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ABSTRACT OF THE DISSERTATION

Improving the Efficacy of Automated Test Generation

by

Jinghan Wang

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2022

Dr. Chengyu Song, Chairperson

Exploring the execution space is essential to many program analysis tasks such as

finding vulnerabilities in the program under test. Starting from a corpus of initial inputs

(a.k.a. seeds), automated test generation aims to find more and more inputs (or testcases)

that exercise new program states, and hopefully, some inputs will reach interesting states,

e.g., triggering a vulnerability. Based on the observation that under-tested code is more

likely to have bugs, coverage-guided testing, which tries to maximize the code coverage,

works very well in practice.

Notably, coverage-guided testing usually involves three stages: seed selection, seed

schedule, and new input generation. This dissertation addresses three core problems in each

stage and advances the state-of-the-art on automated test generation.

First, we conduct the first systematic study on the impact of coverage metrics. In

particular, we formally define and discuss the concept of sensitivity to compare different

coverage metrics. We show that certain program states (e.g., vulnerabilities) cannot be

reached without enough sensitivity. We then selectively present several metrics with different
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sensitivities, and evaluate them on a large set of programs. Results show that each metric

has its unique merit in terms of vulnerability finding. However, there is no grand slam one

that defeats all the others when the computational resources are limited. Specifically, a high

sensitive coverage metric can select too many seeds that overwhelm the current scheduling

algorithms and lead to poor performance.

Second, we aim to address the seed explosion problem caused by a sensitive cov-

erage metric. To this end, we model this problem as a trade-off between exploration and

exploitation. Then, we design a novel multi-level coverage metric that incorporates sensitive

coverage metrics in a novel way. Combined with a reinforcement-learning-based hierarchical

seed scheduler, our approach not only can trigger more bugs and achieve higher code cover-

age, but also can achieve the same coverage faster than existing approaches. However, we

also discover that with a large amount of seeds, the input generation stage will become a

bottleneck. That is, the likelihood of a (randomly generated) input being selected as a new

seed decreases when the input size and the corpus size increase.

One way to improve the efficiency of input generation is to replace random mutation

with path constraints solving, e.g., by leveraging concolic execution (CE). Ideally, each input

generated by a concolic execution engine should visit a new state and be selected as a new

seed. However, our study finds that a considerable amount (as high as 50%) inputs actually

failed to reach new states thus are not selected, especially when handling format inputs. To

address this problem, in the last piece of this dissertation, we propose format-aware solving

that leverages path constraints to infer input format information, and leverages inferred

format information to guide the constructing and solving of path constraints. Evaluation
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shows that our approach can negate significantly more branches, lead to deeper new paths,

and cover more code.
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Chapter 1

Introduction

Program testing is the act of exploring execution space to find vulnerabilities in

the program under test. Automated test generation is the core technique in this literature.

Starting from a corpus of initial inputs (a.k.a. seeds), it is expected to quickly find more and

more inputs (or testcases) that exercise new program states, and hopefully, some inputs will

reach interesting states, e.g., triggering a vulnerability. Based on the observation that under-

tested code is more likely to have bugs, coverage-guided testing, which aims to maximize

the code coverage, works very well in practice.

In particular, coverage-guided testing keeps track of the test generation via a feed-

back loop. Take greybox fuzzing [1, 51, 52, 66, 188], which is a representative technique in

this literature, for instance, the loop involves three major stages in each iteration. (1) Seed

scheduling : a seed is picked from the seed corpus according to the scheduling criteria. (2)

Seed mutation: within a limited time budget, new inputs are generated by performing var-

ious random mutations on the scheduled seed. (3) Seed selection: each generated input is

1



fed to the program under test and evaluated based on the coverage metric; if the input leads

to new coverage, it will be selected as a new seed and added back to the seed corpus. As

this feedback loop continues, more coverage will be reached, and hopefully, bugs will be

triggered.

Notably, the coverage metric is an essential parameter of coverage-guided testing,

as it decides how to select new seeds. And this relies on its ability to preserve intermediate

waypoints [120]. To better illustrate this, consider flipping a magic number check a =

0xdeadbeef as an example. If a fuzzer only considers edge coverage, then the probability of

generating the correct a with random mutations is 232. However, if the fuzzer can preserve

important waypoints, e.g., by breaking the 32-bit magic number into four 8-bit number [89],

then solving this checking will be much more efficient since the answer can be generated from

a sequence as 0xef, 0xbeef, 0xadbeef, and 0xdeadbeef. This check can also be solved faster

by understanding distances between current value of a and the target value [32,33,38,54,150].

More importantly, recent research has shown that many program states cannot be reached

without saving critical waypoints [108, 156]. In summary, coverage metrics determine how

fast a specific program state, e.g., flipping a condition check and triggering a bug, can be

reached and even whether it can be reached eventually.

Due to the importance of coverage metrics, a number of different coverage metrics

have been developed and proposed [1, 32, 92, 120, 127, 134, 165, 188]. However, there lacks a

formal way to define the differences among them uniformly. And little is known about how

these differences will actually affect the fuzzing results in practice. More importantly, it is

unclear whether there exists one coverage metric that is superior to all the other ones.
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As the coverage metric selects more and more seeds, the limited processing capabil-

ity of testing makes it essential for the scheduling criteria to prioritize some seeds over others

in order to maximize the coverage. For example, Afl [188] prefers seeds with small sizes and

short execution time to achieve a higher fuzzing throughput. Furthermore, it maintains a

minimum set of seeds that stress all the code coverage so far, and focus on fuzzing them (i.e.,

prefers exploitation). AflFast [17] models greybox fuzzing as a Markov chain and prefers

seeds exercising paths that are rarely exercised, as high-frequency paths tend to be covered

by invalid test cases. libFuzzer [141] prefers seeds generated later in a fuzzing campaign.

Entropic [15] prefers seeds with higher information gains. Notably, although existing seed

schedulers work well on a normally sized seed corpus, they can hardly handle cases where

seed explosion occurs as the coverage metric selects too many seeds.

Furthermore, a large amount of seeds, as well as increase input size, will make the

input generation stage a bottleneck. That is, the likelihood of a (randomly generated) input

being selected as a new seed decreases when the input size and the corpus size increase.

Notably, many research efforts have proposed to utilize various techniques including taint

analysis [6,32,33,38,54,94,134,161], static analysis [98], and deep learning [133,142] to locate

key input bytes to mutate as well as proper values they are mutated to, aiming to improve

the mutation efficiency. MOPT [104] and EMS [105] propose to find the optimal byte-level

mutation strategies in order to generate inputs triggering unique paths. Angora [32] utilizes

gradient descent search to improve the efficiency of mutations. In addition, to generate

valid inputs when the program under test works on structured input format, various format-

aware fuzzing techniques have been proposed. In particular, if the input format is known,

3



they utilize that to parse inputs into a tree-like structure, where structural mutations can

be performed [4, 129, 159]; otherwise they infer an approximate input format to guide the

mutation based on the insight that variances in program states caused by modifying certain

input bytes can imply the underlying input format that is expected [6, 50,96,101,183,184].

Besides greybox fuzzing, concolic execution (CE) [19, 62, 130, 131, 149, 187] is a

popular alternative regarding automated test generation, which performs exploration in

a more systematic manner. More specifically, it executes the program under test with a

concrete input, collects symbolic path constraints along the concrete execution path, and

selectively negates symbolic branches to generate new test inputs. In consequence, CE

can easily solve the aforementioned magic number check, which is challenging for greybox

fuzzing. Notably, as CE is also driven by concrete inputs, a CE engine can be integrated into

a coverage-guided testing scheme, where it acts as a special seed mutator to generate new

inputs while sharing similar seed selection and scheduling approaches as greybox fuzzing [52,

187].

Input generation in CE is achieved via solving the negated path constraints, e.g.,

by consulting a satisfiability modulo theories (SMT) solver [10, 41]). Conceptually, this

approach should be more efficient than greybox fuzzing, because the newly generated test

input is expected to follow the same execution path prefix (as the input it is derived from)

until the target branch the CE engine aims to negate, go to the opposite branch direction,

and reach a new path. However, the solver may fail to find a satisfying input if the path

constraints are too restrictive or too complex. At the same time, if the path constraints miss

important conditions, the newly generated test input may fail to negate the target branch.
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The execution path may diverge earlier and never reach the target branch. It is also possible

that the execution reaches the target branch with a different set of constraints (due to an

earlier deviation from the path prefix), thus invalidating the solution returned by the solver.

This problem is further exacerbated when the program under test handles highly formatted

inputs.

1.1 Thesis Statement

This thesis aims to advance the state-of-the-art on automated test generation by

(1) improving the efficacy of seed selection, (2) improving the efficiency of seed scheduling in

greybox fuzzing, and (3) improving the efficiency of input generation in concolic execution.

We hope our work would stimulate developing a coverage-guided testing schemes where

seeds are generated, via either a random mutator or a concolic execution engine, selected,

and scheduled effectively.

We start with conducting the first systematic study on the impact of coverage

metrics in coverage-guided greybox fuzzing [156]. In particular, we formally define and

discuss the concept of sensitivity to distinguish different coverage metrics. Based on the

different levels of sensitivity, we then present multiple representative coverage metrics with

their variants. We conduct a study on these metrics with the DARPA CGC dataset [27],

the LAVA-M dataset [44], and a set of real-world applications (a total of 221 binaries). We

find that because a fuzzing instance has limited resources (time and computation power),

(1) each metric has its unique merit in terms of flipping certain types of branches (thus
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vulnerability finding), (2) there is no grand slam metric that defeats all the others, and (3)

a combination of these different metrics can often achieve even better performance.

During the first study, we observe that a sensitive coverage will select many seeds

that may cause seed explosion and exceed the fuzzer’s capability to schedule. To address

this problem, we have developed a novel hierarchical seed scheduler [157]. More specifically,

we present a new coverage metric design called multi-level coverage metric, where we cluster

seeds selected by more-sensitive metrics into a hierarchical tree using less-sensitive metrics.

Next we model seed scheduling as a multi-armed bandit (MAB) problem [177] and design a

reinforcement-learning-based hierarchical seed scheduling algorithm to balance between seed

exploration (trying out other fresh seeds) and exploitation (keep fuzzing a few interesting

seeds to trigger a breakthrough).

During the second study, we observe that random-mutation-based input genera-

tion becomes bottleneck when the seed size and the corpus size increase. Generally, in

terms of generating specific inputs to satisfy hard branches, CE that is based on solving

path constraints is more efficient than greybox fuzzing that is based on random mutations.

However, when the program under test handles formatted inputs that consist of fields and

chunks, it becomes more challenging for CE as the path constraints may miss important

data dependencies that are implicitly indicated by the input format and not assessed in

any conditional branches. Motivated by this, we have developed Formatly that aims to

improve the efficacy of input generation for CE via taking input format into account. In

particular, Formatly first infers input format information including field boundary, hier-

archy, and type automatically via parsing the path constraints that are augmented with
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runtime information. Afterwards, it utilizes the inferred format information to guide the

path constraints constructing and solving.

1.2 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 provides more detail on

greybox fuzzing, concolic execution, hybrid fuzzing and MAB model. Chapter 3 presents the

study we conduct on coverage metrics. Chapter 4 presents the hierarchical seed scheduler to

address the seed explosion problem. Chapter 5 presents the format-aware input generation

for more effectivee concolic execution. Finally Chapter 6 concludes this thesis and discusses

open problems for future work.
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Chapter 2

Background

2.1 Greybox Fuzzing

Algorithm 1 illustrates the greybox fuzzing process. Given a program to fuzz and

a set of initial seeds, the fuzzing process consists of a sequence of loops named rounds.

Each round starts with selecting the next seed for fuzzing from the seed corpus according

to the scheduling criteria. The scheduled seed is assigned to a certain amount of power

that determines how many new inputs (or test cases) will be generated in this round. Next,

inputs are generated through random mutation and crossover based on the scheduled seed.

Compared to blackbox and whitebox fuzzing, the most distinctive step of greybox fuzzing is

that, when executing a newly generated input, the fuzzer uses lightweight instrumentation

to capture runtime features and expose them to the fitness function to measure the “quality”

of a generated test case. Inputs with good quality will then be saved as a new seed into

the seed corpus. This step allows a greybox to gradually evolve towards a target (e.g., more

coverage).
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From the description above, we can clearly see that there exist three key stages

that drive greybox fuzzing: seed scheduling, seed mutation, and seed selection, as illustrated

in Figure 2.1. Below, we discuss each of them in detail.

Algorithm 1: Greybox Fuzzing Algorithm
Input: target program P , set of initial seeds S0

Output: unique seed set S∗,
bug-triggering seed set Sv

Data: seed s and test case I
1 Function Main(P , S0):
2 S∗ ← S0

3 Sv ← ∅
4 while true do
5 s← SelectNextSeedToFuzz(S∗)
6 s.power ← AssignPower()
7 while s.power > 0 do
8 s.power ← s.power − 1
9 I ← MutateSeed(s)

10 status← RunAndEval(I)
11 if status is Bug then
12 Sv ← Sv ∪ {I}
13 else if status is NewCovExplored then
14 S∗ ← S∗ ∪ {I}
15 else
16 continue // drop I
17 end
18 end
19 PayReward(s)
20 end
21 End

2.1.1 Seed Scheduling

This stage determines which seed will be scheduled in the next iteration and how

much fuzzing time will be allocated for it. Various factors can be taken into account to

determine the priority of each seed. AFL prefers faster execution and smaller seeds in order

to ensure high throughput. AFLFast [17] prioritizes seeds exercising paths that are rarely
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Figure 2.1: The workflow of greybox fuzzing.

covered by other testcases (implying that the path has not been fuzzed enough yet), and

gives them exponentially more fuzzing time, aiming for better code coverage in a shorter

time period. VUzzer [134] selects seeds that exercise deeper and rarer paths and avoids

testcases that trigger error-handling, aiming for paths that are hard-to-reach and more

useful. libFuzzer [141] prefers seeds generated later in a fuzzing campaign. Entropic [15]

prefers seeds with higher information gains.

Seed scheduling can also be used to achieve goals other than code coverage. For

example, AFLGo [16] performs effective directed fuzzing towards a given set of program

locations by employing a simulated annealing based power scheduler that prioritizes seeds

that are “closer” to the target locations and gives them more fuzzing time. The “distance”

between a seed and the set of target locations is measured based on the distances from the

code blocks exercised by the seed to the target code blocks, which are computed at compile

time. In consequence, the generated testcases are getting increasingly closer to the set of

target program locations. SlowFuzz [127] aims to discover algorithmic complexity vulnera-
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bilities by prioritizing seeds that utilizes more system resources such as CPU, memory, and

energy.

The pitfall in this step is that if the scheduling algorithms also rely on coverage

information (e.g., AFLFast [17]), then imprecise coverage information could lead to sub-

optimal decisions and miss potentially discoverable bugs.

2.1.2 Seed Mutation

This stage mutates a given seed to generate new testcases. A mutation strategy

is concerned with (1) where to mutate and (2) how to mutate. AFL and libFUzzer utilize

two kinds of mutations: deterministic and random mutations. Deterministic mutations

include flipping bits in various granularities, as well as adding, subtracting, and inserting a

set of predetermined integer values (e.g., 0, 1 and INT_MAX). Random mutations include

inserting random byte chunks, deleting and modifying existing byte chunks at random offsets,

as well as randomly splicing multiple seeds.

Several research efforts aim to improve this stage. For instance, VUzzer [134]

leverages dynamic taint analysis to discover input bytes that will affect the control-flow,

especially branches that compare the input bytes with magic numbers; then mutates these

bytes to match the target constant. TaintScope [161] also utilizes dynamic taint analysis to

discover input bytes that can affect sensitive operations (e.g., memory allocation size), and

then mutates the bytes to trigger integer overflow. It also uses dynamic taint analysis to

identify input bytes that are used to calculate checksum then patches the checksum function

to avoid failure of integrity check. Lin et.al. [98] propose using static lineage analysis to

identify sensitive bytes to mutate. Rajpal et.al. [133] from Microsoft propose using deep
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neural network (DNN) to learn promising locations in inputs from a given set of seeds and

then focusing on mutating these locations. MOPT [104] and EMS [105] propose to prioritize

byte-level mutation strategies to make a good exploration of testcases triggering unique paths

based on the insight that a program owns a certain distribution of mutation operators that

can perform the best. SYMFUZZ [29] obtains deeper insights about seed mutation and

designs an algorithm to adapt the mutation ratio (the rate between the number of modified

bits and the number of total bits of a seed) to maximize the bug finding via detecting

dependencies among the bit positions of the seed. In addition, SemFuzz [185] proposes a

semantic-based approach to optimize seed mutation for generating testcases, which are in

the form of sequences of system calls, as Proof-of-Concept exploits crashing Linux kernels.

In more detail, first semantic information related to bugs is retrieved from public reports

such as CVE descriptions and software patch logs. The information then is used to guide

mutating a certain seed as how to change the order and parameters of the system calls.

2.1.3 Seed Selection

A seed selection strategy determines the trend and speed of the evolution of the

fuzzing process. Essentially, a good seed selection strategy needs to solve two essential

problems: (1) how to collect coverage information and (2) how to measure the quality of

test cases.

Coverage Information Collection. AFL instruments the program under test to collect

and compute the coverage. There are two instrumentation approaches. When the source

code of the program under test is available, a modified Clang compiler is used to insert the
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coverage calculation logic into the compiled executable at assembly level (normal mode) or

intermediate representation level (fast mode). When the source code is not available, a mod-

ified user-mode QEMU is used to run the binary code of the tested program directly, and the

coverage calculation logic is inserted during the binary translation phase. VUzzer [134] uses

PIN [166] to perform binary instrumentation to collect the information. HonggFuzz [165]

and kAFL [138] use hardware branch tracers like Intel Process Tracing (PT) to collect cov-

erage information and DigTool [122] uses a hypervisor to collect coverage information from

OS kernels.

Test Case Measurement. The quality of test cases is measured by leveraging coverage

metrics. HonggFuzz [165] and Vuzzer [134] use basic block coverage metric that tracks visits

of basic blocks. AFL [163] uses an improved branch coverage metric that could differenti-

ate the visits to the same block from different preceding blocks. LibFuzzer [168] can use

either block coverage or branch coverage. A more recent work Angora [32] extends the

branch coverage metric with a calling context. MemFuzz [39] involves memory accesses,

when calculating edge coverage to explore program states more pervasively. In addition,

some research focus on finding domain-specific bugs via specifically designed coverage met-

rics [92, 120, 127]. Another important aspect is how the metric is really measured. Since

coverage is measured during the execution of each test case, fuzzers usually prefer simpler

implementations to improve the fuzzing throughput. For example, AFL identifies a branch

using a simple hash function (Equation 3.1). Unfortunately, this approximation could reduce

the effective sensitivity of a coverage metric due to hash collisions [55].
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2.1.4 Format-Aware Greybox Fuzzing

Greybox fuzzing can generate a large number of new inputs in a short time via

randomly mutating existing seeds, which are provided by users or from the procedure that

inputs leading to new coverage are saved as new seeds. However, most of the generated inputs

are invalid ones that will be dropped early by the program under test, especially when the

program works on structured input formats. To mitigate this issue, various format-aware

fuzzing techniques have been proposed [4, 6, 13,50,81,96,111,129,159,183,184].

Specifically, Nautilus [4] and Superion [159] utilize language grammars to parse

inputs into abstract syntax trees (ASTs), where structural mutations such as deleting,

adding, or splicing tree nodes can be performed. AFLSmart [129] proposes a similar

approach but parses and represents inputs using a lightweight yet generic tree-like virtual

structure.

A limitation of format-aware fuzzers is that they assume the format of the inputs

is known to users, which often does not hold in practice. To solve this problem, some recent

researches propose to infer an approximate format of inputs to guide the mutation based on

the insight that the variances in program states caused by modifying certain input bytes can

imply the underlying input format that is expected. For instance, Redqueen [6] mutates

an input to maximize its entropy while keeping the coverage the same in order to identify

input bytes that are directly copied into one comparison operand of conditional branches.

