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ABSTRACT OF THE DISSERTATION 

 

Mountain snowpacks in the Western U.S: improved estimation and understanding the 

impact on future water availability 

 

by 

Manon Line von Kaenel 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2024 

Professor Steven A. Margulis, Chair 

 

Seasonal snowpack serves as natural reservoir by storing winter precipitation and 

releasing it as snowmelt. In in the Western U.S., this is a crucial water supply that supports 

agriculture, hydropower, ecosystems, and millions of users. Rising temperatures are causing 

reduced snow storage, earlier melt, and increased drought risk. Future climate models predict 

these trends will continue and intensify, posing challenges for water management. Accurate 

snow water equivalent (SWE) estimates are essential for water managers in snowmelt-reliant 

regions, but characterizing the spatial distribution of snow is an ongoing challenge. In situ 

measurements are not always representative nor widespread and remote sensing of mountain 

SWE remains elusive. Modeling can fill space-time gaps in the observational record but is 

impacted by biases in forcings and uncertainties in model physics.  
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To address the issue of uncertainties in model physics for simulating snow, we evaluate 

how altering the configurations of a land surface model (Noah-MP) affects its ability to recreate 

observed SWE across 199 stations in the Western U.S. The base case configuration, which 

matches that for the National Water Model, overestimates SWE at 90% of sites. Adjustments to 

model physics for precipitation partitioning, snow albedo formulation, and surface resistance 

cause significant changes in SWE predictions that vary by season and site climate and 

geography. No single configuration works best everywhere, but four alternatives outperform the 

base case at most sites.  

To address the challenge of biases in mountain precipitation products, we leverage a 

historical snow reanalysis dataset to develop, apply, and test a novel precipitation bias correction 

and downscaling method towards modeling SWE in a real-time context. Over a test domain, this 

precipitation bias correction is effective in reducing error in April 1st SWE (-58%) and 

streamflow forecasts (-52%). Assimilating remotely-sensed snow depth observations further 

reduces errors.  

To explore the impact of future shifts in snowpack on water resources, we apply 

hydrology projections driven by downscaled global climate models (GCMs) and a simple 

reservoir operations model to 13 major reservoirs in the California Sierra Nevada. Region wide, 

snowpack reductions (-44%) and earlier snowmelt (11 days) lead to earlier inflow and drops in 

water deliveries (-19%) and year-end storage (-18%). Reservoir storage and rainfall help offset 

the impact of snowpack losses, but the extent and mechanisms of this vary on the reservoir’s 

operations, characteristics, and upstream climate and hydrology. Current operating rules are not 

well-suited to let reservoirs store earlier inflow under future climate conditions. 
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CHAPTER 1 

Introduction 

1.1 Background and Motivation 

Seasonal snowpack is a natural water tower; by storing winter precipitation and releasing 

it as snowmelt, it provides an essential resource for downstream ecosystems and society (Viviroli 

et al., 2007; Sturm et al., 2017; Immerzeel et al., 2020), including an estimated 20% of the 

Earth’s population (Dozier, 2011). In the Western U.S., over half of total runoff originates as 

snowmelt, and snowmelt-driven runoff makes up two-thirds of the inflow to the region’s major 

reservoirs (Li et al., 2017). This water supplies agricultural, urban, and industrial demands across 

the region; sustains hydroelectric power production; and supports wetlands, habitat, and other 

ecosystem services. 

Snow water resources in the Western U.S. are both vital and vulnerable to climatic 

variations. Rising temperatures have already caused changes in snow hydrology that have broad 

implications for downstream environments and communities. Widespread declining snow 

storage trends have been observed across the Western U.S. (Mote et al., 2005; Mote et al., 2018). 

The timing of spring snowmelt-driven streamflow has shifted earlier in the year (Cayan et al., 

2001; Stewart et al., 2005) with snowmelt starting earlier (Kapnick and Hall, 2012; Musselman 

et al., 2021). Climate models project a continued trend towards earlier melt, reduced snow water 

availability, precipitation extremes, and drought conditions into the future (e.g., Barnett et al., 

2005; Pierce and Cayan, 2013; Schwartz et al., 2017; Siirila-Woodburn et al., 2021). These shifts 
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are projected to have important impacts on water supply and management; in mountain ranges of 

the Western U.S., this includes lower reservoir storage, decreased water supply deliveries and 

reliability, and reduced hydropower generation (e.g., Vicuna et al., 2007; Rheinheimer et al., 

2012; Knowles et al., 2018; Cohen et al., 2020; Ray et al., 2020).  

1.2 Challenges for large-scale snow estimation   

The water management system in the Western U.S. – including access to information, 

policy, and physical infrastructure – needs to be resilient to vulnerabilities in regional snow-

derived water resources to ensure water security. Access to high-quality water data is key for 

effective integrated water management (NASEM, 2018). In regions that rely on snowmelt for 

water supply, water managers need accurate assessments of the distribution and availability of 

water in snowpack (SWE, snow water equivalent) (e.g., Hamlet et al., 2002; Koster et al., 2010; 

He et al., 2016).  

However, estimating the spatiotemporal distribution and change of SWE remains a 

significant and important challenge for the snow hydrology community (e.g., Lettenmaier et al., 

2015; Dozier et al., 2016; Cho et al., 2022). In situ data are not always representative of the 

heterogeneity of SWE distribution in topographically complex mountain landscapes (Herbert et 

al., 2024), and such measurements are sparse globally. Remote sensing can provide observations 

of snow properties over large areas, but there is currently no reliable way of measuring SWE 

from spaceborne platforms (Lettenmaier et al., 2015). This implies a continued need for 

modeling of SWE. Land surface models are commonly used to estimate SWE and other 

hydrologic variables over large spatial extents and at varying resolutions (e.g., Clark et al., 2011; 
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Kumar et al., 2013; Cho et al., 2022), but these are susceptible to uncertainties driven by biases 

in forcing data or model parameterization (Cho et al., 2022). Uncertainty and biases in 

precipitation products over mountainous terrain are widely acknowledged, and these continue to 

dominate uncertainty in SWE estimation (e.g., Pan et al., 2003; Raleigh et al., 2015; Liu and 

Margulis, 2019; Schreiner-McGraw et al., 2020; Cho et al., 2022; Fang et al., 2023). 

1.3 Objective and organization of dissertation 

The intent of this dissertation is to promote the improvement of snow estimation for 

regional hydrologic applications to support resilient water management. It addresses two of the 

most important challenges in modeling SWE: uncertainties in model parametrization and 

precipitation biases; and explores how and why shifts in seasonal snowpacks affect water supply 

under climate change. As such, the overarching objective is to demonstrate how improved SWE 

estimation can be achieved and why this is important going forward. Specifically, this thesis 

addresses the following scientific questions: 

1) How do changes in land surface model configurations affect SWE simulations across site 

conditions? 

2) How can historically informed mountain precipitation bias correction improve model-

based SWE estimates and streamflow forecasts, and how does the assimilation of 

independent snow observations impact those estimates? 

3) How do projected changes in snowpack affect water availability in reservoirs across the 

California Sierra Nevada under a future climate?  



 

 

 

 

4 

The dissertation is organized into five chapters: Chapter 2 quantifies the performance and 

sensitivity of different model (Noah-MP) configurations in simulating snow over the Western 

U.S. to answer the first question. Chapter 3 answers the second question by demonstrating an 

effective method for mountain precipitation bias correction for SWE estimation by leveraging a 

historical reanalysis dataset over a test domain. Chapter 4 addresses the third question by 

quantifying, comparing, and explaining the impact of projected snowpack and hydrology shifts 

on water deliveries and reservoir storage in the California Sierra Nevada. Chapter 2 is published 

as a peer-reviewed paper (von Kaenel and Margulis, 2024a), Chapter 3 is published as a preprint 

currently under review (von Kaenel and Margulis, 2024b), and Chapter 4 provides the initial 

assessment for a future publication. Chapter 5 summarizes key findings, conclusions, and novel 

contributions from this research and proposes future work. Appendix A, B, and C provide 

supplemental information for Chapters 2, 3, and 4, respectively.  
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CHAPTER 2 

Evaluation of Noah-MP snow simulation across site conditions in the 

Western US 

The text and figures from this chapter are published in: 

von Kaenel, M., & Margulis, S. A. (2024). Evaluation of Noah-MP snow simulation across site 

conditions in the Western United States. Journal of Hydrometeorology, 25(9), 1389-1406. 

https://doi.org/10.1175/JHM-D-23-0211.1 © American Meteorological Society. Used with 

permission. 

2.0 Abstract 

Quantifying spatio-temporal variability in snow water resources is a challenge especially 

relevant in regions that rely on snowmelt for water supply. Model accuracy is often limited by 

uncertainties in meteorological forcings and/or suboptimal physics representation. In this study, 

we evaluate the performance and sensitivity of Noah-MP snow simulations from ten model 

configurations across 199 sites in the Western US. Nine experiments are constrained by observed 

meteorology to test snow-related physics options, and the tenth tests an alternative source of 

meteorological forcings. We find that the base case, which aligns with the National Water Model 

configuration and uses observations-based forcings, overestimates observed accumulated SWE at 

90% of stations by a median of 9.6%. The model performs better in the accumulation season at 

colder, drier sites and in the melt season at wetter, warmer sites. Accumulation metrics are 

https://doi.org/10.1175/JHM-D-23-0211.1
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sensitive to model configuration in two experiments, and melt metrics in six. Alterations to 

model physics cause changes to median accumulation metrics from -13% to 2.3% with the 

greatest change due to precipitation partitioning; and to melt metrics from -10% to 3% with the 

greatest change due to surface resistance configuration. The experiment with alternative forcings 

causes even greater and wider-ranging changes (medians ranging -29% to 6%). Not all stations 

share the same best-performing model configuration. At most stations, the base case is 

outperformed by four alternative physics options which also significantly impact snow 

simulation. This research provides insights into the performance and sensitivity of snow 

predictions across site conditions and model configurations. 

2.1 Significance statement 

The purpose of this work is to evaluate the performance and sensitivity of a land surface 

model’s simulation of snow across site conditions and in response to different model 

configurations. This is important because estimating snow distribution is a challenge especially 

relevant for regions that rely on snowmelt for water supply. While land surface models can 

provide useful large-scale estimates, they are often limited by uncertainties in forcings and/or 

suboptimal physics representation. The results, which show varying model behavior across 

geography, climate, vegetation types, and model configurations, highlight inadequacies in model 

physics representation, emphasize the need for accurate meteorological forcings, and suggest that 

customizing model configurations to the unique characteristics of the domain could yield more 

accurate and useful results. 
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2.2 Introduction 

Estimating snow water equivalent (SWE) in remote mountainous areas remains one of 

the most challenging problems in hydrology (Lettenmaier et al., 2015; Dozier et al., 2016). This 

challenge is particularly important in areas where snowpack plays a significant role in seasonal 

water supply and regional hydrology, such as the Western US. To make critical management 

decisions for flood control, hydropower operations, irrigation, and other competing demands in 

such regions, water managers need accurate assessments of the space-time distribution and 

availability of water in snowpack (Vicuña et al., 2011; Tanaka et al., 2006; He et al., 2016). 

Snowpack observations can come from in-situ stations or remote sensing platforms; however, 

both data sources are limited in time and space and are prone to substantial errors, especially in 

topographically complex areas (Dozier et al., 2016).  

Land surface models (LSMs) are used to generate spatially-distributed estimates of SWE, 

snow-derived runoff, and other hydrological variables over large spatial domains and at varying 

spatiotemporal resolutions by simulating the physics of the water and energy cycles at the land 

surface. The accuracy of these modeled estimates depends on the reliability of meteorological 

forcings as well as the fidelity of model physics (Cho et al., 2022). Various studies (e.g., Cho et 

al., 2022; Kim et al., 2021; Pan et al., 2003; Barlage et al., 2010) have demonstrated that a 

common weakness in LSMs is that SWE estimates are highly uncertain and often 

underestimated, which can cascade into uncertainties and errors in SWE-dependent variables like 

runoff and evapotranspiration. Properly describing and simulating snow processes in a LSM thus 

helps to not only accurately predict the distribution of snow water resources but also other 

variables in the land surface water cycle. 
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Here, we examine the performance and sensitivity of SWE estimates produced by the 

Noah-Multiparameterization LSM (Noah-MP). Noah-MP is the hydrologic core and LSM for the 

operational National Water Model (NWM) and associated climate predictions based on the 

Weather Research and Forecasting (WRF) regional climate model. Of the four LSMs tested by 

Cho et al. (2022), Noah-MP generated the most accurate maximum SWE values, but it 

nonetheless significantly underestimated observations, and several limitations in current physics 

options were noted. Past studies have also identified biases in the Noah-MP representation of 

snow depth, timing of snow disappearance, and annual SWE (e.g., Li et al., 2022a; Li et al., 

2022b; You et al., 2020; Garousi-Nejad et al., 2021; He et al., 2021). The design of Noah-MP 

allows for user-defined selection of options for physical processes such as precipitation 

partitioning, snow albedo, and vegetation-snow interactions. Past studies have explored how the 

incorporation of different schemes for some or most of these physical processes in Noah-MP 

affects the simulation of snow depth or SWE at specific sites (You et al., 2020; Zhang et al., 

2016; Letcher et al., 2022; Wang et al., 2019) and at a global scale (Li et al., 2022a). However, 

for the purposes of understanding uncertainties in snow simulation in a regional hydrologic 

model like the NWM, these studies were limited in scope by number of sites or model resolution.  

In this study we evaluate the performance and sensitivity of Noah-MP snow simulations 

across different model configurations at sites spanning the Western U.S. (WUS). The WUS 

contains extensive in situ data that can force and validate the model and represents a diversity of 

climate and site conditions. For the NWM, the WUS mountains is also where the snow model 

plays the largest role in runoff/streamflow prediction. Our intent is to provide insights into model 

behavior relative to user-selected physics options and promote the improvement of snow 
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simulation in regional climate and hydrologic applications. To this end, we aim to answer: 1) 

how well can the National Water Model configuration of Noah-MP reproduce observed SWE at 

sites across the Western U.S.?, 2) how sensitive are the Noah-MP snow simulations to changes in 

model configurations?, and 3) how do model errors and sensitivities vary by region, climate, and 

vegetation conditions? 

2.3 Data 

2.3.1 Study sites 

The study domain is comprised of 199 stations from the Snow Telemetry (SNOTEL) 

network across the WUS that meet the following criteria: a) less than 5% of daily precipitation 

and hourly temperature observations for Nov-June over water years 2007-2019 are missing; and 

b) no daily SWE observations over the study record are missing. Daily precipitation and SWE 

records were taken from the bias-corrected quality-controlled product published by the Pacific 

Northwest National Laboratory (PNNL; Yan et al., 2018), and hourly temperature data were 

downloaded from the National Resources Conservation Service (NRCS) web portal.  

We classified the 199 sites into groups based on geography, climate, and vegetation type 

to evaluate how the model performs across site conditions that are relevant to snow accumulation 

and/or melt (Fig. 2.1). We assigned each station to an eco-region based on the Commission for 

Environmental Cooperation (CEC) Terrestrial Ecoregions Level III classification (Wilken et al., 

2011) (see Text B1). For illustration purposes, certain nearby eco-regions were combined 

because model behavior was similar. We also developed climate subgroups based on observed 

temperature and precipitation using the classification scheme outlined in Sun et al. (2022); 
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stations with mean winter (Nov-Mar) temperature less than -1°C are classified as “cold”, and 

stations with winter precipitation less than the 25th percentile of all station values are classified 

as “dry”. Lastly, each station was assigned a vegetation type from the USGS Land Use/Land 

Cover (LULC) classification system based on site photos posted on the NRCS portal.  

 

Figure 2.1. Map of 199 SNOTEL stations used, categorized by (left to right panel) geographic region, climate, and 

vegetation type. The number of stations in each subgroup is noted in the legend entries.  

2.3.2 Meteorological forcings and observations 

Forcings required by the Noah-MP model at an hourly time step are: precipitation, 

temperature, specific humidity, terrain-level pressure, downward longwave and shortwave 

radiation, and surface wind magnitude. For the base case and model experiments in which 

physics options were altered (see section 2.3.3.2), we assigned hourly temperature and daily 

precipitation inputs from SNOTEL observations for consistency with the SNOTEL SWE used to 

evaluate model performance. To generate records that are internally consistent, accurate, 
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unbiased, and complete, extensive quality control, bias correction, and gap-filling procedures 

were applied (see Text B2). So, to the greatest extent possible, model errors in these experiments 

can be linked to the model physics rather than forcings biases because the forcings are both 

constrained by observations and consistent with the validation dataset. Daily precipitation 

observations were divided into even hourly values to match the model time step; this is a 

common approach in large-scale hydrologic modeling (for example, as is used by default in the 

VIC model (Variable Infiltration Capacity; Liang et al., 1994) due to challenges in obtaining 

reliable sub-daily records. We completed the forcings for these experiments with the Analysis of 

Record for Calibration dataset (AORC Version 1.1, Kitzmiller et al., 2019), because it was 

developed by NOAA’s Office of Water Prediction (OWP) specifically for the purpose of 

providing gridded meteorological forcings to calibrate the NWM. It has both high spatial (~800 

m) and temporal (hourly for WYs 1979 to 2019) resolutions (see Text B3 for more). We 

downscaled humidity and pressure from AORC values with SNOTEL temperature and elevation 

following methods outlined in Liston and Elder (2006) and Cosgrove et al. (2003), respectively. 

Longwave radiation, shortwave radiation, and wind inputs were extracted from the AORC pixel 

containing the SNOTEL site. Note here that our decisions to combine AORC hourly radiation 

forcings with SNOTEL temperature and precipitation, and to divide daily precipitation into even 

hourly values, will invariably introduce some inconsistencies within the meteorological forcing 

dataset. However, we believe this was the best approach for the purposes of this study given data 

limitations and model physics.  
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To further evaluate model performance and sensitivity relative to changes in 

meteorological forcings, we set up an additional experiment using solely the gridded AORC 

dataset, forcing each model point with values from the nearest AORC pixel.  

2.3.3 Model  

2.3.3.1 Overview of Noah-MP model 

Noah-MP is a community model that solves the land surface energy and water balances 

and simulates land-atmospheric fluxes to generate a suite of hydrological and other land surface 

variables (Niu et al., 2011). It was developed to improve upon the limitations of the Noah LSM 

(Gochis et al., 2018). Snowpack is represented by up to three layers. Within each layer, snow 

density, temperature, and liquid water fraction are computed for each timestep, and snow 

accumulation and ablation processes are based on mass and energy balance. Snow cover fraction 

on the ground is a function of snowpack depth and density and tunable parameters (Niu and 

Yang 2007). Vegetation is represented by a single-layer canopy model with the capability for 

snow interception and unloading on a canopy snow-cover fraction (Niu et al., 2011). A semitile 

subgrid scheme evaluates the radiation balance, where shortwave radiation is computed over the 

entire grid cell using a two-stream approximation and considering canopy gap probabilities, 

while radiation component fluxes and albedo are computed separately over the vegetated and 

bare ground areas (Niu et al., 2011). Noah-MP uses multiple user-defined options for key land-

atmosphere interaction processes, such that over 4,500 total combinations of physics 

configurations can be assessed. These configurations relate to 14 physics processes (see Table 

A1) such as dynamic vegetation, precipitation partitioning, soil temperature, and snow albedo 
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(Gochis et al., 2018). This setup allows users to customize their modeling scheme. More details 

about the model representation of these physics processes can be found in Text B4.  

2.3.3.2 Application of Noah-MP 

We applied Noah-MP as a standalone mode of WRF-Hydro v5.1.1, which is the core 

physics in NWM v2.1 (Cosgrove et al., 2024), over the 199 SNOTEL sites for the period WYs 

2007-2019. This period covers average, dry, and wet years. Each site was treated as a single 

Noah-MP grid cell with a resolution of 1 km to match that of the AORC forcings and NWM 2.1. 

We manually adjusted the coded vegetation type at each grid cell to match the corresponding 

SNOTEL station based on site photos from NRCS. When no photos were available, we used the 

default LULC class from the WRF preprocessing system (WPS) for the corresponding grid cell. 

All other surface conditions and parameters, such as default snow albedo parameters, soil 

classification, vegetation leaf area index (LAI), and other static descriptors were defined by the 

WPS.  

We tested ten model configurations relevant to snow processes (Table 2.1), including one 

base case and nine alternative experiments. The base case uses SNOTEL-based meteorological 

forcings, and has physics options set to match the NWM v2.1 recommended configuration. 

Seven physics processes were examined because of their relevance to snow simulation. You et 

al. (2020) found that modeled snow depth was sensitive to six of these processes at most sites. 

The seventh process was included because it offers a specific adjustment for snowy pixels. The 

tested physics processes (and named experiments) are: precipitation partitioning (Precip2.2, 

Precip0), snow albedo (Alb), lower soil temperature boundary condition (TempLB), snow/soil 

temperature time scheme (TempSolv), surface resistance to evaporation/sublimation 
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(ResisEvap), surface layer drag coefficient (ResisDrag), and dynamic vegetation (DynVeg) 

(Table 2.1). Additional details on these physics processes and their alternative options are in Text 

B4. The physics processes tested by the alternative model configurations impact snow 

accumulation and/or melt processes through various physical mechanisms (Fig. A2). For the 

physics processes with multiple alternative options, we tested only the recommended Noah-MP 

alternative (Gochis et al., 2018). Two alternatives were tested for the precipitation partitioning 

process due to its relevance to snow accumulation. The last experiment (AORC) uses the base 

case model configuration but AORC forcings. For this experiment, discrepancies between 

observed SWE and Noah-MP simulations can be attributed to both meteorological input and 

model errors.  
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Table 2.1. List of selected Noah-MP physics processes, with the base option listed first and alternative option(s) 

second. The activated set of physics options for the base case and each of the other nine model experiments are also 

indicated. AORC is the only experiment that shares the base case configuration of physics options. Note that three 

versions of the snow albedo BATS model were tested: a case with all default parameter values (Base Case), a case 

with the snow age parameter 𝜏0 = 3.05𝑒6 (BATStau_vis), and a case with 𝜏0 = 5.29𝑒5 (BATStau_NIR) based on 

optimized values from Abolafia-Rosenweig et al. (2022).   

    Model Configurations 
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Precipitation 

partitioning 

Jordan (1991): prescribed linear snowfall 

fraction when air temperature > 0.5 °C and < 

2.5 °C 

x   x x x x x x x 

Air temperature < 2.2 °C  x         

Air temperature < 0 °C   x        

Snow albedo 

Biosphere-Atmosphere Transfer Scheme 

(BATS) 
x x x  x x x x x x 

Canadian Land Surface Scheme (CLASS)    x       

Lower boundary 

condition of soil 

temperature 

Temperature at soil lower boundary (8m) read 

from file 
x x x x  x x x x x 

Zero heat flux from bottom     x      

Snow/soil 

temperature time 

scheme 

Semi-implicit; flux top boundary condition, 

fractional snow cover used in calculation 
x x x x x  x x x x 

Semi-implicit; flux top boundary condition      x     

Surface resistance 

to evaporation/ 

sublimation 

Sakaguchi and Zeng (2009) for non-snowy 

pixels; parameter read from file for snowy 

pixels 

x x x x x x  x x x 

Sakaguchi and Zeng (2009)       x    

Surface layer drag 

coefficient 

Monin-Obukhov similarity theory x x x x x x x  x x 

Original Noah [Chen (1997)]        x   

Dynamic 

vegetation 

Module turned off (vegetation parameters 

read from file) 
x x x x x x x x  x 

Module turned on (prognostic vegetation 

growth) 
        x  

 

Forcings 
SNOTEL temperature and precipitation x x x x x x x x x  

  AORC          x 

 

* These model experiments are ones that primarily impact snow accumulation processes. 

** These model experiments are ones that primarily impact snowmelt processes. 

*** These model experiments are ones expected to impact both snow accumulation and snowmelt processes. 

 

In addition to these user-defined physics options, Noah-MP employs parameters, some of 

which are designed to be tunable by the model user, related to vegetation and soil classes or 

model processes like runoff, albedo, and radiation balances. These parameters are not the focus 
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of this study, but it is worth noting that particularly relevant for snow simulation are those 

parameters related to snow albedo (e.g., Sun et al., 2019; Abolafia-Rosenzweig et al., 2021; He 

et al., 2021). The Biosphere-Atmosphere Transfer Scheme (BATS), which is the default snow 

albedo model in Noah-MP and represents both direct and diffuse albedo over visible and NIR 

spectrums (Dickinson et al., 1986) in a more sophisticated way than the alternative Canadian 

Land Surface Scheme (CLASS) model, has 12 tunable parameters. Abolafia-Rosenzweig et al. 

(2022) demonstrate that the BATS model is significantly sensitive to some of these parameters, 

and provide parameter values that are locally optimized to stations in the Southern Rockies. 

Letcher et al. (2022) further find that the default parameterization of the BATS model yields 

albedo values that underestimate the rate of observed snow aging. So, to acknowledge the 

potential breadth of performance of the BATS model and the caveats of its default parameters, 

we further test two alternative values for the empirical snow age parameter 𝜏0, to which 

Abolafia-Rosenzweig et al. (2022) find BATS is especially sensitive. The experiment hereafter 

called BATStau_vis uses 𝜏0 = 3.05 x 106 to match the value optimized by Abolafia-Rosenzweig et 

al. (2022) for visible albedo, and the experiment BATStau_NIR sets 𝜏0 = 5.29 x 105, the value 

optimized for NIR albedo. These two values are respectively greater and less than the default 

value of 𝜏0 = 1 x 106. Although these values were optimized locally in the Southern Rockies, we 

apply them in a global fashion across all sites to evaluate 1) the sensitivity of the BATS albedo to 

this parameter and 2) how well these parameter values perform at both similar and dissimilar 

sites. Note that all other parameter values and physics options in these two experiments 

otherwise match the Base Case (Table 2.1). 
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2.4 Methods 

We computed snow metrics to assess volume, rates, and timing of snow simulation across 

both the accumulation and melt seasons. These snow metrics, illustrated in Fig. 2.2 and described 

in more detail in section 2.4.1, are used to evaluate both model performance relative to SWE 

observations and sensitivity of the different model experiments (Table 2.1).  

Table 2.2. Summary of snow, performance, and sensitivity metrics. Annual snow metrics are computed for both 

observed and modeled results at each station. Performance metrics characterize systematic bias and error magnitude, 

by comparing modeled (base case) to observed snow metrics at each station. Sensitivity metrics characterize bias 

relative to the base case and sensitivity level at each station and for each experiment.  

Annual snow metrics Performance metrics Sensitivity metrics 

Systematic bias Error magnitude Systematic bias Sensitivity 

Accumulated SWE (mm)* MNB (%) MAE (%) MNB with respect to the 

base case (%) 

KS statistic 

Storm rate (mm day-1)* 

Daily melt rate (mm day-1)** 

Peak SWE DOWY (day)* Difference (day) Absolute 

difference (day) 

Difference with respect 

to the base case (day) 

  FNR for accumulation days (%)* 
  

  FNR for melt days (%)** 
  

* These metrics relate to the accumulation season. ** These metrics relate to the melt season. 

 

2.4.1 Derived annual SWE metrics 

For each station-year, we computed four annual snow metrics from daily time series of 

observed and simulated SWE as illustrated in Fig. 2.2: accumulated SWE (mm), storm rate 

(mm/day), peak SWE day of water year (DOWY, day), and daily melt rate (mm/day). 
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Figure 2.2.  Illustration of how the four snow metrics are calculated for a sample SWE time series for one water 

year. (a) Peak SWE DOWY and accumulated SWE. (b) Illustration of how a melt window is calculated when 

comparing two SWE time series for a sample water year. Here, snow-off day is first day after peak SWE when daily 

snowmelt is less than 1 mm. The 1 mm threshold discounts late-season small changes in simulated SWE. (c) Storm 

rate and daily melt rate (averaged over the year), with a sample minimum melt and storm rates indicated. (d) 

Simulated and observed daily melt rates within the shaded overlapping melt window.  

We calculated accumulated SWE by summing all positive daily changes in SWE (Fig. 

