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ABSTRACT OF THE DISSERTATION 

Targeting mTOR in Pancreatic Cancer 

by 

Heloisa Prado Soares 

Doctor of Philosophy in Molecular Biology 

University of California, Los Angeles, 2015 

Professor Juan Enrique Rozengurt, Chair 

Pancreatic ductal adenocarcinoma (PDAC), which comprises 90% of all human pancreatic 

cancers, is a devastating disease with overall 5-year survival rate of only 5%. A major 

challenge is to identify novel targets and develop strategies for its treatment. New approaches 

will most likely arise from a detailed understanding of the molecular signaling pathways that 

stimulate the unrestrained proliferation of these cells. The PI3K/AKT/mTOR pathway plays a 

pivotal role in pancreatic cancer. Several drugs, including mTOR kinase inhibitors, are in 

development to target this pathway. In addition to growth-promoting signaling, the 

mTORC1/S6K axis also mediates negative feedback loops that restrict signaling via 

insulin/IGF receptor and other tyrosine kinase receptors and can lead to drug resistance. In 

this dissertation, I describe studies performed in PDAC cell lines using different inhibitors of 

the mTOR pathway, including: a) rapamycyn, an allosteric mTOR inhibitor; b) PP242 and 

KU63794, active-site mTOR inhibitors; c) NVP-BEZ235, GDC-0980 and PKI-587, dual 

PI3K/mTOR inhibitors, d) metformin and berberine, two anti-diabetics drugs with emerging 

ii



promising anti-cancer properties. We show that active-site mTOR and dual PI3K/mTOR 

inhibitors induce an unexpected increase in the activity of the ERK pathway in PDAC cells. 

Additionally, we demonstrate that ERK over-activation can be abrogated by the use of MEK 

inhibitors. We also show that metformin and berberine are capable of inhibiting mTOR 

signaling without ERK over-activation.  Our mechanistic studies demonstrate that dual 

PI3K/mTOR inhibitors suppress a novel PI3K-independent negative feedback loop mediated 

by mTORC2 thereby leading to enhancement of MEK/ERK pathway activity in pancreatic 

cancer cells. Finally, we review negative feedback mechanisms that restrain signaling via 

upstream elements of the PI3K/AKT/mTOR pathway as well as mechanisms leading to the 

compensatory activation of other pro-oncogenic pathways, including MEK/ERK. Taken 

together, the data presented in this dissertation have important translational applications and 

provide a rationale for the study of combinatory target therapy in pancreatic cancer.  
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Chapter I. 

INTRODUCTION 
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Epidemiology of pancreatic cancer 

Pancreatic ductal adenocarcinoma (PDAC) is a neoplasm of the cells of the exocrine 

pancreas that represent 90% of all pancreas cancer. According to the American Cancer 

Society, adenocarcinoma of the pancreas (simply called pancreatic cancer) is expected to 

affect more than 48,000 thousand people in the United States of America during the year of 

2015 and more than around 40,000 are expected to die of this disease annually. In fact, it the 

fourth leading cause of cancer death in this country. (1) (2)  The overall 5-year survival rate is 

a dismal 5%. Patients with advanced disease have a median survival of less than 1 year 

despite the use of the best available standard chemotherapy regimens. (3) Even when patients 

are diagnosed with early stage disease and undergo primary tumor resection, their 5 years 

overall survival is less than 25% as the tumor typically relapses.  

The median age of pancreatic cancer patients at the time of the diagnosis is 71 years, 

typically ranging from 40 to 80 years old. As the population in the US ages, we expect more 

cases. By 2030, this malignancy is expected to be the second leading cause of cancer-death in 

US just behind lung cancer. (4)  

 

Predisposition factors 

In addition to age, several other risk factors are known to contribute to the 

development of pancreatic cancer including smoking, obesity, chronic pancreatitis and race. 

Additionally, family history plays an important role in the development of this disease. In 

fact, 5 to 10% of patients are thought to have a known genetic syndrome or family history. (5, 

6) Unfortunately, an individual with a first-degree relative with this disease has a 7-9 fold 
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increase chance in developing it as well in the future. (7). The main known germlime 

mutations associated with increased risk are BRCA 1, BRCA 2, p16, PALB2 among others.   

Despite these known predisposition factors, we still do not have established guidelines for 

screening for several reasons including the fact that we do not have appropriate screening 

tools. (8) 

 

Diagnosis of pancreatic cancer 

Usually pancreatic cancer does not manifest symptoms until its more advanced stages. 

The typical signs and symptoms are weight loss, abdominal pain, bloating and diarrhea. If the 

tumor is localized in the head of the pancreas, patient will often present with painless 

jaundice. The work-up for a suspected tumor routinely includes high resolution abdominal 

computed tomography (CT) scans. But tissue sample is required for confirmatory pathological 

diagnosis. The tissue can be obtained via surgery in the case of small, resectable and 

suspicious masses. In other cases, a CT or ultrasonography (US) guided biopsy can be done 

from the primary mass or site of suspected metastatic disease, particularly when removal of 

the primary tumor is not possible or indicated.  

 

Staging and Management: 

Although the classical TNM stage exists for pancreatic cancer, in practical terms 

physicians approach the disease as a) resectable; b) borderline resectable/locally advanced or 

c) metastatic disease.   

