = a, where a ∈ Wd and wc can be arbitrary. By definition of the

2As a consequence of φ(T, J) /∈ Πw
d (Dw), φ(T, J) ∈ Πw

c (Cw) \Πw
d (Dw) is under the condition in case c.2).
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jump map Gw, there exists b ∈ Gw(ξ, w
∗
d). Let φ1 be a hybrid arc with domφ1 = domw1

defined as φ1(0, 0) = ξ and φ1(0, 1) = b. Then, (φ1, w1) is a nontrivial solution pair to
Hw;

ii) If ξ ∈ Πw
c (Cw) \ Πw

d (Dw) and (VCw) holds, there exist ε > 0, an absolutely continuous
function z̃ : [0, ε] → Rn and a Lebesgue measurable and locally essentially bounded func-
tion w̃c : [0, ε] → Wc with z̃(0) = ξ and w̃c(0) ∈ Ψw

c (ξ) satisfying (Sw1) in Definition 2.1.
Let the hybrid disturbance w2 = (wc, wd) be defined on domw2 := [0, ε) × {0} with
wc(t, 0) = w̃c(t) for every t ∈ [0, ε) and let wd be given arbitrarily. Let the hybrid arc φ2

be defined on domφ2 = domw2 as φ2(t, 0) = z̃(t) for every t ∈ [0, ε). Then, (φ2, w2) is a
nontrivial solution pair to Hw.

Item i) and ii) imply the existence of a nontrivial solution pair to Hw from every ξ ∈ Πw
d (Dw)

and every ξ ∈ Πw
c (Cw) \ Π

w
d (Dw), respectively, that is, for every ξ ∈ Πw

c (Cw) ∪ Πw
d (Dw).

Next, we prove that every maximal solution pair (φ, w) to Hw satisfies exactly one of the
properties in a), b), and c). Suppose the nontrivial solution pair (φ, w) is not complete, i.e.,
case a) does not hold and either b) or c) holds. We show that only one of these properties
holds. Let (T, J) = sup dom(φ, w).

If (T, J) ∈ dom(φ, w), then IJ is closed and case b.2) does not hold, for which we have
either

iii) IJ is a singleton; or

iv) IJ has nonempty interior.

If iii) is true, the solution pair (φ, w) ends with a jump and either φ(T, J) /∈ Πw
c (Cw) ∪

Πw
d (Dw), which directly leads to case c.1), or φ(T, J) ∈ Πw

c (Cw) ∪ Πw
d (Dw). The latter case

leads to c.2) only since otherwise (φ, w) can be extended by flow via the functions z̃ and
w̃c as described in b.1.2) or by a jump as described in item i) above with an arbitrary
wd ∈ Ψw

d (x). If iv) is true, then, by item (Sw1) in Definition 2.1, case b.1.1) holds, i.e.,

φ(T, J) ∈ Πw
c (Cw) \ (Πw

c (Cw) ∪ Πw
d (Dw)), or case b.1.2) holds, namely, the solution pair

(φ, w) cannot be extended via flows. In summary, if (T, J) ∈ domφ, then only one among
b.1.1), b.1.2), c.1) and c.2) may hold.

If (T, J) /∈ dom(φ, w), then IJ is open to the right, and by maximality of (φ, w), b.2)
holds.

Proposition 3.4 presents conditions guaranteeing existence of nontrivial solution pairs to
Hw from every initial state ξ ∈ Πw

c (Cw)∪Πw
d (Dw), as well as characterizes all possibilities for

maximal solution pairs. In particular, maximal solution pairs that are not complete can either
“end with flow” or “end with jump.” In short, the former means that IJ has a nonempty
interior over which (φ(t, J), wc(t, J)) ∈ Cw for all t ∈ intIJ and dφ

dt
(t, J) ∈ Fw(φ(t, J), wc(t, J))

for almost all t ∈ intIJ , where (T, J) = sup dom(φ, w). In particular, case b.1.1) corresponds
to a solution pair ending at the boundary of Cw, case b.1.2) describes the case of a solution
pair ending after flowing and at a point, where continuing to flow is not possible, while case
b.2) covers the case of a solution pair escaping to infinity in finite time. The case “end with

10



jump” means that (T, J), (T, J − 1) ∈ dom(φ, w), (φ(T, J − 1), wd(T, J − 1)) ∈ Dw, and the
solution pair ends either with φ(T, J) ∈ Πw

c (Cw)∪Πw
d (Dw) due to flow being not possible or

with φ(T, J) /∈ Πw
c (Cw) ∪Πw

d (Dw), where (T, J) = sup dom(φ, w).

Remark 3.5 Case c.1) in Proposition 3.4 is not possible when Gw(Dw) ⊂ Πw
c (Cw)∪Π

w
d (Dw).

3

Moreover, when the disturbance signal wc is generated by an exosystem of the form4

ẇc ∈ Fe(wc) wc ∈ Wc, (3)

(VCw) can be guaranteed if, for each (ξ, w′
c), there exists a neighborhood U such that for

every (x, wc) ∈ U ∩ Cw, (Fw(x, wc), Fe(wc)) ∩ TCw
(x, wc) 6= ∅, provided that Cw is closed and

(Fw, Fe) is outer semicontinuous and locally bounded with nonempty and convex values on
Cw.

4 Sufficient Conditions for Robust and Nominal For-

ward Invariance

Definition 3.1 and Definition 3.2 state that a set enjoys robust forward invariance properties
when the state evolution stays within the set regardless of the value of the disturbance.
When disturbance signals are identically zero, Definition 3.3 reduces to nominal forward
invariance properties for H given as in (2). Verifying these properties for a given set using
the definitions requires to solve for solution pairs to Hw, and solutions to H, respectively,
explicitly. To circumvent that challenge, we present, when possible, solution-independent
conditions to guarantee each notion.

For clarity of exposition, in Section 4.1, we provide sufficient conditions for the nominal
cases, of which the preliminary version is presented in [30]. Then, in Section 4.3, these
conditions are extended to hybrid systems with generic disturbance signals, i.e., Hw given
as in (1).

4.1 Sufficient Conditions for Nominal Forward Invariance Prop-
erties for H

We present the sufficient conditions for forward invariance of a given set K for H that
involve the data (C, F,D,G). For the discrete dynamics, namely, the jumps, such conditions
involve the understanding of where G maps the state to. Inspired by the well-known Nagumo
Theorem [11], for the continuous dynamics, namely, the flows, our conditions use the concept

3Gw(Dw) = {x′ ∈ Rn : ∃(x,wd) ∈ Dw, x
′ ∈ Gw(x,wd)}

4The disturbance wc generated by (3) are not necessarily differentiable but rather, absolutely continuous
over each interval of flow. For examples of exosystems given as in (3) and having also jumps, see [31].
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of tangent cone to the closed set K. The tangent cone at a point x ∈ Rn of a closed set
K ⊂ Rn is defined using the Dini derivative of the distance to the set, and is given by5

TK(x) =

{
ω ∈ Rn : lim inf

τց0

|x+ τω|K
τ

= 0

}
. (4)

In the literature (see, e.g., [32, Definition 4.6] and [23]), this tangent cone is also known as
the sequential Bouligand tangent cone or contingent cone. In contrast to the Clarke tangent
cone introduced in [32, Remark 4.7], which is always a closed convex cone for every x ∈ K,
the tangent cone (possibly nonconvex) we consider in this work includes all vectors that
point inward to the set K or that are tangent to the boundary of K.6

Our sufficient conditions for forward invariance require part of the data of H and the set
K to satisfy the following mild assumption.

Assumption 4.1 The sets K,C, and D are such that K ⊂ C ∪D and that K ∩C is closed.
The map F : Rn ⇒ Rn is outer semicontinuous, locally bounded relative to K ∩C, and F (x)
is nonempty and convex for every x ∈ K ∩ C.

The following result is a consequence of the forthcoming Theorem 4.11 in Section 4.3 and
its proof will be delayed to that section. Sufficient conditions for a given set K to be weakly
forward pre-invariant and weakly forward invariant are presented.

Theorem 4.2 (nominal weak forward pre-invariance and weak forward invariance) Given
H = (C, F,D,G) as in (2) and a set K, suppose K,C,D, and F satisfy Assumption 4.1.
The set K is weakly forward pre-invariant for H if the following conditions hold:

4.2.1) For every x ∈ K ∩D, G(x) ∩K 6= ∅;

4.2.2) For every x ∈ Ĉ \D, F (x) ∩ TK∩C(x) 6= ∅;

where Ĉ := ∂(K ∩ C) \ L and L := {x ∈ ∂C : F (x) ∩ TC(x) = ∅}. Moreover, K is weakly
forward invariant for H if, in addition, K ∩ L ⊂ D and, with K⋆ = K \D,

N⋆) for every φ ∈ SH(K
⋆) with rgeφ ⊂ K, case b.2) in Proposition .2 does not hold.

The next result, which is a consequence of Theorem 4.15 provides sufficient conditions
for a set K to be forward pre-invariant and forward invariant for H.

Theorem 4.3 (nominal forward pre-invariance and forward invariance) GivenH = (C, F,D,G)
as in (2) and a set K ⊂ Rn. Suppose K,C,D, and F satisfy Assumption 4.1 and that F

is locally Lipschitz on C. Let Ĉ and L be given as in Theorem 4.2. The set K is forward
pre-invariant for H if the following conditions hold:

5In other words, ω belongs to TK(x) if and only if there exist sequences τi ց 0 and ωi → ω such that
x + τiωi ∈ K for all i ∈ N; see also [8, Definition 1.1.3]. The latter property is further equivalent to the
existence of sequences xi ∈ K and τi > 0 with xi → x, τi ց 0 such that ω = limi→∞(xi − x)/τi.

