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ABSTRACT OF THE DISSERTATION

Three Studies in Speech Perception:

Features, Relative Salience, and Bias

by

Louis Mark Goldstein
Doctor of Philosophy in Linguistics
University of California, Los Angeles, 1977

Professor Peter Ladefoged, Chairman

This dissertation consists of three chapters, each of which is a
separate paper dealing with a particular issue in speech perception.
They are tied together by a concern for integrating the investigation
of speech perception, in the narrow sense, into some larger frameworks.

Chapter One compares speech perception and speech production for
evidence of categorical phonological features. Multidimensional scal-
ing analyses of three types of English consonant confusions are report-
ed: consonant substitutions in spontaneous speech errors, CV percep-
tual confusions and VC perceptual confusions. Two data sets of each
type are analyzed to assess reliability. Three reliable dimensions
emerge in all data sets, corresponding to voicing, stop/fricative and

place of articulation. Representation of consonants in terms of



categorical phonological features describes what is common to the con-
figurations of different data types, even though there is reliable de-
tail within each data type that is not captured by categorical features.
Such features can be viewed as the components of the internal represen-—
tation of speech sounds that is common to various perception and pro-
duction processes.

Chapter Two attempts to relate the results of research on the per-
ception of nonsense syllables to the perception.of larger linguistic
units, ie., words and phrases. This involves the notion that certain
segments or certain syllables in the input signal are more perceptually
salient than others; they constrain higher-level decision processes
more than others. An experiment is reported in which listeners iden-
tify words and short phrases that were excised out of spoken sentences.
More errors were made in the unstressed syllables of these excerpts
than in the stressed syllables, for both initial consonants and vowels.
This supports the hypothesis that stressed syllables are more percep-
tually salient than unstressed ones. In addition, the relative error
rates for different consonants in this experiment agree quite well with
the relative error rates in nonsense syllable recognition. This indi-
cates that the relative phonetic ambiguity of a particular segment is
one determinant of its perceptual salience in word and phrase
recognition.

Chapter Three examines the role of bias in perceptual confusions
of consonants. Two different models for extracting response bias from
a confusion matrix are compared--a metric and a nonmetric model. The

metric model is found to be appropriate for consonant confusions and is

vi



analyzed in detail. Reliable biases are found in the perception of con-
sonants in VC syllables. This bias correlates well with the frequency
of the consonants in English words. The bias can also be shown to re—
flect the phonological naturalness of the consonants. Biases for con-
sonant perception in CV syllables are less reliable than in VC syllables
and the correlations with frequency and phonological naturalness are not
as good. A model of nonsense syllable recognition is proposed to ac-
count for the difference between CVs and VCs. This model claims that
lexical mechanisms are invoked by listeners, even when recognizing

nonsense syllables.
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Chapter 1:

Categorical features in speech perception and production

To appear in:

V. Fromkin (ed). Proceedings of
the workshop on slips of the tongue
and ear, Vienna, 1977.



Categorical features in speech

perception and productionl

Louis Goldstein

INTRODUCTION

It is a common assumption in research in speech perception that
a listener's internal representation of the speech signal is organized,
at least in part, in terms of the phonological features employed in
linguistic analysis (cf. Studdert-Kennedy, 1976; Fant, 1967; Stevens
and Halle, 1967). 1In fact, the process of speech perception has been
summarized as follows (Studdert-Kennedy, 1976, p. 253):

'In short, perception entails.the analysis of the
acoustic syllable, by means of its acoustic features,
into the abstract perceptual structure of features
and phonemes that characterize the morpheme.'

It will be shown that the kind of evidence previously suggested
in favor of the organization of perception in terms of features is
inconclusive. The relationship between speech perception and speech
production which is demonstrated in this paper provides more conclusive
evidence of the importance of features in the internal representation
of speech.

Features in phonology

Features have a number of different functions, at different levels,
within the context of phonological theory. One, the phonological
function, is to classify the segments of a morpheme with respect to
universal phonological categories such as voiced, voiceless, stop, etc.
This categorical representation is relevant to the application of
language-specific phonological rules. Another function, the phonetic,
is to specify these segments as to their language-specific (but not
speaker—specific) values on a number of potentially continuous phonetic
parameters. In the case of some features, the possible values are es-
sentially categorical even in the context of their phonetic function.
Consider the feature [voice]. Phonologically, English obstruents can
be classified simply as [+voice] or [-voice]. Phonetically, some
more detailed specification needs to be made, so that the English



voice/voiceless distinction can be differentiated from similar dis-
tinctions in other languages in which there is a systematically
different way of realizing the distinction. English obstruents will
have to be assigned two modal values with respect to some phonetic
parameter of voicing. For example, considering voice-onset time (VOT)
as the relevant voicing parameter (Lisker and Abramson, 1964), voiced
stops in English might be assigned a value of + 15 msecs and voice-
less stops a value of +80 msecs. The fact that /p/, /t/ and /k/
differ systematically from one another in VOT (as do /b/, /d/ and /g/)
would 7ot need to be explicitly represented, however, since it is
likely that this variation is universally predictable (Ladefoged, 1975).
Thus, even on the phonetic level, voicing in English can be seen as
categorical with the categories representing modal values of eg. VOT,
rather than fully abstract classifications.

In this paper, the claim that a speaker/listener's internal re-
presentation of speech sounds is organized in terms of features, is
taken to mean in terms of categorical features. As suggested above,
this does not necessarily imply phonological, as opposed to phonetic
features. Furthermore, demonstration of psychological validity for
some categorical features does not rule out the possibility of there
being some non-categorical (i.e. continuous) features that play a
role in speech perception and production, as well. In fact, a model
proposing a rather simple relationship between continuous and cate-
gorical features will be outlined below.

Evidence for categorical features in perception

Evidence for features in perceptual representations have come
primarily from two basic types of experiment: selective adaptation
(see Cooper, 1975, for review) and phoneme confusion and similarity
judgment (see Singh, 1975, for review). This paper will primarily
concern itself with the latter type of evidence. Evidence from con-
sonant confusions or from subjects' judgments of consonant similarity
has been often presented as evidence for features of consonants (Miller
and Wicely, 1955; Singh, 1966; Singh and Black, 1966; Wang and Bilger,
1973; Peters, 1963; Singh, Woods and Becker, 1972). The logic that
provides for internal representation in terms of features from these
experiments is as follows: when consonants are divided into groups
according to features, the consonants within the group are, on the
average, more confusable with each other than with consonants 7ot in
the group. (A statistical formulation of this procedure has been
described by Klatt (1968), who applied it to memory confusions). This
grouping is then taken to reflect the psychological organization of
the consonants in question. A similar argument can be made for
studies employing similarity judgments. The consonants within a group
can be shown to be judged more similar to one another than to con-
sonants not in the group. The problem with this approach, however,
is that detailed examination of the similarity or confusability
structure in these experiments may yield reliable patterns that are
richer and more detailed than can be accounted for by hypothesizing
an internal representation in terms of feature categories. 1In particular,



there may be reliable within ~ group patterns. Since some kind of
auditory or cognitive variables will have to be proposed to account
for this microstructure in the data, it is conceivable (and more
parsimonious) that these variables also account for: the division of
consonants into groups.

A common technique for revealing similarity or confusability
structure (and the technique that is employed in the present study) is
multidimensional scaling. This family of mathematical techniques
(Torgerson, 1958; Shepard, 1962; Kruskal, 1964; Harshman, 1970; Car-
roll and Wish, 1974) models the stimuli of a similarity or confusion
experiment as points in an n-dimensional space, such that the distances
between pairs of points in the space can be related to the similarity
or confusability between pairs of stimuli by some simple function.

The nature of this function differentiates different forms of multi-
dimensional scaling. The number of dimensions present in the con-
figuration must be determined empirically. The greater the number of
dimensions, the better the fit of the configuration to the data will
be. However, since one would like to include in the configuration
only the reliable properties of data, not the noise, one should choose
a dimensionality that stops short of accounting primarily for noise.
(Practical approaches to this problem are outlined in the methods and
results sections, below).

Having derived a spatial configuration that represents. the
similarity structure inherent in a confusion matrix in some satisfactory
number of dimensions, one can examine this structure for the presence
of groups that are meaningful from a linguistic or perceptual point
of view. This examination requires the researcher to choose a par-
ticular set of reference axes in the configuration. Any pair of axes
in the space can be rigidly rotated (maintaining 90° between these two
axes) without altering the interpoint distances in the configuration.
While there are certain techniques for deriving non-arbitrary rotations
of the axes (Harshman, 1970; Carroll and Chang, 1970 ), such procedures
are not applicable to all experimental situations. Thus, in the ex-
periments to be reviewed below, as well as in the new analyses pre-
sented in this paper, reference axes are rotated so as to make the
resulting configurations maximally interpretable. That is, axes are
rotated so that the stimuli seem to be grouped meaningfully.

As an example of the application of multidimensional scaling
to perceptual confusions, consider the re-analysis by Shepard (1972)
of the Miller and Nicely (1955) consonant confusion data. Miller
and Nicely presented subjects with CV syllables under different levels
of noise, and different conditions of band-pass filtering. The
syllables included the consonants shown in Fig. 1 before the vowel
/a/. Shepard analyzed the combined data from all noise conditions,
with no filtering. He calculated a proximity measure for each pair
of consonants, based on the number of times the two consonants were
confused with one another. (This procedure is outlined in the method
section, below). He fitted these proximities to a spatial configuration
using an exponential function. Two dimensions accounted for 99.47%
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“fiéﬁre 1. .Two-dimensional configuration of Miller-Nicely (1955)
consonant confusion data, as analyzed by Shepard (1972).

Dotted lines separate voiced from voiceless (I) and nasals
from non-nasals (II).




of the variance in the proximities. Fig. 1 shows the positions of

the 16 consonants in the two-dimensional space, using the rotation

of reference axes chosen by Shepard. Dimension I clearly divides the
consonants into two large groups —-- voiced vs. voiceless. Dimension

II divides consonants into nasals and non-nasals. Since these

groups correspond to phonological features, this could be taken as
evidende of the importance of these features in perceptual organization.
However, there is no evidence in Fig. 1 that these groups are cate-
gorical -- at least in the voiced, voiceless and non-nasal groups there
is subgtantial structure within the groups.

How is this within-group structure to be accounted for? Before
attemptiing to account for it at all, we need to know whether or not
this s&ructure is reliable. That is, a comparable independent data
set should be examined to determine if this structure is observed
in both sets. It is not known whether or not this configuration of
the Miiler-Nicely data is reliable in this sense. However, we assume
that it is, in order to continue the example. Clearly we can see the
influence of other features within these groups. For example, dimension
I divides voiceless consonants into stops and fricatives. Both voiced
and voiceless fricatives are distributed along dimension II according
to place of articulation. Thus, the reliable within-group variance
might be due to other categorical features, perhaps indicating that
too fey dimensions were extracted in the analysis. It is possible
to use |statistical procedures to remove the potential effects of other
categorical features on these dimensions. One could then determine
whether there was any reliable within-group structure still present
after removing the effect of other categorical features. If such an
analysis were to find that residual variance was reliable, after
removal of all categorical features, this would indicate that some
non~categorical properties of the stimuli or the perceptual system
were being tapped in this experiment. One would then need some way
of determining whether the major groupings themselves (nasality and
voicing, in this case), were a function of internal perceptual categories
or the same continuous properties that account for the within-group
structure.

An example of a scaling analysis in which the dimensions were
correlated with continuous properties of the stimuli can be found in
Ingram (1975). He had subjects rate similarity among 12 consonants
(shown in Fig. 2) in the environment before the vowel /o/, by means
of trigdic comparison. The two-dimensional configuration resulting
from alnon-metric multidimensional scaling (which requires only that
the relationship similarities and distances in the space be monotonic)
is showyn in Fig. 2. Dimension I divides consonants into three phono-
logical categories -- stops, resonants and sibilants. However, Ingram
shows %hat the values of the consonants on this dimension correlate
highly (.94) with the measured durations of the consonant stimuli
used in the experiment. Similarly, he finds that the values of di-
mension II can be shown to correlate highly (.92) with a weighted dif-
ference of energy in two selected frequency bands. Thus, we are
faced, 'once again, with an ambiguity in interpreting the results.
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Figure 2. Two-dimensional configuration of /Ca/ similarity
Judgement data, after Ingram (1975). Dotted lines divide
dimension I into stops, resonants and sibilants.
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Do they provide evidence for categorical features in the perceptual
representation of speech sounds, or are the similarity judgments ex-
plicable in terms of low-level auditory properties of the stimuli?

The analyses to be described below attempt to resolve some of
interpretive problems outlined above and to establish the importance
of categorical features in speech perception and production. Speci-
fically, we view categorical features as representing what is common
to perception and production processes. Our procedure is to find
pairs of sets of data in perception and production that can be con-
sidered to be close replications of one another. It will then be
possible to determine the extent to which there is reliable non-cate-
_ gorical variance in perceptual and in production spaces. It will also
be possible to compare dimensions of perception with those of pro-
duction. It is hypothesized that the common variance between per-
ceptual and production spaces will be categorical in nature.

Obtaining experimental confusion data for speech production is
more difficult than obtaining the comparable data for speech perception.
Therefore, analysis of speech production is based on errors in spon-
taneous speech production (Fromkin, 1973; Shattuck, 1975). In par-
ticular, single sound changes -- cases in which one segment is replaced
by another -- are used as a measure of consonant similarity with res-
pect to. the production system. FEarlier analyses of this type of error
have shown that consonants that share features tend to be substituted
for one another more than consonants that do not. MacKay (1970) has
shown that for 567 of the comsonant reversals he analyzed, the con-
sonants differed in only one feature. Thus, there is reason to con-
clude that speech errors are constrained by some measure. of phonological
similarity, and, therefore, it is reasonable to compare them with per-
ceptual confusions.

METHOD

Data: Production

Iwo independently collected sets of spontaneous speech errors
vere analyzed, so that reliability of the analysis could be assessed.
The corpus of over 7,000 spontaneous errors described by Fromkin
(1973) constituted the basis for one set. These were examined for
errors in which a single consonant in the intended utterance is re-
placed in the actual utterance by a different consonant. Such errors
belonged to one of four categories :

(1) substitutions: a consonant is replaced by another that
does not appear anywhere in the immediate environment.

example: a milk shake + a bilk ...

(2) anticipations: a consonant is replaced by one that occurs
later in the utterance.

example: also share -+ alsho share
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(3) perseverations: a consonant is replaced by one that occurred
earlier in the utterance. '

example: give a boy -~ give a goy

(4) spoonerisms: two consonants in an utterance replace each
other.

example: keep a tape > teep a cape

Errors belonging to any of these classes were tabulated into a
confusion matrix, indicating the total number of times each target
consonant was replaced by each of the other possible consonants. Each
spoonerism was included twice in this matrix, as each of the reversing
consonants can be considered as both target and replacement. The
resulting matrix, referred to as SOT1 (for slips of the tongue), in-
cludes 1,369 entries. (See Table 1).

Shattuck (1975) presented a target-replacement confusion matrix
constructed according to these same principles, from her corpus of
speech errors. This matrix constituted the other set of speech error
data for the present analysis. It includes 1,057 entries, and is
presented as SOT2 in Table 2.