Unfortunately only 15 to 20% of the patients have resectable disease at the time of the 

diagnosis. In cases where the tumor is localized in the head of the pancreas, eligible patient 
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will undergo the so-called Whipple procedure that consists in of removal of the distal half of 

the stomach (antrectomy), the gall bladder and its cystic duct (cholecystectomy), the common 

bile duct (choledochectomy), the head of the pancreas, duodenum, proximal jejunum and 

regional lymph nodes. On the other hand, patient with disease localized in the tail of the 

pancreas will undergo a distal pancreatectomy.  

Patients with borderline or locally advanced disease frequently are initially treated 

with chemotherapy regimens that are used in the metastatic setting for lack of better options. 

Radiation therapy is often used as well, in the attempt to reduce tumor size facilitating a 

complete resection of the primary tumor. 

For patients with metastatic disease, the traditional treatment is chemotherapy. For 

many years the only standard of care was the use of a chemotherapy drug called gemcitabine, 

which was approved in 1997 by the Food and Drug Agency (FDA). This FDA approval was 

based in the data from a randomized phase III clinical trial showed that gemcitabine-treated 

patients had increased median overall survival compared to 5-fluorouracil (5-FU) treated 

patients of 5.65 and 4.41 months respectively (P = 0.0025). (9) The survival rate for 

gemcitabine at one year was 18% compared to 2% for 5-FU. Since then, several other drugs 

have been tested in the setting of metastatic pancreatic cancer with little success. However, in 

the last few years, different combinations of chemotherapy have emerged as options for the 

initial treatment of metastatic pancreatic cancer. The most significant survival benefit has 

been reported with the FOLFIRINOX (oxaliplatin, irinotecan, leucovorin and 5-fluorouracil) 

regimen in patients with metastatic disease.  This combination when compared with 

gemcitabine showed a median overall survival of 11.1 versus 6.8 months. (3) However 

FOLFIRINOX is associated with significant toxicity. In 2013, Von Hoff and colleagues 
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reported that the combination of gemcitabine and nab-paclitaxel achieved a median overall 

survival of 8.5 months as compared with 6.7 months in the gemcitabine alone group of 

patients that were randomized in a phase III trial. (10) The survival rate was 35% in the nab-

paclitaxel-gemcitabine group versus 22% in the gemcitabine group at 1 year. With all these 

options, the decision of using single agent gemcitabine versus folinic acid, fluorouracil, 

irinotecan, oxaliplatin (FOLFIRINOX) or gemcitabine-nab Paclitaxel routinely dependents on 

the patient’s fitness, performance status, clinician judgment and patient’s personal 

preferences.  

In other tumor histologies target therapy had made dramatically progress. 

Nevertheless, target therapy so far has failed to delivery significant improvement in the war 

against pancreatic cancer. (11) (12)  (13) Even Erlotinib, the FDA-approved target therapy for 

pancreatic cancer has little impact in patient survival. (14) Clearly, a more detailed 

understanding of the signaling mechanisms that promote survival, proliferations and 

invasiveness and the complex feedback mechanisms that mediate dug resistant are key to the 

development novel and effective targets and strategies.  

 

Precursors lesions and genetic basis 

Pancreatic intraepithelial neoplasia (PanIN), mucinous cystic neoplasm (MCN), and 

intraductal papillary mucinous neoplasm (IPMN) (15) (16) are associated with pancreatic 

cancer. The most common lesions are the pancreatic intraepithelial neoplasias (PanINs).  (16, 

17)  Progression from these noninvasive ductal lesions to infiltrating adenocarcinoma is 

associated with the accumulation of genetic alterations (18, 19), including activating 

mutations in KRAS which appear in more than 90% of PDACs and represent an initiating 
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event, as well as inactivating mutations in tumor suppressors genes, including p53, p16 and 

SMAD4 (19-22). It is generally accepted that progression of pancreatic carcinogenesis 

requires activation of signaling pathways leading to sustained cell proliferation. See more 

details below. 

 

Molecular characterization of pancreatic cancer and activated pathways 

Pancreatic cancer carcinogenesis involves a series of somatic alterations. Four genes 

are commonly altered in pancreatic cancer. The oncogene KRAs is mutated in more than 90% 

of the tumors. (23) The suppressors genes TP53, p16/CDKN2A and SDMAD4 are mutated in 

90, 75 and 55% of tumors respectively.   It is increasingly clear that mutations in KRAS, 

SMAD4, TP53 and CDKN2A/p16 are “driver” mutations of PDAC, i.e., mutations that confer 

a selective growth advantage to the tumor cell. (24) Additionally, such mutated genes are key 

players within a complex network of core pathways.  (25) (26)  

 

RAS activation and MAPK pathway 

The KRAS or more specifically KRAS2 gene is located on chromosome arm 12p and 

encodes a membrane-bound guanosine triphosphate (GTP)–binding protein, which is 

activated by point mutations, most often in codon 12. (27) 

RAS activation is the first step in activation of the canonical MAPK cascade (see 

figure 1). Following RAS activation, RAF (A-RAF, B-RAF, or RAF-1 also known as C-RAF) 

is recruited to the cell membrane through binding to RAS and activated in a complex process 

involving phosphorylation and multiple cofactors that is not completely understood. RAF 

proteins directly activate MEK1 and MEK2 via phosphorylation of serine residues. MEK1 
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and MEK2 are themselves tyrosine and threonine/serine dual-specificity kinases that 

subsequently phosphorylate threonine and tyrosine residues in ERK1 and ERK2 resulting in 

activation. The cellular functions of ERK are diverse and include regulation of cell 

proliferation, survival, mitosis, and migration. (28). The second best-characterized RAS 

effector family is phosphoinositide 3-kinases (PI3Ks), which play important roles as 

mediators of RAS-mediated cell survival and proliferation. (29) (30)  