6Note that, for a convex set, the Bouligand tangent cone coincides with the Clarke tangent cone.
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4.3.1) G(K ∩D) ⊂ K;

4.3.2) For every x ∈ Ĉ, F (x) ⊂ TK∩C(x).

Moreover, K is forward invariant for H if, in addition, K ∩ L ⊂ D and, with K⋆ = K ∩C,
item N⋆) in Theorem 4.2 holds.

Remark 4.4 Some of the conditions in Theorem 4.2 and Theorem 4.3 are weaker than those
required by results in [30]. The construction of the set L in items 4.2.2) and 4.3.2) is inspired
by the viability domain in [8, Definition 1.1.5]. Note that when N⋆) holds, completeness of
maximal solutions is guaranteed by ensuring that K∩L ⊂ D, which guarantees that solutions
can continue to evolve from L via a jump.

The following example is used to illustrate Theorem 4.2 and Theorem 4.3.

Example 4.5 (solutions with finite escape time) Consider the hybrid system H = (C, F,D,G)
in R2 with system data given by

F (x) :=

[
1 + x21

0

]
∀x ∈ C := {x ∈ R2 : x1 ∈ [0,∞), x2 ∈ [−1, 1]},

G(x) :=

[
x1 + B

x2

]
∀x ∈ D := {x ∈ R2 : x1 ∈ [0,∞), x2 = 0}.

Let K = C and note the following properties of maximal solutions to H:

• For some x ∈ K, there exists φ = (φ1, φ2) ∈ SH(x) with rgeφ ⊂ K, but is not complete
due to lim

tցt∗
φ1(t, 0) = ∞ with t∗ < ∞; for instance, from x = (0, 1), the solution given by

φ(t, 0) = (tan(t), 1) for every (t, 0) ∈ domφ has its φ1 component escape to infinite as t
approaches t∗ = π/2;

• From points in D ⊂ K, there exist maximal solutions that leave K and are not complete:
such solutions end after a jump because their x1 component is mapped outside of K.

Thus, we verify weak forward pre-invariance of K by applying Theorem 4.2. The sets K,C,D
and the map F satisfy Assumption 4.1 by construction and condition 4.2.1) holds for H by

definition of G,D and K. Since L = ∅, condition 4.2.2) holds because for every x ∈ Ĉ, F (x)
points horizontally, and

TK∩C(x) =





R× R≤0 if x ∈ {x ∈ R2 : x1 ∈ (0,∞), x2 = 1}

R× R≥0 if x ∈ {x ∈ R2 : x1 ∈ (0,∞), x2 = −1}

R≥0 × R≤0 if x = (0, 1)

R≥0 × R if x ∈ {x ∈ R2 : x1 = 0, x2 ∈ (−1, 1)}

R≥0 × R≥0 if x = (0,−1).
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x1

x2
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0

C

Dxv
TK∩C(xv)

xu

TK∩C(xu)

xl

TK∩C(xl)

Figure 2: Flow and jump sets of the system in Example 4.5.

Tangent cones of K ∩ C at points xu, xv and xl of K are shown in Figure 2.
Now, consider the same data but with G replaced by G′(x) = G(x) ∩ (R≥0 × R) for each

x ∈ D. The set K = C is forward pre-invariant for this system. This is because maximal
solutions are not able to jump out of K as G′ only maps x1 components of solutions to
[0,+∞). More precisely, the conditions in Theorem 4.3 hold: we have G′(D ∩K) ⊂ K, and
Assumption 4.1 and condition 4.3.2) hold as discussed above. △

Remark 4.6 The hybrid inclusions framework allows for an overlap between the flow set C
and the jump set D. As a result, the proposed conditions are not necessary to induce forward
invariance properties of sets for H. When existence of nontrivial solutions and completeness
are not required for every point in K, as in the “pre” notions, some of these conditions are
necessary. In fact, suppose K,C,D, and F satisfy Assumption 4.1:

• If K is weakly forward pre-invariant for H, then for every x ∈ (K ∩D)\C, G(x)∩K 6= ∅.

• If K is forward pre-invariant or forward invariant for H, then condition 4.3.1) in Theo-
rem 4.3 holds.

• If K is weakly forward invariant or forward invariant for H, then for every x ∈ K \D,
F (x) ∩ TK∩C(x) 6= ∅.7

Moreover, unlike [23, Theorem 3], when the flow map F is Marchaud8 and Lipschitz as
defined in Definition .4, condition F (x) ⊂ TK∩C(x) for every x ∈ K \D is not necessary as

7A similar claim is presented in [8, Proposition 3.4.1] for continuous-time system.
8A map F is Marchaud on K ∩ C when Assumption 4.1 holds and F has linear growth on K ∩ C; see

[8, Definition 2.2.4].
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the following example shows. Consider H in (2) with data F (x) =

{
1 if x > −1

[−1, 1] if x = −1
for

each x ∈ C := [−1, 1], G(x) := {−1, 0} for each x ∈ D := {1}. By inspection, the set K = C
is forward invariant for H and F is Marchaud and Lipschitz. However, at x = −1 ∈ K \D,
F (−1) ⊃ −1 but −1 /∈ TK∩C(−1).

4.2 Sufficient Conditions for N⋆)

In Theorem 4.2 and Theorem 4.3, item N⋆) excludes case b.2) in Proposition .2, where
solutions escape to infinity in finite time during flows. In fact, when every solution φ to
ẋ ∈ F (x) with φ(0, 0) ∈ K⋆ does not have a finite escape time, namely, there does not exist
t∗ <∞ such that lim

tցt∗
|φ(t)| = ∞, item N⋆) holds forH andK⋆ as defined in Theorem 4.2 and

Theorem 4.3, respectively. Although, in principle, such a condition is solution dependent,
it can be guaranteed without solving for solutions when F is single valued and globally
Lipschitz. Moreover, we provide several other alternatives in the next result.

Lemma 4.7 (sufficient conditions for completeness) Given H = (C, F,D,G) and a set K ⊂
Rn, suppose K,C,D, and F satisfy Assumption 4.1, set D is closed and item 4.2.2) in
Theorem 4.2 holds.9 Condition N⋆) holds if

4.7.1) K⋆ is compact; or

4.7.2) F has linear growth on K⋆.

Proof Let φ ∈ SH(K
⋆) with rgeφ ⊂ K be as described by b.2) in Proposition .2; namely,

t 7→ φ(t, J) defined on IJ , where (T, J) = sup domφ, T+J <∞ and, for some tJ , IJ = [tJ , T ).
Since t 7→ φ(t, J) is locally absolutely continuous on IJ , lim

t→T
φ(t, J) is finite or infinity. If it

is finite, then t 7→ φ(t, j) can be extended to IJ , which contradicts with b.2). Then, it has to
be that lim

t→T
φ(t, J) is infinity. When 4.7.1) holds, lim

t→T
φ(t, J) being infinity is a contradiction

since K⋆ is compact. If 4.7.2) holds, [23, Lemma 1]10 implies that t 7→ φ(t, J) is either:

• defined over [tJ ,∞) with values in K ∩ C;11 or

• defined over [tJ , T ] with T ≥ tJ , φ(T, J) ∈ D and φ(t, J) ∈ K ∩ C for every t ∈ [tJ , T ].

In either case, we have a contradiction.

The next example illustrates Theorem 4.2, Theorem 4.3 and Lemma 4.7.

9When 4.7.1) holds, condition 4.2.2) in Theorem 4.2 is not required.
10The sets X,K,C in [23, Lemma 1] are C, K ∩ C, D (or ∅ when applied for Theorem 4.3), respectively,

in our context.
11This is the only case that applies for Theorem 4.3.
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Example 4.8 (weakly forward invariant set) Consider the hybrid system H = (C, F,D,G)
in R2 given by

F (x) := (x2,−x1) ∀x ∈ C;

G(x) := (−0.9x1, x2) ∀x ∈ D,

where C := {x ∈ R2 : |x| ≤ 1, x2 ≥ 0} and D := {x ∈ R2 : x1 ≥ −1, x2 = 0}.

x1

x2

1-1 0

C

D

Figure 3: Sets and directions of flows/jumps in Example 4.8.

The set K1 = ∂C is weakly forward invariant for H by Theorem 4.2. More precisely,
for every x ∈ K1 ∩ D, G(x) ∈ K1; and for every x ∈ ∂(K1 ∩ C) \ (D ∪ L) = {x ∈ R2 :
|x| = 1, x2 > 0}, since 〈∇(x21 + x22 − 1), F (x)〉 = 0, applying item 1) in Lemma .5, we have
F (x) ∈ TK1∩C(x). In addition, K1 ∩ C = ∂C is compact, which implies condition N⋆) holds
by Lemma 4.12. Thus, for every x ∈ K1, there exists one complete solution that stays in K1.
For example, for every x ∈ [−1, 1]× {0}, there exists one complete solution that is discrete
and stays in K1 (from the origin there is also a complete continuous solution that remains
at the origin), but also there exist maximal solutions that flow inside {x ∈ R2 : |x| < 1} and
leave K1.

