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Characterization of long period return values of extreme daily temperature 
and precipitation in the CMIP6 models: Part 1, model evaluation 
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A B S T R A C T   

Using a non-stationary Generalized Extreme Value statistical method, we calculate selected extreme daily tem
perature and precipitation indices and their 20 year return values from the CMIP5 and CMIP6 historically forced 
climate models. We evaluate model performance of these indices and their return values in replicating similar 
quantities calculated from gridded land based daily observations. We find that at their standard resolutions, there 
are no meaningful differences between the two generations of models in their quality of simulated extreme daily 
temperature and precipitation.   

1. Introduction 

Much attention has been paid over the last 30 years to incorporating 
additional processes relevant to the climate system and their changes 
into climate models. Significant resources have also been directed to 
improving the quality of model simulations as compared to available 
observations over the recent past (Flato et al., 2013). Model evaluation 
is enabled by the historical simulation protocols of the Coupled Model 
Intercomparison Project (CMIP), which is currently in its 6th incarnation 
(CMIP6; Eyring et al., 2016). The historical simulations typically span the 
mid-19th century to the recent past (2005 for CMIP5 and 2015 for 
CMIP6) and are forced by realistic greenhouse gas, sulphate aerosol, 
stratospheric ozone, volcanic aerosol and solar luminosity variations 
based on observations. This paper focuses on evaluating the average and 
long period return values of extreme daily precipitation and temperature 
produced by the fully coupled climate models in the CMIP5 and CMIP6 
projects with freely varying atmosphere, ocean, land surface and sea ice 
submodels but not with the biogeochemistry submodels of Earth System 
Models. A companion paper utilizes the same extreme value statistical 
methods to compare projections of average and long period return 
values of extreme daily precipitation and temperature in the CMIP5 and 
CMIP6 models. While the bulk of the model intercomparison and eval
uation literature focuses on mean quantities and dominant variability 
characteristics, extreme precipitation and temperature have been 
assessed and compared for the CMIP3 and CMIP5 model submissions 

(Sillmann et al., 2013). More recently, evaluation of extreme precipi
tation in the higher resolution CMIP6 models has also been performed 
(Bador et al., 2020). Many of these studies examined some or all of the 
indices of the Expert Team on Climate Change Detection Indices 
(ETCCDI).1 While these 27 indices were devised to aid in climate change 
detection and attribution, they are convenient model evaluation vari
ables as they were chosen based on available global observations (Zhang 
et al., 2011). 

We focus on 20-year return values of daily extreme temperature and 
precipitation as such rare events can have much higher impacts on 
human and natural systems than the annual or seasonal averages of the 
ETCCDI indices. In a stationary climate, 20 year return values may be 
experienced only 3 or 4 times in a normal human lifetime and would 
likely be remembered anecdotally in tall tales told to grandchildren. 
However, in a warming climate, hot and wet extremes of a specified 
magnitude generally become more common and cold extremes less 
common (Kharin et al., 2013). As a consequence, a non-stationary 
20-year return value at any given time is better thought of as an event 
that has a 5% chance of occurring during that particular year. 

2. Data and methods 

In retrospect, not all 27 indices are useful for global purposes. In 
particular, those based on hard thresholds may be extremely rare in 
some parts of the globe and very common in other parts. This illustrates 
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the subjective nature of observed and simulated climate extreme value 
analyses and precludes a single definition of what constitutes “extreme”. 
In this paper, we use 4 temperature and 1 precipitation indices of the 
ETCCDI set to evaluate and compare CMIP6 and CMIP5 model simula
tions under their respective “historical” forcing scenarios of the mid- 
19th to early 21st century periods. 

We deliberately choose the ETCCDI indices that are “block” extrema. 
“Hot days” are represented by TXx, the annual maximum of the daily 
maximum temperature. “Warm nights” are represented by TNx, the 
annual maximum of the daily minimum temperature. “Cool days” are 
represented by TXn, the annual minimum of the daily maximum tem
perature. “Cold nights” are represented by TNn, the annual minimum of 
the daily minimum temperature. “Wet days” are represented by Rx1day, 
the annual seasonal maxima of daily total precipitation. 

We evaluate these extreme variables and their return values by 
comparing CMIP5/6 model simulations to gridded observations on the 
observational products’ grids. Annual maxima and minima of daily 
maximum and minimum temperature are obtained directly from the 
HadEx3 database at a resolution of 2.5ox3.75◦ (Dunn, 2020). Annual 
maxima of daily precipitation are obtained by extraction from the 
REGEN (Rainfall Estimates on a Gridded Network) gridded daily pre
cipitation at a resolution of 1ox1o (Contractor et al., 2019). While both 
gridded observational products have values only over land, REGEN fills 
in unobserved land regions by ordinary block Kriging, whereas HadEx3 
assigns missing values over areas without quality station data. Both 
datasets use station data from a wide variety of sources. REGEN provides 
daily precipitation data from which the block extrema can be extracted 
directly. HadEx3 on the other hand, calculates the extrema at the sta
tions first followed by the gridding process, as some of the raw station 
data cannot be made available by agreement with the station data 
sources. This difference in the order of operations can have a noticeable 
effect on the gridded extreme values (Donat et al., 2013; Gervais et al., 
2014), as it is not guaranteed that all stations within a grid cell will have 
extrema on the same day and would generally result in higher gridded 
extreme values than if daily gridded quantities are constructed first 
(Risser et al., 2019). However, this effect is likely larger for precipitation 
than for temperature due to the more complex spatial structure associ
ated with precipitation extreme events. Gridding procedures, choice of 
station data sources and quality control methods also contribute to un
certainty in gridded land based observational products. Remote sensing 
via satellite can offer a spatially complete dataset, but their relationship 
to ground based estimates of extreme precipitation is not close (Tim
mermans et al., 2019) probably due either to retrieval algorithms or 
temporal sampling limitations. For the CMIP5 and CMIP6 models, block 
extrema are extracted from the daily variables and masked when the 
model’s native land area fraction is less than 0.5. 