Targeting KRAS directly has proven to be challenging (31) and additional signaling 

pathways downstream from KRAS, including BRAF-MAPK and PI3K-AKT which 

themselves have activated mutations, became attractive alternatives. In fact, several 

generations of MEK inhibitors are currently under development and being tested in clinical 

trials. (32) However, interfering with elements of the MAPK pathway is also associated with 

several negative feedback loops. (30, 33) For example, MEK inhibition leads to AKT over-

activation via PI3K/AKT activation in several tumor types. (34) (35)  It is tempting to 

hypothesize that this failure is due to unleashing negative feedbacks related to MEK 

inhibition. Indeed, a recent phase 2 clinical trial using Trametimib (the first FDA-approved 

MEK inhibitor) and gemcitabine in patients with pancreatic cancer showed disappointing 

results. (35) This trial results reinforce the notion that understanding the effects of interfering 

with the downstream effectors of KRAS needs to be better understood and study.  

 

Overview of PI3K/AKT/mTOR pathway 

Multicellular organisms have developed highly efficient mechanisms of receptor-

mediated cell communication to integrate and coordinate the function and proliferation of 

individual cell types. In this context, the phosphoinositide 3-kinase (PI3K)/Akt/ mammalian 
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target of rapamycin (mTOR) pathway plays a critical role in regulating multiple normal and 

abnormal biological processes, including metabolism, migration, survival, autophagy, 

lysosome biogenesis and growth (36). This pathway is another signaling pathway highly 

involved in pancreatic cancer. (37, 38) 

In response to different stimuli, including ligands of G protein-coupled receptors 

(GPCRs) and tyrosine kinase receptors (TRKs), PI3K catalyzes the formation of 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a membrane lipid second messenger that 

coordinates the localization and activation of a variety of downstream effectors the most 

prominent of which are the isoforms of the Akt family (39). The isoforms of the Akt family 

(Akt1, Akt2, and Akt3) possess a lipid-binding PH domain and conserved residues (Thr-308 

and Ser-473 in Akt1, the most commonly expressed isoform in normal cells), which are 

critical for Akt activation. Specifically, Akt, translocated to the plasma membrane in response 

to products of PI 3-kinase, is activated by phosphorylation at Thr-308 in the activation loop 

by PDK1 and by phosphorylation within the carboxy-terminus at Ser-473 by mTORC2 (40). 

Akt has been shown to phosphorylate multiple substrates, including the product of the 

tuberous sclerosis complex (TSC) 2 gene, also termed tuberin, at Ser-939 and Thr-1462 (41, 

42). TSC2 forms a heterodimer with TSC1 (hamartin) that represses mTOR activity (43, 44). 

It is important to emphasize that mTOR functions as a catalytic subunit in two structurally 

distinct multiprotein complexes, mTORC1 and mTORC2 (36, 45).  mTORC1, a complex of 

mTOR, the substrate binding subunit Raptor, GβL, and PRAS40, senses nutrients and growth 

factors. The TSC1/TSC2 heterodimer represses mTOR activity by acting as the GTPase-

activator protein (GAP) for Rheb (Ras homolog enriched in brain). Rheb is a potent activator 

of mTORC1 signaling in its GTP-bound state (46, 47). Phosphorylation of TSC2 by Akt 
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suppresses its GTPase activity towards Rheb, leading to mTORC1 activation (48) (see figure 

1). More recently, a novel mechanism of mTORC1 activation involving the ERK/p90RSK 

pathway but separate from Akt has been elucidated (49, 50). Specifically, ERK and p90RSK 

phosphorylate TSC2/tuberin at Ser-664 and Ser-1798, i.e. sites different from those targeted 

by Akt (Ser-939 and Thr-1462).  The phosphorylation of TSC2/tuberin by ERK and p90RSK 

leads to the dissociation and inactivation of the TSC1/TSC2 complex and to the activation of 

mTORC1 (49, 50). Furthermore, ERK directly phosphorylates Raptor leading to mTORC1 

activation (51).  The Rag GTPases activate mTORC1 in response to amino acids, by 

promoting mTORC1 translocation to lysosomal membrane that contains Rheb-GTP (45). Ras-

like (Ral) small GTPases, in their GTP-bound state, also promote mTORC1 activation 

through a pathway parallel to Rheb (52).  Phosphatase and tensin homologue (PTEN) opposes 

PI3K by degrading PIP3 to PIP2 thereby inactivating Akt and mTOR signaling (53). 

The second mTOR complex (mTORC2) is assembled by binding of mTOR/GβL to 

rapamycin-insensitive companion of mTOR (rictor) and mammalian SAPK interacting protein 

1 (SIN1). (54, 55) These two unique components SIN1 and rictor most likely carry the 

regulatory functions of this kinase complex. SIN1 contains N-terminal Conserved Region In 

the Middle (CRIM) domain, the Raf-like Ras binding domain (RBD) and a C-terminal PH 

domain. (56) CRIM domain is a highly conserved region in the SIN1 family. SIN1 RBD 

domain suggests that Ras is a potential regulator of mTORC2. SIN1 PH domain implies the 

mTORC2 localization at the plasma membrane. However, the functional roles of these 

domains are yet to be characterized. 