2.2a), to represent the total snow available for melt during the water year. This integrated metric 

is crucial for operational hydrological models like the NWM to correctly predict water supply. 

We chose this metric over the traditional single-day metric of peak SWE because peak SWE 

underestimates total snow availability, as it misses winter melt events and post-peak 

accumulation (for example, Fig. A3). The day of peak SWE (Fig. 2.2a) is included to quantify 

the timing of spring melt onset.  

We computed annual-averaged daily melt rate to independently characterize the 

snowmelt process. The daily melt rate is the average negative change in SWE over a melt 

window. The melt window spans from the water year’s first day to the snow-off day (Fig. 2.2b). 

Note that this window excludes late-season accumulation/melt events that happen after the 
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winter snowpack has melted out. The SNOTEL snow pillow’s precision is 2.54 mm, so daily 

SWE changes below the propagated error of 3.58 mm were set to zero in both simulated and 

observed records to maintain consistency (see more in Text A5). Only events exceeding a second 

minimum threshold were included to avoid biasing the average with small rates; this minimum 

threshold is set for each station as the rate above which 90% of all observed melt occurs. When 

comparing melt rates from two different time series (i.e., simulated vs. observed for the model 

performance analysis or simulated vs. simulated for the model sensitivity analysis), the average 

is applied over a melt window constrained by the earliest snow-off day (Fig. 2.2b), because high 

late-season melt rates in one time series (for example, Fig. 2.2d) could bias the comparison if the 

other time series has already melted out. This way, we are comparing melt rates over the period 

in which the model and measurements agree that snow is present and melting.  

The storm rate represents the average rate of snow accumulation on large storm days. 

Large storm days are defined as days when the daily positive change in SWE exceeds the 

historical observed 75th percentile. Serreze et al. (2001) found that in the Western US, this top 

quartile represents over half of total snowfall. Because large storms contribute significantly to 

snow accumulation and mountain hydrology in general – for example, atmospheric river (AR) 

events generate 4 times more daily SWE than non-AR storms (Guan et al., 2010), it is important 

to evaluate the model’s ability to recreate those large snowfall events. Note that because the 

model is run on an hourly time step but generates daily output, the storm rate could be affected 

by intraday melt events. For example, melt that occurs on a storm day could reduce the 

accumulation rate if snowmelt leaves the snowpack; this could also occur in the observational 

time series. 
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2.4.2 Evaluation of model performance 

We assessed model performance across both the accumulation and melt season with six 

performance metrics (Table 2.2), by comparing simulated to observed SWE over 2,388 station-

years of results. For each year at each site, we computed the bias as a normalized percent 

between simulated and observed snow metrics (M):  

100% ∗ (𝑀𝑠𝑖𝑚 − 𝑀𝑜𝑏𝑠)/𝑀𝑜𝑏𝑠        (1) 

We then averaged these biases across all years to derive a mean normalized bias (MNB) 

for each snow metric and station to evaluate the systematic bias in the model. Years for which 

the bias magnitude was greater than 1000% (during low to no snow years) were removed as 

outliers before aggregating. To evaluate error magnitude, we derived a mean absolute error 

(MAE), expressed as a normalized percentage, by averaging yearly absolute errors for each site 

and snow metric: 

100% ∗ |(𝑀𝑠𝑖𝑚 − 𝑀𝑜𝑏𝑠)|/𝑀𝑜𝑏𝑠        (2) 

The day of peak SWE is compared to its observed value by a difference in days.  

Two additional performance metrics measure how accurately the model predicts the 

timing of melt and accumulation events. The annual false negative rate (FNR) for accumulation 

is the percent of days when an observed accumulation event occurs but a modeled one does not, 

such that: 

𝐹𝑁𝑅𝑎𝑐𝑐 = 100% ∗ 𝐹𝑁/𝑃          (3) 

where FN is the number of days over the water year that shows observed accumulation without 

modeled accumulation, and P is the number of days with observed accumulation. A higher 

FNRacc means that there are more days in which the model fails to simulate an observed 
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accumulation event. FNRmelt similarly measures how often the model fails to predict an observed 

daily melt event. For both FNRs, interannual values are averaged into a single metric for each 

station. Note that, as opposed to the daily melt and storm rate metrics, these FNRs are not 

constrained by minimum melt or accumulation thresholds.  

2.4.3 Evaluation of model sensitivity 

We assessed sensitivity of the modeled snow metrics for each model experiment relative 

to the base case in two ways (Table 2.2). First, we identified where significant sensitivities exist 

by applying the Kolmogorov-Smirnov (KS) test (Text B6) to each snow metric at all stations in 

each experiment. This test has been utilized to assess model sensitivity in numerous hydrologic 

modelling studies (e.g., He et al., 2011; Sun et al., 2019). A two-sample KS test was performed 

at each station to test whether the snow metrics from the base case and the experiment come 

from the same distribution. KS values range from 0 to 1, with higher values indicating greater 

sensitivities (changes). We used a minimum KS threshold value of 0.5 to identify sensitivity 

because it yields statistically significant results at p-value < 0.1. Stations with a KS statistic equal 

to or greater than 0.5 were considered sensitive to that experiment for that snow metric.  

Second, we quantified the magnitude (and direction) of changes in snow predictions by 

comparing each model experiment’s simulated snow metrics to those from the base case by 

applying Equation (1), but with the base case as the reference. Changes in snow metrics for each 

experiment are thus expressed as the percent change in metric value relative to the base case.  
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2.5 Results 

2.5.1 Model performance relative to SNOTEL observations 

2.5.1.1 Base case performance across metrics 

Overall, the Noah-MP base case overestimates accumulated SWE observations at 90% of 

sites, with an overall median overestimate of 9.6% (Fig. 2.3a). This overestimation most likely 

results from excessive snowfall input due to inaccurate precipitation partitioning. This 

overestimation is consistent with findings by Letcher et al. (2022) over New York State; they 

also identify the precipitation partitioning scheme as a source of significant sensitivity in Noah-

MP. Stations with underestimated accumulated SWE have a median bias of only -1.7%. The 

observed storm rate is underestimated by the model in 53% of stations, which have a median bias 

of -3.2% (relative to the overall median of -0.4%, Fig. 2.3b). The median FNR is 8% for 

accumulation days, meaning that the model correctly simulates accumulation on 92% of 

observed days (Fig. 2.3c). Peak SWE occurs later in the base case than observations at 74% of 

stations, for which the median bias is 9.5 days (relative to an overall median of 5.4 days, Fig. 

2.3d). Stations where the model predicts earlier peak SWE have a median bias of only -4 days. In 

general, model performance during the melt season is worse than in the accumulation season. 

The daily melt rate is underestimated by the model at 79% of stations, by an overall median bias 

of -15% (Fig. 2.3e). The median FNR for melt is 38%, which is over 4 times greater than that for 

accumulation (Fig. 2.3f). This means that the model agreement with the timing of observed melt 

is much worse than that for accumulation. 
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Figure 2.3. Model performance across all stations in the base case, as compared to SNOTEL SWE observations. Six 

performance metrics were used: (a) mean normalized bias (MNB) in accumulated SWE; (b) MNB in storm rate; (c) 

FNR for accumulation days; (d) difference in timing of peak SWE; (e) MNB in daily melt rate; and (f) FNR for melt 

days. The leftmost column of panels shows a smoothed histogram of the performance metrics across stations in the 

base case. A vertical dashed red line indicates the median metric value, and a horizontal dashed gray line indicates 

the interquartile range (IQR). The performance metrics are separated by geographic region in the second column; by 

climate subgroup in the third; and by vegetation type in the fourth. Circles mark the median of the subgroup, and the 

width of the line marks the interquartile range. If the subgroup has a filled-in circle, it is considered significantly 

different (p-value < 0.05) from the other subgroups. The number of stations in each subgroup is noted in the legend 

entries. 

Model performance varies across geographic regions. For example, stations in the 

Cascades region exhibit a statistically different model performance (p < 0.05) than other regions 

across all snow metrics. No stations in the Cascades nor the Sierra Nevada underestimate 

accumulated SWE. The Cascades has the highest median bias in accumulated SWE (19.5%, 2.5 

times greater than the median of all other stations) (Fig. 2.3a), indicating lower model accuracy 

during the accumulation season. Of note, the Sierra Nevada, Cascades, and Arizona/New Mexico 

Mountains are the only regions where the median bias in storm rate is positive; suggesting that 

the model tends to overestimate accumulation on large storm days (Fig. 2.3b). Inaccurate 

precipitation partitioning could cause the model to estimate more SWE accumulation than 

observed on large storm days. This is notable because large storms like those produced by 

atmospheric rivers dominate snowpack accumulation in the Pacific mountainous regions, 

particularly in the Sierra Nevada (Serreze et al., 2001). Generally, stations in the interior ranges 

show a better performance in the accumulation season than those in the coastal ranges: four out 

of the five interior regions (Blue Mountains, Basin and Range, Northern Rockies, Wasatch and 

Unita Mountains, Southern Rockies) have a median bias below the overall median in both 

accumulated SWE and FNR for accumulation (Fig. 2.3a, c). For the melt season, the Cascades 

region has the lowest median bias in timing of peak SWE (1.3 days), the smallest median bias in 
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daily melt (-2.4%), and the lowest FNR for melt days (30%) (Fig. 2.3d, e, f). This means that the 

model performs significantly more accurately over the melt season in the Cascades than in other 

regions. The Southern Rockies also have a statistically different melt season performance, with 

the largest bias in timing of peak SWE (median delay of 21 days) (Fig. 2.3d), the most negative 

median bias in simulated daily melt rate (–27%) (Fig. 2.3e), and the second-highest median FNR 

for melt days (51%) (Fig. 2.3f). This suggests that melt season model performance is the poorest 

in the Southern Rockies. It is worth noting that the Cascades stations are the snowiest and second 

warmest (average observed accumulated SWE of 796 mm and winter temperature of -0.12°C, 

(Table A2), and the Southern Rockies stations are the coldest (average observed winter 

temperature of -5.3°C, Table A2). Also relevant here is the role of light absorbing particles (i.e., 

dust and soot) on snow: albedo decay and shortened snow cover duration caused by dust on snow 

has been widely observed in the Rocky Mountains and Wasatch and Uinta Range (e.g., Painter et 

al., 2012, Painter et al., 2007). Noah-MP does not explicitly capture radiative forcing by dust on 

snow, and so can be expected to underestimate the observed melt rates in regions impacted by 

dust deposition. This is consistent with the result that melt rate bias is most negative in the 

Wasatch and Unita Mountains and Southern Rockies (Fig. 2.3e). Note that the alternative BATS 

experiments use a parameter value optimized for sites with considerable dust on snow effects; 

median melt rate bias is still negative and largest in the Wasatch and Uinta Mountains and 

Southern Rockies in these experiments, but the error magnitude in BATStau_NIR (BATStau_VIS) 

decreases (increases) at these sites by a median of 14% (16%) relative to the base case (Fig. A7). 

Variations in model performance can also be explained by differences in climate. Sites 

classified as cold (dry/cold or wet/cold) demonstrate similar bias levels in accumulated SWE 
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regardless of precipitation amount, whereas warm sites (dry/warm or wet/warm) show more bias 

(on median 4.7 times higher) when they are also wet (Fig. 2.3a). This suggests that precipitation 

at warm sites is a more distinguishing factor for accumulated SWE bias than at cold sites. Dry 

sites (dry/cold or dry/warm) have a more negative bias (-2.5%) in storm rate than wet sites (-

0.2%) (Fig. 2.3b), indicating that the model better predicts the storm rate when precipitation is 

higher (and storms are typically larger). Temperature instead is the distinguishing factor for 

FNR: on median, warm sites have an accumulation FNR twice as high as that for cold sites (Fig. 

2.3c). So, the model predicts accumulation events better at colder stations, where partitioning 

thresholds are less influential in determining snowfall. In the melt season, dry/cold stations show 

the highest bias in timing of peak SWE, and wet/warm stations show the least (Fig. 2.3d). 

Temperature distinguishes model performance in daily melt rate: cold sites have a median bias 

50 times greater (-20%) than warm sites (median of -0.4%) (Fig. 2.3e). FNR for melt days is 

instead more distinguishable by precipitation: dry stations have a median bias 1.6 times higher 

than wet stations (Fig. 2.3f). Both wet/warm sites and wet/cold sites perform statistically 

differently than other climate subgroups in five of the six metrics (Fig. 2.3), suggesting that 

precipitation amount strongly affects model performance.  

Vegetation type also plays a role in model performance, as the amount and type of 

vegetation can impact both energy and mass balance of snow. Note that vegetation type is 

manually set in the model to match the SNOTEL station; 50% of stations are located in clearings 

and labeled as “grassland”. It is worth mentioning that at more vegetated sites, snow simulation 

becomes more complex. Although the Noah-MP canopy model correctly accounts for shadowing 

effects on solar radiation, it could be introducing an inconsistency between modeled SWE and 
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observed SWE because it models canopy snow interception whereas the SNOTEL snow pillows 

are likely less affected by canopy interception because they are not typically placed directly 

under trees even when the site is forested. This could lead to an underestimation of observed 

SWE at forested sites in this study by Noah-MP.  

Shrubland sites show statistically different model performance at the most metrics (Fig. 

2.3a, b, c, d, e), signifying a unique model performance. These sites exhibit the lowest median 

bias magnitude in accumulated SWE (2.4%) and storm rate (-0.2%), but the highest bias in FNR 

for accumulation days (9%) (Fig. 2.3a, b, c). This suggests that the model simulates snow 

volume relatively well at shrubland sites but does so more poorly for the timing of accumulation 

events, perhaps because of vegetation interception. Deciduous broadleaf sites have a bias in 

accumulated SWE less than the overall median and are the only ones to have a negative bias in 

timing of peak SWE (-3 days) indicating earlier simulated snowmelt onset (Fig. 2.3d). In the 

melt season, the model simulates median melt rate 1.7 times more accurately at non-forested 

sites than forested sites (Fig. 2.3e), but FNR 1.8 times more accurately at forested sites (Fig. 

2.3f). This means that at forested sites, the model simulates daily melt rate less accurately, but 

those melt events are more likely to occur on the correct (observed) days. It should be noted that 

patterns in model performance across vegetation types may be cross-correlated with climate, 

geography, and other factors.  

2.5.1.2 Relationship between base case performance and climate variables 

Studying the correlations between model error and climate-related variables underscores 

climate as a crucial factor affecting model performance. Figure 2.4 presents correlations (R) 

between observed winter temperature, winter precipitation, snow/precipitation ratio (peak 
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SWE/annual precipitation), and accumulated SWE, and base case model error across all sites. 

Model error is defined here as mean absolute error, absolute difference, or FNR (Table 2.2). By 

using the absolute error rather than bias, these correlations reveal the relationship between 

climate variables and error magnitude irrespective of error direction.  

 

Figure 2.4. Correlations (R) between seasonal climate variables and model error across stations in the base case as 

represented by six performance metrics: MAE in accumulated SWE, MAE in storm rate, FNR for accumulation 

days, absolute difference in timing of peak SWE, MAE in daily melt rate, and FNR for melt days (Table 2.2). 

Climate-related variables are computed for each station-year from observed records over winters (Nov-March) of 

WYs 2007-2019. The gray area marks R values that are not statistically significant (p-value > 0.05). Positive 

(negative) bars indicate that a higher value for the climate variable correlates with higher (lower) model error.  

Over the accumulation season, warmer winter temperatures correspond to higher error in 

accumulated SWE (R = 0.39), storm rate (R = 0.31), and FNR (R = 0.55). This supports the 

finding from Fig. 2.3 that warm stations perform more poorly during the accumulation season 

than cold stations, likely because these sites are more sensitive to inaccurate precipitation 

partitioning. Winter precipitation also positively correlates with model error in accumulated 

SWE (R = 0.28) (Fig. 2.4). This reaffirms the finding in Fig. 2.3 that wet/warm sites have the 

poorest model performance in accumulated SWE. Snow/precipitation ratio strongly negatively 

correlates with model error in accumulated SWE (R = -0.55), storm rate (R = -0.38) and FNR (R 

= -0.59) (Fig. 2.4). This suggests that sites with a lower snow/precipitation ratio (which tend to 
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have warmer temperatures) have higher accumulation errors. This is consistent with the finding 

that observed accumulated SWE negatively correlates with error in storm rate (R = -0.3) and 

FNR (R = -0.27); indicating that the model is worse at predicting accumulation events at less 

snowy sites.  

Generally, the trends between climate-related variables and model error are opposite and 

weaker for melt season metrics. Winter temperature negatively correlates with error in timing of 

peak SWE (R = -0.26) and daily melt rate (R = -0.21) (Fig. 2.4), indicating that colder stations 

perform worse than warm stations in the melt season. The strong negative correlation between 

winter precipitation and FNR for melt days (R = -0.49) (Fig. 2.4) reinforces the finding from Fig. 

2.3 that wet sites perform distinctively worse than dry sites for this metric. This is also true, but 

less significant, for the relationship between winter precipitation and error in timing of peak 

SWE (R = -0.19) (Fig. 2.4). Observed accumulated SWE has a strong negative correlation with 

FNR for melt days (R = -0.56) (Fig. 2.4), indicating that the model more often fails to predict 

observed melt events at sites with less snow. Note that observed accumulated SWE is the only 

variable which relates negatively to model error across both accumulation and melt seasons; so 

less snowy sites consistently perform worse than snowier sites. The positive correlations between 

snow/precipitation ratio and error in timing of peak SWE (R = 0.22) and daily melt rate (R = 

0.17) are less significant but demonstrate poorer model performance in the melt season at 

stations with a high snow/precipitation ratio (which also tend to be colder).  
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2.5.2 Sensitivity of snow simulations to model configurations 

2.5.2.1 Identifying sensitivity to changes in model configuration 

To assess whether changes in snow metrics caused by the model experiments amount to a 

significant model sensitivity, we applied the Kolmogorov-Smirnov (KS) test to four snow 

metrics (Table 2.2). Snow metrics at a station are considered significantly sensitive to a 

particular experiment if the KS statistic is equal to or greater than 0.5 (p-value < 0.1). Figure 2.5 

summarizes how many stations are considered sensitive to each experiment and snow metric. 

 

Figure 2.5. The percent of sensitive stations (KS statistic ≥ 0.5, p-value < 0.1) in each experiment and across four 

snow metrics. Note that AORC is an experiment that tests forcings input rather than model physics.  

Overall, only two experiments show significant sensitivity in accumulation metrics at 

over 5% of stations: AORC and Precip0 (Fig. 2.5). Precip0 lowers the temperature threshold for 

snowfall to 0°C, leading to a sensitivity in accumulated SWE and storm rate at 22% and 4% of 

stations respectively (Fig. 2.5). In contrast, the other precipitation partitioning experiment 

Precip2.2, which raises the partitioning threshold to 2.2°C, has at most 1% of stations with 

accumulation metric sensitivity (Fig. 2.5), indicating that the 0°C threshold yields significantly 

more deviation in results from the base case (which uses a linear increase in partitioning with 

temperature per Jordan 1991) than 2.2°C. The AORC experiment, which changes the input 
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precipitation and air temperature, demonstrates the highest levels of sensitivity, with 64%, 19%, 

and 51% of stations sensitive to accumulated SWE, storm rate, and timing of peak SWE, 

respectively (Fig. 2.5). 

Six experiments exhibit significant sensitivity in melt metrics at over 5% of stations: Alb, 

Precip0, ResisEvap, ResisDrag, DynVeg, and AORC, indicating that melt metrics are sensitive 

to more changes in model configuration than accumulation metrics. Alb and DynVeg both 

impact surface albedo, resulting in 17% and 21% of stations showing melt rate sensitivity, 

respectively. ResisDrag, which impacts the computation of surface heat fluxes, is the physics-

related experiment with the most sensitivity in the melt season: 51% of stations have melt rate 

sensitivity, and 6% have sensitivity to timing of peak SWE. ResisEvap also affects surface heat 

fluxes, and demonstrates melt rate sensitivity at 10% of stations. The Precip0 experiment 

exhibits sensitivity to daily melt rate in 8% of stations; this is an indirect effect of changes to 

accumulation patterns. At most 1% of stations show sensitivity to any metric in TempLB and 

TempSolv; meaning that these model configurations do not deviate greatly from the base case. 

AORC shows 31% of stations with sensitivity in melt rate (Fig. 2.5). 

2.5.2.2 Changes in snow metrics relative to base case across model configurations 

The magnitude and direction of changes to snow predictions caused by alterations to 

model configuration or forcings input is evaluated by comparing four snow metrics in each 

experiment to base case results (Table 2.2). Fig. 2.6 illustrates the distributions of these bias 

metrics for each experiment. 
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Figure 2.6.  Distributions of changes in snow metrics relative to the base case across SNOTEL stations and nine 

experiments for four snow metrics. From left to right: (a) accumulated SWE, (b) storm rate, (c) timing of peak SWE, 

and (d) daily melt rate. Bias metrics (MNBBC or difference, Table 2.2) are computed for each station-year with 

reference to the base case, and then averaged for each station over the time period. The distribution color and the 

dashed horizontal line correspond to the median bias value for each experiment. A red (blue) color indicates the 

model configuration produces a higher (lower) median value than the base case.  

 The precipitation partitioning experiments (Precip2.2, Precip0) are expected to primarily 

impact snowfall and snow accumulation. Precip2.2 increases the temperature threshold for 

precipitation partitioning, resulting in a slightly higher accumulated SWE (median of 2.3%) (Fig. 

2.6a), but less notable impacts to storm rate (median of 0.2%) and timing of peak SWE (median 

of 0.2 days) (Fig. 2.6b, c). Precip0 instead lowers the temperature threshold, leading to less 

snowfall than the base case. The storm rate and total accumulated SWE notably reduce as a 

result, by a median of 4.3% and 13%, respectively (Fig. 2.6a, b). The day of peak SWE is 

correspondingly advanced by a median of 4.3 days (Fig. 2.6c). The range of bias for accumulated 

SWE in Precip0 is the widest for accumulation metrics (IQR of 12.3%), indicating that the effect 

of this experiment varies greatly across stations (see section 2.5.2.3) (Fig. 2.6a).  

The subsequent five experiments relate primarily to melt processes. Alb generates a 

higher daily melt rate (median of 4%) than the base case (Fig. 2.6d). This is consistent with the 
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observation that the alternative albedo option generates lower snow albedo (Niu et al., 2011, 

Abolafia-Rosenzweig et al., 2022). ResisEvap, which alters surface resistance to turbulent fluxes, 

generates a slightly higher melt rate (median of 1.1%) (Fig. 2.6d). This implies that the change in 

surface resistance was enough to reduce latent heat flux so that the additional energy at the 

surface initiated higher snowmelt rates. ResisDrag, which alters how the surface drag coefficient 

is estimated, impacts melt metrics more significantly. The alternative option (Chen 1997) has 

been noted to produce a lower value for the surface drag coefficient (e.g., Zhang et al., 2014), 

resulting in higher heat flux values. This is consistent with the experiment reducing daily melt 

rate, by a median of 9.9% (Fig. 2.6d). This experiment has a wide range of bias values for daily 

melt rate (IQR of 10%), suggesting that the impact of ResisDrag varies notably across sites (see 

section 2.5.2.3). TempSolv, which changes the solver approach for the soil temperature equation, 

increases the daily melt rate by a median of 1.7% (Fig. 2.6d). TempLB, which changes the 

temperature lower boundary condition of the soil column, generates insignificant to no change 

(less than 0.2%) to all metrics (Fig. 2.6a, b, c, d).  

DynVeg and AORC are expected to impact both accumulation and melt processes. The 

AORC experiment uses the same physics configuration as the base case, but with different 

precipitation and temperature forcings. AORC total winter precipitation differs from SNOTEL 

observations heterogeneously across the WUS (Fig. B1a) but averages out to 10.6% less. AORC 

winter temperature underestimates observations by an average of 0.2°C (Fig. B1b). As a result of 

this and/or differences in individual storm events, the storm rate increases in the AORC 

experiment (median of 3.5%) (Fig. 2.6b). Peak SWE occurs a median of 17.5 days earlier, which, 

combined with a higher melt rate (median of 6.1%, Fig. 2.6d) and lower input precipitation (Fig. 
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A1a), is consistent with total accumulated SWE decreasing (median of -29.3%) (Fig. 2.6a). The 

range of bias values in AORC is wider than in any other experiment (IQRs ranging 11-25% 

across metrics), suggesting that snow simulation varies greatly across sites in this experiment and 

that the experiment introduces more uncertainty (Fig. 2.6). DynVeg turns on the dynamic 

vegetation module. As a result, accumulated SWE changes slightly (median of 1%). There is 

insignificant to no change in median values (less than 0.2%) for peak SWE timing, storm rate, 

and melt rates (Fig. 2.6a, b, d). Of note, the IQR for the melt rate biases is 5% (Fig. 2.6d), 

indicating that DynVeg impacts melt processes at some stations more significantly than the 

median suggests. 

Figure 2.6 also illustrates changes in snow simulation due to indirect effects by the model 

experiments. For example, Precip0, which directly reduces snowfall relative to the base case, 

also exhibits a slight increase in daily melt rate (median of 3%) (Fig. 2.6d). This is because a 

shallower snowpack presumably reaches melt phase earlier. Although ResisDrag primarily 

impacts melt rate, it also demonstrates a slight increase in accumulated SWE (median of 1.9%) 

and a corresponding delay in timing of peak SWE (median of 3.2 days) (Fig. 2.6a, c). This is 

consistent with less winter melt occurring due to lower melt rates. The IQR for biases in timing 

of peak SWE in this experiment is the second widest (7.5%), indicating a varied impact that can 

result in either positive or negative biases at individual sites. ResisEvap shows effects similar in 

magnitude but opposite in direction: a slight decrease in accumulated SWE (median of -1.6%) 

and advance in timing of peak SWE (median of -3.4 days) (Fig. 2.6a, c). This is consistent with 

more winter melt occurring due to a higher melt rate.  
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2.5.2.3 Changes in snow metrics relative to base case across site conditions 

Changes in snow metrics caused by different model configurations relative to the base 

case can also be evaluated across site conditions in order to understand how and why snow 

simulation responds differently to alterations in physics processes or forcings input. Only the 

metrics with the highest percent of stations showing a significant KS statistic (Fig. 2.5) are 

evaluated in this section. 

Although the AORC experiment shows high levels of sensitivity (Fig. 2.5), the changes 

to snow metrics caused by this experiment relate to the localized differences between SNOTEL 

and AORC temperature/precipitation rather than model physics; and so are more heterogeneous 

across geography, climate, and vegetation than in other experiments. 

Precip0 primarily impacts accumulated SWE as it changes the amount of snowfall input 

(Fig. 2.5). Fig. 2.7a illustrates how stations closer to the Pacific coast – in the Cascades, Eastern 

Cascades Slopes and Foothills, and the Sierra Nevada – show a more negative and larger change 

in accumulated SWE than stations located in the interior ranges – Northern Rockies, Blue 

Mountains, Basin and Range, Wasatch and Uinta Mountains. This is due to more temperate 

climate in the more coastal areas, with warmer temperatures that hover more closely to the 

precipitation partitioning threshold. In fact, stations classified as warm (either dry/warm or 

wet/warm) demonstrate a higher and more negative median bias in snow accumulation than 

stations classified as cold (Fig. 2.7a). Precipitation amount also matters: within each temperature 

grouping (warm or cold), stations classified as wet demonstrate a higher bias than their dry 

counterparts (Fig. 2.7a). So, Precip0 causes more change in accumulated SWE in wetter and 
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warmer stations, because changing the precipitation partitioning threshold has a bigger impact 

where winter temperature is closer to that threshold. 

 

Figure 2.7. Distribution of changes from the base case in key snow metrics across site conditions in (a) Precip0, (b) 

Alb, (c) ResisEvap, (d) ResisDrag, and (e) DynVeg experiments. The bias metric MNB relative to base case for 
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accumulated SWE is shown for Precip0, and for daily melt rate for the other experiments. The first column of 

subpanels presents results across different geographic regions of the WUS, and the second column separates results 

by climate subgroups. Results are separated by vegetation type for the DynVeg experiment. Circles mark the median 

of subgroup, and the width of the line marks the interquartile range. If subgroup has a filled-in circle, it is considered 

significantly different (p-value < 0.05) from the other subgroups. The number of stations in each subgroup is noted 

in the legend entries. 