Twenty year return values are calculated using a nonstationary 
Generalized Extreme Value (GEV) distribution using ln(CO2) as a co
variate in the location parameter. This choice of statistical model mo
tivates the selection of the block extrema ETCCDI variables over those 
defined by percentile exceedances. While Peaks over Threshold (POT) 
extreme value methods may be a more efficient use of the limited 
extreme sample data in a stationary setting, non-stationary thresholds 
(Acero et al., 2010; Kyselý et al., 2010; Roth et al., 2012; Solari et al., 
2017) are not as straightforward as covariate GEV methods (Coles, 2001; 
Katz, 2010). Uncertainty in both the average and the return values of 
extreme temperature and precipitation statistics is strongly dependent 
on available sample sizes (Wehner et al., 2020). For this study, we aimed 
to use all available model output from all the individual realizations to 
reduce uncertainty. This necessitates a non-stationary statistical 
approach. Of these, the Maximum Likelihood Estimate technique of 
fitting GEV parameters is the most well exercised in the literature 
(Easterling et al., 2016) Other choices are possible and equally or even 
more valid. However, as will be seen, model errors are substantially 
larger than uncertainties in the methodology. In all model cases, the 
sample sizes are much larger than 20 years, the return period of interest 

in this study. Observational sample sizes are smaller but more than twice 
this return period. 

ln(CO2) is chosen as a physically based covariate as it has long been 
known to force global mean temperature changes (Arrhenius, 1896). 
While global or local temperature could also provide a useful and 
physically motivated non-stationary covariate, the annual average of ln 
(CO2) was chosen as it isolates most of the anthropogenic components to 
climate change without any significant internal variability. The 
CMIP5/6 experimental protocols specify atmospheric CO2 as an external 
forcing agent for the historical simulations and hence it is the same for 
each model, simplifying the analysis. Furthermore, given this physical 
connection to the anthropogenic variations of extreme temperature and 
precipitation, usage of much longer portions of the available datasets 
than in previous GEV-based analyses can be justified (Risser et al., 2019; 
Risser and Wehner, 2017). The resulting GEV estimates of long period 
return values are a function of ln(CO2) and can be easily estimated for 
any given year by using the appropriate value for that year. In a certain 
sense, this choice of non-stationary covariate then can be interpreted of 
as a (weakly) non-linear time covariate. Again, other choices of covar
iate are possible and can serve different purposes. For instance, choice of 
the aforementioned global or local temperature would implicitly 
incorporate other natural and external forcings in addition to ln(CO2). 
However, the purpose of this paper is to quantify errors in extreme 
precipitation and temperature. Use of a temperature based covariate 
would incorporate model differences (and errors) into the statistical 
methodology and could tend to hide differences in the extreme indices. 
The choice of ln(CO2) as the covariate for this study is deliberately made 
so that the statistical models are the same across climate models. 
Arguably, in the companion paper about projections of extremes at 
selected global warming levels (Wehner, 2020), global mean tempera
ture would be appropriate as climate sensitivity would then be removed. 

In this study, we have introduced a linear covariate into the GEV 
location parameter only, fitting the scale and shape parameters as con
stants. Due to the uncertainties in estimating the shape parameters, most 
previous studies also keep it stationary (Cooley et al., 2007). However, 
in some locations, the quality of the fitted distribution may or may not 
be improved by a non-stationary scale parameter and/or a nonlinear 
covariate dependence in the location parameter. However, in the in
terest of simplicity and consistent with the relevant detection and 
attribution studies of the human influence on extreme temperature 
(Brown et al., 2008; S.-K. Seung-Ki Min et al., 2013; Zwiers et al., 2011) 
and precipitation (Min et al., 2011; Westra et al., 2012; Zhang et al., 
2013), we have not added these additional testing requirements. 

A more complete discussion of non-stationary covariate choices and 
their implications for isolating both anthropogenic and natural varia
tions in extreme values can be found in (Risser et al., 2020). We have not 
performed goodness of fit analyses for each model. However, in our 
previous studies, this particular choice of non-stationary statistical 
model performs adequately. For a detailed discussion of some of the 
statistical issues concerning sample size see Appendix C of Risser et al. 
(2019). 

Fitting GEV distribution parameters was done using a Maximum 
Likelihood Estimates (MLE) procedure in the climextRemes software 
package (Paciorek et al., 2018), a python and R library built upon the 
extRemes library (Gilleland and Katz, 2016, 2011) and available at http 
s://cran.r-project.org/web/packages/climextRemes/index.html. The 
covariate appears linearly in the GEV location parameter as μ(t) = μ 0 +

μ 1 ln(CO2). Hence, there are four fitted parameters, the two components 
of the location parameter, μ 0,μ 1, the scale parameter σ and the shape 
parameter ξ. In order to reduce the statistical uncertainty in fitting GEV 
distributions and in calculating the averages of the selected extreme 
variables, the entire time series of all available complete realizations of 
the historical simulations were used. With some exceptions CMIP5 
models were run from 1851 to 2005 and CMIP6 models were run from 
1851 to 2015. The two observational products do not span such a large 
time interval. Daily precipitation from REGEN is available from 1950 to 
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2013. Although the HadEx3 temperatures extrema dataset runs from 
1901 to 2018, our starting date for fitting the GEV parameters was 
chosen as 1960 to reduce the amount of missing data. To compare es
timates of both the 7 block extrema and their twenty year return values 
between these observational products and the CMIP5/6, we choose to 
average all performance metrics over the longest common period be
tween the observations and two historical CMIP ensembles, 1961–2004. 
It is important to note that while the data that goes into the GEV esti
mates of return values is not the same between observations and models, 
that additional data only serves to improve the fit of the GEV and reduce 
statistical uncertainty due to the length of the data records and to note 
that the comparison is over the same period. We also note that 
non-stationary return values calculated in this manner are temporally 
smoothed over both internal and externally forced variations and it 
would be appropriate to perform model evaluation at a midpoint of this 
period. We chose to average return values over this period simply for 
clarity in the comparing to the corresponding mean climatology and 
average extreme value indices. 

Although changes in both temperature (Kim et al., 2015; Seung-Ki, 
Min et al., 2013) and precipitation (Min et al., 2011; Zhang et al., 
2013) extremes have been attributed at the global scale and large 
regional scale (King et al., 2016; Wang et al., 2017; Zwiers et al., 2010) 
to anthropogenic changes to the composition of the atmosphere, we do 
not evaluate model performance of simulating trends due to the high 
natural variability at sub-continental scales (Kay et al., 2015). 

As model errors in simulating extreme temperatures and precipita
tion rates may be affected by their errors in simulating the average 
temperature and precipitation climatology, we also present a brief 
comparison of mean state errors to extreme value errors. As the HadEx3 
does not contain the underlying daily data nor an alternate method to 
calculate mean temperature, we use the GHCNCAMS gridded 2 m tem
perature dataset as a reference for observations of mean temperature 
(Fan and van den Dool, 2008). We note this and similar global products 

provide monthly averages of daily mean temperature, which is usually 
approximated as the average of the daily maximum and minimum 
temperatures rather than the separate averages of these individual daily 
extrema. However, annual average precipitation climatologies are 
calculated directly from the REGEN daily values providing a more direct 
comparison between mean and extreme precipitation errors. 