Data: Perception

Perceptual confusion data from published results of Wang and Bil-
- ger (1973) were analyzed. They presented listeners with series of
both CV and VC syllables in two types of listening conditions: noise ——
signal mixed with noise at various S/N levels; and quiet —-signal
played without added noise at various low levels. The consonants

/p, t, k, b, d, g, f, &, s, f, v, 8, z, 3, tf, d3/ served in both CV
and VC syllables. The vowels /L, a, u/ were employed throughout, but
subjects were only required to identify the consonant. Wang and Bilger
present four separate confusion matrices for these consonants. Each has
data for a given syllable type (CV or VC) in a particular experimental
condition (noise or quiet). Each matrix is summed over subjects,
vowels, and S/N level. These four confusion matrices were used in the
present analysis. CVs and VCs were both analyzed in order to examine
possible systematic differences in perceptual dimensions in different
syllable positions. WNoise and quiet conditions were both analyzed

so as to allow the reliability of CV and VC data to be assessed. The
noise and quiet conditions are clearly not exact replications. How-
ever, examining what is reliable across these conditions isolates those
perceptual relationships that are at least robust enough to recur under
minor variations in experimental conditions.

To make the perception and production data sets comparable, it
was decided to analyze only the speech error data relevant to the six-
. teen consonants in the perceptual confusion experiments. Submatrices
were generated from the matrices in Table 1 and Table 2 by eliminating
those rows and columns corresponding to consonants not in the confusion

10
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sets. Thus, six sets of data were analyzed--SOT1,SOT2,CVN,CVQ,VCN and
VCQ. There are three types of data -- speech errors, CV perception,
VC perception -- and two sets of data designed to allow reliability
assessment within each type. ’

Analysis

Nonmetric multidimensional scaling was the main tool for the ana-
lysis (Shepard, 1962; Kruskal, 1964). The nonmetric procedure makes a
minimal assumption about the function that relates the similarity data
to the distances in the derived configurations. That function is con-
strained only to be as close to monotonic as possible. This type of
scaling was chosen so that the perceptual confusions and speech errors
could be analyzed using identical techniques. While it is known that
an exponential function fits well for perceptual confusion data (She-
pard, 1972), it was not known what function would be best for speech
errors.

Before scaling the data, a single value, representing the similar-
ity associated with each pair of comsonants was calculated to submit
to the scaling routine. For the perceptual confusions, the procedure
to derive these similarities from the confusion matrices was as follows:
First, the entries in each row of the confusion matrix (i.e. the respon-
ses to a given stimulus) were multiplied by a comstant proportional to
the reciprocal of the number of times the stimulus had been presented.
This eliminated slight discrepancies in the number of times each sti-
mulus was presented. These corrected confusions were then converted
into similarities by using equation (1), from Shepard (1972):

(1) sim(i,j) = £(ij) + £(j,1)

(0,1 + £(j,]))

where Sim(i,j) = similarity between j and j
f(i,j) = number of confusions of stimulus | with response J
f(i,i) = number of correct responses for |

]

Luce's model of choice (Luce, 1959) attributes differences between
stimuli in number of correct responses to differences in bias between
the stimuli. Thus, dividing the number of confusions between a pair
of consonants by the number of correct responses for that pair of
consonants removes the effect of bias from the resulting values. For
the speech error data, bias could not be removed in this way, since
there is no diagonal, i.e. no correct responses, in the speech error
confusion matrices. Therefore, an estimate of similiarity was derived
from speech errors simply by averaging the matrix across the diagonal,
according to (2) below:

(2) sim(i,j) = £(i,J) + £(j,1) /2
The non-metric multidimensional scaling was performed by the KYST

program (Kruskal, Young and Seery, unpublished manuscript) on the IBM
360/91 at UCLA. This program uses an iterative method to find a con-

12



figurdation of points in an n-dimensional space that minimizes a quanti-
ty referred to as stress (Kruskal, 1964). Stress is calculated by mono-
tonically regressing the distances between points in the configuration
(Di) onto the input data. If d; represents the values predicted by this
regregsion, then stress is a measure of the departure of 3i from D; as
in (3% below:

&3)

STRESS = i

where NN = number of pairs of points.

The starting configuration for the present analysis was the metric
scaling configuration of the data (Torgerson, 1958). This starting
configuration maximizes the probability of the program finding a global,
rather than local, minimum of stress. The metric scaling assumes that
the similarity values, themselves, represent a linear function of the
true ipterpoint distances among the stimuli. It tries to find the
best n-dimension approximation to this set of distances. The program
allows a choice of a metric for the relationship between projections
of points on the n-dimensions of the space and the interpoint distances.
The Euclidean distance metric was chosen, which assumes the relation —
ship between dimensions and distance as in (4) below:

(#) Y A
D (x,7) ='\/ Yoy - y)?
i=1
where D (x,y) = distance between points x and y
X5 = coordinate of point X on dimension i
yi = coordinate of point y on dimension i
M = number of dimensions

Solutibns were obtained in one to six dimensions.
RESULTS

Dimensionality

A first task in interpreting the results of a multidimensional
scaling is to determine (at least tentatively) how many dimensions are
required to best model the data. In the ideal configuration, all of the
systematic, reliable properties of the data are modeled but noise in
the data is not. There are no automatic procedures for determining how
many dimensions provide the best approximation to this ideal configu-
ration, The most widely accepted technique is to examine the stress
values| at a range of dimensionalities. Any plot of stress vs. dimen-
sionality will show stress decreasing as dimensionality increases,

13



becauge the fit to the data will always be better with more dimen-
sions, Let us assume that at some dimensionality, n, the config-
uration begins to account - primarily for neise rather than systema—
tic properties in the data. The reduction in stress between dimen-
sion n-1 and dimension n would, therefore, be expected to be smaller
than &he reduction observed from dimension 1 through dimension n-1.
If this occurs, one can see an elbow in the plot of stress vs. di-
mensignality at dimension n-1. Furthermore the decrease in stress
for additional dimensions n+l, nt2, ... will be comparatively
constant as each dimension accounts for a similar proportion of the
noise.

Plots of stress vs. dimensionality for the six sets of data
analyzed are shown in Figure 3. One through five dimensional solu-
tions lare plotted. The six-dimensional solutions did not achieve
a minimization of stress for some of the sets of data, and will not
be considered further. Clear elbows emerge for the CVN and CVQ
data sets. This elbow is at three dimensions. An elbow also occurs
at three dimensions for the VCN data, but the other sets do not have
convincing elbows at all. The lack of any observable elbow is one
problem with using this criteriom for dimensionality. Moreover,
Shepard (1974) has argued that interpretability and reliability of
solutions are better guides to choice of dimensionality than is re-
duction of stress. Similar points have been made by Wish and
Carroll (1974) and Gandour and Harshman (1977), who have shown that
reliablle, interpretable dimensions may contribute only minimally to
the gopdness of fit of a scaling solution. Thus, the lack of el-
bows in the present analysis need not be considered either as a
problem in the analysis or as a barrier to further interpretation.

A theoretically more motivated procedure for determining di-
mensionality has been proposed by E. Holman (personal communication).
This procedure requires analyzing a pair of sets of data that can
be congidered to be replications. One then correlates, across a
range 0f dimensionalities, the interpoint distances derived for
one data set with the raw data from the paired data set. This
correlation should increase as dimensionality increases, as long as
the dimensions represent reliable properties of the data that are
common | to both sets of data. At the dimensionality where one begins
to extract data-set-specific noise, this cross-~set correlation should
stop increasing, or even decrease.

These cross-set correlations were calculated for the two sets
of speech errors, the two CV sets and the two VC sets. Correla-
tions were calculated for one through five dimensions, using the
GAMMA program (provided by Eric Holman). The program calculates
gamma, |a rank order correlation (related to Kendall's tau), since
the distances are fitted only on the basis of monotonicity with
the data in non-metric scaling. Figure 4 plots gamma vs. dimension-
ality.| For each plot, the labelled data set provides the inter-
point distances for the correlation. For both SOTs and CVs, gamma
clearly stops increasing after three dimensions. For the VC pair
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Figure 3. Plots of Kruskal's stress as a function of number
F of dimensions extracted, for all data sets analyzed.
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of data sets, gamma peaks at three dimensions when correlating the
VCQ configuration with the VCN data, but at four dimensions when
correlating the VCN configuration with the VCQ data. The reason

for this asymmetry is not clear, and it may be related to the gener-
ally goor cross-set correlations for VCs, compared to speech errors
and CVs. Whatever the reason, if we are concerned with how many
dimengions are reliably present in both of two independent sets of
data, then we must choose three for VCs and well as for speech errors
and CVs.

Interpretation

The three-dimensional solutions for all six sets of data were
rotated orthogonally (using Comrey's (1973) program) to linguisti-
cally plausible configurations. In fact, the configuraitdns could
be rotated so that roughly the same three linguistically-related
dimensions appeared in all six data sets. This further supports
the desirability of the three-dimensional solutions. The three
dimensions could be interpreted as follows: I - stop consonants
vs. fricatives, II - voiced vs. voiceless; and III - place of
articulation.

The positions of the 16 consonants in the plane formed by di-
mensions I and II are shown in Figures 5 through 7, for CV, VC and
speech error data respectively. The two data sets of a given type
are shown side by side in the same figure, so that reliability
can be assessed graphically. Dimension I divides the consonants
into two groups according to the categories [* continuant] and
dimension II divides them into groups according to the categories
[T voice]. Wherever such division into groups is possible without
the groups overlapping, a dashed line is drawn in the space. Only
two cases show and overlap —— VCQ and SOT1 (Fromkin data) configu-
rations for dimension II. Examination of these cases shows the
overlap to be very small. Thus, the categories [¥ continuant] and
[* voice] are reliably distinguished in the various data sets ana~-
lyzed.

Examining Figures 5 through 7 more closely it is clear that
the two data sets of a given type are highly similar to one another
in detpil. Systematic differences, however, can be found between
different data types. For example, the affricates /t[/ and /dz/
are at the extreme stop end of dimension I in both VC data sets,
but are at the border between stops and fricatives in both sets of
CV data. There is a reasonable explanation for affricates being
"extreme'" stops syllable-finally, but only "weak" stops syllable-
initially, particularly in an auditory task. Unlike other stops,
an afﬂricate in final position must be released, and thus the
silent interval corresponding to the stop closure will always be
in thel acoustic signal. Other stops may be unreleased, or re-
leased very weakly, so that there is less likely to be a silent gap
in thel acoustic signal. In utterance-initial position, no stops
will bave silent gaps in the signal, of course. However, the release
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portions of /t[/ and /d3/ are very similar acoustically to /[/ and
/3/. There is no comparable acoustic overlap between the other
stops and any of the fricatives in the data set. This may account,
then, for proximity of the affricates to the fricatives in syllable~-
initial position.

Figures 8 through 10 show the positions of the 16 comnsonants
in the I-III plane, again for CV, VC and SOT types of data, res-
pectively. For all data sets, dimension IIT divides the consonants
into groups according to place of articulation. However, the par-
ticular grouping varies across the three types of data. More~
over, these differences are reliable, in the sense that the group-
ings within a data set type are the same. For CVs there are three
groups, ordered from one end of dimension III to the other - labials,
dentals and alveolars form one group, velars the second and palato-
alveolars the third. VCs also show three groups, with different
memberships. Labials, dentals and velars form one group, alveo-
lars the second and palato-alveolars the third. For SO0Ts there
seem to be only two reliable groups -- labials and velars against
the rest. It is not clear how to account for these differences.
The grouping of dentals, alveolars, palato-alveolars vs. labials
and velars in production suggests the possibility of some articulatory
parameter associated with raising the tip of the tongue. This same
grouping, however, can also be made acoustically —- on the basis
of the height of the second formant (high for dentals, alveolars
and palato-alveolars, lower for labials and velars). The emergence
of this grouping in SOTs might, then, be viewed as evidence of
perceptual factors in speech errors. However, the failure of this
grouping to appear for the CV perceptual data casts doubt on this
latter hypothesis, particularly since the vast majority of speech
errors (approximately 80%) involve syllable-initial consonants.

Reliability

In order to assess the reliability of the dimensions extracted
in the analysis, (Pearson) correlation coefficients were calculated
between data sets for the loadings of the consonants on a given di-
mension. Results for Dimension I are shown in the left-hand column
of Table 3. The upper part of the table shows the correlation of
the two replications within a given data type. The lower part shows
correlations between data sets of different types. The significance
levels associated with these correlations is shown in the second
column from the left. As can be seen, the correlations are all
highly significantz,except for one marginal case —-- SOT2 with VCN
(p<.011). These correlations indicate that there is some reliable
component of variance in dimensiom I, both within and across types
of data. Similar calculations were performed for dimensions II and
III and the results are shown in the left-hand columns of tables 4
and 5, respectively. The results show the same basic pattern as for
dimension I-- highly significant correlations both within and across
different types of data. The only exception to this pattern is in
the correlation between the SOT and CV data sets on dimension III,
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Table 3. Pearson correlation coefficients (r) and associated
significance levels (p) for comparison of Dimension I values
across palrs of data sets. Correlations are given both
before (Zero-order) and after (Partial) controlling for
categorical features by means of partial correlation.

Data Set Pair Zero-order Partial
r P r p

Within Data Type

CVN-CVQ ‘.979 .001 .892 .001
VCN-VCQ .831 .001 .508 .055
SOT1-S0T2 .933 .001 622 L0721

Across Data Type

CVN-VCN LT67  .001 .109  .375
CVN-VCQ .729 .00l 117 .366
CVQ-VCN .75 .001 -.062 428
CVQ-veQ .709 .001 L157 .322
SOT1-CVN .701  .00L -.101 .38L4
SOT1-CVQ .678 .002 -.092 .39L
SOT2-CVN .653  ,003 -.151 .329
SOT2~CVQ .64T  .003 -.053 .h39
SOT1-VCN .626  .005 .298 .186
SOT1-VCQ L7711 .001 -.28L4 .199
SOT2-VCN .566  .011 .036  .L59
SOT2-V0Q L734 L0001 -.Lho .088
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Table L. Pearson correlation coefficients (r) and associated
significance levels (p) for comparison of Dimension II values
across pairs of data sets. Correlations are given both
before (Zero-order) and after (Partial) controlling for
categorical features by means of partial correlation.

Data Set Pair Zero-order Partial
r b r P

Within Data Type

CVN-CVQ .973 .001 .882  .001
VCN-VCQ .93Lh  .001 . 715 .007
SOT1-S0T2 .885 .001 .658 .01k

Across Data Type

CVN-VCN .858 .001 -.h77  .069
CVN-VCQ .783 .001 -.36Lk .135
CVQ-VCN .819 .001 -.4h3  .086
CVQ-veQ .786 .001 -.289 .19k4
SOT1-CVN .859 .001 .631 .019
SOT1-CVQ .799 .001 .502 .058
SOT2-CVN .845  .001 .418 .100
S0T2-CVQ .763 .001 .166  .313
SOT1-VCN .626  .005 -.219 .259
S0T1-VCQ L7600 L031 -.346 .143
SOT2-VCN .730 .001 .02k b2
S0T2-VCQ .590 .008 -.107 .377
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Table 5. Pearson correlation coefficients (r) and associated
significance levels (p) for comparison of Dimension IIT values
across pairs of data sets. Correlations are given both
before (Zero-order) and after (Partial) controlling for
categorical features by means of partial correlation.

Data Set Pair Zero-order Partial
r P r D

Within Data Type

CVN-CVQ .986  .001 .891 .o01
VCN-VCQ .973 .001 .905 .001
SOT1-80T2 724 o011 L061  .430

Across Data Type

CVN-VCN .800 .001 546  .0h1
CVN-V(CQ .807 .001 .537  .0LL
CVQ-VCN .808 .o01 .655 .01k
CVQ-VCQ .824  .001 .599 .026
SOT1-CVN .536 .016 -.384 121
SOT1-CVQ .563 .012 -.184 .29k
SOT2-CVN .L10 .057 -.k66  .oT7h
S0T2-CVQ .386 .070 -.653 .015
SOT1-VCN LT94 001 -.012 .kL86
S0T1-VCQ .780 .001 .084 k03
SOT2~VCN .662 .003 -.54k  .ok2
SOT2-VCQ .573 .010 -.688 .010
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place of articulation. As noted above, the groupings on this dimen-
sion differ across data set type, and this is borne out by the low-
ered correlations for those comparisons.