Alb primarily impacts the daily melt rate (Fig. 2.5), and that impact varies by geography 

and climate (Fig. 2.7b). The only region to show a negative change in daily melt rate in this 

experiment is the Arizona/New Mexico mountains (Fig. 2.7b), which is the least snowy region in 

the study (Table B2). The region with the highest positive change in daily melt rate (and widest 

IQR) is the Southern Rockies (Fig. 2.7b). Both these regions are statistically different than the 

others. Precipitation amount rather than temperature is a distinguishing factor for this 

experiment: stations classified as wet (either wet/cold or wet/warm) have a higher median bias in 

melt rate than stations classified as dry (Fig. 2.7b). Dry/warm stations have the lowest median 

bias, whereas wet/cold stations have the highest (Fig. 2.7b).   

ResisEvap and ResisDrag also primarily impact daily melt rate (Fig. 2.5). For ResisEvap, 

stations in the Eastern Cascades and Foothills demonstrate the most negative and highest 

absolute median bias of all regions (Fig. 2.7c). The only other region with an absolute median 

bias higher than 2% is the Southern Rockies, which has the highest positive bias (Fig. 2.7c). In 

this experiment, the IQRs of the bias metrics vary notably across regions – for example, the IQR 

for the dry Arizona/New Mexico region is much wider than the wet Cascades region (Fig. 2.7c). 

While the median biases for each climate subgroup do not differ significantly, the IQRs do. 

Stations classified as dry (either dry/cold or dry/warm) have a wider IQR than stations classified 

as wet (Fig. 2.7c). So, the changes in daily melt rate caused by ResisEvap range wider across 

drier stations.  
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Precipitation amount is also a distinguishing factor for changes to daily melt rate in 

ResisDrag. Wet stations have a more negative bias than dry stations, with wet/warm stations 

demonstrating the highest absolute bias Fig. 2.7d). Geographically, the Cascades demonstrate the 

most negative and highest absolute median bias, whereas the Arizona/New Mexico Mountains 

region show the lowest median bias but with the widest IQR (Fig. 2.7d).  

For DynVeg, more stations show sensitivity to daily melt rate than any other snow metric 

(Fig. 2.5). Although the median biases across geographic regions and climate subgroups are 

similar and close to 0, there are notable differences in the IQRs (Fig. 2.7e). For example, stations 

in the Cascades region have the widest IQR whereas stations in the Southern Rockies have the 

narrowest (Fig. 2.7e). Across climate subgroups, the IQR is wider in dry stations (either dry/cold 

or dry/warm) than wet stations (Fig. 2.7e). These differences suggest that station groups with 

wider IQRs have more uncertainty in how DynVeg affects snow simulation. Changes to melt rate 

caused by DynVeg are notably discernable by vegetation type. There is no change from the base 

case daily melt rate at barren or sparsely vegetated stations, suggesting that the dynamic 

vegetation module (see more in Text A4) does not have any impact on snow simulation at these 

sites. On the other hand, there is negative change for shrubland stations, and positive change for 

forested stations (either deciduous broadleaf or evergreen needleleaf) (Fig. 2.7e). Grassland 

stations show a median bias close to 0, with individual stations showing slight changes (Fig. 

2.7e). 

2.5.3 Best performing physics options 

The variations in model performance and sensitivity across sites speak to inadequacies in 

physical process representation that manifest differently under different site conditions. This 
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implies that customizing model configurations to the unique characteristics of the model domain, 

particularly climate type which we have found has strong patterns with model behavior, could 

yield more accurate and useful results. Figure 2.8 illustrates which option – either the base case 

or alternative – performs best relative to observations, as measured by the MAE in accumulated 

SWE and daily melt rate (Table 2.2).  

Overall, the Precip0 alternative for precipitation partitioning yields the best accumulation 

season model performance at most stations across the WUS (Fig. 2.8a). This option reduces 

snowfall amount relative to the base case and partly compensates for the positive bias in 

accumulated SWE in the base case (Fig. 2.3a). At most warm stations, which are more sensitive 

to changes in temperature thresholds for precipitation partitioning (Fig. 2.7a), the base option 

instead more accurately predicts accumulated SWE.  
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Figure 2.8.  Fraction of stations showing better model performance, as represented by the lowest MAE in 

accumulated SWE (left column, a-e) and MAE in daily melt rate (right column, f-j), for each option under seven 

physics processes and one pair of forcings input, for all stations and for subsets covering four climate categories. 

Note that for the precipitation partitioning process, Precip2.2 is “alternative 1” and Precip0 is “alternative 2”. There 

are 37 stations in the dry/cold subgroup; 13 in dry/warm; 101 in wet/cold, and 48 in wet/warm. If a station shows no 

difference in model performance between the different options, it is added to the white bar. The best performing 

option has the highest bar. The gray background highlights the most relevant options for that snow metric by 

indicating which experiment causes sensitivity relative to the base case for that snow metric at over 5% of stations 

(as shown on Fig. 2.5).  

As expected, using observation-based forcings rather than gridded AORC forcings leads 

to more accurate accumulated SWE at most stations (Fig. 2.8a, b, c, d). At those few stations 

where AORC instead performs better, the base case model configuration can be considered 

erroneous because the AORC forcings and validation dataset (observed SWE) are inconsistent 
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and thus the AORC experiment is not expected to yield superior model performance than the 

experiment which uses observation-based forcings. 

At predicting the observed melt rate, the alternative for Alb vastly outperforms the base 

option at most stations across the WUS and especially at cold stations (Fig. 2.8e, f, g). This is 

consistent with the finding that observed melt rate is generally underestimated in the base case 

(Fig. 2.3e), and the alternative snow albedo option yields lower albedo values and thus a higher 

melt rate (Fig. 2.6d). At warm stations, where melt rates are typically higher and the change 

relative to the base case is less (Fig. 2.7b), the base option instead outperforms the alternative at 

most stations. Note that in this case, the base option utilizes all default parameters for the BATS 

albedo scheme. Figure 2.8 illustrates how tuning one parameter in this scheme to a locally 

optimized value (Abolafia-Rosenzweig et al., 2022) affects the results. 

Similarly, the alternative for ResisEvap, which tends to increase the melt rate relative to 

the base case (Fig. 2.6d), outperforms the base option at most stations across the WUS (and in 

particular cold stations). Conversely, the base option outperforms the alternative for ResisDrag, 

which reduces the melt rate relative to the base case at shrubland and grassland sites (Fig. 2.7e), 

at most stations across all climate groups except for wet/warm (Fig. 2.8f, g, h, i, j). Note that the 

impact of the DynVeg alternative relative to the base case is more correlated with vegetation 

type than climate subgroup (Fig. 2.7e). The second alternative for precipitation partitioning 

(Precip0), which indirectly impacts melt rate by reducing accumulated snowfall, outperforms the 

base option across all climate groups (Fig. 2.8f, g, h, i, j). Also, using gridded forcings (AORC) 

yields more accurate melt rates than using observations-based forcings at most stations except 

for those in warm climates (Fig. 2.8f, g, h, i, j), suggesting that the base case configuration is not 
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optimized for melt season SWE predictions. Notably, for most stations where AORC 

outperforms the base option, the alternative snow albedo model also outperforms the base option 

(Fig. 2.8f, g, h) – this suggests that a key source of error in the base case configuration is the use 

of an inadequate snow albedo model (in the base option, BATS with default parameter values) 

especially at cold stations.  

Note also that the alternative option sometimes outperforms the base case even amongst 

the physics processes that do not yield significant changes relative to the base case. This occurs 

in the accumulation season at most stations for TempLB and ResisEvap, and in the melt season 

at most cold stations for TempLB.  

The BATS snow albedo model, used in the Base Case and the default within Noah-MP, 

has 12 tunable parameters, some of which have been found to significantly affect the 

performance of the model (e.g., Abolafia-Rosenzweig et al., 2022). Figure 2.9 illustrates how 

tuning one of those parameters (𝜏0) affects the model’s ability to reproduce observed melt rate. 

Overall and for dry stations, the BATStau_NIR experiment outperforms the other snow albedo 

configurations, yielding the lowest melt rate error in 41% of all stations (Fig. 2.9a, b, c). This 

demonstrates that tuning even one parameter of the BATS model, such as to locally optimized 

values, can improve the model performance such that it exceeds that of an alternative snow 

albedo scheme. Specifically, decreasing the 𝜏0 parameter value (as in BATStau_NIR) improves the 

ability of the BATS model to reproduce observed melt rate at most stations. See Fig. A6 for 

distributions of melt rate bias in BATStau_NIR and BATStau_vis. Conversely, Alb (which uses the 

CLASS albedo scheme) outperforms the BATS experiments at most wet stations (Fig. 2.9d, e). 

Note that the adjusted values for the 𝜏0 parameter were optimized to local observations in the 
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Southern Rockies (Abolafia-Rosenzweig et al., 2022). The results summarized in Fig. 2.9 

suggest that these locally optimized values can effectively improve model performance at other 

sites with similar climates (i.e., dry/cold, Fig. 2.9b), but less effectively at dissimilar sites (i.e., 

wet/warm, Fig. 2.9e). 

 

Figure 2.9. Fraction of stations showing better model performance, as represented by the lowest MAE in daily melt 

rate, for four snow albedo experiments: Base Case (BATS with default parameters), Alb (CLASS), BATStau_vis 

(BATS with tuned parameter), and BATStau_NIR (BATS with tuned parameter) (Table 2.1), for all stations (a) and 

for subsets covering four climate categories: (b) dry/cold, (c) dry/warm, (d) wet/cold, and (e) wet/warm. The best 

performing option has the highest bar. 

2.6 Conclusions 

This study examines snow water equivalent (SWE) simulation by Noah-MP across 199 

sites in the Western US. The base case and eight model configuration experiments test physics 

options related to precipitation partitioning (Precip2.2, Precip0), snow albedo (Alb), lower soil 

temperature boundary condition (TempLB), snow/soil temperature time scheme (TempSolv), 
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surface resistance to evaporation/sublimation (ResisEvap), surface layer drag coefficient 

(ResisDrag), and dynamic vegetation (DynVeg). These experiments are forced by in situ 

meteorology in order to rigorously identify model deficiencies. The ninth experiment (AORC) 

tests an alternative source of forcings to provide insight into forcing errors and relative model 

uncertainties.  

With respect to how well Noah-MP can reproduce SWE at sites across the WUS, we find 

that the base case, which matches the National Water Model (NWM) configuration and uses 

observed temperature and precipitation forcings, overestimates observed accumulated SWE at 

90% of stations by median of 9.6%. Inaccurate precipitation partitioning by the model could 

explain these errors. At most sites, it also predicts later peak SWE timing (5.4 days) and 

underestimates daily melt rate (median of -14.6%). The use of globally-applied default 

parameters in the base case albedo model (BATS) could explain this underestimation. The model 

more successfully predicts the timing of observed accumulation events than observed melt 

events.  

With respect to the sensitivity of the model to alternative configurations, we find that 

Precip0 and AORC demonstrate significant sensitivity in the accumulation season, while Alb, 

Precip0, ResisEvap, ResisDrag, DynVeg, and AORC exhibit significant melt season sensitivity. 

Precip2.2, TempSolv, and TempLB show little to no significant sensitivity. Of the model 

configurations that test physics processes, the greatest change to accumulation season predictions 

occurs in Precip0 (median of -13%). On average, Precip0 reduces accumulated SWE, storm rate, 

and timing of peak SWE, while Precip2.2 slightly increases accumulated SWE. With regards to 

melt season predictions, the greatest change occurs in ResisDrag (median of -10%). ResisDrag 
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on average reduces melt rate, increases accumulated SWE, and delays peak SWE timing, while 

ResisEvap does the opposite. DynVeg demonstrates a wide range of changes to melt rate, which 

are discernable by vegetation type but average out to a near-zero effect overall. TempLB and 

TempSolv have minimal effects. AORC causes substantial changes in snow performance metrics 

that often exceed those caused by alterations in model physics in both magnitude and range 

(medians ranging -29% to 6%). This suggests that previous assessments of model performance in 

Noah-MP or other land surface models (LSMs) could be masked by forcings errors or 

inconsistencies with the validation dataset, and emphasizes that generating accurate 

meteorological forcings should be prioritized over adjusting model physics representation for 

promoting more accurate SWE simulation in LSMs.  

We also find that the model’s performance relative to observations and sensitivity relative 

to the base case differs across regions, climates, and vegetation types, with the strongest trends 

related to climate. The model performs better relative to observations in the accumulation season 

at colder sites with a higher snow/precipitation ratio (such as in the Southern Rockies), and in the 

melt season at warmer stations with a lower snow/precipitation ratio (such as in the Cascades). 

The model performs most uniquely in the Cascades region – perhaps because these sites are 

warmer despite their deep snowpack. We also find that not all stations share the same best-

performing model configuration, highlighting inconsistencies in how the model simulates SWE 

and suggesting the need for models customized to site conditions. Notably, at most stations and 

especially those classified as cold, the Precip0 alternative outperforms the base option for 

predicting accumulated SWE; and the Alb, ResisEvap, and DynVeg alternatives outperform the 

base option for predicting melt rate. We find that tuning just one parameter of the BATS snow 
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albedo model yields lower melt rate errors at most stations. These findings indicate that the 

current default NWM configuration is not optimized for all sites of the Western US.  

Further research should explore how the snow model responds to superposing changes in 

model configurations, and consider the implications of using varying configurations for different 

site conditions such as climate when running large-scale models like the National Water Model.  
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CHAPTER 3 

Improved modelling of mountain snowpacks with spatially distributed 

precipitation bias correction derived from historical reanalysis 

The text and figures from this chapter are under peer review: 

von Kaenel, M., & Margulis, S. (2024). Improved modelling of mountain snowpacks with 

spatially distributed precipitation bias correction derived from historical 

reanalysis. EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2024-3389 

3.0 Abstract 

Accurate estimates of snow water equivalent (SWE) are essential for effective water 

management in regions dependent on seasonal snowmelt. However, significant biases and high 

uncertainty in mountain precipitation data products pose significant challenges. This study 

leverages a SWE reanalysis framework and historical dataset to derive factors that can 

downscale and bias-correct mountain precipitation in a real-time modelling context. We evaluate 

through hindcast modelling how different versions of this precipitation bias correction affect 

errors in 1 April SWE estimates within a representative snow-dominated watershed in the 

Western U.S. We also evaluate how the additional assimilation of fractional snow-covered area 

(fSCA) or snow depth observations during the accumulation season impact the 1 April SWE 

estimates. Results show that spatially distributed historically informed precipitation bias 

correction significantly improves SWE estimates, reducing the normalized root mean square 

https://doi.org/10.5194/egusphere-2024-3389
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difference (NRMSD) by 58%, increasing the correlation (R) by 43%, and decreasing mean 

difference (MD) by 88%. The primary strength of this bias correction method lies in capturing 

the spatial distribution of precipitation bias rather than its interannual variability. Assimilating 

snow depth observations further reduces errors both at the watershed scale (NRMSD less by 

46%) and pixel level in most years, while accumulation season fSCA assimilation is not 

generally useful. We demonstrate the value of these methods for streamflow forecasts: bias-

corrected precipitation improves the correlation between daily simulated snowmelt and observed 

streamflow by 31-39% and reduces bias in predicted April-July runoff volumes by 46-52%. This 

study highlights how historical SWE reanalysis datasets can be leveraged and applied in a real-

time context by informing precipitation bias correction.  

3.1 Significance statement 

Accurate snow water equivalent (SWE) estimates are crucial for water management in 

snowmelt-dependent regions, but bias and uncertainty in precipitation data make this 

challenging. Here, we leverage insights from a historical SWE data product to correct these 

biases and yield more accurate SWE estimates and streamflow predictions. Incorporating snow 

depth observations further boosts accuracy. This study demonstrates an effective method to 

downscale and bias-correct global mountain precipitation. 

3.2 Introduction 

Seasonal snowpack is a natural water tower; by storing winter precipitation and releasing 

it as snowmelt, it provides an essential resource for downstream ecosystems and an estimated 

20% of the Earth’s population (Dozier, 2011). In order to make critical management decisions 
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for flood control, hydropower operations, irrigation, and other competing demands in snow-

dependent regions of the world, water managers need accurate assessments of the distribution 

and availability of water in snowpack (e.g., Hamlet et al., 2002; Koster et al., 2010; He et al., 

2016). Estimating the spatiotemporal distribution and change of snow water equivalent (SWE) 

remains a significant and important challenge for the snow hydrology community (e.g., Cho et 

al., 2022; Dozier et al., 2016; Lettenmaier et al., 2015).  

Large-scale and temporally continuous SWE (snow water equivalent) measurements are 

generally absent from the real-time observational record. In situ data from networks such as the 

Western U.S. SNOTEL (snow telemetry) network are not always representative of the 

heterogeneity of SWE distribution in topographically complex mountain landscapes (e.g., 

Herbert et al., 2024), and such networks are sparse globally. For example, although seasonal 

snowpack is crucial to local water availability in High Mountain Asia, the region has almost no 

in situ data (e.g., Liu et al., 2021). Remote sensing can provide measurements of snow properties 

like fractional snow-covered area (fSCA, e.g., Selkowitz et al., 2017), snow depth (e.g., Painter 

et al., 2016), or albedo (e.g., Bair et al., 2019) over large areas, but there is currently no reliable 

way of measuring SWE from spaceborne platforms (Lettenmaier et al., 2015). 

This implies a continued need for modelling of mountain SWE. Land surface models are 

commonly used to estimate SWE and other hydrologic variables over large spatial extents (Cho 

et al., 2022; Clark et al., 2011; Kumar et al., 2013), but these are susceptible to uncertainties 

driven by biases in forcing data or model parameterization (Cho et al., 2022). Uncertainty in 

precipitation products in mountainous terrain, and its implications for SWE and downstream 

hydrology modelling, is a widely acknowledged challenge (e.g., Schreiner-McGraw et al., 2020; 



 

 

 

 

63 

Cho et al., 2022; Pan et al., 2003; Raleigh et al., 2015; Liu and Margulis, 2019). Fang et al., 2023 

found that the uncertainty of SWE estimates from commonly used global and regional modelling 

products is primarily explained by precipitation uncertainty. Data assimilation has gained 

popularity as a way to constrain or correct uncertain model estimates of snow with observations 

of variables such as fSCA or snow depth, and has demonstrated ability as a method to quantify 

SWE over both melt and accumulation seasons (Margulis et al., 2016; Cortes et al., 2016; Liu et 

al., 2021; Fang et al., 2022). This approach is particularly valuable in regions where in situ data 

are sparse but remotely sensed observations like fSCA are available, such as High Mountain 

Asia (Liu et al., 2021) or the South American Andes (Cortes et al., 2016). However, such 

products are typically only generated retrospectively. Recent studies have shown promise in 

combining historical reanalysis snow estimates with in situ and/or remotely sensed snow 

observations using statistical methods to specifically develop near real-time SWE estimates 

(Pflug et al., 2022; Schneider and Molotch, 2016; Bair et al., 2018; Zheng et al., 2018; Yang et 

al., 2022). While these methods still heavily rely on ground SWE observations, they do 

demonstrate the value of and potential for historical reanalysis SWE datasets to inform SWE 

estimation in an operational context.  

Real-time spatially distributed SWE estimates have significant potential for application to 

water management. Climate change impacts in snow-influenced systems, such as earlier runoff 

of snowmelt and drops in snowpack volume, pose important challenges for water managers (e.g., 

Berg and Hall, 2017). Accurate and timely seasonal streamflow forecasts help inform 

management decisions that allocate resources in a way that is resilient to climate variability or 

drought (e.g., Tanaka et al., 2006). Ensemble streamflow prediction (ESP) uses hydrologic 
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models to forecast future streamflow from current snow, soil moisture, river and reservoir 

conditions (Wood et al., 2002). The skill of these model-based streamflow forecasts is primarily 

derived from initial SWE and soil moisture conditions (Koster et al., 2010). This suggests that 

accurate spatially continuous real-time SWE estimates could be used to reduce uncertainty and 

error in streamflow forecasts in snow-dominated regions.  

In this paper we leverage a SWE reanalysis framework and historical dataset to derive 

mountain precipitation bias correction estimates, and develop and test spatially continuous SWE 

estimates on 1 April. The motivating questions are: 1) To what extent can historically informed 

mountain precipitation bias correction improve model-based spatial SWE estimates? 2) How 

does the assimilation of accumulation season fSCA and snow depth measurements into this 

framework affect those estimates? 3) How are snowmelt-driven streamflow predictions affected 

under these scenarios? We validate these methods over a well-documented study domain, with 

the potential to extend to areas that have less access to in situ data.  

3.3 Methods 

3.3.1 Study domain 

The study domain comprises the Hetch Hetchy watershed, a headwater catchment for the 

Tuolumne River in the California Sierra Nevada (Fig. 3.1). Its drainage area (~1,200 km2) is 

characterized by complex topography with elevations ranging from 1,150 m to 3,850 m. It is 

representative of other snow-dominated catchments that provide key water supply in the Sierra 

Nevada. More broadly, it is a demonstrative basin that represents global mountain watersheds 

where the tested methods could provide utility for water management purposes; that is, basins 
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with complex terrain at high elevations and seasonal snowpack that plays a significant role in the 

water budget.  

 

Figure 3.1. (a) A map outlining the Hetch Hetchy and the Grand Canyon subwatersheds of the Tuolumne River. The 

locations of the TGC streamflow gauge and sample model pixel A. (b) Outline of the Hetch Hetchy watershed 

illustrating its location in the central California Sierra Nevada. 

The Hetch Hetchy reservoir at the watershed’s outlet provides water supply for about 2.7 

million residents of the San Francisco Bay Area, primarily from snowmelt. This watershed also 

includes a unique Airborne Snow Observatory (ASO) snow depth dataset (Painter et al., 2016) 

which provides multitemporal lidar-derived snow depth measurements per year. A subwatershed 

that drains through the USGS TGC (Tuolumne River at Grand Canyon) gauge located at the inlet 

of the reservoir was delineated for the streamflow analysis.   

3.3.2 Overview of SWE reanalysis framework 

A Bayesian reanalysis framework (Margulis et al., 2015) is used in this study for both the 

development of a historical reference SWE dataset, the derivation of historical precipitation bias 
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correction through retrospective analysis, and testing “real-time” applications using that 

historical data (along with other data). Note that we use a hindcasting approach to model the 

real-time applications. Details of the application of this framework in a historical context is in 

section 3.3.3 and in a real-time context in section 3.3.4; here, we provide a general overview of 

the method and its previous applications. 

Typically applied retrospectively, this reanalysis framework generates spatiotemporally 

continuous SWE estimates using a particle batch smoother (PBS) data assimilation technique 

that constrains a prior ensemble of modeled snow estimates with independent observations (most 

commonly, satellite-based fSCA measurements). The method was developed by Margulis et al. 

(2015) and has since demonstrated ability to reproduce observed SWE across global mountain 

regions: Sierra Nevada (Margulis et al., 2016), South American Andes (Cortes et al., 2016), High 

Mountain Asia (Liu et al., 2021) and the Western U.S. (Fang et al., 2022). It has also 

demonstrated success in assimilating remotely-sensed snow depth measurements for SWE 

estimation (Margulis et al., 2019).  

First, an ensemble of prior snow estimates is generated using a forward land surface 

model; here, the modelling core is the SSiB-SAST LSM (Sun and Xue, 2001; Xue et al., 2003) 

paired with the Liston Snow Depletion Curve (Liston 2004). This LSM is driven by 

meteorological forcings which each explicitly incorporate some measure of a priori bias and 

uncertainty. Note that implicit in this SWE estimation is the assumption that precipitation 

(snowfall) in mountainous regions is the largest source of error in the modelling of SWE. 

Precipitation fields from raw products like MERRA2 tend be coarse, smooth, and biased (Liu 



 

 

 

 

67 

and Margulis, 2019; Fig. 3.2a, b). This is acknowledged by the bias correction and large 

uncertainty in the postulated prior precipitation distribution, represented by: 

𝑃𝑗
−(𝑡) = 𝑏𝑗

− ∗ 𝑃𝑛𝑜𝑚(𝑡)                (1) 

where 𝑃𝑗
−(𝑡) is the prior precipitation value for ensemble j at time step t, 𝑃𝑛𝑜𝑚 is the nominal 

precipitation estimate (i.e., interpolated from MERRA2 as in Fig. 3.2a), and 𝑏𝑗
− is a scaling 

factor where the " − " superscript represents that this is a prior estimate not conditioned on 

independent observations. The ensemble of scaling factors b (Margulis et al., 2019) are 

effectively seasonal multiplicative bias correction factors for precipitation. The prior b values are 

prescribed as a lognormally distributed multiplicative factor that describes first-order bias and 

uncertainty in the nominal precipitation.  

Second, a reanalysis step incorporates independent measurements such as fSCA using a 

Bayesian PBS update. The a priori (equal) prior weights assigned to each ensemble number are 

updated to posterior weights that reflect the likelihood that the ensemble member fits the 

assimilated measurements. These posterior weights are applied to prior ensemble estimates of 

SWE to derive posterior estimates. Note that fSCA and other potential measurements used for 

assimilation are connected based on physical processes in the model to other snow variables such 

as SWE; thus, the whole suite of snow variables is updated both before and after the assimilated 

measurement time step. So, although this framework has mainly been used to derive posterior 

SWE estimates, a by-product of this is posterior estimates of all snow states/fluxes and variables 

like b described above. 
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3.3.3 Development of historical reference dataset and precipitation bias correction 

To generate the historical reference SWE dataset for this study, the SWE reanalysis 

framework was applied to the study domain in the same way as in Fang et al., 2022, but with an 

increased ensemble size and initial conditions set to default values to focus on the derivation of 

posterior b values for testing herein. Forcings were sourced from hourly MERRA2 near-surface 

meteorological forcing data, and the uncertainty models used to perturb input air temperature, 

precipitation, dew point temperature, and shortwave radiation, as well as model parameters, use 

the values derived for the Western U.S. domain by Fang et al. (2022) following the methods 

outlined in Liu and Margulis (2019).  

Measurements from Landsat-derived fSCA (raw resolution of ~30 m aggregated to 

modelling resolution) provide the data assimilated into the historical reference dataset. We apply 

screening methods consistent with Fang et al. (2022) to exclude Landsat observations with cloud 

cover fraction greater than 40% and individual cloudy pixels with an internal cloud mask. All 

remaining fSCA measurements are assimilated into the reanalysis retrospectively and as a batch 

for each water year. A measurement error standard deviation for retrieved Landsat fSCA is 

specified as 10% (Fang et al., 2022). A uniform spatial resolution of 16 arcseconds (~500 m) and 

an ensemble size of 100 members is chosen, with hourly outputs aggregated to a daily timestep 

for water years (WYs) 1985 to 2021. Initial conditions are set to default values at the start of 

each water year; for SWE, that value is 0. This assumes that the seasonal snowpack melts out 

yearly; although this may not happen every year especially at high-elevation shaded areas of the 

watershed, we argue this is an assumption worth making to avoid accumulating error and to 

make fair and consistent comparisons between simulations.  
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In addition to generating a high-resolution reference dataset of SWE estimates for a 37-

year historical period to use for validation, this application of the SWE reanalysis framework 

also yields a rich database of historical precipitation bias correction factors that are conditioned 

on assimilated fSCA measurements. These values provide insight into the historical distribution 

of precipitation bias and uncertainty. Hereafter, and unless otherwise indicated, b will refer to the 

ensemble mean of the posterior b distribution; this is used interchangeably with “bias 

correction”. This database comprises 37 years * 100 ensemble realizations = 3,700 values of b at 

each pixel. A historical distribution of b can then be derived at each pixel and for each water 

year, as demonstrated in Liu and Margulis (2019). This study leverages the insights stored in 

b towards developing real-time SWE estimates by using them to inform the precipitation bias 

correction of real-time applications (section 3.3.4.1).  