Now consider K2 = C. It is forward invariant for H by applying Theorem 4.3. In fact,
using the observations above, item 4.3.2) can be verified via Lemma .5 since 〈∇(x21 + x22 −
1), F (x)〉 = 0 for every x ∈ ∂(K2 ∩ C) \ L = {x ∈ R2 : |x| = 1, x2 > 0} ∪ ([−1, 0]× {0}). △

Note that one can replace condition 4.3.2) in Theorem 4.3 by

4.3.2
′

) For every x ∈ ∂(K ∩ C),

F (x) ⊂ TK∩C(x) if x /∈ ∂C ∩D (5)

F (x) ∩ (TC(x) \ TK∩C(x)) = ∅ if x ∈ ∂C ∩D. (6)
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Note that assumption (6) is important as in some cases, having item (5) only leads to
solutions that escape the set K by flowing as shown in the following example. Consider the
hybrid system H on R2 with

F (x) = (x2,−γ) ∀x ∈ C := {x ∈ R2 : x1x2 ≥ 0}

G(x) = x ∀x ∈ D := {x ∈ R2 : x1 ≥ 0, x2 = 0},

where γ > 0. The set K = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0} is weakly forward invariant, and the
sets K,C,D and the map F satisfies (5). However, at the origin, we have F (0) = (0,−γ)
and

TC(0) = (R≥0 × R≥0) ∪ (R≤0 × R≤0),

TK∩C(0) = R≥0 × R≥0.

Hence, at the origin, one solution can flow into C \K (the third quadrant) because F (0) ∈
TC(0) \ TK∩C(0).

The following example is an application of Theorem 4.3 and Lemma 4.7.

Example 4.9 (forward invariant set) Consider the hybrid system given by

H




x ∈ C ẋ = F (x) :=

[
−|x1|x2

0

]

x ∈ D x+ = G(x) := x,

where the flow set is C = {x ∈ R2 : |x| ≤ 1, x1x2 ≥ 0} and the jump set is D = {x ∈ R2 :
|x| ≤ 1, x1x2 ≤ 0}. We observe that during flow, solutions evolve continuously within the
unit circle centered at the origin; while at jumps, solutions remain at the current location.
Applying Theorem 4.3, we show that the set K1 = C1∪D1 is forward invariant for H, where
C1 = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, |x| ≤ 1} and D1 = {x ∈ R2 : x1 ≤ 0, x2 ≥ 0, |x| ≤ 1}. By
construction, K1, C,D and F satisfy Assumption 4.1. Condition 4.3.1) holds since G maps
the state to its current value. Condition 4.3.2) holds since

• for every x ∈ {x ∈ ∂C1 : |x| = 1}, since x1x2 ≥ 0,

〈∇(x21 + x22), F (x)〉 = −2|x1|x1x2 ≤ 0;

• for every x ∈ {x ∈ ∂C1 : |x| 6= 1}, F (x) = (0, 0), which leads to F (x) ∈ TK1∩C(x).

Finally, applying Lemma 4.7, N⋆) holds since K1 ∩ C is compact. △

In Example 4.9, the set K1 is forward invariant for H as shown therein. When arbitrarily
small disturbances are introduced, solution pairs may escape the set of interest. In particular,
we revisit Example 4.9 with disturbances in the next section, and show that K1 is only
weakly forward invariant, uniformly in the given disturbances. The forthcoming results in
Section 4.3 are useful to verify such properties of sets for hybrid systems Hw given as in (1).
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4.3 Sufficient Conditions for Robust Forward Invariance Proper-
ties for Hw

As an extension to the nominal notions, the robust forward invariance notions for Hw in
Definition 3.1 - 3.2 capture four types of forward invariance properties, some of which are
uniform over disturbances w for Hw. In this section, Theorem 4.11 and Theorem 4.15
extend Theorem 4.2 and Theorem 4.3 to hybrid systems Hw given in (1). These results will
be exploited in forward invariance-based control design for hybrid systems (with and without
disturbances) in Part II of this work. Similar to the results in Section 4.1, throughout this
section, the following version of Assumption 4.1 with disturbances is assumed.

Assumption 4.10 The sets K,Cw, and Dw are such that K ⊂ Πw
c (Cw)∪Πw

d (Dw) and that
K∩Πw

c (Cw) is closed. The map Fw is outer semicontinuous, locally bounded on (K×Wc)∩Cw,
and Fw(x, wc) is nonempty and convex for every (x, wc) ∈ (K × Wc) ∩ Cw. For every
x ∈ Πw

c (Cw), 0 ∈ Ψw
c (x).

Assumption 4.10 guarantees that all points in the set to render invariant, namely, K, are
either in the projections to the state space of Cw and Dw, which is necessary for solutions
fromK to exist. The closedness of the set K∩Πw

c (Cw) and the regularity properties of Fw are
required to obtain conditions in terms of the tangent cone; see, also, [26, Proposition 6.10].
The assumption of 0 ∈ Ψw

c (x) for every x ∈ Πw
c (Cw) usually holds for free since systems with

disturbances, such as Hw, typically reduce to the nominal system, in our case H, when the
disturbances vanish. A similar property could be enforced for the disturbance wd, but such
an assumption is not needed in our results.

Next, we propose sufficient conditions to guarantee robust weak forward pre-invariance
and robust weak forward invariance of a set for Hw.

Theorem 4.11 (sufficient conditions for robust weak forward (pre-) invariance of a set)
Given Hw = (Cw, Fw, Dw, Gw) as in (1) and a set K ⊂ Rn, suppose Cw, Fw, Dw and K
satisfy Assumption 4.10. The set K is robustly weakly forward pre-invariant for Hw if the
following conditions hold:

4.11.1) For every x ∈ K ∩ Πw
d (Dw), ∃wd ∈ Ψw

d (x) such that Gw(x, wd) ∩K 6= ∅;

4.11.2) For every x ∈ Πw
c (Ĉw) \ Π

w
d (Dw), Fw(x, 0) ∩ TK∩Πw

c (Cw)(x) 6= ∅;

where Ĉw := ((∂(K∩Πw
c (Cw))×Wc)∩Cw)\Lw and Lw := {(x, wc) ∈ Cw : x ∈ ∂Πw

c (Cw), Fw(x, wc)∩
TΠw

c (Cw)(x) = ∅}. Moreover, K is robustly weakly forward invariant for Hw if, in addition,

K ∩ Πw
c (Lw) ⊂ Πw

d (Dw) and, with K̃
⋆ = ((K \ Πw

d (Dw))×Wc) ∩ Cw,

⋆) For every (φ, w) ∈ SHw
(Πw

c (K̃
⋆)) with rgeφ ⊂ K, case b.2) in Proposition 3.4 does not

hold.
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Proof Given Cw, Fw, Dw and K satisfying Assumption 4.10, zero disturbance is always
admissible to Hw during continuous evolution of solution pairs. We define a restriction
of Hw by K with zero disturbance during flows as follows: H̃w = (C̃, F̃ , D̃w, Gw), where

C̃ := K ∩Πw
c (Cw), F̃ (x) = Fw(x, 0) for every x ∈ Πw

c (Cw) and D̃w := (K ×Wd)∩Dw. Since

K ⊂ Πw
c (Cw) ∪ Πw

d (Dw), by Definition 2.1, there exists a solution pair to H̃w from every

ξ ∈ K. Let K1 = Πw
d (D̃w), K2 = K \ (Πw

d (D̃w) ∪ Πw
c (Lw)) and K3 = K \ (K1 ∪ K2). By

definition, every ξ ∈ K3 is such that ξ ∈ Πw
c (Lw)\Π

w
d (D̃w) and F̃ (ξ)∩TΠw

c (Cw)(ξ) = ∅. Then,

item (a) in [26, Lemma 5.26] and Definition .1 imply there is only trivial solution from ξ

to H̃w, in which case we have rgeφ ⊂ K. Otherwise, in the case where φ(0, 0) ∈ K1 ∪K2,
we show there exists (φ, w) ∈ SH̃w

that is nontrivial and it has rgeφ ⊂ K when 4.11.1) and
4.11.2) hold true. To this end, we construct a nontrivial solution pair from every ξ ∈ K1∪K2.
Since K1 and K2 are disjoint sets, we have following two cases:

i) when ξ ∈ K1: since K1 ⊂ Πw
d (Dw), a jump is possible from every ξ ∈ K1, i.e., from every

(ξ, wd) ∈ D̃w. Let φa(0, 0) = ξ. By condition 4.11.1), there exists w̃d ∈ Ψw
d (ξ), φa(0, 1) ∈

Gw(ξ, w̃d), such that φa(0, 1) ∈ K.

ii) when ξ ∈ K2: since K ⊂ Πw
c (Cw) ∪ Πw

d (Dw), ξ ∈ Πw
c (Cw) \ Πw

d (Dw) and solution pairs
can only evolve by flowing from ξ. Conditions enforced by Assumption 4.10 imply that
C̃ is closed, F̃ is outer semicontinuous, locally bounded and convex valued on C̃. Since
TC̃(x) = Rn for every x ∈ (intC̃) \ (Πw

d (D̃w) ∪ Πw
c (Lw)), item 4.11.2) implies that F̃ (x) ∩

T
C̃
(x) 6= ∅ for every x ∈ K2. Then, by an application of [26, Proposition 6.10], there exists

a nontrivial solution φb to H̃w from every ξ ∈ K2. By item (S1) in Definition .1, such a
nontrivial solution φb is absolutely continuous on [0, ε], for some ε > 0, with φb(0) = ξ,

φ̇b(t) ∈ F̃ (φb(t)) for almost all t ∈ [0, ε] and φb(t) ∈ C̃ for all t ∈ (0, ε]. By closedness of

C̃, we have φb(t, 0) ∈ K for every t ∈ [0, ε].

