
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Specification and verification of interactive data-driven web applications

Permalink
https://escholarship.org/uc/item/08c4c33t

Author
Sui, Liying

Publication Date
2006

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/08c4c33t
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Specification and Verification of Interactive Data-Driven Web
Applications

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Liying Sui

Committee in charge:

Professor Victor Vianu, Chair
Professor Alin Deutsch
Professor Yannis Papakonstantinou
Professor Jeff Remmel
Professor Hans Wenzl

2006

Copyright

Liying Sui, 2006

All rights reserved.

To my mother Shufang, who never had a chance to finish her academic career,

and my father Huankai, who was the first to inspire me to pursue my Ph.D.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . viii

Acknowledgements . ix

Vita and Publications . x

Abstract of the Dissertation . xi

Chapter 1 Introduction . 1
1.1 Organization . 8

Chapter 2 Preliminaries and Related Works 9
2.1 Logic . 9

2.1.1 First-Order Logic . 10
2.1.2 Satisfiability Problem of Formulas 10
2.1.3 Temporal Logic . 11

2.2 Formal Verification and Model Checking 15
2.2.1 Propositional LTL Model Checking 17
2.2.2 Propositional CTL(*) Model Checking 21

2.3 Related Works . 22
2.3.1 Declarative specification for data-driven Web applications . 24
2.3.2 Relational Transducers . 27
2.3.3 ASM transducer . 32
2.3.4 The Colombo Framework . 36

Chapter 3 Specification of Interactive Data-Driven Web Applications . . . 41
3.1 Syntax of Specification Language 41
3.2 Example . 44
3.3 Definition of Run . 48
3.4 Temporal properties of the Web applications 51

3.4.1 Linear-time First-order Temporal Logic 51
3.4.2 Branching-time First-order Temporal Logic 54

v

Chapter 4 Theoretical Results on Verification 56
4.1 ASM+ Transducers . 57

4.1.1 Verification of LTL-FO properties 59
4.1.2 Boundaries of decidability 75
4.1.3 Verification of branching-time properties 86

4.2 Verification of Web Applications . 91
4.2.1 Linear-time properties of Web applications 92
4.2.2 Branching-time properties of Web applications 97

Chapter 5 WAVE: A Verifier for Interactive, Data-driven Web Applications 104
5.1 System Architecture . 105
5.2 Web application Verification Algorithm and Optimization 107

5.2.1 Searching for Pseudoruns . 109
5.2.2 Optimizations . 115

5.3 Implementation Details . 118
5.4 Experiments . 123
5.5 Discussion . 128

Chapter 6 Conclusion and Future Work . 130
6.1 Conclusion . 130
6.2 Future Work . 132

6.2.1 Specifying and verifying sessions and multiple users 132
6.2.2 Verification of Web Service Compositions 133
6.2.3 Web Services Discovery . 133
6.2.4 Synthesis of Web Service Compositions 135

Bibliography . 136

vi

LIST OF FIGURES

Figure 2.1 Formal verification . 16
Figure 2.2 Büchi automaton for ϕaux = p1 U p2 19
Figure 2.3 Input and output sequences of a run of SHORT 30
Figure 2.4 Illustration of mediator synthesis 38
Figure 2.5 Illustration of choreography synthesis 40

Figure 3.1 Web pages in the demo . 46

Figure 4.1 Fragment of RI for Example 4.32 102

Figure 5.1 System architecture . 105

vii

LIST OF TABLES

Table 5.1 Property types and its syntactic shapes 124
Table 5.2 Verification result for 17 properties. 125

viii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my advisors Pro-

fessor Victor Vianu and Professor Alin Deutsch for their constant support and

motivation. They have offered invaluable advice and instruction to me on identify-

ing problems, conducting research, and fine tuning solutions. Their diligence and

commitment to science have been and will be a great influence on me for many

years to come. I am glad I had the opportunity to learn from them and to work

with them. I am grateful to Professor Yannis Papakonstantinou and Professor

Bertram Ludäscher, whose patience, time and feedback in this endeavor will be al-

ways appreciated. I would also want to thank Professor Jeff Remmel and Professor

Hans Wenzl for serving in my committee and helping me with my dissertation.

I have learned much from my fellow graduate students and colleagues in Data-

base Lab. I thank Dayou Zhou who has worked together with me on the WAVE

project. Throughout my PH.D research, I also benefited from the discussions and

collaboration with many brilliant people. Also, I would like to express my thankful-

ness to all my wonderful lab mates Emiran, Nick, Yannis, Guilian, Yu, and Pratik

for making the workspace quite fun through lively and interesting discussions.

I wish to extend my deepest gratitude to my parents, for their years of hard work

and dedication. Last, but most importantly, no words can express my gratitude

to my husband, Xin Liu, for his unrelenting support, understanding and love.

ix

VITA

1992–1996 B.S. in Computer Science
Shandong University, Jinan, P.R.China

1996–1999 M.E. in Computer Engineering
Institute of Computing Technology, Beijing, China

1999–2006 Ph.D in Computer Science
University of California, San Diego

PUBLICATIONS

Alin Deutsch, Liying Sui, Victor Vianu, Dayou Zhou. Verification of Communi-
cating Data-Driven Web Services. Accepted by ACM Symposium on Principles of
Database Systems (PODS) 2006.

Alin Deutsch, Liying Sui, Victor Vianu, Dayou Zhou. A System for Specification
and Verification of Interactive, Data-driven Web Applications(Demo). Accepted
by ACM International Conference on Management of Data (SIGMOD), 2006.

Alin Deutsch, Monica Marcus, Liying Sui, Victor Vianu and Dayou Zhou. A Veri-
fier for Interactive, Data-Driven Web Applications. ACM International Conference
on Management of Data (SIGMOD), 2005.

Marco Brambilla, Alin Deutsch, Liying Sui and Victor Vianu. The Role of Visual
Tools in a Web Application Design and Verification Framework: a Visual Notation
for LTL Formulae. International Conference on Web Engineering(ICWE) 2005.

Alin Deutsch, Liying Sui and Victor Vianu. Specification and Verification of Data-
driven Web Services. ACM Symposium on Principles of Database Systems (PODS)
2004:71-82. Full paper invited to special issue of J. of Computer and System
Sciences, to appear.

x

ABSTRACT OF THE DISSERTATION

Specification and Verification of Interactive Data-Driven Web

Applications

by

Liying Sui

Doctor of Philosophy in Computer Science

University of California, San Diego, 2006

Professor Victor Vianu, Chair

We study data-driven Web applications provided by Web sites interacting with

users or applications. The Web site can access an underlying database, as well

as the state information updated as the interaction progresses, and receives user

inputs. The structure and contents of Web pages, as well as the actions to be

taken, are determined dynamically by querying the underlying database as well as

the state and inputs. The properties to be verified concern the sequences of events

(inputs, states, and actions) resulting from the interaction, and are expressed in

linear or branching-time temporal logics.

My research establishes that under what conditions, automatic verification of

such properties is possible, and reveals the complexity of verification. This brings

into play a mix of techniques from logic to automatic verification.

In addition, we also present wave, a verifier we implemented for interactive,

database-driven Web applications specified using high-level modeling tools such as

WebML, to demonstrate that our solution is indeed practically feasible. wave is a

sound and complete verifier for a broad class of applications and temporal proper-

ties. Based on our experiments on four representative data-driven applications and

a battery of common properties, wave yielded surprisingly good verification time,

xi

on the order of seconds. This suggests that interactive applications controlled by

database queries may be unusually well suited to automatic verification.

The experimental results also show that the coupling of model checking with

database optimization techniques used in the implementation of wave can be

extremely effective. This is significant not only to the database area, but also to

the automatic verification in general.

xii

Chapter 1

Introduction

Web applications interacting with users or programs while accessing an un-

derlying database are increasingly common. They are widely used in e-commerce

sites, scientific and other domain-specific portals, e-government, and data-driven

Web services. Interactive Web applications provide access to information as well as

transactions, and are typically powered by databases. They have a strong dynamic

component and are governed by protocols of interaction with users or programs,

ranging from the low-level input-output signatures used in WSDL [55], to the

high-level workflow specifications (e.g., see [11, 9, 15, 54, 56, 35]).

For example, e-commerce applications use intricate workflows(“business mod-

els”) to specify a protocol describing exchanges among partners in a transaction.

Typically, this occurs in a data-intensive fashion, with many agents interacting

with a Web application, simultaneously. Therefore, it makes sense to approach

such applications with a database lens, in order to integrate the data and workflow

aspects.

As revealed in [30], the design of even a simple interactive Web application is

error prone. For critical Web applications, where multi-million dollars transactions

are carried out every day, any design error can potentially cause great losses, thus

ad-hoc repairs after failure are not acceptable. Hence, it is desirable to statically

ensure the correctness of Web applications design before deploying it on the web.

1

2

The objective of this research is to develop static analysis techniques to increase

confidence in the robustness and correctness of complex Web applications as well

as to implement an automatic verifier which can verify whether a Web application

design satisfies a set of design properties.

This dissertation presents new verification techniques for Web applications, and

investigates the trade-off between the expressiveness of the Web application spec-

ification language and the feasibility of verification tasks. We further describe an

automatic verifier—wave —that we have implemented which can check proper-

ties of WebML-style specifications, and is sound and complete under reasonable

restrictions. Such verification leads to increased confidence in the correctness of

database-driven Web applications generated from high-level specifications, by ad-

dressing the most likely source of errors(the application’s specification, as opposed

to the less likely errors in the automatic generator’s implementation).

Static analysis techniques have a number of advantages over traditional ap-

proaches based on simulation, testing, and deductive reasoning. They are ”static”

because the checking is performed without running the program. In particular,

given an application and its desired properties, static analysis techniques automat-

ically and usually conduct quite fast an exhaustive exploration (either explicitly

or symbolically) of all possible behaviors of the application. It gives designers ab-

solute confidence when desired properties are verified. In addition, when a desired

property is not satisfied, static analysis techniques generate a counterexample,

which shows, step by step, how the property is violated by the application. The

exact error trace reported by static analysis techniques is a big advantage over

testing, because the error trace provides invaluable information for designers to

understand and remove bugs. Static checking can improve software productivity

because the cost of correcting an error is reduced if it is detected earlier.

In order to do static analysis, a high-level way to specify the interactive Web

applications is needed. The spread of interactive Web applications has been accom-

panied by the emergence of tools for their high-level specification. A representative,

commercially successful example is WebML [11, 10], which allows to specify a Web

3

application using an interactive variant of the E-R model augmented with a work-

flow formalism. The code for the Web application is automatically generated

from the WebML specification. Such approach not only allows fast prototyping

and improves programmer productivity; it also provides new opportunities for the

automatic verification of Web applications. Our specification language is inspired

by WebML.

In the scenario we consider here, a data-driven Web application is provided by

an interactive Web site that posts data, takes input from the user, and responds to

the input by posting more data and/or taking some actions. The Web application

can access an underlying database, as well as state information updated as the

interaction progresses. The structure of the Web page the user sees at any given

point is described by a Web page schema. The contents of a Web page are deter-

mined dynamically by querying the underlying database, as well as the state. The

actions taken by the Web application, and transitions from one Web page to an-

other, are determined by input, state, and database. We model the queries used in

the specification of the Web application as first-order queries (FO), also known as

relational calculus. FO can be viewed as an abstraction of the data manipulation

core of SQL.

The properties we wish to verify about Web applications involve the sequences

of inputs, actions, and states that may result from interactions with a user. This

covers a wide variety of useful properties, ranging from basic properties, such as

soundness of the specification to complex semantic properties. For example, in

a Web application supporting an e-commerce application, it may be desirable to

verify semantic properties. For instance, no product is delivered before payment

of the right amount is received. Or, we may wish to verify that basic specification

soundness properties, like the specification of Web page transitions, is unambigu-

ous, (the next Web page is uniquely defined at each point during the execution),

and navigation properties, such as each Web page is reachable from the home page,

etc. To express such properties, we rely on temporal logic. Specifically, we consider

two kinds of properties. The first requires that all runs must satisfy some condi-

4

tions on the sequence of inputs, actions, and states. To describe such properties

we use a variant of linear-time temporal logic LTL-FO. Other properties involve

several runs, simultaneously. For instance, we may wish to check that for every

run leading to some Web page, there exists a way to return to the home page. To

capture such properties, we use variants of the branching-time logics CTL-FO and

CTL∗-FO.

Our results identify classes of Web applications, for which temporal properties

in the above temporal logics can be checked, and establish their complexity.

For linear-time properties, the restriction needed for decidability essentially im-

poses a form of guarded quantification in formulas used in the specification of the

Web application and the property. This is similar to the ”input boundedness” re-

striction, first introduced by Spielmann in the context of ASM transducers [48, 49].

With this restriction, verification of linear-time properties is pspace-complete for

schemas with fixed bound on the arity, and expspace otherwise. As justification

for the input-boundedness restrictions, we show that even slight relaxations of our

restrictions lead to undecidability of verification. Thus, our decidability results are

quite tight.

We now informally describe the restrictions on the Web application specifica-

tions and properties that guarantee soundness and completeness, known as input

boundedness [49, 21]. Since we model the queries used in the specification of the

Web application as first-order queries (FO), input boundedness restricts the range

of quantifications in FO formulas to values occurring in the input. This is natural,

since interactive Web applications are input-driven. For example, to state that

every payment received is in the right amount, one might use the input-bounded

formula ∀x∀y[pay(x, y) → price(x, y)], where pay(x, y) is an input and price is a

database relation providing the price for each item.

In terms of expressiveness, it turns out that many practically relevant Web ap-

plications can be modeled with input-bounded specifications. For example, we have

shown that significant portions of a Dell computer shopping Web site, Expedia,

Barnes and Noble, and a Grand Prix motor racing web site can be specified within

5

the restricted framework (see http://www.cs.ucsd.edu/∼lsui/project/index.html

for a demo).

Furthermore, we have implemented a verifier, wave[20, 18], which can check

linear-time temporal properties of WebML-style specifications. When checking

linear-time temporal properties, the task of a verifier is to check that all runs

of the Web application satisfy the given properties(as usual in verification, runs

are considered to be infinite). The verifier search for counter-examples to the

desired property, i.e. runs leading to a violation. A verifier is sound if the counter-

example it find is guaranteed to be a real counter-example, and it is complete if it

is guaranteed to find a counter-example whenever one does exist. wave is sound

and complete under input boundedness restrictions described above.

For branching-time properties, the restrictions needed for decidability are con-

siderably more stringent, and the complexity of verification ranges from pspace

to 2-exptime, depending on the restriction.

In the broader context of verification, a data-driven Web application is an

infinite-state system, because the underlying database queried by the application

is not fixed in advance. This poses an immediate and seemingly insurmountable

challenge. Classical verification deals with finite-state systems, modeled in terms of

propositions. For more expressive specifications, the traditional approach suggests

the following strategy: first, abstract the specification to a fully propositional

one and next, apply an existing model checker such as SPIN [34] to verify LTL

properties of the abstracted model. This approach is unsatisfactory when the data

values are first-class citizens, as in data-driven Web applications. For example,

abstraction would allow checking that some order was shipped only after some

payment was received. However, we could not inspect the payment and order data

values to verify that the payment was for the shipped item, and in the correct

amount.

Conventional wisdom holds that, short of using abstraction, it is hopeless to

attempt complete verification of infinite-state systems. In this respect, wave rep-

resents a significant departure, since it is complete for a practically relevant class

6

of infinite-state specifications. As far as we know, this is the first implementation

of such a verifier. Moreover, our experiments measuring verification times for a

battery of typical properties of four different Web applications are extremely pos-

itive. These results suggest that sound and complete verification of a significant

range of Web applications is well within reach.

Soundness and completeness of verification is only guaranteed under input

boundedness restrictions described above. Note that, both soundness and com-

pleteness is lost for non-input-bounded applications or properties; however, wave

can still be used as an incomplete but sound verifier, as it is typically done in soft-

ware verification, if the specification stay input-bounded and abstract out arith-

metic or other predicates with restricted semantics, as black-box relations. The

heuristics we developed remain just as effective in this case.

Our theoretical results [21] show the decidability of model checking for input-

bounded specifications and properties, by pseudorun techniques we described in

Section 4.1.1(which also provides the basis for the implementation of a practical

verifier for linear time properties, described in [20, 18]). The complexity of check-

ing that a Web application specification W satisfies a property ϕ is shown to be

pspace. This upper bound is a positive starting point, but provides no indication

of whether verification is actually feasible in practice. The wave tool demonstrates

that this is in fact the case, using a fruitful coupling of novel verification and data-

base optimization techniques. We briefly outline the main difficulties overcome in

implementing wave.

In our scenario, the first difficulty facing a verifier is that exhaustive exploration

of all possible runs of a Web application W on all databases is impossible, since

there are infinitely many possible databases, and the length of runs is infinite. A

fundamental consequence of results in [49] is that, for input-bounded specifications

W and properties ϕ, it is sufficient to consider databases and runs of size bounded

by an exponential in W and ϕ. However, this yields a doubly exponential state

space, which is impossible to explore even for very small specifications. Therefore,

we need a qualitatively different approach. The solution lies in avoiding explicit

7

exploration of the state space. Instead of materializing a full initial database

and exploring the possible runs on it, we generate runs by lazily making, at each

point, in the run just the assumptions needed to obtain the next configuration.

Specifically, for input-bounded W and ϕ, this can be done as follows:

(i) explicitly specify the tuples in the database that use only a small set of

relevant constants C computed from W and ϕ; this is called the core of the

database and remains unchanged throughout the run.