It was hypothesized in the introduction that there would be
reliable noncategorical variance along a particular dimension within
perception or production, but not when comparing a perceptual dimen-
sion with a production dimension. This could be tested using the
current data by examining the correlations within and across data
types, after taking account of the variance contributed by categori-
cal features. (This analysis also examines the common variance be-—
tween syllable-initial and syllable-final perceptual dimensions, of
course). The variance due to categorical features was taken into
account by means of partial correlation. The technique can be des-
cribed by means of an example: the correlation between CVN and
CVQ on dimension I is .979. Suppose we want to know how much of
this correlation is due to other things beside the fact that both
data sets divide the consonants into the same groups -- stops and
fricatives. One way to do this is to correlate each of these di-
mensions with a categorical variable that has the value 1 for all
stops and O for all fricatives. It is then possible to remove from
the CVN and CVQ loadings the variance that correlates with this cate-
gorical variable. We then have two sets of residuals that have zero
correlation with the categorical variable. We can then calculate
the correlation coefficient for this pair of residuals -- this
determines whether they share any variance that is not predictable
on the basis of the categorical variable.

The correlations in Tables 3 through 5 were recalculated,
partialling out the effects of categorical features in the manner
described above. For each dimension, the whole set of categori-
cal features relevant to this subset of consonants was partialled
out simultaneously. This was done rather than partialling only the
single categorical features most obviously related to the dimension
in question, for example [i continuant] for dimension I, and [T voice]
for dimension II. As noted in the introduction, it is possible that
within group variation on a particular dimension might be due to
categorical features other than the major one correlated with a
given dimension. It is for this reason that all categorical features
were partialled out simultaneously. Five features relevant to the
differentiation of this subset of consonants were chosen. These a
are primarily the Chomsky and Halle (1968) features relevant to
distinguishing these consonants —— [+ anterior], [f coronal],

[+ voice], [+ continuant]. As a fifth feature, [+ sibilant] was
chosen, rather than Chomsky and Halle's [+ strident]. (The differ-
ence is that /f/ and /v/ are [+ strident] but [- sibilant].) The
values of the sixteen consonants on these five features are shown
in Table 6.

The results of the partial correlations are shown in the right-

hand columns of Tables 3, 4 and 5. Examination of the within data
type correlations indicates that there are still .large corre-
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Table 6. Representation of consonants in terms of features used
for partial correlation analysis.

continuant
voice
sibilant
anterior
coronal

h>
(@]
o
(@}
[
o
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lations for each of the three data types. Thus, we conclude that
there is reliable variance on the dimensions that cannot be account~
ed for on the basis of the five categorical features partialled out.
(The major exception is that the two speech error sets do not correl-
ate on dimension III, after partialling out the five categorical
features). Looking at the cross—-data type partial correlations
reveals a different pattern of results. For dimensions I and II
almost all but two of the 24 cross-data type correlations become
very small or negative. Thus for those two dimensions, the common
variance across data set type can be adequately accounted for sole-
ly on the basis of the five categorical features used. For dimen—
sion III, however, there are significant residual correlations be-
tween the two types of perceptual data. Thus, for this dimension,
there are some perceptual processes common to syllable~initial and
final positions that cannot be accounted for solely on the basis the
five categorical features employed. At least for dimensions I and
II we can make the following conclusions:

(1) There is reliable variance in the dimensions of perception
and the dimensions of production that cannot be attributed
to categorical features.

(2) The overlap between dimensions of perception and production,
and between dimensions of syllable-initial and syllable-
final perception can be exhaustively described by categori-
cal features.

DISCUSSION

The results presented suggest the following conception of the
role of features in speech perception and production. For any
particular kind of perceptual or production behavior, there is
some small number of dimensions along which English consonants
reliably vary. These dimensions have the effect of dividing
consonants into groups that coincide with the categorical features
used in phonological analysis. The nature of the dimensions them-—
selves varies across the different kinds of behaviors, at least
for the data that were examined here —- perception of CV syllables,
perception of VC syllables and spontaneous speech errors. For two
of three dimensions we extracted (i.e. voicing, stop/fricative)
what is common to the dimensions across different kinds of data is
limited to the division of the set of comsonants into groups corres-
ponding to categorical features. This, then, provides rather strong
evidence for the importance of categorical features in the internal
representation of speech -- they recur in three different kinds of
behaviors, even though the continuous dimensions that correlate
with them, differ from one another.

Some consideration needs to be given to the way in which the

dimensions differ . across the three types of behavior examined
apove. Note that there are significant residual correlations
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between the two data sets of a given type, even after partialling
out the effect of categorical features. Thus, there is some reliable,
non-categorical information within a particular data type. However,
there is no correlation between this reliable non-categorical infor-
mation across data types, even though there is a good correlation
between data set types with respect to categorical information.

How can the different reliable properties of these data set types

be accounted for? The potential sources of the differences between
different data types can usefully be divided into two categories
discussed below: (1) Differences due to inherent differences in
the processes involved in the behaviors. (2) Differences due to
the particular properties of the experimental or observational sit-
uations.

(1) Inherent differences. Differences between CVs and VCs
might be due to the fact that the important acoustic cues for
various features differ from initial to final position. For example,
vowel length is an important cue for voicing in final position, but
syllable~initially VOT is more important. As another example, the
difference in acoustic cues was used to explain the difference in
how affricates are represented in CVs and VCs. Presence of a
silent interval may be used as a cue for stops in final position,
but not in (utterance-) initial position. Similarly in comparing
production and perception confusions, we are comparing acoustic and
auditory properties of the consonants with properties relevant to
articulation (in the broad sense). There is no reason to expect
there to be a simple one~to-one relationship between those articula-
tory and acoustic properties.

In general, there is a welter of articulatory and acoustic
variables that could be appealed to in order to account for differ-
ences in the data. A study specific to this point would be required
to determine which set of variables exhausts the reliable variation
within each type of data.

(2) Situational Effects. Van den Broecke (1976), in a review
of the literature on perceptual features, has shown that there are
substantial differences in the results of experiments using different
tasks and number of stimuli. Differences in results include
differences in the number of important features and in their relative
weights. The dimensions used by a listener in any task will in-
variably be influenced by what (s)he is called upon to do and the
strategies employed to do it. While the differences between CVs
and VCs analyzed here ought to be minimal from this point of view,
differences between this experimental situation and spontaneous
speech erxrors would be expected to be substantial. Thus, some of
the differences between types of data may be, themselves, unin-
teresting. The fact of these differences makes the good correla-
tion with categorical features even more impressive, however.

As noted in the results, there are significant correlations
between CVs and VCs on the place of articulation dimensions, even
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after removing effects due to categorical features. At least a
partial explanation for these correlations can be provided. Exam-
ination of the plots of CVN, CVQ, VCN and VCQ on dimension IIX
(Figs. 8 and 9) shows that all four data sets have labials at one
extreme end and palato-alveolars at the other end. The CV and VC
sets differ, however, in the distribution of consonants between

the extremes. Velars are represented as closer to the labials in
VCs and closer to the palato-alveolars in CVs. With the particular
categorical features used in the partial correlation analysis, there
was no way to extract the commonality of the two data types with re-
spect to labials and palato-alveolars. This is because the same
features ([f ant], [+ cor]) must be used to distinguish between
velars and alveolars (for which the two data types differ) as

well as to distinguish between labials and palato-alveolars. To
take account of this, another partial correlation analysis was
performed, using a different feature set. The new feature set

used four separate features for distinguishing place of articula-
tion: [+ labial], [+ linguall, [+ dorsal], [+palatal]. Using this
feature set, the cross data type correlations no longer reached
significance, after partialling out the effect of categorical features.
This confirms the explanation suggested above. However, these
correlations were still higher than most obtained for the cross

data type comparisons. Thus, there may be some common variance
between CVs and VCs that is not explained by categorical features,
regardless of what categorical features are used. As an example

of this, /v/ had a consistently smaller loading on dimension III
than the other labials, for all perceptual data sets (but not for
speech errors). Why this is true is unclear; it may reflect some
artifact of the particular experimental situation.

Finally, the above-outlined role of features in speech per-—
ception and production has implications for active theories of
speech perception. Such theories (Neisser, 1967; Stevens and Halle,
1967) postulate that speech perception involves the matching of
some stored representation of a stretch of the auditory signal
with a corresponding articulatory representation that is'genérated
internally. A perplexing problem that faces such models is to
determine the level at which this matching takes place. For

example, Stevens and Halle (1967) have suggested that the inter-
nal articulatory signal is transformed into an auditory onme, and
that matching takes place at an auditory-memory level. The results
of the present analysis suggests that matching could only take
place at the level of categorical features, since only at this level
are the internal representations (of consonants) the same for
perception and production. However, given that perceptual analysis
has proceeded to the point that a categorical representation is
possible, the necessity for matching at all is undermined. Models
for the process by which auditory representations are directly
transformed into sets of categorical features seem to be required.
Detailed analysis of the non-categorical components of perceptual
dimensions may lead to some insight into this process.
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NOTES

I would like to thank Vicki Fromkin, Jean-Marie Hombert, Wendy
Linker, Ian Maddieson, Lloyd Rice and Renee Wellin for various
forms of assistance and encouragement. Awards for special heroism
to Richard Harshman for teaching me to appreciate reliability;
to Eric Holman for always having answers; to Peter Ladefoged for
listening to all the details; to Marcel van den Broecke for pro-
viding challenges; and to Catherine Browman for reminding me at
critical moments that even n-dimensional vector spaces have forests.
Thanks to Stefanie Shattuck-Hufnagel for the use of her data. This

research was supported by NIH.

These significance levels should be regarded with some caution,
however. It is not clear how appropriate the required independence
and normality assumptions are for these comparisoms.
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Perceptual Salience of Stressed Syllables

Louis Goldstein

INTRODUCTION

Much of the research in speech perception has been devoted to
understanding the processes involved in the perception of isolated
CV and VC syllables, in particular to the question of how listeners
transform acoustic representations of these syllables into phonetic
representations specified in terms of segments and features. However,
there has been very little attempt to specify how the acoustic re-
presentation of the speech input is used by listeners in recognition
of higher-level linguistic units, ie. words, phrases and sentences.
Most of the investigations that have been done in this latter area
have looked primarily at how prosodic acoustic information is used
perceptually, but not at how prosodic and segmental acoustic informa-
tion interact in the process of word and phrase recognition. For
example, prosodic¢ information has been shown to provide cues as to
syntactic structure of sentences, even when the segmental acoustic
information is severely distorted by spectral rotation (Blesser, 1969),
or is replaced altogether by humming (Svensson, 1974). Experiments
employing synthesized versions of hummed speech have shown that in-
tonation contour (Collier and 't Hart, 1975) and durational pattern
(de Rooij, 1976) can both be used, independently of the other, as
cues to the location of breaks between major syntactic constituents.

In the present paper, we are interested in a different set of
prosodic effects; in particular, how prosodic acoustic information
(stress) interacts with segmental acoustic information in the recogni-
tion of words and phrases. We assume the following general framework
for describing the process of speech recognition. At least two com-
ponents seem to be involved. One component is a mechanism for sampling
the acoustic signal over some time window and making a gross and in-
complete phonetic analysis. The second component is a higher-level
decision mechanism that determines what word or phrase has been per-
ceived. The input to the decision-making mechanism includes not only
the incomplete phonetic analysis of the first component, but also
phonological, syntactic and semantic context and expectations. Explicit
recognition models, involving such components have been proposed by
Pisoni and Sawusch (1975), for example, and have been in use in auto-
matic speech understanding systems (eg., Lesser et. al., 1974). Given
this framework it is reasonable to ask whether different types of seg-
ments or different types of syllables can vary systematically in the
degree to which they constrain the choices of the decision-making com~
ponent. Such differences will be referred to as differences in the
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perceptual salience of the units in question. Over and above differ-
ences between types of segments, a likely hypothesis is that differ-
ences in perceptual salience can be found to be associated with prosody.
In particular, it would be predicted that stressed syllables are more
perceptually salience than unstressed ones.

There are at least two possible factors that could contribute to
differences in perceptual salience. The first factor will be referred
to as inherent phonetic ambiguity. The information gained in the acous-
tic sampling and partial phonetic analysis could be inherently more
detailed for some kinds of phonetic units than for others. Such low-
level differences can be measured independently of the word and phrase
recogniton situation by examining differences in confusability between
the relevant units in a nonsense CV or VC recognition task. Since con-
text and lexical structure does not enter into such tasks (although
syllabic response bias might, see Goldstein, 1977), reliable differences
in confusability (after removing effects of response bias) would reflect
inherent phonetic ambiguity. Relative amount of energy in the signal
is one determinant of phonetic ambiguity, since syllables presented to
listeners in lower S/N ratios are generally more confusable. Thus,
one would expect unstressed syllables to be more phonetically ambiguous
than stressed ones, as they are generally shorter and of lower amplitude.
On the basis of energy considerations, we might also expect consonants
to be more phonetically ambiguous than vowels. However, as is well-
known, cues for consonant recognition are contained in both vowel and
consonant portions of the acoustic signal. The relevant experiments,
directly comparing consonant and vowel confusions in the same set of
nonsense stimuli have not been done. Moreover, effective S/N ratio is
probably only one determinant of confusability. In particular, there
may be specialized feature or property detectors for consonants (Cooper,
1975; Stevens and Blumstein, 1975) that may be quite sensitive to low
amplitude signals of the proper form.

The second factor that contributes to perceptual salience is the
relative attention that is directed toward successive portions of the
input stream. This factor would also seem to support the relative
perceptual salience of stressed syllables. Experimental evidence
indicates that attention is focussed on stressed syllables in the per-
ception of sentence-sized units. Cutler (1976) employed the phoneme-
monitor technique to provide evidence for this point. In this task,
first used by Foss (1969), subjects are required to listen to
sentences for comprehension, and at the same time, to attend for the
occurrence of a particular word-initial target phoneme (usually a con-
sonant). They are instructed to press a button just as soon as they
hear the target phoneme, and reaction time 'is measured. Cutler found
that RT for phoneme targets in highly-stressed syllables was faster
than for targets in low-stressed syllables. Moreover, using an ingenious
control condition,. she was able to demonstrate that the difference in
RT was not due solely to acoustic differences in the target syllables
themselves. This control condition was created as follows: A clause
containing the target word was recorded in three different sentential
contexts. The contexts produced different stress patterns in the
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common clause. In one of these versions, the target word was con-
trastively stressed, in one it was nbrmally stréssed, and in the
other it was unstressed (or had low stress). The target word was
spliced out of the normally stressed version and was inserted into

the other two versions. RT to the target was faster in the stressed
version than in the unstressed version, even though the target word
itself was acoustically identical in the two cases. Cutler concludes
from this faster RT that stressed syllables are processed earlier

than unstressed ones, as a result of listeners' focussing attention

on the portions of the sentence where stressed syllables are expected.