The above shows that from every point in K1, solution pairs to H̃w can be extended via
jumps with the state component staying within K using the construction in case i). While
from points in K2, solution pairs can be extended using the construction in case ii) with the
state component staying within K. As a consequence, from every point in K, there exists
at least one (φ̃, w̃) ∈ SH̃w

with rge φ̃ ⊂ K.

Next, we prove that each such (φ̃, w̃) is also maximal to Hw.
12 If (φ̃, w̃) is complete,

then it is already maximal and a solution pair to Hw. Consider the case that (φ̃, w̃) is not

complete. Proceeding by contradiction, suppose (φ̃, w̃) is not maximal for Hw, meaning that

there exists (φ, w) such that φ(t, j) = φ̃(t, j) and w(t, j) = w̃(t, j) for every (t, j) ∈ dom φ̃

and domφ \ dom φ̃ 6= ∅. Let (T, J) = sup dom φ̃. If (T, J) ∈ dom φ̃, then, φ̃(T, J) ∈ K and
we have the two following cases:

• φ̃(T, J) ∈ K1 ∪K2, 4.11.1) and closeness of C̃ imply that, using the arguments in i) and

ii) above, it is possible for φ to satisfy φ(t, j) ∈ K for some (t, j) ∈ domφ \ dom φ̃. By

definition of solution pairs, this contradicts with maximality of (φ̃, w̃) for H̃w.

12During flows, we have (φ̃, 0).
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• φ̃(T, J) ∈ K3, by definition of Lw, Fw(φ̃(T, J), wc) ∩ TΠw
c (Cw)(φ̃(T, J)) = ∅ for every wc ∈

Ψw
c (φ̃(T, J)). Hence, sup domφ = (T, J), which contradicts with the assumption domφ \

dom φ̃ 6= ∅.

If (T, J) /∈ dom φ̃, according to Proposition 3.4, only b.2) holds.13 In such a case, there
is no function z : IJ → Rn satisfying the conditions in b.2) of Proposition 3.4, which are

needed to have a (φ, w) such that domφ \ dom φ̃ 6= ∅. Thus, K is robustly weakly forward
pre-invariant for Hw.

The last claim requires to show that among these maximal solution pairs to Hw that stay
in K for all future time, there exist one complete solution pair from every point in K when, in
addition, (K∩Πw

c (Lw)) ⊂ Πw
d (Dw) and item ⋆) hold. To this end, first, note that the existence

of a nontrivial solution pair to Hw from every x ∈ K follows from (K ∩Πw
c (Lw)) ⊂ Πw

d (Dw),
which implies K3 = ∅. Then, we apply Proposition 3.4 to complete the proof. Proceeding
by contradiction, given any ξ ∈ K, suppose every (φ∗, w∗) ∈ SHw

(ξ) is not complete, i.e.,
(T, J) = sup domφ∗, T + J < ∞, and case a) in Proposition 3.4 does not hold. Such
a solution pair (φ∗, w∗) is not as described in case b.1.1) in Proposition 3.4 due to the
closeness of K ∩ Πw

c (Cw). Case c.1) does not hold for (φ∗, w∗) either, since rgeφ∗ ⊂ K and
K ⊂ Πw

c (Cw) ∪ Πw
d (Dw). Thus, by Proposition 3.4, (φ∗, w∗) can only end as described by

case b.1.2), b.2) or c.2).

• The solution pair ends because the functions described in case b.1.2) or c.2) of Proposi-
tion 3.4, i.e., z̃ does not exist for (φ∗(T, J), w∗(T, J)). However, using the same argument
in item ii) above with w̃c ≡ 0, for every (x, 0) ∈ K1 × 0 there exists z̃ such that b.1.2)
holds, which leads to a contradiction.

• If (φ∗, w∗) is as described by case b.2), φ∗(0, 0) /∈ Πw
c (K̃

⋆) by assumption ⋆). More precisely,
φ∗(0, 0) ∈ K1, hence, the solution pair can be extended following the same construction in
i) above, which contradicts with the maximality of (φ∗, w∗).

Condition 4.11.1) in Theorem 4.11 guarantees that for every x ∈ K ∩ Πw
d (Dw) such

that there exists wd ∈ Ψw
d (x), the jump map contains an element that also belongs to K.

Under the stated assumptions, condition 4.11.2) implies the satisfaction of (VCw) with zero
disturbance wc, which suffices for the purpose of Theorem 4.11 as it is about weak forward
invariance notions. While involving the tangent cone of K ∩ Πw

c (Cw) in condition 4.11.2) is
natural, such solution property is more than needed for robust weak forward pre-invariance
of K as defined in Definition 3.1. Similarly to Lemma 4.7, solution-independent conditions
that imply ⋆) are derived for the disturbance case.

Lemma 4.12 (sufficient conditions for completeness) Given Hw = (Cw, Fw, Dw, Gw) and a
set K ⊂ Rn, suppose K,Cw, Dw, and Fw satisfy Assumption 4.10, set Πw

d (Dw) is closed and
item 4.11.2) in Theorem 4.11 holds. Condition ⋆) in Theorem 4.11 holds if

13Case a) does not hold due to (φ̃, w̃) not being complete, while b.1) and c) do not hold because (T, J) 6∈

dom φ̃.
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4.12.1) K̃⋆ is compact; or

4.12.2) Fw has linear growth on K̃⋆.

The following example illustrates Theorem 4.11.

Example 4.13 (robustly weakly forward invariant set) Consider a variation of hy-
brid system H in Example 4.9 with disturbances given by

Hw




(x, wc) ∈ Cw ẋ = Fw(x, wc) := |x1|

[
−x2

wcx1

]

(x, wd) ∈ Dw x+ ∈ Gw(x, wd) := {R(θ)x : θ ∈ [wd,−wd]},

where R(θ) :=

[
cos θ sin θ
− sin θ cos θ

]
is a rotation matrix, Cw := {(x, wc) ∈ R2 × R : 0 ≤ wc ≤

|x| ≤ 1, x1x2 ≥ 0}, and Dw := {(x, wd) ∈ R2 × R : x1x2 ≤ 0, |x| ≤ 1,−π
4
≤ wd ≤ 0}. As

shown in Figure 4, the projections of Cw and Dw onto R2 are given by Πw
c (Cw) = C1 ∪ C2

on R2 with C2 = {x ∈ R2 : x1 ≤ 0, x2 ≤ 0, |x| ≤ 1} and by Πw
d (Dw) = D1 ∪ D2 with

D2 = {x ∈ R2 : x1 ≥ 0, x2 ≤ 0, |x| ≤ 1}, respectively.14 Based on provided dynamics,
solutions travel counter-clockwise during flows, while they either rotate clockwise or counter-
clockwise during jumps. As a result, solutions can evolve in any of the four quadrants in
R2, either by flow or jump. First, we apply Theorem 4.11 to conclude robust weak forward
invariance of the set K1 = C1 ∪ D1 for Hw. Assumption 4.10 holds for K1, Cw, Dw and
Fw by construction. Since the set Lw is empty, condition 4.11.1) holds since for every
(x, wd) ∈ (K1 ×Wd) ∩Dw, the selection x+ = R(0)x always results in x+ ∈ K1. Condition
4.11.2) holds since, applying item 1) in Lemma .5, for every x ∈ ∂C1 \ Πw

d (Dw), since
x1x2 ≤ 0, we have

〈∇(x21 + x22 − 1), Fw(x, 0)〉 = 2x1(−x2|x1|) + 2x2(wcx1|x1|)

= −2x1x2|x1| ≤ 0.

Then, the robust weak forward invariance of K1 follows from 4.12.2) in Lemma 4.12 and
Theorem 4.11. Note that the property is weak due to the following observations:

• Because of the set-valuedness of the map Gw, there exists a solution pair from a point
ξ1 ∈ D1 that jumps to a point in C2 that is not in K1, as depicted in Figure 4. On the
other hand, from the same point ξ1, there exists a solution pair that keeps jumping from
and to ξ1, and stays within D1 ⊂ K1;

• Because of the overlap between Πw
c (Cw) and Πw

d (Dw), there exists a solution pair that
starts from a point ξ2 ∈ D1 and flows to a point in C2 that is not in K1, as depicted in
Figure 4. On the other hand, the solution pair that jumps from and to ξ2 from ξ2 stays
within D1 ⊂ K1. △
14We use the same definitions for K1, C1, and D1 as in Example 4.9.

21



x1

x2

C1

C2

D1

D2

0 1-1

ξ1

ξ2

Figure 4: Projection onto the state space of flow and jump sets of the system in Example 4.13.
The blue solid arrows indicate possible hybrid arcs during flow, while the red dashed arrows
indicate possible hybrid arcs during jumps.

To derive a set of sufficient conditions guaranteeing the stronger robust forward invariance
property of K, i.e., every solution pair to Hw is such that its state component stays within
the set K, when starting from K, we require the disturbances w and the set K to satisfy
the following assumption.

Assumption 4.14 For every ξ ∈ (∂K) ∩ Πw
c (Cw), there exists a neighborhood U of ξ such

that Ψw
c (x) ⊂ Ψw

c (ξ) for every x ∈ U ∩Πw
c (Cw).

The next result provides conditions implying robust forward pre-invariance and robust for-
ward invariance of a set for Hw.