For the multi-model averages, relationships between the error 
structures for each average extreme value and the appropriate mean 
climatology are discussed as well as the relationships between average 
extreme value errors and return value errors. Relationships between the 
error structures of the CMIP5 and CMIP6 multi-model averages are also 
discussed for each variable. 

In Sections 3 and 4, we present performance metrics of average 
annual extreme values and 20-year return values in both tabular and 
graphic forms with the difference between observations and the multi- 
model average statistics shown as spatial maps. In addition to this 
multi-model analyses, results from individual models are being made 
publicly available as part of the Program for Climate Model Diagnosis 
and Intercomparison (PCMDI) Simulation Summaries.2 As new CMIP6 
models are added to the CMIP database, results will be continually 
updated to this online resource where “performance portraits” (Gleckler 
et al., 2008) provide an interactive gateway to maps of individual 
models from which our evaluation statistics were derived. The analysis 
software used to produce our extreme value analysis are publicly 
available as part of the PCMDI Metrics Package (PMP; Gleckler et al., 
2016). 

We use Taylor Diagrams (Taylor, 2001) to provide statistical sum
maries for each model as well as the multi-model averages. Taylor dia
grams use the pattern correlation between models and observational 
products as the angular dimension, and normalized 

Fig. 1. Hot Days. Left column: Boreal summer average temperature. Middle column: TXx. Right column: Twenty year return value of TXx. Top row: 1961–2004 
averages. Middle and bottom row: CMIP5 and CMIP6 multi-model average minus observations. Units: (oC). 

2 https://pcmdi.llnl.gov/research/metrics. 
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(simulated/observed) spatial standard deviation as the radial dimension 
(Taylor, 2001). Exploiting a geometric relationship between the basic 
definitions of a centered root mean square error (RMSE), correlation and 
standard deviation, a byproduct of the Taylor Diagram is that the dis
tance between a model result and the reference data on the abscissa is 
the centered RMSE. In the event that a model has identical spatial 
variance as the reference data, its data point will lie on a radial arc of 
unity. If a model is perfectly correlated with the reference data, its data 
point will lie on the abscissa. If both are true, the RMSE will also be zero 
and the model data will coincide with the reference data point on the 
abscissa. As a complement to the routine statistics shown on the Taylor 
diagram, Taylor’s modified skill (Wehner, 2013) is presented in tables 
across models for each extreme variable and its return value. This 
measure scales the centered RMSE to reduce the possibility of models’ 
skill being artificially inflated simply by data smoothing. 

3. Temperature- hot days 

In the mid and high latitudes, the hottest day of the year (TXx) 
generally occurs in the summer. The top row of Fig. 1 shows the 
1961–2004 average of observed boreal summer temperatures from 
GHCNCAMS, (left), TXx (center)and the 20-year return value of TXx 
(right) from HadEx3 over land. In this and similar following figures, the 
middle row shows the difference (model minus observation) for the 
CMIP5 multi-model average while the bottom row shows the same for 
the CMIP6 multi-model average. Only models where a 20-year return 
value can be calculated over land are included (see Tables 1a and 1b). 
Models were generally excluded if they did not provide both daily data 
and a land/sea mask. All results use the same set of models for 

consistency of comparison. Missing data over land in the observed 20- 
year return values, is usually a result of a lack of convergence in the 
Maximum Likelihood Estimates (MLE) used in the calculation of the GEV 
coefficients and is shown as white in the top row of Fig. 1. In the HadEx3 
data, this usually is seen in regions where the data record is incomplete 
and hence shorter. While all post-1960 data from the HadeX3 product 
was used, in the less well-observed areas of South America, Africa and 
Northern Asia, records may not span the entire 1960–2018 period. 
HadEx3 data was used as is, with no effort made to impose a minimum 
non-missing data length. However, the presence of severe outliers 
cannot be ruled out. Indeed, certain models exhibited a lack of conver
gence in isolated individual cells primarily located in hot and dry re
gions despite sample sizes exceeding 150 years. Two CMIP6 models 
failed to converge over most of the Northern Hemisphere. This is likely 
an indication of unrealistic model behavior but further investigation is 
needed. 

While the global range of errors in Fig. 1 is similar for warm mean 
and extreme temperatures, no clear relationship exists between them 
with errors of opposite sign often the case. The centered pattern corre
lation (Mitchell et al., 2001) between average boreal summer temper
ature and TXx errors is small for both generations of models with values 
of 0.07 for the CMIP5 and 0.03 for the CMIP6 multi-model averages. TXx 
errors and its return value errors exhibit similar behavior in some parts 
of the world but are of opposite sign in the well observed parts of the 
North America and Europe causing the centered pattern correlation 
between them to be low with values of 0.03 for the CMIP5 and 0.05 for 
the CMIP6 multi-model averages. 

The spatial pattern of average boreal summer temperature and TXx 
errors between the CMIP5 and CMIP6 multi-model averages are very 

Table 1a 
Extreme temperature Taylor’s modified skill scores. TXx, TNn, TNx, TXn and their 20-year return values for the CMIP6 models. Row labelled “cmip6” is calculated from 
the multi-model mean indices. Models are arranged from highest skill averaged over the 4 temperature return value indices to the lowest. Failure to converge in large 
regions are noted as “fail”.  

Model TXx TXx Return value TNn TNn Return value TNx TNx Return value TXn TXn Return value 