 Figure 3.2 illustrates how, for sample water year 2016, the b from the historical reference 

dataset provides valuable built-in downscaling and bias correction information. Note that the 

posterior precipitation has a much higher resolution than the raw MERRA2 input; for example, 

ridge and valley features are noticeable in Fig. 3.2c whereas the field is very coarse in Fig. 2a, 

and smooth and unresolved in the interpolated field of Fig. 3.2b. Furthermore, the raw MERRA2 

input fails to capture the expected orographic effect whereas the posterior precipitation clearly 

shows more precipitation at higher elevations in the north and along the watershed ridgelines. 

The posterior b’s, which are informed by the pixel-wise fSCA ablation time series in the 

reanalysis (assimilation) step, are the multiplicative (bias correction) factors that bring out these 

features in the posterior precipitation. They contain both a spatially distributed pattern relating to 

topography and static physiographic features (Fig. 3.2d) as well as an interannual variation (Fig. 
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3.2e, f). We observe that, for the study domain, this interannual variation is correlated with the 

prior MERRA2 precipitation level: a higher watershed-average prior precipitation correlates with 

a lower watershed-average bias correction (R = -0.6) (Fig. 3.2f).  

 

Figure 3.2. For sample WY 2016: (a) Raw MERRA2 annual precipitation at its original resolution. (b) Ensemble-

mean annual prior precipitation, which uses the raw MERRA2 precipitation interpolated to the model resolution. (c) 

Ensemble-mean annual posterior precipitation. (d) Ensemble-mean of the posterior bias correction b. (e) Watershed-

average ensemble-mean prior (red) and posterior (blue) b per the reference dataset. (f) Scatter plot showing negative 

correlation between watershed-average annual prior precipitation and watershed-average posterior b. Note that for 

(c) and (d), a non-seasonal snow mask screens out model pixels located below 1,500 m, with less than 2 cm of 

climatological SWE, and/or categorized as glacier. 

3.3.4 Design of real-time modelling and data assimilation experiments 

We use the b database from the historical reference dataset to inform and develop value-

added precipitation bias correction for the real-time experiments. The list and characteristics of 

these experiments are tabulated in Table 3.1. Section 3.3.4.1 describes the bias correction 

approach for each experiment. Sections 3.3.4.2 and 3.3.4.3 provide further details about the data 

assimilation experiments (fSCA and snow depth, respectively). Figure 3.3 provides an 
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illustrative schematic of the precipitation bias correction, data assimilation, and resulting SWE 

estimation for a sample pixel (location A in Fig. 3.1a) and water year (WY 2017). 

Table 3.1. Summary of the methods applied to the six real-time experiments. The listed bias correction represents 

the mean of the prior b distribution. The “(x)” notation refers to the bias correction being a spatially distributed field, 

where x is each pixel in the watershed.  

 Experiment name Mean bias correction 

Forward modelling 

experiments 

Uncorrected 1 

Uniform 1.8 

Historically informed 
Case A bclim(x) 

Case B bwet(x), bnormal(x), bdry(x) 

Data assimilation 

experiments 

Case B + fSCA* bwet(x), bnormal(x), bdry(x) 

Case B + SD* bwet(x), bnormal(x), bdry(x) 

* In assimilation experiments, only observations up to 1 April is included. 

 

 

Figure 3.3. For a sample wet year (WY 2017) and sample pixel A: (a) Ensemble-mean cumulative prior 

precipitation for the four forward modelling experiments. (b) Example of how fSCA assimilation is applied. The 

prior is the Case B experiment, and the posterior the Case B + fSCA experiment. Note that both the median and 

interquartile range (IQR) for the prior and posterior ensembles are plotted. The assimilation window, indicated with 

a grey rectangle, ranges from the snow onset date to 1 April. Observations that fall within the assimilation window 

and on a day when the prior ensemble is non-zero are labelled “assimilated”. (c) Example of how snow depth 

assimilation is applied. Like (b), the prior is the Case B experiment, and the posterior is the Case B + SD 

experiment. The assimilation window ranges from the start of the water year to 1 April. (e) Ensemble-mean SWE 

time series for the four forward modelling experiments, two data assimilation experiments, and the historical 

reference dataset. The outcome of these experiments is evaluated on 1 April. 
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Note here that we are applying and evaluating these experiments in hindcast mode and 

are selecting 1 April as the target representative date. As such, we are testing these methods at 

the end of the accumulation season, when real-time SWE estimates would provide the most 

value for water supply forecasts. For true real-time application in an operational context, other 

factors such as data latency and computation time should be considered.  

Each experiment is evaluated by its ability to reproduce SWE spatial fields as compared 

to the historical reference dataset on 1 April, and ASO-derived SWE on the validation day 

closest to 1 April. We select 1 April because it has traditionally been used to approximate peak 

SWE in the Sierra Nevada and is when the key April-July water supply forecasts are made (e.g., 

He et al., 2016). For both, we compute three metrics: Pearson correlation coefficient R to 

quantify how closely the reference spatial distribution is captured, normalized root mean square 

difference (normalized by the observational mean, NRMSD, %) to measure bias and random 

error, and mean difference (MD, mm) to measure the average bias.  

Note that the Uncorrected, Uniform, Case A and Case B experiments (Table 3.1) only use 

the forward-modelling component of the reanalysis framework; because there is no data 

assimilation, there is no reanalysis step and therefore no posterior estimates. Instead, validation 

of these experiments is performed on the modelling-only prior estimates. The Case B + fSCA 

and Case B + SD experiments include data assimilation and thus yield posterior estimates.  

3.3.4.1 Definition of precipitation bias correction factors 

We generate a baseline, uninformed case where the prior precipitation is uncorrected 

(Uncorrected in Table 3.1, Fig. 3.3a). The Uniform experiment adjusts prior precipitation with a 

uniform (in time and space) mean prior b that matches that used in the historical reference 
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dataset and defined in Fang et al. (2022) (Table 3.1). This represents the case for a simple 

precipitation bias correction (Fig. 3.3). Note that we maintain the nominal CV and 

minimum/maximum values from Fang et al., 2022 for the prior b ensemble for this and all 

subsequent experiments; that is, we alter only the ensemble mean. 

The more informed experiments leverage the database of historical b factors generated as 

a byproduct of the SWE reanalysis framework. They vary from the less-informed cases 

(Uncorrected, Uniform) in two key ways: the prescribed precipitation bias corrections are 

spatially distributed, and historically informed. From the historical reference, we compute a 

spatially distributed climatological b for each water year, withholding the b value from a given 

year in deriving a long-term climatology for that year. These climatological values are used as 

the mean bias correction for the Case A experiment (Table 3.1, Fig. 3.3a). Because we observe a 

relationship between precipitation level and watershed-average b in the historical reference (Fig. 

3.2f), we also derive a bias correction that is conditioned on water year type. For each water 

year, we determine a type based on the historical prior precipitation (cumulative on 1 April), 

where <30th percentile is “dry”, >70th percentile is “wet”, and in between is “normal”. We take a 

spatially distributed average of the historical b’s of all the other years classified in that water year 

type; that average becomes the mean value of bias correction for that year in the Case B experiment 

(Table 3.1, Fig. 3.3a). In Fig. 3.4, we illustrate how the historical b factors across the watershed 

for wet years tends to be less than the climatological values (with the exception of headwater 

river valley bottoms, as shown in red in Fig. 3.4d); and those for dry years tend to be greater 

(Fig. 3.4b). In Fig. 3.3a, we see how the prior precipitation in Case B differs from Case A 

because of the difference in precipitation bias correction.  
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Figure 3.4. Per the historical reference: (a) Climatological (WY 1985-2021) bias correction map. (b) The ratio 

between the dry year and climatological bias correction. (c) Same as (b) but for normal years. (d) Same, but for wet 

years.  

The last two experiments include the assimilation of either fSCA or snow depth 

measurements; these experiments are subsequently referred to as Case B + fSCA and Case B + 

SD, respectively. The data assimilation methods are described further in sections 3.3.4.2 and 

3.3.4.3. We choose to use the Case B method of correcting prior precipitation for these 

experiments because it represents the most informed and sophisticated bias correction.  

3.3.4.2 Assimilation of fSCA observations 

Previous data assimilation experiments that use fSCA to effectively improve SWE 

estimates have typically utilized measurements from both the accumulation and melt seasons 

(e.g., Girotto et al., 2014; Margulis et al., 2016; Fang et al., 2022), which are assimilated 

retrospectively in a single batch at the end of the water year. This is done with the understanding 

that it is the fSCA ablation time series combined with estimates of snowmelt that is most directly 

connected to SWE. The value of fSCA measurements during the accumulation season is 

expected to be more limited because snow coverage is often complete or near-complete (i.e., 

fSCA = 1) when snow is accumulating in snow-dominated areas. Past studies have found limited 

to no improvement from prior modeled SWE estimates when assimilating fSCA observations 

over the accumulation season, independently from one another, or at sites which experience long 
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periods of near-complete snow cover (Andreadis and Lettenmaier, 2006; De Lannoy et al., 

2010).   

Here, we test whether there is any additional benefit in SWE estimation with bias-

corrected precipitation when assimilating fSCA up to 1 April, and where in the watershed that 

benefit might be the greatest. We use the same methods described in section 3.3.3 to derive, 

screen, and assimilate fSCA observations, but only include the subset of fSCA observations that 

fall between a snow onset date and 1 April (Fig. 3.3b, more details about the assimilation 

window in Text B1). Note that not all pixels in the watershed assimilate the same number of 

fSCA observations for a given year because of differences in the snow onset date, cloud cover, 

and satellite orbital patterns. 

3.3.4.3 Assimilation of snow depth observations 

The experiment with snow depth assimilation (Case B + SD) incorporates multitemporal 

lidar-derived snow depth observations taken over the Tuolumne watershed by ASO (Painter et 

al., 2016) on and before 1 April. The observations cover the entire watershed (Fig. B3). In 

contrast to fSCA, snow depth observations are expected to provide more insight into 

accumulation season SWE because of the close relationship between snow depth and SWE. 

Margulis et al. (2019) demonstrated how the assimilation of even a single day of ASO snow 

depth observations was able to significantly improve posterior estimates of SWE later in the 

year. Here, we seek to quantify how much assimilating snow depth observations could improve 

upon SWE estimates that already incorporate a historically informed precipitation bias 

correction. We use data for three representative years: WY 2015 (dry), 2016 (near average), and 

2017 (wet). The number and dates of the ASO observations used for assimilation and validation 
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purposes are summarized in Table 3.2. Prior to assimilation, the 50 m ASO snow depth product 

was regridded to the modelling resolution. Following Margulis et al. (2019), we specify a 

measurement error standard deviation of 5 cm. Figure 3.3c illustrates snow depth assimilation for 

a sample model pixel: the observations on March 3rd and 1 April of this year fall within the prior 

ensemble, and so are assimilated and yield a higher posterior mean and narrower ensemble.  

Table 3.2. ASO acquisition DOWYs and their corresponding dates. The dates of the observations used for 

assimilation and for validation (i.e.: the day closest to 1 April) are indicated for each WY. 

  Assimilated Validation 

 

WY 

2015 140 (Feb 17), 156 (Mar 5), 176 (Mar 25) 185 (Apr 3) 

2016 178 (Mar 26), 184 (Apr 1) 190 (Apr 7) 

2017 154 (Mar 3), 183 (Apr 1) 214 (May 2) 

 

3.3.5 Connection to streamflow 

We further evaluate the real-time SWE experiments by their ability to yield snowmelt 

estimates and streamflow forecasts that match observed streamflow at the TGC (Tuolumne River 

at the Grand Canyon) USGS gauges. Note that for this comparison, the focus is on a 

subwatershed that drains through the TGC gauge (Fig. 3.1a). Continuous daily streamflow 

records are generated from observations at the USGS gauge TGC for WYs 2009-2021 (Text B2).   

We measure how well daily watershed-average snowmelt estimates correlate with daily 

observed streamflow for the key forecasting period April-July with Pearson correlation 

coefficient R. For each experiment, the SWE reanalysis framework is run forward in time from 1 

April with the known meteorological forcings of that year, yielding “perfect” hindcasts for SWE 

and snowmelt. Snowmelt is estimated as the negative daily changes in SWE, assuming 

sublimation is negligible.  
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We quantify the ability of watershed-average estimated 1 April SWE to predict April-

July (AJ) streamflow volume with a historical linear regression. For a given year, we build a 

regression from all other years (i.e., excluding the one being evaluated) using observed AJ 

streamflow as the predictand (Fig. B8). Observed AJ streamflow from WY 2019 is excluded 

because of incomplete observations (Fig. B2). We quantify the bias and mean absolute 

differences between the predicted volumes from the experiments and the reference. Because we 

are treating the historical reference dataset as the ground truth in this study, the predicted volume 

from its SWE estimates is treated as the “best case” prediction and so is the target in this 

comparison. The relationship between estimated 1 April SWE and observed streamflow is 

affected by other factors like rainfall and soil moisture conditions which make errors between the 

predicted and observed streamflow volume inevitable, and not the focus of the study. Note that 

for this analysis, the snow depth experiment is excluded because it only has 3 years of results. 

3.4 Results 

3.4.1 Value added from historically informed precipitation bias correction  

Maps of 1 April SWE estimates and their difference relative to the historical reference 

(Fig. 3.5) highlight key differences across experiments; in particular, these show how using a 

historically informed precipitation bias correction (Case A and Case B) yields 1 April SWE that 

better matches the reference. Here, the reference is the posterior SWE estimates from the 

historical reference dataset which is constrained by the full set of fSCA observations across the 

water year. Notably, we can see how Case A and Case B produce 1 April SWE distributions that 

are much better spatially-resolved than the less-informed Uncorrected and Uniform experiments: 
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individual ridges and valleys are more prominent and match the historical reference more closely 

(Fig. 3.5a). This is also notable in the maps illustrating the bias in SWE: in the Uniform 

experiment, a strong geographical pattern exists in WY 2016 and 2017, where the lower-

elevation areas of the watershed (generally, the southern half) consistently show a positive bias 

in SWE estimation, and the higher elevations show a negative bias (Fig. 3.5b). This geographical 

distinction is lessened in Case A and Case B in 2017 and 2015, and eliminated in 2016. This 

illustrates that the historically informed, spatially distributed bias correction is able to correct 

biases in input precipitation that are related to elevation and topography, whereas the uniform 

bias correction smooths over these spatial differences. We also see that Case A and Case B yield 

relatively similar results in terms of the spatial distributions and magnitudes of error.  
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Figure 3.5. (a) Maps of 1 April SWE for the historical reference, Uncorrected baseline, and three experiments for 

three representative water years: 2015 (dry), 2016 (normal), and 2017 (wet). (b) Maps of the difference in 1 April 

SWE (experiment - reference) for the same years and experiments. The NRMSD relative to the reference is 

included. Pixels where both the reference and experiment estimate 0 SWE are greyed out in addition to the mask in 

these maps. 

All modelling-only experiments (Uniform, Case A, Case B) outperform the Uncorrected 

baseline in at least two 1 April SWE metrics (Fig. 3.6e-g). The greatest reduction in error relative 

to the Uncorrected baseline occurs when a spatially distributed bias correction is used: on 
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average across all years in the record, Case A and Case B reduce NRMSD by 58% and 57%, 

improve R by 43%, and reduce bias (MD) by 88% and 85%, respectively (Fig. 3.6e-g). The 

limited difference in performance between the two cases suggests that the primary value of the 

historical database of bias correction distribution lies in its description of the (more or less static) 

spatial distribution of precipitation bias, rather than its temporal patterns or uncertainty. A more 

simple uniform bias correction is also effective at reducing error but to a lesser degree: Uniform 

reduces average NRMSD by 35% and MD by 97%, and yields an insignificant average impact 

on R (Fig. 3.6e-g). Note that the MD metric averages values across the watershed and so does 

not represent the spatial spread of error in these estimates (Fig. 3.5b). For the Uniform 

experiment in particular, a lower watershed-average MD masks high positive and negative errors 

across the watershed (Fig. 3.5b).  

 

Figure 3.6. (a) Watershed-average 1 April SWE per the historical reference dataset. Low snow (below 30th 

percentile), normal snow, and high snow (above 70th percentile) years are colored by increasing shades of grey. (b-
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d) Yearly performance metrics (NRMSD, R, MD; top to bottom) for 1 April SWE in the four modelling-only 

experiments as compared to the reference. (e-g) Performance metrics (NRMSD, R, MD; top to bottom) averaged 

across all years, low snow years, normal snow years, and high snow years.  

The performance of these experiments varies by year. For example, in WY 2015, which 

was historically dry in the Hetch Hetchy watershed, NRMSD is the highest across all 

experiments (Fig. 3.6b). Although the two spatially distributed precipitation bias corrections 

yield similar results in most cases, Case B (where the bias correction is also differentiated by 

water year type) has an 8-30% lower bias than Case A in low and normal snow years (Fig. 3.6g). 

This indicates that differentiating the bias correction by water year type further reduces bias in 

years with lower snow accumulation. In those years, the bias correction is generally higher than 

the climatological mean (Fig. 3.2b), which, when applied to prior precipitation, effectively 

increases the snowfall input and reduces the negative SWE bias. On the other hand, Case B has a 

more negative SWE bias in high snow years than Case A (Fig. 3.6g); in these high snow years, 

the bias correction is generally lower than the climatological value and so, when applied to prior 

precipitation, would reduce input snowfall. The impact of a uniform bias correction factor also 

varies slightly by water year type: Uniform improves R from the Uncorrected baseline in low 

snow years, but reduces R in normal or high snow years, indicating a poorer spatial correlation to 

the reference in years with higher snow accumulation (Fig. 3.6f). High snow years in Uniform 

are also the only years to show an average positive bias (Fig. 3.6g), suggesting the uniform bias 

correction generates higher input precipitation than the reference dataset in higher snow years. 

This is consistent with the observation in Fig. 3.2f that, historically, wetter years correlate with a 

lower watershed-average bias correction; in these years, the posterior bias correction is less than 

the uniform value.  
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Figure 3.7 illustrates the distribution of error in climatological SWE in these experiments 

across elevation bands. At low elevations (below 2600 m), the Uncorrected baseline tends to 

have the least error (lowest RMSD), but also a significant negative bias (MD) that persists across 

all elevations and indicates an underestimation of SWE (Fig. 3.7b, d). The other three 

experiments, which incorporate varying levels of precipitation bias correction, instead 

overestimate SWE at low elevations: Case A and Case B by small magnitudes (~5-10 mm) and 

Uniform by a greater magnitude (~200 mm) (Fig. 3.7d). Spatial distribution of SWE is best 

represented by Case A (with Case B a close second) at low elevations, as indicated by the highest 

R (Fig. 3.7c). At mid elevations (between 2600 m and 3000 m), the lowest error (RMSD) occurs 

in the Uniform experiment, then Case B and Case A, and then Uncorrected (Fig. 3.7b). The bias 

in Case A and Case B is consistently negative at mid elevations, with Case A having the slightly 

lower magnitudes (Fig. 3.7d). The bias in the Uniform experiment switches from positive to 

negative at around 2760 m (Fig. 3.7d); this trend demonstrates cancellation effects happening in 

the watershed-averaged bias, where the watershed-average value in Fig. 3.6 may be low despite 

both high positive and negative biases at different elevations. Error across all three performance 

metrics increases more steadily and more steeply with increasing elevation in the Uncorrected 

baseline than the Case A or Case B experiments (Fig. 3.7b-d). This implies that the spatially 

distributed precipitation bias correction applied to the latter two is effective at reducing error 

across the watershed, especially at higher elevations where most of the SWE is located. At high 

elevations (above 3000 m), the lowest error (RMSD) and bias (MD) occurs in Case A, with Case 

B as a close second and Uncorrected as significantly worse (Fig. 3.7b, d). The spatial distribution 

of SWE (R) is best portrayed by Case B, with Case A close behind (Fig. 3.7c). Notably, the 
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elevation band (3100-3200 m) with the lowest R across all experiments is also the one with the 

highest climatological April 1 SWE (Fig. 3.7a, c). This suggests that this elevation band could 

benefit from ablation season and post-ablation fSCA assimilation, which is included in the 

historical reference. All experiments underestimate SWE at high elevations (Fig. 3.7d), 

indicating that the spatially distributed precipitation bias corrections are not enough to fully 

compensate for the negative bias in SWE estimation at high elevations, although it does reduce 

that bias. 

 

Figure 3.7. (a) Long-term (WYs 1985-2021) average 1 April SWE in each of 10 elevation bands of the watershed. 

Elevation band bounds were determined by distributing an even number of model pixels into each band. (b-d) Long-

term average RMSD, R, and MD (left to right) for each elevation band for the Uncorrected baseline and three 

modelling-only experiments.  

Overall, including a spatially distributed precipitation bias correction significantly 

improves SWE spatial estimates across all elevation bands, as indicated by consistently higher R 

values in Case A and Case B than both the Uncorrected and Uniform experiments (Fig. 3.7c). 

This bias correction also yields error that is more uniform across elevation bands; crucially, it 

reduces error more significantly at higher elevations where more SWE accumulates (Fig. 3.7b, 
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d). It is worth noting that, to the extent that reanalysis precipitation products such as the 

MERRA2 input used in these experiments get informed by existing in situ precipitation gages, 

those data are generally at lower elevations. This emphasizes the need to get accurate spatially 

distributed bias corrections that adjust uncertain precipitation inputs at higher elevations where 

most SWE accumulates.  

3.4.2 Additional value through data assimilation 

3.4.2.1 fSCA assimilation 

The value of assimilating fSCA to estimate SWE lies primarily in its ability to track the 

loss of snow cover during the melt season, so the expectation for additional insight from 

assimilating fSCA observations only before 1 April (as was done in the Case B + fSCA 

experiment) is small. This is confirmed by the results: when looking at the overall impact of 

fSCA assimilation on 1 April SWE estimates, the watershed-scale NRSMD is reduced from the 

prior in only 2 of 37 years (Fig. 3.7). A further 7 years show a posterior NRMSD within only 

10% of the prior, indicating limited difference. In the remaining years (the majority), fSCA 

assimilation brings the posterior estimates further from the historical reference and increases the 

NRMSD (Fig. 3.7). Note that here, the experiment uses the spatially distributed precipitation bias 

correction from Case B. This implies that accumulation season fSCA observations, which 

comprise most of the observations before 1 April, are more noisy than helpful in data 

assimilation. In fact, assimilating these observations is detrimental to overall SWE accuracy in 

most years (Fig. 3.7). Overall, this method is not a useful approach to improving real-time 1 

April SWE, especially when the precipitation input is already bias-corrected as is the case here.   
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Figure 3.8. The height of the bar indicates the percent of pixels that show a reduction in error (absolute difference) 

relative to the reference when fSCA assimilation is applied for that WY (left axis). The solid line indicates the 

differences in watershed-scale NRMSD relative to the reference between the prior and posterior estimates (i.e., 

NRSMDpost - NRMSDprior) (right axis). The plot points below 0 are highlighted with an extra circle; in these 

years, the posterior estimate yields a lower NRMSD than the prior. The grey dashed line indicates the point at which 

50% of the watershed shows a reduction in bias (left axis); the black dashed line indicates where the posterior 

NRMSD is less than the prior (right axis). Note that in 1991, no fSCA observations were assimilated so there was no 

change from the prior to the posterior SWE estimates. 

We find that the timing of fSCA observations in the water year is significant to 

determining whether their assimilation reduces error in SWE estimates. For example, in WY 

1988, only 1-2 fSCA observations were assimilated into the fSCA experiment, but all of these 

occurred after pixel-wise peak SWE and before 1 April (Fig. B4a). In that year, 70% of pixels 

showed a reduction in posterior error relative to the reference, and the watershed-scale NRMSD 

was reduced 5% (Fig. 3.7). In WY 2012, pixel-wise peak SWE averaged after 1 April for the 

watershed, but the NRMSD was still reduced (by 21%) with fSCA assimilation because enough 

fSCA observations (6-10) were assimilated at low-elevation pixels (Fig. 3.4b). Note that in cases 

with fewer fSCA observations during the accumulation season, there is often degradation in the 

posterior SWE estimate.  

Individual pixels in the watershed can show improvement with fSCA assimilation even 

when the total error is increased. The absolute bias relative to the reference is reduced at over 



 

 

 

 

86 

50% of the pixels in the watershed with fSCA assimilation in 7 years (Fig. 3.7). The pixels where 

fSCA assimilation reduces error tend to have an earlier peak SWE, lower elevation, and higher 

number of fSCA observations assimilated (Fig. B5). In most years, there is a statistically 

significant difference in all these metrics between the pixels with an improvement and those 

without an improvement. This is consistent with the finding in Andreadis and Lettenmaier (2006) 

that improvements in SWE estimation from fSCA assimilation are more evident at lower 

elevations and during snowmelt.  

3.4.2.2 Snow depth assimilation 

In addition to mostly reducing watershed-scale average error (as expected), snow depth 

assimilation brings more spatial heterogeneity to SWE estimates and reduces pixel-wise bias. 

Note that here, the reference is SWE from the ASO observations succeeding the last one that was 

assimilated; that is, day of water year (DOWY) 185 in WY 2015, 190 in 2016, and 214 in 2017. 

In the maps of Fig. 3.9, we observe that in WY 2016 and 2017, the posterior estimates show a 

wider range in SWE than the prior, with higher SWE estimates at higher elevation pixels. Note 

that this prior-posterior pair uses the historically informed spatially distributed bias correction 

from Case B. In WY 2015, we observe how most of the watershed has already lost its snow 

cover by the day of comparison according to the posterior estimates (Fig. 3.9a), which 

contributes to the poor performance of snow depth assimilation in this year. 
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Figure 3.9. (a-c) Maps of prior SWE for the Case B + SD experiment on the validation day in three water years. (d-

f) Maps of posterior SWE for the Case B + SD experiment. (g-i) Maps of the difference between prior SWE and 

ASO-derived SWE. (j-l) Maps of the difference between the posterior SWE and ASO-derived SWE. Values of 

NRMSD relative to the reference are listed. Pixels where both the experiment and the reference have 0 SWE are 

greyed out in addition to the mask. 

In both WY 2016 and 2017, we observe a decrease in pixel-wise error with snow depth 

assimilation. In 2016, most of the watershed demonstrates an underestimation of reference 
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(ASO) SWE in the prior; this is lessened in the posterior, with some valleys showing slight 

overestimation (Fig. 3.9k, l). In 2017, the prior shows an underestimation of ASO SWE in the 

northern high-elevation region of the watershed and an overestimation in the southeastern 

headwaters and low river valley area, some of where ASO observes no snow by this time. In the 

posterior, the magnitude of pixel-wise error is universally decreased, more of the watershed 

underestimates ASO SWE, and the lack of snow in the low river valley areas is more correctly 

captured (Fig. 3.9h, i). In 2015, most of the watershed except for higher elevation ridge areas in 

the north shows an overestimation of prior SWE, including areas where ASO observes no snow 

cover (Fig. 3.9j). The posterior SWE map shows an almost universal underestimation of 

observed ASO SWE in this year, except for the areas where the estimates correctly predict no 

snow cover (Fig. 3.9g). This is consistent with the higher watershed-scale errors observed in the 

estimations with snow depth assimilation on the validation day in 2015 from Fig. 3.10. 

In both WYs 2016 and 2017, the Case B + SD experiment shows the lowest NRMSD 

(81% less than the Uncorrected baseline) and the highest R (Fig. 3.10a, b). This also holds true 

for bias (MD) in WY 2016 (Fig. 3.10c). In all three years, Case B + SD shows a negative bias, 

indicating that SWE estimates are consistently underestimated (Fig. 3.10c). Assimilating snow 

depth observations reduces the prior NRMSD by 43-46% and increases the R by 6-12% in WYs 

2016 and 2017 (Fig. 3.10a). Note that for the Case B + SD experiment, Case B represents its 

prior (i.e., before assimilation). Fig. 3.10b demonstrates how, for a sample model pixel, the two 

ASO snow depth observations assimilated in 2016 can bring the prior estimate up to a posterior 

that better fits the observations both before and after 1 April.  
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Figure 3.10. Summary of performance metrics: (a) NRMSD, (b) R, (c) MD, relative to ASO-derived SWE on the 

validation day for WY 2015, 2016, and 2017. Because of the similarities between Case A and Case B, only Case B 

metrics are included here. 