Rictor is a more conserved and larger protein than SIN1. The human rictor protein 

contains 1,708 amino acids and its sequence analysis did not reveal any homology to known 
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functional domains or proteins. (54) In spite of this, rictor is a phospho-protein and the 

functional characterization of this post-translational modification might provide insights in 

regulation of mTORC2. In recent reports, some phosphorylation sites of rictor were identified, 

and the Thr-1135 phosphorylation is the growth factor dependent. The main downstream 

effectors of mTORC2 are AKT (57) and AGC kinases members including SGK1 (serum and 

glucocorticoid induced protein kinase 1) (58)  and PKCα (protein kinase Cα) (59, 60)  

 

PI3K/AKT/mTOR pathway in pancreatic cancer 

The PI3K/AKT/mTOR pathway plays a pivotal role in the pancreas, mediating acinar-

to-ductal metaplasia and PDAC formation (61, 62) and is active in premalignant pancreatic 

lesions and pancreatic cancer tissues. (62-64) Additionally, the PI3K/mTOR pathway, like the 

mitogen-activated protein kinase (MAPK) pathway, functions downstream of Ras (30) and 

plays a key role in insulin/IGF receptor signaling.  

Pancreatic ductal adenocarcinoma (PDAC) cells express insulin and IGF-1 receptors 

and over-express IRS-1 and IRS-2 (65-67). Differently from normal tissue, PDAC display 

activated (phosphorylated) IGF-1R (68). Gene variations in the IGF-1 signaling system have 

been associated to worse survival in patients with PDAC (69). Inactivation of p53, as seen 

during the progression of 50-70% of PDAC, up-regulates the insulin/IGF-1/mTORC1 

pathway (70). Crosstalk between insulin/IGF-1 receptors and G protein-coupled receptor 

(GPCR) signaling systems potently stimulate mTORC1, DNA synthesis and cell proliferation 

in a panel of PDAC cells (63, 64, 71, 72). Therefore, blocking mTORC1 signaling has 

emerged as an attractive therapeutic target in PDAC. 
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Feedback loops between MAPK and PI3K/AKT/mTOR pathways and strategies to 

block mTOR signaling 

In addition to growth-promoting signaling, mTORC1/S6K also mediates negative 

feedback loops that restrain signaling through insulin/IGF receptor and other tyrosine kinase 

receptors via phosphorylation and transcriptional repression of IRS-1 (73-78) and 

phosphorylation of Grb10 (79). Suppression of mTORC1 activity by allosteric mTORC1 

inhibitors such as rapamycin prevents inhibitory IRS-1 phosphorylation and degradation, 

thereby augmenting PI3K/Akt activation in several cancer cell types (78, 80-82). These 

studies imply that the potential anti-cancer activity of rapamycin or analogs can be 

counterbalanced by release of feedback inhibition of PI3K/Akt activation (73, 78, 80-82).  

In an effort to target the mTOR pathway more effectively, a second generation of 

inhibitors that act at the catalytic active site (active-site mTOR inhibitors) have been 

developed, including PP242 (83), Torin (84) and  KU63794 (85). These compounds inhibit 

4E-BP-1 phosphorylation at rapamycin-resistant sites (e.g. Thr37/46) and block Akt 

phosphorylation at Ser473 through inhibition of mTORC2. As drug development evolves, 

several pharmaceutical companies are investing in the so-called PI3K/ mTOR dual inhibitors 

(86) in the attempt to make target therapy more effective. Many of these inhibitors are already 

being tested in clinical trials alone or in combinations (87), however, far less is known about 

the effects of such drugs in pancreatic cancer and even less in regards to their mechanistic 

effects in PDAC cells.  

Metformin, the most widely used drug in the treatment of type 2 diabetes mellitus 

(T2DM), has emerged as a potential novel agent in cancer therapeutics. It is known that 

mTORC1 is also negatively regulated by metformin. At the cellular level, metformin 
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indirectly stimulates AMP–activated protein kinase (AMPK) activation (88), AMPK inhibits 

mTORC1 activation through stimulation of TSC2 function (89-91), leading to accumulation 

of Rheb-GDP (the inactive form) and by direct phosphorylation of  Raptor, which disrupts its 

association with mTOR, leading to dissociation of the mTORC1 complex (92). Finally, 

Insulin/IGF-1-induced mTORC1 activation is attenuated by AMPK by direct phosphorylation 

of IRS-1 on Ser794, a site that interferes with PI3K activation (77, 93). Interestingly, recent 

epidemiological studies linked administration of metformin to reduced incidence, recurrence 

and mortality of a variety of cancers in T2DM patients (72, 94-103), including PDAC (101, 

103). 

The isoquinoline alkaloid berberine, a phytochemical extracted from a variety of 

medicinal plants, including plants of the Berberis species induces multiple biological effects, 

including anti-obesity, anti-diabetic, anti-cancer and calorie-restriction effects (104-107). 