cmip6 0.70 0.47 0.97 0.89 0.70 0.50 0.98 0.92 
NorESM2-LM 0.68 0.51 0.97 0.90 0.70 0.55 0.98 0.91 
NorESM2-MM 0.66 0.51 0.97 0.90 0.69 0.55 0.98 0.90 
NESM3 0.69 0.51 0.98 0.90 0.62 0.52 0.98 0.91 
GFDL-CM4 0.69 0.47 0.97 0.91 0.69 0.53 0.98 0.92 
GFDL-ESM4 0.69 0.49 0.97 0.90 0.68 0.52 0.98 0.91 
MPI-ESM-1-2-HAM 0.69 0.47 0.98 0.90 0.68 0.52 0.98 0.91 
ACCESS-CM2 0.70 0.51 0.96 0.90 0.70 0.51 0.98 0.89 
CNRM-CM6-1-HR 0.70 0.51 0.95 0.88 0.69 0.51 0.97 0.90 
GISS-E2-1-G 0.64 0.50 0.97 0.88 0.65 0.54 0.98 0.88 
SAM0-UNICON 0.67 0.49 0.96 0.87 0.68 0.55 0.98 0.88 
EC-Earth3-Veg 0.71 0.50 0.97 0.89 0.71 0.50 0.98 0.90 
TaiESM1 0.71 0.53 0.97 0.86 0.63 0.53 0.98 0.87 
CNRM-CM6-1 0.69 0.50 0.95 0.88 0.68 0.51 0.98 0.90 
FGOALS-g3 0.59 0.50 0.96 0.87 0.65 0.52 0.98 0.88 
INM-CM4-8 0.67 0.48 0.96 0.90 0.71 0.51 0.98 0.89 
ACCESS-ESM1-5 0.65 0.46 0.97 0.91 0.69 0.49 0.98 0.90 
FGOALS-f3-L 0.63 0.50 0.96 0.86 0.71 0.53 0.98 0.88 
MIROC-ES2L 0.70 0.47 0.97 0.90 0.76 0.49 0.98 0.91 
AWI-CM-1-1-MR 0.65 0.45 0.98 0.89 0.64 0.50 0.98 0.92 
HadGEM3-GC31-LL 0.69 0.51 0.95 0.86 0.67 0.51 0.98 0.88 
HadGEM3-GC31-MM 0.70 0.49 0.96 0.87 0.68 0.50 0.98 0.89 
BCC-ESM1 0.62 0.51 0.95 0.85 0.67 0.52 0.98 0.88 
CNRM-ESM2-1 0.69 0.46 0.96 0.88 0.69 0.51 0.98 0.90 
UKESM1-0-LL 0.68 0.50 0.95 0.85 0.66 0.51 0.98 0.88 
BCC-CSM2-MR 0.60 0.46 0.95 0.86 0.66 0.53 0.98 0.88 
MIROC6 0.57 0.44 0.97 0.85 0.71 0.51 0.98 0.88 
MPI-ESM1-2-LR 0.68 0.43 0.98 0.87 0.68 0.47 0.98 0.91 
MPI-ESM1-2-HR 0.67 0.45 0.98 0.86 0.65 0.45 0.98 0.91 
INM-CM5-0 0.68 0.38 0.96 0.88 0.71 0.52 0.98 0.87 
CanESM5 0.65 0.49 0.92 0.82 0.61 0.45 0.97 0.88 
NorCPM1 0.66 0.42 0.96 0.85 0.67 0.45 0.98 0.86 
IPSL-CM6A-LR 0.68 0.37 0.95 0.80 0.64 0.43 0.98 0.86 
MRI-ESM2-0 0.64 fail 0.97 0.86 0.61 fail 0.98 0.89 
EC-Earth3 0.71 0.45 0.97 0.78 0.70 fail 0.98 0.90 
CESM2-WACCM 0.72 fail 0.98 0.88 0.66 0.52 0.98 0.90  
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similar with centered pattern correlation values exceeding 0.95. How
ever, despite some similarities in the CMIP5 and CMIP6 return value 
errors in Fig. 1, this metric of pattern similarity is very near zero, 
probably due to the much larger difference in local errors. Indeed, the 

root mean square difference between CMIP5 and CMIP6 multi-model 
average return value errors is 10 times larger than it is for TXx errors. 

The Taylor plots of Fig. 2 show model performance in simulating TXx 
(left) and its return value (right) as measured by pattern correlation with 

Table 1b 
Extreme temperature Taylor’s modified skill scores. TXx, TNn, TNx, TXn and their 20-year return values for the CMIP5 models. Row labelled “cmip5” is calculated from 
the multi-model mean indices. Models are arranged from highest skill averaged over the 4 temperature return value indices to the lowest. Models with inadequate data 
are marked “miss”.  

Model TXx TXx Return value TNn TNn Return value TNx TNx Return value TXn TXn Return value 

cmip5 0.68 0.50 0.97 0.89 0.69 0.48 0.98 0.91 
CMCC-CMS 0.64 0.50 0.97 0.89 0.65 0.54 0.98 0.91 
GFDL-ESM2M 0.69 0.49 0.97 0.91 0.71 0.52 0.98 0.91 
MIROC4h 0.62 0.50 0.96 0.91 0.68 0.52 0.97 0.91 
CMCC-CM 0.63 0.51 0.97 0.89 0.64 0.53 0.98 0.90 
MPI-ESM-P 0.66 0.49 0.98 0.90 0.65 0.53 0.98 0.91 
ACCESS1-0 0.71 0.52 0.96 0.88 0.70 0.53 0.98 0.89 
GFDL-ESM2G 0.69 0.47 0.97 0.91 0.71 0.54 0.98 0.91 
IPSL-CM5A-MR 0.65 0.52 0.96 0.91 0.63 0.47 0.97 0.91 
CESM1-BGC 0.64 0.53 0.96 0.88 0.66 0.50 0.98 0.89 
MPI-ESM-LR 0.66 0.49 0.98 0.89 0.66 0.51 0.98 0.91 
CMCC-CESM 0.61 0.49 0.97 0.88 0.67 0.54 0.98 0.88 
inmcm4 0.66 0.51 0.92 0.89 0.68 0.51 0.97 0.88 
MPI-ESM-MR 0.66 0.46 0.97 0.89 0.65 0.52 0.98 0.91 
bcc-csm1-1-m 0.59 0.50 0.95 0.87 0.63 0.52 0.98 0.89 
BNU-ESM 0.68 0.48 0.96 0.87 0.73 0.53 0.98 0.89 
CCSM4 0.64 0.53 0.96 0.88 0.66 0.47 0.98 0.89 
bcc-csm1-1 0.63 0.51 0.95 0.86 0.68 0.50 0.98 0.89 
IPSL-CM5A-LR 0.65 0.46 0.96 0.90 0.63 0.50 0.97 0.89 
MIROC-ESM-CHEM 0.54 0.45 0.96 0.90 0.70 0.49 0.97 0.91 
CanESM2 0.61 0.50 0.94 0.89 0.60 0.48 0.98 0.87 
MIROC5 0.65 0.49 0.97 0.86 0.70 0.51 0.98 0.88 
NorESM1-M 0.68 0.48 0.96 0.88 0.69 0.49 0.98 0.89 
IPSL-CM5B-LR 0.66 0.48 0.95 0.87 0.65 0.50 0.97 0.88 
MIROC-ESM 0.54 0.44 0.96 0.90 0.70 0.47 0.97 0.91 
CSIRO-Mk3-6-0 0.63 0.43 0.95 0.84 0.65 0.48 0.97 0.87 
GISS-E2-R miss miss 0.97 0.89 0.63 0.54 miss miss 
GISS-E2-H miss miss 0.97 0.89 0.67 0.53 miss miss 
GFDL-CM3 miss miss 0.97 0.91 0.70 0.51 miss miss 
ACCESS1-3 miss miss 0.97 0.91 0.68 0.49 miss miss 
MRI-CGCM3 0.70 0.50 miss miss miss miss 0.98 0.89 
MRI-ESM1 miss miss 0.96 0.88 0.71 0.51 miss miss 
CNRM-CM5 miss miss 0.96 0.88 0.64 0.47 miss miss 
HadCM3 miss miss 0.93 0.85 0.63 0.35 miss miss 
HadGEM2-ES miss miss 0.96 0.90 0.70 0.30 miss miss  