Theorem 4.15 (sufficient conditions for robust forward (pre-) invariance of a set) Given
Hw = (Cw, Fw, Dw, Gw) as in (1) and a set K ⊂ Rn, suppose Cw, Fw, Dw and K satisfy
Assumption 4.10. Furthermore, suppose the mapping x 7→ Fw(x, wc) is locally Lipschitz
uniformly in wc on Cw. The set K is robustly forward pre-invariant for Hw if the following
conditions hold:

4.15.1) For every (x, wd) ∈ (K ×Wd) ∩Dw, Gw(x, wd) ⊂ K;

4.15.2) For every (x, wc) ∈ Ĉw, Fw(x, wc) ⊂ TK∩Πw
c (Cw)(x),
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where Ĉw and Lw be given as in Theorem 4.11. Moreover, K is robustly forward invariant
for Hw if, in addition, K ∩ Πw

c (Lw) ⊂ Πw
d (Dw) and, with K̃

⋆ = (K ∩ Πw
c (Cw))×Wc) ∩ Cw,

condition ⋆) in Theorem 4.11 holds.

Proof Since condition 4.15.1) and 4.15.2) imply condition 4.11.1) and 4.11.2), respectively,
under given conditions, which include the fact that Cw, Fw, Dw and K satisfy Assump-
tion 4.10, the set K is robustly weakly forward pre-invariant for Hw by Theorem 4.11.

Now we show that every (φ, w) ∈ SHw
(K) has rgeφ ⊂ K. Proceeding by contradiction,

suppose there exists a solution pair (φ, w) ∈ SHw
(K) such that rgeφ \K 6= ∅. Then, there

exists (t∗, j∗) ∈ domφ such that φ(t∗, j∗) 6∈ K, i.e., φ eventually leaves K in finite hybrid
time.15 Then, we have the two following cases:

i) In the case that φ “left K by jumping,” namely, φ(t, j) ∈ K for all (t, j) ∈ domφ with
t+ j < t∗+ j∗, (φ(t∗, j∗− 1), wd) ∈ Dw with φ(t∗, j∗) /∈ K for some wd ∈ Ψw

d (φ(t
∗, j∗− 1)).

This contradicts item 4.15.1). More precisely, since φ(t∗, j∗−1) ∈ K∩Πw
d (Dw), item 4.15.1)

implies that φ(t∗, j∗) ∈ Gw(φ(t
∗, j∗−1), wd(t

∗, j∗−1)) ⊂ K for every wd ∈ Ψw
d (φ(t

∗, j∗−1)).
Thus, φ did not leave K by jumping. Then, it must be the case that φ left K by flowing,
which is treated in the next item.

ii) In the case that φ “left K by flowing,” namely, there exists a hybrid time instant (τ ∗, j∗) ∈
domφ such that φ(t, j∗) ∈ Πw

c (Cw) \ K for all t ∈ (τ ∗, t∗] and t∗ − τ ∗ is arbitrarily
small and positive. Moreover, by closedness of K ∩ Πw

c (Cw), we suppose that φ(τ ∗, j∗) ∈
(∂K) ∩Πw

c (Cw).
16 Let t 7→ χ(t) ∈ K ∩ Πw

c (Cw) be such that for every t ∈ [τ ∗, t∗]

|z(t)|K∩Πw
c (Cw) = |z(t)− χ(t)|, (7)

where z(t) = φ(t, j∗) for all t ∈ [τ ∗, t∗]. Such points exist because of the closedness of
K ∩ Πw

c (Cw). By definition of solution pairs to Hw, the function t 7→ |z(t)|K∩Πw
c (Cw) is

absolutely continuous. Thus, for almost every t ∈ [τ ∗, t∗], d
dt
|z(t)|K∩Πw

c (Cw) exists and
equals to the Dini derivative of |z(t)|K∩Πw

c (Cw). Let t be such that both d
dt
|z(t)|K∩Πw

c (Cw)

and ż(t) exist. We have

d

dt
|z(t)|K∩Πw

c (Cw)

= lim inf
hց0

|z(t) + hż(t)|K∩Πw
c (Cw) − |z(t)|K∩Πw

c (Cw)

h
,

15Note that when rgeφ ⊂ K and lim
t+j→supt domφ+supj domφ

φ(t, j) = ∞ (that is, φ stays in K but escapes

to infinity, potentially in finite hybrid time) corresponds to a solution that satisfies the definition of forward
invariance for K.

16By definition of solution pair, it is the case that φ left K ∩ Πw
c (Cw) and entered Πw

c (Cw) \ K passing
through (∂K) ∩ Πw

c (Cw).
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which, by definition of χ(t) and (7), satisfies

|z(t) + hż(t)|K∩Πw
c (Cw) − |z(t)|K∩Πw

c (Cw)

h

≤
|z(t)− χ(t)|+ |χ(t) + hż(t)|K∩Πw

c (Cw) − |z(t)|K∩Πw
c (Cw)

h
=

|χ(t) + hż(t)|K∩Πw
c (Cw)

h

≤
|χ(t) + hω|K∩Πw

c (Cw)

h
+ |ż(t)− ω|,

for every ω ∈ TK∩Πw
c (Cw)(χ(t)). Moreover, for every such ω,

lim inf
hց0

|χ(t) + hω|K∩Πw
c (Cw)

h
= 0

by definition of the tangent cone in (4). Hence, we have

d

dt
|z(t)|K∩Πw

c (Cw) ≤ lim inf
hց0

|χ(t) + hω|K∩Πw
c (Cw)

h
+ |ż(t)− ω| = |ż(t)− ω|.

Thus, for almost every t ∈ [τ ∗, t∗],

d

dt
|z(t)|K∩Πw

c (Cw) ≤ |ż(t)|TK∩Πw
c (Cw)(χ(t)).

Since K ∩ Πw
c (Cw) is closed, by definition, χ(t) ∈ K ∩ Πw

c (Cw) for every t ∈ [τ ∗, t∗].
Condition 4.15.2) implies that for almost all t ∈ [τ ∗, t∗], and every w ∈ Ψw

c (χ(t)), we have

d

dt
|z(t)|K∩Πw

c (Cw) ≤ |ż(t)|TK∩Πw
c (Cw)(χ(t)) (8)

≤ |ż(t)|Fw(χ(t),w).

Since t∗ − τ ∗ is positive and can be arbitrarily small, it is always possible to construct a
neighborhood of χ(t) for every t ∈ [τ ∗, t∗], denoted U , with z(t) ∈ U , and it is such that
Ψw

c (z(t)) ⊂ Ψw
c (χ(t)) by Assumption 4.14. Then, because of that and the fact that the

mapping x 7→ Fw(x, wc) is locally Lipschitz uniformly in wc on Cw, we can construct a
neighborhood U ′ of z(t) such that χ(t) ∈ U ′ for every t ∈ [τ ∗, t∗] and for which there exists
a constant λ > 0 satisfying

Fw(z(t), wc) ⊂ Fw(χ(t), wc) + λ|z(t)− χ(t)|B

for every t ∈ [τ ∗, t∗] and every wc ∈ Ψw
c (z(t)). Hence, for every t ∈ [τ ∗, t∗], every wc ∈

Ψw
c (z(t)), and every η ∈ Fw(z(t), wc),

|η|Fw(χ(t),wc) ≤ λ|z(t)− χ(t)|.

Moreover, since ż(t) ∈ Fw(z(t), wc), for every wc ∈ Ψw
c (z(t)), together with (8) and (7),

we have that

d

dt
|z(t)|K∩Πw

c (Cw) ≤ |ż(t)|Fw(χ(t),wc)

≤ λ|z(t)− χ(t)| = λ|z(t)|K∩Πw
c (Cw).
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Then, by the Gronwall Lemma (see [33, Lemma A.1]), for every t ∈ [τ ∗, t∗],

|z(t)|K∩Πw
c (Cw) = 0.

Since K ∩Πw
c (Cw) is closed, φ(t

∗, j∗) ∈ K ∩Πw
c (Cw), which contradicts the definition of t∗.

Thus, there does not exist maximal solution pair (φ, w) ∈ SHw
(K) that eventually leaves

K ∩Πw
c (Cw) by flowing.

Thus, the set K is robustly forward pre-invariant for Hw.
Following the proof of Theorem 4.11, when K ∩ Πw

c (Lw) ⊂ Πw
d (Dw), with 4.11.1) and

4.11.2) satisfied, there exists a nontrivial solution pair (φ, w) with φ(0, 0) = ξ to Hw from
every ξ ∈ K. Then, robust forward invariance of K follows from the addition of condition ⋆).
As shown above, every (φ, w) ∈ SHw

(K) has rgeφ ⊂ K, thus, it suffices to show that every
maximal solution pair to Hw is complete. We proceed by contradiction. Suppose there exists
a maximal solution pair (φ∗, w∗) ∈ SHw

(K) that is not complete, and (T, J) = sup domφ∗.
Because every (φ, w) ∈ SHw

(K) has rgeφ ⊂ K, by an application of Proposition 3.4, (φ∗, w∗)
only satisfies one of the cases described in item b.1.2), b.2), and c.2). In particular, condition
⋆) eliminates case b.2) by assumption. Then, condition 4.15.1) and condition 4.15.2) imply
that (φ∗, w∗) can be extended within K by jumps and flows, respectively. More precisely,
when φ∗(T, J) ∈ Πw

c (Cw), conditions in Assumption 4.10 and item 4.15.2) imply the function
z̃ : [0, ε] → Rn as described in (VCw) in Proposition 3.4 exists with w̃c(t) = 0 for every
t ∈ [0, ε], and such (z̃, w̃c) can be used to extend (φ∗, w∗) to hybrid instant (T + ε, J),
which contradicts the maximality of (φ∗, w∗).17 When φ∗(T, J) ∈ Πw

d (Dw), jumps are always
possible by virtue of condition 4.15.1). Therefore, the set K is robustly forward invariant
for Hw.