These bytes are further marked as magic number or checksum according to the values they

are compared against. Profuzzer [184] mutates each individual byte in sequence with

enumerating its values and observes the execution variations regarding edge coverage and
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hit counts in response to the mutations. Afterwards, it groups consecutive bytes with similar

variations as a field, and further classifies the field to a type according to the exposed

pattern of the variations. Finally, specialized mutations are developed for each type of fields.

Weizz [50] flips individual bits in each byte of an input for execution, and detects dependent

conditional branches of which comparison operands vary but the hit count keeps the same.

Then, it recovers plausible boundaries of chunks as well as fields based on heuristics about the

dependencies to perform field- and chunk-level mutations. SLF [183] detects dependencies

between input bytes and conditional branches in a similar way, but it recognizes only fields,

and further classifies checks done by conditional branches into different types based on some

rough heuristics, enabling field-level, type-specific mutations. TensileFuzz [101] follows the

same way of identifying fields, and aims to improve seed growth in mutation-based fuzzing

via modeling and solving string constraints. PATA [96] distinguishes between multiple

occurrences of the same conditional branch when detecting dependencies between input

bytes and conditional branches. But instead of enabling field- or chunk-level mutations, it

aims to find path-aware byte-level mutations that can generate inputs passing certain hard

branches.

2.2 Concolic Execution

2.2.1 Symbolic and Concolic Execution

The key idea of classic symbolic execution (SE) [8, 139] is to execute the program

under test on symbolic rather than concrete inputs. To this end, SE maintains, as parts

of the execution state, (1) a symbolic store that associates program variables with their
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corresponding symbolic expressions, and (2) a set of symbolic path constraints from executed

conditional branches. When meeting a conditional branch whose predicate is symbolic, SE

tries to visit both branching targets (taken and not-taken) by forking the execution state

and updating path constraints. A forked state can then be proceeded concurrently [23, 36]

or sequentially [113,144] with others, if its path constraint is assessed to be satisfiable by a

SMT solver. As a result, SE can explore multiple paths at once to discover new coverage.

But it may meet scalability problem while there are too many states being forked (i.e., path

explosion).

Concolic execution (CE), as a modern variant of SE, strikes a balance between

the scalability and exploration capability. In particular, starting with a concrete input, CE

executes the program both concretely and symbolically. At each conditional branch, instead

of forking, CE always follows the same branch direction taken by the concrete execution.

To visit the opposite branching target, CE generate a new concrete input by asking a path

constraint solver for a satisfying solution for the constraint π∧¬b, where π is the constraint

of the path prefix prior to the branch and ¬b is the negated condition of the branch. If a

solution is found, the newly generated input is expected to follow the original path until

reaching the target branch, and then take the opposite one. By repeating this process, a

wide variety of concrete inputs can be generated to drive CE to explore different paths.

2.2.2 Input Generation for Concolic Execution

Because CE relies on the newly generated concrete inputs to explore different ex-

ecution paths, it is expected that each input can indeed reach the target branch, visit the
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opposite direction, and explore a new path. Therefore, a fundamental research question in

CE is: how to construct the path constraints π?

On one extreme, one can include all the constraints prior the target branch. While

this approach guarantees that the newly generated input can reach the target branch, it has

two main drawbacks. First, π could be over-constrained, meaning that it is impossible to

negate the target branch following the same path prefix. Second, when the path constraints

are complex, SMT solvers could fail to find a satisfying solution.

On the other extreme, one can use an empty π and only consider the negated

branch condition ¬b (a.k.a., optimistic solving). Apparently, because this approach is under-

constrained, the newly generated input may never reach the target branch (i.e., early path

divergence), or fail to visit the opposite direction, as the branch condition could change

under a different path prefix.

Since it is impractical to brute-force all possible combinations of path constraints,

we have to resort to various heuristics. Recent concolic executors like QSYM [187] leverage

a two-tier strategy to construct path constraints. First, it considers prior branch constraints

on which the target branch to negate has direct data-dependency. Thus, this strategy is

named nested solving. Specifically, QSYM builds a dependency graph recursively by (1)

finding all the input bytes involved in the current set of path constraints, and (2) adding

all the branch constraints that involve the current set of input bytes; until the set stops

growing. If nested solving fails, due to over-constrained or too complex (i.e., time out),

QSYM switches to optimistic solving, which only considers the last negated condition ¬b.

While an input generated by optimistic solving is expected to cause early path divergence
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thus fails to negate the target branch, an input generated by nested solving is expected to

negate the branch. In fact, once nested solving finds a solution, QSYM will mark the target

branch as solved, and never try to negate it again, regardless of whether the new input can

actually negate the branch or not. Unfortunately, our investigation revealed that nearly half

of inputs generated by nested solving failed to negate the target branch.

2.3 Hybrid Fuzzing

The combination of blackbox/greybox fuzzing and concolic execution results in hy-

brid fuzzing. Notably, in most existing hybrid fuzzing frameworks, fuzzing and concolic ex-

ecution run in independent instances that will synchronize seeds periodically or on demand,

while each instance is with its own seed selection and scheduling approaches. Pak’s mas-

ter thesis [121] first uses symbolic execution to discover frontier nodes representing unique

paths and then launches blackbox fuzzing to explore deeper code along the paths from these

nodes. Stephens et al. [149] develop Driller that launches selective symbolic execution to

generate new seed inputs when the greybox fuzzing could not make any new progress due to

complex constraints in program branches. Furthermore, Shoshitaishvili et al. [145] extend

Driller to incorporate human knowledge. DigFuzz [189] proposes a novel Monte Carlo based

probabilistic model to prioritize paths for concolic execution in hybrid fuzzing. QSYM [187]

designs a fast concolic execution engine that integrates symbolic execution tightly with the

native execution to support hybrid fuzzing.
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2.4 Multi-Armed Bandit Model

The multi-armed bandit model offers a fundamental framework for algorithms that

learn optimal resource allocation policies over time under uncertainty. The term “bandit”

comes from a gambling scenario where the player faces a row of slot machines (also known

as one-armed bandits) yielding random payoffs and seeks the best strategy of playing these

machines to gain the highest long-term payoffs.

In the basic formulation, a multi-armed bandit problem is defined as a tuple (A,R),

where A is a known set of K arms (or actions) and Ra(r) = P[r|a] is an unknown but fixed

probability distribution over rewards. At each time step t the agent selects an arm at, and

observes a reward rt ∼ Rat . The objective is to maximize the cumulative rewards
∑T

t=1 rt.

Initially, the agent has no information about which arm is expected to have the

highest reward, so it tries some randomly and observes the rewards. Then the agent has

more information than before. However, it has to face the trade-off between “exploitation”

of the arm that is with the highest expected reward so far, and “exploration” to obtain more

information about the expected rewards of the other arms so that it does not miss out on a

valuable one by simply not trying it enough times.

Various algorithms are proposed to make the optimal trade-off between exploita-

tion and exploration of arms. Upper Confidence Bound (UCB) algorithms [7] are a family

of bandit algorithms that perform impressively. Specifically, they construct a confidence

interval to estimate each arm’s true reward, and select the arm with the highest UCB each

time. Notably, the confidence interval is designed to shrink when the arm with its reward

is sampled more. As a result, while the algorithm tends to select arms with high average
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rewards, it will periodically try less explored arms since their estimated rewards have wider

confidence intervals.

Take UCB1 [2], which is almost the most fundamental one, as an example. It starts

with selecting each arm once to obtain an initial reward. Then at each time step, it selects

arm a that maximizes Q(a) +C ×
√

log(N)
na

where Q(a) is the average reward obtained from

arm a, C is a predefined constant that is usually set to
√
2, N is the overall number of

selections done so far, and na is the number of times arm a has been selected.

Particularly, seed scheduling can be modeled as a multi-armed bandit problem

where seeds are regarded as arms [177, 186]. However, to make the fuzzer benefit from this

model, such as maximizing the code coverage, we need to design the reward of scheduling a

seed carefully.
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Chapter 3

Systematic Study on the Impact of

Coverage Metrics in Greybox Fuzzing

3.1 Introduction

Greybox fuzzing is a state-of-the-art program testing technique that has been

widely adopted by both mainstream companies such as Google [170] and Adobe [172], and

small startups (e.g., Trail of Bits [173]). In the DARPA Cyber Grand Challenge (CGC),

greybox fuzzing has been demonstrated to be more effective compared to other alternatives

such as symbolic execution and static analysis [36,63,147,161,164].

Greybox fuzzing generally contains three major stages: seed scheduling, seed mu-

tation, and seed selection. From a set of seed inputs, the seed scheduler picks the next

seed for testing. Then, more test cases are generated based on the scheduled seeds through

mutation and crossover in the seed mutation stage. Finally, test cases of good quality are
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selected as new seeds to generate more test cases in the future rounds of fuzzing. Among

these stages, seed selection is the most important one as it differentiates greybox fuzzing

from blackbox fuzzing and determines the goal of the fuzzer. For example, when the goal

is to improve coverage, we use a coverage metric to evaluate the quality of a test case, and

when the goal is to reach a particular code point, we can use distance to evaluate the qual-

ity of a test case [16]. Note that although previous studies [59, 79] have shown that better

coverage of test suite is not directly related to a better quality of the tested software, the

observation that under-tested code is more likely to have bugs still holds. For this reason,

coverage-guided greybox fuzzing still works very well in practice.

Although various techniques have been proposed to improve greybox fuzzing at the

seed scheduling stage [16, 17, 127, 134] and the seed mutation stage [98, 133, 134, 161, 185],

very few efforts focus on improving seed selection. HonggFuzz [165] only counts the number

of basic blocks visited. AFL [163] utilizes an improved branch coverage that also counts

how many times a branch is visited. Angora [32] further extends the branch coverage to be

context-sensitive. More importantly, many critical questions about coverage metrics remain

unanswered.

First, how do we uniformly define the differences among different coverage met-

rics? Coverage metrics can be categorized into two major categories: code coverage and

data coverage. Code coverage metrics evaluate the uniqueness among test cases at the code

level, such as line coverage, basic block coverage, branch/edge coverage, and path coverage.

Data coverage metrics, on the other hand, try to distinguish test cases from a data accessing

perspective, such as memory addresses, access type (read or write), and access sequences.
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While many new metrics have been proposed individually in recent works, there is no sys-

tematic and uniform way to characterize the differences among them. Apparently, different

coverage metrics have very distinct capability of differentiating test cases, which we refer

to as sensitivity. For example, block coverage could not tell the difference between visits to

the same basic block from different preceding blocks, while branch coverage can. Therefore,

branch coverage is more sensitive than block coverage. A systematic and formal definition

of sensitivity is essential as it can not only tell the differences among current metrics but

also guide future research to propose more metrics.

Second, is there an optimal coverage metric that outperforms all the others in

coverage-guided fuzzing? Although sensitivity provides us a way to compare the capability of

two coverage metrics in discovering interesting inputs, a more sensitive coverage metric does

not always lead to better fuzzing performance. More specifically, fuzzing can be modeled

as a multi-armed bandit (MAB) problem [177] where each stage (seed selection, scheduling,

and mutation) has multiple choices, and the ultimate goal is to find more bugs with a

limited time budget. A more sensitive coverage metric may select more inputs as seeds,

but the fuzzer may not have enough time budget to schedule all the seeds or mutate them

sufficiently. Implementation details such as how coverage is actually measured can further

complicate this problem. For instance, a previous study [55] has shown that hash collisions

could reduce the actual sensitivity of a coverage metric. A systematic evaluation is essential

to understand the relationship between sensitivity and fuzzing performance better.

Third, is it a good idea to combine different metrics during fuzzing? Hypothetically,

if different coverage metrics have their own merits during fuzzing, then it would make sense
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to combine them so that different metrics could contribute differently. This question is also

crucial as it motivates different thinking and may lead to strategies for improving fuzzing.

To answer the questions mentioned above, we conduct the first systematic study on

the impact of coverage metrics on the performance of coverage-guided fuzzing. In particu-

lar, we formally define and discuss the concept of sensitivity to distinguish different coverage

metrics. Based on the different levels of sensitivity, we then present several representa-

tive coverage metrics, namely “basic branch coverage,” “context-sensitive branch coverage,”

“n-gram branch coverage,” and “memory-access-aware branch coverage,” as well as their

variants. Finally, we implement six coverage metrics in a widely-used greybox fuzzing tool,

AFL [163], and evaluate them with large datasets, including the DARPA CGC dataset [27],

the LAVA-M dataset [167], and a set of real-world binaries. The highlighted findings are:

• Many of these more sensitive coverage metrics indeed lead to finding more bugs as well

as finding them significantly faster.

• Different coverage metrics often result in finding different sets of bugs. Moreover, at

different times of the whole fuzzing process, the best performer may vary. As a result,

there is no grand slam coverage metric that can beat others.

• A combination of these different metrics can help find more bugs and find them faster.

Notably, using less computing resources, a combination of fuzzers with different cov-

erage metrics is able to find at least the same amount of bugs in the CGC dataset as

Driller, a hybrid fuzzer augmented AFL with concolic execution did [149].

To facilitate further research on this topic, we have made the source code and

dataset available at https://github.com/bitsecurerlab/afl-sensitive.
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3.2 Sensitivity and Coverage Metrics

In this section, we formally define and discuss the concept of the sensitivity of

a coverage metric. Accordingly, we present several coverage metrics that have different

sensitivities.

3.2.1 Formal Definition of Sensitivity

When comparing different coverage metrics, a central question is “is metric A better

than metric B?” To answer this question, we need to take a look at how a mutation-based

greybox fuzzer finds a bug. In mutation-based greybox fuzzing, a bug triggering test case

is reached via a chain of mutated test cases. In this process, if an intermediate test case is

deemed “uninteresting” by a coverage metric, the chain will break and the bug triggering

input may not be reached. Based on this observation, we decide to define sensitivity as a

coverage metric’s ability to preserve such mutation chains.

To formally describe this concept, we first need to define a coverage metric as a

function C : (P × I) → M, which produces a measurement M ∈ M when running a

program P ∈ P with an input I ∈ I . Given two coverage metrics Ci and Cj , Ci is “more

sensitive” than Cj , denoted as Ci ≻ Cj , if

(i) ∀P ∈ P , ∀I1, I2 ∈ I , Ci(P, I1) = Ci(P, I2)→ Cj(P, I1) = Cj(P, I2), and

(ii) ∃P ∈ P , ∃I1, I2 ∈ I , Cj(P, I1) = Cj(P, I2) ∧ Ci(P, I1) ̸= Ci(P, I2)

The first condition means, for any program P , if any two inputs I1 and I2 produce

the same coverage measurement using Ci; then they must produce the same measurement
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using Cj , i.e., Cj is always not more discriminative than Ci. The second condition means,

there exists at least a program P such that two inputs I1 and I2 would produce the same

measurement using Cj but different measurements using Ci, i.e., Ci can be more discrimi-

native than Cj .

3.2.2 Coverage Metrics

In this subsection, we introduce several coverage metrics and their approximated

measurement. Then we compare their sensitivity.

Branch Coverage Branch coverage is a straightforward yet effective enhancement over

block coverage, which is the most basic one that can only tell which code block is visited.

By involving the code block preceding the currently visited one, branch coverage can differ-

entiate the visits of the same code block from different predecessors. Branch here means an

edge from one code block to another one.

Ideally, branch coverage should be measured as a tuple (prev_block, cur_block),

where prev_block and cur_block stand for the previous block ID and the current block ID,

respectively. In practice, branch coverage is usually measured by hashing this tuple (as key)

into a hash table (e.g., a hit_count map). For example, the state-of-the-art fuzzing tool

AFL identifies a branch as:

block_trans = (prev_block << 1) ⊕ cur_block (3.1)
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where branch ID is calculated as its runtime address. The block_trans is then used as the

key to index into a hash map to access the hit_count of the branch, which records how

many times the branch has been taken. After a test case finishes its execution, its coverage

information is compared with the global coverage information (i.e., a global hit_count map).

If the current test case has new coverage, it will be selected as a new seed.

Although branch coverage is widely used in mainstream fuzzers, its sensitivity is

low. For instance, considering a branch within a function that is frequently called by the

program (e.g., strcmp). When the branch is visited under different calling contexts, branch

coverage will not be able to distinguish them.

N-Gram Branch Coverage After incorporating one preceding block in branch coverage,

it is intuitive to incorporate more preceding basic blocks as history into the current basic

block. We refer to this coverage metric as n-gram branch coverage, where n is a configurable

parameter that indicates how many continuous branches are considered as one unit, and

any changes of them will be distinguished. When n = 0, n-gram branch coverage is reduced

to block coverage. On the opposite extreme, when n → ∞, n-gram branch coverage is

equivalent to path coverage because it incorporates all preceding branches into the context

and any change in the execution path will be treated differently.

Ideally, n-gram branch coverage should be measured as a tuple (block1, . . . , blockn+1).

For efficiency, we propose to hash the tuple as a key into the hit_count map as (prev_block_trans <<

1) ⊕ curr_block_trans, where

prev_block_trans = (block_trans1 ⊕ · · · ⊕ block_transn−1) (3.2)
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In other words, we record the previous n−1 block transitions (calculated as in Equa-

tion 3.1) and XOR them together, left shift 1 bit, and then XOR with the current block

transition.

Now an interesting question is: what is the best value for n? If n is too small, it

might be almost the same as branch coverage. If n is too large, it may cause seed explosion

(a similar phenomenon as path explosion). Fuzzing progress would be even slower due to

the enormous amount of seeds.

To answer this question empirically, we adapt AFLFast to n-gram branch coverage

where n is set to 2, 4, and 8. We will evaluate these settings in §3.3.

Context-Sensitive Branch Coverage A function lies between a basic block and a path

with respect to the granularity of code. Therefore, calling context is another important

piece of information that can be incorporated as part of the coverage metric, which allows a

fuzzer to distinguish the same code executed with different data. We refer to this coverage

metrics as “context-sensitive coverage metric.”

Ideally, context-sensitive branch coverage metric should be measured as a tuple

(call_stack, prev_block, curr_block). For efficiency, we define a calling context call_ctx

as a sequence of program locations where function calls are made in order:

call_ctx =



0 initial value

call_ctx⊕ call_next_insn if call

call_ctx⊕ ret_to_insn if ret

(3.3)
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As a result, the key-value pair stored in the bitmap can be calculated as call_ctx ⊕

block_trans.

Initially, the calling context value call_ctx is set to 0. Then during the program

execution, when encountering a call instruction, we XOR the current call_ctx with the in-

struction’s position immediately next to the call instruction and store the result in call_ctx.

Similarly, when encountering a ret instruction, we XOR the current call_ctx with the re-

turn address. In this way, a small value call_ctx efficiently accumulates function calls made

in sequence and eliminates function calls that have returned.

Memory-Access-Aware Branch Coverage In addition to leveraging extra control flow

information as stated above, data flow information also deserves to be considered. Based on

the intuition that a primary focus of fuzzing is to detect memory-corruption vulnerabilities,

memory access information can be of great help in measuring coverage. Fundamentally,

memory corruption exhibits an erroneous memory access behavior. Therefore, it makes

sense to select seeds that exhibit distinct memory access patterns.

In general, this memory-access aware coverage metric is more sensitive than branch

coverage. Because if a new test case reaches a branch that has been covered by prior test

cases, but at least one new memory location is accessed, this test case will still be considered

as “interesting” in memory-access aware coverage metric and kept as a seed.

There can be many ways to characterize memory access patterns. In this chapter,

we investigate one design option. We instrument memory access operations of the program

under test, and define each memory access as a tuple (type, addr, block_trans), where
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type represents access type (read or write), addr is the accessed memory location, and

block_trans means after which branch this memory access is performed.

For efficiency, we propose to calculate the hash key as (block_trans⊕mem_ac_ptn),

where

mem_ac_ptn =


mem_addr if read

mem_addr + half_map_size if write

(3.4)

Note that reads are distinguished from writes by allocating their keys to different half regions

of the map.

Since memory corruption is mainly caused by memory writes, it is meaningful to

investigate a variant of memory access coverage: “memory-write-aware branch coverage.”

That is, we only instrument and record memory writes, but not reads, making it less sensi-

tive.

3.2.3 Sensitivity Lattice

Obviously, ≻ is a strict partial order, because it is asymmetric (if C1 ≻ C2, by

no means C2 ≻ C1), transitive (if C1 ≻ C2 and C2 ≻ C3, then C1 ≻ C3), and irreflexive

(Ci ≻ Ci is not possible). However, it is not a total order, because it is possible that two

metrics are not comparable.