Fig. 2. Taylor diagram measuring model performance of simulating TXx (left) and its 20-year return value (right). The radial axis is normalized standard deviation 
while the angular axis is the pattern correlation. The reference data set is HadEX3 (black square). The concentric circles show the models’ centered RMSE. CMIP5 
models are shown in red. CMIP6 models are shown in blue. Multi-model averages are denoted as “cmip5” and “cmip6” in the legend. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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HadEX3 and spatial standard deviation normalized by HadEX3. The 
centered RMSE is shown by the concentric circles surrounding the 
reference point. The 2nd and 3rd columns of Tables 1a and 1b shows the 
individual model performance as measured by the modified Taylor skill 
(Wehner, 2013) for hot days. In the tables, models are ordered within 
their generation from highest to lowest skill averaged over the 4 tem
perature return value indices. The multi-model average (denoted cmip5 
and cmip6) are constructed by first regridding each models’ average TXx 
and return value to the 2.5ox3.75◦ HadEX3 grid, performing the 
multi-model average and finally calculating the error statistics. 

The CMIP5 and CMIP6 models are tightly clustered in the TXx Taylor 
diagram with the spatial standard deviation (radial distance from origin) 
of all models being more than double that of the reference data. 
Nevertheless, the pattern correlation is high, between 0.8 and 0.92 for 
all models, although some of the CMIP5 models are at the lower end of 
this range. Thus, while the pattern of the simulated spatial distribution 
in TXx corresponds reasonably well with HadEX3, its variation in 
amplitude is excessive. The two generations of models are even more 
tightly clustered in the TXx 20-year return value Taylor diagram. 
Although centered RMSE of the return value cluster is not very different, 

pattern correlation is very much degraded for the return value at be
tween 0.2 and 0.4. As a result, Taylor skill, which ranges from 0.6 to 0.7 
for TXx for most models is degraded for its return values to a range of 
0.45–0.5. The substantial degradation in the return values pattern cor
relation is partly due to a small comparison region (due to the omission 
of poorly sampled regions of HadEx3) and to somewhat larger errors 
than TXx. 

Taylor’s modified TXx skill ranges from 0.6 to 0.7 for most models. 
Despite the low pattern correlation between the CMIP5 and CMIP6, TXx 
20-year return values errors shown in Fig. 1, Taylor’s modified TXx 
return value skill is very similar between model generations for this 
variable with most models close to 0.5. Overall, the performance of the 
CMIP5 and CMIP6 multi-model average in simulating TXx and its return 
value are very similar. 

This lack of a relationship between the errors in simulated warm 
temperatures across rarities likely reflects errors in the different 
responsible physical mechanisms. It is known that land surface moisture 
feedbacks influence temperature extremes (Lorenz et al., 2016), as do 
the duration of blocking events (Zschenderlein et al., 2019). The relative 
importance of errors in these and other relevant heatwave mechanisms 

Fig. 3. Observed and multi-model average 1961–2004 standard error calculated from the delta method in fitted twenty year return value of TXx. Left: HadEx3 
observations. Middle: CMIP5. Right: CMIP6. Units: oC. 

Fig. 4. Cold Nights. Left column: Boreal winter average temperature. Middle column: TNn. Right column: Twenty year return value of TNn. Top row: 1961–2004 
averages. Middle and bottom row: CMIP5 and CMIP6 multi-model average minus observations. Units: oC. 
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may vary across the models but the similarity in the error structures 
between the CMIP5 and CMIP6 in Figs. 1 and 2 suggest common causes. 

Uncertainty in long period return value estimates from the limited 
data of the tail of the available sample can be considerable. In (Wehner 
et al., 2020), several methods of estimating this sampling uncertainty 
are compared. For large sample sizes, all methods considered produced 
similar uncertainty estimates. For small samples, the delta method, an 
asymptotic formula for the standard error of a function of maximum 
likelihood estimates (Coles, 2001) was found to be a more accurate 
estimation of the true uncertainty for simulated precipitation from a 
climate model of the CMIP5 generation as well as much computationally 
less intensive than bootstrapping approaches. The single realization of 
the observational datasets is a relatively small sample for calculating 
20-year return values with periods of roughly 45–70 years. However, the 
non-stationary GEV approach permits using the much longer 150+ year 
simulation datasets. Furthermore, using the entire available ensemble 
increases the parent dataset size by several factors, especially for the 
more mature CMIP5 experiments. Fig. 3 shows this standard error of the 
20-year TXx return value for the HadEX3 observations on the left 
averaged over 1961–2004. The middle and right maps show this stan
dard error averaged over the CMIP5 and CMIP6 models respectively. 

As a result of these large datasets, enabled by the non-stationary 
covariate, the uncertainty in the 20-year TXx return value estimates 
due to GEV fit uncertainty is much smaller than the model errors dis
cussed above. A larger source of uncertainty in quantifying model error 
stems from observational uncertainties. However, a complete discussion 
of differences between observational products, either for temperature or 
precipitation, is outside the scope of this study but is an active area of 
research. 

4. Temperature - cold nights 

In the mid and high latitudes, the coldest day of the year (TNn) 
generally occurs in the winter. The top row of Fig. 4 shows the 
1961–2004 average of observed boreal winter temperatures from 
GHCNCAMS, (left), TNn (center) and the 20 year return value of TNn 
(right) from HadEx3 over land while the middle and lower rows show 
the multi-model average errors. Note that the color scale on observations 
is 10C lower than Fig. 1 but remains the same for the mean model errors. 
The area of missing data, again reflecting a lack of MLE convergence 

from the HadEX3 data is significantly reduced from that of hot days. This 
is most easily visualized by comparing the white areas over land in the 
return value error maps of Figs. 1 and 3 as there is no comparison to be 
made in missing data regions. Lack of convergence was not an issue for 
any of the models. 

In many of the well observed areas, simulated average TNn is colder 
than observed. Simulated 20-year TNn return values are everywhere too 
cold with much larger errors for both model generations than in average 
TNn. Seasonal mean cold temperature errors are weakly related to 
average extreme cold night temperature errors with pattern correlation 
values of 0.25 for CMIP5 and CMIP6. The pattern correlation between 
average TNn errors and return value errors is also low with values of 
about 0.4 for both generations of models. 

As for hot seasons and TXx, the spatial pattern of errors for average 
boreal winter temperature and TNn errors are again very similar be
tween CMIP5 and CMIP6 with pattern correlation values between them 
exceeding 0.95. TNn return value errors are weakly related between 
CMIP5 and CMIP6 with a pattern correlation value of 0.4. TNn return 
value uncertainty (not shown) is much smaller than the errors shown in 
Fig. 4. 