Remark 4.16 In comparison to Theorem 4.11, Lipschitzness of the set-valued map Fw (uni-
formly in w) is assumed. Together with Assumption 4.14, they are crucial to ensure that
every solution pair stays in the designated set during flows. Note that Assumption 4.14
guarantees such property uniformly in wc (see the proof of Theorem 4.15 for details). We
refer readers to the example provided below Theorem 3.1 in [7], which shows solutions leave
a set due to the absence of locally Lipschitzness of the right-hand side of a continuous-time
system.

The following example shows an application of Theorem 4.15.

Example 4.17 (Example 4.13 revisited) Consider the hybrid system in Example 4.13.
We apply Theorem 4.15 to show the set K2 = Πw

c (Cw)∪Π
w
d (Dw) is robustly forward invariant

for Hw. Similar to Example 4.13, Lw = ∅, Assumption 4.10 and condition ⋆) hold for
K2, Fw, Cw and Dw. Moreover, Assumption 4.14 holds since wc ≤ |x| for every x ∈ Πw

c (Cw)
and the map Fw is locally Lipschitz on Cw by construction. Then, condition 4.15.1) holds

17Note that the resulting disturbance will be Lebesgue measurable and locally essentially bounded on
interval IJ .
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since for every (x, wd) ∈ (K2 ×Wd) ∩ Dw, the map Gw only “rotates” the state variable x
without changing |x| within the unit circle centered at the origin. Condition 4.15.2) holds
since

• for every (x, wc) ∈ (∂K2 ×Wc) ∩ Cw, because 0 ≤ wc ≤ |x| ≤ 1 and x1x2 ≥ 0, we have

〈∇(x21 + x22), Fw(x, wc)〉

= 2x1(−x2|x1|) + 2x2(wcx1|x1|)

= 2x1x2(wc − 1)|x1| ≤ 0,

which, applying item 1) in Lemma .5, implies Fw(x, wc) ∈ TK2∩Πw
c (Cw)(x);

• for every (x, wc) ∈ ((∂(Πw
c (Cw)) \ ∂K2)×Wc) ∩ Cw, we have

TK2∩Πw
c (Cw)(x) =





R≥0 × R if x ∈ C1, x1 = 0, x2 /∈ {0, 1}

R≤0 × R if x ∈ C2, x1 = 0, x2 /∈ {0,−1}

R× R≥0 if x ∈ C1, x1 /∈ {0, 1}, x2 = 0

R× R≤0 if x ∈ C2, x1 /∈ {0,−1}, x2 = 0

R2
≥0 ∪ R2

≤0 x = 0,

which, applying item 1) in Lemma .5, implies Fw(x, wc) ∈ TK2∩Πw
c (Cw)(x) holds true by

definition of Fw.
18

Thus, the set K2 is robustly forward invariant for Hw. △

5 Nominal Forward Invariance of Sublevel Sets of Lyapunov-

like Functions

For many control problems, Lyapunov-like functions V : Rn → R for H and Hw can be
obtained via analysis or numerical methods. For such systems, we can verify the robust
and nominal forward invariance of the r−sublevel sets of V by exploiting the nonincreasing
property of V along solutions. In this work, for the nominal case, conditions on the system
data, namely (C, F,D,G) in Theorem 4.2 and Theorem 4.3 are explored to guarantee the
forward invariance of a subset of its r−sublevel set that is given by

Mr = LV (r) ∩ (C ∪D). (9)

We leave the more generic study of robust forward invariance properties forHw via Lyapunov
methods for Part II of this work, where the Lyapunov functions are used to select feedback
laws that render robust forward invariance of their sublevel sets.

18We recall from Example 4.13 that C1 = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, |x| ≤ 1} and C2 = {x ∈ R2 : x1 ≤
0, x2 ≤ 0, |x| ≤ 1}.
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The next result introduces a set of constructive conditions that induce weak forward
invariance and forward invariance forMr in (9) forH. These conditions ensure that solutions
stay within Mr and also guarantee existence and completeness of nontrivial solutions from
every point in the set Mr. For convenience, given a function V and two constants r, r∗ ∈ R

with r ≤ r∗, we define the set I(r, r∗) := {x ∈ Rn : r ≤ V (x) ≤ r∗}.

Theorem 5.1 (weak forward invariance and forward invariance of Mr) Given a hybrid
system H = (C, F,D,G) as in (2), suppose the set C is closed, the map F : Rn ⇒ Rn is
outer semicontinuous and locally bounded, and F (x) is nonempty and convex for all x ∈ C.
Suppose there exist a constant r∗ ∈ R and a function V : Rn → R that is continuously
differentiable on an open set containing LV (r

∗) such that

〈∇V (x), η〉 ≤ 0 ∀x ∈ I(r, r∗) ∩ C, η ∈ F (x), (10)

V (η) ≤ r ∀x ∈ LV (r) ∩D, η ∈ G(x), (11)

for some r ∈ (−∞, r∗). Moreover, suppose such r satisfies

5.1.1) for every x ∈ V −1(r), ∇V (x) 6= 0;

5.1.2) for every x ∈ (LV (r) ∩ ∂C) \D, F (x) ∩ TC(x) 6= ∅;

5.1.3) for every x ∈ (V −1(r)∩ ∂C) \D, the set C is regular at x and ∃ξ ∈ F (x)∩ TC(x),
〈∇V (x), ξ〉 < 0.

5.1.4) condition N⋆) in Theorem 4.2 holds for K⋆ = Mr ∩ C and H.

Then, for each such r ∈ (−∞, r∗) that defines a nonempty and closed Mr, we have the
following:

• The set Mr is weakly forward invariant for H if

5.1.5) for every x ∈ Mr ∩D, G(x) ∩ (C ∪D) 6= ∅;

• The set Mr is forward invariant for H if

5.1.6) G(Mr ∩D) ⊂ C ∪D.

Proof Fix r < r∗ that satisfies the conditions in Theorem 5.1. The sets K = Mr, C,D
and the map F satisfy Assumption 4.1. In fact, since Mr is defined as the intersection of
an r-sublevel set of V and the union of the flow set and the jump set, Mr is a subset of
C ∪ D. Closedness of Mr ∩ C follows from the fact that C is closed and V is continuous.
The properties of F directly follow from the assumptions. Now, we apply Theorem 4.2 to
prove weak forward invariance of the set Mr.

Since set L in Theorem 4.2 is empty in this case, we prove that for every x ∈ ∂(Mr∩C)\D,

F (x) ∩ TLV (r)∩C(x) 6= ∅. (12)
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To this end, we need the following properties of the sets C,LV (r) and of the map F . For every
x ∈ LV (r), the r−sublevel set LV (r) is regular

19 at x by a direct application of [34, Corollary
2 of Theorem 2.4.7 (page 56)] with f(x) = V (x) − r. Moreover, since (10) and item 5.1.1)
hold, for each x ∈ V −1(r), F (x) ⊂ TLV (r)(x), and the set LV (r) admits a hypertangent20 at
every x applying Lemma .5.21 Then, we show that (12) holds for every x ∈ ∂(Mr ∩ C) \D
in the following cases:

1. For every x ∈ (intLV (r) ∩ ∂C) \D, since TLV (r)∩C(x) = TC(x), 5.1.2) implies (12) holds;

2. For every x ∈ V −1(r)∩ intC, we have TLV (r)∩C(x) = TLV (r)(x). This implies (12) holds for
every such x, because F (x) ⊂ TLV (r)(x) as shown above;

3. For every x ∈ (V −1(r) ∩ ∂C) \D, 5.1.3) implies

TC(x) ∩ intTLV (r)(x) 6= ∅.

Then, since LV (r) and C are regular at x, we can apply [34, Corollary 2 of Theorem 2.9.8
(page 105)] with C1 = C and C2 = LV (r) since LV (r) admits a hypertangent at x: for
every x ∈ (V −1(r) ∩ ∂C) \D, we have

TC(x) ∩ TLV (r)(x) = TLV (r)∩C(x),

i.e., (12) holds.

Hence, condition 4.2.2) in Theorem 4.2 holds for the sets C,K = Mr and the map F .
Moreover, (11) implies for every x ∈ Mr ∩D, G(x) ⊂ LV (r). Together with item 5.1.5),

(11) leads to condition 4.2.1) in Theorem 4.2. Then, according to Theorem 4.2, Mr is weakly
forward invariant for H as condition N⋆) holds by item 5.1.4).

For the remainder of the proof, we show that Mr is forward invariant when condition
5.1.6) holds. First, we prove Mr is forward pre-invariant for the hybrid system H.

Consider the restriction to hybrid system H to the set LV (r
∗), denoted H̃ and whose

data is (C̃, F, D̃, G), where the flow set and the jump set are given by C̃ = LV (r
∗) ∩ C and

D̃ = LV (r
∗) ∩D, respectively. Note that (11) implies for every x ∈ Mr ∩D, G(x) ⊂ LV (r).