Evidence in favor of stressed syllables as attentional foci
was also presented by Shayne and Gass (1976). They used a version
of the click paradigm (Ladefoged and Broadbent, 1960; Fodor and
Bever, 1965), in which the subject is required to listen to a sen-—
tence that has an extraneous noise superimposed somewhere on it,
and to report where in the sentence they heard the noise. (Shayne
and Gass used a tone 'beep' rather than a click). They varied the
position of the beep with respect to the position of the main stress
in a number of sentences. They found that subjects were most ac-
curate in localizing the beep when it coincided with the main stress
of a sentence; and that subjects tended to report the beep on the
stressed syllables as often, or more often, than on the correct
syllable when they did not coincide. This result alone does not
necessarily demonstrate that attention is actively focussed on the
stressed syllable during perception, since the subjects could have
associated the beep with the stressed syllable during some post-
perceptual organization of the response. .However, the result clearly
supports the role of the main-stressed syllable as a kind of temporal
anchor point. Taken together with the Cutler result, it seems likely
that this anchoring plays an active role in sentence perception.

If stressed syllables are, indeed, more perceptually salient than
unstressed ones, ie., if stressed syllables serve to constrain the
choices made by the higher-level component more than unstressed ones,
then this makes predictions about error patterns when words and
phrases are misperceived. In particular, we would expect that the
misperceptions should involve unstressed syllables being in error
more often than stressed ones. The experiment to be reported below
attempts to test this hypothesis directly. In addition, the ex-
periment was designed so that possible differences in perceptual
salience between consonants and vowels could be tested.

A technique that can be used for generating mispercpetions was
first described by Pickett and Pollack (1963) and Lieberman (1963).
It involved splicing words and short phrases out of normally spoken
sentneces. Pickett and Pollack found that such samples are very hard
to identify, and that recognition is a function of the duration of
the sample. Near perfect recognition was not achieved until samples
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were 800 msecs long. At least part of the reason for the poor in-
telligibility of these segments is the absence of the particular
context in which they were originally read. This has been demon-
strated by Lieberman (1963), who found that intelligibility of ex-
cised segments was inversely related to the predictability (or re-
dundancy) of the segments in the original sentences. This technique
was also employed recently by LaRiviere and Winitz (1977). They
spliced single-syllable CVC(C) words out of context. In other con-
ditions, they included the vowel immediately preceding and following
this word in the excised sample, to see if coarticulation cues im-
proved intelligibility. No effect was found.

This technique was considered more appropriate for the current
investigation than presentation of words and phrases in noise. The
latter technique has often been used in word recognition experiments
(eg. Savin, 1963; Fredriksen, 1971 ), but such experiments have gener-
ally tested word-level variables (such as word frequency). Since
we are currently concerned with examining patterns of segmental errors
in mispercpetions, it was considered inappropriate to use added
noise, which might have the effect of selectively impairing the per-
ception of particular segments. The excising technique involves
no artificial noise; it generates confusions by withholding (from
the higher-level component) the contextual information necessary to
correctly identify these words.

METHOD
Stimuli

The stimuli chosen included 70 English words and short phrases.
The stimuli were selected so as to be as phonetically balanced as
possible, while at the same time controlling for word frequency.
Frequency was controlled because we want the differences in in-
telligibility between stimuli to reflect, as much as possible, the
phonetic properties of the words, rather than differences in ex-
pectation. All of the single word stimuli had frequencies of 1 or 2
per million in the Kucera and Francis (1967) word count. For phrase
stimuli, at least one word in the phrase had a frequency of one or
two per million (and thus the frequency of the phrase had to be
somewhat lower). Low frequency words were chosen so as (hopefully)
to maximize the number of errors. Generally, more errors are found
in word recognition with low frequency words because listeners seen
to choose the most common word that is consistent with their gross
phonetic analysis of the signal(see Savin, 1963). Frequency was
also found to effect error rate with the excised word technique
(LaRiviere and Winitz, 1977).

For similar reasons (maximization of errors), stimuli included
both single words and phrases, rather than just single words. With
both words and phrases possible as responses, the number of response
alternatives is greater than if the response had to be a single
word. A greater number of alternatives would be expected to produce
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a greater liklihood of error. Moreover, uncertainty as to the
word-structure of a particular acoustic sequence more closely
approximates the normal speech perception situation than does a

situation in which the listeners know that they can expect a single
word.

The stimuli were either one two or three syllables lomng. The
44 polysyllabic stimuli were either single words, or two- or
three- word phrases. The 26 monosyllabic stimuli were, of course,
all single words. The choice of stimuli was constrained by three
principles. First, since we wanted to compare the number of errors
in stressed and unstressed syllables, position of stress in the
stimuli had to be varied systematically. Secondly, stressed and
unstressed syllables were required to have comparable distributions
of consonants and vowels, so that stressed-unstressed comparisons
would not be confounded by differences among consonants or vowels.
Finally, since a comparison of consonant and vowel errors was planned,
the entire set of English consonants and vowels had to be represented
in the stimuli. Consistent with these three principles, the details
of the choice of the 70 stimuli were as follows:

The 26 monosyllabic stimuli were all stressed and each of the
standard American English vowels (except [oL]) appeared twice. The
initial consonant portions of these words were all single consonants.
Fach of the 22 English syllable-initial consonants (except [8]) ap-
peared once. The other five words began with a vowel. For poly-
syllabic stimuli, the single stressed syllable of each of the stimuli
fell approximately an equal number of times in each syllable position.
The initial consonant portion of all the syllables consisted of a
single consonant, with all English (syllable-initial) consonants
occurring at least once in stressed and once in unstressed syllables.
All American English vowels (again except [oL]) occurred at least
twice in stressed and twice in unstressed syllables. In additionm,
twenty of the unstressed syllables included a reduced vowel ([s] or
[v]). All of the comsonants except [p,0,l,h] occurred once in initial
position of these reduced syllables. Two began with vowels. Syll-
able-final consonants were left uncontrolled in the entire stimulus
set, and include clusters as well as single consonants. Therefore,
all comparisons between stressed and unstressed syllables will be
limited to syllable-initial consonants and vowels. The 70 stimuli
are presented in the Appendix, organized by number of syllables, word
structure and stress pattern.

Sentences were constructed in which the 70 stimuli were embedded,
with the constraint that the last phoneme before the stimulus, and
the first phoneme after the stimulus were voiceless stops. This faci-
litated the editing process. The sentences were constructed in such
a way as to effect the desired stress patterns on the stimuli. Con-
trastive stress, for example, was occasionally required.
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Procedure

The sentences were recorded by a speaker of general American
English, whose  pronunciation is similar to that used by network
television news announcers. He was naive to the purpose of the ex-
periment. For cases in which the constructed sentence did not effect
the desired stress pattern, new sentences were constructed, and the
speaker returned for another session. This was continued until all
the stimuli had the desired stress pattermns.

Each sentence on the high-quality recording was low-pass filter-
ed at 4.5 KHz and then digitally sampled at 12 KHz by a PDP-12 com~-
puter program for waveform sampling. The stimulus segments were iso-
lated and stored using a program for waveform viewing and editing
(written by Lloyd Rice), and then the 70 stimulus segments were re-
recorded onto analog tape in random order with eight seconds between
each stimulus. The tape was carefully transcribed by a phonetician,
whose transcription agreed with that of the author.

The stimulus tape was played, over a loudspeaker at a comfortable
listening level, to an introductory linguistics class. Students were
told that the stimuli were words and phrases spliced out of context,
and were instructed to write down some English word or phrase for
each stimulus; they were told to guess if they were unsure.

Listeners' written responses were assigned a phonemic transcrip-
tion by the author, using Southern Californian English as a reference
dialect. 1In the few cases in which a listener's response was not
an English word or phrase, conventions of English orthography were
used to assign a transcription. In cases of orthographic ambiguity,
the transcription chosen was the. one that was closest to the. stimulus.
Responses of 12 subjects were analyzed.

Scoring

In order to determine which phonemes are reported correctly and
which are in error, the individual phonemes of a stimulus have to be
matched to the phonemes of the response. This can be a complex pro-
cess, given that the stimulus and response can differ in number of
phonemes and even number of syllables. The matching was therefore
accomplished using an interactive computer program developed for
this purpose by Catherine-P. Browman and the author. The program
attempts to do as much of the matching as possible automatically.

The only user-intervention is at the very earliest stage in which

each of the syllables of the stimulus have to be matched to syllables
in the response. (This procedure is very difficult to automate).

For the analysis of the present data, syllables were matched as follows:
if the stimulus and response had the same number of syllables, the
syllables were matched in simple left-to-right order, first syllable

of the stimulus with first syllable of the response, etc. If the
response involved deletion or addition of a syllable (which was

rare in this experiment), syllables were matched so as to maximize
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the number of phonemes in common to the syllables being matched,
with the constraint that the linear order of the stimulus syllables
was identical to the linear order of the syllables that were matched
to them. Thus, syllable metatheses were not considered.a possible
error type, and none of the data suggested that this type of error
had occurred.

Once the syllables were matched, a set of algorithms proceeded
to automatically match the phonemes of the stimulus with those of
the response. The details of the algorithms are quite involved and
they are described in detail in Browman (1977a) and Browman and Gold-
stein (forthcoming). Briefly, the processes can be summarized as
follows: The vowels in matched syllables are matched to each other.
The program then attempts to match syllable-initial consonants to
initial comsonants din the matching response syllable, first by
looking for identical phoneme matches, then by attempting to opti-
mize feature agreement in matched phonemes, and finally by resort-
ing to linear order in the case of feature ties. The same procedure
applies to syllable-final consonants. There are a number of addi-
tional passes through the data to attempt to find matches for con-
sonants of inserted and deleted syllables, and to look for matches
across syllable boundaries, and to look for consonant metatheses
across vowels.

RESULTS

For each phoneme in a given stimulus that is compared to a given
response, the output of the matching program indicates one of the
following possibilities: Either the phoneme 1is matched to the
identical phoneme in the response, or the phoneme is matched to some
different phoneme in the response, or the phoneme has no match at
all in the response. These three categories are referred to as cor-
rect reports, confusions, and deletions, respectively. Confusions
and deletions will be referred to together as errors. Table 1 shows
the percentages of stimulus phonemes that were confused and deleted,
separately for consonants and vowels, and separately for stressed
and unstressed syllables. These are the combined results from all
subjects and all stimuli. The overall error percentage is higher
for unstressed syllables than for stressed syllables, both for initial
consonants and for vowels. These differences are both significant
using a Wilcoxon matched-pairs, signed-ranks test, in which each sub-
ject contributes a pair of ercor percentages (p<.005 and p<.025, res-
pectively, one-tailed). Examining the confusions and deletions separately,
we can see that they both show the same trend as the overall error
percentages.

The above differences confirm the prediction that there would
be more errors in unstressed syllables than in stressed ones. There
is, however, a possible objection to this analysis. Twenty-six of
the stimuli were monosyllabic words, and as such they included only
a stressed syllable. Pickett and Pollack (1963) have shown (as
noted above) that recognition of excised segments is a. function of
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Table 1. Percentage of syllable-initial consonants and vowels that
were deleted or confused in in subjects' responses. Deletions
and confusions are combined as total errors. Results represent
all stimuli and all subjects.

Unstressed Syllables Stressed Syllables
C v C \i

% Deletions 6.8 b7 2.7 2.6

% Confusions 20.6 19.2 19.0 17.3

% Total Errors 27.h 23.9 21.7 19.9

Table 2. Percentage of syllable-initial consonants and vowels that
were deleted or confused in subjects responses. Deletions and
confusions are combined as total errors. Results include only
polysyllabic stimuli for all subjects.

Unstressed Syllables Stressed Syllables
c v c v
% Deletions 6.8 ho7 3.8 2.2
% Confusions 20.6 19.2 15.3 17.9
% Total Errors 27.h 23.9 19.1 20.2
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the duration of the excised segment. Since the monosyllabic stimuli
are all shorter than the polysyllabic ones, this variable will confound
the difference between stressed and unstressed syllables. Therefore,
error percentages were calculated excluding the monosyllabic stimuli.
Results are presented in Table 2 (which are, of course, the same as

in Table 1 for the unstressed syllables). The pattern of errors is
apparently very similar regardless of whether the monosyllabic stimuli
are included or not. Differences between stressed and unstressed
syllables are again significant (p<.005 for consonants, p<.0l for
vowels, one tailed). Again, confusion and deletion trends are both

in the same direction as the overall error percentages.

Differences between consonants and vowels, in terms of percent
error, are somewhat more problematic. Examining Table 1, there is a
tendency for there to be more errors on initial consonants than on
vowels. However, this is only marginally significant for unstressed
syllables (p<.05, two-tailed) and is not significant for stressed
syllables (again using a Wilcoxon test). The problem with including
the monosyllabic stimuli in the analysis does not arise for consomant-—
vowel comparisons, because monosyllabic stimuli include both consonants
and vowels. Thus, properties of monosyllabic stimuli should not con-
found the consonant-vowel comparison. Yet, as examination of Table 2
shows, removing the monosyllabic stimuli does affect the relationship
between consonant and vowels errors. The confusion percentage (but
not the deletion percentage) is lower for consonants than for vowels
when examining just the polysyllables. This is the: only case examined
in which the confusion and deletion trends differ, and is not at all
clear how to account for this difference. Thus, the relative per-
‘ceptual salience of consonants versus vowels cannot be simply deter-
mined from this experiment.

A further analysis of the data was undertaken to determine what
factors were responsible for the difference in perceptual salience ob-
served in this experiment between stressed and unstressed syllables.

It will be shown that inherent phonetic ambiguity does have an effect

on error rate in the current experiment, independently of differences
between stressed and unstressed syllables. Therefore, it may contribute
to the perceptual salience of stressed syllables over unstressed ones,
as well.

We can demonstrate the effect of relative phonetic ambiguity by
showing that in the present experiment, subjects tend to make more
errors on those segments that produce more errors in a nonsense re-
cognition task. The perceptual confusion data of Miller and Nicely
(1955) was used to estimate the relative phonetic ambiguity of different
consonants. The stimuli for that experiment consisted of /Ca/ syllables
under different conditions of noise and filtering. Consonants included
/p,t,k,f,e,s,f,b,d,g,v,é,z,g,m,n/. For the current purposes, we examine
the experimental condition that most closely approximated the conditions
of the present experiment, +12 db S/N ratio, low-pass filtered at
5KHz. For each of the consonants, (except for /3/, which did not occur
in the present experiment) the percent of stimuli incorrectly reported
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was calculated. This error rate, as a function of consonant, is re-
ferred to as m(x). The same calculation was performed for each sub-
ject in the present experiment, based on the data from polysyllabic
stimuli. The error rate for those 15 consonants was calculated se-
parately for stressed and unstressed syllables: p (x) and p, (%) res-
pectively. To the extent that a subject tends to make moré errors in
the current experiment on the consonants that have high error rates
in the Miller-Nicely data, then the quantities As and Au in (1) below
will tend to be large:

N N

Z pS(X) m(x) Z p,(x) m(x)
(1) As = X;1 Au = X;l

Z PS(X)' Z pu(X)

x=1 x=1

N = number of different consonants

If there were no relationship between m(x) and p (x), then the ob-
served As would tend to be the same as its value”if all of the error
rates in p (x) were equal to the mean error rate, p_ . Thus, the
expected vilue of As, assuming no relationship of A(x) to. pS(X) is:

M=

P, m(x)
E(As) = X;1
P
X=
N
p, )., m(x)
_ x=1
N Py
N
Z m(x)
_ x=1
N

Thus, for each subject we can calculate the observed As and compare it
to the value that would be expected if there was no effect of m(x) on
p (x). The same can be done for unstressed syllables. The values for
AS and Au, and the value expected on the basis of no relationship

are shown in Table 3. Both As and Au were significantly greater

than the value that would be expected on the basis of there being no
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Table 3. Values of As and Au for each of the twelve subjects.
As and Au represent the degree to which errors on stressed
and unstressed syllables tend to show the same pattern across
consonants as in nonsense syllable recognition (see text).
Also given is the expected value of As or Au, given no rela-
tionship between error patterns in this experiment and in
nonsense syllable recognition.