(ii) at each step in the run, make additional assumptions about the content of

the database, needed to determine the next possible configurations. The

assumptions involve only a small set of additional values.

The key point is that the local assumptions made in (ii) at each step need not be

checked for global consistency. Indeed, a non-obvious consequence of the input-

bounded restriction is that these assumptions are guaranteed to be globally consis-

tent with some very large database which is, however, never explicitly constructed.

This dramatically cuts down the space explored by the verifier. However, verifi-

cation becomes practical only in conjunction with an array of heuristics and opti-

mization techniques. This yields critical improvements, which bring the verification

times in our experiments down to seconds.

In summary, our results identify classes of Web applications for which tem-

poral properties in the above temporal logics can be checked, and establish their

complexity. As justification for the choice of these classes, we show that even

slight relaxations of our restrictions lead to undecidability of verification. Thus,

our decidability results are quite tight. To show that the theoretical result is in-

deed practically feasible, we have implemented wave (Web Application VErifier).

The main contribution of wave is an extension of finite-state model checking tech-

niques to data-aware reactive systems, in general, and data-driven interactive Web

applications, in particular.

8

1.1 Organization

The rest of the dissertation is organized as follows. Chapter 2 recalls some

notions and terminologies from logic and modeling checking, as well as related

works. A simple and abstract specification language for data-driven interactive

Web application is introduced in Chapter 3. Chapter 4 presents the theoretical

results of the verification of temporal properties and shows that under certain

restriction, the verification problem is decidable and the restriction is so tight that

even small relaxations will lead to undecidability. wave , a verifier we implemented

for interactive, data-driven Web applications is presented in chapter 5. Chapter

6 concludes. A demo of WAVE, as well as some running examples, is available at

http://www.cs.ucsd.edu/∼lsui/project/index.html.

Chapter 2

Preliminaries and Related Works

In this chapter, we recall some notations and terminologies from logic, and pro-

vide a short introduction to model checking and the verification problem. Readers

familiar with logic and model checking may skip the first part of this chapter and

refer back to it as needed. In addition, some related works are also presented in

this chapter.

2.1 Logic

Vocabularies. A Vocabulary Υ is a set of relation and function symbols. Each

symbol in Υ is associated with a natural number, called the arity of the symbol.

Symbols of arity 0 are frequently referred to as nullary symbols. A boolean (resp.

constant) symbol is a nullary relation (resp. function) symbol. If not mentioned

otherwise, it is tacitly assumed that every vocabulary is finite and contains (at

least) the two constant symbols 0 and 1. A relational vocabulary is a vocabulary

without function symbols of arity > 0. In particular, relational vocabularies

may contain constant symbols.

Structures. Let Υ be a vocabulary. A structure A over Υ consists of a non-

empty set A, an interpretation RA ⊆ Ak for every k-ary relation symbol R ∈ Υ,

and an interpretation fA : Ak → A for every k-ary function symbol f ∈ Υ. The set

9

10

A is also called the universe of A. A finite structure is a structure whose universe

is finite. The class of finite structures over Υ is denoted by Fin(Υ). We assume

that every structure A over Υ satisfies the following conditions:

• If Υ contains the symbols 0 and 1, then 0A 6= 1A.

• If Υ contains the binary relation symbol <, then <A is a linear order on A,

in which case A is called an ordered structure.

2.1.1 First-Order Logic

By FO we denote first-order logic with equality. For a logic L and a formula

ψ we write ψ ∈ L to indicate that ψ is a formula of logic L. The set of formulas

ψ ∈ L over a particular vocabulary Υ is denoted by L(Υ).

For every ψ ∈ FO, free(ψ) denotes the set of free variables of ψ. Sometimes

we write ψ(x1, x2, . . . , xk) to indicate that variables x1, x2, . . . , xk are pairwise dis-

tinct and may occur free in ψ, without implying that {x1, . . . , xk} ⊆ free(ψ) or

free(ψ) ⊆ {x1, . . . , xk}. If t and t′ are two terms, then ψ[t/t′] stands for the for-

mula obtained from ψ by replacing every occurrence of t in ψ with t′. The notation

ψ[./.] is also used to denote substitutions of formulas.

2.1.2 Satisfiability Problem of Formulas

Propositional formulas are expressions built over an infinite set of proposi-

tional variables α, β, . . . using unary negation symbol ¬ and binary connectives ∧

and ∨. When the quantification (∀, ∃) over propositional variables is allowed, the

expressions are called Quantified Boolean Formulas(QBF). The satisfiability prob-

lem (SAT for short) for propositional formulas is NP-complete, and for quantified

boolean formulas is PSPACE-complete[46].

Sometimes one also adds function symbols allowing for building more complex

atomic formulas, and equality symbol. Although the SAT problem for first-order

formulas is undecidable, in the general case, some special cases are decidable.

11

A FO formula Ψ is in Bernays-Schönfinke prefix class (sometimes denoted ∃∗∀∗),

if it is of the form

Ψ = ∃p1 . . . pi∀q1 . . .∀qjΦ

that is, it is in prenex form where all existential quantifiers precede all universal

quantifiers, and the formula Φ is built using only constants and predicate letters,

with no function symbols or equality. The problem of deciding if such a formula

is satisfiable is NEXPTIME-complete[46].

2.1.3 Temporal Logic

Temporal logic is an extension of conventional (propositional/first-order) logic,

which incorporates special operators that cater to time. With temporal logic, one

can specify (and verify) how components, protocols, objects, modules, procedures

and functions behave, as time progresses. The specification is done with (temporal)

logic statements that make assertions about properties and relationships in the

past, the present, and the future.

Temporal logic comes in two varieties: linear-time temporal logic assumes that

at any moment, there is only one possible future moment; on the other hand,

branching-time temporal logic treats time in a branching, tree-like way, at each

moment, time may split into alternative courses representing different possible fu-

tures. The temporal modalities of the temporal logic usually reflect the character

of time assumed in the semantics. Thus, in linear-time temporal logic, temporal

modalities are provided for describing events along a single time line, and are re-

garded as specifying the behavior of a single computation of a system. In contrast,

in branch-time temporal logic, the modalities reflect the branching nature of time

by allowing quantification over possible futures, each describing the behaviour of

the possible computations of a nondeterministic system.

12

Linear-time Temporal Logic

Linear-time Temporal Logic (LTL) is an extension of propositional logic to

include discrete time information. Formulas are interpreted as referring to events

along an infinite path of time points.

Definition 2.1. The language LTL(propositional linear-time temporal logic) is

obtained by closing propositional logic under negation, disjunction, and the fol-

lowing formula formation rule: If ϕ and ψ are formulas, then Xψ(“next time”)

and ψUϕ (“until”) are formulas.

LTL formulas are evaluated over a computation, i.e., an infinite sequence of

states. A computation is called model of LTL. Let ρ = {si}i≥0 = s0, s1, s2, . . . be

such an infinite sequence of state, and let ρ≥j denote {si}i≥j. We say ρ≥j |= ψ to

mean ψ holds at position j of the model ρ. In other words, ψ holds in the state at

the j-th step of the computation ρ. Let us define the semantics of LTL formulas

inductively on the structure of the formulas:

• ρ≥j |= ψ iff ψ holds in sj. if ψ is an atomic formula

• ρ≥j |= ¬ψ iff it is not the case ρ≥j |= ψ

• ρ≥j |= ψ ∨ ϕ iff ρ≥j |= ψ or ρ≥j |= ϕ

• ρ≥j |= Xψ iff ρ≥j+1 |= ψ

• ρ≥j |= ψUϕ iff for some k≥j, ρ≥k |= ϕ and for every i, j ≤ i < k, ρ≥i |= ψ

Observe that the above temporal operators can simulate all commonly used

operators, including B (“before”), G (“always”) and F (“eventually”). Indeed,

ψBϕ is equivalent to ¬(¬ψU¬ϕ), Gψ ≡ false B ψ, and Fψ ≡ true U ψ. We use

the above operators as shorthand in LTL formulas, whenever convenient.

13

Branching-time Temporal Logic

In branching-time temporal logic, the underlying structure of time is assumed

to have a branching tree-like nature, where each moment may have many successor

moments. The structure of time thus corresponds to an infinite tree.

We provide the formal syntax and semantics for two representative systems of

propositional branching-time temporal logics. The simpler logic, CTL(Computational

Tree Logic)[23] allows basic temporal operators of the form: a path quantifier—

either A(“for all future”) or E (“for some future”)—followed by a single one of

the usual linear temporal operators G, F, X, U or B. It corresponds to what one

might naturally first think of as a branching-time logic. However, CTL’s syntac-

tic restrictions significantly limit its expressive power. Therefore we also consider

the much richer language CTL∗, which is sometimes informally referred to as full

branching-time temporal logic. The logic CTL∗ extends CTL by allowing the path

quantifier (A or E) followed by an arbitrary linear time formula, allowing boolean

combinations and nesting, over F, G, X, U and B.

Definition 2.2. [23] The set of CTL∗ formulas is the set of state formulas defined

inductively together with the set of path formulas as follows:

1. each propositional formula over the vocabulary is a state formula;

2. if ϕ and ψ are state formulas then so are ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ;

3. if ϕ is a path formula, then Eϕ and Aϕ are state formulas;

4. each state formula is also a path formula;

5. if ϕ and ψ are path formulas then so are ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ;

6. if ϕ and ψ are path formulas then so are Xϕ and ϕUψ.

The set of CTL formulas over vocabulary is defined by replacing (4)-(6) above by

the rule:

14

• if ϕ and ψ are state formulas then Xϕ, and ϕUψ are path formulas.

The semantics of the temporal operators is the natural extension of LTL with

path quantifiers. Informally, Eϕ stands for “there exists a continuation of the

current run that satisfies ϕ” and Aϕ means “every continuation of the current run

satisfies ϕ”. More formally, satisfaction of a CTL(∗) sentence is defined using the

tree.

We now review the classical notion of satisfaction of a CTL(∗) formula by a

Kripke structure(which can be viewed as infinite trees labeled with propositional

variables) (see[23]).

Definition 2.3. [42] Let AP= {p1, p2, . . . , pn} be a finite set of atomic proposi-

tional symbols. A Kripke structure over AP is a 4-tuple K=(S,s0,R,L) where:

• S is a finite set of states.

• s0 ∈ S is an initial state.

• R is a total binary relation on S (R ⊆ S × S), called the transition relation.

• L : S → 2AP assigns to each state the set of atomic propositions which are

true in that state.

A path ρ in Kripke structure K is an infinite sequence of states (s0, s1, . . .) such

that (si, si+1) ∈ R for every i ≥ 0. Let ρ≥i denote the suffix path (si, si+1, si+2, . . .).

The notation K, s |= p indicates that a CTL∗ state formula p holds at state s of

the Kripke Structure K. Similarly, K, ρ |= ψ indicates that a CTL∗ path formula

ψ holds at a path of ρ of the Kripke Structure K. We write s |= p or ρ |= ψ when

it is obvious, from the context, which structure it is.

The notion of satisfaction of a CTL∗ formula by a Kripke structure is defined

as follows:

1. s |= p iff p ∈ L(s).

2. s |= ¬p iff p 6∈ L(s).

15

3. s |= ϕ1 ∧ (∨)ϕ2 iff s |= ϕ1 and(or) s |= ϕ2.

s |= Eψ iff there exists an infinite path ρ′ = (s, s1, s2, . . .) in K, starting from

s, such that ρ′ |= ψ.

s |= Aψ iff for every infinite path ρ′ = (s, s1, s2, . . .) in K starting from s,

ρ′ |= ψ.

4. ρ≥j |= ψ iff s′ |= ψ where s′ is the first state in ρ≥j.

5. ρ≥j |= ψ1 ∧ (∨)ψ2 iff ρ≥j |= ψ1 and(or) ρ≥j |= ψ2.

ρ≥j |= ¬ψ iff ρ≥j 6|= ψ.

6. ρ≥j |= ψ1Uψ2 iff there exists i ≥ j such that ρ≥i |= ψ2 and ρ≥k |= ψ1 for all

j ≤ k < i.

ρ≥j |= Xψ iff ρ≥j+1 |= ψ.

A formula of CTL is also interpreted using the CTL∗ semantics. The complex-

ity of checking whether a CTL(∗) formula is satisfied by a Kripke structure (model

checking) is in ptime for CTL and pspace-complete for CTL∗. The satisfiabil-

ity problem for CTL(∗) formulas is exptime-complete for CTL and 2-exptime

complete for CTL∗. See [23] for a concise survey on temporal logics, and further

references.

2.2 Formal Verification and Model Checking

Formal Verification, where a system is verified with respect to a desired be-

haviour, is a technique that establishes properties of hardware or software designs

using logic, rather than testing or informal arguments. This involves formal spec-

ification of the requirement, formal modeling of the implementation, and precise

rules of inference to prove, say, that the implementation satisfies the requirement.

Systems, particularly software, are notoriously buggy. Testing identifies some

bugs, but truly exhaustive testing is impossible for almost all systems. Therefore,

it is desirable to prove formally that a system satisfies its specified requirements.

16

Error

Good
System
Specification

Property

Formal
Verification

Satisfied

Unsatisfied

Figure 2.1 Formal verification

Formal proofs on a system require viewing that system’s behaviors as sequences of

events. One can then model these events as strings over an alphabet, i.e. a formal

language.

Verification is frequently accomplished by translating the system into specifi-

cation using the formal language, converting the requirements (properties) into a

second formal language, and testing if the language produced by the system is

a subset of the language of the requirements (properties). In practice, subset is

computed by complementing the language of the requirements, intersecting with

the language of the system, and checking for emptiness. If the resulting language

is empty, the system never outputs an illegal string. Equivalently, the system’s

behavior always conforms to the specification. See Figure 2.1.

Specifically, model checking method, which can be fully automated, is a tech-

nique to formally verify finite-state concurrent systems, such as sequential circuit

designs and communication protocols. It has a number of advantages over tradi-

tional approaches that are based on simulation, testing, and deductive reasoning.

In particular, given a formal model and its desired properties, model checking will

automatically and usually, conduct quite fast, an exhaustive exploration (either

explicitly or symbolically) of all possible behaviors of the model. It gives design-

ers absolute confidence when desired properties are verified. In addition, when a

desired property is not satisfied, model checking will generate a counterexample

which shows, step by step, how the property is violated by the model. The exact

error trace reported by model checking is a big advantage over testing because the

error trace provides designers with invaluable information for understanding and

17

removing bugs.

The classical model checking applies to finite state transition systems. A finite-

state transition system T is a tuple (S, s0, T, P, σ) where S is a finite set of config-

urations (sometimes called states), s0 ∈ S the initial configuration, T a transition

relation among the configurations such that each configuration has at least one suc-

cessor, P a finite set of propositional symbols, and σ a mapping associating to each

s ∈ S a truth assignment σ(s) for P . T may be specified using various formalisms

such as a non-deterministic finite-state automaton, or a Kripke structure ([42],

see also Definition 2.3). A run ρ of T is an infinite sequence of configurations

s0, s1, . . . such that (si, si+1) ∈ T for each i ≥ 0. Intuitively, the information about

configurations in S that is relevant to the property to be verified is provided by

the corresponding truth assignments to P . The obvious extension of σ to a run ρ

is denoted by σ(ρ). Thus, σ(ρ) is an infinite sequence of truth assignments to P

corresponding to the sequence of configurations in ρ.

2.2.1 Propositional LTL Model Checking

Given a transition system T as above and an LTL formula ϕ using propositions

in P , the associated model checking problem is to check whether every run of T

satisfies ϕ, or equivalently, that no run of T satisfies ¬ϕ. Pragmatic solutions were

enabled by the key result of [50], which shows that each LTL formula ψ over P can

be compiled into an automaton Aψ on infinite sequences, called a Büchi automaton,

whose alphabet consists of the truth assignments to P , and which accepts precisely

the runs that satisfy ψ. This reduces the model checking problem to checking the

existence of a run ρ of T such that σ(ρ) is accepted by A¬ϕ.

To find ρ, one can employ the so-called nested depth-first search (ndfs) algorithm

[14, 34]. Conceptually, the ndfs algorithm performs a systematic construction of

runs of T . It begins in the start configuration of T and at each subsequent step

it extends the run constructed so far by following possible transitions in T , in a

depth-first fashion. Run extensions leading to non-acceptance in A¬ϕ are pruned.

18

When no possible run extension remains, the algorithm backtracks. This algorithm

is implemented in the widely used SPIN model checker [34]. We detail it next.

Büchi Automaton. We present here the flavor of Büchi automaton used in

SPIN. A Büchi automaton A is a nondeterministic finite state automaton (NFA)

with a special acceptance condition for infinite input sequences: a sequence is

accepted iff there exists a computation of A on the sequence that reaches some

accepting state sf of A infinitely often.

For the purpose of model checking, the alphabet of the Büchi automaton A

consists of truth assignments for some given set P=P1, . . . , Pn of propositional

variables. The transition relation T of A specifies triples (s1, δ, s2) where s1, s2 are

states and δ is a propositional formula over P1, . . . , Pn. Intuitively (s1, δ, s2) states

that A may transition from s1 to s2 if the current input is a satisfying assignment

for δ. A run of A on a given infinite input sequence a0, a1, a2, . . . is a sequence

of states s0, s1, s2, . . . such that s0 is the start state and for each i ≥ 0, there is

some formula δi such that (si, δi, si+1) ∈ T and ai is a satisfying assignment for

δi. A accepts an infinite input sequence IS if, and only if, there is a run of A

on IS which visits some final state sf infinitely often. Wolper provides a formal

description of Büchi automaton in [53].