The Taylor diagrams in Fig. 5 show that model performance in 
simulating TNn (left) and its return value (right) is very tightly clustered. 
The 4th and 5th columns of Table 2 shows that the modified Taylor skill 
for TNn exceeds 0.95 and 0.85 for its return value for nearly every 
model. TNn centered RMSE is lower than 0.5 for all models and 0.75 for 
its return value for most models despite the large biases of Fig. 4. 
Normalized standard deviation is greater than one for each model for 
both measures of cold nights but not higher than 1.25 for TNn and 1.5 for 
its return value. Unlike the case for hot days (Fig. 2), the simulated 
patterns of 20-year return values for cold nights are highly correlated 
with the reference data. As for hot days, there is little difference between 
CMIP5 and CMIP6 multi-model average cold night performance metrics. 

Mid-latitude winter cold snaps typically occur on clear nights fa
voring outgoing longwave radiative cooling. As the underlying radiative 
physics is well understood, the overly cool northern hemisphere TNN 
return values in Fig. 4 may be the result of errors in the frequency and 
duration of winter blocking which are known to be an important process 
(Sillmann et al., 2011). It is also been shown that block statistics can be 
influenced by horizontal resolution (Schiemann et al., 2017) which is 
essentially unchanged between CMIP5 and CMIP6. While a systematic 

Fig. 5. Taylor diagram measuring model performance of simulating TNn (left) and its 20 year return value (right). The radial axis is normalized standard deviation 
while the angular axis is the centered pattern correlation. The reference data set is HadEX3 (black square). The concentric circles show the models’ centered RMSE. 
CMIP5 models are shown in red. CMIP6 models are shown in blue. Multi-model averages are denoted as “cmip5” and “cmip6” in the legend. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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exploration of blocking statistics errors is outside the scope of this study, 
there is evidence of improvement in the CMIP6 models (Schiemann 
et al., 2020). The relationship of this process to errors in both hot and 
cold temperature extremes is worthy of further analyses. 

Errors and Taylor diagrams for simulated warm nights (TNx) and 
cool days (TXn) are shown in the Appendix. Modified Taylor skill is 
shown in columns 6–9 of Tables 1a and 1b for these extreme tempera
ture metrics. 

5. Daily precipitation 

The top row of Fig. 6 shows the 1961–2004 average of observed 
mean annual precipitation, (left), average Rx1day and the 20-year re
turn value of Rx1day from the REGEN database. Model errors in the 
middle and bottom rows are shown as percent errors. This choice tends 
to emphasize dry regions, whereas portraying absolute errors would 
highlight wet areas. Lack of convergence in return calculations was 

minimal and confined to isolated cells, often in dry regions. 
Errors in simulated annual mean precipitation are more closely 

related to errors in extreme daily precipitation than any of the temper
ature extreme indices. The pattern correlation between annual mean 
percent error and annual Rx1day percent error is 0.88 for the CMIP5 and 
CMIP6 multi-model averages. Furthermore, annual Rx1day errors are 
closely related to return value errors with pattern correlations between 
them of 0.81 for the CMIP5 and 0.83 for the CMIP6 multi-model 
averages. 

The relationship between model generations is also much closer for 
extreme precipitation errors than it is for extreme temperature errors. 
The pattern correlation between the two multi-model averages is 0.99 
for RX1day errors and 0.88 for RX1day return value errors. It is also high 
for annual mean precipitation at 0.98. 

Fig. 7 shows the 1961–2004 averaged standard error of the 20-year 
annual Rx1day return value for the REGEN observations calculated from 
the delta method. The standard error is normalized by the 1961–2004 
average return value and is shown as a percentage. The middle and right 
maps show this standard error averaged over the CMIP5 and CMIP6 
models respectively. This uncertainty is generally much less than the 
errors shown in Fig. 6. 

Taylor diagrams for Rx1day and its return value are shown in Fig. 8. 
Table 2 shows Taylor’s modified skill for average annual Rx1day and its 
return value. Models are ordered within their generation from return 
value skill to lowest. Both generations of models exhibit wider ranges of 
Taylor skill than they do for extreme temperatures and are not as tightly 
clustered in the Taylor diagrams. Centered RMSEs of annual Rx1day and 
its return value are between 0.5 and 1.0 for most models but a few 
CMIP5 models and a single CMIP6 models are outliers with centered 
RMSE values exceeding unity. However, extreme daily precipitation 
Taylor skill is generally not as degraded from the average annual 
extreme to the return value as it is for extreme daily temperatures and 
for some models is improved. Note the spread in the Rx1day Taylor 
diagram results is largely due to large inter-model differences in the 
amplitude of the spatial pattern, with some models substantially 
underestimating the pattern amplitude while for others it is over
estimated. Unlike temperature extremes, both pattern correlation and 
Taylor skill for the multi-model averages are better than any single 
model for both Rx1day and its return value for both generations of 
climate models. Overall model performance in simulating wet days is 
similar across both generations of models from the best models to the 
poor performers. 

While the main purpose of this paper is to compare the relative 
performance of the CMIP5 and CMIP6 generations of climate models, 
the actual performance of the models is highly dependent on the refer
ence data set evaluated against. Fig. 9 shows the multi-model errors in 
average annual Rx1day as measured by REGEN, HadEx3 and a rean
alysis product, ERA5 (Hersbach et al., 2020). While Rx1day from the 
REGEN and ERA5 products are constructed in the same manner as in the 
models (i.e. constructed as annual maximum of gridded daily precipi
tation totals), the HadEx3 product is not. Due to station data availability 
limitations, HadEx3 is constructed by calculating the annual maxima at 
the individual stations followed by the gridding procedure. Chen and 
Knutson (2008) and Gervais et al. (2014) argue that such products are 
inappropriate for model evaluation. Rather, products such as REGEN (e. 
g. gridded daily station precipitation totals) more closely resemble the 
conserved quantities that models actually produce. Indeed, Gervais et al. 
(2014) demonstrated that extreme precipitation indices constructed by 
gridding station indices produce larger estimates than from gridded 
station daily totals. This then explains why the models in Fig. 9 are 
assessed to be consistently drier when compared to HadEx3 than to 
REGEN. We note that this is particularly apparent in North America and 
Western Europe, even though the raw data entering into the two prod
ucts are based on very similar dense station networks. While HadEx3 
assigns poorly observed land areas as “missing data”, REGEN fills in 
these regions with a statistical algorithm (Contractor et al., 2019). 