Although the exact mechanisms by which berberine could have anti-cancer effects remain 

incompletely understood, it is possible that is linked to AMPK activity and AMPK-mediated 

inhibition of mTORC1. (108)  

Emerging evidence shows that pancreatic cancer is a very heterogeneous and complex 

disease, divided into sub-types that tend to respond differently to interventions.(109) (110) 

The effects of blocking the mTOR pathway in pancreatic cancer cells using different class of 

compounds/strategies are not fully understood. This thesis dissertation will characterize the 

effects of blocking mTOR using different compounds.  

In chapter 2, we studied the effects of rapamycin, active-site mTOR inhibitors and 

metformin in pancreatic adenocarcinoma cell lines.  We show that active-site inhibitors of 

mTOR cause a marked increase in ERK activation whereas rapamycin did not have any 

12



stimulatory effect on ERK activation. The results imply that first and second generation of 

mTOR inhibitors promote over-activation of different pro-oncogenic pathways in PDAC 

cells, suggesting that suppression of feed-back loops should be a major consideration in the 

use of these inhibitors for PDAC therapy.  In contrast, metformin abolished mTORC1 

activation without over-stimulating Akt phosphorylation on Ser473 and prevented mitogen-

stimulated ERK activation in PDAC cells.  

In chapter 3, we show that dual PI3K/mTOR inhibitors, including NVP-BEZ235, 

suppress a novel negative feedback loop mediated by mTORC2 thereby leading to 

enhancement of the MEK/ERK pathway activity in pancreatic cancer cells. We also show that 

MEK inhibitors (U126 or PD0325901) prevented ERK over-activation induced by dual 

PI3K/mTOR inhibition. The combination of NVP-BEZ235 and PD0325901 caused a more 

pronounced inhibition of cell growth than that produced by each inhibitor individually. 

 In chapter 4, we show that berberine inhibits DNA synthesis, cell cycle progression 

and proliferation in PANC-1 and MiaPaca-2 pancreatic cancer cells. It also inhibits the 

growth of PDAC tumor xenografts in vivo as effectively as metformin. Furthermore, 

berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at 

Ser240/244) and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal 

bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the 

inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, 

ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine 

inhibited mitogenic signaling (mTORC1 and ERK) and DNA synthesis through an AMPK-

independent mechanism. 

Finally in chapter 5, we review negative feedback mechanisms that restrain signaling 
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via upstream elements of the PI3K/Akt/mTOR pathway as well as mechanisms leading to the 

compensatory activation of other pro-oncogenic pathways, including MEK/ERK. The studies 

discussed in this chapter underscore the importance of unintended pathway activation in the 

development of drug resistance to clinically relevant inhibitors of mTOR, Akt, PI3K or 

PI3K/mTOR.  
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Figure 1. PI3K/AKT/mTOR and MAPK pathways 
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Conclusions  

Pancreatic ductal adenocarcinoma is one of the most lethal human diseases, with 

overall 5-year survival rate of only 5%. As we mentioned in the chapter I, so far therapies that 

target either elements of the MAPK pathway or PI3K/AKT/mTOR pathways have been 

disappointing in pancreatic cancer clinical trials. (1) (2)  (3, 4)  (5) In order to have significant 

impact in clinical outcomes, a detailed understanding of the signaling mechanisms that 

promote survival, proliferation and invasiveness and the complex feedback mechanisms that 

mediate drug resistance are key to the development of novel and effective target-therapy 

strategies for this devastating disease. This thesis dissertation investigates the different 

strategies to target the PI3K/AKT/mTOR pathway. Although all the inhibitors tested are 

capable to inhibit signaling downstream of mTOR as anticipated, we identified a novel 

negative feedback loop leading to over-activation of ERK by active-site mTOR inhibitors and 

dual PI3K/mTOR inhibitors. More importantly, this work suggests possible strategies to 

abrogate the activation of this feedback loop, consequently avoiding one of the mechanisms 

leading to treatment resistance.   

In chapter II, we demonstrate that treatment of PANC-1 or MiaPaCa-2 pancreatic 

cancer cells with either rapamycin (an allosteric inhibitor of mTOR, part of the first 

generation of mTOR inhibitors) or active-site mTOR inhibitors (second generation of mTOR 

inhibitors) suppressed S6K and S6 phosphorylation induced by insulin and the GPCR agonist 

neurotensin. Rapamycin caused a striking increase in Akt phosphorylation at Ser473 while the 

active-site inhibitors of mTOR (KU63794 and PP242) completely abrogated Akt 

phosphorylation at this site. Conversely, active-site inhibitors of mTOR caused a marked 

increase in ERK activation whereas rapamycin did not have any stimulatory effect on ERK 
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activation. The results imply that first and second generation of mTOR inhibitors promote 

over-activation of different pro-oncogenic pathways in PDAC cells, suggesting that 

suppression of feedback loops should be a major consideration in the use of these inhibitors 

for pancreatic adenocarcinoma therapy.  In contrast, metformin, which inhibit mTOR activity 

differently (see chapter II and IV), abolished mTORC1 activation without over-stimulating 

Akt phosphorylation on Ser473 and prevented mitogen-stimulated ERK activation in PDAC 

cells. Metformin induced a more pronounced inhibition of proliferation than either KU63794 

or rapamycin while, the active-site mTOR inhibitor was more effective than rapamycin. Thus, 

the effects of metformin on Akt and ERK activation are strikingly different from allosteric or 

active-site mTOR inhibitors in PDAC cells, though all these agents potently inhibited the 

mTORC1/S6K axis. In this chapter, we verified that a class I PI3K inhibitor (called A66) was 

unable to abrogate ERK over-activation. We therefore suggest that the over-activation of ERK 

by active-site mTOR inhibitors was independent of PI3K kinase. This finding was of special 

interest, as in other tumor types, over-activation of ERK with the use of mTOR inhibitors was 

linked to PI3K activity. (6) 