The results of [50] show that for every LTL formula ϕ, there exists a Büchi

automaton Aϕ of size exponential in ϕ that accepts precisely the infinite sequences

of truth assignments that satisfy ϕ. Furthermore, given a state p of Aϕ and a

truth assignment σ, the set of possible next states of Aϕ under input σ can be

computed directly from p and ϕ in polynomial space [47]. This allows to generate

computations of Aϕ without explicitly constructing Aϕ.

Example 2.4 Figure 2.2 shows a Büchi automaton for p1Up2. Notice that the

accepted infinite input sequences consist of an arbitrary-length prefix of satisfying

assignments for p1, followed by a satisfying assignment for p2 and continued with

an arbitrary infinite suffix.

Suppose we are given a transition system T whose configurations can be enu-

19

Start
 Accept

P
2

P
1

True

Figure 2.2 Büchi automaton for ϕaux = p1 U p2

merated in pspace with respect to the specification of T , and such that, given

configurations Cs, Cs′, it can be checked in pspace whether 〈Cs, Cs′〉 is a tran-

sition in T . Suppose ϕ is an LTL formula over the set P of propositions of T .

The following outlines a non-deterministic pspace algorithm for checking whether

there exists a run of T satisfying ¬ϕ: starting from the initial configuration C0 of

T and s0 of A¬ϕ, non-deterministically extend the current run of T with a new

configuration Cs, and transition to a next state of A¬ϕ under input σ(Cs), until

an accepting state sf of A¬ϕ is reached. At this point, make a non-deterministic

choice: (i) remember sf and the current configuration Ct of S, or (ii) continue. If

a previously remembered final state sf of A¬ϕ and configuration Ct of T coincide

with the current state in A¬ϕ and configuration in T , then stop and answer “yes”.

This shows that model checking is in non-deterministic pspace, and therefore in

pspace.

Notice that any run for which some final state sf is reached infinitely often

must correspond to a path in A, which starts at the initial state s0, reaches sf ,

and proceeds back to sf . We shall call such a path a “lollipop” path, referring to

its prefix from s0 to sf as the “stick”, and to the cycle through sf as the “candy”

part. [14] introduces the ndfs (nested depth-first search) below, which searches for

20

runs ρ of T that determine a lollipop path in A¬ϕ. T¬ϕ denotes the transition

relation of A¬ϕ.

algorithm ndfs

stick(s0, C0) // s0 is the start state of A¬ϕ,

C0 the start configuration of T

procedure stick(s, Cs)

record < (s, Cs), 0 > as visited

for each successor Ct of Cs in T

for each (s, δ, t) ∈ T¬ϕ such that Cs satisfies δ

if < (t, Ct), 0 > not yet visited then stick(t, Ct)

if t is final state in A¬ϕ, then

base := (t, Ct);

candy(t, Ct,base)

procedure candy(s, Cs,base)

record < (s, Cs), 1 > as visited

for each successor Ct of Cs in T

for each (s, δ, t) ∈ T¬ϕ such that Cs satisfies δ

if < (t, Ct), 1 > not yet visited then candy(t, Ct,base)

else if t =base then report run

Procedure stick performs a depth-first search for a prefix of a run in T which

corresponds to the “stick” prefix of a lollipop path in A¬ϕ. When the search reaches

a configuration Ct of T and a final state t in A¬ϕ, (the candidate for the base of

the candy), it is suspended and a nested search is initiated to find an extension of

the run in T which corresponds in A¬ϕ to a cycle through t (the “candy” part of

the lollipop path). If the nested search fails, the suspended search is resumed. The

0 and 1 flags that serve to record that stick, and respectively candy, have already

been called on arguments (s, Cs) unsuccessfully, so the search can be pruned.

The remarkable achievement of algorithm ndfs is to check whether some infinite

21

run satisfies ¬ϕ by constructing, only finitely, many finite-length runs of T . These

are precisely the runs of length upper bounded by 2N , with N the product between

the number of configurations of T and states of Aϕ. Indeed, observe that once

the length of a run exceeds N , stick is invoked the second time with the same

arguments. Since the search failed at the first invocation, it is guaranteed to fail

at the second, and it can therefore be pruned. Similar reasoning yields that candy

can extend the run unsuccessfully for at most another N steps until it calls itself

with the same arguments.

2.2.2 Propositional CTL(*) Model Checking

As we have seen, effective linear time model checking algorithms were developed

by adopting the approach of translating the temporal formulas to nondetermin-

istic automata on infinite words. Similarly, for branching time temporal logic,

the automata-theoretic counterpart are automata over infinite trees[51]. How-

ever, while modeling checking for the full branching-time temporal logic CTL∗ is

PSPACE-complete, automata-theoretic techniques have long been thought to in-

troduce an exponential penalty by going from CTL∗ formulas to automata[22],

which makes them essentially useless for model checking. Kupferman et al.[37]

shows that modeling checking for branching time temporal logic is possible by

translating the temporal formulas to alternating tree automata. Then the problem

of branching time model checking is reduced to checking the 1-letter non-emptiness

of an alternating tree automata(more precisely, the language that the automata

recognizes is not empty).

Alternating tree automata generalize the standard notion of nondeterministic

tree automata, by allowing several successor states to go down along the same

branch of the tree. It is known that, while the translation from branching time

temporal logic formulas to nondeterministic tree automata is exponential, the

translation to alternating tree automata is linear[43]. The cruial observation is

that for model checking, one does not need to solve the nonemptiness problem of

22

tree automata, but rather the 1-letter non-emptiness problem of word automata.

The problem (testing the nonemptiness of an alternating word automaton that is

defined over a singleton alphabet) is substantially simpler.

To obtain an exponential decision procedure for the satisfiability of CTL, Muller

et al.[43] use the fact that the nonemptiness problem for a restricted alternating

automata—weak alternating automata— is in exponential time. Kupferman et

al.[37] prove that the 1-letter nonemptiness of weak alternating automata is decid-

able in linear running time, which yield an automata-based model checking algo-

rithm of linear time for CTL. Furthermore, they also provide the space complexity

bound for branching-time model checking. It comes from the observation that the

alternating automata that are obtained from CTL formulas have a special struc-

ture: they have limited alternation. That kind of alternating automata is called

hesitant alternating automata. A careful analysis of the 1-letter nonemptiness

problem for hesitant alternating word automata yields a top-down model-checking

algorithm for CTL that uses linear space in the length of the formula, and only

poly-logarithmic in the size of the Kripke structure. Moreover, CTL∗ formulas can

also be translated into hesitant alternating automata and, hence, a space-efficient

model checking algorithm is obtained. This implies that for concurrent systems,

model checking for CTL and CTL∗ can be done in space polynomial in the size of

system description, rather than requiring space of the order of the exponentially

larger expansion of the system.

Please refer to [37] for details of weak alternating automata, hesitant alternating

automata and model checking algorithms.

2.3 Related Works

Our notion of Web application is a fairly broad one. It encompasses a large

class of data-intensive Web applications equipped (implicitly or explicitly) with

workflows that regulate the interaction between different partners who can be

users, WSDL-style Web services, Web sites, programs and databases. We address

23

the verification of properties pertaining to the runs of these workflows.

Prior work on Web service verification has mostly focused on propositional

(finite-state) abstractions of both the service workflow and the properties. These

abstractions disregard the underlying database and the data values involved in the

interaction. They allow one to verify, for instance, that some payment occurred

before some shipment, but not that it involved the intended product and the right

amount. [45] proposes an approach to the verification and automated composi-

tion of finite-state Web Services specified using the DAML-S standard [15]. The

verified properties are propositional, abstracting from the data values. They per-

tain to safety, liveness and deadlocks, all of which are expressible in LTL. [44]

is concerned with verifying a given finite-state web service flow specified in the

standard WSFL [56], by using the explicit state model checker SPIN [34]. The

properties are expressed in LTL (again abstracting from data content). Another

data-agnostic verification effort is carried out in [31, 38], which describe verification

techniques focusing on bugs in the control flow engendered by browser operations.

The control flow is specified using a browser-action-aware calculus. The flow is ver-

ified using model checking, after abstraction to finite-state automata labeled with

propositional predicates. The same automata are used for property specification.

Our model is related to WebML [11], a high-level conceptual model for data-

driven Web applications, extended in [10] with workflow concepts to support

process modeling. It is also related to [5], which proposes a model of peers with

underlying databases. The model is a particular case of the one presented here,

in which database and state access is restricted to key lookup only, so that at

most one tuple is retrieved or updated at any given time. [5] does not address

verification, focusing on automatic synthesis of a desired Web Service by “gluing”

together an existing set of services.

Other related models are high-level workflow models geared towards Web ap-

plications (e.g. [9, 15, 56]), and ultimately to general workflows (see [54, 28, 33, 17,

7, 52]), whose focus is, however, quite different from ours. Non-interactive variants

of Web page schemas have been proposed in prior projects such as Strudel [24],

24

Araneus [41] and Weave [25], which target the automatic generation of Web sites

from an underlying database.

More broadly, our research is related to the general area of automatic ver-

ification, and particularly reactive systems [40, 39]. Directly relevant to us is

Spielmann’s work on Abstract State Machine (ASM) transducers [48, 49]. Simi-

larly to the earlier relational transducers [4], these model database-driven reactive

systems respond to input events by taking some action, and maintain state in-

formation in designated relations. Our model of Web applications is considerably

more complex than ASM transducers. The techniques developed in [48, 49] re-

main, nonetheless, relevant, and we build upon them to obtain our decidability

results on the verification of linear-time properties of Web applications. However,

unlike the proof of Spielmann that consists of reducing the verification problem

to finite satisfiability of E+TC formulas1, we provide a simpler, more direct proof

for our extended model. In particular, this also provides an alternative proof of

Spielmann’s original result on ASM. For the results on branching-time properties

we use a mix of techniques from finite-model theory and temporal logic (see [23]),

as well as automata-theoretic model-checking techniques developed by Kupferman,

Vardi, and Wolper [37].

We first introduce some declarative specification languages for Web applica-

tion in Section 2.3.1, then drill into the more related works of Relational Trans-

ducer(Section 2.3.2), ASM transducer(Section 2.3.3) and Colombo(Section 2.3.4).

2.3.1 Declarative specification for data-driven Web appli-

cations

Many tools(some are surveyed in [26]) have been developed to specify data-

driven web applications. Such tools typically access a relational database, use ob-

jects (such as J2EE) and dispatchers to object methods for the application logic,

provide a scripting language (such as JavaScript) and HTML links for specifying

1E+TC is existential first-order logic augmented with a transitive closure operator.

25

the web site structure, and use style sheets, such as CSS, for specifying web site

appearance. The main drawbacks of these approaches are that they do not pro-

vide a unified model for all layers of applications, are not declarative, do not use

structured programming for web sites, and do not provide systematic methods to

deal with application-level conflicts.

Because of these limitations, a variety of research prototype systems have been

proposed with the common goal of supporting web application development at a

higher level of abstraction.

Araneus

Araneus [41] is a project of Università di Roma Tre which focuses on the defin-

ition and prototype implementation of an environment for managing unstructured

and structured Web content in an integrated way, called Web Base Management

System (WBMS). The WBMS should allow designers to effectively deploy large

Web sites, integrate structured and semi-structured data, reorganize legacy Web

sites, and Web-enable existing database applications.

On the modeling side, Araneus stresses the distinction between data struc-

ture, navigation, and presentation. In structure modeling, a further distinction is

made between database and hypertext structure: the former is specified using the

Entity-Relationship model, the latter using a notation that integrates structure and

navigation specification called Navigation Conceptual Model (NCM). Conceptual

modeling is followed by logical design, using the relational model for the structural

part, and the Araneus Data Model (ADM) for navigation and page composition.

Of most interest to us is the fact that ADM offers the notion of page scheme,

a language-independent page description notation based on such elements as at-

tributes, lists, link anchors, and forms. The use of ADM introduces page composi-

tion as an independent modeling task: the specification of data and page structure

is orthogonal and therefore different page schemes can be built for the same data.

Note that the page scheme here does not involve any kind of interaction with users.

26

Presentation is specified orthogonal to data definition and page composition,

using an HTML template approach.

Strudel

Strudel [24] defines the content of web pages in Strudel query language(StruQL),

a declarative language which can access and integrate semi-structured data sources

and generate web site graphs. In this way, Strudel separates the description of con-

tent from the definition of the structure and navigation of the site. The core idea

of Strudel is describing both the schema and the content of a site by means of a

set of queries over a data model for semi-structured information. However, Strudel

only supports read-only operations. Consequently, it does not provide a uniform

framework for handling applications that deal with both queries and updates.

WebML

WebML [11] is a high-level conceptual model for data-driven Web applications,

which provides sophisticated tools for specifying the organization of persistent

data, navigational structure, and query/update operations. At its core, WebML

extends UML with the concept of links, which mirror the structure of a web site.

The web site is then declaratively specified in this model using a GUI.

A drawback of the website specification tools like Araneus, Strudel and WebML

is that they represent a data-driven web site as a graph, where the nodes in the

graph are web pages and the edges are links between the pages. Consequently,

the “control flow” of the application can jump from one web page to another so

long as there is a connecting edge. This is similar to programming with “goto”

statements in the domain of web pages, and has similar disadvantages as compared

to structured programming.

27

Hilda

Hilda [57] is another powerful and declarative Web application development

language that shares many common goals with WebML. The primary benefits of

Hilda over existing development platforms are:

• It uses a unified data model for all layers of the application, including appli-

cation logic and presentation.

• It models both application queries and updates.

• It supports structured programming for web sites, that is, there can be con-

ditions on links which can disable some navigation, when the condition is

evaluated to be false.

• It supports multi-users which naturally have a potential for conflicts due to

concurrently issued application updates. To handle this, it enables conflict

detection for concurrent updates.

In summary, the above declarative languages motivate our specification lan-

guage which will be presented in Chapter 3. There we integrate some features we

have seen.

Now we will present some previous formal models of date-driven reactive sys-

tem: relational transducers and abstract state machine transducers.

2.3.2 Relational Transducers

One formal model that captures the interactive Web site scenario is the rela-

tional transducer [4]. In this model, the transducer(application) can access an un-

derlying database, as well as state information updated as the interaction progress.

The interaction from the outside world is captured by a sequence of input rela-

tions. The application responds by a sequence of output relations. Thus, this

28

model can be viewed as an interactive computational machine similar to an ac-

tive database. Since the database queried by the transducers has unbounded size,

relational transducers are not finite state systems.

A run of a transducer consists of a sequence of inputs and the sequence of

outputs generated in response to each of the inputs. In each computation step,

such a transducer receives from its environment a set of input tuples and produces

a set of output tuples according to the output rules specified in the transducer; the

transducer may also update its state relations, according to the state rules. The

state relations contain all temporary data necessary to keep track of the ongoing

run. The purpose of the database relations is to provide all static data, i.e., data

which does not change during a run. In addition, in many cases, only some of the

inputs and outputs are semantically significant, while others represent syntactic

sugaring that renders the interface more user friendly. For example, payment and

delivery of a product might be considered significant, whereas inquiries about prices

or reminders of pending bills might not. To capture this distinction, the notion

of a “log” is used, which can serve as a kind of “projection” of the execution

history of the relational transducer. These components are called the log of the

transducer. In many circumstances the semantics of relational transducers are

considered relative to specified logs.

Example 2.5 [4] Consider an e-commerce site where a customer interacts with

the site by two input predicates, order(x, y) and pay(x, y). Catalog information

about product price is provided by a relation price(x, y). The system responds to

inputs with output predicates sendbill(x, y) and deliver(x). In the process it may

consult relation price, and update the state information. In this example, a very

simple business model is considered where a customer orders a product, is billed

for it, pays, and then receives delivery. More precisely, a company may decide to

provide the following business model:

TRANSDUCER SHORT

schema

29

database: price;
input: order, pay;
state: past-order, past-pay;
output: sendbill, deliver;
log: sendbill, pay, deliver

state rules

past-order(X)+ :- order(X);
past-pay(X,Y)+ :- pay(X,Y);

output rules

sendbill(X,Y) :- order(X), price(X,Y), NOT past-pay(X,Y);
deliver(X) :- past-order(X), price(X,Y), pay(X,Y), NOT past-pay(X,Y).

Such a program specifies a relational transducer. It consists of three parts: a

schema specification (database, input, output, state, and log relations), a state

transition program and an output program. The database is intended to model

a large external database that is available for reference by the transducer. The

input holds relation schemas for which input data will be received; the state holds

internal states for each run being processed; and the output holds relation schemas

for which output data will be produced.

The state and output relations are defined, respectively, by a state program

and an output program. Processing occurs in a sequence of phases. At each com-

putation step, when a new set of input arrives, the transducer reacts by executing

simultaneously the state program and the output program to obtain new values

for all of the state and output relations. The + in the state rules indicates that the

semantics is cumulative, so the state relations simply contain all previous facts.

The output is not cumulative. Intuitively, the “past-” relations prevent an execu-

tion step from happening twice. For example, for each execution (as identified by

a product name and price) the rule for pay will insert a tuple into that relation

during exact one step of the transducer execution.

In the example above, the database relation is price(product name,price). A

customer interacts with the system by inserting tuples in two input relations, order

and pay. The system responds by producing output relations sendbill and deliver.