As a result, we can draw a sensitivity lattice for the coverage metrics discussed

above. Figure 3.1 shows this lattice. Block coverage is the least sensitive metric, compared

to the rest, so it appears on the top. Immediately below is branch coverage. It is more
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Figure 3.1: Sensitivity lattice for coverage metrics

sensitive than block coverage. Then below branch coverage are the three coverage metrics

that incorporate different extra information on top of branches.

However, there is no direct comparison among these three coverage metrics, because

each of them extends branch coverage in different dimensions: context-sensitive branch

coverage incorporates calling context, n-gram branch coverage integrates n-1 preceding block

transitions, and memory-access-aware branch coverage includes memory accesses. We can

always construct a program and two inputs, such that the same coverage measurement is

produced for one metric, but two different coverage measurements are produced for another.

For different values of n in n-gram branch coverage, i-gram is more sensitive than

j-gram if i > j. Ultimately, path coverage is more sensitive than n-gram branch coverage

and context-sensitive branch coverage.

Interestingly enough, we cannot compare path coverage with either memory-access-

aware branch coverage or memory-write-aware branch coverage. Path coverage is not nec-
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essarily more sensitive because two inputs may follow the same path but exhibit different

memory access patterns.

It is noteworthy that the coverage metrics presented here are a few representative

ones but are by no means complete. We hope this work can stimulate research on developing

more coverage metrics and obtaining a deeper understanding of their impact.

3.3 Evaluation

To answer the research questions raised in §3.1, we implemented all the coverage

metrics mentioned in §3.2 except the basic branch coverage, which is already implemented

in AFL. We then conducted comprehensive experiments to evaluate the performance of

different coverage metrics. Moreover, to better understand how different coverage metrics

working together could affect fuzzing; we also evaluate the combination of them.

3.3.1 Implementation

In this study, since our primary goal is to fuzz binaries without source code, we

choose to add our instrumentation based on user-mode QEMU. For instance, for context-

sensitive branch coverage, we instrument call and ret instructions to calculate calling

context, and for memory-access-aware branch coverage, we instrument memory reads and

writes. For n-gram branch coverage, we use a circular buffer to store the last n-block

transitions, for efficient n-gram calculation.

For convenience, in the remainder of this chapter, we use the following abbrevi-

ations to represent different metrics: bc represents the existing branch coverage in AFL,
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ct represents context-sensitive branch coverage, mw is short for memory-write-aware branch

coverage, and ma represents memory-access-aware branch coverage. For n-gram branch cov-

erage, we choose to implement three versions: 2-gram, 4-gram and 8-gram, and use n2, n4,

and n8 for their abbreviations.

Furthermore, we adopted the seed scheduling of AFLFast [17] in our implemen-

tation. Since AFLFast inclines to allocate more fuzzing time on newly generated seeds,

different coverage metrics will make a greater impact on fuzzing performance.

3.3.2 Experiment Setup

Dataset

We collect binaries from DARPA Cyber Grand Challenge (CGC) [27]. There are

131 binaries from CGC Qualifying Event (CQE) and 74 binaries from CGC Final Event

(CFE), and thus 205 ones in total. These binaries are carefully crafted by security experts

to utilize different kinds of techniques (e.g., complex I/O protocols and input checksums)

and embed vulnerabilities in various ways (e.g., buffer overflow, integer overflow, and use-

after-free) to comprehensively evaluate various vulnerability discovery techniques.

We also choose the LAVA-M dataset [44, 167], which consists of four GNU core-

utils programs (base64, md5sum, uniq, and who) for evaluation. Each of these binaries is

injected with a large number of specific vulnerabilities. As a result, we treat these injected

vulnerabilities as ground truth and use them to evaluate different coverage metrics.
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Table 3.1: Real-world applications used in evaluation.

Applications Version Applications Version

objdump+binutils 2.29 readelf+binutils 2.29
strings+binutils 2.29 nm+binutils 2.29
size+binutils 2.29 file 5.32
gzip 1.8 tiffset+tiff 4.0.9
tiff2pdf+tiff 4.0.9 gif2png 2.5.11
info2cap+ncurses 6.0 jhead 3.0

In addition to the two datasets above, we also manage to collect 12 real-world

applications with their latest versions (Table 3.1) and assess the performance of different

coverage metrics in practice with them.

Evaluation Metrics

To answer the question of whether there is an optimal coverage metric, we propose

three metrics to quantify the experimental results and evaluate the performance of the

presented coverage metrics:

• Unique Crashes. A unique crash during fuzzing implies that a potential bug of the

binary has been found. For the CGC dataset, each binary is designed to have a single

vulnerability, so we did not perform any crash deduplication. For the LAVA-M dataset,

each bug is assigned with a unique ID which is used for crash deduplication. For the

real-world dataset, we utilize the hash of each crash’s backtrace for deduplication.

• Time to Crash. This metric indicates how fast a given binary can be crashed by

a fuzzer and is mainly for the CGC dataset. Because a CGC binary only has one
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vulnerability, this metric can be used to measure the efficiency of fuzzing with different

coverage metrics.

• Seed Count. A more sensitive coverage metric is more likely to convert a testcase

into a seed, and thus the number of unique seeds may be larger. Therefore, this metric

quantifies the sensitivity of each coverage metric in a practical sense.

Computing Resources

Our experiments are conducted on a private cluster consisting of a pool of virtual

machines. Each virtual machine has a Ubuntu 14.04.1 operating system equipped with 2.3

GHz Intel Xeon processor (24 cores) and 30GB of RAM. As fuzzing is a random process, we

followed the recommendations from [88] and performed each evaluation several times for a

sufficiently long period.

Settings

The tests are mainly focused on the CGC dataset. Specifically, each coverage

metric is tested with every binary of the CGC dataset in the dataset using two fuzzing

instances for 6 hours (i.e., similar to one instance running 12 hours). We chose this fuzzing

time because almost all of the bugs found by fuzzer in CQE and CFE were reported within

the first six hours. Moreover, in order to take the randomness of fuzzing into account, each

test is performed ten times. The total evaluation time is around 60 days. For binaries with

initial sample inputs, we utilized them as initial seeds; otherwise, we used an empty seed.

For the LAVA-M dataset, we tested each coverage metric separately for 24 hours

and three times. We used the seed inputs provided by this benchmark and dictionaries of
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constants extracted from the binary as suggested in [169]. For the real-world dataset, we

tested each coverage metric for 48 hours, with two fuzzing instances, and for six times. We

used the example inputs from AFL as seeds whenever possible; otherwise with an empty

seed.

3.3.3 Study Findings

Comparison of Unique Crashes

We first compare the number of unique crashes that have been found with different

coverage metrics.
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Figure 3.2: Number of crashed CGC binaries.
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CGC Dataset Figure 3.2 summarizes the number of crashed CGC binaries for each cov-

erage metric across ten rounds of trials. Note that because each binary only has one vul-

nerability, this number is equivalent to the total number of unique crashes. Overall, the

baseline metric bc crashed about 89 binaries on average and 91 binaries at most. Except for

ma and mw, all other more sensitive coverage metrics (ct, n2, n4, n8) outperform bc. This

result is encouraging: sensitivity does play an important role in finding crashes. However,

as demonstrated by mw and ma, too much sensitivity could also have a negative impact on

fuzzing performance. The reason is, more sensitive metrics will select more test cases as

seeds (§3.3.3); when the time budget is limited, each seed will get less time to mutate or not

get scheduled at all.

Table 3.2: Pairwise comparisons (row vs. column) of uniquely crashed CGC binaries.

bc ct ma mw n2 n4 n8 others

bc 0/0 0/6 0/15 0/11 0/6 0/6 0/5 0/2
ct 9/13 0/0 9/23 10/15 6/12 3/6 4/8 1/3
ma 2/3 3/4 0/0 2/3 4/6 4/5 2/3 1/1
mw 6/8 2/5 0/12 0/0 3/8 2/7 3/5 0/2
n2 4/4 0/3 7/16 4/9 0/0 0/2 0/2 0/0
n4 9/12 3/5 12/23 8/16 8/10 0/0 0/5 0/1
n8 9/10 6/6 13/20 10/13 7/9 2/4 0/0 0/0
all 19/21 10/14 20/33 19/24 18/23 11/15 9/16 110

Next, we investigated each coverage metric’s ability to trigger individual bug/crash

– is there any bug that is only triggered by one or a subset of the evaluated metrics but not

the rest? To answer this question, we conducted a pairwise comparison on crashed binaries

(Table 3.2). For each pair of coverage metrics i (in the row) and j (in the column), we

first count the number of binaries that were only crashed by i but not by j, denoted as the

number after the “/”. Since such differences could be caused by randomness, we conducted

a second experiment focusing on the impact of sensitivity. Specifically, during fuzzing, we
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recorded the chain of seeds that led to each crashing test case. Each chain starts with

the initial seed and ends with the crashing test case. Afterward, for each pair of coverage

metrics (i, j), we checked whether each seed along the chain selected by i would also be

selected by j as seed, without any additional mutation (i.e., fuzzing). In this process, we

also discarded additional sensitivity (non-binary hit_count) and insensitivity (key collision)

introduced in implementation. The result is denoted as the number before the “/” in each

cell of Table 3.2. For example, entry (ct, bc) indicates that there were 13 binaries crashed

by ct but not by bc, within which 9 crashes have at least one seed along the crashing chains

that will be dropped by bc. Similarly, entry (bc, ct) indicates that 6 binaries crashed by

bc are not crashed by ct, of which however none of the seeds along the crashing chain will

be dropped by ct. Besides, for a metric k, entry (all, k) indicates the number of binaries

crashed by at least one of the other coverage metrics but not by k and entry (k, others)

indicates the number of binaries only crashed by k but not by any other coverage metrics.

Finally, entry (all, others) indicates the number of binaries crashed by at least one of all

the seven coverage metrics.

We can see that the difference between any two coverage metrics is considerable.

More importantly, there is no single winner that beats everyone else. Even for ma, although

it crashes the smallest amount of binaries in total, it contributes 2 unique crashed binaries

beyond bc, and 3, 2, 4, 4, and 2 unique crashed binaries beyond ct, mw, n2, n4, and n8

respectively, of which the crashes have at least one seed along the crashing chains that will

be dropped by the other metric. In other words, every coverage metric can make its own
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and unique contribution. This observation further motivates us to study the combination

of different coverage metrics. We will discuss more in §3.3.3.

Table 3.3: Number of unique bugs found by different coverage metrics on the LAVA-M
dataset

bc ct ma mw n2 n4 n8 Listed

base64 45 45 44 45 45 45 45 44
md5sum 54 58 35 43 59 58 51 57
uniq 29 29 29 20 29 29 29 28
who 261 255 301 231 166 159 299 2136

LAVA-M Dataset Table 3.3 summarizes the bugs found on LAVA-M dataset by different

coverage metrics, while the last column represents the number of bugs listed by LAVA

authors. Compare to the CGC dataset, the LAVA-M dataset is not very suitable for our

goal. In particular, most injected bugs are protected by a magic number, which is very hard

to be solved by random mutation and cannot reflect unique abilities of different coverage

metrics. Although we have followed the suggestions from [169] and used dictionaries of

constant (magic) numbers extracted from the binary, we still cannot rule out the differences

caused by not being able to solve the magic number. For binary base64, md5sum, and uniq,

the difference between different coverage metrics is small, except for ma in md5sum and mw in

uniq. For binary who, it is surprising that in addition to n8, ma also finds much more unique

bugs than bc and other three metrics, despite its poor performance on the CGC dataset.

Real-World Dataset There are many crashes found for binaries in the real-world dataset.

We use the open-source tool afl-collect [174] to de-duplicate these crashes and identify

unique crashes. Overall, we have successfully found unique bugs in 5 real-world binaries as
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Table 3.4: Number of unique crashes found by different coverage metrics in the real-world
dataset.

bc ct ma mw n2 n4 n8

gif2png 4 4 3 4 5 4 4
info2cap 1446 1063 481 99 568 933 943
objdump – – – – 1 1 –
size – 1 – – 1 1 1
nm – 1 – 1 – – 1

listed in Table 3.4. It is worth noting that for binary objdump, size, and nm, only our newly

proposed coverage metrics find unique bugs.

Comparison of Time to Crash

CGC Dataset Since most CGC binaries only contain one bug, we then measure the

time to first crash (TFC) for different coverage metrics across the ten rounds of trials.

The accumulated number within a 95% confidence of binaries crashed over time is shown

in Figure 3.3, where the x-axis presents in seconds and the y-axis shows the number of

binaries whose TFC (time-to-first-crash) were within that time. The x-axis presents time in

seconds while the y-axis shows the accumulated number of binaries crashed. For example,

we can see that n4 almost manages to crash more binaries than other coverage metrics in

the first hour (3600 seconds) and ma performs the worst among them. We also see that all of

the proposed coverage metrics other than ma and mw can help find crashes in binaries more

quickly than the original AFL (bc). Moreover, although n4 does not find the most crashes,

it is the best one during the early stage (30 to 90 minutes). After 90 minutes, ct surpasses

it and becomes one of the best performers.
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Figure 3.3: Number of binaries crashed over time during fuzzing on the CGC dataset.

LAVA-M Dataset Figure 3.4 presents the number of unique bugs found over time by

different coverage metrics on the four binaries. We can see that the newly proposed coverage

metrics outperform bc on all four binaries. Although ma is slower than others, it finally finds

the same number of unique bugs on binary base64 and unique. On binary who, ma even

finds quite more unique bugs. Moreover, ct and n8 perform stably well across four binaries,

and the latter one performs extremely well on binary who: it finds the largest number of

unique bugs and much faster than the rest.
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Figure 3.4: Number of unique bugs found over time during fuzzing on the LAVA-M dataset.
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Figure 3.5: Number of unique crashes found over time on real-world dataset.

Real-World Dataset Similarly, Figure 3.5, where the x-axis presents TFC in 1000 sec-

onds, shows The number of unique bugs over time found by different coverage metrics on

the five crashed binaries in the real-world dataset. We can see that except for info2cap,

bc either finds unique bugs much more slowly than others or does not find any bugs at all.

In addition, there is no global trend about which coverage metric is the fastest one to find

bugs across the five binaries.

Comparison of Seed Count

CGC Dataset We collect the number of seeds selected for each binary using different

coverage metrics and report the mean number within a 95% confidence among the ten runs.

Figure 3.6 displays the cumulative distribution of the numbers of generated seeds. A curve

closer to the top left in the figure implies that in general fewer seeds are generated for

binaries with the corresponding coverage metric.
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We had several observations from the result. First, ma was significantly more

sensitive than the rest coverage metrics. It selects several orders of magnitude more seeds

than the others. While most of these seeds are stepping stones for more meaningful mutations

that lead to final crashes, too many of them would hurt the fuzzing performance because

the differences among most of the seeds are so tiny that they are unlikely to result in any

new bug. Second, for n-gram branch coverage, as n increases from 1 (bc) to 8, the number

of seeds increases correspondingly, although the lines for bc and n2 are too close to each

other. This phenomenon meets our expectation, as n8 ≻ n4 ≻ n2 ≻ bc. Third, while in

theory, we cannot compare ct with n-gram regarding their sensitivities, we observe that the

seed count distribution for ct is between n4 and n8, at least for the CGC dataset. Fourth,

in theory, ma ≻ mw ≻ bc. We indeed observe these relations in the form of seed counts for

ma, mw, and bc.

Table 3.5: The numbers of seeds generated by different coverage metrics on the LAVA-M
dataset.

bc ct ma mw n2 n4 n8

base64 208 170 16372 200 196 273 425
md5sum 706 497 75323 71131 474 719 4958
uniq 104 52 43928 50178 77 92 153
who 223 144 14183 16511 190 271 470

LAVA-M Dataset Table 3.5 lists seed counts generated by each coverage metric on the

four binaries in the LAVA-M dataset. We can see that the observations for the CGC dataset

still hold in general, with some outliers. For instance, the seed counts of ct on all four
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Figure 3.6: Partial CDFs of seeds generated by different coverage metrics on the CGC
dataset.

binaries are smaller than those of bc. These numbers are not statistically significant, given

such a small-scale dataset.

Real-World Dataset Table 3.6 lists seed counts generated by each coverage metric on

the 12 real-world binaries. We can draw similar observations as on the CGC and LAVA-M

datasets with some exceptions: the seed count distribution for ct is no longer between n4

and n8 in general.
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Table 3.6: The numbers of seeds generated by different coverage metrics on the real-world
dataset.

bc ct ma mw n2 n4 n8

file 38 38 38 19462 38 38 38
gif2png 1039 2037 151008 29606 804 1665 3840
gzip 1305 1340 124253 65035 1002 1875 5446
info2cap 4966 12555 76048 30136 4802 8831 17104
objdump 6015 42625 49401 126578 4978 8756 22914
readelf 8461 15317 91982 63009 8758 15425 35429
strings 61 62 1619 59 69 68 131
tiff2pdf 834 883 143902 2841 724 1108 2395
tiffset 2 2 2 2 2 2 2
size 2117 4860 111978 143693 1605 3003 10278
nm 12566 49307 133460 73386 5947 10174 23322
jhead 384 284 75328 29229 362 576 1376

Combination of Coverage Metrics

From the evaluation results above, we observe that each coverage metric has its

unique characteristics in terms of crashes found and crashing times. This observation leads

us to wonder whether combining fuzzers with different coverage metrics together would

find more crashes and find them faster. To answer this question, we consider two options

for combination: (1) fuzzers with different coverage metrics are running in parallel and

synchronizing seeds across all metrics periodically (i.e., cross-seeding); and (2) fuzzers with

different coverage metrics are running in parallel but independently, as the baseline to show

whether cross-seeding really helps.

To study these two options, we create three configurations of 14 fuzzing instances:

(a) all 14 fuzzing instances with bc and seed synchronization; (b) 2 fuzzing instances for each

of the 7 different coverage metrics with seed synchronization only within the same metric;

and (c) 2 fuzzers for each of the 7 different coverage metrics with seed synchronization across

all metrics (i.e., cross-seeding).
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CGC Dataset We run the three configurations each for six hours, and for three times

to get median results on the CGC dataset. Figure 3.7 illustrates the number of binaries

crashed over time for the three configurations. We can make the following observations.

First, both combination options outperform the baseline by large margins, with respect to

both the number of crashed binaries and crash times. The combination without cross-seeding

(configuration b) crashes 78 CQE binaries, 31 CFE binaries, and 109 binaries in total. The

one with cross-seeding (configuration c) crashes 77 CQE binaries, 33 CFE binaries, and 110

in total. Meanwhile, the baseline only crashes 64 CQE binaries, 30 CFE binaries, and 94 in

total. It is a notable achievement: the hybrid fuzzer Driller [149] was able to crash 77 CQE

binaries after 24 hours with the help of concolic execution, where each binary is assigned to

four fuzzing instances and all binaries share a pool of 64 CPU cores for concolic execution,

using totally 12,640 CPU hours (131 binaries× 4 cores× 24 hours+60 cores× 24 hours).

Compared with Driller, we can achieve the same or even better results by pure fuzzing with

less computing resources (131 binaries× 14 cores× 6 hours = 11, 004 CPU hours totally)!

Second, the blue line and the red line cross at around 3 hours. At this cross point,

105 binaries have been crashed for both configurations. It implies that the combination with

cross-seeding is able to crash 105 binaries much earlier than the one without cross-seeding.

LAVA-M and Real-World Datasets We also run the three configurations each for 24

hours on LAVA-M dataset, and each for 48 hours on the real-world dataset. Figure 3.8

and Figure 3.9 present the results. We observed that the combination without cross-seeding

always outperforms the baseline (14 fuzzers with bc only) by large margins. On the other
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Figure 3.7: Number of binaries crashed during fuzzing tests by combining different coverage
metrics on the CGC dataset.