In WY 2015, the outcome of the Case B + SD experiment is different on its validation 

day. On the days when ASO data is assimilated, the posterior SWE estimates successfully (and 

as expected) reduce error metrics from the prior (Fig. B6) but by the validation day on DOWY 

185, 42% of the basin (mostly higher-elevation higher-snow areas, Fig. B7) has a worse bias in 

posterior SWE than in the prior. Although overall error is still reduced from the Uncorrected 

baseline on this day, NRMSD and MD are greater, and R is less, in the posterior than in the prior 

(Fig. 3.10). We hypothesize that anomalies in precipitation input that occur after assimilation 

explains the poor performance of snow depth assimilation on this day (Fig. 3.11a). Of the pixels 

in the watershed that exhibit higher error in the posterior than the prior estimates, 96% 

experienced an increase in observed snow depth from DOWY 176 (the last day when 

observations are assimilated) and DOWY 185 (the validation day) (for example, Fig. 3.11a). 

Note that, in most cases, this increase in observed snow depth corresponds to a decrease in 



 

 

 

 

90 

observed SWE (Fig. 3.11b); this implies a decrease in ASO-derived snow density, which is 

consistent with a fresh snowfall event. The precipitation forcing around those days does not 

reflect a snowfall event. This inconsistency between precipitation forcing and observations, and 

the fact that it happened after the last assimilated observations and that WY 2015 was an 

exceptionally dry year, explains the negative bias at those pixels and in the watershed by the 

validation day in 2015. 

 

Figure 3.11. Sample time series illustrating snow depth assimilation at a sample model pixel in (a) WY 2015 and (b) 

WY 2016. The prior ensemble is in purple; the posterior in red. Note that both the median and interquartile range 

(IQR) for the prior and posterior ensembles are plotted. The assimilation window is indicated with a grey 

background rectangle. The bottom two plots illustrate prior and posterior ensemble mean and IQR for SWE 

estimates in (c) WY 2015 and (d) WY 2016. 

3.4.3 Value for streamflow forecasting 

A key purpose of 1 April SWE estimates is to support streamflow forecasts for spring and 

summer water supply. We argue that snowmelt is a reasonable proxy for streamflow in this case 

because Hetch Hetchy is a snow-dominated watershed. We observe that all experiments using 

bias-corrected precipitation are effective at yielding post-1 April snowmelt estimates that 

correlate better to observed streamflow than the Uncorrected baseline. Fig. 12a-f illustrates both 

the cumulative and daily time series of simulated snowmelt and observed streamflow for April-
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July in WYs 2015-2017. We observe that the cumulative simulated snowmelt often exceeds the 

cumulative streamflow (Fig. 3.12a-c); this is expected because some snowmelt will infiltrate into 

the soil column or evaporate before reaching the river. Regardless, the Uncorrected baseline 

consistently yields the least amount of cumulative snowmelt (Fig. 3.12a-c). In WY 2015, we see 

that the experiment with snow depth assimilation also yields cumulative snowmelt that is less 

than cumulative streamflow (Fig. 3.12a); this is consistent with the high error and significant 

underestimation of SWE in that year noted in Fig. 3.9 and Fig. 3.10. We observe that the daily 

simulated snowmelt reasonably captures peaks in observed streamflow: for example, the peak at 

the end of June 2017 which presumably is driven by a large snowmelt event (Fig. 3.12f). 

 

Figure 3.12. (a-c). Cumulative daily snowmelt for the Uncorrected baseline and four experiments, and observed 

streamflow for April-July in WYs 2015, 2016, 2017. Note that because Case A and Case B had similar results, only 

Case B is included here. (d-f). Same as (a-c) but showing daily values. (g) Correlation R (lag-1) between daily 

estimated snowmelt and observed streamflow for WYs 2009-2021. (h) Average correlation for all years, low snow 



 

 

 

 

92 

years, normal years, and high snow years. Note that these averages exclude the Case B + SD experiment because it 

only includes 3 years of estimates. 

How well the simulated daily snowmelt corresponds to observed streamflow is quantified 

with a correlation coefficient (R). We test different lag times between snowmelt and streamflow 

and find the highest correlations with 1 day lag. We find that these correlations are significant 

and higher than that for the Uncorrected baseline in every year for every bias-corrected 

experiment (except for Case B + SD in 2015); on average, by 31-39% (Fig. 3.12g, h). In WY 

2016, the highest correlation occurs in the experiment with snow depth assimilation (Fig. 3.12g). 

Excluding this experiment because it only yields results for a subset of WYs, the highest average 

annual correlation coefficient (0.74) is shared amongst Case B and Uniform. It is worth noting 

that Uniform has cancellation of errors at the watershed scale; that is, high and low within-

watershed biases in 1 April SWE are averaged out (as demonstrated in Fig. 3.5b). Here, by 

aggregating snowmelt to watershed-average values, we are likely similarly averaging out within-

watershed biases. The experiment with accumulation season fSCA assimilation consistently has 

lower correlations than those without in all water year types (Fig. 3.12h). This is consistent with 

the result that the Case B + fSCA experiment often yields higher errors in 1 April SWE (Fig. 

3.7). In low snow and normal years, the highest correlation occurs with Case B snowmelt; in 

high snow and normal years, the highest correlation is with Uniform (Fig. 3.12h). 

Figure 3.13 summarizes results from a linear regression model which predicts April-July 

(AJ) streamflow volume from watershed-average 1 April estimated SWE. The experiment with 

snow depth assimilation is excluded because it only has 3 years of results. The multi-year 

average adjusted R2 for these regression models, developed and applied separately for each 

experiment-year, range between 0.94 and 0.96 (Fig. B8); these high values emphasize the strong 
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relationship between 1 April SWE and AJ streamflow. In Fig. 3.13, we compare the predicted 

streamflow volume from the experiments to the predicted streamflow volume from the historical 

reference. The predicted AJ streamflow from reference 1 April SWE estimates is considered the 

“best case” prediction and so is the target in this comparison.   

 

Figure 3.13. (a) Difference (%) computed between the predicted April-July streamflow volume of the experiments 

and the historical reference. (b) Average biases for all years, low snow years, normal years, and high snow years. 

(c). Mean absolute differences (MAD). 

The yearly differences between the experiment and reference AJ streamflow volume 

range between -30% and 70% (Fig. 3.13a). The highest differences happen in 2015; this is a 

historically dry year which also exhibited high errors in 1 April SWE estimates (Fig. 3.6). 

Because these yearly differences might cancel each other out in a multi-year average, we also 

look at the mean absolute differences (MAD) across water year types to gauge the magnitude of 

error (Fig. 3.13c). Generally, the bias and MAD in low snow years is the largest and positive, 

signifying an overestimation of the reference AJ streamflow volume. The MAD in normal and 

high snow years are similar in magnitude, but the bias is opposite in direction (positive in high 

snow and negative in normal) and less in normal years. Overall, the average bias and MAD is 

reduced from the Uncorrected by the bias-corrected experiments across all water year types 
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(except for Case B + fSCA in high snow years MAD) (Fig. 3.13a). The greatest improvement in 

streamflow prediction from the Uncorrected occurs with the Case B 1 April SWE estimates, 

which reduces average bias by 52% and MAD by 26%. The Uniform experiment is a close 

second (46% and 25% less average bias and MAD). This is consistent with the error reductions 

in 1 April SWE observed when using bias-corrected precipitation (Fig. 3.6). It is worth noting 

that averaging over the watershed, as is done to obtain the 1 April SWE predictor for AJ 

streamflow could mask spatially distributed error (which is high in the Uniform experiment, Fig. 

3.5b). A spatially distributed land surface model provides the opportunity to evaluate how 

improvements in the spatial distribution of SWE, as is observed to happen with spatially 

distributed historically informed precipitation bias corrections (Fig. 3.6, Fig. 3.7), affects runoff 

modelling and streamflow forecasts.      

3.5 Conclusions 

Results demonstrate that spatially distributed historically informed precipitation bias 

correction significantly enhances SWE estimates. With respect to 1 April SWE fields, it reduces 

error (NRMSD) by 57-58%, increases spatial correlation (R) by 43%, and decreases bias (MD) 

by 85-88%. A simpler, spatially uniform bias correction (as used as a first guess prior in the 

original reanalysis methodology) also reduces error relative to uncorrected precipitation but to a 

lesser degree. We find that the spatially distributed historically informed bias correction yields 

SWE error that is not only lower but more homogeneous across elevation bands than the uniform 

bias correction; crucially, it reduces error more significantly at higher elevations where SWE 

accumulation is greater. It also significantly improves SWE spatial estimates as indicated by 
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higher R values across all elevation bands. As illustrated by the limited differences in error 

reduction between the Case A (climatological) and Case B (climatological by water year type) 

applications, the strength of this approach lies more in its ability to capture the first-order spatial 

distribution of bias rather than its second-order interannual variability.  

Results demonstrate that the assimilation of accumulation season snow depth further 

improves SWE, whereas fSCA assimilation generally does not. fSCA assimilation prior to 1 

April more often degrades than improves posterior SWE estimates, due to the weak relationship 

between fSCA and SWE outside of the ablation season. In contrast, snow depth assimilation 

before 1 April leads to a 45% reduction of NRSMD in SWE and a 6% increase in R (excluding 

the special case of water year 2015). In WY 2015, the precipitation forcing does not capture an 

observed snowfall event after the last-assimilated snow depth observation; neither the seasonally 

applied precipitation bias correction nor the assimilation is able to rectify this error. We suggest 

that assimilation of more observations after single-day anomalies like these could help. This 

underscores how the assimilation of reliable remote-sensing observations can mitigate forcing 

anomalies in addition to reducing overall bias and uncertainty. Although remotely-sensed snow 

depth observations such as those taken by ASO are not readily available everywhere, they are 

proven to be a good source for improvement in SWE estimation on top of bias correction 

methods. 

The improved SWE estimates provide value for snowmelt-driven streamflow predictions, 

especially in high snow years. We find that using bias-corrected precipitation reduces average 

bias in predicted April-July runoff by 46-52% and improves average correlation between daily 

snowmelt and observed streamflow by 31-39%. 
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 Future work should explore how these methods perform in other global mountain 

regions. A useful spatially distributed precipitation bias correction in mountain environments can 

be developed everywhere that historical SWE reanalysis datasets have accurately improved (or 

are expected to improve) SWE estimates. The power of such an approach lies in the ability to 

simultaneously downscale and bias-correct globally-available (coarse) precipitation products 

(e.g. MERRA2 in this work) for use in estimating mountain SWE. Other avenues of 

investigation could explore more sophisticated methods such as machine learning for bias 

correction estimation; the assimilation of other sources of real-time snow observations; and the 

impact of real-time SWE spatial estimates on streamflow forecasts through spatially distributed 

hydrologic modelling. 
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CHAPTER 4 

Impact of climate warming and snowpack declines on California Sierra 

Nevada reservoir storage and water deliveries 

4.0 Abstract 

Climate warming is already and will continue to influence snow-derived water supply 

due to snowpack declines and earlier snowmelt. Here, we quantify and explain the impact of 

projected hydrometeorological shifts on reservoir storage and water deliveries for 13 major 

California Sierra Nevada reservoirs using hydrology projections from seven downscaled GCMs 

and a reservoir operations model. We find that by the end of the 21st century and under current 

operating rules, domain-wide average summer water deliveries are projected to decline by 19% 

and end of year reservoir storage by 18%, despite a 3% increase in annual inflow. This occurs 

due to shifts in seasonal inflow patterns driven by earlier snowmelt (11 days), decreased 

snowpack (-44%), and increased winter rainfall. The severity of these changes varies 

geographically from north to south, with reservoirs in the Sacramento region experiencing more 

pronounced snowpack, timing, and reservoir storage shifts, while Tulare reservoirs see greater 

increases in winter precipitation and inflow. The extent to which projected snowpack declines 

impact water availability is attenuated by reservoir storage and rainfall, varying based on 

characteristics of the reservoir, its operations, and its upstream catchment. However, current 

reservoir operating rules, specifically around seasonal flood pool constraints, are not optimal for 

maintaining water supply under the future climate. 
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4.1 Significance statement 

This study highlights the significant impact of climate warming on California's water 

supply, particularly through the loss of snowpack and earlier snowmelt, and the role of reservoirs 

in moderating that impact. By the end of the century, decreases in snowpack, earlier snowmelt 

and inflow centroid, and increased winter rainfall are expected to lead to declines in summer 

water deliveries and end of year reservoir storage across 13 major reservoirs in the California 

Sierra Nevada. The severity of these shifts varies along a north-south gradient. The extent to 

which reservoir storage and rainfall help mitigate the effects of snowpack declines depends on 

geography, climate, and reservoir operating rules. The findings emphasize the need to reassess 

current reservoir management practices, as existing operating rules are not well-suited to capture 

earlier inflow under future climate conditions. 

4.2 Introduction 

Climate warming has already impacted the California Sierra Nevada region by causing 

reduced snowpack accumulation and earlier snowmelt and streamflow timing (Cayan et al., 

2001; Stewart et al., 2005; Mote et al., 2018; Huang et al., 2018). As temperatures go up – 

projected by 6-9 °F in the Sierra Nevada by the end of the 21st century (Dettinger et al., 2018) – 

more precipitation will fall as rain rather than snow (Klos et al., 2014). As a result, the volume of 

Sierra Nevada snowpack is expected to decline significantly by the end of the century (e.g., 

Siirila-Woodburn et al. 2021), ranging from 64% less than the historical under a business-as-

usual scenario to 30% less under a mitigation scenario (Sun et al., 2018). Associated changes in 

snowmelt timing and amount mean that water will flow out of mountain watersheds earlier in the 
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year (Rauscher et al., 2008; Rhoades et al., 2018). By the end of the 21st century, the runoff 

midpoint in the Sierra Nevada is expected to be an average of 30 days earlier than it is now under 

a mitigation scenario, and up to 80 days earlier in some locations under a business-as-usual 

scenario (Schwartz et al., 2017). Average future annual precipitation in California is uncertain 

and projected to vary -5%-10% over the Sierra Nevada (Dettinger et al., 2018), it is widely 

projected that the state will experience more frequent and more extreme storm events (Dettinger 

et al., 2018; Swain et al., 2018). The impact of climate change in the Sierra Nevada is expected 

to be heterogeneous across watersheds, with northern watersheds most susceptible to decreased 

mean annual flow, southern watersheds most susceptible to runoff timing changes, and central 

watersheds most affected by longer periods with low flow conditions (Null et al., 2010).  

Changes in hydrometeorology in the Sierra Nevada are important for water management 

across the state, as the mountain snowpack typically provides up to a third of California’s total 

water supply according to the California Department of Water Resources. This includes crucial 

water supply for agriculture in the California Central Valley and millions of downstream users. 

High elevation hydropower plants, many of which are fed by snowmelt, generate over 70% of 

the state’s hydroelectric power and are also susceptible to climate change-induced shifts in 

streamflow (Madani et al., 2014). Impacts of projected climate warming on snow-derived water 

resources from the Sierra Nevada include lower reservoir storage, decreased water supply 

deliveries and reliability, increased flood risk, and reduced hydropower generation (VanRheenen 

et al., 2004; Vicuna et al., 2007; Purkey et al., 2008; Willis et al., 2011; Rheinheimer et al., 2012; 

Madani et al., 2014; Knowles et al., 2018; Ray et al., 2020; Gupta et al., 2024).  
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The impacts of climate change in the Sierra Nevada for downstream water users is 

moderated by reservoirs and water management infrastructure. Reservoirs in the California 

Sierra Nevada serve multiple objectives including flood protection, water supply, hydropower 

generation, recreation, and environmental flows. These objectives can conflict at times, requiring 

important decision-making by reservoir operators. For example, operators in the California 

Sierra Nevada maintain an unused flood pool in the reservoir that can accommodate high inflows 

to reduce downstream flood risk; releasing water to keep this flood pool empty in the wet months 

sometimes occurs at the expense of water supply storage. These flood pools are based on fixed 

seasonal rule curves designed by the U.S. Army Corps of Engineers and informed by historical 

streamflow trends (USACE, 2017a). When reservoirs fill earlier due to early snowmelt and 

winter rainfall, they run the risk of both summer water shortages and flooding during the winter 

(Christensen et al., 2004; Cohen et al., 2020). As such, climate change will amplify the challenge 

for reservoirs to balance flood protection with maintaining water supply. Reservoirs and river 

basins historically reliant on snowmelt for water supply may require additional storage and/or 

adaptation in reservoir operating policies to mitigate these vulnerabilities (Tanaka et al., 2006; 

Medellín-Azuara et al., 2008; Georgakakos et al., 2011; Cohen et al., 2020; Taylor et al., 2024). 

However, no study has comprehensively assessed the role of reservoirs in moderating the effect 

of snowpack declines across California's Sierra Nevada on downstream water availability.  

This study fills that research gap by quantifying, comparing, and explaining projected 

changes in reservoir storage and water deliveries across the entire North-South gradient of the 

California Sierra Nevada with the latest future climate modeling. We leverage hydrology model 

output produced for the California Energy Commission's Fifth Climate Change Assessment to 
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characterize future conditions. The hydrology model uses as input downscaled global climate 

model (GCM) meteorology from the Coupled Model Intercomparison Project Phase 6 (CMIP6) 

(Eyring et al., 2016). As such, this study uses the latest and most comprehensive future climate 

and hydrology modeling. We use the CMIP6-driven hydrology model output as input to a 

reservoir operations model, which allows us to evaluate: a) how will climate change affect 

seasonal storage and releases from the major reservoirs in the California Sierra Nevada?, b) how 

will snowpack volume and timing impact those changes?, and c) how will these changes differ 

across reservoirs? 

4.3 Methods 

4.3.1 Study area 

We include 13 reservoirs in watersheds on the western-draining rivers of the Sierra 

Nevada, which combine to form the Sacramento, San Joaquin, and Tulare river basins (Table 

4.1, Fig. 4.1). These watersheds all are strongly affected by seasonal snowpack that contribute 

significantly to streamflow. The southern watersheds are mainly high mountains with peak 

elevations above 4000 m and snowmelt dominated runoff, whereas the watersheds in the north 

mostly are lower elevation (peak elevations less than 3000 m) and have mixed seasonal runoff 

patterns driven by a combination of winter rainfall and winter and spring snowmelt. From north 

to south, these watersheds and their largest reservoirs and key characteristics are listed in Table 

4.1. We use available historical daily records of observed storage, outflow, inflow, evaporation, 

and top of conservation for these reservoirs from the California Data Exchange Center (CDEC) 
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for WYs 1985-2023 to inform, calibrate, and validate the reservoir operations model (4.3.3). We 

perform QA/QC checks on these data to remove obvious outliers. 

 

Figure 4.1. (a) Map of 13 reservoirs and their contributing watersheds. From top to bottom, the delineated HUC4 

hydrologic regions are the Sacramento, San Joaquin, and Tulare. The three-letter labels refer to the reservoir ID, 

which is defined in Table 4.1. (b) Comparison of the historical trends in the primary uses of the reservoirs: flood 

control, storage, and water supply (all expressed as % of total reservoir capacity). Maximum flood pool is defined as 

the difference between reservoir capacity and the minimum top of conservation (TOC) generated for the reservoir 

operations model. Summer water supply is defined as the difference between median historical observed reservoir 

storage on June 1st and September 30th. Carryover storage is the median historical observed reservoir storage on 

September 30th. Horizontal and vertical lines indicate the averages. 

These reservoirs are managed by state, local, or federal agencies for multiple purposes 

including irrigation and water supply, hydropower, recreation, and flood control (Table 4.1). We 

quantify and compare the reservoir storage dedicated to flood control, summer water supply, and 

carryover (end of year) uses from the historical observed record in Fig. 4.1b. The maximum 
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(winter) flood pools range from 16% to 94% of the total reservoir capacity (Table 4.1, Fig. 4.1b); 

this indicates how much of the reservoir is used for flood control purposes. The reservoirs in the 

Tulare region have the largest flood pools. The observed changes in reservoir storage over the 

summer months (June to September) range from 7% to 69% of total reservoir capacity (Fig. 

4.1b); this indicates how much of the reservoir is used for summer water supply. In general, 

reservoirs in the Sacramento and Tulare regions have higher summer water supply storage than 

reservoirs in the San Joaquin region. Reservoirs in the San Joaquin region have below-average 

flood pools and below-average summer water supply, and so are used more for long-term 

storage. Carryover storages range from 6 to 64% of total reservoir capacity; this indicates how 

much water reservoirs typically store from one year to the next. The reservoirs in the Tulare 

region have much less carryover storage, suggesting higher inter-annual variability in reservoir 

storage. 
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Table 4.1. List of reservoirs and their key characteristics. Information is taken from CDEC unless otherwise noted. 

TAF = thousand acre feet; k ac = thousand acres.  

ID Reservoir Watershed Region 
Capacity 

(TAF) 

Drainage 

area (k ac) 
Use* Agency** 

SHA Shasta Sacramento Sacramento 4552 4270 
MULTI, IRR, REC, 

POW 
USBR 

ORO Oroville Feather Sacramento 3424.75 2310 
MULTI, IRR, MUN, 

POW 
CADWR 

BUL New Bullards Bar Yuba Sacramento 969.6 308 
DOM, IRR, REC, 

MUN, POW 
YCWA 

FOL Folsom American Sacramento 977 1210 
MULTI, IRR, REC, 

POW 
USBR 

CMN Camanche Mokelumne San Joaquin 417.12 396 STO, MUN, FC EMBUD 

NML New Melones Stanislaus San Joaquin 2400 576 
IRR, MUN, POW, 

REC 
USBR 

DNP Don Pedro Tuolumne San Joaquin 2030 987 
STO, FC, DIV, DOM, 

IRR 
TID 

EXC 
McClure 

(Exchequer) 
Merced San Joaquin 1024.6 666 

STO, FC, IRR, REC, 

POW 
MID 

MIL Millerton (Friant) San Joaquin San Joaquin 520.5 1070 STO, FC, IRR, REC USBR 

PNF Pine Flat Kings Tulare 1000 989 MULTI, IRR, REC USACE 

TRM Terminus (Kaweah) Kaweah Tulare 185.6 359 MULTI, IRR, REC USACE 

SCC Success Tule Tulare 82.3 252 FC USACE 

ISB Isabella Kern Tulare 568 1330 MULTI, IRR, REC USACE 

* Use descriptions as defined on CDEC: MULTI = multi-purpose; IRR = irrigation; REC = recreation; POW = 

power generation; MUN = municipal; STO = storage; DIV = diversion; DOM = domestic; FC = flood control 

** Agencies: USBR = U.S. Bureau of Reclamation; DWR = California Department of Water Resources; YCWA = 

Yuba County Water Agency; EBMUD = East Bay Municipal Utility District; TID = Tuolumne Irrigation District; 

MID = Merced Irrigation District; USACE = U.S. Army Corps of Engineers.  

 

4.3.2 Climate and hydrology projections 

The flow chart in Figure 4.2 outlines the key models, inputs, and outputs used in this 

study. We use hydrology simulations that were produced as part of the California Energy 

Commission Group 1 Data Production for the Fifth Climate Change Assessment and include 

meteorology from statistically-downscaled (Localized Constructed Analog version 2 - LOCA) 



 

 

 

 

111 

GCMs. LOCA is a statistical method that downscales coarse scale GCM projections to finer 

scale regional projections (Pierce et al., 2014). It uses observationally-based training data for bias 

correction and to generate a pattern library. In LOCA version 2, an updated hybrid approach 

couples the statistical downscaling of LOCA with a pattern library obtained from dynamically-

downscaled GCM-Weather Research Forecasting (WRF) runs (Pierce et al., 2023). We select a 

subset of seven GCMs that best match California climate as determined by high rankings in local 

climate and process-based metrics per Krantz et al. (2021) (see Text S1 for more). These are: 

ACCESS-CM2, CNRM-ESM2-1, EC-EARTH3-Veg, FGOALS-g3, MIROC6, MPI-ESM1-2-

HR, and MIR-ESM2-0. Here, we treat these GCMs as equally likely realizations of future 

climate. 

 
Figure 4.2. Flow chart representation of the methods to generate GCM-driven projections of reservoir outflow and 

storage, with key variables highlighted in boxes.  

A single ensemble member of the downscaled and bias-corrected GCMs are run through 

historically-calibrated land surface models to generate hydrology projections on a ~ 3 km grid 

(Bass et al, 2023a). Although both VIC (Variable Infiltration Capacity, Liang et al., 1994) and 

Noah-MP (Niu et al., 2011) hydrologic simulations were produced by Su et al. (2024) and Bass 

et al. (2023), respectively, we chose to use the VIC model results here because of the superior 

performance during validation with observed streamflow over Sierra Nevada watersheds (Su et 

al., 2024). We compare model results from the historical time period (water years [WYs] 1951-
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2014) and under the future climate scenario SSP370, which is a mid-range to high emissions 

scenario with a radiative forcing of 7.0 W/m2 by 2100 (O’Neill et al., 2016). We partition the 

future time horizon into three 25-year periods following Siirila-Woodburn et al. (2021): near 

future (2026-2050), mid century (2051-2075), and end of century (2076-2100).  

To run the reservoir operations model (section 4.3.3) with future and historical climate 

conditions, we compute daily reservoir inflow from VIC modeled runoff. The inflow volume, 

which represents the unimpaired natural runoff from upstream hydrologic processes, is the 

product of the daily watershed-average modeled runoff rate and the drainage area (Table 4.1). 

We do not apply streamflow routing because the short lag times in these watersheds do not 

impact results at the monthly or seasonal scale. We also extract temperature at the grid cell 

closest to each reservoir location from VIC meteorology inputs (downscaled GCMs) for input to 

the evaporation model (section 4.3.3.2). Hereafter, historical conditions are described by model 

results from the GCMs over the historical time period, except for the calibration and validation 

of the reservoir operations model which uses observed records. 

4.3.3 Reservoir operations model 

We develop a reservoir operations model to simulate reservoir storage and outflow on a 

daily time step in the 13 reservoirs in this study under both historical and future climate 

conditions. We implement basic historical operating rules related to flood control and water 

supply. We choose to do this over using established water resources models like CalSim (Draper 

et al., 2004) because the complexity and computational time of operational models, and the 

reprogramming required to adapt them to run future climate scenarios, exceeds the needs and 

purposes of the study. Steinschneider et al. (2023) demonstrate that reduced-complexity systems 
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models are sufficiently accurate for use in the context of climate change vulnerability 

assessments because the contribution of systems-based model error is small relative to climate-

based uncertainties. The reservoir operations model developed for this study applies mass 

balance with inputs including inflow and temperature (to estimate evaporation, section 4.3.3.2), 

and simulated outputs including storage and outflow (Fig. 4.3), such as:  

𝑆𝑡 = 𝑆𝑡−1 + 𝐼𝑡 − 𝐸𝑡 − 𝑂𝑡             (1) 

where for day t, S is the simulated storage, I is the inflow, E is evaporation, and O is the outflow. 

 

Figure 4.3. Schematic representing the reservoir operations model. Mass balance is applied with daily inflow, 

evaporation, and outflow volumes to simulate storage. Outflow is determined by reservoir operating rules. The flood 

pool, top of conservation and hedging threshold hf for a sample day is indicated. If the simulated storage is above top 

of conservation, flood control rules are activated. If the simulated storage is below the hedging threshold, hedging 

rules are activated.  

Simulated outflows are determined by reservoir operating rules which prescribe releases 

based on storage and a target demand. The three rules are: standard linear operating policy 

(SLOP), flood control, and hedging (described in section 4.3.3.1) (Lund et al., 1996). We 

determine a target demand (i.e., release) for each day of the water year in each reservoir based on 

median outflows from the observed record. We suggest that these median outflows are a good 

approximation for typical historical downstream demands that include irrigation, municipal, and 

environmental needs (Table 4.1).  
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We implement a constraint on the maximum daily release allowed from each reservoir 

and the maximum storage capacity based on maximum values from the observed record. This 

approximates historical operational constraints. We also include a minimum storage constraint 

based on the minimum observed value for each reservoir to approximate an operational deadpool 

storage. 