Subject As Au
1 172 .239

2 .2o7 .205

3 -250 255

L .150 .2L8

5 .229 .290

6 .261 .19k

7 .216 .230

8 .265 .306

9 CATT 275

10 .163 .225
11 .213 .178
12 34T .301
Expected .168 .168

48



relationship between m(x) and the error rates in this experiment.
(p<.025 for As and p<.001 for Au, sign test).

The above result indicates that the relative phonetic ambiguity
does effect the error rate for consonants in both stressed and un-
stressed syllables. Further evidence for the role of phonetic ambiguity
in the word and phrase recognition task can be found by examining
word position effects on the error rates for vowels. Oller (1973) has
shown that vowels are longer in word-final syllables than in word-
initial syllables, for nonsense words. Klatt (1975) has shown that in
running discourse, stressed vowels are slightly longer word-finally than
word-initially, and substantially longer if they are also phrase-final.
Assuming that an increase in the duration of a vowel makes it less
phonetically ambiguous, we would predict that vowels in word-final
stressed syllables should be less ambiguous than vowels in word-initial
stressed syllables. The overall error rates are 13.7Z and 30%, res-
pectively for polysyllabic words. In testing these for significance,
account must be taken of the fact that the same vowels do not appear
in both initial and final syllables, since it has already been shown
that the relative ambiguity of segments can effect error rate (at
least for consonants). The relative phonetic ambiguity for vowels was
estimated on the basis of the vowel confusion data of Strange et al,
1976, for the vowels (i,t,€,2,0,A,0,u). In the particular experimental
condition chosen, vowels were presented in a C-C context (in which the
consonants were stops) with tokens from an individual speaker presented
together in a block. On the basis of the relative phonetic ambiguity
of these vowels the expected error rate for vowels in word-initial
syllables was calculated as in (3):

8
(3) E(e) = Z £(x) s(x)
x=1
n
where:
s(x) = the rate of errors for vowel x in Strange et al.
f(x) = the number of tokens of vowel x in word-initial
syllables
n= total number of vowel tokens in word-initial syllables.

A similar expression of course can be calculated for the expected
error rate for vowels in word-final syllables, EF(e),

For each subject, the actual error rates in initial and final
syllables was calculated and each was divided by the expected error
rate appropriate to that condition. The difference between these
corrected error rates was significant, using a Wilcoxon matched-pairs,
signed ranks test (p<.01). Thus, position of a vowel within a word
does seem to effect the number of errors. This can be explained on
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the basis of the fact that vowels in word-final syllables tend to be
longer, and therefore, less phonetically ambiguous than the vowels in
word-initial syllables.

The effect of relative phonetic ambiguity on the error rate in
word and phrase recognition has been demonstrated, independently of
the difference between stressed and unstressed syllables. It seems
reasonable, therefore, that the stress effect is, at least partly due
to differences in inherent phonetic ambiguity. In addition, we want to
test whether attentional and: higher-level processes contribute to
this difference.

To help clarify the rationale of the following analysis, consider
the following obviously exaggerated model of the role of stressed and
unstressed syllables in word and phrase recognition. Let us suppose
that higher—level decision processes weight stressed syllables very
highly and that the choices made by these processes are constrained to
be completely consistent with the information from the gross phonetic
analysis associated with stressed syllables. This information will
reflect the inherent phonetic ambiguity of these syllables. Let us
suppose further that unstressed syllables receive very little weight,
and choices are not at all constrained to be consistent. with whatever
information there is in the gross phonetic analysis associated with un-
stressed syllables. These two suppositions are an extreme version
of the preference for stressed syllables.

The relative phonetic ambiguity of different phonemes can be
assessed by reference to their relative confusability in a nonsense
syllable recognition task. The model described above would predict
that the relative error rates for different phonemes in stressed
syllables of words and phrases should correlate with the relative
phonetic ambiguity of these phonemes as measured in nonsense syllable
recognition tasks. However, for unstressed syllables, no such cor-
relation would be predicted, since word recognition is not assumed to
be consistent with the phonetic analysis of unstressed syllables.

This model is clearly too exXtreme particularly since we have al-
ready seen that there is an effect of phonetic ambiguity on error rate.
for both stressed and unstressed syllables. However, one could imagine
a greater weight being assigned to the phonetic analysis of stressed
syllables than to that of unstressed syllables in making lexical
decisions. One might then exXpect to find a better correlation between
word recognition and nonsense results (in terms of relative error
rates for different phonemes) for stressed syllables than for unstressed
ones.

In order to examine the pattern of relative error rates for
stressed, unstressed and nonsense syllables graphically, the fifteen
consonants of the Miller-Nicely experiment were divided into five
classes and the percent error in each of these classes was calculated.
Classes were: voiceless stops, voiced stops, voiceless fricatives,
voiced fricatives (but not including [3], since it did not occur in

50



in the current experiment), and nasals. The same calculation was made
separately for stressed and unstressed syllable-initial consonants in
the data from the current experiment. Only data from polysyllabic
stimuli was used. :

The relative error rates for the different phoneme classes in
all three sets of data are shown in Fig. 1. As is clear from this
figure, the stressed syllable error rates agree quite well with those’
from the Miller-Nicely experiment. The relative ordering of the ob-
struent classes is the same for both. The only difference is that
nasals have a lower error rate than voiceless stops in the Miller—-Nicely
data, but have an error rate between voiceless and voiced stops in the
stressed syllables of the current experiment. The pattern of errors
for unstressed syllables does not seem quite as similar to the pattern
for nonsense syllables, however.

To test the hypothesis that the results for stressed syllables
are more similar to the results for nonsense than is the case for
unstressed syllables, we compared the values of As and Au, for each
subject. According to the above hypothesis, As should be greater than
Au since As represents the degree to which the distribution of error
rates for stressed syllables is similar to that for the nonsense re-
sults, and Au represents this similarity for unstressed syllables.
However, as is clear from Table 3, this is not the case. For eight of
twelve subjects, Au is actually larger than As. Tt is not clear
how to reconcile this result with graphs of Fig. 1. Apparently,
differences among consonants within each class used in Fig. 1 and
differences among subjects may be substantial enough to account for
the discrepancy. There is also a theoretical problem with this analysis,
however. The quantities Au and As will tend to be maximized to the
extent that p (x) or p (x) are high for those values of m(x) that are
very high. The values of p (x) and p (x) for those consonants with
a low m(x) will have little effect on the calculation of As and Au.
Examining Fig. 1, we can see that voiced fricatives (and particularly
/8/, in the individual consonant data) have thé highest error rate
in the Miller and Nicely data. While the data for unstressed con-
conants doesn't seem to fit the general pattern of M/N there is a
very large percent error for voiced fricatives, the class with the
largest values of m(x). It has a larger percent error for this class
then the corresponding error rate for the stressed consonants. This
difference will contribute to Au being larger than As. Thus, it is
not quite clear that Au and As provide the best measure of overall
similarity of the error rate patterns. In the limiting case, if all
of the errors for unstressed syllables were on voiced fricatives, or
on /3/ in particular, then Au would be even larger than it presently
is. However, it is not clear that we would want to consider such a
pattern of error rates to be more similar to the m(x) than it presently
is. In any case, we cannot, on the basis of this analysis, confirm
the hypothesis that stressed syllables are given more weight in higher-
level decision-making than unstressed ones.
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DISCUSSION

We have demonstrated that stressed syllables are more perceptually
salient than unstressed ones in the recognition of words and short
phrases. We have suggested this effect is at least partly due to the
~ greater phonetic ambiguity of unstressed syllables. If part of this
effect were, in addition, due to a greater weight being given to the
phonetic analysis of stressed syllables in the higher-level decision
process, it is interesting to consider what mechanism might be res-~
ponsible for such a differential weighting or attention. Cutler (1976)
suggests, on the basis of her phoneme monitor RT results that stressed
syllables, which can be identified on the basis of prosodic patterns,
are processed earlier than unstressed ones (even if the unstressed
ones precede). This is an interesting hypothesis, but phoneme monitor
results can give only weak support for such a conclusion. It has been
shown that phoneme-level decisions required in a phoneme-monitor task
may be made after higher-level word decisions (see Rubin, Turvey and
van Gelder, 1975). If the greater contribution of stressed syllables
to the process of word recognition is to be explained on the grounds
that they are processed earlier, we need to show this by some technique
that measures processing that occurs before (or simultaneously with)
word-level processing.

A possible technique for examining the hypothesis of earlier proces-
sing of stressed syllables as explanation for their perceptual salience
might be as follows. Word recognition latency could be measured in
a word and phrase task, similar to the one used in this investigation,
in addition to error rate. If stressed syllables are processed earlier
than unstressed ones, then the longer a listener takes to identify a
word (or phrase), the greater the liklihood that some substantial pro-
cessing of unstressed syllables occurs. This would predict that the
difference in error rate between stressed and unstressed syllables
would decrease as the latency for word (or phrase) recognition increased.
Such an experimental approach is currently being explored.

Some comments need to be made about the results of comparing the
relative perceptual salience of consonants versus vowels. While there
was clearly a trend in favor of vowels, the results were somewhat ambi-
guous. Part of the difficulty may be that there are considerable dif-
ferences among consonants in the degree to which crucial information
is provided by consonantal or vocalic parts of the signal. 1In fact,
examination of the error patterns in different consonant classes
suggests that this might be the case. Error rates for the Miller-
Nicely condition shown in Fig. 1 were re-calculated to include only
within-class errors. Thus, for example, the error rate for /p/ was
calculated as the percent of /t/ and /k/ responses, divided by the
number of /p/, /t/ and /k/ responses. These within class error rates
are shown in Fig. 2. As can be seen in Fig. 2, nasals have the lowest
error rate. /m/ and /n/ are primarily distinguished from one another
by the formant transitions from the nasal murmur into the vowel.
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Similarly, for voiced stops (and to a lesser extent, voiceless stops),
sufficient perceptual information is probably present in the vowel for
the discrimination of these stimuli. However, for fricatives, which
show the highest exror rates, it seems that the high-frequency consonant
information present in the stimuli is necessary to the discrimination

of different fricatives. Thus, it is at least possible that differences
in error rate for consonants could be explained on the basis of how
much perceptual information is carried in the following vowel that is
relevant to the discrimination of a class of consonants. Resolution

of this point will have to await further studies that attempt to
precisely describe how different kinds of acoustic information in-
teract in recognition.

Finally, it would be important to discover whether the results of
the current experiment,. using words and phrases in isolation, generalize
to natural perceptual processing. Browman (1977a) has collected na-
turally-occurring misperceptions and has analyzed differences in seg-
mental error rates, for segments in different word and syllable posi-
tions. She separates a component of error rate that is due to acoustic
differences among the various positions from one that is due to
differences in attention of the lexical decision mechanism. This is
done by dividing the error rate in each position into the sum of two
theoretical probabilities: the probability of making an acoustic
error (ie., an error caused by the phonetic-analyzing and acoustic-
sampling mechanism) and the probability of making a Zexical error (ie.,
an error caused by the choice of the wrong lexical item, possibly con-
sistent with the phonetic analysis of some other parts of the word).
From the viewpoint of the present paper, a high acoustic error rate
for some syllable corresponds to a high degree of phonetic ambiguity,
whereas, a high lexical error rate corresponds to the tendency of the
higher-level decision mechanism to ignore some syllable. Thus, the
claim stressed syllables are both less phonetically ambiguous and
are more highly weighted by higher-level mechanisms would predict
that, in Browman's analysis, stressed syllables should show both lower
acoustic and lower lexical error rates than unstressed syllables.
Browman's naturally-occurring misperceptions were, therefore, analyzed
to test this hypothesis and this prediction was confirmed (see Brow-
man, 1977b) for details of this analysis . Thus, the perceptual
salience of stressed syllables seems to hold in a very similar way in
natural perceptual situations as well.
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NOTES

After preparation of this manuscript, the work of Cole and Jakimik
(1977) became available to the author. They present a theoretical
framework very similar to the one presented here, but more explicit
with respect to modelling the word recognition process. In additionm,
they present data in support of the perceptual salience of stressed
syllables using the listening for mispronunciations paradigm. Errors
in stressed syllables were detected more rapidly than errors in un-
stressed syllables. In addition, evidence is presented for the per-
ceptual salience of stops and of word-initial consonants.
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I. Monosyllabic stimuli

IT. Bisyllabic stimuli

IiT.

APPENDIX

Words and phrases for recognition experiment

deenm
rogue
vow
cam
moth
chive
shun

Single Words

S=U (N=T7)

yokel
sulfide
dilate
shoddy
catehy
vacuum
supine

Trisyllabic stimuli (N=20)

Single Word

U-8-U (N=2)

pulsation
demented

S-U-U (H=2)

numinous.
ravages

U-U-S (N=2)

referee
guarantee

(N=6)

eel
ale
oafs
owl
elks

[S-U, U-8 are stress patterns]

Two-word Phrases (N=12)

(N=26)
fain yawl.
Zooms tithes
bib wed
gull nooks
thong lute
hick pap
soot Jot
(N=2L)
(N=12)
U-S  (N=5) S-U (n=6)
gazelle loused you
rotund footfall
typhoon bait thief
motet knge—type
beguile this chow
home-bound
Two word (N=8)
U-8-U (N=k)

his visage

those bovines

we chatted
looked jazzy

5-U-U

faucet nut
ketchup lump

U-U-S (N=2)

gets shampoo
you adduce

(N=2)

60

U-5-U

S5-U-U

U-U-8

S-U (n=6)

will zip

it jibes
caused soot
call thugs
build mounds
put shimg

Three word (N=6)

(N=2)

could log-jam
that pay-off

(w=2)

walk-out day
woodwind show

(n=2)

ate the gauze
not his chump



Chapter 3:

Bias and asymmetry in speech perception
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Bias and Asymmetry in Speech Perception

Louis Goldstein

INTRODUCTION
Asymmetries in speech perception

Patterns of errors made by listeners when identifying auditorily
presented speech sounds have frequently been studied to help in under-
standing the speech perception process. Such research has ranged from
the work of Miller and Nicely (1955) who examined errors made in the
perception of nonsense CV syllables under various conditions of noise
and filtering, to recent investigations of perceptual errors that
occur in normal conversation (Garnes and Bond, 1977; Browman, 1977).

A common thread running through such research is the assumption that
the more confusable a pair of speech sounds is, the greater their
similarity with respect to the perceptual system. These similarities
have been analyzed, by various techniques, into dimensions or features
of perceptual similarity (e.g. for consonants, Miller and Nicely, 1955;
Singh and Black, 1966, Shepard, 1972; Wang and Bilger, 1973; Wish and
Carroll, 1974; Goldstein 1977a). '

The concept of similarity employed by the above studies is a
symmetric one —- the similarity between segment A and segment B is
the same regardless of which is the stimulus, and which is the response.
However, a casual perusal of the confusion matrices in published ex-
periments reveals that this assumption is not always supported by the
number of confusions in the data. For example, in the Miller-Nicely
confusion matrices, /8/ is reported as /f/ more frequently that /f/ is
reported as /0/. Such asymmetries have generally been attributed to
a bias in favor of reporting some segments more than others. As such,
this response bias has been considered irrelevant to the underlying
similarity between the segments in question, and various techniques
have been employed to remove such effects from confusion matrices
(as will be discussed below) in order to analyze the pattern of
symmetric similarities.