0.04 0.02 0.00 0.02 0.04
time to first crash (sec)

0.04

0.02

0.00

0.02

0.04

nu
m

be
r o

f u
ni

q 
bu

gs

w/o x-seeding w/ x-seeding bc

0 250 500 750 1000
0

10

20

30

40
base64

0 20000 40000 60000 80000
0

20

40

60
md5sum

0 10000 20000 30000 400000

10

20

30 uniq

0 20000 40000 60000 80000
0

200

400

600

800

who

Figure 3.8: Number of unique bugs found over time by combining different coverage metrics
on the LAVA-M dataset.

hand, the combination with cross-seeding has inconsistent performance across these nine

binaries. In some cases, it is even worse than the baseline. Unlike the result for the CGC

dataset, this result is not statistically significant. However, it does indicate that sometimes,

the overhead of cross-seeding may outweigh its benefits. Xu et al. [180] have shown that
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Figure 3.9: Number of unique bugs found over time by combining different coverage metrics
for crashed real-world binaries.

cross-seeding overhead is significant in parallel fuzzing and propose OS-level modifications

for improving fuzzing performance. It would be interesting to re-evaluate the performance of

the combination with cross-seeding with these OS-level modifications. We leave it as future

work.

In summary, it is better to combine different coverage metrics with or without cross-

seeding, which can help find more bugs and find them faster.

3.4 Summary

In this chapter, we present the first systematic study on the impact of coverage

metrics on greybox fuzzing with the DARPA CGC dataset, the LAVA-M dataset, and real-

world binaries. To this end, we formally define the concept of sensitivity when comparing

two coverage metrics, and selectively discuss several metrics that have different sensitivities.

Our study has revealed that each coverage metric leads to find different sets of vulnerabilities,

indicating there is no grand slam that can beat others. We also showed a combination of

different metrics helps find more crashes and find them faster. We hope our study would

stimulate research on developing more coverage metrics for greybox fuzzing.
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Chapter 4

Reinforcement Learning-Based

Hierarchical Seed Scheduling for

Greybox Fuzzing

4.1 Introduction

Greybox fuzzing is a state-of-the-art testing technique that has been widely adopted

by the industry and has successfully found tens of thousands of vulnerabilities in widely

used software. For example, the OSS-Fuzz [68] project has found more than 10,000 bugs in

popular open-sourced projects like OpenSSL since its launch in December 2016.

Greybox fuzzing can be modeled as a genetic process where new inputs are gener-

ated through mutation and crossover/splice. The generated inputs are selected according to
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a fitness function. Selected inputs are then added back to the seed pool for future mutation.

Unlike natural evolution, due to the limited processing capability, only a few inputs from

the seed pool will be scheduled to generate the next batch of inputs. For example, a single

fuzzer instance can only schedule one seed at a time.

The most common fitness function used by off-the-shelf fuzzers like American Fuzzy

Lop (Afl) [188] is edge coverage, i.e., inputs that cover new branch(es) will be added to the

seed pool, as its goal is to achieve higher edge coverage of the code. While most fuzzers are

coverage-guided (i.e., use new coverage as the fitness function), recent research has shown

that the genetic process can also be used to discover a diversity of program properties by

using a variety of fitness functions [92,120,127].

An important property of a fitness function (e.g., a coverage metric) is its ability

to preserve intermediate waypoints [120]. To better illustrate this, consider flipping a magic

number check a = 0xdeadbeef as an example. If a fuzzer only considers edge coverage,

then the probability of generating the correct a with random mutations is 232. However,

if the fuzzer can preserve important waypoints, e.g., by breaking the 32-bit magic number

into four 8-bit number [89], then solving this checking will be much more efficient since the

answer can be generated from a sequence as 0xef, 0xbeef, 0xadbeef, and 0xdeadbeef. This

check can also be solved faster by understanding distances between current value of a and

the target value [32,33,38,54,150]. More importantly, recent research has shown that many

program states cannot be reached without saving critical waypoints [108,156].

We have formalized the ability to preserve intermediate waypoints as the sensitivity

of a coverage metric [156]. Conceptually, a more sensitive metric would lead to more program
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states (e.g., code coverage). However, the empirical evaluation of [156] shows that this is

not always the case. The reason is that, a more sensitive coverage metric will select more

seeds, which could cause seed explosion and exceed the fuzzer’s ability to schedule. As a

result, many seeds may never be scheduled or be scheduled without enough time/power to

make a breakthrough [17].

In this work, we aim to address the seed explosion problem with a hierarchical

scheduler. Specifically, fuzzing can be modeled as a multi-armed bandit (MAB) prob-

lem [177], where the scheduler needs to balance between exploration and exploitation. With

a more sensitive coverage metric like branch distance, exploitation can be considered as

focusing on solving a hard branch (e.g., magic number check), and exploration can be con-

sidered as exercising an entirely different function. Our crucial observation is that when

a coverage metric Cj is more sensitive than Ci, we can use Cj to save all the intermedi-

ate waypoints without losing the ability to discover more program states; but at the same

time, we can use Ci to cluster seeds into a representative node and schedule at node level

to achieve better exploration. More specifically, the scheduler will choose a node first, and

then choose a seed in that node. Based on this observation, we propose to organize the

seed pool as a multi-level tree where leaf nodes are real seeds and internal nodes are less

sensitive coverage measurements. The closer a node is to the leaf, the more sensitive the

corresponding coverage measurement is. Then we can utilize the existing MAB algorithms

to further balance between exploitation and exploration.

To validate our idea, we implemented two prototypes: one Afl-Hier based on

Afl and the other Afl++-Hier based on Afl++. We performed extensive evaluation
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on the DARPA Cyber Grand Challenge (CGC) dataset [27] and Google FuzzBench [70]

benchmarks. Compared to AflFast [17], Afl-Hier can find more bugs in CGC (77 vs.

61). Afl-Hier also achieved better coverage in about 83 of 180 challenges and the same

coverage on 60 challenges. More importantly, Afl-Hier can find the same amount of bugs

and achieve the same coverage faster than AflFast. On FuzzBench, Afl++-Hier achieved

higher coverage on 10 out of 20 projects than Afl++ (Qemu).

Contributions. This works makes the following contributions:

• We propose multi-level coverage metrics that bring a novel approach to incorporate

sensitive coverage metrics in greybox fuzzing.

• We design a hierarchical seed scheduling algorithm to support the multi-level coverage

metric based on the multi-armed bandits model.

• We implement our approach as an extension to Afl and Afl++ and release the

source code at https://github.com/bitsecurerlab/aflplusplus-hier.

• We evaluate our prototypes on DARPA CGC and Google FuzzBench. The results show

that our approach not only can trigger more bugs and achieve higher code coverage,

but also can achieve the same coverage faster than existing approaches.

4.2 Multi-Level Coverage Metrics

In this section, we discuss what are multi-level coverage metrics and why they are

useful for greybox fuzzing.
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4.2.1 Sensitivity of Coverage Metrics

Given a mutation-based greybox fuzzer, a fuzzing campaign starts with a set of

initial seeds. As the fuzzing goes on, more seeds are added into the seed pool through

mutating the existing seeds. By tracking the evolution of the seed pool, we can see how

each seed can be traced back to an initial seed via a mutation chain, in which each seed is

generated from mutating its immediate predecessor. If we consider a bug triggering test case

as the end of a chain and the corresponding initial seed as the start, those internal seeds

between them serve as waypoints that allow the fuzzer to gradually reduce the search space

to find the bug [120].

The coverage metric used by a fuzzer plays a vital role in creating such chains, from

two main aspects. First, if the chain terminates earlier before reaching the bug triggering test

case, then the bug may never be discovered by the fuzzer. Our work [156] formally model this

ability to preserve critical waypoints in seed chains as the sensitivity of a coverage metric.

For example, consider the maze game in Listing 4.1, which is widely used to demonstrate

the capability of symbolic execution of exploring program states. In this game, a player

needs to navigate the maze via the pair of (x, y) that determines a location for each step. In

order to win the game, a fuzzer has to try as many sequences of (x, y) pairs as possible to

find the right route from the starting location to the crashing location. This simple program

is very challenging for fuzzers using edge coverage as the fitness function, because there are

only four branches related to every pair of (x, y), each checking against a relatively simple

condition that can be satisfied quite easily. For instance, five different inputs: “a,” “u,” “d,”

“l,” and “r” are enough to cover all branches/cases of the switch statement. After this,
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1 char maze [ 7 ] [ 1 1 ] = {
2 "+−+−−−+−−−+" ,
3 " | | |#| " ,
4 " | | −−+ | | " ,
5 " | | | | | " ,
6 " | +−− | | | " ,
7 " | | | " ,
8 "+−−−−−+−−−+" } ;
9 i n t x = 1 , y = 1 ;

10 f o r ( i n t i = 0 ; i < MAX_STEPS; i++){
11 switch ( s t ep s [ i ] ) {
12 case 'u ' : y−−; break ;
13 case 'd ' : y++; break ;
14 case ' l ' : x−−; break ;
15 case ' r ' : x++; break ;
16 de f au l t :
17 p r i n t f ( "Bad step ! " ) ; r e turn 1 ;
18 }
19 i f (maze [ y ] [ x ] == '#' ) {
20 p r i n t f ( "You win ! " ) ;
21 re turn 0 ;
22 }
23 i f (maze [ y ] [ x ] != ' ' ) {
24 p r i n t f ( "You l o s e . " ) ;
25 re turn 1 ;
26 }
27 }
28 re turn 1 ;

Listing 4.1: A Simple Maze Game

even if the fuzzer can generate new interesting inputs that indeed advance the program’s

state towards the goal (e.g., “dd“), these inputs will not be selected as new seeds because

they do not provide new edge coverage. As a result, it is extremely hard, if not impossible,

for fuzzers that use the edge coverage to win the game [5].

On the contrary, as we will show in §4.4.3, if a fuzzer can measure the different

combinations of x and y (e.g., by tracking different memory accesses via ∗(maze+ y+x) at

line 10), then reaching the winning point will be much easier [5, 156]. Similarly, researchers
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have also observed that the orderless of branch coverage and hash collisions can cause a fuzzer

to drop critical waypoints hence prevent certain code/bugs from being discovered [55,93,108].

The second impact of a coverage metric has on creating seed chains is the stride

between a pair of seeds in a chain. Specifically, the sensitivity of a coverage metric also

determines how likely (i.e., the probability) a newly generated test case will be saved as

a new seed. For instance, it is easier for a fuzzer that uses edge coverage to discover a

new seed than a fuzzer that uses block coverage. Similarly, as we have discussed in §4.1,

it is much easier to find a match for an 8-bit integer than a 32-bit integer. Böhme et

al. [17] model the minimum effort to discover a neighbouring seed as the required power

(i.e., mutations). Based on this modeling, a more sensitive coverage metric requires less

power to make progress, i.e., a shorter stride between two seeds. Although each seed only

carries a small step of progress, the accumulation of them can narrow the search space faster.

While the above discussion seems to suggest that a more sensitive coverage metric

would allow fuzzers to detect more bugs, the empirical results from [156] showed this is

not always the case. For instance, while memory access coverage would allow a fuzzer to

win the maze game (Listing 4.1), it did not perform very well on many of the DARPA

CGC challenges. The reason is that, a more sensitive coverage metric will also create a

larger seed pool. As a result, the seed scheduler needs to examine more candidates each

time when choosing the next seed to fuzz. In addition to the increased workload of the

scheduler, a larger seed pool also increases the difficulty of seed exploration, i.e., trying as

many fresh seeds as possible. Since the time of a fuzzing campaign is fixed, more abundant

seeds also imply that the average fuzzing time of each seed could be decreased, which could

55



negatively affect seed exploitation, i.e., not fuzzing interesting seeds enough time to find

critical waypoints.

Overall, a more sensitive coverage metric boosts the capability (i.e., upper bound)

of a fuzzer to explore deeper program states. Nevertheless, in order to effectively utilize

its power and mitigate the side effects of the resulting excessive seeds, the coverage metric

and the corresponding seed scheduler should be carefully crafted to strike a balance between

exploration and exploitation.

4.2.2 Seed Clustering via Multi-Level Coverage Metrics

root

MF MF MF MF. . .

ME ME ME ME. . .

MD MD MD MD. . .

ME ME ME

MDMDMD MD MD MD

Figure 4.1: A multi-level coverage metric that measures function coverage at top-level, edge
coverage at mid-level, and hamming distance of comparison operands at leaf-level. The root
node is a virtual node only used by the scheduler.
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The similarity and diversity of seeds, which can be measured in terms of the exer-

cised coverage, drive the seed exploration and exploitation in a fuzzing campaign. In general,

a set of similar seeds gains less information about the program under test than a set of di-

verse seeds. When a coverage metric measures more fine-grained coverage information (e.g.,

edge), it can dim the coarse-grained diversity (e.g., block) among different seeds. First, it

encourages smaller variances between seeds. Second, it loses the awareness of the potential

larger variance between seeds that can be detected by a more coarse-grained metric. For

instance, a metric measuring edge coverage is unaware of whether two seeds exercise two

different sets of basic blocks or the same set of basic blocks but through different edges.

Therefore, it is necessary to illuminate seed similarity and diversity when using a more

sensitive coverage metric.

Clustering is a technique commonly used in data analysis to group a set of similar

objects. Objects in the same cluster are more similar to each other than to those in a

different cluster. Inspired by this technique, we propose to perform seed clustering so that

seeds in the same cluster are similar while seeds in different clusters are more diverse. In

other words, these clusters offer another perspective that allows a scheduler to zoom in the

similarity and diversity among seeds.

Based on the observation that the sensitivity of most coverage metrics for greybox

fuzzing can be directly compared (i.e., the more sensitive coverage metric can subsume the

less sensitive one), we propose an intuitive way to cluster seeds—using a coarse-grained

coverage measurement to cluster seeds selected by a fine-grained metric. That is, seeds in

the same cluster will have the same coarse-grained coverage measurement. Moreover, we can
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use more than one level of clustering to provide more abstraction at the top level and more

fidelity at the bottom level. To this end, the coverage metric should allow the co-existence

of multiple coverage measurements. We name such a coverage metric a multi-level coverage

metric.

4.2.3 Incremental Seed Clustering

With the multi-level coverage metric in place, if a test case is assessed as exercising

a new coverage (feature) by any of the measurements, it will be retained as a new seed

and put in a proper cluster as described in algorithm 2. Generally, except for the top-

level measurement M1 that directly classifies all seeds into different clusters, the following

lower-level measurement Mi (i = 2, · · · , n) works on each of the clusters generated by Mi−1

separately, classifying seeds in it into smaller sub-clusters, which is named incremental seed

clustering.

In more detail, given a multi-level coverage metric as shown in Figure 4.1 , a test

case exercising any new function, edge, or distance coverage will be assessed as a new seed.

Then the root node starts the seed clustering. It will find from its child nodes an existing

MF node that covers the same functions as the new seed, or create a new MF node if the

desired node does not exist. Next, the seed clustering continues in a similar way that puts

the new seed into a ME node with the same edge coverage. Finally, a child MD node of the

ME node is selected to save the new seed according to its distance coverage.
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Algorithm 2: Seed Selection Algorithm
Input: test case I
Output: return a status code indicating whether I triggers a bug or covers

new features
Data: program being fuzzed P ,

existing seed set S∗,
existing feature set M∗,
current working cluster cc,
map from feature sets to sub clusters cc.map,
coverage metric Cn ∼ ⟨C1, . . . , Cn⟩,
coverage measurements ⟨M1, · · · ,Mn⟩

Result: put I in a proper cluster if it is a new seed
1 Function RunAndEval(I):
2 ⟨M1, . . . ,Mn⟩ ← RunWithInstrument(P, I, Cn)
3 if bug triggered then
4 return Bug
5 end
6 M t ←M1 ∪ · · · ∪Mn

7 if M t ⊆M∗ then
8 return Known
9 else

10 M∗ ←M∗ ∪M t

11 foreach i ∈ {1, . . . , n} do
12 next_cc← cc.map[Mi]
13 if next_cc = NULL then
14 next_cc← new_cluster()
15 end
16 move I into next_cc
17 cc.map[Mi]← next_cc
18 cc← next_cc

19 end
20 return NewCovExplored
21 end
22 End
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Terms used in the algorithm are defined as follows.

Definition 4.2.1. A coverage space Γ defines the set of enumerable features we pay attention

to that can be covered by executing a program.

Some typical coverage spaces are:

• ΓF is the set of all program functions.

• ΓB is the set of all program blocks.

• ΓE is the set of all program edges. Note that an edge is a transition from one block to

the next.

It is worth mentioning that in real-world fuzzers such as Afl, the coverage infor-

mation is recorded via well-crafted hit_count maps. Consequently, the features are signified

by entries of the maps.

Definition 4.2.2. A coverage metric C : (P×I)→ Γ∗ measures the execution of a program

P ∈ P with an input I ∈ I, and produces a set of features that are exercised by it at least

once, denoted as M ∈ Γ∗ .

Since coverage metric is mainly characterized by the coverage space Γ, it can be

simplified with the coverage space. Some typical coverage metrics are:

• CF measures the functions that are exercised by an execution.

• CB measures the blocks that are exercised by an execution.

• CE measures the edges that are exercised by an execution.
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Finally, we give the definition of a multi-level coverage metric.

Definition 4.2.3. A coverage metric Cn : (P × I)→ ⟨Γ∗
1, . . . ,Γ

∗
n⟩ consists of a sequence of

coverage metrics ⟨C1, . . . , Cn⟩. It measures the execution of a program P ∈ P with an input

I ∈ I, and produces a sequence of measurements ⟨M1, . . . ,Mn⟩.

A multi-level coverage metric combines multiple metrics at different levels to assess

a seed. As a result, it relies on lower-level coverage measurements to preserve minor variances

among seeds so that there will be more abundant seeds in a chain. This helps to reduce the

search space of finding bug triggering test cases. Meanwhile, it allows a scheduler to use

upper-level measurements to detect major differences among seeds. Note that when n = 1,

it is reduced to a traditional single level coverage metric.

4.2.4 Principles and Examples of Multi-level Coverage Metrics

To further illustrate how a multi-level coverage metric works, we propose some

representative examples. We first discuss some principles for developing an effective multi-

level coverage metric Cn ∼ ⟨C1, . . . , Cn⟩ for fuzzing a program P .

Principles

Through the incremental seed clustering, all seeds are put into a hierarchical tree

that lays the foundation of our hierarchical seed scheduling algorithm, which will be de-

scribed in §4.3. However, the scheduling makes sense only when a node at an upper level

can have multiple child nodes at lower levels. This indicates that the cases where if a set

of seeds are assessed to be with the same coverage measurement Mi, all following measures
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Mi+1, . . . ,Mn will also be the same should be excluded. Motivated by this fundamental

requirement, the main principle is that measurements generated by a less sensitive metric

should always cluster seeds prior to more sensitive ones. Here, we use the same definition of

sensitivity between two coverage metrics as in §3.2.

Specifically, take the multi-level metric in Figure 4.1 as an example. Seeds in

the same MF clusters must have the same function coverage. However, since ME is more

sensitive than MF , these seeds are likely to have different edge coverage, resulting in multiple

different sub-clusters. However, if we use ME to cluster seeds prior to MF , since seeds with

the same edge coverage must also have the same function coverage, it is impossible further

to put them into different sub- MF clusters. As a result, each ME node will have only a

single MF node, making the clustering useless.

As discussed in [156], ≻s is a partial order, so it is possible that two metrics are

not comparable. To solve this problem, we propose a weaker principle: given two non-

comparable coverage metrics, we should cluster a seed with the metric that will select fewer

seeds before the one that will select more seeds.

Examples

Following the above principles, we propose two multi-level coverage metrics as

examples. Both examples use three-level clustering that works well in our evaluation.

The top-level metric in both examples is CF , which measures the function cover-

age. The middle-level metric is edge coverage CE . Functions invoked are essential runtime

features that are commonly used to characterize an execution, and edge coverage is widely

used in fuzzers such as Afl and libFuzzer. Notably CE ≻sCF .
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The most important one is the bottom-level metric, which is the most sensitive one.

In this work, we mainly evaluated a bottom-level metric called distance metric CD. It traces

conditional jumps (i.e., edges) of a program execution, calculates the hamming distances of

the two arguments of the conditions as covered features, and treats each observed new

distance of a conditional jump as new coverage. Unlike CE or CF that traces control flow

features, CD focuses on data-flow features and actively accumulates progress made in passing

condition checks for fuzzing.