Table 2 
Extreme precipitation Taylor’s modified skill scores relative to the REGEN 
gridded observations. Annual Rx1day and 20 year return values for the CMIP6 
(left group) and CMIP5 (right group) models. Top rows labelled “cmip6” and 
“cmip5” are calculated from the multi-model mean and are shown in bold font. 
Within each group, models are arranged from highest averaged annual return 
value skill to the lowest.   

Rx1day return 
value  

Rx1day return 
value 

cmip6 0.87 0.77 cmip5 0.84 0.73 
CNRM-CM6-1- 

HR 
0.84 0.80 CMCC-CM 0.82 0.78 

CESM2 0.83 0.79 CESM1- 
FASTCHEM 

0.80 0.78 

CESM2- 
WACCM 

0.82 0.77 CCSM4 0.80 0.78 

CNRM-CM6-1 0.81 0.69 CESM1-BGC 0.80 0.77 
CNRM-ESM2-1 0.81 0.70 HadGEM2-ES 0.80 0.65 
NorESM2-MM 0.81 0.70 ACCESS1-3 0.79 0.69 
ACCESS-ESM1- 

5 
0.79 0.69 ACCESS1-0 0.79 0.64 

MRI-ESM2-0 0.79 0.69 CNRM-CM5 0.79 0.77 
TaiESM1 0.78 0.76 CMCC-CMS 0.77 0.52 
GFDL-CM4 0.78 0.78 MPI-ESM-MR 0.76 0.49 
UKESM1-0-LL 0.77 0.69 MPI-ESM-P 0.74 0.47 
HadGEM3- 

GC31-LL 
0.77 0.68 MPI-ESM-LR 0.74 0.47 

GFDL-ESM4 0.76 0.77 MIROC4h 0.73 0.71 
ACCESS-CM2 0.76 0.69 MIROC5 0.70 0.69 
NorESM2-LM 0.76 0.55 MRI-CGCM3 0.70 0.72 
HadGEM3- 

GC31-MM 
0.75 0.60 IPSL-CM5A- 

MR 
0.69 0.63 

FGOALS-f3-L 0.75 0.77 GFDL-CM3 0.67 0.64 
SAM0-UNICON 0.74 0.69 bcc-csm1-1 0.67 0.75 
MIROC6 0.74 0.72 NorESM1-M 0.66 0.51 
CESM2-FV2 0.73 0.59 IPSL-CM5A-LR 0.64 0.52 
INM-CM5-0 0.73 0.70 GFDL-ESM2M 0.62 0.60 
EC-Earth3 0.73 0.64 IPSL-CM5B-LR 0.61 0.46 
EC-Earth3-Veg 0.73 0.64 bcc-csm1-1-m 0.60 0.68 
IPSL-CM6A-LR 0.72 0.72 CMCC-CESM 0.54 0.29 
CanESM5 0.71 0.72 MIROC-ESM- 

CHEM 
0.44 0.36 

INM-CM4-8 0.71 0.60 MIROC-ESM 0.44 0.35 
BCC-ESM1 0.70 0.73 inmcm4 0.38 0.20 
FGOALS-g3 0.69 0.75    
NESM3 0.68 0.42    
NorCPM1 0.67 0.55    
MPI-ESM1-2- 

HR 
0.66 0.40    

MPI-ESM1-2- 
LR 

0.61 0.33    

MPI-ESM-1-2- 
HAM 

0.60 0.26    

MIROC-ES2L 0.55 0.44    
BCC-CSM2-MR 0.49 0.54     
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Reanalysis products have also been used in the evaluation of simulated 
temperature and precipitation with the added benefit of coverage over 
the oceans (Sillmann et al., 2013). Products such as ERA5 do not directly 
assimilate precipitation, although some such as the North American 
Regional Reanalysis (NARR) do (Mesinger et al., 2006). However, they 
do assimilate moisture and its transport, which are clearly important as 
noted in the discussion of Fig. 6. However, reanalyses are model prod
ucts, however highly constrained, and exhibit their own parameteriza
tion errors. Hence, there are both similarities and differences in the 
model errors when compared to REGEN and ERA in Fig. 9, illustrating 
part of the effects of observational uncertainties in evaluating model 
performance. 

6. Discussion 

We have quantified simulated errors in extreme temperature and 
precipitation in the two most recent generations of climate models, 

CMIP5 and CMIP6. We analyzed the annual average and 20 year return 
value of 4 extreme daily temperature indices, TXx (hot days), TNn (cold 
nights), TNx (warm nights), TXn (cool days) and an extreme annual 
daily precipitation index, wet days (Rx1day). The annual average 
indices, also interpretable as the 1 year return values, are the input into a 
non-stationary Generalized Extreme Value (GEV) statistical model to 
produce estimates of the much rarer 20 year return values. The non- 
stationarity of the GEV model permits usage of longer input data sets 
than in previous quasi-stationary approaches, yielding uncertainties in 
long period return values that are much smaller than climate model 
errors themselves. Model performance in simulating the rarer extremes 
is generally substantially degraded from the simulation of less rare 
extremes. 

For the temperature indices, the pattern of winter extremes (TNn, 
TXn) is subtantially better than the pattern of summer extremes (TXx, 
TNx) but the magnitudes of the errors are larger. Extreme temperature 
errors bear little resemblance to seasonal mean temperature errors for 

Fig. 6. Wet days. Left column: Annual average precipitation. Middle column: Annual average Rx1day. Right column: Twenty year return value of annual Rx1day. Top 
row: 1961–2004 averages. Units: mm/day. Middle and bottom row: CMIP5 and CMIP6 multi-model average minus observations. Units: percent. 

Fig. 7. 1961–2004 average standard error calculated from the delta method in fitted twenty year return value of annual Rx1day. Left: CMIP5 multi-model average. 
Right: CMIP6 multi-model average. Units = %. 
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either the CMIP5 or the CMIP6 ensemble. Furthermore, only a weak 
relationship between model errors in simulated annual temperature 
extreme metrics and model errors in corresponding 20-year return 
values is found. This implies that the causes of model mean temperature 
errors are different from some of the causes of model extreme temper
ature error. It also implies that mean state model errors do not influence 
the distribution of simulated extreme temperatures uniformly. 

The percent errors of simulated annual mean precipitation, average 
Rx1day and return values are remarkably similar in pattern and 
magnitude suggesting that errors in water vapor transport are important 
to both the simulated mean state and to extremes. Errors in the annual 
average Rx1day and its 20 year return value are more closely related and 
return value skill is not so degraded as for extreme temperatures. 