Imagine that the presence of tuples in these relations is followed by actual actions,

30

input
sequence

order(Time)
order(Newsweek)

order(Hustle)

order(Le Monde)
pay(Time, 55)

pay(Newsweek, 48)

pay(Newsweek, 45)

output
sequence

sendbill(Time, 55)
sendbill(Newsweek, 45)

deliver(Time)
sendbill(Le Monde, 350)

deliver(Newsweek)

Figure 2.3 Input and output sequences of a run of SHORT

such as sending an email with the bill and physically delivering the product. The

system keeps track of the history of the business transaction using the state re-

lations, here past-order and past-pay. The rules in the example have the obvious

semantics, and are fired in parallel. A run of a transducer consists of:

• a sequence of inputs,

• the sequence of outputs generated by the transducer in response to each of

the inputs, and

• the restriction of the input-output sequence to the relations in the log.

Note that a run is completely determined by the sequence of inputs. The input

and output sequences of a run of SHORT are shown in Figure 2.3. (The prices of

Time, Newsweek, LeMonde are $55, $45 and $350, respectively.)

Given a relational transducer, a interesting question to ask is what analysis

can be performed to validate it. The authors[4] have investigated the following

verification problems concerning relational transducer:

• the problem of verifying temporal properties of relational transduc-

ers(“Does a business model meet its specification?”). For instance, the sup-

plier may wish to verify that a product is never delivered before it has been

paid.

• Goal reachability asks if a goal can be achieved by some run of the trans-

ducer, possibly with some preconditions. In the example, one might wish to

31

verify that it is possible to achieve the goal deliver(x) as long as ∃y price(x,

y) holds in the database.

• the log validation problem (“Can a given log sequence actually be generated

by some input sequence?”), and

• The problem of deciding equivalence of relational transducers(“Are two

business models equivalent with respect to transactions?”).

Although those problems are undecidable in general, positive results, i.e., decid-

ability of variants of those problems, have been obtained for a class of restricted re-

lational transducers called Spocus transducers[4](“Spocus” is a acronym for “semi-

positive output and cumulative states”), in which the state relations simply accu-

mulate the inputs; and output relations are defined by non-recursive, semi-positive

datalog programs with inequality. Many useful properties can be automatically

verified in Spocus transducers.

As we mentioned earlier, “log” relations can serve as the “projection” of the

execution history of their restricted relational machines; results are obtained in

[4] concerning whether one machine is log equivalent to another, in the sense that

they produce the same log.

The technique of showing decidability is a reduction to finite satisfiability of a

sentence in Bernays-Schönfinkel prefix class.

A drawback of Spocus transducers is that their state relations (i.e., the dy-

namic relations of their internal databases) are cumulative: the state of a Spocus

transducer only accumulates all previous inputs; it cannot be updated otherwise.

This limits the field of application of Spocus transducers, substantially. Imagine,

for example, a supplier who wants to enable customers to order a product multiple

times during a session. The business model of this supplier cannot be expressed

by means of a Spocus transducer because once an order for a product has been

placed, that order remains in the state of a Spocus transducer until the end of the

current session (see also Example 2.5).

32

2.3.3 ASM transducer

Following up on [4], Spielman extended relational transducers using Gurevich’s

more general abstract state machines[32], and obtained new positive results on ver-

ification of temporal properties, checking equivalence, and validating transaction

logs for more powerful transducers–ASM transducers[48, 49]. The proof is based

on an ingenious but laborious reduction to the satisfiability problem for the logic

E+TC(existential FO augmented with a transitive closure operator).

Like relational transducers [4], the ASM transducers model database-driven

reactive systems that respond to input events by taking some actions, and main-

tain state information in designated relations(called memory relations). At each

step, the transducer receives from the environment inputs consisting of arbitrary

relations over the input vocabulary, whose elements come from the underlying

database. The transducer reacts to the inputs with a state transition and by pro-

ducing output relations. The control of the transducer is defined by rules similar

to those of relational transducers. The temporal properties to be verified are also

expressed by LTL-FO formulas like those of relational transducers.

ASM transducer is more powerful due to the fact that, unlike Spocus relational

transducer [4], rules in the ASM transducer are defined by first-order logic rather

than semi-positive datalog rules in Spocus. Furthermore, it treats the state rela-

tions as active database with immediate triggering of insertion and deletion, thus

allowing state updating. On the other hand, Spocus only allows state to be cu-

mulative. In addition, ASM transducer considers infinite runs over finite domain

while Spocus can handle finite runs over infinite domain.

In order to achieve decidability of verification, Spielmann’s ASM transducer

only allows input from some fixed domain, while Spocus allows arbitrary input,

thus, ASM transducer considers infinite runs over fixed domain, while Spocus deals

with finite runs oven possible expanding domain. But only restricting the input

isn’t enough; Spielmann also considers several other possible restrictions. The one

of interest to us is input-bounded ASM with bounded input flow, denoted as ASMI ,

33

which requires the following:

(i) each input relation received in any single step has cardinality bounded by a

constant, and

(ii) the rules used in the specification, as well as the LTL-FO formula to be

verified, are input bounded.

The definition of input-bounded rule and formula are:

• if ϕ is a FO formula, α is an input atom using a relational symbol from I,

x̄ ⊆ free(α), and x̄∩free(β) = ∅ for every state or action atom β in ϕ, then

∃x̄(α ∧ ϕ) and ∀x̄(α→ ϕ) are formulas.

Intuitively, input-boundedness means that the first-order quantification in the

guards of the rules in specification is bounded to the active domain of the cur-

rent input. That domain is a finite domain because an ASM relational transducer

running in realistic environment never receives “too much” input in a single com-

putation step, due to physical and technical limitations of the environment.

The Main result of Spielmann’s ASMI is:

Theorem 2.6. Given an ASMI transducer T and an input-bounded property ϕ, it

is decidable whether T satisfies ϕ. Furthermore, It is pspace-complete for schemas

with fixed bound on the arity, and in expspace for schemas with no fixed bound

on the arity.

First, it is shown that the problem is of pspace-hardness by reduction from

the satisfiability problem of quantified boolean formulas(QBF). Then, in order to

show that is indeed contained in pspace, Spielmann’s proof makes use of several

logics for which finite satisfiability is decidable:

• FOW , the witness-bounded fragment of FO;

• FOW+ posTC, the extension of FOW with the positive occurrences of the

transitive closure operator, and

34

• E+TC, the existential fragment of FO+TC.

The main idea of the containment proof is to reduce the problem of checking

the existence of a run of the transducer violating the desired property to that of

checking finite satisfiability of a formula in one of the above logics. Specifically, this

is done by an ingenious polynomial reduction to the finite satisfiability problem

for FOW+ posTC. Next, it is shown in [48] that finite satisfiability of FOW+

posTC is polynomially reducible to the finite satisfiability of E+TC(existential

FO extended with a transitive closure operator), and that the latter is in pspace

for fixed database arity, and in expspace for arbitrary arities.

Before providing more details on the reductions, we briefly review the above

logics, using the terminology of [49]. We start with some notations. A finite set

of constant symbols and variables is called a witness set. For a witness set W

and a variable x not in W, let (x ∈ W) abbreviate the formula (
∨
v∈W x = v).

Intuitively, (x ∈ W) holds iff the interpretation of x matches the interpretation of

some symbols in W.

Definition 2.7. The witness-bounded fragment of FO, denoted by FOW , is ob-

tained from FO by replacing the formula-formation rule for first-order quantifica-

tion with the following rules for witness-bounded quantification:

(WBQ) If W is a witness set, x is a variable not in W, and ϕ is a formula,

then (∃x ∈ W)ϕ and (∀x ∈ W)ϕ are formulas.

The free and bound variables of FOW formulas are defined as usual. In par-

ticular, x occurs bound in (∃x ∈ W)ϕ and (∀x ∈ W)ϕ, whereas all variables

in the witness set W are free. Thus, FOW can be viewed as a fragment of FO

where formulas of the form (∃x ∈ W)ϕ and (∀x ∈ W)ϕ are mere abbreviations for

∃x(x ∈ W ∧ ϕ) and ∀x(x ∈ W → ϕ), respectively.

Let FO+TC denote FO augmented with the transitive closure operator TC,

and E+TC denote the existential fragment of FO+TC.

35

Definition 2.8. [49] The witness-bounded fragment of transitive-closure logic, de-

noted by (FOW + TC), is obtained from (FO+TC) by replacing the formula-

formation rule for the first-order quantification with the rule (WBQ). An oc-

currence of a TC operator in a (FOW + TC) formula is called positive if the

occurrence is in the scope of an even number of negation. By (FOW + posTC) we

denote the set of those (FOW + TC) formulas in which every occurrence of a TC

operator is positive.

Let T be an ASMI transducer and ∀x̄ϕ(x̄) the universal closure of an input-

bounded LTL-FO formula. Clearly, every run of T satisfies ∀x̄ϕ(x̄) iff it is not the

case that

(†) there exists a run of T satisfying ψ ≡ ∃x̄¬ϕ(x̄)

Thus, in order to decide whether every run of T satisfies ∀x̄ϕ(x̄), it is enough to

solve (†). We outline the main steps of the reduction of (†) to the finite satisfiability

of a FOW+posTC sentence, provided in [48, 49].

Although (†) has the flavor of a satisfiability test, there is an immediate diffi-

culty: transducer runs are infinite, whereas finite satisfiability involves finite struc-

tures. This is dealt with by the following:

Periodic Run Lemma: T has a run satisfying ψ iff it has a periodic run satis-

fying ψ.

Since a periodic run can be represented by a finite prefix, such runs are repre-

sentable by finite structures.

The next step provides a definition by an FO+TC formula of the finite struc-

tures representing periodic runs of T that satisfy ψ. Intuitively, the formula de-

scribes the connection between consecutive configurations of the transducer by FO

formulas and uses the transitive closure operator to describe the entire run and

verify satisfaction of ψ. However, a difficulty arises: the formula uses universal

quantification. This problem is alleviated by the following:

36

Local Run Lemma: Intuitively, an approximate description of the runs of T is

sufficient when checking satisfiability of ψ. Specifically, the description is exact on

the inputs of the runs, but provides only the correct description of the restrictions

of memory and action relations to a designated set C of constants. The set C

consists of the database constants as well as constants standing for witnesses to

the existentially quantified variables x̄ in ψ = ∃x̄¬ϕ. Such a “run” is called a local

run of T. The lemma shows that there exists a run of T satisfies ψ iff there exists

a local run of T satisfying ψ. Thus, it is sufficient to consider only local runs of

T when checking satisfiability of ψ.

The Local Run Lemma allows replacing the quantifiers of the FO+TC formula by

witness-bounded quantifiers, with C serving as a witness set. With some work,

this yields an equivalent formula in FOW+posTC constructed in polynomial time

from T and ψ.

With the periodic lemma and local lemma, we get:

Theorem 2.9. Checking whether an input-bounded ASM transducer satisfies an

input-bounded temporal property is PSPACE for fixed arity schemas and EX-

PSPACE otherwise.

2.3.4 The Colombo Framework

Colombo[5] is a rich formal framework for web service composition, which ad-

dresses message exchanges, data flow management, and effects on the real world.

Using Colombo, the authors study the problem of automatic service composition

(synthesis) and devise a sound, complete and decidable algorithm for building a

composite service. Specifically, it develops (i) a technique for handling the data,

which ranges over an infinite domain, in a finite, symbolic way, and (ii) a tech-

nique to automatically synthesize composite web services, based on Propositional

Dynamic Logic. Although the problem Colombo considers is different from the

problem presented in this thesis, but their work is nevertheless related to this

dissertation, since it is the first unified model that take data into account.

37

More precisely, Colombo is a framework for web services that combines

• A world state, representing the real world, viewed as a database instance

over a relational database schema

• Atomic processes in the spirit of OWL-S,

• Message passing, including a simple notion of ports and links, as found in

web services standards (e.g., WSDL, BPEL)

• An automata-based model(Guarded Automata) of the internal behavior of

the web services, where the individual transaction correspond to atomic

processes, message writes, and message reads.

• a local store for each web service, used manage the data read/written with

messages and input/output by atomic processes; and

• a simple form of integrity constraints on the world state

Data may be internal to services or shared by the service community; therefore,

the authors introduce, respectively, the notions of local store and world state to

represent them. In general the data contained in the local store is not a subset

of the data in the world schema, since the former may refer to variables that are

internal to the services, and therefore, are not exported.

In addition to the world state, a service community is also characterized by a

set of atomic processes that modify the world state, a finite set of services, and

a set of message types, denoting the alphabet of the community. Each atomic

process has some internal structures (input, output, or interaction with the world

state).

Each service is generally non-atomic, and has process flow characterized in

terms of its behavior expressed as a guarded automaton, defined over the alphabet

of the community as usual. Each service interacts with the other services in the

community and with the client, in terms of messages and actions. Therefore,

38

the primitive actions it defines are not only essentially used to send a message

(type), receive a message (type), but also to perform an operation, by specifying

input parameters, and to assign some value to a location in the local store. The

transition relation defines the set of successor states given a state, a guard and a

primitive action. A guard is a first order logic formula in the general case, it is a

propositional formula in a restricted, decidable framework. Finally, between the

various services in the community, a set of (bi-directional) channels can be defined:

in general, the authors envision a queue based communication topology, where the

various queues are not part of the services, but are seen as part of the community.

The problem of service composition, in such a framework, aims at building a

new service that realizes a client request, by coordinating the available services.

Several solutions to this problem may be found, depending also on the formalism

used to express the client request.

? ? ?
S14S8

S2

CC

G

S1 S2 S3 . . .

“UDDI”

M

Figure 2.4 Illustration of mediator synthesis

Using the Colombo model, [5] develops a framework for posing composition

problems, that closely parallels the way composition might be done using standard-

based web services. One composition problem is called the mediator synthesis

problem. This focuses on how to build a mediator service that simulates the

39

behavior of a target web service, where the mediator can only use message passing

to get the pre-existing web services to invoke atomic processes (which in turn

impact the “real world”). The mediator synthesis problem is illustrated in Figure

2.4. As suggested in the left side of that figure we assume that a (virtual) “goal

service” G is given as a Colombo guarded automaton. G includes atomic processes

that can manipulate “real world” relations, and also messaging ports that can be

used by a hypothetical client C. Also provided as inputs is a set of Colombo web

services S1, . . . , Sn. (These can be viewed as existing services in a generalized form

of “UDDI” directory). The challenges, as suggested in the right side of Figure 2.4

are to:

• select a subset of services from the UDDI directory,

• synthesize a new service M (a “mediator”), and

• construct “linkages” between M , the chosen services, and the client C,

so that the set of possible behaviors of the system involving M and the selected

services, at least as can be observed by C, by the invocations of atomic processes,

and by the impact on the “real world”, is identical to the set of possible behaviors

of G.

A second problem studied in [5], called choreography synthesis, is illustrated

in Figure 2.5. The inputs for this problem are identical to those of the mediator

synthesis problem. However, in choreography synthesis the challenge is to select

elements of the “UDDI” directory and then to construct a linkage for message

passing that goes between those services and the client, so that the overall system

simulates the goal service(i.e., there is no “new” service involved).

Under certain restrictions, [5] demonstrates the decidability of the existence of

a solution to the mediator synthesis problem, and similarly for the choreography

synthesis problem. Further, a method for building a solution for a given synthesis

problem is provided, if a solution exists. These results are based on

40

S14S8
S2

CC

G

S1 S2 S3 . . .

“UDDI”

Figure 2.5 Illustration of choreography synthesis

• Database accesses are restricted to key lookup only, so that at most one tuple

is retrieved or updated at any given time.

• a technique for reducing potentially infinite domains of data values (in the

“real world”) into a finite set of symbolic data values, and

• in a generalization of [6], a mapping of the composition problem into PDL.

The results reported in [5] rely on a number of restrictions; a broad open problem

concerns how these restrictions can be relaxed while still retaining decidability.

Also, the worst-case complexity as reported in [5] is doubly exponential time; it is

hoped to reduce it at least to exponential time.

In addition, [5] does not address verification, focusing on automatic synthesis

of a desired Web service, by “gluing together” an existing set of services.

Chapter 3

Specification of Interactive

Data-Driven Web Applications

In this chapter we provide our model and specification language for data-driven

Web applications. It is particularly important that the specification of the Web

application is concise and easy to understand, which motivates us to focus on

simple rule-based specifications. Moreover, the specification language should be

expressive enough such that we can model interesting Web applications.

3.1 Syntax of Specification Language

Our model of Web application captures the interaction of an external user with

the Web site, referred to as a “run”. Informally, a Web application specification

has the following components:

• A database that remains fixed throughout every run;

• A set of state relations that change throughout the run in response to user

inputs;

• A set of Web page schemas, of which one is designated as the “home page”,

and another as an “error page”;

41

42

• Each Web page schema defines how the set of current input choices is gener-

ated as a query on the database, states, and all previous inputs. In addition,

it specifies the state transitions in response to the user’s input, the actions

to be taken, as well as the next Web page schema.

Intuitively, a run proceeds as follows. First, the user accesses the home page,

and the state relations are initialized to empty. When accessed, each Web page

generates a choice of inputs for the user, by a query on the database and states.

All input options are generated by the system except for a fixed set that represents

specific user information (e.g. name, password, credit card number, etc). These are

represented as constants in the input schema, whose interpretations are provided

by the user throughout the run as requested. The user chooses at most one tuple

among the options provided for each input. In response to this choice, a state

transition occurs, actions are taken, and the next Web page schema is determined,

all according to the rules of the specification. As customary in verification, we

assume that all runs are infinite(finite runs can be easily represented as infinite

runs by fake loops).