To understand whether our approach can support different coverage metrics (fitness

functions), we also evaluated another coverage metric called memory access metric CA. As

the name implies, this metric traces all memory reads and writes, captures continuous access

addresses as array indices, and treats each new index of a memory access as new coverage.

CA pays attention to data flow features and accumulates progress made in accessing arrays

that might be long. To distinguish memory accesses that happen at different program

locations, the measurement also includes the address of the last branch. However, since

not all basic blocks contain memory accesses, CA is not directly comparable to CE using

sensitivity. However, we observe that CA can generate much more seeds than CE , so CA

comes after CE and its measurement MA stays at the bottom level.

4.3 Hierarchical Seed Scheduling

This section discusses how to schedule seeds against hierarchical clusters generated

by a multi-level coverage metric.
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4.3.1 Scheduling Against A Tree of Seeds

Conceptually, a multi-level coverage metric Cn ∼ ⟨C1 · · ·Cn⟩ organizes coverage

measurements (Mi) and seeds as a tree, where each node at layer (or depth) i ∈ {1, · · · , n}

represents a cluster represented by Mi and its child nodes at layer i+1 represent sub-clusters

represented by Mi+1. At leaf-level, each node is associated with real seeds. Additionally, at

layer 0 is a virtual root node representing the whole tree. To schedule a seed, the scheduler

needs to seek a path from the root to a leaf node.

Exploration vs Exploitation The main challenge a seed scheduler faces is the trade-off

between seed exploration (trying out other fresh seeds) and exploitation (keep fuzzing a few

interesting seeds to trigger a breakthrough). On the one hand, fresh seeds that have rarely

been fuzzed may lead to surprisingly new coverage. On the other hand, a few valuable seeds

that have led to significantly more new coverage than others in recent rounds encourage to

focus on fuzzing them.

Organizing seeds in a tree with hierarchical clusters facilitates a more flexible con-

trol over the seed exploration and exploitation. Specifically, fuzzers can focus on a single

cluster in which seeds cover the same functions at the first layer and then try out many (sub-

)clusters with seeds exercising different edges at the second layer. Alternatively, fuzzers can

also try out seeds exercising different groups of functions, then only pick seeds covering some

specific edges.

In this work, we explore the feasibility of modeling the fuzzing process as a multi-

armed bandit (MAB) problem [177,186] and using the existing MAB algorithms to balance

between exploitation and exploration. After trying several different MAB algorithms, we
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decide to adopt the UCB1 algorithm [2, 7] to schedule seeds, since it works the best em-

pirically, despite being one of the simplest MAB algorithms. As illustrated by function

SelectNextSeedToFuzz() in algorithm 3, starting from the root node, our scheduling algo-

rithm selects the child node with the highest score, which is calculated based on the coverage

measurements, until reaching the last layer to select among leaf nodes that are associated

with real seeds. Because all seeds have the same coverage at the leaf level, we scheduling

them with round robin for simplicity.

Algorithm 3: Seed Scheduling Algorithm
Input: seed set S
Output: return the seed to fuzz
Data: the tree T with n layers

current working tree node cx
1 Function SelectNextSeedToFuzz(S):
2 T ← S.tree
3 cx← T.root
4 foreach i ∈ {1, · · · , n} do
5 children← cx.child_nodes
6 cx← argmaxx∈childrenScore(x)
7 end
8 s← cx.next_seed()
9 return s

10 End
11

At the end of each round of fuzzing, nodes along the scheduled path will be re-

warded based on how much progress the current seed has made in this round, e.g., whether

there are new coverage features exercised by all the generated test cases. In this way,

seeds that perform well are expected to have increased scores for competing in the following

rounds, while seeds making little progress will be de-prioritized.
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Note that a traditional MAB problem assumes a fixed number of arms (nodes in

our case) so that all arms can get an estimation of their rewards at the beginning. However,

our setup breaks this assumption since the number of nodes grows as more and more seeds

are generated. To address this issue, we introduce a rareness score of a node, so that each

new node will have an initial score to differentiate itself from other new nodes. We will

discuss seed scoring in more detail later in §4.3.2.

It is also worth mentioning that a recent work Ecofuzz [186] proposed using a

variant of the adversarial multi-armed bandit (AMAB) model to perform seed scheduling.

However, it can not solve the seed exploration problem caused by more sensitive coverage

metrics, as it attempts to explore all existing seeds at least once. Moreover, we have also

experimented with the EXP3 algorithm that aims to solve the AMAB problem; but it

performed worse than UCB1 in our setup.

4.3.2 Seed Scoring

How to score seeds directly affect the trade-off between exploration and exploita-

tion. First, for exploitation, seeds that have performed well recently should have high scores

as they are expected to make more progress. Second, for exploration, the scoring system

should also consider the uncertainty of rarely explored seeds. We extended the UCB1 algo-

rithm [2, 7] to achieve a balance between exploitation and exploration. From a high level,

our scoring method considers three aspects of a seed: (1) its own rareness, (2) easiness to

discover new seeds from this seed, and (3) uncertainty.
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In order to discuss this in more detail, let us first define some terms more formally.

First, we define the hit count of a feature F ∈ Γl at level l as the number of test cases ever

generated that cover the feature.

Definition 4.3.1. Let P be the program under fuzzing, I be the set of all test cases that

have been generated so far. The hit count of a feature F is num_hits[F ] = |{I ∈ I : F ∈

Cl(P, I)}|.

As observed in [17], features that are rarely exercised by test cases deserve more

attention because they are not likely to be exercised by valid inputs. The rareness of a

feature describes how rarely it is hit, which is the inverse of the hit count.

Definition 4.3.2. The rareness of a feature F is rareness[F ] =
1

num_hits[F ]

Before describing how we calculate the reward of a round of fuzzing, we first define

the feature coverage of fuzzing seed s at round t.

Definition 4.3.3. Let P be the program under fuzzing, Is,t be the set of test cases generated

at round t via fuzzing seed s. We denote the feature coverage at level Cl, l ∈ {1, · · · , n} as

fcov[s, l, t] = {F : F ∈ C(P, I) ∀I ∈ Is,t}

Next, we describe how we calculate the reward to the seed just fuzzed after a round

of fuzzing. An intuitive way is to count the number of new features covered as the reward.

However, we quickly noticed that this does not work well. As the fuzzing campaign goes

on, the probability of exercising new coverage is dramatically decreased, indicating that a

seed can hardly obtain new rewards. Consequently, the mean reward of seeds may quickly

decrease to zero. When we have many seeds with minor variances near zero, the UCB
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algorithm cannot properly prioritize seeds. Moreover, under the common observation that

infrequent coverage features deserve more exploration than others, seeds that can lead to

inputs that exercise rare features are definitely more valuable, even if they do not cover new

features. Motivated by these observations, we take the rareness of the rarest feature that is

exercised by all generated inputs as the reward to the schedule seed. Formally, for a seed s

that is fuzzed at round t, its fuzzing reward w.r.t. coverage metric Cl is

SeedReward(s, l, t) = max
F∈fcov[s,l,t]

(rareness[F ]) (4.1)

Based on the seed reward, we compute the reward to a cluster by propagating seed

rewards to clusters scheduled at upper levels. More formally, let ⟨a1, . . . , an, an+1⟩ be the

sequence of nodes (in the seed tree) selected at round t, where an+1 is the seed node for s

and ai is coverage measurements for the corresponding clusters. Since scheduling node al

affects the following scheduling of nodes al+1, · · · , an at lower layers, the reward of node al

as feedback consists of the seed reward regarding coverage levels l, l+1, · · · , n as illustrated

in Equation 4.2. Note that we use the geometric mean here since it can handle different

scalars of the involved values with ease.

Reward(al, t) =
n− l + 1

√ ∏
l≤k≤n

SeedReward(s, k, t) (4.2)

Right now, we are able to estimate the expected performance of fuzzing a node

using the formula of UCB1 [2,7]. Formally, the fuzzing performance of a node a is estimated

as
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FuzzPerf(a) = Q(a) + U(a) (4.3)

Q(a) is the empirical average of fuzzing rewards that a obtains so far, and U(a) is

radius of the upper confidence interval.

Unlike UCB1 which calculates Q(a) using the arithmetic mean of the rewards that

node a obtains so far, we use the weighted arithmetic mean instead. More specifically,

during the fuzzing, the rareness of a feature is decreasing as it is exercised by more and

more test cases. As a result, even the same fuzzing coverage can lead to different fuzzing

rewards for mutating a seed: the reward of an earlier round might be significantly higher

than that of a later round. To address this issue, we introduce a discount factor as weight in

order to favor newer rewards rather than older ones. More formally, given a node a that is

selected for round t, we update its weighted mean at the end of round t in such a way that

we progressively decrease the weight to the previous mean reward in order to give higher

weights to newer rewards as illustrated in Equation 4.4

Q(a, t) =

Reward(a, t) + w ×Q(a, t′)×
N [a,t]−1∑

p=0
wp

1 + w ×
N [a,t]−1∑

p=0
wp

(4.4)

N [a, t] denotes the number of times that node a has been selected so far at the end

of round t, t′ is the last round at which node a was selected, and w is the discount factor.

Note that the smaller w is, the more we ignore the past rewards. When w is set to 0, all

the past rewards are ignored. To study how w affects the fuzzing performance, we conduct
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an empirical experiment (§4.4.3). Based on the results (see Table 4.5 and Table 4.6), we

empirically set w to 0.5 in our evaluation.

U(a) is the estimated radius factoring in the number of times a has been selected.

In addition, we also consider the number of seeds that a contains based on the insight that

nodes with more seeds should be scheduled more for seed exploration. More formally, given

a seed a and its parent a′, we calculate U(a) as

U(a) = C ×

√
Y [a]

Y [a′]
×

√
logN [a′]

N [a]
(4.5)

Y [a] denotes the number of seeds in the cluster of node a, and N [a] denotes the

times a has been selected so far. C is a pre-defined parameter that configures the relative

strength of exploration and exploitation. In particular, a larger C results in a relatively

wider radius in Equation 4.3, which encourages exploring fresh nodes that have been fuzzed

fewer times. This can help a fuzzer get out of code regions that are too hard to solve.

On the contrary, a smaller C indicates that the empirical average of fuzzing rewards gets

weighted more, thus promoting nodes that have recently led to good progress. As a result,

the fuzzer will focus on these nodes and is expected to reach more new code coverage. To

further demonstrate how it affects the fuzzing performance, we fuzz the CGC benchmark

with different values of C and show the results in §4.4.3. Based on the results, we set C to

1.4 in our evaluation.

The fuzzing performance estimated by Equation 4.3 based on fuzzing coverage

is limited by what can be observed. This limitation can impact seeds that have never

been scheduled and seeds that exercise rare features themselves but usually lead to inputs
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that exercise high-frequency features (e.g., for a program with rigorous input syntax checks,

random mutations usually lead to invalid paths, hence lowering the reward). To mitigate this

limitation, when evaluating a seed, we also consider features that it exercises. Particularly,

we calculate the rareness of a seed via aggregating the rareness of features that it covers.

More formally, let P be the program under fuzzing, given a seed s, its rareness regarding

Ml, l ∈ {1, · · · , n} is

SeedRareness(s, l) =

√∑
F∈Cl(P,s)

rareness2[F ]

|{F : F ∈ Cl(P, s)}|
(4.6)

Note that here we take quadratic mean rather than, e.g., arithmetic mean because

it preserves more data diversity. The rareness of a node al measured by Ml is completely de-

cided by its child seeds as they share the same coverage regarding Ml. Let ⟨a1, · · · , an, an+1⟩

be the sequence of nodes selected at round t, where an+1 is the leaf node representing a real

seed s, then at the end of round t the rareness of node al is updated as

Rareness(al) = SeedRareness(s, l) (4.7)

Notably, we update the rareness score of seeds and nodes lazily for two reasons.

First, it reduces the performance overhead. Second, it can lead to overestimating the rareness

of a node that has not been fuzzed for a long time, so that seed is more likely to be scheduled.

In addition to updating the rareness of a node picked in the past round, we also

calculate the rareness of each new node similarly. As discussed previously, this makes each
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new node have an initial score to differentiate itself from other new nodes before its reward

is estimated.

Finally, we have the score of a node a via multiplying its rareness and estimated

fuzzing performance together as shown in Equation 4.8. This score is the one used in algo-

rithm 3 to determine which nodes will be picked and which seed will be fuzzed next.

Score(a) = Rareness(a)× FuzzPerf(a) (4.8)

4.4 Evaluation

Our main hypothesis is that our multi-level coverage metric and hierarchical seed

scheduling algorithm driven by the MAB model can achieve a good balance between exploita-

tion and exploration, thus boosting the fuzzing performance. To validate our hypothesis, we

implemented two prototypes Afl-Hier and Afl++-Hier, one based on Afl [188] and the

other based on Afl++ [51], and evaluated them on various benchmarks aiming to answer

the following research questions.

• RQ1. Can Afl-Hier/Afl++-Hier detect more bugs than the baseline?

• RQ2. Can Afl-Hier/Afl++-Hier achieve higher coverage than the baseline?

• RQ3. How much overhead does our technique impose on the fuzzing throughput?

• RQ4. How well does our hierarchical seed scheduling mitigate the seed explosion prob-

lem caused by high sensitive of coverage metrics?
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• RQ5. How do the hyper-parameters affect the performance of our hierarchical seed

scheduling algorithm?

• RQ6. How flexible is our framework to integrate other coverage metrics?

4.4.1 Implementations

For evaluation over the CGC dataset, we used a prototype built on top of the code

open-sourced in our former work [156], which is based on Afl QEMU-mode, for its support

for binary-only targets and its emulation of CGC system calls. For evaluation over the

FuzzBench dataset, we used a prototype built upon the Afl++ project [51] (QEMU-mode

only), for its support of persistent mode and higher fuzzing throughput.

4.4.2 Experiment Setup

Benchmarks

The first set of programs are from DARPA Cyber Grand Challenge (CGC) [27].

These programs are carefully crafted by security experts that embed different kinds of tech-

nical challenges (e.g., complex I/O protocols and input checksums) and vulnerabilities (e.g.,

buffer overflow, integer overflow, and use-after-free) to comprehensively evaluate automated

vulnerability discovery techniques. There are 131 programs from CGC Qualifying Event

(CQE) and 74 programs from CGC Final Event (CFE), a total of 205. CGC programs are

designed to run on a special kernel with seven essential system calls so that competitors

can focus on vulnerability discovery techniques. In order to run those programs within a

normal Linux environment, we use QEMU to emulate the special system calls. Unfortu-
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nately, due to imperfect simulation, some CGC programs fail to be run correctly. We also

cannot handle programs that consist of multiple binaries, which communicate with each

other through pre-defined inter-process communication (IPC) channels. As a result, we can

only successfully fuzz 180 CGC programs (or binaries, in other words). We fuzz each binary

for two hours and repeat each experiment 10 times to mitigate the effects of randomness.

Each fuzzing starts with a single seed “123\n456\n789\n”. We chose this initial because

the initial seed affects the fuzzing progress a lot: seeds that are too good may make most

code covered at the beginning if the program is not complex, while poor ones may make

the fuzzing get stuck before reaching the core code of the program. These two cases both

will make the fuzzing reach the plateau early, and fail to show the performance differences

between our approach and other fuzzers. The seed we chose showed a good capability to

reveal performance differences between fuzzers.

The second benchmark set is the Google FuzzBench [70] that offers a standard set

of tests for evaluating fuzzer performance. These tests are derived from real-world open-

sourced projects (e.g., libxml, openssl, and freetype) that are widely used in file parsers,

protocols, and font operations. For this dataset, we used the standard automation script to

run the benchmarks, so each benchmark uses the seeds provided by Google.

Baseline Fuzzers

For Afl-based prototype, we choose three fuzzers as the baseline for comparison:

the original Afl [188], AflFast [17], and Afl-Flat [156]. Afl-Flat is configured with

edge sensitivity CE and distance sensitivity CD (see §4.2.4 for more details), but uses the

power scheduler from AflFast instead of our hierarchical scheduler. As discussed in §2.1,
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the performance of greybox fuzzing is mainly affected by four factors: seed selection, seed

scheduling, mutation strategies, and fuzzing throughput. We made all fuzzers use the same

mutation strategy to reflect the benefit of our approach, and ran the experiments ten times

to minimize the impact of randomness [88]. We also ran all fuzzers in the QEMU mode

so they can have similar fuzzing throughput, which also makes it easier to assess Afl-

Hier’s performance overhead. Comparisons with Afl and AflFast aim to show the overall

performance improvement of Afl-Hier; and comparison with Afl-Flat aims to show the

necessity/benefit of our scheduler (i.e., increasing the sensitivity of the coverage metric alone

is not enough).

For Afl++-based prototype, we choose two fuzzers as the baseline: the original

Afl++1 [51] and Afl++-Flat. We ran all fuzzers in the QEMU-mode and enabled

persistent mode for better throughput

Computing Resources

All the experiments are conducted on a 64-bit machine with 48 cores (2 Intel(R)

Xeon(R) Platinum 8260 @2.40GHz), 375GB of RAM, and Ubuntu 18.04. Each fuzzing

instance is bound to a core to avoid interference.
1The version is 2.68c which our prototype is built on.
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4.4.3 Evaluation Results

RQ 1. Bug Detection

⋆ In experiments with CGC benchmarks, Afl-Hier crashes more bina-

ries and faster. Especially, it crashes the same number of binaries in 30 minutes,

that AflFast crashes in 2 hours.

In this experiment, we evaluate fuzzers’ capability of detecting known bugs em-

bedded in the CGC binaries. Figure 4.2a shows the number of crashed CGC binaries across

ten rounds of trials. Note that since each binary supposedly only has one vulnerability, this

number equals the total number of unique crashes. On average, Afl crashed 64 binaries,

AflFast crashed 61 binaries, and Afl-Flat crashed 62 binaries. In contrast, Afl-Hier

crashes about 77 binaries on average, which is about 20% more binaries in the 2-hour

fuzzing campaign. Afl-Hier also performed much better when we look at the lower and

upper bound: its lower bound of crashes (74) is always higher than the upper bound of all

other fuzzers. Notably, these vulnerabilities are carefully designed by security experts to

highly mimic real-world security-critical vulnerabilities.

Table 4.1: Pairwise comparisons (row vs. column) of uniquely crashed on CGC benchmark.

Afl AflFast Afl-Flat Afl-Hier

Afl - 8 16 5
AflFast 3 - 13 5
Afl-Flat 11 13 - 1
Afl-Hier 17 22 18 -

Table 4.1 shows the pairwise comparisons of CGC binaries uniquely crashed by a

fuzzer across ten rounds of trails. As we can see, the added (distance) sensitivity CD allows
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(b) Number of CGC binaries crashed over time.

Figure 4.2: Crash detection on CGC benchmarks.

Afl-Flat and Afl-Hier to crash a considerable amount of binaries that edge sensitiv-

ity (i.e., Afl and AflFast) cannot crash. However, due to the seed explosion problem,

Afl-Flat could not efficiently explore the seed pool; so it also missed many bugs Afl

and AflFast can trigger. In contrast, Afl-Hier can achieve a good balance between

exploration and exploitation: it crashed more unique binaries and missed much less.
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Next, we measured the time to first crash (TFC) and show the accumulated number

within a 95% confidence of binaries crashed over time in Figure 4.2b. As shown in recent

studies [14, 74], TFC is a good metric to measure the performance of fuzzers. The x-axis

presents the time in minutes, and the y-axis shows the number of crashed binaries. As

shown in the graph, Afl-Hier stably crashed about 20% more binaries than other fuzzers

from the beginning to the end. Notably, Afl-Hier crashed the same number of binaries

in 30 minutes as AflFast did in 120 minutes; and crashed the same number of binaries in

40 minutes as Afl did in 120 minutes. In contrast, AflFast was lagging behind Afl and

AflFast in most of the time and only surpassed AflFast after 100 minutes. This result

showed that our hierarchical scheduler not only can find many unique bugs but also can

efficiently explore the search space.

RQ 2. Code Coverage

⋆ Results on CGC binaries demonstrate that Afl-Hier generally achieved

more code coverage and achieved the same coverage faster. Specifically, Afl-

Hier increases the coverage by more than 100% for 20 binaries, and achieves the

same coverage in 15 minutes that AflFast achieves in 120 minutes for about

half of the binaries. On FuzzBench, Afl++-Hier achieved higher coverage on

10 out of 20 projects.