Although statistical uncertainty in the estimation of return values is 
low, uncertainty in the observational products may not be and has not 
been fully addressed here. Of particular concern is that algorithms used 
to infill poorly observed regions may not adequately treat the far tail of 
the distribution of daily data. This is not an issue for the HadEX3 
datasets but could be for the REGEN precipitation dataset. However, the 
process of gridding station data introduces biases (Donat et al., 2014; 
Gervais et al., 2014; Risser et al., 2019) and products that are based on 
gridded extreme indices are not ideal for model evaluation. 

Among other usages, model output is often used for the projection of 
future climate change and/or the attribution of climate change that has 

already occurred. Bias correction is a popular but potentially misleading 
strategy to force model output to more closely resemble observations. In 
particular, as the errors between mean state and extreme temperatures 
are weakly anti-correlated, simply bias correcting the distribution of 
daily values by mean state bias would make corrected simulated 
extreme temperatures worse. Similarly, simply bias correcting the dis
tribution of annual extrema by the average error may also degrade 
corrected 20 year return values when the correlation between errors is 
low. In these cases, quantile bias correction (Jeon et al., 2016) of the 20 
year return value itself is appropriate. While not considered here, the 
possibility of time dependence in the errors is very real. This could come 
from anthropogenic and/or natural modes of variability and be highly 
localized. A more detailed analysis of the effect of relevant covariates on 
observed precipitation return values will be presented in Risser et al. 
(2020). 

Before any decision to utilize model simulated quantities, whether 
bias corrected or not, an arbitrary value judgement must be made as to 
whether the model and/or experimental design is “fit for the purpose” 
intended. While the model error metrics presented here can provide 
some guidance to fitness decisions, other value judgements about the 
appropriateness of performance metrics and how to use them must be 
made. Also, the credibility of the observed databases used as reference 
standards must also be considered even in well observed regions (Gibson 
et al., 2019). Performance metrics can also form a basis for model skill 

Fig. 8. Taylor diagram measuring model performance of simulating annual Rx1day (left) and its 20 year return value (right). The radial axis is normalized standard 
deviation while the angular axis is the centered pattern correlation. The reference data set is REGEN (black square). The concentric circles show the models’ centered 
RMSE. CMIP5 models are shown in red. CMIP6 models are shown in blue. Multi-model averages are denoted as “cmip5” and “cmip6” in the legend. (For inter
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 9. CMIP6 annual Rx1day errors averaged over 1961–2004 as calculated from three reference data sets on the reference grid. Left: REGEN. Center: HadEx3. 
Right: ERA5. 
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weighting but the process is inherently arbitrary (Sanderson et al., 
2017). 

The analysis presented here reveals that no single CMIP5 nor CMIP6 
model stands out as distinctly superior across either temperature or 
precipitation extremes. The range of model performance in simulating 
temperature extremes is comparable between the two generations of 
climate models and little difference in the performance of multi-model 
average simulations of annual average temperature and precipitation 
extremes or their 20 year return values. While we have not fully 
explored the effect of observational uncertainty on the selected extreme 
temperature and precipitation metrics, these general conclusions about 
the similarity between the CMIP5 and CMIP6 simulations are robust. 
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Appendix 

In the mid and high latitudes, the warmest night of the year (TNx) generally occurs in the summer(Fig. 1, left column). The top row of Fig. A1shows 
TNx and its 20 year return value from the HadEX3 dataset and the middle and bottom rows show the CMIP5 and CMIP6 multi-model average errors. 
Relationships between these error maps are very similar to those of hot days with no substantial pattern correlation between boreal summer seasonal 
temperature errors and warm night errors and little correlation between TNx errors and return value errors. Like hot days, the pattern correlation 
between the CMIP5 and CMIP6 multi-model averages is high for both TNx errors (0.98) but very low for return value errors. 
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Fig. A1. Warm Nights (oC). Left column: TNx. Right column: Twenty year return value of TNx. Top row: 1961–2004 averages. Middle and bottom row: CMIP5 and 
CMIP6 multi-model average minus observations. 

Model performance metrics in simulating warm nights are similar to hot days. The Taylor diagrams in Figure A2 show that model performance in 
simulating TNx (left) and its return value (right) are very tightly clustered except for a few outliers in the return value diagram. As for TXx, pattern 
correlation is significantly degraded for the return value compared to the average annual value with all values below about 0.4. Columns 6 and 7 of 
Table 1a,b shows the individual models’ Taylor skill for TNx and its return value. Performance of most of the models is tightly clustered although both 
generations have some poor performers as return value error outliers. Except for these outliers, Taylor skill and centered RMSE for warm nights span 
similar ranges for CMIP5 and CMIP6 ensembles and the multi-models average performance are about the same.

Fig. A2. Taylor diagram measuring model performance of simulating TNx (left) and its 20-year return value (right). The radial axis is normalized standard deviation 
while the angular axis is the centered pattern correlation. The reference data set is HadEX3 (black square). The concentric circles show the models’ centered RMSE. 
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CMIP5 models are shown in red. CMIP6 models are shown in blue. Multi-model averages are denoted as “cmip5” and “cmip6” in the legend. 

In the mid and high latitudes, the coolest day of the year (TXn) generally occurs in the winter (Fig. 3, left column). The top row of Fig. A2 and 
Fig. A3 shows TXn and its 20 year return value from the HadEX3 dataset and the middle and bottom rows show the CMIP5 and CMIP6 multi-model 
average errors. Relationships between these error maps are very similar to those of cold nights with weak centered pattern correlation (~0.25) be
tween boreal winter average temperature errors and TXn errors. While the CMIP5 multi-model average TXn errors exhibits a moderate centered 
pattern correlation to its return values (0.55), the CMIP6 multi-model average does not. As for cold nights, the centered pattern correlation between 
the CMIP5 and CMIP6 multi-model averages is high for TXn errors (0.97) but not for return value errors.

Fig. A3. Cool days (oC). Left column: TXn. Right column: Twenty year return value of TXn. Top row: 1961–2004 averages. Middle and bottom row: CMIP5 and 
CMIP6 multi-model average minus observations. 

Model performance metrics in simulating cool days are similar to cold nights. The Taylor diagrams in Fig. A4 show that model performance in 
simulating TXn (left) and its return value (right) are the most tightly clustered of any of the performance metrics considered in this study despite a very 
cold bias. The range of both centered RMSE and Taylor skill is also the smallest and the difference between performance of the CMIP5 and CMIP6 
multi-model average small. In general, model performance metrics are slightly better for cool days than for cold nights. 
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Fig. A4. Taylor diagram measuring model performance of simulating TXn (left) and its 20 year return value (right). The radial axis is normalized standard deviation 
while the angular axis is the centered pattern correlation. The reference data set is HadEX3 (black square). The concentric circles show the models’ centered RMSE. 
CMIP5 models are shown in red. CMIP6 models are shown in blue. Multi-model averages are denoted as “cmip5” and “cmip6” in the legend. 
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