We now formalize the above notion of Web application. We assume fixed an

infinite set of elements dom∞. A relational schema is a finite set of relation

symbols with associated arities, together with a finite set of constant symbols.

Relation symbols with arity zero are also called propositions. A relational instance

over a relational schema consists of a finite subset Dom of dom∞, and a mapping

associating to each relation symbol of positive arity a finite relation of the same

arity, to each propositional symbol a truth value, and to each constant symbol an

element of Dom. We use several kinds of relational schemas, with different roles

in the specification of the Web application.

We adopt here an active domain semantics for FO formulas, as commonly done

in database theory (e.g., see [3]).

Definition 3.1. A Web application W is a tuple 〈D,S, I,A,W,W0,Wε〉, where:

• D, S, I, A are relational schemas called database, state, input, and action

43

schemas, respectively. The sets of relation symbols of the schemas are disjoint

(but they may share constant symbols). We refer to constants in I as input

constants, and denote them by const(I).

• W is a finite set of Web page schemas.

• W0 ∈W is the home page schema, and Wε 6∈W is the error page schema.

We also denote by PrevI the relational vocabulary {prevI | I ∈ I − const(I)},

where prevI has the same arity as I (intuitively, prevI refers to the input I at the

previous step in the run).

A Web page schema W is a tuple 〈IW ,AW ,TW ,RW 〉 where IW ⊆ I,AW ⊆ A,

TW ⊆W. Then RW is a set of rules containing the following:

• For each input relation I ∈ IW of arity k > 0, an input rule OptionsI(x̄) ←

ϕI,W (x̄) where OptionsI is a relation of arity k, x̄ is a k-tuple of distinct

variables, and ϕI,W (x̄) is an FO formula over schema D∪S∪PrevI∪const(I),

with free variables x̄.

• For each state relation S ∈ S, one, both, or none of the following state rules:

– an insertion rule S(x̄)← ϕ+
S,W (x̄),

– a deletion rule ¬S(x̄)← ϕ−
S,W (x̄),

where the arity of S is k, x̄ is a k-tuple of distinct variables, and ϕθS,W (x̄) are

FO formulas over schema D∪S∪PrevI ∪ const(I)∪ IW , with free variables

x̄ and θ ∈ {+,−}.

• For each action relation A ∈ AW , an action rule A(x̄) ← ϕ(x̄) where the

arity of A is k, x̄ is a k-tuple of distinct variables, and ϕ(x̄) is an FO formula

over schema D ∪ S ∪PrevI ∪ const(I) ∪ IW , with free variables x̄.

• for each V ∈ TW , a target rule V ← ϕV,W where ϕV,W is an FO sentence

over schema D ∪ S ∪PrevI ∪ const(I) ∪ IW .

44

Finally, Wε = 〈∅, ∅, {Wε},RWε
〉 where RWε

consists of the rule Wε ← true.

Intuitively, the action rules of a Web page specify the actions to be taken in

response to the input. The state rules specify the tuples to be inserted or deleted

from state relations (with conflicts given no-op semantics, i.e. if in the same page,

a state tuple will both be inserted and deleted from the state relation, then it will

be treated as a no-op, neither insertion nor deletion will be performed. Refer to

Definition 3.3 for more details). If no rule is specified in a Web page schema for

a given state relation, the state remains unchanged. The input rules specify a set

of options to be presented to users, from which they can pick at most one tuple

to input (this feature corresponds to menus in user interfaces). At every point in

time, I contains the current input tuple, and prevJ contains the input to J in the

previous step of the run (if any). The choice of this semantics for prevJ relations

is somewhat arbitrary, and other choices are possible without affecting the results.

For example, another possibility is to have prevJ hold the most recent input to

J occurring anywhere in the run, rather than in the previous step. Also note

that prevJ relations are really state relations with very specific functionality, and

are redundant in the general model. However, they are very useful when defining

tractable restrictions of the model.

Notation For better readability of our examples, we use the following notation:

relation R is displayed as R if it is a state relation, as R if it is an input relation,

as R if it is a database relation, and as R if it is an action relation. In Example 3.2

below, error ∈ S, user ∈ D and name, password, button ∈ I.

3.2 Example

Example 3.2 We use as a running example throughout the paper an e-commerce

Web site selling computers online. New customers can register a name and pass-

word, while returning customers can login, search for computers fulfilling certain

45

criteria, add the results to a shopping cart, and finally buy the items in the shop-

ping cart. A demo Web site[1] implementing this example, together with its full

specification, is provided at http://www.cs.ucsd.edu/∼lsui/project/index.html.

The demo site implements the Web application 〈D,S, I,A,W,HP,Wε〉. Fig-

ure 3.1 represents an overview of all Web pages of our demo, depicted in WebML

style. We list here only the pages in W that are mentioned in the running example:
HP the home page
RP the new user registration page
CP the customer page
AP the administrator page
LSP a laptop search page
PIP displays the products returned by the search
CC allows the user to view the cart contents and order items in it
MP an error message page

The following describes the home page HP which contains two text input

boxes for the customer’s user name and password respectively, and three buttons,

allowing customers to register, login, respectively clear the input.

Page HP

Inputs IHP :

name, password, button(x)

Input Rules:

Optionsbutton(x)← x = “login” ∨ x = “register” ∨ x = “clear”

State Rules:

error(“failed login”)← ¬user(name, password) ∧ button(“login”)

Target Web Pages THP : HP, RP, CP, AP, MP

Target Rules:

HP← button(“clear”)

RP← button(“register”)

CP← user(name, password) ∧ button(“login”) ∧ name 6= “Admin”

AP← user(name, password) ∧ button(“login”) ∧ name = “Admin”

MP← ¬user(name, password) ∧ button(“login”)

End Page HP

46

Hone page(HP)

Name

passwd

cancel

Desktop

My order laptop

Product detail page(PP)

Product detail

Add to cart

laptop Search(LSP)

Desktop search

Ram:

Hdd:

Display:

search

login

back

Cart detail

Continue shopping

submit

M

Error Message

homepage

Continue shopping

logout

View cart

Continue shopping

logout

View cart

Continue shopping

back Continue shopping

logout
logout

back View cartView cart Continue shopping

View cart

Pending Order (POP)

Pending Order

logout

Order status(OSP)

Order status

cancel

back View cart Continue shopping

logout

Cancel confirmation page(CCP)

logout

View cart

Administrate order page (AP)

Order

logout

ship

back Continue contol

Shipment confirmation page(SCP)

Continue control

logout

register

register

Your registration is successful,

Now you are log in

Continue shopping

logout

Buy items in cartEmpty cart

delete

View cart Continue shoppingback

Continue Shopping

Credit Verification

Continue control

New user Page(NP)
Error Message page(MP)

Name

Passwd

Re-passwd

clear back

Customer page(CP) logout

Sucessful Registration(RP)

Desktop Search(DSP)

Desktop search

Ram:

Hdd:

View Order page(VOP) logout

Order status

search

Product index page(PIP)
logout

Matching products

back View cart

Deletion confirmation page(DCP)

logout

Cart Content(CC) logout

User payment(UPP) logout

Confirmation page(COP)
Payment

CC No:

Expire date

Order detail

back View cart Continue shopping

Figure 3.1 Web pages in the demo

47

Notice how the three buttons are modeled by a single input relation button,

whose argument specifies the clicked button. The corresponding input rule restricts

it to a login, clear or register button only. As will be seen shortly (Definition 3.3),

each input relation may contain at most one tuple at any given time, corresponding

to the user’s pick from the set of tuples defined by the associated input rule. This

guarantees that no two buttons may be clicked simultaneously. The user name

and password are modeled as input constants, as their value is not supposed to

change during the session. If the login button is clicked, the state rule looks up

the name/password combination in the database table user. If the lookup fails,

the state rule records the login failure in the state relation error, and the last

target rule fires a transition to the message page MP. Notice how the “Admin”

user enjoys special treatment: upon login, she is directed to the admin page AP,

whereas all other users go to the customer page CP. Assume that the CP page

allows users to follow either a link to a desktop search page, or a laptop search

page LSP. We illustrate only the laptop search functionality of the search page

LSP (see the online demo [1] for the full version, which also allows users to search

for desktops).

Page LSP

Inputs ILSP : laptopsearch(ram, hdisk, display), button(x)

Input Rules:

Optionsbutton(x)← x = “search” ∨ x = “view cart” ∨ x = “logout”

Optionslaptopsearch(r, h, d)← criteria(“laptop”, “ram”, r)

∧criteria(“laptop”, “hdd”, h) ∧ criteria(“laptop”, “display”, d)

State Rules:

userchoice(r,h,d)← laptopsearch(r, h, d) ∧ button(“search”)

Target Web Pages TLSP : HP, PIP, CC

Target Rules:

HP← button(“logout”)

PIP← ∃r∃h∃d laptopsearch(r, h, d) ∧ button(“search”)

CC← button(“view cart”)

48

End Page LSP

Notice how the second input rule looks up in the database the valid parameter

values for the search criteria pertinent to laptops. This enables users to pick from

a menu of legal values instead of providing arbitrary ones. If the search button

is clicked, the state rule records the user’s pick of search criteria in the userchoice

table. If this pick is non-empty, the second target rule fires and the Web site

transits to the PIP page. 2

3.3 Definition of Run

We next define the notion of “run” of a Web application. Essentially, a run

specifies the fixed database and consecutive Web pages, states, inputs, and actions.

Thus, a run over database instance D is an infinite sequence {〈Vi, Si, Ii, Pi, Ai〉}i≥0,

where Vi ∈W∪{Wε}, Si is an instance of S, Ii is an instance of IVi
, Pi is an instance

of prev
I
, and Ai is an instance of AVi

. We call 〈Vi, Si, Ii, Pi, Ai〉 a configuration of

the run.

The input constants play a special role in runs. Their interpretation is not

fixed a priori, but is instead provided by the user as the run progresses. We will

need to make sure this occurs in a sound fashion. For example, a formula may not

use an input constant before its value has been provided. We will also prevent the

Web application from asking the user repeatedly for the value of the same input

constant. To formalize this, we will use the following notation. For each i ≥ 0, κi

denotes the set of input constants occurring in some IVj
in the run, j ≤ i, and σi

denotes the mapping associating to each c ∈ κi the unique Ij(c) where j ≤ i and

c ∈ IVj
.

Definition 3.3. Let W = 〈D,S, I,A,W,W0,Wε〉 be a Web application and

D a database instance over schema D. A run of W for database D is an infinite

sequence of configurations {〈Vi, Si, Ii, Pi, Ai〉}i≥0 where Vi ∈ W ∪ {Wε}, Si is an

49

instance of S, Ii is an instance of IVi
, Pi is an instance of prev

I
, Ai is an instance

of AVi
and:

• V0 = W0, and S0, A0, P0 are empty;

• for each i ≥ 0, Vi+1 = Wε if one of the following holds:

(i) some formula used in a rule of Vi involve a constant c ∈ I that is not in

κi;

(ii) IVi
∩ κi−1 6= ∅;

(iii) there are distinct W,W ′ ∈ TVi
for which ϕW,Vi

and ϕW ′,Vi
are both true

when evaluated on D,Si, Ii and Pi, and interpretation σi for the input

constants occurring in the formulas;

Otherwise, Vi+1 is the unique W ∈ TVi
for which ϕW,Vi

is true when evaluated

on D,Si, Ii, Pi and σi if such W exists; if not, Vi+1 = Vi.

• for each i ≥ 0, and for each relation R in IVi
of arity k > 0, Ii(R) ⊆ {v} for

some v ∈ OptionsR, where OptionsR is the result of evaluating ϕR,Vi
on D,

Si, Pi and σi;

• for each i ≥ 0, and for each proposition R in IVi
, Ii(R) is a truth value;

• for each i ≥ 0, and for each constant c in IVi
, Ii(c) is an element in dom∞;

• for each i ≥ 0, and for each relation prevI in prevI, Pi(prevI) = Ii−1(I) if

I ∈ IVi−1
and Pi(prevI) is empty otherwise.

• for each i ≥ 0, and relation S in S, Si+1(S) is the result of evaluating

(ϕ+
S,Vi

(x̄) ∧ ¬ϕ−
S,Vi

(x̄))∨

(S(x̄) ∧ ϕ−
S,Vi

(x̄) ∧ ϕ+
S,Vi

(x̄))∨

(S(x̄) ∧ ¬ϕ−
S,Vi

(x̄) ∧ ¬ϕ+
S,Vi

(x̄))

50

on D,Si, Ii, Pi and σi, where ϕεS,Vi
(x̄) is taken to be false if it is not provided

in the Web page schema (ε ∈ {+,−}). In particular, S remains unchanged

if no insertion or deletion rule is specified for it.

• for each i ≥ 0, and relation A in AVi+1
, Ai+1(A) is the result of evaluating

ϕA,Vi
on D,Si, Ii, Pi and σi.

Note that the state and actions specified at step i + 1 in the run are those

triggered at step i. This choice is convenient for technical reasons. As discussed

above, input constants are provided an interpretation as a result of user input,

and need not be values already existing in the database. Once an interpretation is

provided for a constant, it can be used in the formulas determining the run. For

example, such constants might include name, password, credit-card, etc.

The error Web page serves an important function, since it signals behavior that

we consider anomalous. Specifically, the error Web page is reached in the following

situations:

• the value of an input constant is required by some formula before it was

provided by the user;

• the user is asked to provide a value for the same input constant more than

once; and,

• the specification of the next Web page is ambiguous, since it produces more

than one Web page.

Once the error page is reached, the run loops forever in that page. We call a

run error free if the error Web page is not reached, and we call a Web application

error-free if it generates only error-free runs. Clearly, it would be desirable to verify

that a given Web application is error-free. As we will see, this can be expressed in

the temporal logics we consider, and can be checked for restricted classes of Web

applications.

51

3.4 Temporal properties of the Web applications

With the definition of “run”, we next begin to define the requirements that

must be satisfied by the Web application. Such requirements are expressed using

a variant of temporal logic.

Temporal logic comes in two varieties: linear-time temporal logic assumes

implicit universal quantification over all paths(runs) of the Web applications;

branching-time temporal logic allows explicit existential and universal quantifica-

tion over all paths(runs), expresses temporal properties involving several different

branches of the runs.

3.4.1 Linear-time First-order Temporal Logic

We begin with linear-time properties, that must be satisfied by all runs of

the Web applications. Let W = 〈D,S, I,A,W,W0,Wε〉 be a Web application.

LTL is not expressive enough to capture some interesting properties of runs ofW;

therefore, we extend LTL with first-order components, adapted from [23, 2, 49].

Starting from the propositional LTL formula such as p B q, we replace each

proposition by a first-order formula over the schema of the Web application, which

is exactly the first-order component of the linear-time first-order formula(denoted

by LTL-FO).

Definition 3.4. [23, 2, 49] The language LTL-FO (linear-time first-order temporal

logic) is obtained by closing FO under negation, disjunction, and the following

formula formation rule: If ϕ and ψ are formulas, then Xϕ and ϕUψ are formulas.

Free and bound variables are defined in the obvious way. The universal closure of

an LTL-FO formula ϕ(x̄) with free variables x̄ is the formula ∀x̄ϕ(x̄). An LTL-FO

sentence is the universal closure of an LTL-FO formula.

Note that quantifiers cannot be applied to formulas containing temporal op-

erators, except by taking the universal closure of the entire formula, yielding an

52

LTL-FO sentence. For a given LTL-FO sentence, we refer to its maximal subfor-

mulas containing no temporal operators, as the FO components of the sentence.

LetW = 〈D,S, I,A,W,W0,Wε〉 be a Web application. To express properties

of runs of W, we use LTL-FO sentences over schema D∪ S∪ I ∪PrevI ∪A∪W,

where each W ∈W is used as a propositional variable. The semantics of LTL-FO

formulas is standard, and we describe it informally. Let ∀x̄ϕ(x̄) be an LTL-FO

sentence over the above schema. The Web applicationW satisfies ∀x̄ϕ(x̄) iff every

run of W satisfies it. Let ρ = {ρi}i≥0 be a run of W for database D, and let ρ≥j

denote {ρi}i≥j, for j ≥ 0. Note that ρ = ρ≥0. Let Dom(ρ) be the active domain

of ρ, i.e. the set of all elements occurring in relations or as interpretations for

constants in ρ. The run ρ satisfies ∀x̄ϕ(x̄) iff for each valuation ν of x̄ in Dom(ρ),

ρ≥0 satisfies ϕ(ν(x̄)). The latter is defined by structural induction on the formula.

An FO sentence ψ is satisfied by ρi = 〈Vi, Si, Ii, Pi, Ai〉 if the following hold:

• the set of input constants occurring in ψ is included in κi;

• the structure ρ′i satisfies ψ, where ρ′i is the structure obtained by augmenting

ρi with interpretation σi for the input constants. Furthermore, ρi assigns

true to Vi and false to all other propositional symbols in W.

The semantics of Boolean operators is the obvious one. The meaning of the tem-

poral operators X, U is the following (where |= denotes satisfaction and j ≥ 0):

• ρ≥j |= Xϕ iff ρ≥j+1 |= ϕ,

• ρ≥j |= ϕUψ iff ∃k ≥ j such that ρ≥k |= ψ and ρ≥l |= ϕ for j ≤ l < k.