Other kinds of investigations have required the removal of a
response bias component from a confusion matrix before conducting
some major analysis of the pattern of confusions. Verbrugge et. al.
(1976) wanted to examine various hypotheses about the effect
different presentation conditions on error rate in vowel recognition.
Looking only at the change in error rate from condition to condition,
it is impossible to know whether the change in error rate is due to
a change in the inherent distinctiveness of a vowel, or a change in
the tendency to give certain vowels as a response. Verbrugge et. al.
employed one of the models to be discussed below (that of Luce, 1959)
to separate a change in response bias from a change in degree of
ambiguity. Another example of this problem can be seen in Goldstein
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(1977b), who has shown that the relative error rates for a set of
consonants in the Miller-Nicely data is similar to the relative error
rates for these consonants in a word and phrase recognition task. It
could not be concluded, however, whether this similarity was to be
explained in terms of the relative ambiguity of the consonants, or

of their relative response biases (or both). Finally, Janson (1977)
has shown that asymmetries in the confusion of Dutch vowels (in the
data of Klein et. al., 1970) can be explained by a bias that is
plausibly related to the fact that the range of F2 covered by the vowels
in the experiment may differ substantially from the range normally
encountered in Dutch. '

Clearly, there is a need for an appropriate model to separate
out bias and symmetric components in a confusion matrix. Part of the
purpose of this paper is to compare the results of two different
models for finding the bias in a confusion matrix —- the linear model
proposed by Luce (1959) and the nopmetric ' model proposed by Holman
(personal communication). These models will be discussed in detail
below.

While the experiments noted above (and others) have attempted to
remove bias from confusion matrices without interpreting it, it is
possible that this bias is itself of some interest. Let us assume
that bias can be shown to be reliable across different experiments,
using the same stimuli, under different listening conditioms. If
this were the case, then this bias ought not to be discarded in an
investigation of the perceptual system, as it would be potentially
valuable information as to the working of the system itself. For
example, reliable bias in perceptual confusions would differentiate
speech perception and production systems with respect to errors.
ShattuckHufnagel and Klatt (1977) have shown that confusions among
segments in speech production (i.e., speech errors involving single
segments), tend to be extremely symmetric (with only one or two
isolated asymmetries). They show that there is essentially no bias
in their (speech error) data.

Asymmetries in perception are also important to examine from the
point of view of helping to explain some of the asymmetries that can
be observed in phonological processes (both historical and synchronic)
found commonly in languages. For example, many languages have a rule
(or underwent a historical process) whereby a /k/ is palatalized to
/t]/ before an /i/. However, examples of the converse (/t[/ becoming
/k/ before /i/), are quite rare. Similarly, many languages undergo a
process whereby syllable-final (or word-final) obstruents are devoiced,
but a rule voicing syllable-final obstruents is, again, quite rare.

It is possible that reliable asymmetries in speech perception can be
shown to be related to such asymmetric processes.

Finally, on analogy to word recognition experiments, we might
expect that frequency of occurrence of a segment in actual use would
be responsible for a bias in perception. The recognition threshhold
for a given word can be shown to be a function of its frequency of
occurrence (see Howes, 1957). A common explanation for this lowered
threshhold is that there is a response bias to emit common words as
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responses, regardless of the stimulus. While the details of the ex-
planation are quite varied (see e.g. Goldiamond and Hawkins, 1958;
Savin, 1963) some notion of response bias is implicated in the explana-
tion. We might, then, expect that subjects in a phoneme recognition
task would also show a tendency to choose as responses those phonemes
that occur most frequently in the language. Any reliable bias in
perception should be compared, therefore, with data on frequency of
occurrence.

Bias models of asymmetry

We will distinguish in the following discussion between two
types of bias models —- metric and nonmetric. Metric bias models
attempt to relate the observed data in a confusion matrix to a set of
underlying symmetric and bias parameters by means of a linear equation.
The nonmetric model assumes only a monotonic relationship between
the underlying parameters and the observed data. The best—known metric
model is that proposed by Luce (1959). To explicate this model, let
us consider a confusion matrix of n objects, in which p(xy) represents
the number of times the stimulus x is reported as response y. Let
each row of the matrix represent a particular stimulus and each
column represent a particular response. Thus, confusions of x with
y are represented by p(xy) and confusions of y with x by p(yx).
Correct responses for the set of stimuli are represented by
p(1,1)... p(x,x)... p(n,n). If we divide the entries in each row
of such a matrix by the total number of times each stimulus was
presented, then for each entry in a given row, p(xy) represents the
proportion of times stimulus x is reported as response y. The
essence of the Luce model, is that the probability p(xy) can be re-
presented as the product of a symmetric function of x and y and a bias
function on y. This is shown in (1) below, (a scale factor in the
denominator of (1) has been left out of the equation for the sake of
expository simplicity):

(1) p(xy) = b(y) . s(xy)
where s(xy) = (yx)

Thus, this model assumes that any observed asymmetry between p(xy)
and p(yx) can be accounted for by a difference in the relative
response bias of x and y, b(x) and b(y), respectively. We refer to
this as the metric response bias model.

It would seem plausible that asymmetric properties in a confu-
sion matrix could be due to differences among stimuli in terms of
their tendency to be confused, as well as differences among responses
in terms of their tendencies to be produced. Thus we might consider
modelling this situation by adding another bias function (b') to (1),
representing the confusability of each stimulus, as in (2):

(2) pxy) =b'(®) . b(y) . s(xy)

However, Holman (personal communication) has shown that any set of
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data that can be modeled by (2), with both response and stimulus
confusability biases, can be modelled equally well by (1), with only
a response bias. This can be shown as follows:

(2) p(xy) =b'(x) . b(y) . s(xy)
b'(y) - b'(x) . b(y) . s(xy)
(2a) =
b'(y)
by multiplying by b'(y)
b'(y)
b(y) - ') b'(y) . sxy)]
(2b) = —

b'(y)
by rearranging factors

b(y) in (2b) defines a new function that depends on the response
b'(y)

only. It differs from the original functions b and b', but it repre-
sents all the asymmetrical information in a single function on y. This
is true because a b'(x) . b'(y) in the equation (2b) is a symmetric
quantity, that is, it has the same value for p(xy) as for p(yx). Im

a parallel'way, it can be shown that all the asymmetric information

in b' and b can be represented in a new bias function defined only on
stimuli. This function will be b'(x), or the reciprocal of the re-

b(x)

sponse function. Thus, mathematically there is no unique solution,
in the metric model, for representing the asymmetry of the matrix in
terms of bias functions. A response bias can be modelled as a stimu-
lus bias with the appropriate change in the symmetric component, and
vice versa. The bias functions will simply be reciprocals of one
another.

Although stimulus and response bias models are mathematically
equivalent, in terms of fit to the data, it can be demonstrated that
the response bias model is more useful than stimulus bias model for
confusion matrices 1in which the rows all sum to 1. As noted above,
stimulus and response bias models of the same data will differ in
terms of their symmetric component. Crucial to this argument is the
value of the model for the similarity component of the diagonal
elements (the so-called self-similarities) s(xx)...s(yy)...s(nn).
Either the stimulus or response model will predict that the value of
a diagonal entry p(xx) will be equal to b(x).s(xx). We can interpret
b(x), as before, as a response bias, a tendency for x to occur as a
response regardless of the stimulus. The self-similarity term can be
thought of as representing the relative distinctiveness of a given
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item. An item with a large s(xx) can be considered to be very distinct;
it tends not to be involved with other items in confusions, either as
stimulus or response. A low value of s(xx) can be interpreted as a
relatively ambiguous item -- it enters into confusions readily -
either as stimulus or response.

Let us consider two diagonal entries in a confusion matrix
p(xlxl) and p(xzxz), such that p(xlxl) > p(XZXZ)’ and see how this

situation could be represented in stimulus and response bias models.
P(Xlxl) > P(XZXZ) means, of course, that there are more correct
responses for stimulus Xy than for stimulus X, . In the response

bias model, this inequality could be predicted in one of two ways.

If, in general, there are more xlresponses(not including the diagonal)
than x, responses, then b(xl) will be greater than b(xz). Thus, the
differences in the bias components are in the same direction as diff-
erences in the diagonal values, and the self-similarity parameters
will vary so as to predict just the right magnitude of difference
between p(xlxl) and P(XZXZ)' If, however, there are generally more
xzresponsesthan X{s
will have to be greater than s(x

b(xz) will be greater than b(xl) and s(xlxl
2X2) in order to account for the dia-
gonal entries. Thus, in this model, the relationship between the
diagonal entries and the response totals in the off-diagonals con-
spire to determine the best s(xx) values in an intuitively plausible
way ~- a stimulus which has a lot of correct responses, but is not
reported frequently as a response to other stimuli will be considered

to be a distinctive, non-ambiguous stimulus, with a low response bias.

The situation is rather different for the stimulus bias model,
however. For this case, again, let us examine two diagonals
x.x ) >p(x,x,). If x. has more correct responses than x than x
also has fewer confusions than XZ since row sums must add to 1. Thus,

assigning a low stimulus bias b(xl) to x, on the basis of the fewer

confusions would make the wrong prediction about the number of
correct responses, since the same b(xl) will appear both in the dia~

gonals and the off-diagonals of a given row. s(xlxl) will thus have
to be inversely correlated with b(xl) to produce the right number of

correct responses of p(x For data with equal row sums, s(xx)

1%17 -
will always turn out to be negatively correlated with b(x), since
b(x) cannot simultaneously describe the tendency of a stimulus to
be both correctly perceived and confused. For this reason, a re-
sponse bias model is more convenient, because it allows us to
calculate, for a set of data, a bias function and a set of self-
similarities that are, at least in principle, independent of one
another.
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The nonmetric bias model also represents a confusion matrix in
terms of two sets of underlying parameters -- a bias function, b,
symmetric function s(xy). Unlike the metric model, however, the
nonmetric model does not make an assumption about the particular
form of the function that relates the parameters b and s to the data
(p(xy)), it only assumes that p(xy) is monotonic on b and s, in the
sense that (3) is assumed to be true:

(3) If s(xy) > s(wz) and b(x) < b(w) and b(y) 2 b(z)
this implies:
p(xy) > p(wz)

Thus, this model makes the following prediction about the relation-
ship between the cells xy and wz of the confusion matrix. If the
symmetric component of xy is greater than that for wz and the bias
for y is greater than the bias for z, and the bias for x is smaller
than the bias for w, then there should be more confusions p(xy)
that p(wz).

The model attempts to order objects on b, and pairs of objects
on s(xy) such that the number violations of (3) is minimized. It
should be noted that this model only makes a prediction about the
inequality between two of the cells in the matrix, just in case the
conditions in (3) are met; if these are not met, 7o prediction is
made. The bias function in this model is both a stimulus and re-
sponse bias —-— one can think of the objects (phonemes in this case)
as being ordered on this function in such a way that those objects
with low values on the bias function tend to be responded to as ob-
jects with high values on the bias function more often than vice versa.
Put another way, objects with high bias values tend to intrude on
objects with low bias values. The model uses only the confysions
in the original matrix, it does not use the data on the diagonal at
all. Thus, no estimates of self-similarities are produced by this
model, and there is no problem in the relationship between the bias
function and the self-similarities, as was encountered in the metric
stimulus bias model.

The metric bias model is stronger than the nonmetric model, in
that it assumes a particular, linear relationship between the under-
lying parameters and the observed data. This stronger model implies
the weaker nonmetric model, in the sense that the b and s parameters
derived in fitting the metric model should still fulfill (3), assum-
ing that the model is appropriate to the data. This follows because
the linear function assumed by the metric model is a monotonic function
on b and s. Thus, it is possible to show the inappropriateness of
the metric bias model for a particular set of data by showing that
the b and s parameters from the metric model of a given data set
lead to a substantially greater number of violations of (3) than
does the nonmetric model that reduces such violations to a minimum.

In the analysis to be described below, metric and nonmetric bias
models will be fitted to the same perceptual confusion data. The
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models will be compared. At the same time, the confusion data are
chosen so as to allow assessment of the reliability of the obtained
bias functions. Thus, we will be able to compare metric and

nonmetric models both with respect to violations of (3) and with
respect to the reliability of the obtained bias functions. Moreover
any reliable bias obtained will be interpreted with respect to general
asymmetric linguistic processes, and will be compared with frequency
of occurrence.

METHOD
Data: confusions

The perceptual confusion data published by Wang and Bilger (1973)
was chosen for analysis. This data includes confusion matrices for
four different sets of syllables referred to as CV1, VCl, CV2 and
VC2. Each set of 16 syllables was presented under two different
listening conditions. In one of the listening conditions, syllables
were presented with background white noise of various S/N levels (this
is referred to below as the N condition). In the other conditions,
(referred to as Q below), syllables are presented without background
noise at a variety of low signal levels. The particular consonants
involved in these syllables are shown in Table 1. Note that the CV1
and VC1 sets include the identical set of consonants -- the English
non-nasal stops, fricatives, and affricates. CV2 and VC2 sets include
the English syllable-initial and syllable-final consonants that were
not included in the CV1 and VCl sets, and thus are not identical to
one another. The vowels in all sets were /i/, /a/, and /u/. Each of
the eight confusion matrices represents data summed over subjects,
vowels and S/N level.

For each syllable type, the data in the noise and quiet condi-
tions constitute potential tests for the reliability of extracted
bias functions. It is easy emough to imagine that differences between
these two presentation conditions are sufficient to introduce some
differences in bias. However, there would not be much theoretical
interest in a bias function that was not even reliable across conditions
as similar as these.

Data: frequency

In order to test the hypothesis that the biases obtained in
perceptual confusions would correlate with the frequency of occur-
rence of the consonants, data on consonant frequency was tabulated.
Four different sets of frequency of occurrence data were obtained,
one set from Carterette and Jones (1974), and three sets from
Roberts (1965). Carterette and Jones recorded spontaneous, informal
speech of children and adults, transcribed this speech and established
phoneme frequency counts based on the transcriptions. For adults,
the sample included 15,964 words of spoken speech, based on 24 speak-
ers. From their totals for adults, the overall frequency of occur-
rence for consonants was obtained.
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Table 1. Consonants used in the Wang and Bilger (1973) experiment,
for each of the four conditions.

Cvi
VC1

Cv2 p b tf dz |

-
-+
(]
<
N
o
o
<
=
.
3
=

veep b g m n o f 8 s [ v & z 3 t] d3

Table 2. Kendall's tau for correlation of metric and nonmetric bias
functions. Associated significance levels in parentheses.

CViIN .70 (.001) cviqQ  .k6  (.007)
VCIN .70 (.001) vcie .80 (.001)
CveN .67 (.001) cv2g .52 (.003)
vean .72 {.001) ve2q .70 (.001)
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Roberts (1965) recorded a speaker reading sentences that included
the 10,000 words in the Horn (1926) word count. These words were
then transcribed and the frequency of occurrence of phonemes in the
word list was determined. The frequencies of occurrence of the pho-
nemes in the language were then computed on the basis of their fre-
quencies in the words of this sample, and the frequency of occur-
rence of these words in the language, as reported by Horn (1926).
From this phoneme count, the overall frequency of occurrence of conso-
nants, and the frequency of occurrenence in word-initial position was
obtained. In addition to the frequency of occurrence in the language
of these consonants, the frequency in the Horn corpus was also noted.
This can be considered a measure of lexical frequency, rather than
frequency of occurrence, i.e., it is an estimate of the frequency of
occurrence of the phonemes in a hypothetical dictionary of English in
which each word is represented once.