CGC Benchmark In this experiment, we first measured the edge coverage achieved by

fuzzers using QEMU (i.e., captured during binary translation) on CGC binaries.
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Figure 4.3: Coverage improvement on the CGC benchmarks.
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Figure 4.3a illustrates the mean code coverage increase of Afl-Hier over other

fuzzers for the 180 CGC binaries, after 2 hours of fuzzing. The curve above 0% means

Afl-Hier covered more and the curse below 0% means Afl-Hier covered less. The x-axis

presents the accumulated number of binaries within a 95% confidence, and the y-axis shows

the increased coverage in logarithmic scale. For example, there are about 20 binaries for

which the code coverage is increased by at least 100%, and about 45 binaries for which the

code coverage is increased by at least 10%. After 2 hours of fuzzing, Afl-Hier achieved

more coverage for about 90 binaries than other fuzzers and achieved the same coverage for

50 binaries. Among about 30 binaries on which Afl-Hier achieves less coverage, on half of

them the difference is lower than 2%; and only on five of them the difference is greater than

10%. This result shows that our approach can cover more or similar code on most binaries

besides detecting more bugs.

Figure 4.3b illustrates how fast Afl-Hier can achieve the same coverage as other

fuzzers in two hours. The dashed lines (on the right-hand-side after hitting 120 min) show

for the cases where baseline fuzzers achieved more final coverage in two hours. The x-axis

shows the accumulated number of binaries within a 95% confidence, while the y-axis shows

the time in minutes. We can see that for about half of the total 180 binaries, Afl-Hier

achieved the same coverage in 15 minutes as baseline fuzzers did in 2 hours. Moreover, for

about 110 binaries, Afl-Hier achieves the same coverage in half an hour; and for about

130 binaries, Afl-Hier achieves the same coverage in one hour. Similar to TFC (time to

first crash), this result also shows that our approach can achieve the same coverage faster,

indicating it can balance exploration and exploitation well.
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Figure 4.4: Mean coverage in a 6 hour fuzzing campaign on FuzzBech benchmarks.

Figure 4.3c shows the number of binaries for which Afl-Hier achieved more cov-

erage than other fuzzers over time. The x-axis represents the time in minutes and the y-axis

shows the accumulated number of binaries within a 95% confidence that Afl-Hier won on

coverage. We can observe that after 10 minutes, Afl-Hier already won for about 40 bina-

ries over Afl and AflFast. After 1 hour, it further increased the gap by winning for more

than 70 binaries. Overall, Afl-Hier steadily won for more and more binaries throughout

the process of the 2-hour fuzzing campaign. This indicates that Afl-Hier can continuously

make breakthroughs in new coverage for binaries when other fuzzers plateaued.
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FuzzBench Next, we compare Afl++-Hier with two baseline fuzzers (Afl++ and

Afl++-Flat) on Google FuzzBench benchmarks. Figure 4.4 shows the mean coverage

(with confidence intervals) over time during 6-hour fuzzing campaigns2. The y-axis presents

the number of covered edges and the x-axis represents time. Please note that the x-axis is

in logarithmic scale, as recent work suggests the required efforts to achieve more coverage

grow exponentially [14]. Meanwhile, the Vargha-Delaney [153] effect size Â12 is shown at

the bottom of each sub-figure, where the left one is of between Afl++-Hier over Afl++

(Qemu) and the right one is of between Afl++-Hier and Afl++-Flat, respectively. A

value above 0.5735, 0.665, 0.737 (or below 0.4265, 0.335, 0.263) indicates a small, medium,

large effect size. More intuitively, a larger value above 0.5 indicates a higher probability

of that Afl++-Hier will cover more edges than Afl++ (Qemu) or Afl++-Flat in a

fuzzing campaign. Moreover, a value starting with a star indicates a statistical significance

tested by Wilcoxon signed-rank test (p < 0.05). Overall, Afl++-Hier could beat Afl++

(Qemu) and Afl++-Flat on about ten projects, and achieved significantly more coverage

on projects openthread, sqlite3, and proj4.

Table 4.2 shows the unique edge coverage, which is union over different runs, of

Afl++ (Qemu) and Afl++-Hier. The results indicate even on programs where Afl++-

Hier has lower mean coverage than Afl++, it still can cover some unique edges Afl++

does not cover. Note that here we union edge coverage across different runs, so for some

benchmarks like lcms and libpcap, though the mean coverage differences are large, the unique

coverage differences are much smaller.
2We are working with Google to provide a 23-hour run that compares with more fuzzers.
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Compared to the results on the CGC benchmarks, we observe that our performance

is not significantly better than Afl++ on most of the FuzzBench benchmarks. We suspect

the reason is that our UCB1-based scheduler and the hyper-parameters we used in the

evaluation prefer exploitation over exploration. As a result, when the program under test

is relatively smaller (e.g., CGC benchmarks), our scheduler can discover more bugs without

sacrificing the overall coverage by too much. But on FuzzBench programs, breaking through

some unique edges (Table 4.2) can be overshadowed by not exploring other easier to cover

edges.

Table 4.2: Unique edge coverage between afl++ (Qemu) and afl++-hier (Hier) on FuzzBench
benchmarks.

Benchmark Total Hier - Qemu Qemu - Hier

bloaty_fuzz_target 102417 24 674
curl_curl_fuzzer_http 143182 203 114
freetype2-2017 56114 774 1227
harfbuzz-1.3.2 13073 58 124
jsoncpp_jsoncpp_fuzzer 2583 0 0
lcms-2017-03-21 12817 36 33
libjpeg-turbo-07-2017 18486 0 237
libpcap_fuzz_both 11800 141 195
libpng-1.2.56 5944 6 54
libxml2-v2.9.2 89852 52 210
mbedtls_fuzz_dtlsclient 32046 142 102
openssl_x509 115381 26 14
openthread-2019-12-23 42901 344 0
proj4-2017-08-14 10434 109 67
re2-2014-12-09 5904 2 100
sqlite3_ossfuzz 48181 1880 965
systemd_fuzz-link-parser 4167 0 0
vorbis-2017-12-11 6372 8 4
woff2-2016-05-06 6401 54 8
zlib_zlib_uncompress 1664 24 0
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Figure 4.5: Comparison between throughput of Afl-Hier, Afl, AflFast and Afl-Flat
on CGC benchmarks.

RQ 3. Fuzzing Throughput

⋆ Results on CGC benchmarks show that Afl-Hier has a competitive

throughput as Afl and AflFast. Moreover, even built on the faster fuzzer

Afl++, Afl++-Hier still has a comparable throughput as shown by the re-

sults on FuzzBench benchmarks.

A multi-level coverage metric requires collecting more coverage measurements dur-

ing runtime and performing more operations to insert a seed into the seed tree. Similarly,

our hierarchical scheduler also requires more steps than the power scheduler of Afl and
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Figure 4.6: Overhead of Afl-Hier scheduler on CGC benchmarks.

AflFast. Therefore, we expect our approach to have a negative impact on fuzzing through-

put. Moreover, the multi-level coverage metric is sensitive to minor variances of test cases

and execution paths; consequently, it is more likely to schedule larger and more complex

seeds leading to longer execution time.

To quantify the impact on fuzzing throughput, we first investigated the proportion

of the time that Afl-Hier spends in scheduling, which involves maintaining the incidence

frequencies and the tree of seeds and choosing the next seed to fuzz. The results on CGC

benchmarks are shown in Figure 4.6, where the x-axis represents individual runs (in total

10 × 180 = 1800) and the y-axis shows the portion of time spent on scheduling. We can
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Figure 4.7: Comparison between throughput of Afl++-Hier, Afl++, and Afl++-Flat
on FuzzBench benchmarks.

see that the median overhead is as low as 3%, and most overhead is lower than 10%. On

Afl++-based prototype, we observed lower performance overhead, as shown in Figure 4.8.

Next, we measured the throughput of Afl-Hier versus Afl and AflFast on CGC

benchmarks. Figure 4.5 shows the ratio of Afl-Hier’s throughput over Afl and AflFast

in an ascending order. The x-axis represents different CGC binaries while the y-axis shows

the ratio within a 95% confidence in logarithmic scale. Surprisingly, Afl-Hier only leads

to a lower throughput for about a quarter of the binaries; and for another quarter of the

binaries, Afl-Hier’s throughput is at least twice as AflFast’s. This indicates that the
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Figure 4.8: Overhead of Afl++-Hier scheduler on FuzzBench benchmarks.

specific optimizations for Afl-Hier act very well. A similar trend is also observed on the

Afl++-based prototype, as shown in Figure 4.7.

RQ 4. Performance Boost via Hierarchical Seed Scheduling

⋆ Experiment results on CGC and FuzzBench benchmarks demonstrate

that our hierarchical seed scheduler dramatically reduces the number of candi-

dates to be examined.

Previous experiments already show that our hierarchical seed scheduler is more

suitable for highly sensitive coverage metrics, as Afl-Hier can achieve higher coverage
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faster than Afl-Flat and find more bugs. In this evaluation, we investigate the number

of seeds generated by each fuzzer to validate that such improvement is indeed caused by

the scheduler. Figure 4.9 shows the number of seeds generated by each fuzzer on the left

side, as well as the number of nodes at different levels of the tree in Afl-Hier on the

right side. The y-axis is in logarithmic scale. We can observe that due to the increased

sensitivity of distance metric CD, both Afl-Hier and Afl-Flat selected one magnitude

more seeds than Afl and AflFast, which uses edge coverage with hit count. However, by

clustering the seeds in a hierarchical structure, Afl-Hier dramatically reduced the number

of candidates to examine when scheduling. Specifically, on average there are about 21 +

1102/21+2350/1102+2608/2350 ≈ 77 examinations to perform for each scheduling, which

is significantly less than examining 2608 seeds. As a result, even with the most number of

seeds (more than Afl-Flat), Afl-Hier can still balance exploration and exploitation and

achieve better fuzzing performance (in terms of coverage and detected bugs) than baseline

fuzzers.

On FuzzBench benchmarks, we also observed a similar level of reduction, as shown

in Figure 4.10. More importantly, we can see that our scheduling algorithm can scale to

larger programs with significantly more edges and more saved seeds. As shown in Table 4.2,

all the benchmarks have at least thousands of edges in total, and some even contain more

than one hundred thousand edges.

88



afl aflfast afl-flat afl-hier

10
20

50
100
200

500
1000
2000

5000
10000
20000

50000
nu

m
be

r o
f s

ee
ds

 &
 n

od
es

181 178

2480 2608

l1 l2 l3

21

1102
2350

Figure 4.9: Number of seeds and nodes on CGC benchmarks.

RQ 5. Hyper-Parameters

⋆ Experiment results on CGC benchmarks demonstrate that the hyper-

parameters will affect the performance in terms of crashes and edge coverage.

As discussed in §4.3.2, the seed scoring involves two hyper-parameters. One is w

in Equation 4.4 that determines how much we will decrease weights to old rewards when

calculating the mean reward. The other one is C in Equation 4.5 that controls the trade-off

between seed exploration and exploitation. In this evaluation, we investigate when they are

set to different values, how the fuzzing performance will vary. Table 4.3 and Table 4.5 show
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Figure 4.10: Number of seeds and nodes on FuzzBech benchmarks.

the average number of crashed binaries and covered edges with different values of C and

w, respectively. In addition, we also investigate the number of binaries uniquely crashed as

shown in Table 4.4 and Table 4.6, where each cell represents the number of binaries that

have been crashed by the setting of the row once but never by the setting of the column.

We can observe that different settings will lead to different results.

Notably, when C is set to 0, which extremely encourages exploitation, it uniquely

crashes the most binaries, but on average, it crashes the least. This indicates that although

keeping exploitation may help to trigger a crash at the end of a seed chain in one run, it
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also takes the risk of being trapped in fuzzing other seeds that previously have led to rarely

explored coverage, thus missing the crash in other runs. In other words, high exploitation

may do better in crash triggering than crash reproducing. Meanwhile, the result of edge

coverage indicates that exploring more coverage may not be closely related to bug detection

as expected when under different configurations of the relative strength of exploration and

exploitation. For example, setting C to 0.014 will lead to significantly less coverage, but it

crashes almost the same number of binaries as others.

In terms of the hyper-parameter w, note that a larger w makes old rewards more

weighted, thus encourages seed exploitation rather than exploration. We can observe that

setting w either too high (as 1.0) or too low (as 0.5) will lead to worse coverage, while setting

w to 0.5 will lead to significantly more unique crashes.

Overall, we can observe that when setting C to 1.4, w to 0.5, they perform reason-

ably well in average crashes, unique crashes, and mean edge coverage. Thus we adapt these

settings in our current implementation.

Table 4.3: Average number of crashed CGC binaries and mean edge coverage with different
values of hyper-parameter C.

Value of C 0 0.014 0.14 1.4 14

Crash 74 75 75 76 75
Edge Cov 776 667 748 727 746

Table 4.4: Pairwise comparisons (row vs. column) of uniquely crashed on CGC benchmarks
with different values of hyper-parameter C.

Value of C 0 0.014 0.14 1.4 14

0 - 8 7 4 9
0.014 3 - 2 3 4
0.14 4 4 - 5 5
1.4 3 7 7 - 9
14 3 3 2 4 -
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Table 4.5: Average number of crashed CGC binaries and mean edge coverage with different
values of hyper-parameter W.

Value of W 0.10 0.25 0.50 0.75 0.90 1.00

Crash 74 73 76 72 75 75
Edge Cov 698 758 727 666 739 660

Table 4.6: Pairwise comparisons (row vs. column) of uniquely crashed on CGC benchmarks
with different values of hyper-parameter W.

Value of W 0.10 0.25 0.50 0.75 0.90 1.00

0.10 - 5 2 3 4 3
0.25 1 - 1 1 1 1
0.50 8 11 - 9 9 9
0.75 2 4 2 - 3 3
0.90 4 5 3 4 - 4
1.00 4 6 4 5 5 -

RQ 6. Ability to Support Other Coverage Metrics

⋆ Experiment results on the maze problem show that our hierarchical

scheduler can also improve the fuzzing performance when using other sensitive

coverage metrics.

As discussed in §4.2.1, it is very hard, if not impossible, to use edge or even distance

coverage to solve the maze problem (Listing 4.1). However, it is possible to solve it using

memory sensitivity CA (see §4.2.4 for details). In this experiment, we investigate whether

our hierarchical scheduler can also boost the performance of coverage metrics other than

code-related coverage. Specifically, we configured Afl-Flat and Afl-Hier to use memory

access metric CA instead of distance metric CD and evaluate the two fuzzers on the maze

problem. Table 4.7 shows the results. As we can see, compared to the power scheduler

used by Afl-Flat, our hierarchical scheduler allows Afl-Hier to solve the maze problem
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Table 4.7: Average solving time for the maze problem (Listing 4.1).

Fuzzer Afl-Flat Afl-Hier

Time (sec) 383± 92 180± 36

much faster. This empirical result suggests that our scheduler is flexible to support different

coverage metrics.

4.5 Summary

Fine-grained coverage metrics like distances between operands of comparison oper-

ations and memory access allow greybox fuzzers to detect bugs that cannot be triggered by

traditional edge coverage. However, existing seed scheduling algorithms cannot efficiently

handle the increased number of seeds. In this chapter, we present a new coverage metrics de-

sign called multi-level coverage metric where we cluster seeds selected by fine-grained metrics

using coarse-grained metrics. Combining with a reinforcement-learning-based hierarchical

scheduler, our approach significantly outperform existing edge-coverage-based fuzzers on

DARPA CGC challenges.
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Chapter 5

Format-Aware Input Generation for

More Effective Concolic Execution

5.1 Introduction

Concolic execution (CE) [19,30,62,130,131,149,187], as a modern variant of sym-

bolic execution (SE) [23, 24, 28, 36, 61, 63, 113, 139, 140, 144], is a well-known approach for

program analysis and software testing, due to its ability to systematically explore program

states. In particular, it executes the program under test with a concrete input, collects sym-

bolic path constraints along the concrete execution path, and selectively negates symbolic

branches to generate new test inputs.

Input generation in CE is achieved via solving the negated path constraints (e.g.,

by consulting a satisfiability modulo theories (SMT) solver [10, 41]). Ideally, the newly

generated test input is expected to negate the target branch and reach a new path. The
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challenge, however, is what to be included in the path constraints. On one extreme end, we

can force the new input follow the same execution path prefix (as the input it is derived from)

until the target branch the CE engine aims to negate by including all constraints prior the

target branch. However, following the same path prefix (i.e., including all path constraints

prior the target branch) can be too restrictive that can make the negated branch constraints

not feasible. For example, consider an implementation of atoi that uses a switch statement

to parse string characters to integers. In this case, following the same path will always lead

to the same output, making it impossible to generate a different output. Including all prior

path constraints can also make the constraints too complex for the solver to find a solution.

On the other extreme, we can only consider the constraints from the target branch.

However, inputs generated using this approach usually miss important conditions. As a

result, the execution path may diverge earlier and never reach the target branch. It is also

possible that the execution reaches the target branch with a different set of constraints (due

to an earlier deviation from the path prefix), thus invalidating the solution returned by the

solver.

To avoid these problems, modern CE engines [30, 33, 187] use a two-tier strategy

to construct path constraints. They first try nested solving, which includes prior constraints

over which the target branch has direct data-dependency. If nested solving failed (e.g., too

complex or too restrictive), then they try optimistic solving, which only includes the target

branch’s constraints. While it is expected that inputs generated with optimistic solving are

likely to fail to negate the target branch, our evaluation shows that a considerable portion

of solutions generated by nested solving also failed to negate the target branch.
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This problem is especially severe when the program under test handles highly

formatted inputs. A formatted input usually consists of fields and chunks, where fields have

implicit dependencies on other fields or chunks. For instance, some bytes as a field could

represent the size of another chunk; so, simply mutating the values of these bytes when

negating a branch without shrinking or expanding the corresponding chunk accordingly will

lead to format inconsistency and invalid inputs.

In addition, our investigation also reveals that, even if the new input success-

fully negates the target branch, it may inadvertently affect some important branches after-

wards, thus making the execution terminate too early without reaching deep code regions,

since these conditions are not considered when constructing the path constraints. This

issue makes it especially hard to generate valid formatted inputs. Take the JSON input

{"key":"abc","command":"root"} as an example, where each field is a string. If we replace

a string in-place (e.g., from "abc" to "deadbeef"), without shifting the following filed, then

the new input (e.g., {"key":"deadbeef"mand":"root"}) will become invalid. Although it

is possible to gradually fix the invalid inputs through additional rounds of mutations, such

intermediate inputs may be dropped by the CE engine (e.g., due to no new coverage) [156].

In this work, we aim to improve the efficacy of input generation for CE by taking

input format into account. To this end, we start with inferring the format for each executed

input based on the key insight that path constraints already contain rich information about

how a program handles its input thus can also be used to infer the input format. We first

recover plausible field boundaries and hierarchies (i.e., the structure), based on how input

bytes are used in branch conditions. For instance, contiguous bytes probably belong to one
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field if they are assessed in the same static branch, and contiguous fields probably belong

to one chunk if they are assessed under the same calling context. Next, we try to infer the

possible semantic types for certain fields (e.g., size, checksum, string), based on specific

patterns in the path constraints.

After inferring the input format, we apply three strategies to improve the efficacy

of input generation. First, when constructing the path constraints that are used to negate

a branch, we prefer to include branch conditions where fields have been found, expecting

that new inputs would not break the structure. Secondly, during the solving process, in

addition to querying an SMT solver, we search for chunks that already satisfy the negated

branch condition in existing seeds, and adopt them as additional solutions. Notably, this

methods can save redundant efforts of negating and solving path constraints to re-generate

the chunks. Lastly, for each solution raised by the solver, if we find an involved fields of

recognized types, we will adjust the solution accordingly to satisfy the constraints imposed

by the types.