Observe that the above temporal operators can simulate all commonly used op-

erators, including B (before), G (always) and F (eventually). Indeed, ϕBψ is

equivalent to ¬(¬ϕU¬ψ), Gϕ ≡ false B ϕ, and Fϕ ≡ true U ϕ. We use the

above operators as shorthand in LTL-FO formulas whenever convenient.

LTL-FO sentences can express many interesting properties of a Web applica-

tion. A useful class of properties pertains to the navigation between pages.

53

Example 3.5 The following property states that if page P is reached in a run,

then page Q will be eventually reached as well:

G(¬ P) ∨ F(P ∧ F Q) (3.1)

2

Another important class of properties describes the flow of the interaction between

user and application.

Example 3.6 Assume that the Web application in Example 3.2 allows the user

to pick a product and records the pick in a state relation pick(product id, price).

There is also a payment page UPP, with input relation pay(amount) and “au-

thorize payment” button. Clicking this button authorizes the payment of amount

for the product with identifier recorded in state pick, on behalf of the user whose

name was provided by the constant name (recall page HP from Example 3.2). Also

assume the existence of an order confirmation page OCP, containing the actions

conf(user id, price) and ship(user id, product id). The following property involv-

ing state, action, input and database relations requires that any shipped product

be previously paid for:

∀pid, price [ξ(pid, price) B

¬(conf(name, price) ∧ ship(name, pid))] (3.2)

where ξ(pid, price) is the formula

UPP ∧ pay(price) ∧ button(“authorize payment”)

∧pick(pid, price)

∧∃pname catalog(pid, price, pname) (3.3)

2

54

3.4.2 Branching-time First-order Temporal Logic

Branching-time logics allow expressing temporal properties involving quantifi-

cation over runs. For example, such quantification is needed to express the property

“At any point in a run, there is a way to return to the shopping cart page”.

We next provide the syntax and semantics of the branching-time logics CTL-

FO and CTL∗-FO, adapted from [2, 49]. These are extensions of the well-known

languages CTL and CTL∗ (see [23]). We also review the notion of satisfaction of

a CTL(∗) formula by a Kripke structure.

Definition 3.7. Let W = 〈D,S, I,A,W,W0,Wε〉 be a Web application. The

set of CTL*-FO formulas over W is the set of state formulas defined inductively

together with the set of path formulas as follows:

1. each FO formula over the vocabulary of W is a state formula;

2. if ϕ and ψ are state formulas then so are ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ;

3. if ϕ is a path formula, then Eϕ and Aϕ are state formulas;

4. each state formula is also a path formula;

5. if ϕ and ψ are path formulas, then so are ϕ ∧ ψ, ϕ ∨ ψ, and ¬ϕ;

6. if ϕ and ψ are path formulas, then so are Xϕ and ϕUψ.

The set of CTL-FO formulas over W is defined by replacing (4)-(6) above by the

rule:

• if ϕ and ψ are state formulas then Xϕ, and ϕUψ are path formulas.

The set of CTL(∗)-FO sentences consists of the universal closures of CTL(∗)-FO

formulas.

Note that, as in the case of LTL-FO, first-order quantifiers cannot be applied

to formulas using temporal operators or path quantifiers. The formula is closed

55

at the very end by universally quantifying all remaining free variables, yielding an

CTL(∗)-FO sentence.

The semantics of the temporal operators is the natural extension of LTL-FO

with path quantifiers. Informally, Eϕ stands for ”there exists a continuation of

the current run that satisfies ϕ” and Aϕ means ”every continuation of the current

run satisfies ϕ”. More formally, satisfaction of a CTL(∗)-FO sentence by a Web

application W is defined using the tree corresponding to the runs of W on a given

database D. The nodes of the tree consist of all prefixes of runs of W on D (the

empty prefix is denoted root and is the root of the tree). A prefix π is a child of

a prefix π′ iff π extends π′ with a single configuration. We denote the resulting

infinite tree by TW ,D. Note that TW ,D has only infinite branches (so no leafs) and

each such infinite branch corresponds to a run ofW on database D. Satisfaction of

an CTL(∗)-FO sentence by TW ,D is the natural extension of the classical notion of

satisfaction of CTL(∗) formulas by infinite trees labeled with propositional variables

(e.g., see [23]), and is provided below. The main difference is that propositional

variables are not explicitly provided; instead, the FO components of the formulas

have to be evaluated on the current configuration (last of the prefix defining the

node), as described earlier. We say that a Web application W satisfies ϕ, denoted

W |= ϕ, iff TW ,D |= ϕ for every database D.

Example 3.8 The following CTL∗-FO sentence expresses the fact that in every

run, whenever a product pid is bought by a user, it will eventually ship, but until

that happens, the user can still cancel the order for pid.

∀pid∀price AG(ξ(pid, price)→ A((EFcancel(name, pid))U(ship(name, pid)))

where ξ′ is the formula defined in Example 3.6 (3.3). 2

Chapter 4

Theoretical Results on

Verification

The verification problem concerns the correctness of Web applications and thus

emerges while designing Web applications. We use temporal logic to specify re-

quirements on Web applications.

As we saw in Chapter 3, temporal logic comes in two varieties: linear-time

temporal logic assumes implicit universal quantification over all paths(runs) of

the Web applications; branching-time temporal logic allows explicit existential

and universal quantification over all paths(runs), expresses temporal properties

involving several different branches of the runs.

Section 4.1 introduces ASM+ transducers and presents the verification results

in this context. The main interest of ASM+ transducer is that, as we shall see, it is

sufficiently powerful to simulate a wide class of Web applications. The verification

problem is shown decidable in section 4.1.1. Section 4.1.2 goes further and prove

that the restriction is so tight that even small relaxation will lead to undecidabil-

ity. Branching-time properties are verified in section 4.1.3. Finally, Section 4.2

establishes the verification results for Web application, mostly by reduction to

verification of ASM+ trabsducers.

56

57

4.1 ASM+ Transducers

In this section we present an extension of Spielmann’s Abstract State Machine

(ASM) transducers [48, 49] and prove our verification results within this frame-

work. We denote the extended transducer model by ASM+. Informally, ASM+

transducers extend Spielmann’s ASM transducer model with the ability to inspect

the previous user input, and with input option rules constraining the choice of

input by the user. The main interest of the extension is that, as we shall see, it is

sufficiently powerful to simulate a wide class of Web applications. We next define

ASM+ transducers formally.

Definition 4.1. An ASM+ transducer A is a tuple 〈D,S, I,A,R〉, where:

• D, S, I, A are relational schemas called database, state, input, and action

schemas, respectively, where S, I, A contain no constant symbols. We denote

by PrevI the relational vocabulary {prevI | I ∈ I}, where prevI has the same

arity as I (intuitively, prevI refers to the input I at the previous step in the

run).

• R is a set of rules containing the following:

– For each input relation I ∈ I of arity k > 0, an input rule OptionsI(x̄)←

ϕI(x̄) where OptionsI is a relation of arity k, x̄ is a k-tuple of distinct

variables, and ϕI(x̄) is an FO formula over schema D∪S∪PrevI, with

free variables x̄.

– For each state relation S ∈ S, one, both, or none of the following state

rules:

∗ an insertion rule S(x̄)← ϕ+
S (x̄),

∗ a deletion rule ¬S(x̄)← ϕ−
S (x̄),

where the arity of S is k, x̄ is a k-tuple of distinct variables, and ϕεS(x̄)

are FO formulas over schema D ∪ S ∪PrevI ∪ I, with free variables x̄.

58

– For each action relation A ∈ A, an action rule A(x̄)← ϕ(x̄) where the

arity of A is k, x̄ is a k-tuple of distinct variables, and ϕ(x̄) is an FO

formula over schema D ∪ S ∪PrevI ∪ I, with free variables x̄.

Note that an ASM+ transducer is isomorphic to a Web application with a single

Web page schema, and no input constants. The definition of runs, as well as the

syntax and semantics of LTL-FO and CTL(*)-FO formulas, are therefore inherited

from Web applications. Also, any lower bounds for verification problems proven

for ASM+ transducers apply trivially to Web applications. To transfer the upper

bounds, we will need to show appropriate reductions from Web applications to the

simpler ASM+ transducers.

For completeness, we briefly describe configurations and runs of ASM+ trans-

ducers. Let A = 〈D,S, I,A,R〉 be an ASM+ transducer. A configuration of A

is a tuple 〈S, I, P, A〉, where S is an instance of S, I and P are instances of I and

PrevI consisting of at most one tuple, and A is an instance of A. Let D be an

instance of D. A run of A on database D is an infinite sequence of configurations

{〈Si, Ii, Pi, Ai〉}i≥0 where:

• all relations in S0, P0, and A0 are empty and all propositions are false;

• I0 consists of at most one tuple for each input relation, belonging to the

result of evaluating the corresponding input option rule; and,

• for i ≥ 0, 〈Si+1, Ii+1, Pi+1, Ai+1〉 is obtained from D and 〈Si, Ii, Pi, Ai〉 using

the rules R, as done for Web applications with a single Web page (details

omitted, see Definition 3.3).

Note that each configuration in a run over database D uses values from the

domain of D. In particular, every run, although infinite, has only finitely many

distinct configurations.

We next present our results on verification of ASM+ transducers, first for linear-

time properties, then for branching-time properties.

59

4.1.1 Verification of LTL-FO properties

It is easily seen that it is undecidable if an ASM+ transducer satisfies an LTL-

FO formula, as shown next.

Proposition 4.2. It is undecidable, given an ASM+ transducer A and an LTL

formula ψ, whether A |= ψ.

Proof. By Trakhtenbrot’s theorem, finite satisfiability of FO sentences is undecid-

able. Let D be a database schema and ϕ an FO sentence over D. Consider an

ASM+ transducer with database schema D and an action rule A← ϕ, where A is

a proposition. Clearly, ϕ is finitely satisfiable iff A 6|= G¬A.

To obtain decidability, we must restrict both the transducers and the LTL-FO

sentences. We use a restriction proposed in [48, 49] for ASM transducers, limiting

the use of quantification in state and action rule formulas to “input-bounded”

quantification, and an additional restriction on input rules. The restrictions are

formulated in our framework as follows. Let A = 〈D,S, I,A,R〉 be an ASM+

transducer. The set of input-bounded FO formulas over the schema D∪S∪ I∪A∪

PrevI is obtained by replacing in the definition of FO the quantification formation

rule by the following:

• if ϕ is a formula, α is a current or previous input atom using a relational

symbol from I∪PrevI, x̄ ⊆ free(α), and x̄∩ free(β) = ∅ for every state or

action atom β in ϕ, then ∃x̄(α ∧ ϕ) and ∀x̄(α→ ϕ) are formulas.

An ASM+ transducer is input-bounded iff all formulas in state and action rules

are input bounded, and all input rules use ∃∗FO formulas in which all state atoms

are ground (note that the input option rules do not have to obey the restricted

quantification formation rule above). An LTL-FO sentence over the schema of A

is input-bounded iff all of its FO components are input-bounded.

It was shown in [48, 49] that checking satisfaction of an input-bounded LTL-

FO sentence by an input-bounded ASM transducer is pspace-complete. The lower

60

bound, shown by reduction of Quantified Boolean Formula [27], transfers imme-

diately to input-bounded ASM+ transducers and LTL-FO formulas, since ASM

transducers are special cases of ASM+ transducers. The pspace upper bound is

shown in [48, 49] by reducing the verificatiom problem to finite satisfiability in

the logic E+TC, existential FO extended with a transitive closure operator. With

some care, this proof can be adapted to ASM+ transducers. However, the proof

we provide is considerably more direct, circumventing the laborious reduction to

E+TC and the proof of decidability of finite satisfiability for this logic. It also pro-

vides an alternative proof to Spielmann’s original result on input-bounded ASM

transducers. Furthermore, the construction used in our proof provides the basis for

a practical implementation of a verifier for Web applications, described in [20, 18].

We next present our proof that verification of input-bounded ASM+ transduc-

ers can be done in pspace assuming a fixed bound on the arity of relations, and

in expspace otherwise. Consider an ASM+ transducer A = 〈D,S, I,A,R〉. For

simplicity of exposition, we assume that I consists of only one input relation (the

development easily extends to multiple input relations). In particular, a configu-

ration of A is a tuple 〈S, I, P, A〉 where S is an instance of S, A is an instance of

A, and I and P are instances of the unique input relation in I, each consisting of

at most one tuple.

Consider an input-bounded ASM+ transducer A and an input-bounded LTL-

FO formula ϕ0 = ∀x̄ψ0(x̄) over the schema of A. To check that every run of

A satisfies ϕ0 we equivalently verify that there is no run of A satisfying ¬ϕ0 =

∃x̄¬ψ0(x̄). To do so, we would like to adapt classical model checking based on

Büchi automata. We informally recall this approach (see e.g. [13] for a formal

development).

Propositional model checking Classical model checking applies to finite state

transition systems. A finite-state transition system T is a tuple (S, s0, T, P, σ)

where S is a finite set of configurations (sometimes called states), s0 ∈ S the

initial configuration, T a transition relation among the configurations such that

61

each configuration has at least one successor, P a finite set of propositional symbols,

and σ a mapping associating to each s ∈ S a truth assignment σ(s) for P . T

may be specified using various formalisms such as a non-deterministic finite-state

automaton, or a Kripke structure ([13], see also Section 2.1.3). A run ρ of T is

an infinite sequence of configurations s0, s1, . . . such that (si, si+1) ∈ T for each

i ≥ 0. Intuitively, the information about configurations in S that is relevant to the

property to be verified is provided by the corresponding truth assignments to P .

The obvious extension of σ to a run ρ is denoted by σ(ρ). Thus, σ(ρ) is an infinite

sequence of truth assignments to P corresponding to the sequence of configurations

in ρ.

Given a transition system T as above and an LTL formula ϕ using propositions

in P , the associated model checking problem is to check whether every run of T

satisfies ϕ, or equivalently, that no run of T satisfies ¬ϕ. This can be done using a

key result of [50], showing that from each LTL formula φ over P one can construct

an automaton Aφ on infinite sequences, called a Büchi automaton, whose alphabet

consists of the truth assignments to P , and which accepts precisely the runs of T

that satisfy φ. This reduces the model checking problem to checking the existence

of a run ρ of T such that σ(ρ) is accepted by A¬ϕ.

We briefly recall Büchi automata. A Büchi automaton A is a nondeterministic

finite state automaton (NFA) with a special acceptance condition for infinite in-

put sequences: a sequence is accepted iff there exists a computation of A on the

sequence that reaches some accepting state f infinitely often. For the purpose of

model checking, the alphabet consists of truth assignments for some given set P

of propositional variables. The results of [50] show that for every LTL formula ϕ

there exists Büchi automaton Aϕ of size exponential in ϕ that accepts precisely

the infinite sequences of truth assignments that satisfy ϕ. Furthermore, given a

state p of Aϕ and a truth assignment σ, the set of possible next states of Aϕ under

input σ can be computed directly from p and ϕ in polynomial space [47]. This

allows to generate computations of Aϕ without explicitly constructing Aϕ.

Suppose we are given a transition system T whose configurations can be enu-

62

merated in pspace with respect to the specification of T , and such that, given

configurations s, s′, it can be checked in pspace whether 〈s, s′〉 is a transition in

T . Suppose ϕ is an LTL formula over the set P of propositions of T . The following

outlines a non-deterministic pspace algorithm for checking whether there exists a

run of T satisfying ¬ϕ: starting from the initial configuration s0 of T and q0 of

A¬ϕ, non-deterministically extend the current run of T with a new configuration s,

and transition to a next state of A¬ϕ under input σ(s), until an accepting state f

of A¬ϕ is reached. At this point, make a non-deterministic choice: (i) remember f

and the current configuration s of S, or (ii) continue. If a previously remembered

final state f of A¬ϕ and configuration s of T coincide with the current state in

A¬ϕ and configuration in T , then stop and answer “yes”. This shows that model

checking is in non-deterministic pspace, and therefore in pspace.

From classical model checking to ASM+ verification There are two main

obstacles to using classical model checking to verify ASM+ transducers. First, LTL-

FO formulas are not propositional. Second, the transition systems corresponding

to ASM+ transducers are not finite state, since they have infinitely many possible

configurations. We next show how to overcome both obstacles.

Consider an input-bounded ASM+ transducer A and an input-bounded LTL-

FO formula ϕ0 = ∀x̄ψ0(x̄). Let ψ = ¬ψ0 and ϕ = ¬ϕ0 = ∃x̄ψ(x̄). Let c̄ be a tuple

of distinct constant symbols of the same arity as x̄. Verifying that all runs of a

transducer A satisfy ϕ0 is equivalent to checking that no run satisfies ψ(x̄ ← c̄)

(the formula obtained by substituting c̄ for x̄ in ψ(x̄)) for any interpretation of the

constants c̄. Let us denote ψ(x̄ ← c̄) by ψc̄. Consider now a maximal subformula

ξ of ψc̄ that contains no temporal operator, which we call an FO component of

ψc̄. Note that ξ has no free variables (as variables previously free in ξ have been

replaced by the constant symbols c̄). Thus, ξ can be evaluated to true or false in

every configuration of a run ofA. This allows treating every such ξ as a proposition.

More precisely, for each FO component ξ of ψc̄, let pξ be a propositional symbol.