Then, every φ ∈ SH̃(Mr) has rgeφ ⊂ LV (r) if φ cannot leave LV (r) by “flowing.” We
show by contradiction that this is the case. Suppose φ left LV (r) by “flowing” during the
interval Ij

∗

:= [tj∗ , tj∗+1]: namely, φ left LV (r) ∩C and entered (LV (r
∗) \ LV (r)) ∩C. More

precisely, since LV (r) ( LV (r
∗), by closedness of Mr and item (S1) in Definition .1, there

exist hybrid time instants (t∗, j∗), (τ ∗, j∗) ∈ domφ with φ(t∗, j∗) ∈ (LV (r
∗) \ LV (r)) ∩ C,

19 The set C is regular at x provided the Bouligand tangent cone at x of C coincides with the Clarke
tangent cone at x of C (see [34, Definition 2.4.6]). Furthermore, every convex set is regular – see [34, Theorem
2.4.7 and (page 55) and Corollary 2 (page 56)] for other special cases of regular sets.

20See [34, Section 2.4].
21Function h(x) = V (x) − r is directional Lipschitz since V is continuously differentiable and by item (i)

in [34, Theorem 2.9.4].
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φ(τ ∗, j∗) ∈ V −1(r) ∩ C, and φ(t, j∗) ∈ (LV (r
∗) \ LV (r)) ∩ C for all t ∈ (τ ∗, t∗], where

tj∗ < τ ∗ < t∗ ≤ tj∗+1. Hence, we have

V (φ(τ ∗, j∗)) = r < V (φ(t∗, j∗)) ≤ r∗. (13)

By item (S1) in Definition .1, for every t ∈ intIj
∗

, φ(t, j∗) ∈ C̃. According to (10),
d
dt
V (φ(t, j∗)) ≤ 0 for almost all t ∈ Ij

∗

. Then, integrating both sides, we have

V (φ(t∗, j∗)) ≤ V (φ(τ ∗, j∗)),

which contradicts with (13). Hence, every φ ∈ SH̃(Mr) stays in Mr during flow. Therefore,
if φ left Mr and entered LV (r) \Mr, which is outside of C ∪D by definition of Mr, it must
have left C ∪D via jumps. This is not possible by virtue of 5.1.6). Thus, we establish the

forward pre-invariance of Mr for H̃ by Definition 3.3.
Moreover, we verify that every φ ∈ SH̃(Mr) with rgeφ ⊂ Mr is also a maximal solution to

H by contradiction. Suppose there exists φ ∈ SH̃(Mr) with rgeφ ⊂ Mr that can be extended
outside of Mr for H. More precisely, there exists ψ ∈ SH(Mr), such that domψ\domφ 6= ∅,
for every (t, j) ∈ domφ, ψ(t, j) = φ(t, j) and for every (t, j) ∈ domψ \ domφ, ψ(t, j) /∈ Mr.
Let (T, J) = sup domφ. We have two cases:

4. ψ extends φ via flowing: namely, ψ(T, J) = φ(T, J) ∈ Mr ∩ C, t 7→ ψ(t, J) is absolute
continuous on IJ . By item (S1) in Definition .1, ψ(t, J) ∈ C for all t ∈ intIJ . Thus,
it must be the case that ψ(t, J) ∈ C \ LV (r) for some t ∈ IJ . Since LV (r) ( LV (r

∗),
there exists t∗ ∈ IJ such that ψ(t∗, J) ∈ LV (r

∗) ∩ (C \ LV (r)). This contradicts with the

maximality of φ to H̃.

5. ψ extends φ via jumping: namely, ψ(T, J) = φ(T, J) ∈ Mr ∩ D and ψ(T, J + 1) /∈ Mr.

By item (S2) in Definition .1, this contradicts with the maximality of φ to H̃.

To complete the proof for forward invariance of Mr for H, we show that every φ ∈

SH(Mr) is also complete. Because condition 5.1.6) implies 5.1.5), we know the set Mr

defined by the chosen r < r∗ is weakly forward invariant for H. Hence, there exists a
nontrivial solution to H from every x ∈ Mr. Case b.1) Proposition .2 is excluded for every
φ ∈ SH(Mr) since Mr ∩ C is a closed set. Case b.2) is not possible for every maximal
solutions from Mr by assumption 5.1.4). Finally, G(Mr ∩ D) ⊂ Mr implies case c) in
Proposition .2 does not hold. Therefore, only case a) is true for every maximal solution
starting from Mr.

Condition 5.1.3) together with (10) result in a less restrictive requirement on the flow
map F when compared to the usual Lyapunov conditions for stability purposes, for instance,
condition (3.2b) in [26, Theorem 3.18], which often rely on finding a qualified positive definite
function with strict decrease outside the set to stabilize. It is not a trivial task to relax
condition 5.1.3) in Theorem 5.1. When the set {ξ ∈ F (x) : 〈∇V (x), ξ〉 < 0} is empty for
some x ∈ V −1(r) ∩ C, we have that for every ξ ∈ F (x), 〈∇V (x), ξ〉 = 0. With item 5.1.1),
it is either that F (x) = 0 or F (x) 6= 0. If the former holds, condition 4.2.2) in Theorem 4.2
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holds trivially. However, if the latter holds, it is possible to get F (x) ∩ TLV (r)∩C = ∅ at
such x, which implies that only a trivial solution exists at such x. The following example
illustrates such a case.

Example 5.2 Consider a system on R2 given by ẋ = F (x) := (x2,−x1) with C = (−∞,−1]×
R and pick V as V (x) = x2 with r∗ = 2. Mr is nonempty and closed for r ∈ [1, r∗). The
conditions in Theorem 5.1 except for 5.1.3), which does not hold for r = 1. In fact, for
r = 1, at the point (−1, 0), the vector F ((−1, 0)) = (0, 1) lays in TC((−1, 0)) and sat-
isfies 〈∇V (x), F (x)〉 = 0 for each x ∈ LV (r) ∩ C, so 5.1.3) does not hold. As a result
F ((−1, 0)) /∈ TLV (r)∩C((−1, 0)).

Remark 5.3 As stated in Section 1, invariance is also a property that is key in the study of
safety in dynamical systems. The Lyapunov-like function approach in this section resembles
the idea behind the safety certificates. Note that the function V in the results in this section
is not sign definite and that the aim was to assume as few properties as possible, though
it should be recognized that the invariance property obtained is only for its sublevel sets.
Connections between results in this section and their extensions to invariance-based control
design is the focus of the upcoming second part of this paper.

6 Forward Invariance Analysis for a Controlled Single-

Phase DC/AC Inverter System

We devote this section to present an application for the proposed forward invariance analysis
tools in this work. The system of interest is a controlled single-phase DC/AC inverter; see
[35] for complete design details. As shown in Fig. 5, the inverter consists of a full H-bridge
connected to a series RLC filter. The dynamics of the system are

[
i̇L
v̇C

]
= fq(z) :=

[
VDC

L
q − R

L
iL − 1

L
vC

1
Ca
iL

]
,

where R,L, Ca are parameters of the circuit, z := (iL, vC) ∈ R2, and q ∈ Q := {−1, 0, 1} is
a logic variable that describes the position of the switches.

Vin

+

−

vC

+

−

iL

✲

R L

Ca

Vin

S1

S2 S3

S4

Figure 5: Single-phase DC/AC inverter.
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By controlling their position (“ON” or “OFF”), the voltage Vin to the RLC filter equals
to either VDC , 0 or −VDC . More precisely, we denote by q = 1 when S1 = S3 = ON
and S2 = S4 = OFF; by q = 0 when S1 = S4 = OFF and S2 = S3 = ON; by q = −1
when S1 = S3 = OFF and S2 = S4 = ON. Given system parameters VDC , L, Ca and
R, hybrid controller is designed to generate a sinusoidal-like output vC approximating a
reference voltage vr with amplitude b and frequency ω of the form t 7→ vr(t) = b sin (ωt+ θ),
where θ is the initial phase. It can be shown that such a reference signal on the (iL, vC)
plane has to make

V (z) :=

(
iL
a

)2

+
(vC
b

)2

, (14)

unitary when vC = vr and iL = Cav̇C , where a = Caωb. Let x = (q, z) and given parameters
0 < ci < 1 < co, this control goal requires rendering the band around the reference trajectory
given by

T = {x ∈ Q× R2 : ci ≤ V (z) ≤ co},

forward invariant for the closed-loop system. Then, the precision of the approximation is
tunable based on the two design parameters ci and co. As co − ci → 0, the resulting closed-
loop trajectories are “closer” to the reference trajectory, which make V in (14) unitary. Using
the hybrid controller proposed in [35], the closed-loop system, denoted H = (C, F,D,G),
is in form of (2) with system data given by F (x) = (0, fq(z)) for every x ∈ C := T , and
G(x) = (Gq(z), z) for every x ∈ D, with22

Gq(z) :=





−1 if q 6= −1 and ((V (z) = co and iL ≥ 0 and z /∈M1) or (V (z) = ci and iL ≤ 0));

0 if (z ∈M1 and iL 6= ǫ and q = 1) or (z ∈M2 and iL 6= −ǫ and q = −1);

1 if q 6= 1 and ((V (z) = co and iL ≤ 0 and z /∈M2) or (V (z) = ci and iL ≥ 0));

{0, 1} if (V (z) = co, iL = −ǫ, vC ≥ 0);

{−1, 0} if (V (z) = co, iL = ǫ, vC ≤ 0),

and the jump set D given as

D := {x ∈ Q× R2 : V (z) = ci, iLq ≤ 0, q 6= 0}⋃
{x ∈ Q× R2 : V (z) = co, iLq ≥ 0, q 6= 0}⋃
{x ∈ Q× R2 : V (z) = ci, q = 0}.