We note that this reservoir operations model does not explicitly include rules related to 

environmental regulations, recharge, or forecast-informed reservoir operations (FIRO). Instead, 

we simulate reservoir storage and outflow based on basic water supply and flood control rules. 

Also, the operating rules and constraints we are using represent a historical strategy; so, we are 

evaluating how future water supply in and downstream of the reservoirs is affected if water 

delivery and flood control operating rules remain as they have been historically. In reality, these 

rules are likely to change in the future as operators adapt to changes in climate and inflows. In 

this study, we apply the current operating rules and constraints into the future to evaluate 

vulnerabilities and assess how and where adaptation might be needed the most.  

4.3.3.1 Reservoir operating rules 

The SLOP rule determines a target release based on demands; if there is enough water in 

the reservoir to make a release that meets the target demand, the reservoir will release that 

amount. If the water available in storage is less than the demand, whatever water is available is 

released.  

Hedging restricts these releases when the reservoir storage is below a certain threshold 

(Fig. 4.3). This reflects a reservoir operator’s choice to strategically reduce releases in favor of 

keeping water in the reservoir for use later in the water year. The storage threshold at which 
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hedging is triggered and the rate (factor) at which releases are restricted are controlled by 

thresholds h1  and h2. For more details and equations on hedging, see Text C2. 

The flood control rules determine how much of the reservoir capacity is available to store 

water on a given day of the year, and force flood control releases when storage is too high. A 

seasonal flood pool maintains an unused space in the reservoir that can capture high inflows 

during the wet season and mitigate downstream flood risk (Fig. 4.3). These requirements are 

designed and set by the U.S. Army Corps of Engineers (USACE) for the reservoirs in this study 

based on historical hydrometeorological and storage conditions. We define flood pool curves for 

each reservoir from USACE Manuals and the literature where available (USACE, 1970; 

USACE, 1977; USACE, 1980; USACE, 1981; USACE, 1987; USACE, 2004; USACE, 2017b; 

Zeff et al., 2021). For Camanche, we instead estimate a seasonal flood pool curve from the 

median daily top of conservation values from the observed record. For Shasta, Oroville, and 

Folsom reservoirs, we formulate three flood pool curves based on water year type. This is meant 

to approximate the real flood pool curves which differ based on precipitation-based “wetness” 

indices. In the model, we define water year type by total inflow, where <30th historical 

percentile is dry, >70th percentile is wet, and in between is normal. We look at the observed 

median top of conservation patterns for each water year type and find the best-matching flood 

pool curve from the manuals. Note that for these water-year dependent cases, we define the day 

of the year when the flood pool constraint ends from the observed median pattern rather than the 

published flood pool curves because we find this better corresponds to the observed storage and 

outflow.  
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When and if the simulated reservoir storage encroaches on the designated flood pool, 

flood control releases are prescribed to bring the storage back down (Fig. 4.3). In the model, a 

flood control factor fc determines how much of the flood pool encroachment (i.e., the reservoir 

storage above the flood pool curve) is released every day until it is cleared, such that: 

𝑂𝑡 =  𝑓𝑐 ∗ (𝑆𝑡  − 𝑇𝑂𝐶𝑡) + 𝑇𝑡        (2) 

where for day 𝑡, 𝑂 is the predicted outflow,  𝑓𝑐  is the flood control factor, 𝑆 is the simulated 

reservoir storage (with that day’s inflow gain and evaporation loss already incorporated), 𝑇𝑂𝐶 is 

the top of conservation (flood pool curve), and 𝑇 is the target demand. This follows the modeling 

convention used in Zeff et al. (2021), which sets a flood control factor of 20%.  

4.3.3.2 Evaporation losses from the reservoir model 

Evaporation losses in the model are estimated from a linear regression that predicts daily 

evaporation rate from temperature in the grid cell closest to the reservoir location. The predicted 

evaporation rate is multiplied by the simulated reservoir area to get a volume which is subtracted 

from the daily mass balance. Reservoir area is predicted from storage by a linear regression 

based on historical reservoir storage and area records from the Global Reservoir Storage dataset 

(Li et al., 2023). Note that historical evaporation on average across all the reservoirs is less than 

3% of annual reservoir losses from the reservoir (outflow + evaporation). So, although our 

statistical evaporation model does not consider energetics or meteorological factors other than 

temperature (like wind and humidity), we suggest that it is appropriate for its purpose here as an 

input for the reservoir operations model, and its performance compared to historical observations 

adequate (Table C2). For more details and results on the evaporation model, see Text C3. 
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4.3.3.3 Model parametrization, calibration, and validation 

There are three static parameters in the model that are calibrated for each reservoir based 

on historical data for the WYs 2001-2023 time period: the factors a and b which determine 

hedging thresholds h1  and h2 (Text C2), and a flood control factor fc. We use grid search 

parameter optimization to test values between 0 to 1 for each parameter and find the combination 

for each reservoir that optimized the average Kling-Gupta efficiency (KGE) of simulated weekly 

reservoir outflow and storage for each reservoir model. This way, we find the parameter values 

which most closely mimic the operating decisions that determine historical storage and outflows. 

We validate the model with historical reservoir storage and outflow observations for WYs 2001-

2023. For both the calibration and validation exercises, we use historical observed inflow and 

temperature from the post-processed daily historical forcings (bias-corrected ERA5-WRF; 

Rahimi et al., 2022) as model input.  

4.3.4 Climate and water supply metrics 

We compute a suite of annual (water year) metrics describing the climate, hydrology, and 

water supply for each reservoir and its upstream watershed over both the historical and future 

time horizons for each GCM (Table 4.2). For each metric over each future time period and 

reservoir, we compute 25 years * 7 GCMs = 175 projected values. The climate and hydrology 

metrics are computed from VIC model inputs and outputs. Volumes such as peak SWE (snow 

water equivalent) or fall and winter precipitation are computed as the product of the watershed-

average modeled rate and the drainage area (Table 4.1). The water supply metrics are calculated 

from the simulated reservoir storage and outflow for each reservoir and each GCM. Region-wide 

metric values are summed from the individual reservoirs or watersheds in each region.  
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Table 4.2. List and description of annual metrics. A separate metric is computed for each year, reservoir, watershed, 

and GCM.  

Metric Unit Description 

Climate 

and 

hydrology 

peak SWE TAF Basin-integrated (sum) pixel-wise peak SWE 

peak SWE day day Basin-integrated (average) day when pixel-wise peak SWE occurs 

OM precip TAF Basin-integrated (sum) total precipitation for October-March (fall and winter) 

AS precip TAF Basin-integrated (sum) total precipitation for April-September (spring and 

summer) 

annual inflow TAF Total annual (water year) inflow 

inflow centroid day Day when 50% of annual (water year) inflow has occurred 

Water 

supply 

water deliveries TAF June-September total outflow from the reservoir 

end of year 

storage 

TAF Reservoir storage on September 30th of each water year 

OM outflow TAF October-March total outflow from the reservoir 

AS outflow TAF April-September total outflow from the reservoir 

 

We note that water deliveries are defined here as June through September total reservoir 

outflow because this encompasses the most crucial time period for irrigation and municipal water 

demands. For consistency and simplicity, we hereafter label and refer to metrics by the name of 

the reservoir at its outlet (i.e., the Upper Sacramento watershed will be referred to as “Shasta” or 

“sha”).  

4.4 Results 

4.4.1 Validation of the reservoir operations model 

We validate the reservoir operations model with historical observations of weekly 

reservoir storage and outflow over WYs 2001-2023 (Fig. 4.4, Fig. 4.5). This evaluation period 

includes a mix of dry, normal, and wet years. We measure the performance of the simulations 

with the Kling-Gupta efficiency (KGE). The KGE for weekly simulated reservoir storage ranges 

from 0.57 to 0.92 and averages 0.78 (Fig. 4.4). The daily storage R2 values are comparable to 

those achieved with the CALFEWS model (Zeff et al., 2021) and another reservoir simulation 
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model (Steinschneider et al., 2023) over the same reservoirs (Table C3). For weekly outflow, the 

minimum, maximum, and average KGE is 0.74, 0.83, and 0.93 (Fig. 4.5). Generally, model 

performance is strongest in the Sacramento region reservoirs (Shasta, Oroville, New Bullards 

Bar, Folsom; average storage KGE of 0.86, outflow KGE of 0.85), and poorest in the Tulare 

region (Pine Flat, Kaweah, Success, and Isabella reservoirs; average storage KGE of 0.68, 

outflow KGE of 0.82) (Fig. 4.4, Fig. 4.5). The reservoirs in the Tulare region are smaller and 

managed by the USACE primarily for flood control and irrigation deliveries (Table 4.1). 

Operators may decide to enact flood control releases before the reservoir reaches its top of 

conservation level based on forecasts or other information; this makes it difficult for the reservoir 

operations model which does not incorporate forecasts to capture observed drops in storage. The 

Tulare region also includes recharge operations, where on-demand releases are made for 

irrigation and groundwater recharge in the wet season (winter and spring). Incorporating 

recharge operations more explicitly into the reservoir model could improve its performance in 

these reservoirs.  
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Figure 4.4. Simulated and observed weekly reservoir storage over the validation period.  
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Figure 4.5. Simulated and observed weekly average reservoir outflow over the validation period 

Outside of the Tulare region, Millerton reservoir has the poorest performance. Previous 

studies (Zeff et al., 2021; Steinschneider et al., 2023) similarly recorded poor performance of 

reservoir operations models here. Millerton is smaller than most other reservoirs and subject to 

flashy flows especially during the winter. It should be noted that the model simulates outflows 
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from Millerton, which includes releases to the San Joaquin River and both the Friant-Kern and 

Madera canals, much better (KGE of 0.88) (Fig. 4.5).  

We note that due to data availability, the validation of New Bullards Bar reservoir storage 

and outflow is conducted over the shorter (relative to the other reservoirs) subset of WYs 2017-

2023, and of Don Pedro reservoir over WYs 2003-2023. Also, WYs 2017 and 2018 are removed 

from the validation of Oroville storage and outflow, due to the historic spill and dam crisis that 

occurred in February 2017.   

4.4.2 Projected changes in snow and water supply metrics 

We evaluate the projected changes in snow and water supply across Sierra Nevada 

regions and watersheds by comparing metric values from GCM model results across the future 

time periods and the historical time period. For each time period, we aggregate metric values 

across all GCMs and years. 

4.4.2.1 Projected changes in snow volume and timing 

Total peak SWE over all regions is expected to decrease from the historical average by 

6,792 TAF (-44 %, standard deviation  31%) by the end of the century (Fig. 4.6a). The greatest 

loss in snowpack is expected in the Sacramento region (-64%) and the Yuba watershed upstream 

of New Bullards Bar reservoir (-65%), but all watersheds are projected to lose at least 16% of 

their peak SWE volume by the end of the century (Fig. 4.6a). By volume (4,654 TAF), the total 

loss in the Sacramento region is 3 and 7 times greater than the projected losses in the San 

Joaquin and Tulare region, respectively. The magnitude of projected snowpack declines found 

here is consistent with previous studies (for example, projected average of 30-64% less by the 

end of the century under mitigation and business-as-usual scenarios in Sun et al. (2018)).  
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Figure 4.6. Comparison of the (a) peak SWE and (b) day of peak SWE values across the study domain for the 

historical time period and the end of century period. In (a), the height of the bar corresponds to the average value, 

and the line indicates the interquartile range (IQR). In (b), lines indicate the IQR for each watershed at the end of the 

century and historical time periods. Black horizontal lines separate watersheds into three regions.  

On average over all watersheds, the timing of peak SWE (indicating snowmelt onset) is 

expected to occur 11  22 days earlier than the historical average, shifting on average from 

March 5th to February 22nd. The greatest shifts in timing occur in the Sacramento region, ranging 

from an average of 14 days (Folsom) to 19 days (New Bullards Bar) (Fig. 4.6b). In contrast, the 
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shifts in timing of peak SWE range from an average of 3 days (Isabella) to 10 days (Pine Flat) in 

the Tulare region (Fig. 4.6b). Note that peak SWE tends to occur earlier in the Sacramento 

region than the rest of the Sierra Nevada in both the historical and end of century time period. 

The significant shifts in timing of peak SWE in the Sacramento region are consistent with the 

significant decreases in peak SWE volume (Fig. 4.6a).  

4.4.2.2 Projected changes in inflow  

Summed over all regions, average annual inflow by the end of the century is projected to 

increase by 771 TAF, or 3% from the historical average (Fig. 4.7a). This small and positive shift 

implies that rainfall and other seasonal mechanisms (such as evapotranspiration or baseflow/soil 

moisture) may generate enough runoff to compensate for snowpack declines on an annual scale. 

The high standard deviation ( 46%) on the domain-wide average indicates that this result is 

variable and uncertain. The greatest average regional shift is projected for the Tulare region (11 

 56%), and the least for the Sacramento region (0.5  48%) (Fig. 4.7a). Oroville reservoir is the 

only one expected to experience a decrease in average annual inflow (-1.5%, Fig. 4.7a). 
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Figure 4.7. Comparison of the (a) annual inflow and (b) inflow centroid values across the study domain for the 

historical time period and the end of century period. In (a), the height of the bar corresponds to the average value, 

and the line indicates the interquartile range (IQR). In (b), lines indicate the IQR for each watershed at the end of the 

century and historical time periods. Black horizontal lines separate watersheds into three regions.  

A climate change impact in mountain environments that has been widely reported on is 

the projected and observed shift in runoff timing (e.g., Rauscher et al., 2008; Schwartz et al., 

2017). Here, we observe that the inflow centroid (i.e., the day when half of total annual runoff 

has occurred) occurs on average 31  16 days earlier by the end of the century (Fig. 4.7b). This 
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number is consistent with the average value reported for the Sierra Nevada under a mitigation 

scenario in Schwartz et al. (2017). The greatest regional shift is projected in the Sacramento 

region (average -33 days), and the least in the Tulare region (average -24 days) (Fig. 4.7b). This 

is consistent with the finding in Fig. 4.6b that snowmelt in the northern watersheds is expected to 

occur earlier and with a more significant shift relative to the historical than in southern 

watersheds. The advancement of the inflow centroid is more than that of snowmelt onset (Fig. 

4.6b); we suggest this is due to the concurrence of higher winter rainfall and earlier (and less) 

snowmelt.  

4.4.2.3 Projected changes in water deliveries and reservoir storage 

On average, total water deliveries (defined as June-September total outflow from the 

reservoir) are expected to decrease 1,849 TAF at the end of the century from a historical average 

of 9,993 TAF; this represents a 19% total loss over all reservoirs (Fig. 4.8a), with a standard 

deviation  18%. The greatest average percent loss is expected in the San Joaquin region (-24  

23%), then the Sacramento region (-17  14%), and then the Tulare region (-15  32%). All 

reservoirs are projected to experience reductions in water deliveries, ranging from -7% in Shasta 

to -51% in Camanche (Fig. 4.8a). 
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Figure 4.8. Comparison of the (a) water deliveries and (b) end of year storage values across the study domain for 

the historical time period and the end of century period. The height of the bar corresponds to the average value, and 

the line indicates the interquartile range (IQR). Black horizontal lines separate watersheds into three regions.  

Over the same time period, the total end of year storage across all reservoirs is expected 

to decrease 2,140 AF from a historical average of 12,041 AF. So, on average, end of year storage 

would be at 54% of total capacity by the end of the century, down from 66% in the historical 

time period. This represents a 18  20% total loss relative to the historical. The greatest regional 

decreases in storage are expected in the Sacramento (-28  22%), followed by the Tulare (-10  
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56%), and then the San Joaquin (-8  17%) (Fig. 4.8b). All reservoirs except Isabella are 

projected to experience declines in end of year reservoir storage, ranging from an average of -

2.5% in Success to -39% in Folsom by the end of the century (Fig. 4.8b).  

The projected median (50th percentile) water deliveries and reservoir storage in the three 

regions become progressively less through the near future, mid century, and end of century time 

periods (Fig. 4.9). In most cases, the projected 10th and 90th percentiles also decrease by the end 

of the century. These percentiles represent the extreme dry and wet years that pose the most 

significant challenges to water management. These percentiles are computed for each time 

period from metric values ranging all GCMs and all years. Here, we will focus on the end of the 

century time period as it represents the most dramatic shifts. Notably, both the 10th and 90th 

percentile for water deliveries in the Sacramento region decrease more significantly than the 

median (Table 4.3); this suggests that the extreme dry years will become much more extreme, 

and the extreme wet years will become much less wet. This is consistent for the two largest 

reservoirs in the Sacramento region (Shasta and Oroville) (Table 4.3). On the other hand, over 

the Tulare region, total water deliveries and end of year storage actually increases for the driest 

years (<= 10th percentile) (Fig. 4.9c; Table 4.3); this suggests that the dry extremes could become 

less dry in these reservoirs. This is the case for three out of the four reservoirs in the Tulare 

region (Pine Flat, Kaweah, and Isabella). We suggest that this is due to projected increases in fall 

and winter precipitation, which are largest in the Tulare region watersheds.   

 

Figure 4.9. Cumulative distribution functions (CDFs) showing water deliveries (left column) and end of year 

storage (right column) for the historical time period, near future, mid century, and end of century time periods in the 

(a) Sacramento region, (b) San Joaquin region, and (c) Tulare region. Horizontal lines indicate the 90th, 50th, and 10th 

percentiles. Region-wide metrics are summed from individual reservoirs in each region. 
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Table 4.3. Summary of the percent changes in the 10th, 50th, and 90th percentile values for water deliveries and end 

of year storage in the end of century time period relative to the historical time period, for the three regions and 13 

reservoirs.  

 Water deliveries End of year storage 

 P10 P50 P90 P10 P50 P90 

Sacramento -16% -8% -27% -20% -32% -24% 

San Joaquin -3% -16% -37% -2% -11% -5% 

Tulare 9% -8% -27% 32% -17% -6% 

sha -8% 0% -9% -14% -28% -21% 

oro -13% -3% -28% -34% -37% -22% 

bul -18% -26% -45% -18% -30% -22% 

fol -26% -28% -44% -21% -46% -36% 

cmn -7% -48% -62% -10% -6% -1% 

nml 0% 0% -40% -3% -10% -5% 

dnp -4% -16% -33% -2% -9% -2% 

exc 0% -17% -31% -11% -8% -1% 

mil -8% -16% -31% 0% -28% -20% 

pnf 7% -1% -23% 62% -22% -8% 

trm 5% -13% -33% -7% -30% -4% 

scc -1% -22% -40% -16% -1% -1% 

isb 3% -17% -28% 44% -3% 0% 

 

4.4.3 Impact of projected changes in snowpack on water resources 

The projected loss of region-wide peak SWE by volume at the end of the century is 3.2 

and 3.7 times greater than the projected loss in total end of year reservoir storage and water 

deliveries, respectively. Across 12 out of 13 individual reservoirs and their watersheds, the 

projected percent decreases in SWE volume by the end of the century are higher than projected 

decreases in water supply and end of year reservoir storage. This suggests that the effects of 

declining snowpack volume on water supply may be attenuated by other factors such as rainfall 

and reservoir operations.  

The future losses in reservoir storage and water deliveries occur despite a slight projected 

increase in total annual inflow in 12 out of 13 reservoirs; this implies that the current operations 

are not well suited to manage the projected shifts in timing and source of inflow.  
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We note that future precipitation totals in California are less certain across GCMs than 

the projected increases in temperatures. Dettinger et al. (2018) find that there is a 10% tendency 

towards a wetter Sierra Nevada across 10 observed climate models, but that precipitation trends 

remain uncertain. We also observe a wide interquartile range for future monthly winter 

precipitation across all three regions (Fig. 4.10). As such, the noted increases in average winter 

precipitation should still be considered uncertain.  

4.4.3.1 Region-wide patterns 

In Figure 4.10, we track how changes in monthly precipitation, SWE, and the resulting 

inflow can explain the shifts in timing and volume of monthly water availability (reservoir 

storage and outflow). Across the three regions, we observe a projected increase in winter 

precipitation, a decrease in SWE, and a shift to earlier snowmelt and inflow by the end of the 

century (Fig. 4.10). As a result, the monthly pattern of reservoir storage is projected to shift 

earlier in the water year, peak monthly outflow is projected to increase and occur earlier, and 

summer outflows are projected to decrease (Fig. 4.10). In effect, the shifts in precipitation and 

snowmelt amount and timing mean that the reservoirs under current operating rules are less able 

to capture and store winter and spring inflow for summer water supply. We note that the 

projected declines in reservoir outflow over the summer (on average, 19%, Fig. 4.8a) are less 

than the declines in inflow during those months (on average, -49%) in all regions; so, reservoir 

storage is still helping to provide water supply in those months and attenuate the impact of 

snowpack declines on water availability outcomes. We find distinctive geographic differences 

related to shifts in volume and the severity of the changes. Crucially, the lag time between peak 

monthly precipitation and peak SWE also differs regionally; these dynamics influence the timing 
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of the inflow centroid and how inflow is distributed through the winter and spring. Here, we 

explore region-wide patterns; we explore reservoir-specific patterns in section 4.4.3.2.  

 

Figure 4.10. Monthly patterns in total precipitation, end of month SWE, total inflow, end of month reservoir 

storage, and total reservoir outflow for the (a) Sacramento, (b) San Joaquin, and (c) Tulare regions over the 

historical and end of century time periods. Solid lines indicate the median, and the shaded regions indicate the 

interquartile range (IQR). 

     In the Sacramento region, we see the most dramatic projected losses in SWE and 

earliest onset of snowmelt by the end of the century (Fig. 4.6, Fig. 4.10). This explains the 

significantly lower future monthly inflow in April-June, when historically snowmelt has pulsed 

through the watershed. That translates to lower-than-historical reservoir storage and outflow in 

the spring and summer months when key water deliveries are made (Fig. 4.10a). In effect, the 

historical monthly distribution for reservoir storage in the Sacramento region by the end of the 

century is lessened by ~1,000 TAF at its peak (April) and double that at its minimum (October), 

and shifted earlier by one month. Earlier in the water year, there is a significant projected 
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increase in precipitation in January and February (890 – 1,485 TAF) (Fig. 4.10a). Because of the 

low snow accumulation during these months, we suggest most of this precipitation falls as 

rainfall and runs off into streamflow. This rainfall pulse coincides with earlier snowmelt as peak 

precipitation and monthly SWE both occur in January to increase monthly inflow relative to the 

historical in February and March (Fig. 4.10a). Much of this increased inflow is released from the 

reservoir for flood control, leading to the increase in February-March monthly outflow (Fig. 

4.10a). Peak monthly outflow thus shifts two months earlier than the historical by the end of the 

century (May to March), and increases by about 400 TAF (Fig. 4.10a).  

In the San Joaquin region, projected SWE declines are less severe than in the Sacramento 

region (Fig. 4.6, Fig. 4.10). As a result, while projected San Joaquin May-September inflow still 

decreases relative to the historical median, that difference is less than for Sacramento inflow 

(Fig. 4.10b). The reduced inflow still leads to drops in monthly storage (about -600 TAF) and 

outflow (maximum loss of 253 TAF in June) in the summer months. This reduces crucial water 

delivery for irrigation and other downstream needs. The 2-month lag time between projected 

peak precipitation (January) and peak monthly snowpack (March) in the San Joaquin region 

leads to future monthly inflow being more distributed over the January to May time period (Fig. 

4.10b), as opposed to concentrated in January-March as it does in the Sacramento region. This 

explains why San Joaquin reservoirs are most full in May (Fig. 4.10b), whereas Sacramento 

reservoir storage peaks in April (Fig. 4.10a). Mirroring the advancement of snowmelt onset and 

inflow centroid, the future peak reservoir storage occurs earlier by one month and 64 TAF less in 

volume than the historical. In February through March, future reservoir storage is projected to be 

slightly above the historical median (by ~200 TAF) because of higher inflows. Similar to the 
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Sacramento region, monthly outflow in the San Joaquin region is projected to increase in 

February-April when flood control releases are made to maintain the historical flood pool under 

higher inflows (Fig. 4.10b). As a result of these flood releases, peak outflow is projected for 

March, two months before and 13 TAF higher than the historical May (Fig. 4.10b).  

In the Tulare region, the projected increase in winter and spring inflows and decrease in 

summer inflows, and corresponding changes in reservoir storage and outflow, can similarly be 

explained by higher future winter precipitation and a lower SWE (Fig. 4.10c). Note here that the 

projected increases in winter precipitation are (proportionately) largest in the Tulare region, 

while the projected snowpack declines the smallest (Fig. 4.6, Fig. 4.10c). As opposed to the 

Sacramento region, there is a 1-month lag time between projected peak monthly precipitation 

(January) and peak SWE (February) in the Tulare region (Fig. 4.10c). The projected decline in 

snowpack (and thus snowmelt) is not enough to shift the month when peak monthly inflow 

occurs (May) in the Tulare region (Fig. 4.10c). The increases in winter precipitation also cause 

increases in December-March inflow and correspondingly, reservoir storage in February-April 

and outflow in January-May (Fig. 4.10c). As a result and contrary to other regions, the end of 

century peak reservoir storage in the Tulare occurs in the same month as the historical (May) and 

increases slightly in volume (45 TAF) (Fig. 4.10c). Reservoir outflow reaches its peak a month 

earlier (May) and with 36 TAF more than the historical median (Fig. 4.10c). Similar to other 

regions, the lower summer inflows (caused by less snowmelt) by the end of the century lead to a 

projected decrease in reservoir storage in June through October (-81-200 TAF).  
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4.4.3.2 Reservoir-specific patterns 

     We observe several common patterns across all reservoirs by the end of the century: 

projected decreases in peak SWE, earlier timing of snowmelt and inflow centroid, increases in 

October-March precipitation and annual inflow (except for Oroville), decreases in end of year 

reservoir storage (except for Isabella), increases in fall and winter outflow, and decreases in 

water supply (Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.11c). These changes are already noticeable in the 

near future time period, and then get more severe by the end of the century (Fig. 4.11). However, 

the scale of those changes and the influence of projected shifts in climate and snowpack on water 

resources availability differ by geography (Fig. 4.11c). There is a clear north to south gradient, 

where the greatest reductions of snowpack and acceleration of snowmelt onset (day of peak 

SWE) and inflow centroid occur in the northern watersheds (Fig. 4.11). The opposite gradient, 

where the greatest shifts occur in the southern watersheds, exists for increases in annual inflow 

and in fall and winter precipitation (Fig. 4.11). Gradients are less clear for water management 

metrics, due to the individual characteristics and rules of each reservoir.  

 

Figure 4.11. Percent changes from the historical average metric values in the (a) near future, (b) mid century, and 

(c) end of century time periods. Negative (red) values indicate a projected decrease in the future. Horizontal lines 

separate reservoirs in the three regions (top to bottom: Sacramento, San Joaquin, and Tulare). Metrics to the left of 
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the horizontal line relate to hydrology and climate, and metrics to the right describe reservoir operations and water 

resources. 

In all reservoirs but one (Oroville), average annual inflow is projected to increase by the 

end of the century while both reservoir storage and water deliveries are expected to decrease. 

That is, a higher annual water input but reduced ability to meet water supply needs. This implies 

that the current reservoir operating rules are not well suited to deal with the projected shifts in 

source (i.e., snowmelt or rainfall) and thus timing of inflows.  

Of all the reservoirs, nine (New Bullards Bar, Camanche, New Melones, Don Pedro, 

McClure, Kaweah, Success, and Isabella) have a greater projected decrease in water deliveries 

than in end of year storage (Fig. 4.11c). Most of these reservoirs are located in the San Joaquin 

and Tulare regions. The other five (Shasta, Oroville, Folsom, Millerton, Pine Flat) are instead 

more susceptible to decreases in end of year storage than water deliveries (Fig. 4.11c). We note 

that these last five reservoirs have an observed historical summer water supply storage that is 

greater than the region-wide average (Fig. 4.1b), suggesting a historical operational priority 

towards summer water deliveries that is carried into the future case. The differences between 

reservoirs are thus driven by factors such as size and elevation of the watershed and reservoir, 

reservoir operating rules, and climate (especially, the contribution of snowmelt to total inflow).  