Analysis

For each of the Wang and Bilger confusion matrices, the entries
in each row were divided by the row totals, yielding estimates of row
conditional probabilities. The resulting matrices were submitted to
two computer programs. A program written by E. Holman found the best
solution for the nonmetric model. The program converged within 15
iterations for all data sets analyzed. The second program, written
by T. Wickens, used an iterative procedure to find the maximum 1ikli-
hood metric response bias model for a given set of data that included
a diagonal. The program generally converged in less than 30 iterationmns,
although for one of the data sets (CV2Q), the self-similarities were
still changing slightly after 100 iterationms.

RESULTS
Metric vs. nommetric bias models

The rank order of the consonants in the bias functions was quite
similar for metric and nonmetric models. Rank order correlations
(Kendall's tau) between metric and nonmetric biases are shown in
Table 2 for each of the eight confusion matrices. Each correlation
is significant at better than the .0l level.

The following procedure was used to test the appropriateness of
the metric bias model for the data. For each data set, we calculated
the percent error for predictions made by the metric bias function
under the assumption of monotonicity (made in equation 3). The non-
metric bias program was used to make this calculation. The percent
error was compared to the comparable value for the nonmetric bias
function. The results are shown in the left-hand columms of Table 3.
It is clear that there are more violations of monotonicity for the
metric than for the nonmetric bias, for all matrices. However, the
differences are rather small for all data sets except CV1Q.

In some sense, the nonmetric biases should have an advantage in
the above comparison, since they are actually calculated so as to
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Table 3. Percent of predictions of inequalities in data that are
incorrect. Results are shown for bias functions derived for
metric and nonmetric models. Bias functions are used to predict
data from which they have been derived (within-data) and data
for contrasting noise condition (cross-data).

within-data cross—-data
metric bias nonmetric bias metric bias nonmetric bias
CViy .150 .110 .225 .21h
cvliQ .286 173 .287 271
VC1N .079 .060 .129 .126
VC1Q .108 .087 L1k43 .1ks
CV2N .186 .150 L6 .508
cveq .2ko 197 .L60 L6T
VC2N J111 .088 .184 .253
vC2Q .12k .099 .231 .29}

Table 4. Kendall's tau for reliability of metric-derived bias across
conditions of noise and quiet. Associated significance levels
in parentheses.

CVLN-CV1Q .63 (.001)
VCIN-VC1Q .6k (.001)
CV2N-CV2Q A7 (.18Lh)
VC2N-VC2Q .53 (.002)
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minimize the particular quantity being compared. A better analysis,
therefore, would involve comparing violations of monotonicity for a
bias function when used to predict, not the original data it was based
upon, but the data of the other confusion set, having the same syl-
lables in a different noise condition. Thus, bias functions generated
for the quiet condition data sets were used to predict the noisy con-
dition data and vice versa. The percentage violations of monotoni-
city for these cross data set comparisons are shown in the right-hand
columns of Table 3. These results show a rather different pattern
from the within data set comparisons. For the CVl1 data sets, there are
slightly more violations of monotonicty for the metric bias. For VCl
sets, differences are exceedingly small, one favoring the metric,

the other the nonmetric. For CV2 sets, the cross data violations are
so numerous (about half) that this data is largely irrelevant. (We
will return below to this case). Finally, for VC2 sets there were
substantially fewer violations for the metric model. Thus, the metric
solution for the VC2 data seems to be producting bias functions that
are more reliable across data sets than the bias fupnctions produced

by the nonmetric prodedure. Moreover, since the within data set vio-
lations are not much larger for the metric model than for the non-
metric, the advantage of the metric solution does not seem to come at
the expense of making many more errors in predicting the original data.
Thus, the stronger assumptions of the metric model seem appropriate

to the confusion data at hand, in that its monotonic fit to the data
cannot be considered worse than that for the nonmetric bias (if
anything, it might be considered better for the metric bias). Since
the metric model also has the advantage that the analysis provides an
estimate of the self-similarity, or distinctiveness, of all the
consonants, in addition to the bias function, it is the metric
solutions that we will analyze in detail below.

Reliability of the metric bias

To test the hypothesis that the bias for a particular type of
stimulus material would be reliable across presentation conditions,
the metric bias functions from noise and quiet conditions were rank
correlated (using Kendall's tau). Correlations for the four syllable
types are shown in Table 4, along with associated significance levels.
The sets clearly differ from one another in terms of reliability of
bias. CVl, VCl, and VC2 sets all show highly significant correlations,
while the CV2 set shows almost no correlation at all. It is odd that
this set, with more nasals and approximants and fewer stops and frica-
tives than CV1l, should have no reliable bias across noise and quiet
conditions. However, as we shall see below, the CV2N and CV2Q sets
behave differently from the other matrices in a number of ways.

Correlation of bias with frequency
The rank correlations of metric biases and consonant frequencies
are shown in Table 5, for all eight sets of consonants. Correlations

are given for each of the four frequency measures discussed above.
Rank correlations are used, because the relationship between frequen-
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Table 5. Kendall's tau for correlation between frequéncy and bias.
Associated significance levels in parentheses.

Carterette & Roberts Roberts Roberts

Jones general word-initial lexical
CVIN .20 (.1k0) .22 (.121) 13 (.236) L7 (.006)
cviq .21 (.130) .23 (.112) LOob o (k1) A (Lo1k)
VCIN .45 (.008) L3 (.01) b5 (.008) .58 (.001)
veliq .2k (.096) .29 (.057) .3k (.032) .51 (.003)
CVeN .12 (.260) .22 (.128) A7 (.18k) 22 (.128)
Cveq .028 (.hkh1) -.10 (.293) .03 (.kh29) .16 (.200)
veen .33 (.036) .37 (.075) 45 (.008)
ve2Q .27 (.075) .27 (.075) 45 (.008)

Table 6. Percent of predictions of inequalities in data that are
incorrect. Results are shown for frequency ranks used as
bias functions.

Carterette & Roberts Roberts Roberts

Jones general word-initial lexical
CVIN .299 . 345 .321 2hh
cvigQ  .376 o JLé2 .312
VCIN .179 .200 .129 .169
VC1lQ .256 243 .231 .168
VCaN  .284 .320 .290 252
ve2q  .343 .322 .280 .238
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cy and bias did not seem to be linear, either with the raw frequencies,
or with log transforms of the frequencies. The hypothesis that reliable
response bias would be a. function of consonant frequency is partially
supported by these results. For all .eight sets of data, the highest
correlations with bias are found for the lexical frequencies. Cor-
relations of bias with lexical frequencies are significant for all

four VC data sets and for CVIN. Correlations are marginally signi~-
ficant for CV1Q and, once again, virtually nonexistant for CV2N and
CV2Q. VC syllables, in general, seem to show better correlations with
frequency than CV syllables. VCIN has the best correlations whith
frequency of all, showing significant correlations with frequency of
occurrence measures, as well as the single largest correlation with
lexical frequencies. VC1Q, VC2N and VC2Q show some marginal correla-
tions with frequency of occurrence, and the CV sets show no correlation
at all with frequency of occurrence, as opposed to lexical frequency.

The hypothesis that response bias is due primarily to frequency
is strengthened by comparing the pattern of correlations to the
patterns of goodness of fit of the model to the data, as shown by the
percentage of monotonicity errors in Table 3. The percentage of vio-
lations of monotonicity is smaller for those data sets that show good
correlations with frequency ~- the VCs. The three data sets that have
marginal or no correlation with frequency also have the greatest
percent errors in Table 3 -- CV1Q, CV2N, and CV2Q. Thus, it seems that
the greater the degree to which a bias funciton fits a set of data,
the greater the correlation of the bias with frequency. This certainly
supports the notion that phoneme frequency is an important determinant
of reliable response bias.

Two analyses were undertaken to determine whether the reliable
bias for a given syllable set could be considered to be exhausted by
frequency, or whether there were, in addition, some other components
of this bias. The first analysis was to use the phoneme frequencies
themselves as the bias function, and to calculate, using the nonmetric
bias program, the percent violations of monotonicity for this fre-
quency bias function. These percent errors can then be compared to
the values for the cross data set preditions of the metric bias func-
tions, previously discussed, in Table 3. If frequencies are as good
at predicting a given set of data as the biases from the paired data
set, this would imply that there is nothing but frequency that is
reliable in the bias. The percent errors of frequencies are shown in
Table 6. Comparing these values to those in Table 3 for cross set
predictions, it is clear that, in general, frequencies show more
errors. The percent errors in predicting VCIN for the word-initial
Roberts frequencies is the same as that for the VC1Q bias, but in
every other case, frequencies are worse than metric biases in predict-
ing the data. Thus, this seems to indicate that there is more than
frequency that is reliable in the data.

The other procedure for deciding whether frequency exhausts the

reliable bias is to partial frequency out of the bias functions of
the noise and quiet sets of a given syllable type, and to see if they
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still correlate significantly. Since we wanted to use frequency ranks
rather than real values (given the linearity problem), we require some
procedure for doing partial rank correlations. To approximate this,

a Pearson correlation was performed, but using the ranks of frequency
and bias as the values of the variables being correlated. This pro-
cedure essentially corresponds to a Spearman rank-order correlation.
The correlation of these ranks, before and after partialling out fre-
quency ranks, is shown in Table 7. The significance levels noted there
should be regarded with some caution, given this partialling procedure.
It is clear that the biases of noisy and quiet conditions for a given
syllable type are still highly correlated, even after partialling out
lexical frequency, the one that correlates best with the biases.

Other interpretations of bias

In order to determine what else is reliable in response bias,
besides frequency, let us examine the actual bias functions themselves.
In Table 8, the consonants are listed from left to right in order of
decreasing bias, for each set of data. Let us first examine the bias
for VCIN. The three voiceless stops /t,p,k/ show the highest bias
and are followed closely by the three voiced stops and /s/: /g,s,b,d/.
Thus, except for /s/, the high end of the bias function includes all
and only the stop consonants, with the voiceless showing higher bias
than the voiced ones. This reflects the rank of these consonants in
terms of their likelihood to occur in the world's languages. Phono-
logies described by Hockett (1955) and the data summarizing the phono-
logies of 700 languages of the world in Ruhlen (1975) support the fol~
lowing claims: If a language has either stops or fricatives, but not
both, it is much more likely to have stops; if it has either voiced
or voiceless stops, but not both, it is much more likely to have
voiceless stops. Moreover, if a language has only one fricative, it
is more than likely to be /s/. Let us, oversimplifying for the pre-
sent discussion, assume that the phonological naturalness of a given
segment is directly related to its frequency among the languages in
the world. Greenberg (1966) has shown that such distributional facts
correlate with other criteria for "markedness’ or naturalness, such
as those discussed by Jakobson (1942), or Trubetzkoy (1958).

The bias for VCIN seems to coincide with this scale of phonological
naturalness.

Unfortunately, what is phonologically natural also tends to occur
frequency in English. Greenberg (1966) has shown that this is not
true just for English -- in a variety of unrelated languages, markedness
or naturalness of a segment was found to eorrelate with frequency of
occurrence within the language. It is very difficult, therefore, to
separate naturalness factors from frequency, in order to determine
which, or both is responsible for bias in VC perception. TFor example,
let us define a variable that can, in a limited sense, be considered
to be an indication of phonological naturalness: [1l] for all fricatives
and [0] for all stops. (Affricates are considered fricatives in this
analysis). This variable rank-correlates with lexical frequency
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Table T. Partial correlation (r) of bias ranks, after partialling out
frequency ranks. Zero-order rank correlations (Spearman's )
are also given. See text.

Zero— Carter- _.Roberts Roberts Roberts
order ette & general  word-ini- lexical
Jones tial
CV1N-CV1Q .82(.001) .81(.001) .81(.001) .82(.001) .75(.001)
VCIN-VC1Q .82(.001) .82(.001) .80(.001) .80(.001) .65(.00k)
CV2N-CV2Q .31(.130) .31(.1k2) .41(.069) .36(.102) .27(.176)
VC2N-VC2Q .73(.001) .69(.002) .69(.002) .69(.002) .59(.010)

Table 8. Bias from metric analysis. Consonants are ordered from
left to right in order of decreasing response bias.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CVIN p v d3 t g s z d b k [ tf e & 3
cvig v. p t f d b z g d3 tf s [ 3z Kk o &
VelIN 't p k g s b d v [ a3z f & z tf o 3
vele p k t s g d f [ d3 v tf 8 b 3z 5 z
CV2N | h m f s r jJ p w hv d? n tf z v b
vz s m f p I b r v dz tf h¥ h j n w
Vez2N s p n np m g 6 b d3z v f tf 35 z 3z |
veea pos g f o on o om v tf d3 b g 6 [ 35 3z z
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(p = .53, p < .02). If one looks at the pattern of residuals after
partialling frequency (lexical) out of the bias function for VCIN, the
consonants are no longer completely systematically ordered according
to phonological naturalness. However, there is still a significant
correlation of the feature stop with bias, even after partialling in
this way (r = 0.68, p < .002, although, again the significance level
should be regarded with some caution). Moreover, turning this around,
there is still a substantial correlation of bias with lexical frequency,
after partialling out the feature stop (¥ = 0.63, p < .01), the fea-
ture voice (r = 0.74, p < .001) or both features voice and stop
(r=0.58, p < .02). Thus, as far as can be determined at this point,
lexical frequency and phonological naturalness are correlated but have
separable effects on perceptual bias.

For the VC1Q set, the bias is similar to that for the VCIN set,
except that /b/ has a very low bias, rather than being with the other
stops at the top of the bias function. Moreover, the effects of fre-
quency and phonological naturalness are more hopelessly intertwiped
in the VC1Q case. Partialling out frequency makes the correlation of
bias with the stop feature not significant, and partialling out the
features stop and voice makes the correlation with frequency not
significant.

More problematic results for the quiet conditions seem to be the
rule in this data. For quiet conditions, in general, the bias func-
tions fit the data worse than for the corresponding noise conditon (see
Table 3). This should not be surprising, since there are many fewer
errors in the quiet conditions, and therefore, the error distribution
will be noisier, or less well determined. Thus, more problematic
bias results in the quiet condition is somewhat less troubling than it
would be in the noise condition.

There is a major objection to the phonological naturalness argu-
ment made above. As noted (in the Introduction), many languages devoice
voiced stops in final position. Unfortunately for the present analysis,
such devoicing is possible in English. The distinciton between voiced
and voiceless final stops is often, in fact, cued by the length of the
final vowel, rather than voicing in the consonant inself. (see
Lisker, 1974, Javkin, 1976). Thus, it is possible that the stimuli
in the Wang and Bilger experiment included devoiced final stops. They
may have tended to be reported as voiceless stops more than vice
versa (this is the implication of their relative positions on the
bias hierarchy) because they actually were produced somewhat between
fully voiceless and fully voiced final stops. Without the acoustic
data from the experiment, it is not possible to fully resolve this
point.

There is another point for which it would be useful to have the
acoustic data for the syllables used in the Wang and Bilger experiment.
It is possible that the final stops were released, and perhaps even
followed by a very short vowel, if the reader was trying to articulate
them very clearly. If this were the case, the somewhat unusual
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acoustic marking might somehow be responsible for the bias in favor
of the stops.

Returning to an examination of other interpretations of bias in
the data, the bias in the VC2N condition also shows an effect of
phonolgical naturalness. This stimulus set includes three stops —-
/psb,g/ -- and three nasals -- /m,n,p/. These six consonants are
included in the first eight positions of the bias function. Again,
the voiceless stop has a higher bias than the voiced ones. Nasals are
also common segments in the languages of the world, and in fact,
there are languages (such as Peking Chinese) where the only syllable-
final consonants are nasals. Thus, the fact that nasals have high
bias once again supports the association of the bias function with
phonological naturalness. The results for the corresponding quiet
condition are, again less clear. Both /b/ and /n/ have considerably
lower values of bias in the VC2Q condition than in the VC2N condi-
tion.