To validate our idea, we implement a prototype Formatly based on SymSan [30],

a state-of-the-art concolic executor. Our evaluation with a set of popular real-world programs

shows that, compared to nested-then-optimistic solving, our format-aware solving can (1)

negate more symbolic branches, (2) lead to deeper new paths, and (3) unlock more code

coverage. End-to-end hybrid fuzzing results also show that format-aware solving can lead

to better edge coverage.
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Contributions: In summary, this work makes the following contributions:

• We show that the nested-then-optimistic solving strategy fail to negate many symbolic

branches.

• We propose a novel format-aware solving strategy that leverages path constraints to

infer input format information, and leverages inferred format information to construct

better path constraints.

• We implement a prototype Formatly and will release the source code.

• We evaluate Formatly with a set of real-world applications. The results show that

it can significantly improve the performance of input generation, which enables better

performance in end-to-end fuzzing.

5.2 Motivation

Our investigation indicates that when the program under test handles highly for-

matted inputs that consist of various fields and chunks, inputs generated by existing solving

strategies (e.g., nested solving) could fail to negate the target branch due to failing to capture

implicit dependencies.

First, it is common that some fields have impacts on other fields or chunks. For

instance, considering an input where a field acts as an index to access another chunk, simply

modifying the value of the offset field when negating a branch without adjusting the element

to access in the chunk will lead to inconsistent inputs. Listing 1 shows such a case from

the application openssl. Notably, len that is from the input is used as an index to access p
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that is an array on the input at line 3, and the leading bit of the accessed element must be

zero to avoid the early return at line 5. Consequently, when negating the conditional branch

at line 10 to explore the code after the taken direction, we need to either keep len, which

is assigned to length at line 8, intact and only modify ret->length, or adjust the array

p accordingly if len has to be modified. Otherwise, the execution with the new input will

terminate early before reaching the target branch. However, because there is no pure data-

dependency between line 3 and line 10, nested solving will ignore the additional constraints

and generate invalid inputs.

1 ASN1_OBJECT *ossl_c2i_ASN1_OBJECT(...) {
2 ...
3 if (... || p[len - 1] & 0x80) {
4 ...
5 return NULL;
6 }
7 ...
8 length = (int)len;
9 ...

10 if (... || (ret->length < length)) {
11 ...
12 }
13 ...
14 }

Listing 1: A code snippet from openssl

Second, arguably a more interesting case we found during our investigation is that

path constraints after the target branch can also be important. Specifically, a new input

with inconsistent format may negate the target branch but the execution would terminate

prematurely without reaching deeper paths. Take a PNG file that consist of various types of

data chunks as an example. Listing 2 displays the code snippet from the library libpng that

identifies the type of a chunk and dispatches the execution to the corresponding handler.

It first invokes the function png_memcmp() to compare the chunk name and determine the
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chunk type. As the function compares the two arguments byte by byte, CE needs to negate

a sequence of unmatched comparisons until reaching a valid chunk type. Furthermore, even

after constructing a valid type (e.g., png_IHDR), there are additional checks on other fields

(e.g., the length == 13) of the chunk. As a result, CE needs to further negate a sequence

of failed checks to eventually generate a valid IHDR chunk. The whole process requires a

sequence of execution paths, which is hard and time-consuming. More importantly, this

process can be terminated prematurely due to path scheduling and filtering (e.g., QSYM

uses a bitmap to track branches it has tried to negate and will not negate the same branch

again).

1 void PNGAPI png_read_info(...) {
2 ...
3 if (!png_memcmp(chunk_name, png_IHDR, 4))
4 png_handle_IHDR(png_ptr, info_ptr, length);
5 else if (!png_memcmp(chunk_name, png_IEND, 4))
6 png_handle_IEND(png_ptr, info_ptr, length);
7 ...
8 }
9

10 void png_handle_IHDR(...) {
11 ...
12 if (length != 13)
13 png_error(png_ptr, "Invalid IHDR chunk");
14 ...
15 }

Listing 2: A code snippet from libpng

These examples motivate us to leverage format information when constructing the

path constraints.
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5.3 Input Format Inference

In this project, we do not assume the availability of the input format specification

or grammar. Therefore, we need to recover the format information first.

Generally, a formatted input consists of a sequence of disjoint fields that are as-

sessed individually in certain conditional branches during the program execution. These

fields can further be coupled into various chunks that are dealt separately with different

handling functions. In consequence, an input can be virtually represented as a hierarchical

tree, where the root is the whole input, internal nodes are chunks, and leaf nodes are fields.

In addition, fields are usually used to describe various chunk attributes (e.g., chunk type and

size). Based on these observations, we aim to (1) locate the boundaries of these fields, (2)

recover the hierarchical structure derived from them, and (3) infer the types of attributes

they describe.

5.3.1 Field Boundary and Hierarchy

We leverage the rich runtime information contained in path constraints to recover

field boundaries, and their hierarchy. Figure 5.1 shows an example of inferred formation

information from the not_kitty.png testcase. Specifically, based on the observation that

input bytes belong to the same field are usually used in the same branch, we group input bytes

into different fields. For example, the chunk_name field of a PNG chunk is checked using

the same equality check inside png_memcmp. Similarly, based on the observation that input

fields belong to the same chunk are usually processed under the same calling context, we group

101



Field 1
Boundary: [33, 36] 

Type: {Size}

Field 2
Boundary: [37, 40]

Type: {String, Enumeration}

Filed 3
Boundary: [41, 49]

Type: {Delimiter-ending}

Field 4
Boundary: [50, 50]

Type: {}

Field 5
Boundary: [51, 65]

Type: {Unused}

Field 6
Boundary: [66, 69]
Type: {Checksum}

Chunk 1
Boundary: [41, 69]

Chunk2
Boundary: [33, 69]

Tag3: (addr3, ctx3, order3) Tag4: (addr4, ctx4, order4)Tag1: (addr1, ctx1, order1) Tag2: (addr2, ctx2, orderX) Tag5: (addr5, ctx5, order5)

  33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 
… 00 00 00 19 74 45 58 74 53 6F 66 74 77 61 72 65 00 41 64 6F 62 65 20 49 6D 61 67 65 52 65 61 64 79 71 C9 65 3C …

Tag: ctx3

Tag: ctx2

Tag: ctx1

Tag: ctx5 Tag: null Tag: ctx4

Tag: ctx2

Tag: ctx1

(a) A snippet for the tEXt chunk and the inferred format for it

extern "C" int LLVMFuzzerTestOneInput (...) 

ctx1

addr1, order1

void user_read_data (...) {
  memcpy(..., …, length);
} addr3, order3

ctx3

void png_handle_tEXt (...) {
  for (text = key; *text; text++);
}

ctx2

addr2, orderX

int png_crc_error(...) {
  return ((int)(crc != png_ptr->crc));
}

ctx4

addr4, order4

int png_set_text_2(...) {
  if (text_ptr[i].text == NULL || text_ptr[i].text[0] == '\0')
}

ctx5

addr5, order5

(b) A simplified function call graph about handling the tEXt chunk

Figure 5.1: Format inferred from the not_kitty.png testcase.

fields into chunks. For instance, a IHDR chunk of a PNG file is handled by png_handle_IHDR.

Finally, the hierarchy of nested chunks is inferred based on the hierarchy of the calling

context.

Notably, some format-aware greybox fuzzers like Weizz [50] also leverage similar

observations to recover some format information like fields. The main difference is that

for grey-box fuzzers, because they only collect lightweight runtime information (e.g., edge

coverage), many necessary metadata has to be inferred. On the contrary, because concolic

executors already collect rich runtime information, such metadata is already available. For

example, to group input bytes into a field, we need to track which input bytes are used in

which branch(es). To do so, grey-box fuzzers like Weizz need to enumerate a number of

distinct values for each input byte to generate a set of new inputs, execute the program
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with these inputs, and then observe which operands of comparison instructions change (i.e.,

which branches are influenced by which input byte). This process can be expensive for large

inputs and could introduce imprecision [96]. However, in concolic execution, dependencies

between input bytes and conditional branches have already been precisely captured by path

constraints, in a path-sensitive manner. In addition, the rich information contained in the

path constraints also allows us to infer semantic types of fields and the hierarchy of nested

chunks.

Byte Tagging

At each conditional branch, we parse symbolic expression of the branch condition

to extract input bytes that control this branch, and tag each input byte with branch informa-

tion. In our current design, we identify each branch as a tuple ⟨addr, ctx, order, direction⟩,

where addr is the static address of the branch, ctx is the calling context, order is the branch’s

position in the trace (e.g., 3 mean the 3rd symbolic branch), and direction is the branching

target (taken, non-taken). Note that many concolic executors already maintain this map-

ping so as to find data-dependencies when constructing path constraints, but it is not being

used to infer the input structure. In Figure 5.1, we omitted the direction to save space.

Tag Ranking

When the same input byte is used in different branch conditions, it will be tagged

with multiple branches, which may lead to conflicted results (e.g., overlapping fields). To

address this issue, we heuristically rank the branches and use the top-ranked branch for

field identification. The priorities are (in a descending order): (1) branches that can be
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used to infer the type of a field (see §5.3.2), (2) branches that test for equality or distinct,

(3) branches that use fewer input bytes, and (4) branches that appear earlier in the trace.

Figure 5.1a shows the top tag for each tagged input byte. Note that orderX in Tag2 is to

simply represent that those bytes are tagged with different but contiguous order.

Byte Grouping

In general, a field is either an individual unit that is assessed as a whole, or in the

form of an array (e.g., a string is an array of characters), whose element is assessed separately.

For the former case, we simply group contiguous input bytes tagged with the same branch

(i.e., the same pair of ⟨addr, ctx⟩) into one field. Note that branches here are context-

sensitive so that we can distinguish fields handled by the same function but under different

calling contexts. For the array case, we expect each element to be assessed consecutively.

Therefore, we group contiguous bytes into one field if their tags have consecutive order and

the same ctx. During group, we allow skipping a single byte without any tag, which could

happen when not all bits in a field is used (e.g., a flag field). However, contiguous bytes

without tag will be grouped into a special unused field. Figure 5.1a shows the resultant fields

after byte grouping. In particular, Field3 is from contiguous tags, Field5 is an unused one.

Field Grouping

After determining the boundaries of fields, we leverage the calling context ctx to

recover the input hierarchy in a bottom-to-up manner. Recall that a unique calling context

ctx corresponds a path in the dynamic call graph. To recover the input hierarchy, (1) we

104



clone the dynamic call graph such that in the new graph, each chunk node represents a unique

context, and chunks that share the same parent node share the same calling context prefix.

(2) we create nodes for fields and create an edge between a chunk and a field if they share

the same context. (3) we recursively split chunk nodes to make sure all fields connected to

them are consecutive in the input. (4) we connect unused fields (i.e., fields without context)

to the chunk immediately before it. (5) we merge a chunk node with its parent if it has no

sibling node and remove chunk node that does not contain any field. Figure 5.1a shows the

resultant two chunks after field grouping. In particular, Chunk1 includes Field3 to Field6,

and Chunk2 includes Field1, Field2, and Chunk1.

5.3.2 Field Type

In addition to recovering the input structure, we also try to infer the semantic types

of fields. These semantic types impose important constraints that need to be included when

constructing the path constraints. Notably, some grey-box fuzzers like ProFuzz [184] also

try to recover semantics of bytes. The main difference is that instead of leveraging indirect

feedback like the coverage bitmap, we directly use the rich runtime information contained

in symbolic path constraints.

Checksum

The first type that we aim to identify is checksum, which is a well known challenge

for automated testing [126, 134, 161]. We use the following patterns to identify checksum

checks: (1) the conditional branch checks for equality or distinct; (2) one operand of the

comparison is a direct copy from the input (based on the endian); (3) the other operand is
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derived from a sequence of logical or arithmetic calculations, or the output of well-known

checksum functions (e.g., crc32); and (4) the two operands involve disjoint sets of input

bytes. We mark such directly copied bytes in one operand as a checksum field, and record the

concrete value of the other operand as the desired checksum. Meanwhile, we also mark input

bytes involved in the checksum calculation. In Figure 5.1a, Field6 is a special checksum

field, where bytes from offset 51 to offset 65 are involved in the checksum calculation (via

crc32).

Delimiter-Ending

Many input formats, especially string-based like JSON use variable-sized fields,

whose ending are marked by specific delimiters. To parse such inputs, the program usually

contain a conditional branch that compares each element of the field against the delimiter

to decide whether the field ends or not. In consequence, negating such a branch will shrink

or expand the current field, thus affect the consistency of subsequent fields. To identify

this type of fields, we search the path constraints for following patterns: (1) a sequence

of contiguous input bytes are tagged by the same addr and ctx, but different order; (2)

the conditional branch compares the input with a constant value; and (3) all the previous

branching directions are the same except the last one. When finding such bytes, we mark

them as a delimiter-ending field, and record the concrete value as the delimiter. Notably,

Field3 in Figure 5.1a is such a field ending with the delimiter ’\0’.
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String

String field is a special type delimiter-end field. We treat string field different

because they are frequently used in string operations like strcmp and strlen that could be

hard to express and solve as bitvector constraints. For this reason, we try to infer string

field so we can leverage string theory in SMT solvers or customer solver to speed up the

solving. In our current design, we identify string fields when it is used in well-known string

operations like strcmp. We leave the inference of inlined or custom string operations for

future work. Note that Field2 in Figure 5.1a is a string field that we obtain from the

function png_memcmp, as shown in Figure 5.1b.

Enumeration

Some fields can only have multiple valid values (e.g., chunk_name in PNG file),

and each value leads to a distinct type of the corresponding chunk. When mutating such a

field to negate a branch, leaving other parts of the chunk intact will lead to inconsistency.

To mitigate this issue, we aim to identify this type of fields and apply custom solving. We

use the following patterns to identify enumeration field: (1) the same field is checked by a

sequence of different branches under the same context; and (2) each branch checks for equal

or distinct against a different concrete values. In case the concolic execution is performed

on languages that contain switch statements (e.g., LLVM IR), a field used in a switch

statement is also marked as an enumeration field. Once we identified an enumeration field,

we record all the values of the concrete operands as candidate values. Meanwhile, we find

the parent chunk of the enumeration field according to the recovered field hierarchy and
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associate the chunk with the enumeration. In Figure 5.1a, Field2 is an enumeration field,

as it is compared against various chunk names.

Size

Besides delimiter-ending, another popular way to implement variable-length field-

/chunk is to use a dedicated size field, which indicates how many elements are in the

corresponding field/chunk. We identify size field based on the observation that this field

usually determines how many times a loop will be executed, where each iteration will access

some input bytes. Based on this observation, we first find loop controlling branches dur-

ing concolic execution, then search for following patterns: (1) a sequence of the same loop

controlling branch (i.e., the same addr and ctx, but different order); (2) these branches all

compare a symbolic value with a concrete one, where the symbolic operand is controlled by

the same filed; (3) one operand of the comparison is fixed while the other operand’s concrete

value is changed by a fixed step between two occurrences of the branch; (4) the branching

direction only changes on the last occurrence of the branch. Once we find such a sequence,

we mark the filed in (2) as a size field, and the fixed step in (3) as the loop step. Meanwhile,

we also associate fields/chunks involved in path constraints that between the first and last

occurrences of the loop controlling branch with the size field. In addition, we also leverage

well-known library functions that accept a size argument to identify size field, such as fread

and memcpy. In Figure 5.1, Field1 is found to be a size field, as it is used to invoke memcpy.
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Offset

As shown in Listing 1, another important type of field is offset, which controls

what input bytes will be used in future path constraints. We use two rules to identify offset

fields. (1) If a field is used in pointer-arithmetic (e.g., GetElementPtr instruction in LLVM).

(2) If a field is used in lseek-like functions that adjust the current offset of the input file.

Notably, recent work like TensileFuzz [101] also uses the second rule. However, this rule

alone cannot handle common cases where the input file is read as a whole into memory, then

parsed later. The first rule allows us to overcome this limitation.

Unused

For contiguous input bytes that are not tagged with branches, we group into a

unused field. Although these bytes are not used by any conditional branches, they may

still affect the program states but the dependencies could be lost during concolic execution

(e.g., due to lack of support of floating-point operations or incomplete modeling of external

library calls). To overcome this limitation, we apply fuzzing-like mutations to such fields.

In Figure 5.1a, Field5 is an unused field.

5.4 Format-Aware Solving

After recovering the input format including field boundary, hierarchy, and field

semantics, we utilize the format information to improve the input generation of CE. Our

hypothesis is that, if a newly generated test input is well-formatted, then it is more likely

to avoid early path divergence, be able to negate the target branch, and reach a deep path.
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To achieve this goal, we focus on preserving two types of format constraints: (1) structure

consistency and (2) dependencies imposed by semantic types.

5.4.1 Structure-Aware Solving

When negating a branch, we aim to make the newly generated input follow the

input structure (i.e., field boundary and hierarchy), without breaking its integrity. To this

end, we develop two new solving strategies: field-driven solving and chunk cache. The first

strategy aims to preserve the tags we used to infer the structural information, while the

later aims to reuse known-good solutions.

Field-Driven Solving

Recall that we infer structure information based on tagging the input bytes with

the tuple ⟨addr, ctx, order, direction⟩. Therefore, as long as the tag relationships among

the input bytes do not change (e.g., they still share the same pair of ⟨addr, ctx⟩), the

inferred input structure (i.e., boundaries and hierarchy) will also not change. Based on this

observation, we select path constraints as follows. We first apply optimistic solving to ensure

that the target branch can be negated without any additional constraints. Next, we find

direct data-dependencies using the dependency forest maintained by nested solving. Note

that here we do not try to include all bytes in dependent fields because unmodified bytes

that do not have direct data-dependency with the target branch are unlikely to break the

metadata consistency. For implicit dependency, we will include them in our type-driven

solving (§5.4.2). Once we have identified input bytes that need to be mutated together,

instead of adding all related constraints, we only add the top-ranked constraints (i.e., the
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one used to infer the structure §5.3.1) to the path constraints. Because each input byte has at

most one constraint, the constructed path constraints are less likely to be over-constrained.

At the same time, because the constraints used to derive structural metadata is preserved,

the generated input is also likely to preserve the input structure.

Chunk Caching

The core idea of chunk caching is similar to caching solutions returned by solvers.

The main difference, however, is that instead of reusing satisfying assignments to individual

input bytes, we will reuse a whole chunk of input bytes (based on the inferred structural

information) that satisfy the path constraints. This is based on the insight that reusing a

whole chunk is more likely to preserve the input structure. Furthermore, as shown in List-

ing 2, negating a branch may lead the execution to a path where a different chunk containing

different fields is expected. Hence, by reusing a whole chunk, these constraints will be readily

satisfies, without going through a lengthy and fragile chain of inputs.

To this end, we maintain a global mapping that records an input chunk that satisfy

a conditional branch. During input generation, we simply replace the existing chunk with

the saved one that satisfies the negated constraints. It is worthwhile mentioning that there

may exist multiple chunks corresponds to the same branch, we decide to save the minimal

one for simplicity and efficiency.

5.4.2 Type-Aware Solving

As discussed in §2.2.2, one limitation of existing solving strategies like nested solv-

ing is that it only considers direct data-dependencies but ignores implicit dependencies,
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therefore a satisfying solution could still fail to negate the target branch. We mitigate this

problem by considering constraints imposed by field semantics. Specifically, for each solu-

tion generated by format-aware solving (§5.4.1), if we find an involved field has a recognized

type, we will adjust the solution accordingly.

Checksum

A checksum check compares one symbolic operand to another symbolic operand.

Because one operand is usually very complex, solving such constraints with SMT solvers

is not efficient. Therefore, we leverage a simple heuristic to generate the solution: replace

an identified checksum field with the concrete checksum calculated from the corresponding

bytes [161].

Delimiter-Ending

A delimiter-ending field must end with a specific constant value. Therefore, if

the last byte of a delimiter-ending field changes to a different value (i.e., the field grows),

an additional delimiter is appended to the end of the field, and the next field is shifted

accordingly. If a byte prior to the existing delimiter becomes a delimiter (i.e., the field

shrinks), other bytes after the new delimiter will be removed, and the next field is also

shifted.

String

We apply custom solving for certain constraints over string fields. Specifically,

when a string field is used to invoke a strcmp family function with a concrete string, we use
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the concrete string as the solution. We plan to include support for other string constraints in

the future work. Moreover, when the size of a string field changed, we will shift subsequent

bytes after the field accordingly to generate a consistent solution.