In chapter III, we studied the third generation of inhibitors, so called dual PI3K and 

mTOR kinase inhibitors. Their dual activity is based on the structural similarities of the 

catalytic domain of mTOR and the p110 subunit of PI3K, providing the potential advantage 

of targeting the pathway at two levels (suppressing mTOR in both the mTORC1 and 

mTORC2 complexes, and PI3K). (7) Although these inhibitors are well suited to prevent 

activation of PI3K/AKT caused by suppression of mTORC1/S6K, much less is known 

about negative feedback loops impinging on other pro-oncogenic pathways (e.g. 

MEK/ERK) and/or concerning mTORC2 instead mTORC1.  In this chapter, we showed 
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that the dual PI3K/mTOR inhibitors, including NVP-BEZ235, PKI-587 and GDC-0980 

also induce MEK/ERK pathway over-activation in human pancreatic adenocarcinoma cell 

lines.  

To confirm that this phenomenon was independent of PI3K activity we performed 

mechanistic studies assessing PI3K activity in single cells. Such studies verified that dual 

PI3K/mTOR inhibitors act through a PI3K-independent pathway. Doses of dual 

PI3K/mTOR inhibitors that enhanced MEK/ERK activation coincided with those that 

inhibited mTORC2-mediated AKT phosphorylation on Ser473, suggesting a role of 

mTORC2. To investigate further, we performed knockdown of Rictor (a key component of 

the mTORC2 complex) via transfection of siRNA and detected a marked attenuation of the 

enhancing effect of NVP-BEZ235 on ERK phosphorylation. We propose that dual 

PI3K/mTOR inhibitors suppress a novel negative feedback loop mediated by mTORC2 

thereby leading to enhancement of MEK/ERK pathway activity in pancreatic cancer cells. 

We also demonstrated that MEK inhibitors, such as U126 or PD0325901, prevented ERK 

over-activation induced by dual PI3K/mTOR inhibitors. Additionally, the combination of 

NVP-BEZ235 and PD0325901 caused a more pronounced inhibition of cell growth than 

that produced by each inhibitor individually. These results suggest that combinatorial 

therapy might be a more effective approach to treat this disease.  

In chapter IV, we explored alternative strategies for targeting mTOR. We studied 

berberine (a phytochemical extracted from a variety of medicinal plants) in comparison to 

metformin as both compounds have been described to have anti-diabetic (8, 9) and anti-cancer 

effects. (10-12) We demonstrated that berberine inhibited mTORC1 activity in PDAC cells, 

as shown by monitoring the phosphorylated state of S6K at Thr389 and the phosphorylation of 
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S6. Furthermore, berberine also inhibited ERK activation in PDAC cells. The inhibitory 

effects of berberine on mTORC1 and ERK were elicited at doses that hampered mitochondrial 

function, reduced intracellular levels of ATP and activated AMPK within intact pancreatic 

adenocarcinoma cells. Furthermore, berberine dose-dependently inhibited mTORC1 

(phosphorylation of S6K at Thr389 and S6 at Ser240/244) and ERK activation in PDAC cells 

stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic 

subunit expression of AMPK reversed the inhibitory effect produced by treatment with low 

concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, 

at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK) and 

DNA synthesis through an AMPK-independent mechanism. Similar results were obtained 

with metformin used at doses that induced either modest or pronounced reductions in 

intracellular ATP levels, which were virtually identical to the decreases in ATP levels 

obtained in response to berberine. Therefore in this chapter, we propose that berberine and 

metformin inhibit mitogenic signaling in pancreatic cancer cells through dose-dependent 

AMPK-dependent and independent pathways. 

 In chapter V, we reviewed the pathways that undergo compensatory over-activation in 

response to PI3K/AKT/mTOR or MAPK pathway inhibition and underscore the importance 

of unintended pathway activation in the development of drug resistance to clinically relevant 

inhibitors of such pathways. This chapter highlights the importance of discovering signaling 

feedbacks to anticipate mechanisms of tumor resistance to new drugs and gives insights of 

how investigators could develop strategies that can overcome treatment resistance. The 

majority of our work has been done investigating short courses of inhibitors exposure to cell 

lines. Chronic effects of mTOR inhibition have been described by others.  (13-18) The 
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distinction between short-term and long-term consequences in response to inhibitors are 

complemental for defining strategies to overcome drug resistance, including the dosing 

schedule of the drug and the pathways that should be co-targeted for optimal response.  

Future directions: 

The characterization and kinetics of ERK over-activation following the use of active-

site mTOR or dual PI3K/mTOR inhibitors, as well the mechanistic understanding of such 

phenomena, could translate to patients in several aspects: a) guide the development of drug 

combinations for patients with pancreatic cancer; b) guide timing of treatment e.g.: is 

sequential or intermittent treatment better than chronic treatment with drug combinations; c) 

guide development of new drugs based on novel feedback loops/targets identified here.  

Our work investigated the effects of targeting mTOR in pancreatic cell lines. 