Let ψc̄
aux be the LTL formula obtained by replacing in ψc̄ every FO component ξ

63

by pξ. For each configuration of A, the truth value of pξ is defined as the truth

value of ξ. Clearly, a run of A satisfies ψc̄ iff it satisfies ψc̄
aux. Specifically, for

i ≥ 0, let σ(ρi) be the truth assignment to the propositions in ψc̄
aux such that

pξ is true iff ρi |= ξ, and let σ(ρ) = {σ(ρi)}i≥0. Let us denote by Aψc̄
the Büchi

automaton corresponding to the propositional LTL formula ψc̄
aux. A run of Aψc̄

on σ(ρ) is an infinite sequence of states q0, s0, s1, . . . , si, . . . such that q0 is the start

state of Aψc̄
, and 〈q0, σ(ρ0), s0〉, 〈si, σ(ρi+1), si+1〉 are transitions in Aψc̄

for each

i ≥ 0. Clearly, ρ |= ψc̄ iff there exists a run of Aψc̄
on input σ(ρ) that goes through

some accepting state, say f , infinitely often.

Example 4.3 The following LTL-FO property referring to Example 3.2 states

that any shipped product must have previously been paid for.

∀pid, pname, price

(UPP ∧ pay(price) ∧ button(“authorize payment”) ∧

pick(pid, price) ∧ catalog(pid, pname, price))

B

¬(conf(name, price) ∧ ship(name, pid)) (4.1)

Property (4.1) is negated to the following formula ψ:

∃pid, pname, price

¬(UPP ∧ pay(price) ∧ button(“authorize payment”) ∧

pick(pid, price) ∧ catalog(pid, pname, price))

U

(conf(name, price) ∧ ship(name, pid)) (4.2)

64

Let c̄ be a sequence of constants pid0, pname0, price0. By replacing the exis-

tentially quantified variables with c̄, we obtain ψc̄:

¬(UPP ∧ pay(price0) ∧ button(“authorize payment”) ∧

pick(pid0, price0) ∧ catalog(pid0, pname0, price0))

U

(conf(name, price0) ∧ ship(name, pid0)) (4.3)

which yields the propositional property ψc̄
aux

p1Up2 (4.4)

where p1, p2 are the new propositional symbols introduced for the FO formulae to

the left, respectively right of the temporal operator U in (4.4). We have already

seen in Figure 2.2 the Büchi automaton corresponding to Property (4.4).

In the simple example above, the FO components of ψc̄ happen to be quantifier

free. In general however, FO components may have input-bounded quantifiers.

Next, we address the harder issue of the infinite number of configurations of

A. Here we make crucial use of the input-boundedness restriction. Let A =

〈D,S, I,A,R〉 be an input-bounded ASM+ transducer, and ϕ an input-bounded

LTL-FO formula. Let ψc̄ be obtained from ϕ as described above, for some sequence

c̄ of constant symbols. Let C be the set of constant symbols in the database schema

D. We can assume without loss of generality that c̄ belong to C (otherwise we

extend the database schema to include c̄). Let D be a database instance of D, and

let ρ = {〈Si, Ii, Pi, Ai〉}i≥0 be a run of A on D. Let CD be the set of all domain

elements that are interpretations of constant symbols in C in the instance D. We

say that two instances H and H ′ over the same database schema are CD-isomorphic

65

iff there exists an isomorphism from H to H ′ that is the identity on CD. The CD-

isomorphism type of H consists of all instances H ′ that are CD-isomorphic to H.

The critical observation is that, due to input-boundedness, the truth value of each

FO component of ψc̄ in a configuration 〈Si, Ii, Pi, Ai〉 is completely determined by

the restriction1 of Si and Ai to CD, together with the CD-isomorphism type of the

subinstance of 〈Ii, Pi, D〉 restricted to CD together with the elements in Ii, Pi. Since

Ii and Pi contain at most one tuple each, the number of such CD-isomorphism types

is finite. Moreover, due to the input-boundedness of the state transition rules, the

same information about 〈Si+1, Ii+1, Pi+1, Ai+1〉 is determined by the corresponding

information about 〈Si, Ii, Pi, Ai〉. This will allow us to limit ourselves to inspecting

a transition system whose configurations are the finitely many CD-isomorphism

types as above. This essentially reduces verification back to a classical model

checking problem and, with some care, yields a pspace verification algorithm. We

provide the details next.

For an instance K and a set T of elements, let K|T denote the restriction of K

to T . Using the same notation as above, let ρi = 〈Si, Ii, Pi, Ai〉 be a configuration

in a run ρ of A on D. Let k be the arity of I, and C i
IP consist of CD together with

all elements in Ii ∪Pi (note that Ii∪Pi contains at most 2k elements). Let Di,x̄ be

the restriction of D to C i
IP together with witnesses to the existentially quantified

variables x̄ in the input-options formula ∃x̄ϕI(x̄) for I, satisfied by D,Pi, Ii, Si|CD.

Let ρ↓i = 〈Si|CD, Ii, Pi, Ai|CD, Di,x̄〉. We refer to the sequence {ρ↓i }i≥0 as the local

run2 of ρ. We say that a sequence {ρ′i}i≥0 is a local run of A on D if it is the local

run of some run of A on D.

Lemma 4.4. Let A be an input-bounded ASM+ transducer, ϕ an input-bounded

LTL-FO formula, and c̄, ψc̄, D, and ρ be as above. Let ξ be an FO component of

ψc̄. Then for each configuration ρi in the run ρ, ρi |= ξ iff ρ↓i |= ξ.

Proof. Let ρi = 〈Si, Ii, Pi, Ai〉. We show by induction the following:

1The restriction of a database instance K to a set T of domain elements is the instance
consisting of the tuples in K using only elements in T .

2Our local run is an extension of the notion of local run introduced in [48, 49].

66

(†) for every subformula ξ ′(x̄) of ξ with free variables x̄, and sequence ē of ele-

ments in C i
IP of the same arity as x̄, ρi |= ξ′(x̄← ē) iff ρ↓i |= ξ′(x̄← ē).

As a consequence of (†), ρi |= ξ iff ρ↓i |= ξ, since ξ has no free variables.

Consider (†). We can assume wlog that ξ uses only ∧,¬ and ∃. For the basis,

suppose ξ′(x̄) is an atom R(t1, . . . , tm) where each ti is an element in CD or a

variable in x̄. If R is a state or action relation, all ti’s are elements in CD by input

boundedness, so (†) holds because ρ↓i retains S|CD and A|CD. If R is an input

or database relation, then again (†) holds because ρ↓i retains Ii, Pi, and D|Ci
IP

.

Consider the induction step. If ξ ′ = ξ1 ∧ ξ2 or ξ′ = ¬ξ1 and ξ1, ξ2 satisfy (†), it

immediately follows that ξ ′ satisfies (†). Now suppose ξ ′(x̄) = ∃y(R(t1, . . . , tk) ∧

ϕ(x̄, y)) where R is the input or previous input relation, each variable among the

ti’s is either y or in x̄ (at least one ti is y by input boundedness), and (†) holds

for ϕ(x̄, y). If R is empty in ρi then ξ′(x̄ ← ē) is false in both ρi and ρ↓i , so (†)

holds. If R is not empty, then ρi |= ξ′(x̄← ē) iff there exists c occurring in R such

that ρi |= R(t1, . . . , tk)[x̄ ← ē, y ← c] ∧ ϕ(x̄, y)[x̄ ← ē, y ← c]. By the induction

hypothesis, this happens iff ρ↓i |= R(t1, . . . , tk)[x̄ ← ē, y ← c] ∧ ϕ(x̄, y)[x̄← ē, y ←

c], so ρ↓i |= ξ′(x̄← ē), which shows (†).

Lemma 4.4 shows that in a configuration ρi, the information relevant to satis-

faction of ψc̄ is captured by ρ↓i . In other words, a run satisfies ψc̄ iff its local run

satisfies ψc̄. Let Ck = C ∪ {c1, . . . , c2k} where c1, . . . , c2k are distinct new elements

(recall that k is the arity of I). Let m be the number of existentially quantified

variables in the input-options rule for I, and e1, . . . , em be m distinct new ele-

ments. Let Ckm = Ck ∪{e1, . . . , em}. It will be convenient to assume, without loss

of generality, than Ckm ⊂ dom∞. We can represent the CD-isomorphism type of

ρ↓i by an instance whose domain is Ckm, which we denote τ(ρi). Thus, Lemma 4.4

says that σ(ρi) = σ(ρ↓i) = σ(τ(ρi)). Note that the domain of τ(ρi) is the fixed set

of elements Ckm, whereas the domain of ρ↓i depends on i.

We wish to lift the above from individual configurations to entire runs. More

precisely, we would like to be able to generate sequences {τi}i≥0 of instances using

67

elements in Ckm that correspond precisely to the sequences of CD-isomorphism

types of {ρ↓i }i≥0 for runs {ρi}i≥0 of A on each database D. We formalize this using

the notion of pseudorun.

Definition 4.5. Let A = 〈D,S, I,A,R〉 be an input-bounded ASM+ transducer,

and let ψc̄, C, Ck, and Ckm be defined as above. A C-pseudorun of A is a sequence

of instances {〈Si, Ii, Pi, Ai, Di〉}i≥0 with elements in Ckm such that:

1. Si, Ii, Pi, Ai, Di are state, input, previous input, action, and database in-

stances;

2. all Di provide the same interpretation for the constants in C, and each con-

stant in C is interpreted within C;

3. Si and Ai are instances using only elements in C;

4. Ii and Pi contain at most one tuple each, using elements in Ck;

5. for each i ≥ 0, Pi+1 = Ii and Di|C∪dom(Ii) = Di+1|C∪dom(Pi+1);

6. for each i ≥ 0, if Ii = {ā} and the input-options formula for I is ∃x̄ϕI(x̄),

then 〈Di, Pi, Si〉 |= ϕI(x̄← ā);

7. S0 = A0 = P0 = ∅;

8. for each i ≥ 0, Si+1 = S ′
i+1|C and Ai+1 = A′

i+1|C , where S ′
i+1 and A′

i+1 are

the state and action relations defined from the configuration 〈Si, Ii, Pi, Ai〉 of

A and database Di, according to the rules of A.

Before proceeding, we make another useful observation showing that we can

confine the search for runs of A satisfying ψc̄ to periodic runs. Specifically, a run

{ρi}i≥0 is periodic iff there exist n ≥ 0 and p ≥ 0 such that ρi = ρi+p for every

i ≥ n.

68

Lemma 4.6. Let A be an input-bounded ASM+ transducer, ϕ an input-bounded

LTL-FO formula, and c̄, ψc̄ be as above. Let D be a database instance. If there

exists a run of A on D satisfying ψc̄ then there exists a periodic run of A on D

satisfying ψc̄.

Proof. Consider a run ρ = {ρi}i≥0 of A on D satisfying ψc̄. Let Aψc̄
be the Büchi

automaton corresponding to the propositional LTL formula ψc̄
aux. Recall that for

i ≥ 0, σ(ρi) denotes the truth assignment to the propositions in ψc̄
aux such that

pξ is true iff ρi |= ξ, and σ(ρ) = {σ(ρi)}i≥0. Since ρ |= ψc̄, there exists a run

q0, s0, s1, . . . , si, . . . of Aψc̄
on input σ(ρ) that goes through some accepting state,

say f , infinitely often. Since there are finitely many distinct instances ρi in ρ, there

must exist n < j, such that sn = sj = f and ρn = ρj. Let p = j − n. Consider the

sequence ρ′ = {ρ′i}i≥0 defined by ρ′m = ρm for 0 ≤ m ≤ j and ρ′m = ρ′m−p for m > j.

Clearly, ρ′ is a periodic run of A on D and Aψc̄
accepts σ(ρ′), so ρ′ |= ψc̄.

We next show the following key connection between pseudoruns and actual

runs.

Lemma 4.7. Let A be an input-bounded ASM+ transducer and ϕ an input-

bounded LTL-FO formula. Let C, c̄, and ψc̄ be as above. The following are

equivalent:

(i) there exists some periodic run ρ of A on a database D such that ρ |= ψc̄, and

(ii) there exists some periodic C-pseudorun τ of A such that τ |= ψc̄.

Proof. Consider (i)→ (ii). Let ρ = {ρi}i≥0 be a periodic run ofA on a database D,

that satisfies ψc̄. Recall that we assume without loss of generality that C ⊆ dom∞.

We can further assume that CD = dom(D) ∩ C (otherwise we take an isomorphic

image of D on which this is true). We first construct a C-pseudorun τ of A

such that σ(ρ) = σ(τ). In particular, τ satisfies ψc̄. From τ one can then easily

construct a periodic C-pseudorun of A satisfying ψc̄, as in Lemma 4.6.

69

Consider {ρ↓i }i≥0, where ρ↓i = 〈Sρi , I
ρ
i , P

ρ
i , A

ρ
i , D

ρ
i 〉. We define by induction a

sequence of one-to one mappings {fi}i≥0, where fi maps dom(ρ↓i) to Ckm and is

the identity on CD:

• f0 is an arbitrary one-to-one mapping from dom(ρ↓0) to Ckm that fixes CD

and maps C0
IP to Ck;

• fi+1|dom(Pi+1) = fi|dom(Ii) and fi+1 is an arbitrary extension of fi+1|dom(Pi+1)

to a one-to-one mapping from dom(ρ↓i+1) to Ckm that is the identity on CD

and maps C i+1
IP to Ck.

Now let τi = fi(ρ
↓
i) for each i ≥ 0 (note that in particular the constants C are

interpreted by τi as in D). By definition, τi and ρ↓i are C-isomorphic. It remains to

show that {τi}i≥0 is a C-pseudorun of A. Parts (1-6) of Definition 4.5 are obviously

satisfied. Consider (7). Consider τi and τi+1 for i ≥ 0. Let R be a state relation

and Ri = Si(R), Ri+1 = Si+1(R). Suppose ϕ+
R(x̄) and ϕ−

R(x̄) are the input-bounded

formulas of A defining the tuples to be inserted, respectively deleted from R. Let ē

be a sequence of elements in C of the same arity as x̄. Since ρ↓i is C-isomorphic to τi

and ϕ+
R, ϕ

−
R are input bounded, one can show similarly to (†) in the proof of Lemma

4.4 that τi |= ϕ+
R(ē) iff ρ↓i |= ϕ+

R(ē), and also τi |= ϕ−
R(ē) iff ρ↓i |= ϕ−

R(ē). Also by

(†), ρ↓i |= ϕ+
R(ē) iff ρi |= ϕ+

R(ē) and ρ↓i |= ϕ−
R(ē) iff ρi |= ϕ−

R(ē). It follows that ē is

inserted/deleted from R in the transition from ρi to ρi+1 iff it is inserted/deleted

in the transition from ρ↓i to ρ↓i+1 iff it is inserted/deleted in the transition from τi

to τi+1 according to the state rule for R. Since by definition R is the same in ρi, ρ
↓
i ,

and τi, and R is also the same in ρi+1, ρ
↓
i+1, and τi+1, (7) holds for state relations.

A similar argument shows that (7) also holds for action relations.

Now consider the harder (ii) → (i). Let τ = {τi}i≥0 be a periodic C-pseudorun

satisfying ψc̄, where τi = 〈Sτi , I
τ
i , P

τ
i , A

τ
i , D

τ
i 〉. We define a database D inter-

preting the constant symbols in C in the same way as τ , and a periodic run

ρ = {〈Si, Ii, Pi, Ai〉}i≥0 of A on D such that for each i, ρ↓i is C-isomorphic to τi.

In particular, σ(τ) = σ(ρ), so ρ |= ψc̄.

70

Recall that τ is a sequence of instances using elements in Ckm and dom∞

is an infinite domain. To construct a database D and run ρ of A on D, we

will assign values in dom∞ to occurrences of the elements in Ckm in the different

configurations of τ . The challenge is to do so while using only finitely many values.

Consider the elements in Ck − C. Some of these elements occurring in dif-

ferent configurations of τ must be assigned the same value, while others are in-

dependent of each other. We denote by 〈i, a〉 the occurrence of a in τi, where

i ≥ 0 and a ∈ Ck − C. To capture the required equalities among elements in

different configurations, we define the following equivalence relation ≡ on oc-

currences 〈i, a〉. First, let 〈i, a〉 ≈ 〈i + 1, a〉 iff a occurs in Ii (and therefore in

Pi+1). Next, let ≡ be the symmetric, reflexive, transitive closure of ≈. Let f

be a mapping from the set of all occurrences of elements in Ckm in τ to dom∞

such that f(〈i, a〉) = f(〈j, a〉) iff 〈i, a〉 ≡ 〈j, a〉, and f is the identity on C. Note

that the range of f is infinite. Consider the sequence f(τ) = {f(τi)}i≥0, where

f(τi) = 〈f(Sτi), f(Iτi), f(P τ
i), f(Aτi), f(Dτ

i)〉. Let Df = ∪i≥0f(Dτ
i). We first show

that f(τ) satisfies the definition of a local run of A on Df , except for the require-

ment that Df be finite. Given the definition of pseudorun, and since τi and f(τi)

are C-isomorphic, it is enough to show that

(‡) Df |dom(f(τi)) = f(Dτ
i) for all i ≥ 0.