Enumeration

We use custom solving for mutating enumeration field. First, we only choose

known-good values identified during CE. Second and more importantly, every enumeration

is likely to correspond to a specific type of chunk (e.g., an IHDR chunk in PNG files), so

simply change the field without adjusting the rest of the chunk is likely to result in invalid

inputs. Similar to chunk caching (§5.4.1), in order to preserve other consistency constraints,

we maintain a global table that maps each enumeration to a minimum valid chunk; then

when using a new enumeration, we replace the whole chunk with a known-good one.

Size

When a size field is modified to a different value, we have to adjust the corre-

sponding field to maintain the consistency. In more detail, for symbolic loop counter, we

try to infer how many bytes are accessed in each loop iteration (§5.3.2), and adjust the cor-

responding the field accordingly by adding or deleting bytes. For size argument in library

calls like fread, we use the extracted symbolic expression to calculate the new size and

adjust the corresponding field accordingly.
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Offset

An offset field determines where a chunk starts (i.e., where to start reading the

input bytes). To keep such implicit data dependencies, we first attempt to not change any

offset field when negating branches. However, if an offset field has to be changed, we adjust

the input bytes to access accordingly. If the offset becomes smaller, we will shrink the

chunk before the corresponding field by deleting bytes from the old offset. If the offset

becomes larger, we will insert random bytes at the old offset to make sure that the same

bytes will be accessed at the new offset. Notably, this actually will move all bytes after the

old offset thus may modify the whole input dramatically.

Unused

These fields are not used in path constraints, hence will never be modified by

a concolic executor. To explore potential control- and data-dependencies, we uniformly

sample one field and perform deterministic mutations that flip bits one by one to generate

new inputs.

5.5 Implementation

To demonstrate the effectiveness of our approaches, we develop a prototype namely

Formatly on top of SymSan [30], a state-of-the-art concolic executor based on the data-

flow sanitizer of LLVM. The architecture is shown in Figure 5.2. It mainly consists of three

important components: the exploring engine, the analyzing engine, and the grading engine.
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Figure 5.2: Overview of Formatly

• Exploring Engine. This is to select a seed from the corpus, feed it into the program

under test to launch the concolic execution, collect the execution trace including path

constraints, and decide which branches to negate next. In particular, we implement

a simple FIFO scheduler that fetches fresh seeds, which have not been tracked yet,

following the order they are added into the corpus. And we utilize the branch filter

from QSYM [187] to decide whether a branch will be negated. Notably, we further

adopt the data-flow sanitizer in SymSan to collect runtime information of conditional

branches and specific function calls for format inference during the execution.

• Analyzing Engine. This is to analyze the execution trace collected during the con-

colic execution to generate the format of the current input as well as new inputs.

Specifically, first it infers the input format as described in Section 5.3. Secondly, it

queries the SMT solver Z3 for solutions of path constraints when negating branches.

And it further utilizes the recovered input format to improve the solutions as described

in Section 5.4. Eventually, new inputs are generated based on these solutions. It is

worthwhile mentioning that the timeout set for Z3 is 10 seconds, which is the same

setting used by other concolic execution engines [130,131,187].
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• Grading Engine. This is to grade those newly generated inputs regarding the code

coverage they have exercised. Each input leading to new code coverage will be added

into the corpus as a new seed for further testing. To this end, we utilize the input grader

from Angora [32] that adopts a calling-context sensitive edge metric to measure code

coverage.

5.6 Evaluation

We evaluate Formatly on a set of real-world programs aiming to answer the

following research questions:

• RQ1. Can format-aware solving improve the performance of branch negating?

• RQ2. Can format-aware solving lead to more code coverage in CE?

• RQ3. Can format-aware solving improve the performance of end-to-end hybrid fuzzing?

5.6.1 Experiment Setup

Dataset We evaluate 16 real world programs from Google FuzzBench [70], as shown in Ta-

ble 5.1. For better reproducibility, we use the corpus from SymSan1 in CE testing. To save

time while not losing statistic significance, we randomly pick n = max(N/10, 50) inputs

from the corpus for each program, where N is the number of total seeds in the corpus. For

end-to-end fuzzing, we used seeds offered by FuzzBench.

Computing Resources All the experiments are conducted on a 64-bit workstation with

48 cores (2 Intel(R) Xeon(R) Platinum 8260 @2.40GHz), 1.5TB of RAM, and Ubuntu 18.04.
1https://jigsaw.cs.ucr.edu/seeds.tar.gz
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5.6.2 CE Testing

To answer RQ1 and RQ2, we conduct CE testing where Formatly is set to negate

all symbolic branches along execution traces of inputs in the corpus. As argued in [131],

this setting removes the variables from different corpus and different branch scheduling and

filtering strategies, so the results can better reflect the performance of different strategies in

path constraints construction.

Table 5.1: Results of branch negating.

Program Input Branch Base Fmt Struct Type F-Deep S-Deep T-Deep

curl 135 2877 2349 2396 (2%) 2390 (2%) 2392 (2%) 210 180 132
freetype 132 30843 16492 20312 (23%) 20160 (22%) 17829 (8%) 5223 4884 1045
harfbuzz 296 12359 2756 3759 (36%) 3711 (35%) 3168 (15%) 1173 992 606
json 50 7996 460 599 (30%) 599 (30%) 460 (0%) 143 133 31
lcms 50 633 370 458 (24%) 455 (23%) 391 (6%) 227 184 54
libjpeg 85 15052 10011 11090 (11%) 10985 (10%) 10283 (3%) 2720 2399 1032
libpng 50 1115 388 581 (50%) 473 (22%) 513 (32%) 178 66 129
mbedtls 50 1972 903 1188 (32%) 1174 (30%) 1131 (25%) 124 106 56
openssl 158 10174 3956 5375 (36%) 5031 (27%) 4824 (22%) 646 499 369
openthread 50 995 497 633 (27%) 630 (27%) 606 (22%) 99 94 45
proj 78 2367 1139 1307 (15%) 1299 (14%) 1153 (1%) 316 297 29
re2 108 7205 1935 2681 (39%) 2645 (37%) 2017 (4%) 703 600 156
sqlite 522 27978 709 1580 (123%) 1563 (120%) 1039 (47%) 430 363 226
vorbis 50 4755 1774 2399 (35%) 2373 (34%) 1928 (9%) 968 663 580
woff2 52 1223 288 544 (89%) 529 (84%) 469 (63%) 65 46 53
xml 196 65885 40874 43458 (6%) 43409 (6%) 41675 (2%) 9026 8438 1589

RQ1. Performance in Branch Negating

As discussed in §5.4, our hypothesis is that format-aware solving is expected to

generate better inputs that can avoid early path divergences and succeed in negating the

target branches. To verify this, we measure the number of symbolic branches that the

state-of-the-art nested-then-optimistic solving (§2.2.2) failed to negate, but our format-aware

solving succeeded. Besides, we also hypothesized that input generated with format-aware
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solving are can reach deeper paths after a successful negation. To verify this, we measure

two metrics as an approximation to the real execution depth: (1) the number of executed

symbolic branches after a successful negation and (2) the new branch coverage after the

successful negation.

Table 5.1 shows the summary of branch negating results. Note that Input is the

number of tested inputs, Branch is the number of symbolic branches that we tried to negate,

Base is the number of symbolic branches the baseline strategy successfully negated, Fmt (F

for short) is the number of branches Formatly successfully negated, and the improvements

over baseline. F-Deep is the number of branches that both Formatly and the baseline

negate, but Formatly-generated inputs visit deeper paths, Strut (S for short) and Type

(T for short) break down the improvements by structural- and type-aware solving. First of

all, we can observe that a considerable portion of inputs generated by the baseline strategy

failed to negate the target branch. To confirm this problem is general and not a specific issue

of SymSan, we have tested other concolic executors and the results (in the supplementary

materials) are similar. Among the failed cases, 50.18% are caused by over-constrained (i.e.,

the solver returns unsat or time-out), 49.82% are caused by under-constrained.

With format-aware solutions, at least 10% more symbolic branches can be success-

fully negated on 14 out of 16 programs, and at least 30% more symbolic branches can be

negated on about nine programs. In addition, among symbolic branches that the baseline

strategy successfully negate, there are at least 10% and 20% ones that format-aware solutions

lead to deeper new paths, on 15 and 12 out of 16 programs, respectively. It is worthwhile

mentioning that results where Fmt-Deeper shows higher numbers than Fmt indicate fixing
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path divergence and negating branches in general is more challenging than leading to deeper

paths.

Contribution breakdown. Table 5.1 also shows the contribution of structure-aware

solving (§5.4.1) and type-aware solving (§5.4.2). We can observe that both solving strategies

contributed uniquely to negating more symbolic branches, and to deeper new paths, which

indicates that both types of format information are helpful. Structure information generally

contributes more to the improvements. We think this is because that (1) currently we

only infer a limited set of semantic types, and (2) it is harder to infer and utilize type

information precisely. However, on specific programs like libpng where various types like

size, checksum, keyword are recognized, type information becomes more helpful.

The answer to RQ1 is yes. Inputs generated by format-aware solving can negate more

target branches, and lead to deeper new paths.

RQ2. Effectiveness on Code Coverage

One of the most popular application scenario of concolic execution is coverage-

guided test generation, where the primary goal is to cover more code. Therefore, we also

evaluate how much format-aware solving can improve in term of code coverage. We use the

tool SanitizerCoverage to measure the new edges covered by inputs generated during CE.

Specifically, for each input in the corpus, we measure (1) Covinit: its initial edge coverage,

(2) Covbase: the new edge coverage (over Covinit) from the input generated by the baseline

strategy, and (3) Covfmt: the new edge coverage (over Covbase and Covinit) from the input

generated by format-aware solving. We then calculate the improvement over the baseline as
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Inc = |Covfmt|÷|Covbase|. After getting the per input improvement, we calculate the mean

values within a 95% confidence, and show the statistical results in Table 5.2, where Init is

the mean of edges exercised by each input in the corpus, Base is the mean of new edges

exercised by inputs generated by the baseline solving strategy, Inc is the mean improvement

of format-aware solving over the baseline. Note that all mean values are presented within a

95% confidence, Inc-Struct and Inc-Type break down the improvement by structure-aware

and type-aware solving.

Table 5.2: Edge coverage improvement per input.

Program Init Base Inc (%) Inc-Struct (%) Inc-Type (%)

curl 6087 ± 186 1565 ± 72 62 ± 10 30 ± 8 61 ± 10
freetype 2898 ± 144 1715 ± 126 52 ± 16 51 ± 16 7 ± 3
harfbuzz 2567 ± 60 963 ± 36 53 ± 5 52 ± 5 4 ± 1
json 388 ± 15 68 ± 13 471 ± 247 462 ± 248 16 ± 10
lcms 847 ± 123 182 ± 54 60 ± 53 57 ± 53 6 ± 3
libjpeg 1057 ± 81 508 ± 44 16 ± 3 13 ± 3 10 ± 3
libpng 670 ± 36 246 ± 19 31 ± 9 26 ± 8 13 ± 7
mbedtls 2683 ± 84 358 ± 68 11 ± 6 10 ± 6 9 ± 5
openssl 3157 ± 117 286 ± 26 472 ± 65 469 ± 65 5 ± 1
openthread 4323 ± 52 308 ± 50 7 ± 6 7 ± 6 1 ± 1
proj 495 ± 25 180 ± 26 314 ± 70 300 ± 71 46 ± 24
re2 1571 ± 156 911 ± 127 160 ± 35 159 ± 35 6 ± 5
sqlite 8154 ± 295 186 ± 43 17395 ± 2120 17393 ± 2120 23 ± 15
vorbis 757 ± 105 91 ± 15 48 ± 29 46 ± 29 9 ± 6
woff2 1257 ± 140 178 ± 26 26 ± 9 24 ± 9 20 ± 9
xml 1705 ± 47 677 ± 31 310 ± 21 294 ± 21 122 ± 18

We can observe from Table 5.2 that format-aware solving leads to significant im-

provements for almost all programs. It achieved at least 50% higher edge coverage over

more than half of the programs, and achieved at least 100% higher edge coverage over six

programs. In sqlite, Formatly even have orders of magnitudes higher edge coverage than

the baseline. Considering that each newly generated input only aims to negate a single

target branch, the significant improvement on edge coverage indicates that negating key
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symbolic branches or leading to specific deep paths can make a huge breakthrough in terms

of code coverage.

Contribution breakdown. We also evaluate how much structure and type informa-

tion contribute to the improvement. In general, both types of format information contribute

uniquely. However, similar to branch negation, structure information contributes more.

The answer to RQ2 is yes. Format-aware solving can lead to significant improvement on

code coverage.

5.6.3 End-to-End Fuzzing

To answer RQ3, we conduct the evaluation on end-to-end fuzzing. We use three

configurations, (1) Afl++ (commit 8fc249 with the default build and fuzz options) solely,

(2) Afl++ paired with Formatly via periodical seed synchronization, named as Formatly

for short, and (3) Afl++ paired with Formatly that discards the format inference and

format-aware solving, namely UnFormatly.

Figure 5.3 shows the coverage growth curves. We observe a mix results. On

mbedtls, libpng, lcms, freetype, Formatly significantly outperformed Afl++ and Un-

Formatly. Note that we fail to compile mbedtls with Afl++, so we can only compare

Formatly and UnFormatly without Afl++. On sqlite and xml, Afl++ by itself

performed better than Formatly and UnFormatly, though Formatly still performed

better than UnFormatly. This indicates that the potential improvements led by CE can-

not pay for the additional computing resources it takes. On harfuzz, Formatly performs
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Figure 5.3: Edge coverage growth over time for hybrid fuzzing.

significantly worse than UnFormatly. Our investigation showed that Formatly processed

significantly fewer seeds. This indicates that the format inference and format-aware solving

introduced too much overhead on these programs, thus decreasing the throughput and af-

fecting the overall performance. On the rest 9 programs, there is no significant difference

among all three configurations.

The answer to RQ3 is generally positive: format-aware solving can help cover more code

in hybrid fuzzing; however, the overhead caused by format inference and format-aware

solving demands a more efficient collaboration design than simple seed synchronization.
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5.6.4 Threats of Validity

There are three major threats to the validity of our evaluation. First, although we

tried to use a large and diverse set of popular real-world programs, many of which are from

the standard benchmark, the evaluation results may not reflect the actual performance im-

provements on new target programs. Second, the performance of a hybrid fuzzing campaign

depends on many aspects, including randomness. Although we have fixed many factors

(e.g., the initial corpus), performed each experiments several times, and used statistic tools,

a new round of fuzzing campaign can still generate different results. Finally, although we

have used many regression tests, our prototype implementation could still have bugs that

can affect the evaluation results

5.7 Summary

In this chapter we showed that path constraints constructed by state-of-the-art

concolic executors can be over-constrained and under-constrained. Consequently, a con-

siderable portion of generated inputs fail to negate target symbolic branches. To address

this problem, we propose a novel format-aware approach to generate inputs, which infers

input structures and semantics based on path constraints, then leverages the inferred format

information to guide the input generation.
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Chapter 6

Conclusion

6.1 Summary

Greybox fuzzing and concolic execution are two popular approaches of automated

test generation. In this dissertation, we sought to advance the state-of-the-art on automated

test generation via improving the seed selection, scheduling, and generation which greybox

fuzzing and concolic execution are built on top of.

First, we proposed the first systematic study on the the first systematic study on

the impact of different coverage metrics in greybox fuzzing. To this end, we formally defined

and discussed the concept of sensitivity, which can be used to theoretically compare different

coverage metrics. We then presented several coverage metrics based on the different levels

of sensitivity. We conducted the study on these metrics with the DARPA CGC dataset, the

LAVA-M dataset, and a set of real-world applications (a total of 221 binaries). The study

has revealed that each coverage metric leads to find different set of vulnerabilities, indicating
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there is no grand slam that can beat others. In addition, combing different coverage metrics

through cross-seeds helps find more crashes and find them faster.

Second, we presented a hierarchical seed scheduler in order to address the seed

explosion problem where the increased number of seeds that are selected by a sensitive

coverage metric exceed the fuzzer’s capability to schedule. To this end, we first designed a

novel multi-level coverage metric where we cluster seeds selected by fine-grained metrics using

coarse-grained metrics. Consequently, the seed pool can be organized into a multi-level tree

where leaf nodes are real seeds and internal nodes are less sensitive coverage measurements.

Next we designed a hierarchical seed scheduling algorithm to support the multi-level coverage

metric based on the multi-armed bandits model (MAB). We implemented our approach as an

extension to Afl and Afl++, and evaluated them on DARPA CGC and Google FuzzBench.

The results showed that our approach not only can trigger more bugs and achieve higher

code coverage, but also can achieve the same coverage faster than existing approaches.

Third and last, we showed that path constraints constructed by state-of-the-art

concolic executors can be over-constrained and under-constrained. Consequently, a consid-

erable portion of generated inputs fail to negate target symbolic branches. To address this

problem, we proposed Formatly that generates input in a novel format-aware manner. In

particular, Formatly first infers input structures and semantics based on path constraints

that are augmented with rich runtime information. Afterwards, it leverages the inferred

format information to guide the path constraint constructing and solving in order to gen-

erate better inputs. Results of the evaluating Formatly on real-world programs showd
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that it can significantly improve the performance of input generation, which enables better

performance in end-to-end fuzzing.

6.2 Discussion

Application-Aware Coverage Metric Selection and Resource Allocation. In Fig-

ure 3.1, we can see the presented coverage metrics are not in a total order in terms of

sensitivity. This means different coverage metrics have either unique strength in breaking

through a specific pattern of code like loops. From the evaluation results presented in §3.3,

we also observe that (1) there is no “grand slam” metric that beats all other metrics; and

(2) even for metrics whose sensitivities are in total order (e.g., bc, n2, n4, n8), the most

sensitive on is not always better. We explored a simple combination of them and allocated

computing resources equally among them in §3. Because fuzzing can be modeled as a multi-

armed bandit (MAB) problem [177] that aims to find more bugs with a limited time budget,

previous work has shown how to improve the performance of fuzzing through adaptive mu-

tation ratio [29]. Similarly, it might be possible to conduct static or dynamic analysis on

each tested program to determine which coverage metric is more suitable. This decision may

also change over time, so a resource allocation scheme might be useful to allocate computing

resources among different coverage metrics dynamically.

Branch Scheduling for Concolic Execution While the hierarchical seed scheduler

proposed in §4 targets on greybox fuzzing, it can be easily applied to CE that is also

driven by concrete inputs. Furthermore, considering that CE generates new inputs via

selectively negating branches, the scheduler can work in a more fine-grained manner that it
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decides which branch will be negated next. To this end, we need to adapt the multi-level

coverage metric accordingly. In particular, we can maintain a branch pool that is organized

similarly into a multi-level tree where leaf nodes are symbolic branches that CE has exercised

so far and intermediate nodes are coverage measurements. One opening problem here is

whether we should distinguish the same branch, which can be identified using the tuple

discussed in §5.3.1, that are exercised by different inputs. If the answer is yes, it indicates

that the scheduler further needs to decide which input to pick. In addition, note that the

reinforcement learning algorithm should be re-designed, since the scheduler in general should

avoid picking a symbolic branch that has been negated successfully.

Collaboration of Greybox Fuzzing and Concolic Execution. Results of end-to-end

fuzzing (see §5.6.3) suggests a more efficient collaboration design than simple seed synchro-

nization for combining greybox fuzzing and concolic execution, as the potential improve-

ments led by CE cannot pay for the additional computing resources it takes. One promising

approach is to plugin a CE engine into a greybox fuzzing scheme as a special mutator. When

solving normal branches, the fuzzing scheme utilizes the lightweight random mutator; but

if the branch is found to be too hard, it switches to the CE engine to launch format-aware

solving that is more heavyweight yet much more powerful. This approach can lead to several

advantages. First, it avoids the overhead introduced by seed synchronization, which is not

negligible according to [181]. Second, CE is launched only when necessary, thus the comput-

ing resources it takes is minimized. Third, as the seed scheduler owns a collaborative view

on both the fuzzing (i.e., random mutator) side and the CE side, it is capable of striking a

better balance between seed exploitation and exploration.
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