Notably, although the watershed upstream of the Shasta reservoir is projected to lose over 

60% of its snowpack by the end of the century and average end of year storage is predicted to be 

24% less, water supply is only reduced by 7% (Fig. 4.11c). Shasta is the largest reservoir by 

capacity (Table 4.1), and its watershed is more rainfall-dominated (on a historical average, peak 

SWE makes up only 22% of the watershed’s total annual precipitation, the lowest ratio across all 

watersheds). This, combined with a coincident projected increase in winter precipitation, makes 
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the reduction in snowpack not as impactful on water supply here. On the other hand, Camanche 

is projected to experience a 45% decrease in peak SWE by end of century and a 7% reduction in 

end of year reservoir storage, but a 51% reduction in water supply – the largest decrease across 

all the watersheds (Fig. 4.11c). Compared to Shasta, Camanche is more snow-dominated and has 

a much smaller capacity (Table 4.1). We also find that based on the historical calibration of the 

reservoir operations model, the threshold at which hedging (that is, restricting releases in order to 

keep water in the reservoir) is triggered in Camanche is much higher than any other reservoirs. 

So, we suggest that the historical reservoir operating rules in Camanche, particularly around 

hedging summer releases, are not well-suited to maintain historically-consistent water supply 

under future climate conditions. We note that Camanche is the reservoir with the least summer 

water supply storage (Fig. 1b), implying a lower historical priority for summer water deliveries.  

The Sacramento region reservoirs are universally projected to experience a greater 

decrease in end of year storage than most other reservoirs (Fig. 4.11c). We suggest that this is 

driven by the projected earlier inflow centroid (the projected shifts of which are greatest in the 

Sacramento reservoirs), which is caused by an overlap of significantly earlier snowmelt and 

higher fall and winter precipitation for these reservoirs (Fig. 4.11c, Fig. 4.10a). The result is a 

concentration of inflow in the winter when flood control releases are large and less inflow in 

spring and summer when water supply releases are prioritized. Historical operating rules may 

also prioritize the release of summer water supply over maintaining carryover storage (Fig. 4.1b). 

The reservoirs and watersheds in the Tulare region show less region-wide consistency in 

projected changes of both climate and water availability than the reservoirs in the Sacramento or 

San Joaquin regions (Fig. 4.11c). For example, the watershed upstream of Isabella reservoir is 
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projected to experience no significant change in April-September precipitation, while the 

watersheds for Success and Kaweah are projected to experience the most severe declines (Fig. 

4.11c). Notably for Isabella, the result is no projected change in average end of year reservoir 

storage by the end of the century (Fig. 4.11c). The Success and Kaweah watersheds are smaller, 

lower elevation, and more historically rainfall-dominated than the Isabella watershed, and so the 

projected temperature and precipitation trends will impact them differently. Pine Flat and 

Isabella are the only reservoirs across the domain to project an increase in April-September 

reservoir outflow (Fig. 4.11c). This is likely due to higher inflows and corresponding outflows in 

April-May, when snowmelt and increased spring precipitation coincide. It is worth noting that 

the performance of the reservoir operations model is more uncertain for reservoirs in the Tulare 

region due to poorer validation over historical observations (Fig. 4.4, Fig. 4.5).  

We suggest that changes in flood control operations to increase storage capacity in winter 

months could mitigate the projected losses in reservoir storage and summer outflow, especially 

for reservoirs in the Sacramento and San Joaquin regions. Current flood control rules are 

designed based on historical patterns in precipitation and inflow to maximize storage capacity in 

the wet season in order to capture high flows and mitigate downstream flood risk. The structure 

of those rules is mismatched with a future climate where inflow occurs earlier in the year and is 

more rainfall- than snow-dominated. For example, in the Sacramento reservoirs, significant flood 

releases are projected in February and March by the end of the century. Under historical climate 

conditions, this would have been effective in maintaining reservoir capacity to accommodate 

snowmelt runoff in April-June, but in the future time period, this prematurely drains down the 

reservoir while anticipating a larger inflow that never comes. If instead the projected higher 
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inflows in January-March were allowed to accumulate in the reservoir under a reduced flood 

pool constraint, more water would be available for releases later in the water year. We note that 

the tradeoff with a reduced flood pool constraint could be increased flood risk; finding operating 

rules that balance the water supply and flood control needs of a reservoir is a challenge that will 

continue and grow into the future. 

The California Water Plan Update 2023 (CADWR, 2023) acknowledges the urgency and 

challenges of climate change for California’s water systems, and outlines adaptation strategies 

that include efforts to improve forecasting, data, and management of water resources. A specific 

strategy is already in place in California for USACE to update reservoir operations manuals and 

their flood control rules to reflect a changing climate (CNRA, 2022).  

4.4.4 Predictive power of snow metrics on water supply 

Because of differences in climate, we expect the predictive power of snow metrics on 

water availability to vary geographically. In Figure 4.12 and Table 4.4, we quantify the Pearson 

correlation coefficient R between two snow metrics: peak SWE and peak SWE day (snowmelt 

onset), and two water availability metrics: water deliveries and end of year reservoir storage 

across the three regions and 13 reservoirs. Note that in the historical time period, and even more 

so in the future, the correlations between peak SWE and water availability in the Sacramento 

region are lower than in the San Joaquin and Tulare region (Fig. 4.12). This is explained by the 

more rainfall-influenced climate in the Sacramento region. Also, the correlations with peak SWE 

as the independent variable are more significant than with peak SWE day (Fig. 4.12). We 

acknowledge that the snow metrics are themselves inter-correlated, but quantifying and 

comparing the differences between the correlations across reservoirs and time periods provides 
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insight into the relative predictive power of these two metrics.  

 

Figure 4.12. Correlation coefficient R quantifies the relationship between snow metrics and (a) water supply and (b) 

end of year storage across the three regions (rows) and time periods (bars). The horizontal green line indicates the 

correlations over the historical time period. 

Table 4.4. Summary of the correlations between independent variables: peak SWE and day of peak SWE and 

dependent variables: water deliveries and end of year storage, over the historical and end of century time periods for 

the three regions and 13 reservoirs. Bolded values indicate the higher value between the historical and end of 

century time periods.  

 Water deliveries  End of year storage 

 Peak SWE Day of peak SWE  Peak SWE Day of peak SWE 

 Historical 
End of 

century 
Historical 

End of 

century 
 Historical 

End of 

century 
Historical 

End of 

century 

Sacramento 0.8 0.44 0.41 0.18  0.71 0.62 0.43 0.2 

San Joaquin 0.9 0.85 0.4 0.39  0.81 0.82 0.47 0.58 

Tulare 0.91 0.88 0.39 0.38  0.84 0.85 0.47 0.56 

sha 0.62 0.34 0.33 0.2  0.64 0.53 0.37 0.25 

oro 0.78 0.33 0.35 0.19  0.7 0.61 0.4 0.25 

bul 0.88 0.58 0.45 0.36  0.8 0.67 0.5 0.39 

fol 0.85 0.69 0.44 0.39  0.82 0.72 0.47 0.33 

cmn 0.87 0.72 0.43 0.31  0.59 0.66 0.42 0.47 

nml 0.79 0.69 0.35 0.3  0.75 0.77 0.44 0.56 

dnp 0.89 0.82 0.37 0.37  0.79 0.81 0.45 0.63 

exc 0.89 0.8 0.36 0.36  0.72 0.74 0.45 0.62 

mil 0.91 0.88 0.49 0.47  0.88 0.84 0.49 0.4 

pnf 0.88 0.82 0.37 0.4  0.87 0.9 0.47 0.57 

trm 0.92 0.89 0.4 0.44  0.82 0.83 0.46 0.56 

scc 0.89 0.81 0.46 0.44  0.46 0.37 0.36 0.36 

isb 0.9 0.89 0.42 0.36  0.67 0.64 0.43 0.46 
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We see how the correlations of the snow metrics with both water deliveries and end of 

year storage decrease across all reservoirs in the Sacramento region into the future (Fig. 4.12, 

Table 4.4); this is consistent with the projected declines in snowpack and increases in rainfall 

triggering different runoff and reservoir operating responses. The decreases in these correlations 

are generally greater in the Sacramento reservoirs than the other reservoirs; this highlights that 

the mechanisms through which snowpack affects water supply (end of year storage and water 

deliveries) are greatly impacted by future climate change here.  

The trends for the San Joaquin and Tulare regions and reservoirs are more mixed. In both 

regions, the future correlations between both peak SWE and day of peak SWE and water 

deliveries decreases slightly from the historical (Fig. 4.12a, Table 4.4); this is consistent with a 

projected decline in snowpack that is not as severe as that in Sacramento. In two reservoirs of the 

San Joaquin region, there is no change in this correlation, and in two reservoirs of the Tulare 

region, there is instead a slight increase in this correlation by the end of the century (Table 4.4). 

Conversely to the trend in Sacramento, the correlation between peak SWE and end of year 

storage increases slightly from the historical in the San Joaquin and Tulare regions (Fig. 4.12b). 

This is also the case in four out of five reservoirs in San Joaquin and two out of four reservoirs in 

the Tulare (Table 4.4). The greatest difference (relative to the Sacramento case and the historical) 

happens in the relationship between peak SWE day and end of year storage. This correlation 

notably increases by the end of the century in both the San Joaquin and Tulare regions, and in 

seven out of the nine reservoirs in these regions (Fig. 4.12b, Table 4.4). This signifies that the 

timing of snowmelt onset is a better indicator for end of year reservoir storage in those reservoirs 

by the end of the century than in the historical and for reservoirs in the Sacramento region. So, a 
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later peak SWE day more closely correlates with higher end of year storage by the end of the 

century. We suggest that this is because over the future time period in those regions, the 

projected decreases in spring and summer precipitation means there is less variance in reservoir 

storage that is unrelated to changes in snow timing. 

4.5 Conclusions 

Using hydrology projections driven by seven downscaled GCMs and a simple reservoir 

operations model, we evaluate how changes in future hydrometeorology (notably, shifts in 

snowpack volume and timing) impact reservoir storage and water deliveries under current 

reservoir operating rules across 13 major reservoirs in the California Sierra Nevada.  

We find that average total water deliveries (July-September reservoir outflows) are 

projected to decrease 19% (1,850 TAF) from the historical average by the end of the century 

(2075-2100) over the entire domain. Total end of year reservoir storage is also expected to 

decrease, by 18% (2,140 TAF). These losses occur despite a slight increase in domain-wide 

average annual inflow (+3% or 771 TAF). We find that this happens because, in general, current 

reservoir operating rules do not sufficiently allow reservoirs to capture the projected earlier 

inflows for later water supply. The inflow centroid (i.e., the day in the water year when half of 

annual runoff has occurred) is projected to happen an average of 31 days earlier across all 

reservoirs; this is driven by earlier snowmelt onset, lower spring snowmelt, and increased (but 

uncertain) winter precipitation. We find that, on average, region-wide snowpack is projected to 

decline by 44% (6,792 TAF) by the end of the century, and snowmelt onset accelerates by 11 

days. 
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We find common patterns in projected conditions across all reservoirs: earlier snowmelt 

onset and lower peak SWE, more winter precipitation (especially January-February), earlier 

inflow centroid, increase in annual inflow (except for Oroville), decrease in end of year reservoir 

storage (except for Isabella), increase in fall and winter outflow, decrease in spring and summer 

outflow (except for Kaweah and Success), and decrease in water deliveries. However, the 

severity of these shifts differs geographically.  

There is a strong north-south gradient in projected hydrometeorology changes by the end 

of the century, where Sacramento reservoirs have more drastic shifts in snowpack volume and 

timing and inflow centroid, and Tulare reservoirs have the greatest relative increases in winter 

precipitation and annual inflow. This follows the gradient from lower elevations and warmer, 

more rainfall-influenced climate in the north to higher elevations with more snowfall-dominated 

climate in the south. 

However, water supply metrics vary more based on the characteristics and rules (i.e., 

flood pool timing and size, hedging priorities) of the reservoirs, and the interaction of those rules 

with upstream hydrometeorology shifts. Nine reservoirs primarily located in the San Joaquina 

and Tulare regions (New Bullards Bar, Camanche, New Melones, Don Pedro, McClure, Kaweah, 

Success, and Isabella) have a greater projected decrease in water deliveries than in end of year 

storage. The other five (Shasta, Oroville, Folsom, Millerton, Pine Flat) are instead more 

susceptible to decreases in end of year storage than water deliveries. Sacramento reservoirs show 

greater decreases in end of year storage than other reservoirs. The correlation between snow 

metrics (peak volume and snowmelt onset) and water supply metrics (water deliveries and end of 

year storage) decreases into the future in the Sacramento reservoirs, reflecting that the 
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mechanisms through which snowpack affects water availability is greatly impacted by future 

climate change here. In most reservoirs of the Tulare and San Joaquin regions, the correlation 

between snowmelt onset and end of year storage instead increases into the future; this implies 

that there is less variance in reservoir storage in the future here that is unrelated to changes in 

snowmelt timing. 

We note that the implications for reduced summer outflow and reservoir storage range 

broader than just water supply which was the focus here. Reduced summer outflows can impact 

ecosystem health such as fish habitat both with lower flows and warmer water temperatures; and 

changes in reservoir storage can reduce the availability of water for hydropower generation. 

Lower water deliveries can negatively impact food security and economic stability in regions 

like the Central Valley of California which relies on snowmelt for irrigation.  

We conclude that the impact of projected snowpack declines on water availability from 

California Sierra Nevada reservoirs is partially attenuated by increased rainfall and reservoir 

storage, but that the current reservoir operating rules, specifically around seasonal flood pool 

constraints and hedging releases in the summer, are not optimal for maintaining water supply 

under a future climate. We suggest that changes in seasonal flood pool constraints to increase 

storage capacity in winter months could help mitigate the projected losses in reservoir storage 

and water deliveries, especially for reservoirs in the Sacramento and San Joaquin regions. The 

effectiveness of adjusting reservoir operating rules, for example reducing flood pool constraints 

in the winter, for maintaining water supply under a future climate needs to be evaluated. We note 

that the tradeoffs between protecting against floods and providing water supply becomes more 

pronounced under a future climate with earlier inflows. Future changes in flood risks, such as 
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single-day peak inflows and outflows, was not assessed in this study but would be an important 

consideration for reservoir reoperations.   
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CHAPTER 5 

Conclusions and Future Work 

5.1 Conclusions and key findings 

This dissertation addresses two of the most important challenges in snow modeling: 

uncertainty in model parametrization and mountain precipitation bias. It showcases adjustments 

to both sources of uncertainty that yield significant improvements in SWE estimation. 

The key contribution from Chapter 2 is a thorough and wide-ranging prognosis of the 

performance of snow-related model physics. Because the model forcings are both constrained by 

observations and consistent with the validation dataset, SWE estimation errors here are uniquely 

linked to model physics rather than a mix of model errors and forcing biases. The study includes 

a large number (199) of sites across varying climates and geographies and tests all snow-related 

physics options of the Noah-MP model. Key conclusions related to model performance, 

sensitivity, and differences across sites are: 

1) The model's base case configuration, which matches the National Water Model (NWM), 

generally overestimates accumulated SWE (by 10%), predicts later peak SWE timing (5 

days), and underestimates snow melt rate (-15%), likely due to inaccuracies in 

precipitation partitioning and albedo modeling. Changing the precipitation partitioning 

threshold, albedo model, and surface resistance to evaporation algorithm reduced errors 

at most sites.  
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2) Of the tested physics options, the precipitation partitioning scheme and surface drag 

parametrization had the most influence on SWE estimates during the accumulation and 

melt seasons, respectively. But switching out the source of forcing data had the greatest 

(negative) impact on model accuracy, highlighting the importance of accurate 

meteorological data for reliable SWE estimates. 

3) Model performance and sensitivity vary by region, climate, and vegetation, with colder 

sites generally showing more accuracy in the accumulation season and warmer stations 

performing better in the melt season. No single model configuration worked best across 

all sites.  

In Chapter 3, a novel mountain precipitation bias correction method is developed and 

proved effective for SWE estimation over a test domain. The originality comes from the use of a 

database of historical precipitation bias correction factors which are a byproduct of a SWE 

reanalysis framework and had not yet been applied towards SWE modeling in a real-time 

context. Key findings are:  

1) Applying a spatially distributed historically informed precipitation bias correction 

reduces error (-57-58%), increases spatial correlation (43%), and decreases bias (-85-

88%) in April 1st SWE. The strength of this approach lies in its ability to capture the 

climatological spatial distribution of bias.  

2) Assimilation of snow depth observations further reduces error (-45%) by April 1st. 

However, the assimilation of fSCA measurements prior to April 1st more often degrades 

than improves SWE estimates due to the weak relationship between fSCA and SWE 

outside of the ablation season.  
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3) The improvements in SWE estimation provide value for snowmelt-driven streamflow 

predictions: using bias-corrected precipitation for modeling April 1st SWE reduces bias in 

predicted April to July runoff (-46-52%) and improves correlation between predicted 

snowmelt and observed streamflow (31-39%).  

In Chapter 4, we evaluate how changes in future hydrometeorology shifts impact reservoir 

storage and water deliveries under current reservoir operating rules across 13 major reservoirs in 

the California Sierra Nevada, using hydrology projections driven by seven downscaled GCMs 

and an original reservoir operations model. Results reinforce findings from the literature, and 

additionally contribute a) a comprehensive comparison across the entire north-south gradient of 

the Sierra Nevada, and b) an update based on the latest climate and hydrology modeling. Key 

findings are: 

1) On average, region-wide snowpack is projected to decline by 44% or 6,792 TAF by the 

end of the century, snowmelt onset accelerates by 11 days, and the inflow centroid 

accelerates by 31 days. There is a north-south gradient in projected hydrometeorology 

changes, where Sacramento reservoirs have the greatest shifts in snowpack volume and 

inflow centroid, and Tulare reservoirs have the greatest increases in winter precipitation 

and annual inflow. 

2) Average water deliveries are projected to decrease 19% or 1,850 TAF by the end of the 

century over the entire domain, and total end of year reservoir storage by 18% or 2,140 

TAF. These losses occur despite a slight increase in average domain-wide annual inflow 

(+3% or 771 TAF). We find that this happens because current reservoir operating rules 
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do not sufficiently allow reservoirs to capture the projected earlier inflows for later water 

supply.  

3) The extent to which reservoirs moderate projected shifts in upstream hydrometeorology 

varies based the reservoir’s characteristics, climate, and operating rules. Nine reservoirs 

mostly located in the San Joaquin and Tulare regions have a greater projected decrease in 

water deliveries than in end of year storage. The other five are instead more susceptible to 

decreases in end of year storage. 

5.3 Potential for future work 

The findings in Chapter 2 and Chapter 3 provide valuable insights on how to improve 

SWE estimation by adjusting model physics and bias-correcting input precipitation, respectively. 

Further research can expand on these methods and explore their scalability and applicability to 

an operational context. The potential pathways for future work are: 

Regarding snow model physics: 

1) Explore how the snow model responds to superposing changes in model configurations; 

for example, applying a new precipitation partitioning threshold and a different albedo 

model at once.  

2) Consider the implications of using different model configurations for different site 

conditions (such as climate) or regions when running large-scale hydrologic applications 

like the National Water Model. That way, model physics representation in addition to 

typical user-defined parameters can be optimized to site conditions.  

Regarding mountain precipitation bias correction: 
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1) Explore how the tested bias correction methods perform in other global mountain regions 

where historical reanalysis datasets have successfully estimated SWE. The opportunity is 

there to use historical SWE reanalysis datasets to simultaneously bias-correct and 

downscale globally available precipitation products in a reliable and real-time fashion.  

2) Test more sophisticated methods such as machine learning for bias correction estimation. 

For example, a bias correction that updates over time based on conditions of the water 

year as they become known in real time would be useful in an operational context.  

3) Evaluate if and how the assimilation of other sources of snow observations – such as 

ground-based SWE or snow depth measurements, passive microwave or p-band SWE 

measurements, or satellite-based albedo measurements – could further reduce errors and 

correct anomalies in SWE estimation when applied in real time.  

4) Consider and test the impact of this bias correction on streamflow forecasts through 

spatially distributed hydrologic modeling and ensemble streamflow prediction (ESP).  

To follow up on the assessment of the impact of future snow declines on water 

availability in California Sierra Nevada reservoirs in Chapter 5, further research directions can:    

1) Evaluate the effectiveness of adjusting reservoir operating rules, for example decreasing 

flood pool constraints in the winter, for maintaining water supply under a future climate. 

Identify if, when, and how additional storage capacity or reservoir reoperations can 

increase resilience.   

2) Assess future changes in flood risks, such as single-day peak inflows and outflows, 

especially with reservoir reoperations. We note that under a future climate, the tradeoffs 
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between maintaining water supply and protecting against flood risks become more 

pronounced.  

3) Evaluate wider-ranging climate change scenarios and compare amongst more and less 

severe emissions pathways (e.g., SSP585 or SSP250). Future climate remains uncertain 

and a broader look at the range of possible outcomes can provide additional insight.  

4) Identify the specific impacts of temperature or precipitation changes with a sensitivity 

analysis, for example by increasing historical temperature by incremental amounts and 

quantifying the resulting changes in water supply.  

5) Consider the implications of projected reduced water availability on factors such as 

ecosystem health, food security, and hydropower generation.  
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Appendix A 

Supplemental information for Chapter 2: Evaluation of Noah-MP snow 

simulation across site conditions in the Western US 

Contents of this Appendix: 

Texts A1, A2, A3, A4, A5, A6, A7 

Figures A1, A2, A3, A4, A5, A6 

Tables A1, A2 

References 

A1. Eco-regions 

We assigned each station to an eco-region based on the Commission for Environmental 

Cooperation (CEC) Terrestrial Ecoregions Level III classification (Wilken et al., 2011). These 

eco-regions are defined by both data and expert opinion using a holistic range of diagnostic 

criteria including soils, physiography, water bodies, major vegetation type, land use and other 

human influences, and climates. For illustration purposes in this study, certain nearby eco-

regions were combined because model behavior was similar. North Cascades, Klamath 

Mountains, and Cascades were joined to become “Cascades”; Columbia Mountains/Northern 

Rockies, Idaho Batholith, and Middle Rockies were joined to become “Northern Rockies”; and 

Northern Basin and Range and Central Basin and Range were joined to become “Basin and 

Range”. Four regions contained only a single station located close to the region boundary; these 
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stations were added to the most nearby region. A single station in the Colorado Plateau was 

added to Wasatch and Unita Mountains region; a single station in Wyoming Basin was joined 

with the Northern Rockies; a single station in the Coast Range was added to the Cascades; and a 

single station in the Snake River Basin was joined with the Idaho Batholith (Northern Rockies). 

A2. SNOTEL Meteorological Records QA/QC 

Daily precipitation and SWE values were taken from the bias-corrected quality-controlled 

data product published by Yan et al. (2018). These data have undergone a three-stage quality 

control (QC) filter to eliminate outliers and erroneous or inconsistent observations. The quality-

controlled precipitation data is then corrected for potential under-catch of snowfall, which has 

been widely observed at SNOTEL stations due to wind processes and wetting loss on collector 

walls (e.g., Livneh et al., 2014; Serreze et al., 1999; Sun et al., 2019).  

While the Yan et al. (2018) data product also includes quality-controlled and bias-

corrected daily temperature records, we chose to instead use hourly temperature data for this 

study because the Noah-MP model is run at an hourly time step. So, hourly temperature data was 

downloaded in raw form from the NRCS web portal for over 800 SNOTEL stations. A two-stage 

QC filter was applied to these records. First, outliers were removed based on global 

minimum/maximum thresholds of +39 °C and -50 °C (Livneh et al., 2014). Second, following 

the statistics-based approach used by Serreze et al. (1999) and Yan et al. (2018), values lying 

outside of +/- three standard deviations from the daily average were removed as outliers. We 

chose to compute these statistics at the daily level rather than hourly in order to include more 

data points for each day of the water year.  
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Only stations with less than 5% missing quality-controlled hourly temperature and daily 

precipitation and no missing daily SWE over the study period of record (water years 2007-2019) 

were selected for further study. Data gaps were then filled in order to generate complete records 

for model input. This process was applied to hourly temperature data over three steps. First, 

short-term gaps (identified as 5 continuous hours or less) were completed with linear 

interpolation, following the method in Sun et al. (2019). Second, long-term gaps (identified as 6 

continuous hours or longer) were filled in by regressing each station data on nearby stations that 

have data available during those missing time steps. For this, linear regressions were fitted 

between each station data and the 10 closest stations that have greater than half of usable hourly 

temperature records. The neighboring station with the highest R2 value is used first to predict the 

missing temperature data. Remaining missing data is filled in by using the station with the next 

highest R2 value, and so on. Third, if data is still missing (in this case, an average of 9 hours in 

about a quarter of the stations), the remaining gaps are filled in with the station’s climatological 

mean for that hour of the water year. Only one of the selected stations had gaps in daily 

precipitation data – this was filled in by regressing the station’s precipitation records with the 

nearest 5 stations and selecting the one with the highest R2 value to predict the missing values.  

A warm bias at cold temperatures has been noted at SNOTEL stations in numerous 

studies; this has been attributed to erroneous conversion from voltages to °C (Harms et al., 2016; 

Currier et al., 2017; Oyler et al., 2015). So, we applied a linear equation that was developed by 

Harms et al., 2017 and subsequently applied in several studies (e.g., Currier et al., 2017; Sun et 

al., 2019) to correct this error: 

Tcorr = 1.03 ∗ Tsntl − 0.9         (1) 
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where Tsntl is the SNOTEL raw temperature observation (°C). 

A3. AORC Forcings 

The Analysis of Record for Calibration (AORC) forcings include: precipitation, 

temperature, specific humidity, terrain-level pressure, downward longwave and shortwave 

radiation, and west-east and south-north wind components (AORC version 1.1). The dataset is 

constructed from over a dozen individual datasets, including: North American Regional 

Reanalysis (NARR), North American Land Data Assimilation System (NLDAS-2), and National 

Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS); and 

was bias-corrected by gauge-based climatological datasets including PRISM, Livneh et al. 

(2015), Vose et al. (2014), and Hill et al. (2015). Compared to quality-controlled bias-corrected 

SNOTEL observations, AORC winter precipitation is on average 10.6% less, with most (82%) 

stations showing less precipitation in AORC than in the SNOTEL record (Fig. A1a, c). AORC 

winter temperatures are also on average lower than SNOTEL (average of -0.2°C), but the 

differences are more heterogenous across stations (Fig. A1b, d). 
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Figure A1. Bias between AORC and SNOTEL winter (Nov-March) precipitation (a) and winter temperature (b) 

across 199 sites in WYs 2007-2019. Bias in precipitation is computed as the mean normalized bias, and bias in air 

temperature is computed as the difference. These sites are classified into eco-regions, for which the bias for winter 

precipitation is shown in (c), and for winter temperature in (d). Circles mark the median of the subgroup, and the 

width of the line marks the interquartile range.  

(

a) 

(

b) 

(

c) 

(

d) 

(a) (b) 

(c) (d) 



 

 

 

 

165 

A4. Physics processes in alternative model experiments 

Precip2.2 and Precip0 test alternative options for precipitation partitioning into snow and 

rain, and should primarily impact snow accumulation by changing input snowfall (Fig. A2). The 

base case option for snow/rain partitioning defines a prescribed linear snowfall fraction when air 

temperature is between 0.5 and 2.5 °C (Jordan 1991). Precip2.2 instead sets a fixed threshold for 

snow at 2.2 °C, while Precip0 uses 0 °C. Note that recent studies have explored precipitation 

partitioning with wet-bulb temperature rather than air temperature (Wang et al., 2019, Letcher et 

al., 2022) and have found that this improves model performance; the Wang et al. 2019 wet-bulb 

temperature-based precipitation partitioning scheme is now included in the latest version of 

Noah-MP (v5, He et al., 2023).  