With α = 2
a2L

and β = 2
b2Ca

, we define Γ = {z ∈ R2 : −αVDC ≤ −αRiL + (β − α)vC ≤
αVDC}. Next, applying Theorem 4.3, we show the set T is forward invariant for H.

Proposition 6.1 ([35, Proposition 1]) Given positive system constants R,L, Ca, ω, VDC such
that LCaω

2 > 1, and 0 < ci < 1 < co such that T ⊂ Q × Γ, the closed set T is forward
invariant for the closed-loop system H = (C, F,D,G).

22With ǫ as a (small enough) positive parameter, M1 = {z ∈ R2 : V (z) = co, 0 ≤ iL ≤ ǫ, vC ≤ 0} and
M2 = {z ∈ R2 : V (z) = co,−ǫ ≤ iL ≤ 0, vC ≥ 0}.
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Proof By observation, T , C,D, F satisfy Assumption 4.1, and F is continuously differen-
tiable. Condition 4.3.1) in Theorem 4.3 holds since G(x) := (Gq(z)× {z}) ⊂ (Q× {z}) for
every x ∈ T . Since T = C, TT ∩C(x) = TC(x) for every x ∈ C. Hence, item 4.3.2) in
Theorem 4.3 holds if F (x) ∈ TC(x) for every x ∈ ∂C \ L. Note that L ⊃ D by applying
Lemma .5 and the inner product properties listed in [35, Lemma 2].23 In particular, for every
x ∈ D ∩ {x : V (z) = co}, apply item 2) in Lemma .5 with S = LV (co), h(x) = V (z) − co;
while for every x ∈ D ∩ {x : V (z) = ci}, consider S = L(−V )(−ci), h(x) = −V (z) + ci and
item 1) in Lemma .5. Then, for every x ∈ ∂T \ L, by applying Lemma .5 and the inner
product properties listed in [35, Lemma 2], we have the value of q chosen by the designed
controller always results in one of the two cases below:

• When x ∈ {x : V (z) = co} \ L, F (x) ∈ {0} × TLV (co)(z);

• When x ∈ {x : V (z) = ci} \ L, F (x) ∈ {0} × R2 \ TLV (ci)(z).

Hence, F (x) ∈ TC(x) for every x ∈ ∂T \ L.
Finally, applying Lemma 4.12, item N⋆) holds since F is affine linear for each assigned

q ∈ Q.

Numerical simulations are performed to verify the property listed in Proposition 6.1 via
MATLAB Hybrid Equations Toolbox (HyEQ); see details in [36]. The following system
parameters are used: R = 1Ω, L = 0.1H , Ca = 66.6µF , VDC ≡ 220V , b = 120V , ω = 120π,
and ci = 0.9, co = 1.1.
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Figure 6: Simulations of H different initial values of q.

Figure 6 shows the solutions to the closed-loop system H with z0 = (bCaω, 0) = (3.013, 0)
and q0 as either −1, 0 or 1. The three solutions stay within the projection of T onto the
(iL, vC) plane.

23In fact, L ∩ T ⊂ D by construction.
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Figure 7: The output vC signal of H with q0 = 0.

Fig. 7 shows that the output voltage vC behaves sinusoidal-like. A Fast Fourier Transform
(FFT) analysis is also performed to show that the output signal has the desired frequency;
see [35, Fig. 6a].

7 Conclusion

Forward invariance properties of sets that are uniform over the disturbances for hybrid
inclusions with disturbance inputs are studied in this paper. When a set K enjoys such a
property, solution pairs evolve within the set they started from, even under the effect of
disturbances. We formally define robust forward invariance of sets for hybrid systems Hw

modeled using differential and difference inclusions with state and disturbance constraints.
Among the four notions, two of them are considered stronger than the other two in the sense
that all maximal solution pairs that start from the set of interest stay in it.

Sufficient conditions for each notion are presented in terms of the data of the hybrid
system and require checking conditions involving its discrete and continuous dynamics within
K. In particular, when starting from an intersection involving K and the jump set, the jump
map ought to map the state back to K to allow solutions evolving within K during jumps;
while when starting from an intersection involving K and the flow set, the flow map needs
to have vectors pointing inward of K to allow solutions evolving within it during flows. To
guarantee the robust invariance notions, the flow map is required to enjoy a locally Lipschitz
property on Cw to avoid solutions from leaving K. Such a property is also ensured by
Assumption 4.14–a mild assumption on the inputs allowed by Cw at points that are at the
boundary of K and in Cw.

To achieve the notions that require completeness of maximal solution pairs, a general
result for Hw that characterizes all possible ending behaviors of maximal solution pairs is
presented. The existence of nontrivial solution pairs from every point in K is ensured by
the assumption of zero disturbances being admissible during flows. In addition, condition ⋆)
is introduced to exclude the case of solution pairs escaping to infinity in finite time, where
two solution-independent conditions are proposed to verify ⋆) for Hw. The results on robust
invariance are specialized to the nominal case, i.e., H.

Finally, one result to render sublevel sets of Lyapunov-like functions nominal forward
invariant for H is provided. In particular, properties of the tangent cone to the sublevel of
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the Lyapunov-like function is exploited to derive mild conditions for invariance of the sublevel
set. These properties hold for free when the flow set is convex (locally) or the Lyapunov-like
functions strictly decrease at the boundary of the set K.

In a second part of this work, which is being prepared, results on existence of invariance
inducing state-feedback laws for Hw using robust control Lyapunov functions for forward
invariance will be provided. In particular, controller synthesis that constructs state-feedback
laws using a pointwise minimum norm selection scheme are under development. Future
research directions include studying optimality properties of feedback laws via inverse opti-
mality analysis and the development of barrier certificates for hybrid systems H and Hw.
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.1 Auxiliary Definitions and Results for Hybrid Systems

Definition .1 (solutions to H, [26, Definition 2.6]) A hybrid arc φ is a solution to the
hybrid system (C, F,D,G) if φ(0, 0) ∈ C ∪D, and

(S1) for all j ∈ N such that Ij has nonempty interior

φ(t, j) ∈ C for all t ∈ intIj,

dφ

dt
(t, j) ∈ F (φ(t, j)) for almost all t ∈ Ij ,

(S2) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

φ(t, j) ∈ D φ(t, j + 1) ∈ G(φ(t, j)).

Proposition .2 ([30, Proposition 2.2]) Consider the hybrid system H = (C, F,D,G). Let
ξ ∈ C ∪D. If ξ ∈ D or

(VC) there exist ε > 0 and an absolutely continuous function z : [0, ε] → Rn such that
z(0) = ξ, ż(t) ∈ F (z(t)) for almost all t ∈ [0, ε] and z(t) ∈ C for all t ∈ (0, ε],

then there exists a nontrivial solution φ to H with φ(0, 0) = ξ. If (VC) holds for every
ξ ∈ C \D, then there exists a nontrivial solution to H from every point of C ∪D, and every
φ ∈ SH satisfies exactly one of the following:

a) φ is complete;

b) φ is not complete and “ends with flow”, with (T, J) = sup domφ, the interval IJ has
nonempty interior; and either

b.1) IJ is closed, in which case φ(T, J) ∈ C \ (C ∪D); or

b.2) IJ is open to the right, in which case (T, J) /∈ domφ, and there does not exist an
absolutely continuous function z : IJ → Rn satisfying ż(t) ∈ F (z(t)) for almost all
t ∈ IJ , z(t) ∈ C for all t ∈ int IJ , and such that z(t) = φ(t, J) for all t ∈ IJ ;

c) φ is not complete and “ends with jump”: for (T, J) = sup domφ, one has φ(T, J) /∈ C∪D.

Furthermore, if G(D) ⊂ C ∪D, then c) above does not occur.
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.2 Auxiliary Definitions and Results for Set-valued Maps

Definition .3 (outer semicontinuity of set-valued maps) A set-valued map S : Rn ⇒ Rm is
outer semicontinuous at x ∈ Rn if for each sequence {xi}

∞
i=1 converging to a point x ∈ Rn and

each sequence yi ∈ S(xi) converging to a point y, it holds that y ∈ S(x); see [37, Definition
5.4]. Given a set K ⊂ Rn, it is outer semicontinuous relative to K if the set-valued mapping
from Rn to Rm defined by S(x) for x ∈ K and ∅ for x /∈ K is outer semicontinuous at each
x ∈ K.

Definition .4 (Lipschitz continuity of set-valued maps) Given a set-valued map F : Rn ×
Wc ⇒ Rn, the mapping x 7→ F (x, w) is locally Lipschitz uniformly in w at x, if there exists
a neighborhood U of x and a constant λ ≥ 0 such that for every ξ ∈ U

F (x, w) ⊂ F (ξ, w)+λ|x− ξ|B

∀w ∈ {w ∈ Wc : (U ×Wc) ∩ domF}.

Furthermore, x 7→ F (x, w) is locally Lipschitz uniformly in w on set K ⊂ domF when it is
locally Lipschitz uniformly in w at each x ∈ Πw

c (K).

Lemma .5 ([34, Theorem 2.9.10]) Given a set S := {x : h(x) ≤ 0}, suppose that, for every
x ∈ {x : h(x) = 0}, h is directionally Lipschitz at x with 0 /∈ ∇h(x) 6= ∅ and the collection
of vectors Y := {y : 〈∇h(x), y〉 < ∞} is nonempty. Then, the set S admits a hypertangent
at x and

1) y ∈ TS(x) if 〈∇h(x), y〉 ≤ 0;

2) ∃y ∈ intTS(x) ∩ intY such that 〈∇h(x), y〉 < 0.
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