Logically, one of the next steps would be assess the effects of such inhibitors in vivo. Studies 

in the literature demonstrated that chronic mTOR inhibition will lead to in vivo ERK 

activation, (19, 20) however, characterization of acute versus chronic effects of mTOR 

inhibition in vivo is little understood, particularly in pancreatic cancer. Therefore, we could 

characterize the acute and chronic effects of mTOR pathway inhibition using different 

generations of inhibitors, including rapamycin, NVP-BEZ235 and GDC-0980, using 

xenograft nude mouse model. (21) Additionally, would be of interest to assess the effects of 

drug withdrawal after chronic exposure.  Naturally, studying combination of these inhibitors 

in combination with MEK inhibitors would of interest. Additionally, based on our data 

showing that metformin and berberine cause inhibition of ERK in addition to mTORC1 

inhibition, we suggest to study the combination of active-site or dual PI3K/mTOR inhibitors 

and such drugs both in vitro and in vivo models.  
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Our work is extremely relevant clinically. In fact, there are several trials currently 

studying dual PI3K/mTOR inhibitors in human subjects, including in patients with pancreatic 

cancer.  It would be of significant value if one could assess the status of activation of the 

AKT, mTOR and ERK by assessing the phosphorylation status of these proteins tissue 

biopsies of patients by immunohistochemistry pre and post inhibitors treatment. So far, it 

appears that only pre inhibitors tissue samples from patients that have participated on related 

trial have been collected for future analysis. Although they would have value as predictors of 

treatment response, the examination of post treatment samples would help to understand 

treatment failure and mechanisms of drug resistance.  

Mechanistically, we were the first to describe that ERK over-activation with the use of 

dual PI3K/mTOR inhibitors is linked to mTORC2. Although the mechanism by which that 

occurs is not understood, we hypothesize that mTORC2 could repress ERK over-activation 

through two mechanisms: “directly”; by protein-protein interaction that inhibit RAS activity 

or “indirectly”, by modulation of downstream substrates. To explore this hypothesis, we 

could assess in detail if AKT and/or PKCα, downstream substrates of mTORC2, (22, 23) are 

responsible for this negative feedback regulation. If AKT is responsible for repressing ERK 

over-activation, we would anticipate that the use of AKT inhibitors will unleash ERK over-

activation. We also can argue that mTORC2-mediated phosphorylation of PKCα, required 

for its activity, inhibits EGFR by phosphorylation of EGFR at Thr 654 (24) (25) and that this 

inhibition contributes to feedback loop of EGFR-mediated Ras/MEK/ERK activation. 

Therefore, we could expose cells to dual PI3K/mTOR and PKCα inhibitors (including Ro 

32-0432) and determine whether ERK over-activation in response to dual PI3K/mTOR 

inibition is abrogated. Alternatively, we could investigate whether the dual PI3K/mTOR 
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inhibitors affect the protein-to-protein interaction in the mTORC2 complex, composed by 

the key elements mTOR, Rictor and Sin1. Sin1 is known to contain a Raf-like Ras-binding 

domain (RBD) and a pleckstrin homology (PH) domain, both considered functional in the 

human Sin1 protein. (26) In other cell lines Sin1 co-localizes with KRAS at the cell 

membrane and inhibits its activity. (26) Thus, the disruption of the complex and 

consequently the Sin1-RAS interaction could unleash the MAPK pathway downstream. 

Consequently we could first assess if dual PI3K/mTOR inhibitors affect the integrity of the 

mTORC2 complex by preventing mTOR to bind to Rictor and/or Sin1. We could also test 

the complex formation between mTOR and Rictor and Sin1 by co-immunoprecipitation in 

the presence and absence of the PI3K/mTOR inhibitors. If the inhibitors indeed disrupt the 

mTORC2 complex, we could evaluate if Sin1 and Ras interact (e.g. by co-

immunoprecipitation and co-localization) and assess the impact of PI3K/mTOR inhibition 

on Ras-GTP levels and RAF-kinase activity (27). Understanding the mechanism by which 

mTORC2 leads to ERK over-activation has significant translational importance as can lead 

to the development of more specific inhibitors.  

  

 

 

 

 

 

 

 

98



References: 

1. Kindler HL, Niedzwiecki D, Hollis D, Sutherland S, Schrag D, Hurwitz H, et al. 

Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with 

advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 

80303). Journal of clinical oncology : official journal of the American Society of Clinical 

Oncology. 2010;28(22):3617-22. 

2. Van Cutsem E, Vervenne WL, Bennouna J, Humblet Y, Gill S, Van Laethem J-L, et 

al. Phase III Trial of Bevacizumab in Combination With Gemcitabine and Erlotinib in 

Patients With Metastatic Pancreatic Cancer. Journal of clinical oncology : official journal of 

the American Society of Clinical Oncology. 2009;27(13):2231-7. 

3. Philip PA, Benedetti J, Corless CL, Wong R, O'Reilly EM, Flynn PJ, et al. Phase III 

study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced 

pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. 

Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 

2010;28(22):3605-10. 

4. Infante JR, Somer BG, Park JO, Li CP, Scheulen ME, Kasubhai SM, et al. A 

randomised, double-blind, placebo-controlled trial of trametinib, an oral MEK inhibitor, in 

combination with gemcitabine for patients with untreated metastatic adenocarcinoma of the 

pancreas. Eur J Cancer. 2014;50(12):2072-81. 

5. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al. Erlotinib Plus 

Gemcitabine Compared With Gemcitabine Alone in Patients With Advanced Pancreatic 

Cancer: A Phase III Trial of the National Cancer Institute of Canada Clinical Trials Group. 

99



Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 

2007;25(15):1960-6. 

6. Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A, et al. 

Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent 

feedback loop in human cancer. J Clin Invest. 2008;118(9):3065-74. 

7. Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: 

lessons learned from early clinical trials. Nature reviews Clinical oncology. 2013;10(3):143-

53. 

8. Zhang Y, Li X, Zou D, Liu W, Yang J, Zhu N, et al. Treatment of type 2 diabetes and 

dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab. 

2008;93(7):2559-65. 

9. Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. 

Metabolism. 2008;57(5):712-7. 

10. Chou H-C, Lu Y-C, Cheng C-S, Chen Y-W, Lyu P-C, Lin C-W, et al. Proteomic and 

redox-proteomic analysis of berberine-induced cytotoxicity in breast cancer cells. J 

Proteomics. 2012;75(11):3158-76. 

11. Wang L, Liu L, Shi Y, Cao H, Chaturvedi R, Calcutt MW, et al. Berberine Induces 

Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-

Inducing Factor. PLoS One. 2012;7(5):e36418. 

12. Wang Y, Liu Q, Liu Z, Li B, Sun Z, Zhou H, et al. Berberine, a genotoxic alkaloid, 

induces ATM-Chk1 mediated G2 arrest in prostate cancer cells. Mutat Res. 2012;734:20-9. 

100



13. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, 

Serra V, et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase 

expression and activity. Cancer Cell. 2011;19(1):58-71. 

14. Chakrabarty A, Sanchez V, Kuba MG, Rinehart C, Arteaga CL. Feedback 

upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K 

inhibitors. Proc Natl Acad Sci U S A. 2012;109(8):2718-23. 

15. Serra V, Scaltriti M, Prudkin L, Eichhorn PJA, Ibrahim YH, Chandarlapaty S, et al. 

PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-

overexpressing breast cancer. Oncogene. 2011;30(22):2547-57. 

16. Muranen T, Selfors LM, Worster DT, Iwanicki MP, Song L, Morales FC, et al. 

Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer 

cell. 2012;21(2):227-39. 

17. Cen B, Mahajan S, Wang W, Kraft AS. Elevation of Receptor Tyrosine Kinases by 

Small Molecule AKT Inhibitors in Prostate Cancer Is Mediated by Pim-1. Cancer Res. 

2013;73(11):3402-11. 

18. Yan Y, Serra V, Prudkin L, Scaltriti M, Murli S, Rodriguez O, et al. Evaluation and 

Clinical Analyses of Downstream Targets of the Akt Inhibitor GDC-0068. Clin Cancer Res. 

2013;19(24):6976-86. 

19. Hoang B, Benavides A, Shi Y, Yang Y, Frost P, Gera J, et al. The PP242 Mammalian 

Target of Rapamycin (mTOR) Inhibitor Activates Extracellular Signal-regulated Kinase 

(ERK) in Multiple Myeloma Cells via a Target of Rapamycin Complex 1 (TORC1)/ 

Eukaryotic Translation Initiation Factor 4E (eIF-4E)/RAF Pathway and Activation Is a 

Mechanism of Resistance. J Biol Chem. 2012;287(26):21796-805. 

101



20. Serra V, Scaltriti M, Prudkin L, Eichhorn PJ, Ibrahim YH, Chandarlapaty S, et al. 

PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-

overexpressing breast cancer. Oncogene.30(22):2547-57. 

21. Kisfalvi K, Moro A, Sinnett-Smith J, Eibl G, Rozengurt E. Metformin Inhibits the 

Growth of Human Pancreatic Cancer Xenografts. Pancreas. 2013;42:781-5. 

22. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, et 

al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-

independent pathway that regulates the cytoskeleton. Current biology : CB. 

2004;14(14):1296-302. 

23. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of 

Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098-101. 

24. Santiskulvong C, Rozengurt E. Protein kinase Calpha mediates feedback inhibition of 

EGF receptor transactivation induced by G(q)-coupled receptor agonists. Cellular signalling. 

2007;19(6):1348-57. 

25. Koese M, Rentero C, Kota BP, Hoque M, Cairns R, Wood P, et al. Annexin A6 is a 

scaffold for PKCalpha to promote EGFR inactivation. Oncogene.32(23):2858-72. 

26. Schroder WA, Buck M, Cloonan N, Hancock JF, Suhrbier A, Sculley T, et al. Human 

Sin1 contains Ras-binding and pleckstrin homology domains and suppresses Ras signalling. 

Cellular signalling. 2007;19(6):1279-89. 

27. Bondzi C, Grant S, Krystal GW. A novel assay for the measurement of Raf-1 kinase 

activity. Oncogene. 2000;19(43):5030-3. 

 

102


	initial pages with page number
	up to dedication page
	title page
	copyright page
	abstract page1
	commitee page
	dedication page

	table of content page
	list of figuresI
	Acknowledgments
	VITA1

	body of text_1
	body of text.pdf
	introduction
	Chapter II title
	Chapter II
	Chapter III title
	chapter III
	Chapter IV title
	Chapter IV
	Chapter V title
	chapter v
	Conclusions and future directions3

	chapter VI Conclusions and future directions3