Alb tests the alternative option for snow surface albedo, impacting snowmelt by changing 

net radiation (Fig. A2). The base case uses BATS (Biosphere-Atmosphere Transfer Scheme, 

Dickinson et al., 1986, Yang et al., 1997), which calculates snow albedo for direct and diffuse 

radiation in visible and near-infrared broadband (Niu et al., 2011). The alternative uses CLASS 

(Canadian Land Surface Scheme), which computes snow albedo from fresh snow albedo and 

snow age. BATS with default parametrization has been shown to overestimate snow albedo (Niu 

et al., 2011; Abolafia-Rosenzweig et al., 2022).  

ResisDrag and ResisEvap test alternative options for the surface layer drag coefficient 

and surface resistance to evaporation/sublimation processes, impacting snowmelt through the 

computation of surface energy fluxes (Fig. A2). The base case sets the surface resistance to 

evaporation/sublimation as a constant parameter (rsurf,snow = 50s/m) if the surface is snowy. 

The alternative used in ResisEvap instead employs the Sakaguchi and Zeng (2009) algorithm for 
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surface resistance for all grid cells regardless of snowiness. This algorithm, defined for NCAR’s 

CLM3.5, describes a surface resistance that explicitly represents the effects of plant litter cover, 

under-canopy stability, and turbulent resistance; as such, the surface resistance is often above 

50s/m but varies by season, water content, and vegetation (Sakaguchi and Zeng 2009). This 

surface resistance algorithm has been found to decrease modeled latent heat flux in the Western 

US, but with no significant changes to snow depth (Sakaguchi and Zeng 2009).  

The surface layer drag coefficient is determined either by the Monin-Obukhov similarity 

theory in the base case, or by the original Noah approach (Chen 1997) in ResisDrag. The Chen 

(1997) approach has been observed to produce a lower surface drag coefficient (e.g., Zhang et 

al., 2014), which would lead to a higher aerodynamic resistance and lower values for sensible 

and latent heat fluxes in ResisDrag. 

TempSolv and TempLB use alternative options for the lower boundary condition of soil 

temperature and snow/soil temperature in the model’s soil heat flux calculation, respectively, and 

are expected to impact melt processes via the dissipation of energy in the soil (Fig. A2). The 

lower soil temperature boundary condition is set by a read-from-file parameter in the base case. 

TempLB instead prescribes zero heat flux from the bottom of the soil column. The snow/soil 

temperature time scheme is a solver option rather than a physics option: in the base case, 

fractional snow cover is considered in the semi-implicit solution to the thermal diffusion 

equation, whereas it is not considered in the alternative (TempSolv). The thermal diffusion 

equation affects upper soil and lower snow layer temperatures. 

DynVeg, the experiment for the dynamic vegetation option, affects both accumulation 

and melt processes (Fig. A2). In the base case, the dynamic vegetation module is turned off; 
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instead, parameters like leaf area index (LAI) and maximum vegetation fraction are based on 

ground- and satellite- observations. The dynamic vegetation module models prognostic 

vegetation growth (Dickinson et al., 1998), by combining Ball-Berry photosynthesis-based 

stomatal resistance with dynamic vegetation and allocating carbon to different parts of 

vegetation. Vegetation can influence snow processes by: intercepting snow, changing total 

albedo, changing heat flux with soil temperature, or re-emitting radiation downwards (Park and 

Park 2016). Based on how the dynamic vegetation module changes the parameters that affect 

these processes (for example, a larger LAI would intercept more snow), the difference in snow 

simulation between DynVeg and the base case varies by vegetation type.  
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Figure A2. Schematic of a snow model with relevant model physics processes. Experiments tested in this study are 

boxed and placed near the relevant physics processes. Those labeled with a blue box are ones that primarily impact 

snow accumulation processes; those with a red box should impact snowmelt processes; and those with a purple box 

should impact both.  
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Table A1. List of physics options in Noah-MP, with indicators of usage with WRF-Hydro/NWM. Summarized from 

Gochis et al. (2018). 

  NOAA NWM 2.0 options WRF-Hydro recommended options 

Option Value Definition Value Definition 

DYNAMIC_VEG_OPTION: options 

for dynamic vegetation 

4 off (use table LAI; use 

maximum vegetation 

fraction) 

4 off (use table LAI; use 

maximum vegetation 

fraction) 

CANOPY_STOMATAL_RESISTA

NCE_OPTION: options for canopy 

stomatal resistance 

1 Ball-Berry 1 Ball-Berry 

BTR_OPTION: option for soil 

moisture factor for stomatal 

resistance 

1 Noah (soil moisture) 1 Noah (soil moisture) 

RUNOFF_OPTION: options for 

runoff and groundwater 

3 Original surface and 

subsurface runoff (free 

drainage) 

3 Original surface and 

subsurface runoff (free 

drainage) 

SURFACE_DRAG_OPTION: 

options for surface layer drag coeff 

(CH & CM) 

1 M-O 1 M-O 

FROZEN_SOIL_OPTION: options 

for frozen soil permeability 

1 Linear effects; more 

permeable (Niu and 

Yang 2006) 

1 Linear effects; more 

permeable (Niu and Yang 

2006) 

SUPERCOOLED_WATER_OPTIO

N: options for supercooled liquid 

water (or ice fraction) 

1 No iteration (Niu and 

Yang 2006) 

1 No iteration (Niu and Yang 

2006) 

RADIATIVE_TRANSFER_OPTIO

N: options for radiation transfer 

3 Two-stream applied to 

vegetated fraction (gap 

= 1-FVEG) 

3 Two-stream applied to 

vegetated fraction (gap = 1-

FVEG) 

SNOW_ALBEDO_OPTION: option 

for ground snow surface albedo 

1 BATS 2 CLASS 

PCP_PARTITION_OPTION: 

options for partitioning precipitation 

into rainfall & snowfall 

1 Jordan (1991) 1 Jordan (1991) 

TBOT_OPTION: options for lower 

boundary condition of soil 

temperature 

2 TBOT at ZBOT (8m) 

read from a file 

(original Noah) 

2 TBOT at ZBOT (8m) read 

from a file (original Noah) 

TEMP_TIME_SCHEME_OPTION: 

options for snow/soil temperature 

time scheme (only layer 1) 

3 Semi-implicit; flux top 

boundary condition, 

but FSNO for TS 

calculation (generally 

improves snow; v 3.7) 

1 Semi-implicit; flux top 

boundary condition 

GLACIER_OPTION: options for 

glacier treatment 

2 Ice treatment more 

like original Noah 

(slab) 

2 Ice treatment more like 

original Noah (slab) 

SURFACE_RESISTANCE_OPTIO

N: options for surface resistance to 

evaporation/sublimation 

4 Sakaguchi and Zeng 

(2009) for non-snow; 

rsurf=rsurf_snow for 

snow (set in 

MPTABLE); AD v.3.8 

1 Sakaguchi and Zeng (2009) 
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Table A2. Mean characteristics of SNOTEL stations used in study, as grouped by eco-region. Climate and SWE variables are observed historical means for WYs 

2007 to 2019. Winter is defined as months Nov-March. Winter precipitation (PPT) is the sum over that period, whereas winter temperature is the average over 

that period. Accumulated SWE is the sum of positive daily changes in SWE for the entire water year.  
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Cascades 39 1282 1233 -0.12 796 169 (Mar 19) 3% 34% 53% 8% 3% 

Eastern Cascades Slopes and Foothills 11 1761 549 -1.04 480 157 (Mar 7) 9% 9% 55% 27% 0% 

Sierra Nevada 12 2225 886 -0.58 734 168 (Mar 18) 33% 17% 17% 33% 0% 

Northern Rockies 42 1975 634 -4.15 624 183 (Apr 2) 2% 21% 50% 24% 2% 

Blue Mountains 17 1669 597 -1.81 533 170 (Mar 20) 6% 24% 65% 6% 0% 

Basin and Range 24 2247 461 -1.82 480 174 (Mar 24) 29% 17% 21% 29% 4% 

Wasatch and Uinta Mountains 30 2563 449 -3.76 512 180 (Mar 30) 0% 10% 60% 10% 20% 

Southern Rockies 17 2997 465 -5.25 562 189 (Apr 8) 6% 18% 76% 0% 0% 

Arizona/New Mexico Mountains 7 2500 375 1.75 264 135 (Feb 13) 14% 29% 43% 14% 0% 
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Figure A3. Illustrations of observed SWE from SNOTEL station-years when a single-day snow metric like peak 

SWE significantly underestimates the totality of SWE being produced over the course of the water year. DOWY for 

peak SWE is indicated with a vertical green line, and peak SWE depth is indicated with a blue dot on the y-axis. 

Cumulative accumulated snowmelt is illustrated with orange bars and yearly accumulated SWE is marked with an 

orange dot on the y-axis. (a) WY 2011 at SNOTEL station 445 shows a case of pre-peak SWE melt. (b). WY 2009 

at SNOTEL station 443 shows a case of post-peak SWE accumulation. 

A5. Removing propagated uncertainty from daily changes in SWE 

The daily accumulation and melt rates are computed as the average positive or negative 

changes in daily SWE over the water year. Because we are comparing modeled results to 

observed measurements, we have to acknowledge differences in precision between the two. The 

SNOTEL snow pillow’s precision is 0.254 mm, which we take as the detection limit. The 

propagated uncertainty from this single-day detection limit into values of daily changes (i.e., 

𝑆𝑊𝐸𝑛+1 − 𝑆𝑊𝐸𝑛) is computed as:  

𝑠∆𝑆𝑊𝐸 = √(𝑠𝑆𝑊𝐸𝑛+1)
2

+ (𝑠𝑆𝑊𝐸𝑛
)

2
          (2) 

based on the rules of propagating uncertainty when adding or subtracting measurements (i.e., 

Kirchner, J. 2001). Here, we are replacing the typical standard deviation with the daily detection 

limit when describing the original measurement uncertainty. So, with a 2.54 mm uncertainty in 

the original measurement, the propagated uncertainty is 3.58 mm. Daily SWE changes below this 

(

a) 

(

b) 

(b) (a) 
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value were set to zero in both simulated and observed records to maintain consistency, because 

the in situ sensor may not be capable of deriving differences below this level.  

A6. Application of Kolmogorov-Smirnov (KS) test to evaluate model sensitivity 

We applied the Kolmogorov-Smirnov (KS) test to evaluate model sensitivity. This test 

has been utilized to assess model sensitivity for numerous hydrology model studies (e.g., He et 

al., 2011; Sun et al., 2019). In general, this statistical test is used to decide if a sample comes 

from a population with a specific distribution. Applied as a two-sample test, KS can be used to 

test whether two underlying probability distributions differ. In this case, the KS statistic is 

computed as the maximum vertical distance between the two empirical distribution functions: 

KS = sup
x

|F1,n(x) − F2,m(x)|         (3) 

where sup is the supremum function, and F1,n and F2,m are the empirical distribution functions of 

the first and second sample (Chakravarti et al., 1997).  

In this study, for each station and for each snow metric, we apply a two-sample KS test 

with the yearly snow metric values from the base case and from the experiment as the two sets of 

inputs. For example, Fig. A4 illustrates how the KS statistic is computed at Station 302 for the 

accumulated SWE metric, between the base case and Precip0. The empirical distributions 

include all yearly accumulated SWE metrics for the base case at that station in blue, and for the 

Precip0 experiment in orange. The maximum distance between the curves is indicated with the 

black arrow, and equals the KS statistic. KS values range from 0 to 1, with higher values 

indicating greater sensitivities. We used a minimum KS threshold value of 0.5 to identify 

sensitivity because it yields statistically significant results at p-value < 0.1. So, stations with a 



 

 

 173 

KS statistic equal to or greater than 0.5 were considered sensitive to that alternative model 

configuration for that snow metric.  

 

Figure A4. Example of computation of KS statistic, on the accumulated SWE metric and between the base case and 

Precip0 experiment at Station 302. The black arrow indicates the value of the KS statistic.  

A7. Model performance across model configurations 

Noah-MP predictions tend to overestimate observed accumulated SWE across most sites 

and for all model configurations except for the Precip0 and AORC experiments (Fig. A5a). All 

model configurations but the AORC experiment shows a model underestimation in storm rate, 

and a model overestimation in timing of peak SWE (Fig. A5b, d). The AORC experiment, and to 

a lesser degree, the Precip0 experiment, shows a high FNR for accumulation days (median of 

50% and 15%, respectively), whereas the rest of the experiments have FNRs of less than 10% 

(Fig. A5e). The model consistently underestimates daily average melt rate across all model 

configurations (Fig. A5f). AORC and Precip0 show the highest FNR for melt days, but the FNR 

for melt days is higher across all experiments (between 35% and 54%) (Fig. A5f), suggesting 

that the model fails at simulating observed melt events more frequently than it does for 

accumulation events. 
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Figure A5. Distributions of model performance across SNOTEL stations and nine model configurations for four 

snow metrics. (a) mean normalized bias (MNB) of accumulated SWE, (b) MNB of storm rate, (c) average false 

negative rate (FNR) for accumulation days, (d) difference in timing of peak SWE, (e) MNB of daily melt rate, and 

(f) average FNR for melt days. Bias metrics are computed for each station-year with reference to the observed 

SNOTEL records, and then averaged for each station over the time period. The color of the distribution and dashed 

horizontal line corresponds to the median metric value for each model configuration. A blue (red) color indicates the 

model configuration produces a lower (higher) median metric value than the observation.
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e) 

(

f) 

(d) (e) 
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Figure A6. (a) Distributions of model performance across SNOTEL stations and four model configurations related to 

snow albedo, as described by mean normalized bias (MNB) of melt rate. BATSdefault refers to the Base Case (Table 2.2 in 

main text) with all default parameters. CLASS refers to the Alb experiment, which utilizes the CLASS albedo scheme. 

BATStau_vis and BATStau_NIR refer to experiments with the BATS albedo model but with the snow age parameter 

τ0 adjusted to values optimized in Abolafia-Rosenzweig et al. (2022). A blue (red) color indicates the model 

configuration produces a lower (higher) median metric value than the observation. (b) Distributions of changes in the 

MNB of melt rate relative to the base case across SNOTEL stations and the three alternative snow albedo-related 

experiments. Bias metrics (MNBBC, Table 2.2) are computed for each station-year with reference to the base case, and 

then averaged for each station over the time period. The distribution color and the dashed horizontal line correspond to 

the median bias value for each experiment. A red (blue) color indicates the model configuration produces a higher 

(lower) median value than the base case.  
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Figure A7. Model performance (MNB in daily melt rate) across all stations in (a) BATStau_vis and (b) BATStau_NIR, as 

compared to SNOTEL SWE observations. The leftmost column of panels shows a smoothed histogram of the 

performance metrics across stations. A vertical dashed red line indicates the median metric value, and a horizontal dashed 

gray line indicates the interquartile range (IQR). The performance metrics are separated by geographic region in the 

second column; by climate subgroup in the third; and by vegetation type in the fourth. Circles mark the median of the 

subgroup, and the width of the line marks the interquartile range. If the subgroup has a filled-in circle, it is considered 

significantly different (p-value < 0.05) from the other subgroups. The number of stations in each subgroup is noted in the 

legend entries. 
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Appendix B 

Supplemental information for Chapter 3: Improved modelling of mountain 

snowpacks with spatially distributed precipitation bias correction derived 

from historical reanalysis 

Contents of this Appendix 

Texts B1, B2 

Figures B1, B2, B3, B4, B5, B6, B7, B8 

B1: Assimilation window for fSCA assimilation 

The time window for fSCA assimilation is from the snow onset date to 1 April. The snow 

onset date is defined for each pixel-year as the first day when 3 consecutive days have maximum 

snow cover; we use this date to exclude fSCA observations that occur during early season snow 

accumulation events. We find that, without later ablation-season fSCA observations to correct the 

prior SWE estimates, these early-season fSCA observations tend to add more noise than value to the 

reanalysis. So, the assimilation window generally includes the period of time when the pixel is fully 

snow-covered, which may include some dips in snow cover relating to winter melt events as 
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exemplified on days 40-50 in Fig. 3.3b and some portion of the ablation season depending on 

whether ablation happens before 1 April at that pixel.  

B2: Streamflow observations  

A daily time series of streamflow observations at the TGC (Tuolumne River at Grand 

Canyon) gage was constructed from records downloaded from the CDEC (California Data Exchange 

Center) platform. 15-min data was available for water years (WYs) 2009-2021, and daily data was 

available for WYs 2015-2021. In an effort to optimize data availability, we filled gaps in the 15-min 

data less than 3 hours long with linear interpolation and aggregated it to a daily time step. From this 

constructed daily time series, we filled gaps less than 5 days long with a spline interpolation (for 

example, in mid-April 2021 in Fig. B1). Any remaining gaps in the daily constructed time series 

were filled with available daily data from CDEC. We found that the constructed daily time series 

from 15-min data matched the daily data from CDEC exactly on overlapping days (for example, WY 

2021 in Fig. 1). These steps yielded a complete daily time series of streamflow observations for 

April-July in WYs 2009-2021, except for WY 2019 when several weeks of data in April are still 

missing (Fig. B2).  
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Figure B1. Time series of streamflow observations at the TGC gauge for April-July 2021. The blue line tracks the daily-

aggregated 15-min data; the orange line tracks the daily data downloaded from CDEC; and the green line tracks the post-

processed gap-filled time series.   

 

 

Figure B2. Time series of streamflow observations at the TGC gauge for April-July 2019. The blue line tracks the daily-

aggregated 15-min data; the orange line tracks the daily data downloaded from CDEC; and the green line tracks the post-

processed gap-filled time series.  
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Figure B3. Maps showing the ASO-derived snow depth measurements over the Hetch Hetchy watershed used in data 

assimilation for (top) 2015, (middle) 2016, and (bottom) 2017.  
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Figure B4. For the Case B + fSCA experiment, these maps illustrate (left to right) the number of assimilated fSCA 

observations; the percent of those fSCA observations that occur after pixel-wise peak SWE; the day of peak SWE; and 

the difference in posterior and prior error (where error is defined as the absolute difference between the SWE estimate 

and the historical reference) (a) WY 1998 and (b) WY 2012. In the right-most map, pixels colored in blue indicate a 

reduction in error with fSCA assimilation, and red indicates an increase in error. Note that the watershed-scale NRMSD 

was reduced with fSCA assimilation for both water years shown.  

(

a) 

(

b) 

(a) 

(b) 



 

 

189 

 

 

Figure B5. For the Case B + fSCA experiment, these time series track average values of 4 key metrics for model pixels 

with error reduced by fSCA assimilation versus pixels with error increased, where error is defined as the absolute 

difference with respect to reference 1 April SWE. A circle surrounds the yearly data point for years in which a 

statistically significance difference (p-value < 0.05 in a t-test) exists between the two groups of pixels. The dashed 

horizontal lines indicate the long-term average metric value for the two pixel groups. The metrics included are, from top 

to bottom: the day of peak SWE, the number of fSCA observations assimilated, the percent of those observations that 

occur after peak SWE, and elevation.  
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Figure B6. For WY 2015, a summary of the performance metrics (from left to right: NRMSD, R, and MD) for both prior 

(red) and posterior (blue) SWE and snow depth estimates in the Case B + SD experiment. Here, the reference is the ASO 

snow depth (top row) and ASO SWE (bottom row), and the metrics are evaluated on each day when ASO obtained 

measurements. The black vertical line indicates DOWY 185, the validation day for this year. The three prior ASO snow 

depth observations are assimilated into the posterior estimates in the Case B + SD experiment. 

 

 

Figure B7. A map showing the change from the absolute difference relative to the ASO reference in prior SWE estimates 

to posterior SWE estimates for the Case B + SD experiment (|posterior – reference| – |prior – reference|), on WY 2015 

DOWY 185. Areas in red indicate pixels where the posterior difference is greater than the prior difference. Note that 

pixels where both observed and simulated SWE is 0 are greyed out. 
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Figure B8. For WY 2009-2021, scatter plots showing basin-averaged 1 April SWE from the historical reference and four 

experiments, and observed AJ streamflow volume. Each dot represents a different water year. Solid lines indicate the 

regression lines for that experiment. The R2 for each linear regression is noted in the legend. Note that for a given year, 

that year’s data is excluded from the regression. Instead, the reference 1 April SWE and observed AJ streamflow is 

plotted with a black asterisk symbol.  
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Appendix C 

Supplemental information for Chapter 5: Impact of climate warming and 

snowpack declines on California Sierra Nevada reservoir storage and water 

deliveries 

Contents of this Appendix: 

Texts C1, C2, C3 

Figures C1, C2 

Tables C1, C2, C3 

References 

C1: Selection of GCM subset 

We select a subset of seven downscaled GCMs from the 14 that were used to force the VIC 

model to best match historical California climate. The selection criteria are high rankings in process-

based and climate metrics from Krantz et al. (2021). These metrics compare GCM climate to ERA5-

derived climate in California over the historical reference period of 1979-2014 (Krantz et al., 2021). 

Process-based metrics quantify the models’ ability to capture large-scale patterns including: northern 

hemisphere circulation, blocking, wind shear, extreme precipitation, Santa Ana winds, and El Niño 
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Southern Oscillation. Local climate metrics measure seasonal and annual patterns in temperature and 

precipitation. A higher metric ranking corresponds to a better fit. So, we select GCMs from those 

used to drive the VIC model that have high rankings in both local climate and process-based metrics 

(Fig. C1). We prioritized a higher ranking in local climate metrics because these are more suited to 

statistical downscaling methods (such as LOCA, the method chosen for this study) (Krantz et al., 

2021).  

 

Figure C1. Annotated Figure 6 from Krantz et al. (2021). We add red boxes to highlight the selected GCMs for this 

study.  
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C2: Hedging 

Hedging is applied as a reservoir operating rule to restrict releases when reservoir storage is 

low. Fig. C2 illustrates how this rule is applied. We use a 2-point hedging rule with three conditions:  

1). If storage is greater or equal to h2, release the target demand. 

2). If storage is less than h1, release all the water available. 

3). If storage is between h1 and h2, make a restricted release: 

𝑅𝑡  =  𝑚(𝐴𝑡 − ℎ1) + ℎ1           (1) 

where for day 𝑡, 𝑅 is the prescribed release, 𝐴 is the available storage (including the inflow gain and 

evaporation loss), and 𝑚 is computed as: 

𝑚 = (𝑇𝑡  −  ℎ1)/(ℎ2 − ℎ1)          (2) 

where T is the target demand. The thresholds h1 and h2 are chosen such that 0 ≤  ℎ1 ≤  𝐷 and  𝑇 ≤

 ℎ2 ≤  𝐾 + 𝑇, where 𝐾 is the reservoir capacity.  

In this application of hedging, we define h1 and h2 as time-varying thresholds, such that: 

ℎ2,𝑡  = 𝑎 (𝐾 + 𝑇𝑡)             (3) 

ℎ1,𝑡  = 𝑏 (𝑇𝑡)              (4) 

where factors 𝑎 and 𝑏 are static parameters ranging from 0 to 1. We calibrate these parameters for 

each reservoir.  
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Figure C2. Schematic illustrating the application of a two-point hedging rule with standard operating policy, from Figure 

130.2 in Vijay et al., 2017.   

C3: Evaporation model 

To build a statistical model that predicts evaporation losses from the reservoir, we follow 

three steps: 1). compilation of historical records for observed evaporation rate; 2). definition of a 

linear regression that predicts evaporation rate from temperature; 3). definition of a linear regression 

that predicts storage area from simulated storage.  

We pull the best available data for historical evaporation rates from the California Data 

Exchange Center (CDEC). The source of observations is tabulated for each reservoir in Table C1. 

For four reservoirs, we use observed evaporation rates from a nearby reservoir sensor due to limited 



 

 

196 

 

data availability. When the evaporation rate is recorded as a volume (cfs), we convert it to a depth 

(in/day) by dividing the volume with the predicted storage area. We remove obvious outliers and 

negative values from the record. 

We build a linear regression to predict the evaporation rate (in/day) from temperature. This 

regression uses observed evaporation rate (Table C1) as the dependent variable, and temperature 

from the grid cell closest to the reservoir location as the independent variable. To build the 

regression equation, we pull temperature from the final post-processed daily historical forcings (bias-

corrected ERA5-WRF; Rahimi et al., 2022) used in the calibration of the VIC land surface model for 

WYs 2001-2020. The coefficient of determination for these regressions are tabulated in Table C2. 

When applied to the historical and future time periods, the input to this regression is the temperature 

from the grid cell closest to the reservoir location in the bias-corrected GCM meteorology.  

The second regression model predicts area from reservoir storage based on monthly 

measurements compiled by the Global Reservoir Storage dataset (Li et al., 2023). This dataset 

assembles reservoir water areas from a multi-source satellite dataset and monthly storage using 

bathymetric maps for years 1999 to 2018. The coefficient of determination for these regression 

equations are tabulated in Table C2.  

To estimate evaporation volume, we multiply the predicted evaporation rate with the 

predicted storage area. For calibration and validation purposes, we use observed storage rates; and 

for the GCM results, we use simulated storage. We compare the predicted daily evaporation volumes 
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with available observed values for Shasta, Oroville, Folsom, New Melones, and Millerton over the 

validation period of WYs 2001-2020. Weekly Kling-Gupta Efficiency (KGE) scores for this 

comparison are tabulated in Table C1. Note that for WYs 2021-2023 in the validation of simulated 

reservoir storage and outflow, we apply median historical evaporation because the available 

temperature input data only went to 2020.  

Table C1. The source of historical evaporation observations for each reservoir is indicated as: CDEC station ID (sensor 

number).  

Reservoir 
Source of 

observations 
Description 

sha SHA (74) Computed lake evaporation from Shasta [cfs] 

oro ORO (74) Computed lake evaporation from Oroville [cfs] 

bul ORO (74) Computed lake evaporation from Oroville [cfs] 

fol FOL (74) Computed lake evaporation from Folsom [cfs] 

cmn NHW (175) Satellite-observed evaporation rate from New Hogan [in/day] 

nml NML (74) Computed lake evaporation from New Melones [cfs] 

dnp NML (74) Computed lake evaporation from New Melones [cfs] 

exc NML (74) Computed lake evaporation from New Melones [cfs] 

mil MIL (74) Computed lake evaporation from Millerton [cfs] 

pnf PFW (175) Satellite-observed evaporation rate from Pine Flat [in/day] 

trm LKW (175) Satellite-observed evaporation rate from Kaweah [in/day] 

scc SCW (175) Satellite-observed evaporation rate from Success [in/day] 

isb IWS (175) Satellite-observed evaporation rate from Isabella [in/day] 
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Table C2. Coefficient of determination for the two linear regression models, and weekly KGE scores for the validation 

period WYs 2001-2020. Note that validation is performed in reservoirs where available observed records of evaporation 

volume exist.  

 Coefficient of determination (R2) 
Simulated to observed 

validation (weekly) 

Reservoir 
Temperature to 

evaporation 

Storage to 

area 
KGE 

sha 0.64 0.999 0.85 

oro 0.73 0.998 0.88 

bul 0.7 0.999  

fol 0.59 0.999 0.81 

cmn 0.74 0.997  

nml 0.71 0.994 0.89 

dnp 0.72 0.998  

exc 0.71 0.989  

mil 0.68 0.999 0.86 

pnf 0.7 0.992  

trm 0.78 0.971  

scc 0.74 0.967  

isb 0.73 0.995  

 

Table C3. Comparison of R2 values for daily simulated reservoir storage from this study and two examples from the 

literature.  

 
Present study 

 

Steinschneider et 

al., 2023 
Zeff et al., 2021 

Validation period: WYs 2001-2023 WYs 1997-2021 WYs 1996-2016 

Reservoir daily storage R2 

sha 0.88 0.86 0.92 

oro 0.87 0.75 0.94 

bul 0.78 0.8 0.87 

fol 0.81 0.82 0.86 

cmn 0.83   

nml 0.95 0.91 0.96 

dnp 0.94 0.9 0.87 

exc 0.94 0.79 0.93 

mil 0.5 0.66, 0.56* 0.56 

pnf 0.77 0.87*  

trm 0.57 0.45*  

scc 0.57 0.85*  

isb 0.84 0.91*  

* shared over email communication by Jonathan Herman (October 2024), for the validation period of WYs 2014-2023 
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