Unlike the situation for VCs, it is very difficult to find a
phonological naturalness interpretation of the bias for CVIN or CV1Q.
In fact, it is very difficult to find any interpretation of the bias
other than the somewhat weak correlation with frequency. The frica-
tives /9,5,I,3/ seem to be at the extreme weak end of the bias conti-
nuum for both CVIN and CV1Q. However, it is not clear how to interpret
this. Similarly, there seems to be a preference for grave or non-
coronal consonants at the high bias end of the continuum. Again, no
explanation suggests itself. Similarly for CV2N and CV2Q, there is no
obvious interpretation of the bias. The CV2 biases, as we see, are
also not reliable, do not correlate with frequency, and have high
proportions of errors in predicting the inequalities in the data. 1In
addition, there is very little variability in the actual metric bias
values assigned for each of these two conditions. Thus, it seems
that there is only weak, uninterpretable, unreliable bias for these
syllables. Possible reasons for this will be outlined in the dis-
cussion, below.

Self-similarities

One of the reasons for preferring the metric bias model, as out-
lined above, is that it is possible to obtain a measure of the
relative distinctiveness (or ambiguity) of the consonants, in addition
to a measure of bias. This measure of distinctiveness -- the self-
similarities —- was also reliable in the data analyzed. The correla-
tions between the noise and quiet conditions are shown in Table 9.
Even the CV2 data shows a marginally significant reliability for self-
similarities as opposed to bias. However, as it turns out, these
self-similarities are highly correlated with the bias functions. This
makes them very difficult to interpret, independently. The rank
correlations of the biases and self-similarities for the eight data
sets are shown in Table 10. It should be noted that these correla-
tions are higher, in every case, for the quiet condition than for the
corresponding noise condition. It is not clear why this is the case,
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Table 9. Kendall's tau for correlation between self-similarities across
noise and gquiet conditions. Associated significance levels in

parentheses.
CVIN-CV1Q .85 (.001)
VC1N-VC1Q .82 (.001)
CV2N-CV2Q L5 (Lok)
VCAON-VC2Q .76 (.001)

Table 10. Kendall's tau for correlation of bias and self-similarities
for each data set. Associated significance levels in parentheses.

CVIN .53 (.002) CviQ .59 (.001)
VClN .65 (.001) vCci@ .93 (.001)
cven .58 (.001L) cveN .70 (.001)

veen .70 (.001) vec2qQ .85 (.001)
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althqugh it suggests the following: The computation of bias may be
-more heavily dependent on the relative sizes of the diagonals in con-
ditions in which there are relatively few errors, than in conditions
in which there are relatively more errors. Clearly, in conditions
with few errors, differences among consonants, in terms of total
number of responses, are going to depend very heavily on differences
in the diagonal elements.

The consonants in each of the eight conditions are rank-ordered
by self-similarity in Table 11. It is quite similar, of course to
Table 8, since the biases and self-similarities are quite highly
correlated. One way to interpret the self-similarities is to see
how they differ from the bias functions. Comparing Tables 8 and 11,
the most obvious difference is in the position of sibilants, particular-
ly, /t[/ and /[/. These consonants have very low biases, but in
every condition but one, the rank of /t[/ and /f/ is higher in self-
similarities than in biases (in the one exception, VC1Q, /[/ has the
same rank in both). This suggests that while there is very little
response bias in favor of /t]/ or /[/, they are relatively unambiguous
consonants. This is certainly a plausible result, and therefore
suggests that the model may, in fact, be separating out response bias
from relative ambiguity, as it should be. The high correlation between
the two, therefore, may indicate that relatively distinct consonants,
in fact, tend to attract responses.

DISCUSSION

We have seen that the metric response bias model is reasonably
appropriate for consonant confusion data, that there are reliable
biases in consonant perception, especially for VC syllables, and that
such biases can be shown to correlate either with lexical frequency or
phonological naturalness, or both. There are still a number of inter-
esting issues raised by the biases found in CV and VC perception. Fore-
most among these is the question of why there is a difference between
CVs and VCs in terms of bias. The bias function for VCs seems to fit
the monotonic bias model better than that for CVs, the bias seems more
generally reliable for VCs (CV2, it should be recalled, was very un-
reliable), and the bias seems more interpretable for VCs (both in
terms of frequency and phonological naturalness). What can account
for these differences?

There are two different explanations for the CV/VC distinction,
depending on whether we think the bias is related to a perceptual
preference for phonologically natural sequences or to a lexical fre-
quency effect. On the theory that bias is related to phonological
naturalness, the explanation for the CV/VC differences is quite
straightforward. Languages in general seem to have a more restricted
distribution of consonants syllable-finally than syllable-initially.
There are many languages that have no syllable-final consonants at
all, but a language with no syllable-initial consonants would be
rare, indeed. Since languages are more restricted in their consonant
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Table 11. Rank order of self-similarities. Consonants are arranged
from left-to-right in order of decreasing self-similarity.

1 2 3 L 5 6 7 8 9 10 11 12 13 14 15 16

Cvin p d3 g s t d [ z tf f v k 3 b 6 3
cvig p t d g d3 z tJ f s b [ v k 3 o 3
velaw st p k g b d [ 3z v tf z f dz o 3
vele k p t s g d f [ d3 t] & v 3 b z &
CVeN | m j r p tf s n dz h w f h% b v
cv2q sz m p | f rd3 t? h b n v h¥ w
VC2N s p g m n g tf b d3 6 [ f 3z v 3 2z
veeq p0s g f n o om tf] d3 9 [ v b 6 z 3z 3§
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inventories  syllable-finally, syllable-final consonants are more
likely to be among the phonologically natural ones. Thus, it would not
be surprising that a bias in favor of natural segment types is found
more strongly syllable-finally than syllable-initially. It should be
noted, of course, that the phonological naturalness account of these
facts does not explain (in the sense of providing proximal causes) why
an individual's behavior in a perceptual experiment ought to reflect
the distribution of consonants in the world's languages. The account
suggests the possibility that this perceptual behavior may form part
of the basis for the universal tendency, but no attempt is made, at
this point, to explain why an individual's perceptual system should
show this bias. (It is at least conceivable that some uninteresting
principle like duration is partly responsible for this preference.)

Let us examine the frequency account for the consonant bias
before attempting to see how this account can accomodate the CV/VC
distinction. Certain consonants can be said to be more expected than
others, on the basis of our language experience. When faced with an
ambiguous stimulus, we choose the response that is more expected on
the basis of this experience. The effect of this long-term experience
has been modelled as a permanent criterion shift (in the signal de-
tection sense) for units, depending on their frequencies (see Morton,
1964) . While such models have been mainly proposed to account for
word recognition, there is no reason not to extend them to segment
recognition as well.

There is a major problem with the frequency account of consonant
bias as outlined above. 1In the current analysis, bias correlates
significantly with lexical frequency, but generally does not correlate
well with frequency of occurrence. This is certainly not what would
be predicted by the kind of model proposed to account, for example,
for the word-frequency effect. Expectancy should be a function of the
actual frequency of experience. This discrepancy, along with the CV/
VC distinction suggests the following model to account for consonant
bias. Let us suppose that, when presented with a relatively ambiguous
nonsense stimulus, the listener's strategy is to sort through possible
words that could plausibly include the ambiguous stimulus. The con-
sonant decision is then made by determining which consonant is included
in the greatest number of these plausible words. This model would
predict, generally, a correlation of response bias with lexical
frequency. Let us assume, in addition, that when listening to CV
stimuli, the listeners sort through words whose beginnings are con-
sistent with the stimulus while for VC stimuli, listeners sort through
words whose endings are consistent with the stimulus. We could then
predict the observed bias difference between CVs and VCs. English
speakers are much better at listing words that end with a particular
VC# than they are at listing words that begin with a particular #CV.
(Baker, 1974). If part of the listener's strategy in the CV and VC
recognition task is to match either the beginnings or endings of
words (respectively) with the stimuli, then subjects' superior
ability in the latter case could result in a much more stable frequency
bias.
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The model suggested above for accounting for the difference in
bias between CVs and VCs is, admittedly, rather baroque. However,
it could, in part, be tested. For example, one could examine indi-
vidual differences in ability to produce words in a Baker-type task.
To the extent to which degree of lexical frequency bias can be corre-
lated with ability in the word-finding task, this would support the
theory outlined above. '

Fipally, it is interesting to speculate on why there does not
seem to be any bias in speech production errors (as reported by
ShattuckHufnagel and Klatt, 1977) comparable to the bias in perceptual
errors. Of course, a trivial explanation for this difference
could claim that the difference is due to the perceptual results being
based on isolated nonsense syllables, or being based on experimental,
as opposed to naturally-occurring errors. There is no way, at present,
to rule out these possibilites. There are two interesting explanations
that are worth considering, however, The first of these would relate
the difference to differences between perception and production.

In perception, a listener is always faced with uncertainty. (S)he

is attempting to map some internal categories onto an ambiguous
external signal. Biases help listeners decide how to make their
choices. They narrow down the list of alternatives. In fact, since
words and phonemes do differ in frequency of occurrence, a comprehen-
sion strategy involving response bias in favor of frequent items would
lead to the correct response more often than a strategy without such
a bias. Passive models of speech perception (e.g., Morton, 1964,
1970), attribute the effect of context in speech perception to bias,
effectively. Speech perception could not work at all without such
contextual effects.

In short, speech perception can be seen as hypothesis-generation,
and bias is one of the many ways that context and knowledge of the world
guide this process. Errors in perception are simply hypotheses
that happened to be incorrect. Speech errors, on the other hand,
are not hypotheses about anything. Speakers generally know what it
is they want to say. If we view bias in perception as part of the
hypothesis-generating system, there is no reason to find it in pro-
duction.

The above explanation for the difference between errors in speech
perception and production is reasonable, as long as the bias we are
discussing is, in fact, useful for the hypothesis-generating system.

A frequency bias fulfills this requirement. However, a bias in favor
of phonologically natural segments would not seem to be terribly use-
ful to a perceptual system. Thus, there is no explanation for why
there should be this kind of bias in perception, but not in production
(if, in fact, such a bias could be separated out from frequency).

The explanation may lie in the fact that most speech errors (about
80%) tend to involve syllable-initial consonants. While we do not
understand why this is so, the failure of bias to show up in speech
errors may be because they are mostly syllable-initial consonants,

a position that shows only weak bias in perception as well. An
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examination of exclusively syllable-final consonant errors might re-

veal bias in production, comparable to the phonological naturalness
bias in perception.

ACKNOWLEDGMENTS

Thanks to Eric Holman for spending many hours discussing bias
models and providing various programs. Tom Wickens supplied
useful comments and programs. I had helpful discussions with
C.P. Browman, Peter Ladefoged and Ian Maddieson.

This research
was supported by NIH.

84



REFERENCES

Baker, L.N. 19T4. The Lexicon: Some Psycholinguistic Evidence.
UCLA Working Papers in Phonetics 26.

Browman, C.P. 1977. Perceptual processing: evidence from slips
of the ear. Paper presented at 12th International Congress
of Linguists, workshop on slips of the tongue and ear, Vienna.

Carterette, E.C. and Jones, M.H. 19T74. Informal Speech. Los
Angeles: University of California Press.

Garnes, S. and Bond, Z. 1977. A slip of the ear: A snip of the
ear?, a slip of the year? Paper presented at 12th International
Congress of Linguists, workshop on slips of the tongue and ear,
Vienna.

Goldiamond, I. and Hawkins, W.F. 1958. Vexierversuch: the logarith-
mic relationship between word-frequency and recognition ob-

tained in the absence of stimulus words. J. exp. Psychol. 56.
L57-L63.

Goldstein, L.M. 19T77a. Categorical features in speech perbeption
and production. Paper presented at 12th International Congress
of Linguists, workshop on slips of the tongue and ear, Vienna.

Goldstein, L.M. 197T7Tb. Perceptual salience of stressed syllables.
To appear in UCLA Working Papers in Phonetics 38.

Hockett, C.F. 1955. A Manual of Phonology. International J. of
Anmer. Linguistics, Memoir 11. Baltimore: Waverly Press.

Horn, E. 1926. A Basic Writing Vocabulary. University of Iowa Mono-
graphs in Education 4. Iowa City, Iowa.

Howes, D.H. 1957. On the relationship between intelligibility and
frequency of occurence of English words. J. acoust. Soc. Am.

29. 296-305.

Greenberg, J.H. 1966. Language Universals. The Hague: Mouton.

Jakobson, R. 1942, Kindersprache, aphasie, und allgemeine Lautge-
setze. Selected Writings I. The Hague: Mouton. 328-k01.

Janson, T. 1977. Asymmetry in vowel confustion matrices. dJ.
Phonetics 5. 91-96.

85



Javkin, H. 1976. The perceptual basis of vowel duration differences
associated with the voiced/voiceless distinction. Report of
the Phonology Laboratory, Berkeley, 1. T8-92.

Klein, W., Plomp, R. and Pols, L.C.W. 1970. Vowel spectra, vowel
spaces, and vowel identification. J. acoust. Soc. Am. L48.

999-1009.

Lisker, L. 197k, On 'explaining' vowel duration. Glossa 8. 223-
246.

Luce, D. 1959. Individual Choice Behavior. New York: Wiley.

Miller, G. and Nicely, P. 1955. An analysis of perceptual confus-
ions among English consonants. J. acoust. Soc. Am. 27.
338-352.

Morton, J. 196L4. A preliminary functional model for language be-
havior. International Audiology 3. 216-225.

Morton, J. 1970. A functional model for memory. In D.A. Norman
(ed). Models of Human Memory. New York: Academic Press.

Roberts, A.H. 1965. A Statistical Linguistic Analysis of American
English. The Hague: Mouton.

Ruhlen, M. 1975. A Guide to the Languages of the World. Palo Alto,
California: Stanford.

Savin, H. 1963. Word-frequency effect and errors in the perception
of speech. J. acoust. Soc. Am. 35. 200-206.

ShattuckHufnagel, S. and Klatt, D.H. 1977. Single phoneme error
data rule out two models of error generation. Paper presented
at 12th International Congress of Linguists, workshop on slips
of the tongue and ear, Vienna.

Shepard, R.N. 1972. Psychological representation of speech sounds.
In E.E. David and P.B. Denes (eds). Humsn Communication: a
Unified View. New York: McGraw-Hill. 67-113.

Singh, S. and Black, J.W. 1966. Study of twenty-six intervocalic
consonants as spoken and recognized by four language groups.
J. acoust. Soc. Am. 39. 635-656.

Trubetzkoy, N. 1958. Grundzlige der Phonologie. GBttingen: Van-
denhoeck und Ruprecht.

86



Verbrugge, R.R., Strange, W., Shankweiler, D.P., and Edman, T.R.
1976. What information enables a listener to map a talker's
vowel space? J. acoust. Soc. Am. 60. 198-212.

Wang, M.D. and Bilger, R.C. 1973. Consonant confusions in noise:
a study of perceptual features. J. acoust. Soc. Am. 54,
1248-1266

Wish, M. and Carroll, J.D. 197k. Applications of individual
differences scaling. In E.C. Carterette and M.P. Friedman
(eds). Handbook of Perception II. New York: Academic Press.
Lhg-Lo1.

87



	39 missing.pdf
	39.pdf
	39b.pdf
	39a.pdf