Consider a ∈ range(f). The span of a is {i | ∃b f(〈i, b〉) = a}. From the definition

of f it follows that the span of each a 6∈ C is an interval, possibly infinite to the

right. Now consider (‡). Suppose towards a contradiction that Df |dom(f(τi)) 6=

f(Dτ
i) for some i ≥ 0. Since by definition f(Dτ

i) ⊆ Df |dom(f(τi)), it follows

that f(Dτ
i) ⊂ Df |dom(f(τi)). Thus, for some database relation R, there exists

a tuple t such that dom(t) ⊆ dom(f(τi)), R(t) holds in Df |dom(f(τi)) but R(t)

does not hold in f(Dτ
i). In particular, there must exist j 6= i such that R(t) holds

in f(Dτ
j). Since t ∈ dom(τi) ∩ dom(τj), it follows that i, j ∈ span(a) for each

a ∈ dom(t). However, from (4) in the definition of pseudoruns, it follows that

f(Dτ
i)|dom(τi)∩dom(τj) = f(Dτ

j)|dom(τi)∩dom(τj), so R(t) holds in f(Dτ
i) iff R(t) holds

71

in f(Dτ
j). This is a contradiction. Thus, (‡) holds.

We next construct from f(τ) a local run, and then a run, whose universe is

finite. Intuitively, this involves some “surgery” on f(τ), using a pumping argument.

The main idea is the following. Note that f maps elements in each configuration of

τ that are not in C to new elements in dom∞, yielding the infinite universe of f(τ).

It turns out that values can be assigned more economically: if two configurations

τα and τβ are isomorphic and far enough apart, the values assigned by f for τβ can

be reused for τα. Based on this observation, we can modify f so that its range has

only finitely many values. We next formalize this argument.

We need to give special treatment to elements in range(f) whose span is infi-

nite. Since I contains only one tuple of arity k, it follows that at most k elements

in range(f) − C may have infinite span. Let Rk consist of all such elements (at

most k). Let N > 0 be such that all elements in Rk occur in every f(τi) for i ≥ N .

From the periodicity of τ and the fact that all elements not in Rk ∪ C have finite

span, it follows that there exist α, β, N < α < β, where β−α is a sufficiently large

multiple of the least period of τ , such that:

(a) τα = τβ and τi = τi+p for all i ≥ α, where p = β − α,

(b) f(τα) and f(τβ) are (Rk ∪ C)-isomorphic,

(c) there are no elements aα, aβ, d ∈ range(f) − (Rk ∪ C), such that aα ∈

dom(f(τα)), aβ ∈ dom(f(τβ)), and span(d) ∩ span(aα) 6= ∅ and span(d) ∩

span(aβ) 6= ∅.

Let h be an (Rk ∪ C)-isomorphism from f(τα) to f(τβ). Consider the sequence of

configurations f(τα) . . . f(τβ−1). Let τ̄α be the prefix of f(τα) . . . f(τβ−1) consisting

of all configurations in the sequence whose domain intersects dom(f(τα)) − (Rk ∪

C), and let τ̄β−1 be the suffix of f(τα) . . . f(τβ−1) consisting of all configurations in

the sequence whose domain intersects dom(f(τβ)) − (Rk∪C). By (c), τ̄α and τ̄β−1

do not overlap, so f(τα) . . . f(τβ−1) = τ̄ατ̄ τ̄β−1 for some sequence of configurations

τ̄ . Let fh(τ̄α) be obtained from τ̄α by replacing each element a ∈ dom(f(τα))

72

by h(a) ∈ dom(f(τβ)). Intuitively, (c) guarantees that α and β are far enough

apart that replacing a by h(a) in τ̄α as above creates no interference. Note that

the sequence fh(τ̄α)τ̄ τ̄β−1 starts with f(τβ). Consider the periodic sequence ρ↓ =

{ρ↓i }i≥0 obtained by concatenating fh(τ̄α)τ̄ τ̄β−1 infinitely many times to the right

of f(τ0), . . . , f(τβ−1). It is easily seen that τi and ρ↓i are C-isomorphic for all i ≥ 0.

In particular, σ(τ) = σ(ρ↓), so ρ↓ |= ψc̄. It is enough to show that ρ↓ is a local run

of A for some finite database. Let ρ↓ = {〈Si, Ii, Pi, Ai, Di〉}i≥0. Let D = ∪i≥0Di.

From the periodicity of ρ↓ it follows that D is finite. We claim, similarly to (‡),

that

(*) D|dom(ρ↓i) = Di for each i ≥ 0.

Suppose towards a contradiction that there exist i, j, i 6= j, a database relation R,

and a tuple t such that dom(t) ⊆ dom(ρ↓i) ∩ dom(ρ↓j), Di |= R(t), and Dj 6|= R(t).

Because of (‡), ρ↓i and ρ↓j cannot both be configurations already appearing in f(τ).

Thus, at least one of ρ↓i and ρ↓j are configurations in fh(τ̄α). There are three cases

to consider:

1. ρ↓i and ρ↓j are both in fh(τ̄α). Due to (c) above, no b ∈ range(h) occurs in

dom(f(Dτ
i)) ∪ dom(f(Dτ

j)). But then h can be extended to an isomorphism

(by the identity) to the entire dom(f(Dτ
i)) ∪ dom(f(Dτ

j)), and h−1 is also

an isomorphism. Thus, dom(h−1(t)) ∈ dom(f(τi)) ∩ dom(f(τj)), f(Dτ
i) |=

R(h−1(t)), and f(Dτ
j) 6|= R(h−1(t)). However, this is a contradiction with

(‡).

2. ρ↓i occurs in fh(τ̄α) and ρ↓j does not. Thus, dom(t) ⊆ dom(h(f(Dτ
i))) ∩

dom(f(Dτ
j)), h(f(Dτ

i)) |= R(t), and f(Dτ
j) 6|= R(t). Suppose dom(t) ∩

range(h) = ∅. Then dom(t) ⊆ dom(f(Dτ
i)). Thus, dom(t) ⊆ dom(f(Dτ

i)) ∩

dom(f(Dτ
j)), f(Dτ

i) |= R(t), and f(Dτ
j) 6|= R(t). This contradicts (‡). Thus,

dom(t) ∩ range(h) 6= ∅. But then dom(f(τj)) ∩ dom(f(τβ)) 6= ∅. From (c)

it then follows that dom(t) ⊆ range(h), so dom(t) ⊆ dom(f(τβ)). By (‡),

f(Dτ
β) 6|= R(t) since dom(t) ⊆ dom(f(τβ)) ∩ dom(f(τj)) and f(Dτ

j) 6|= R(t).

73

Since dom(t) ⊆ dom(f(τβ)), dom(h−1(t)) ⊆ dom(f(τα)), so dom(h−1(t)) ⊆

dom(τα) ∩ dom(f(τi)). Again by (‡) f(Dτ
α) |= R(h−1(t)) because f(Dτ

i) |=

R(h−1(t)). Thus, f(Dτ
α) |= R(h−1(t)) and f(Dτ

β) 6|= R(t). However, this

contradicts the fact that h is an (Rk ∪ C)-isomorphism from f(τα) to f(τβ).

3. ρ↓j occurs in fh(τ̄α) and ρ↓i does not. The proof is similar to (2) and is omitted.

Thus, (∗) is proven.

Finally, let ρ = {〈S ′
i, Ii, Pi, A

′
i〉}i≥0 be obtained from ρ↓ by computing for each

i ≥ 0, S ′
i+1 and A′

i+1 from 〈S ′
i, Ii, Pi〉 and D, using the state and action rules of

A. From (∗), the definition of pseudorun, and the construction of ρ↓, it is clear

that ρ is a run of A on database D, and ρ↓ is the local run of ρ. In particular,

σ(τ) = σ(ρ), so ρ |= ψc̄. Also, ρ is periodic. This completes the proof.

Lemma 4.7 says that in order to determine whether A satisfies ψc̄, it is enough

to focus on periodic C-pseudoruns of A. Summarizing the above development,

we can now describe a non-deterministic pspace verification algorithm for input-

bounded ASM+ transducers and input-bounded LTL-FO properties.

The input to the algorithm is an input-bounded ASM+ transducer A and an

input-bounded LTL-FO formula ϕ. Let ∃x̄ψ(x̄) be the negation of ϕ and let c̄

be a sequence of constant symbols, one for each variable in x̄. Let C consist of c̄

together with all constant symbols used in the specification of A or in ϕ. Guess an

interpretation of the constants in C by values in C. Let ψc̄ = ψ[x̄← c̄] and let ψc̄
aux

be the propositional LTL formula obtained by replacing each FO component ξ of

ψc̄ by a propositional symbol pξ. Let Aψc̄
be the Büchi automaton corresponding

to ψc̄
aux. Let Ckm = C ∪ {c1, . . . , c2k} ∪ {e1, . . . em}, where the ci’s and ej’s are

distinct new elements. We use the following non-deterministic pspace algorithms:

• Büchi-Next: on input (ψc̄
aux, s, σ), where s is a state of Aψc̄

and σ is a truth

assignment to the propositions in ψc̄
aux, the algorithm3 returns a state s′ of

Aψc̄
such that 〈s, σ, s′〉 is a transition in Aψc̄

.

3As noted earlier, the existence of such a pspace algorithm is a classical result shown in [47].

74

• Pseudorun-Next: given as input a configuration τ in a C-pseudorun of A,

output a possible next configuration τ ′ in the pseudorun.

The algorithm now proceeds as follows:

1. flag := 0;

2. set τ0 to an initial configuration of a C-pseudorun of A;

3. set s0 to some output of Büchi-Next(ψc̄, q0, σ(τ0)), where q0 is the start state

of Aψc̄
;

4. set (s, τ) to (s0, τ0);

5. if flag = 0 and s is an accepting state of Aψc̄
then non-deterministically

continue or set (s̄, τ̄) to (s, τ) and set flag:= 1;

6. set τ to Pseudorun-Next(τ) and s to Büchi-Next(ψc̄, s, σ(τ));

7. if flag = 1 and (s, τ) = (s̄, τ̄) then output YES and stop; otherwise, go to 5.

Clearly, the above nondeterministic pspace algorithm accepts iff there exists a

periodic C-pseudorun of A accepted by Aψc̄
. Observe that if the arity of relations

in the schema of A is not bounded, the above algorithm is in exspace. This

establishes the following.

Theorem 4.8. It is decidable, given an input-bounded ASM+ transducer A and

an input-bounded LTL-FO formula ϕ, whether every run of A satisfies ϕ. Further-

more, the complexity of the decision problem is pspace for fixed arity schemas,

and expspace otherwise.

Theorem 4.8 in conjunction with Lemma 4.23 complete the proof of the main

result of the section, Theorem 4.20. We note that the pspace algorithm described

above provides the basis for a practical implementation of a verifier for Web appli-

cations. Such an implementation, including additional heuristics that improve the

75

practical performance of the algorithm, is described in [20, 18]. The implemen-

tation turns out to be surprisingly effective, with verification times of under one

minute in a battery of experiments.

4.1.2 Boundaries of decidability

One may wonder whether the input-boundedness restriction can be relaxed

without affecting decidability of verification. Unfortunately, even small relaxations

can lead to undecidability. Specifically, we consider the following:

(i) relaxing the requirement that state atoms be ground in formulas defining

input options, by allowing state atoms with variables,

(ii) relaxing the input-bounded restriction by allowing a very limited form of non

input-bounded quantification in the form of state projections,

(iii) allowing prevI relations to record all previous inputs to I rather than just

the preceding one.

(iv) relaxing the input-bounded restriction on properties to express functional

dependencies (FDs) on the database relations,4 and

(v) extending LTL-FO formulas with path quantification.

Non-Grounded State Atom in Input Option Rule

We begin with extension (i) and show undecidability even for a fixed LTL-

FO formula and input options defined by quantifier-free FO formulas using just

database and state relations.

Theorem 4.9. There exists a fixed input-bounded LTL-FO formula ϕ for which

it is undecidable, given an input-bounded ASM+ transducer A with input options

4Note that any FD can be expressed as a First-Order sentence f , so checking that ASM+

transducerA satisfies property ϕ provided that its database satisfies FD f reduces to the standard
verification problem A |= f → ϕ. The property f → ϕ however is not input-bounded.

76

defined by quantifier-free FO formulas over database and state relations, whether

A |= ϕ.

Proof. The proof is by reduction of the question of whether a Turing Machine

(TM) M halts on input ε. Let M be a deterministic TM with a left-bounded,

right-infinite tape. We construct from it an ASM+ transducer A as follows. The

idea is to represent configurations of M using a 4-ary state relation T . The first two

coordinates of T represent a successor relation on a subset of the active domain

of the database. A tuple T (x, y, u, v) says that the content of the x-th cell is u,

the next cell is y, and v is a state p iff M is in state p and the head is on cell x.

Otherwise, v is some special symbol #. The moves of M are simulated by modifying

T accordingly. M halts on input ε iff there exists a run of A on some database such

that some halting state h is reached. Thus, M does not accept ε iff for every run,

T (x, y, u, h) does not hold for any x, y, u, that is, A |= ∀x∀y∀uG(¬T (x, y, u, h)).

We now outline the construction of A in more detail. The database schema of

A consists of a unary relation D and a constant min. The state relations are the

following:

• T , a 4-ary relation;

• Cell, Max, and Head, unary relations;

• propositional states used to control the computation: initialized, simul

The input relations are I (unary) and H (4-ary).

The first phase of the simulation constructs the initial configuration of M on

input ε, and the tape that the current run will make available for the computation.

This phase makes use of the unary input relation I. Intuitively, the role of I is to

pick a new value from the active domain, that has not yet been used to identify

a cell, and use it to identify a new cell of the tape. The state relation Cell keeps

track of the values previously chosen, to prevent them from being chosen again.

The state relation Max keeps track of the most recently inserted value.

77

The rules implementing the initialization are the following (the symbol b de-

notes the blank symbol of M and q0 is the start state):

OptionsI(y) ← D(y) ∧ y 6= min ∧

¬Cell(y) ∧ ¬simul

T (min, y, b, q0) ← I(y) ∧ ¬initialized

Cell(min) ← ¬initialized

Head(min) ← ¬initialized

initialized ← ¬initialized

T (x, y, b,#) ← I(y) ∧ Max(x)

Cell(y) ← I(y)

¬Max(x) ← Max(x)

Max(y) ← I(y)

simul ← ∀y¬I(y)

The state simul signals the transition to the simulation phase. Notice that

this happens either if the input options for I become empty (because we have

used the entire active domain) or because the input is empty at any point. In

the simulation phase, T is updated to reflect the consecutive moves of M . The

simulation is aborted if T runs out of tape. We illustrate the simulation with an

example move. Suppose M is in state p, the head is at cell x, the content of the

cell is 0, and the move of M in this configuration consists of overwriting 0 with 1,

changing states from p to q, and moving right. The rules simulating this move are

the following:

OptionsH(x, y, 0, p) ← simul ∧ Head(x) ∧ T (x, y, 0, p)

78

¬T (x, y, 0, p) ← simul ∧ H(x, y, 0, p)

T (x, y, 1,#) ← simul ∧ H(x, y, 0, p)

¬T (y, z, u,#) ← simul ∧ H(x, y, 0, p) ∧ T (y, z, u,#)

T (y, z, u, q) ← simul ∧ H(x, y, 0, p) ∧ T (y, z, u,#)

¬Head(x) ← simul ∧ H(x, y, 0, p)

Head(y) ← simul ∧ H(x, y, 0, p)

Such rules are included for every move of M. It is easy to see that this correctly

simulates the moves of M. Note that if the input H is empty, T does not change.

Finally, if the head reaches the last value provided in T , the transducer goes into

an infinite loop in which, again, T stays unchanged. Thus, T (x, y, u, h) holds in

some run iff the computation of M on ε is halting. Equivalently, M does not halt

on ε iff A satisfies the formula ϕ = ∀x∀y∀uG(¬T (x, y, u, h)).

State Projection

We next consider extension (ii): we relax input-boundedness of rules by allowing

projections of state relations. We call an ASM+ transducer input-bounded with

state projections if all its formulas are input-bounded, excepting state rules that

allow insertions of the form:

S(x̄)← ∃ȳ S ′(x̄, ȳ)

where S and S ′ are state relations. We can show the following.

Theorem 4.10. It is undecidable, given an input-bounded ASM+ transducer A

with state projections and input-bounded LTL-FO sentence ϕ, whether A |= ϕ.

Proof. The proof is by reduction of the implication problem for functional and

inclusion dependencies, known to be undecidable [12]. Recall that a functional

dependency (FD) over relation schema S of arity k is an expression X → Y where

X, Y ⊆ {1, . . . , k}. An instance Z over S satisfies an FD X → Y iff whenever two

tuples in Z agree on X they also agree on Y . An inclusion dependency (ID) over

79

S is an expression [X] ⊆ [Y] where X,B ⊆ {1, . . . , k} and X and Y have the same

size. An instance Z over S satisfies [X] ⊆ [Y] iff for each tuple u in Z there exists

a tuple v in Z such that u|X = v|Y . The implication problem for FDs and IDs is

to determine, given a set ∆ of FDs and IDs over S, and f an FD over S, whether

∆ implies f (i.e., whether every instance over S satisfying ∆ also satisfies f).

Let ∆ be a set of FDs and IDs over a relation S, and f an FD over the same

relation. We can assume without loss of generality that all FDs have singletons

on the righthand side, and we denote for simplicity X → {A} by X → A. We

construct an input-bounded ASM+ transducer A with state projections and an

input-bounded LTL-FO sentence ϕ such that ∆ |= f iff A |= ϕ.

Let A = 〈D,S, I,A,R〉 where D = {R}, A = ∅, I = {I, done} where I has the

same arity as S and done is propositional, and S consists of the following relations:

• the relation S;

• two propositions stop1,stop2;

• for each ID σ of the form [X] ⊆ [Y] in ∆, a relation SX of arity |X|, a relation

SY of arity |Y |, a relation SσX of arity |X|, and a proposition violσ;

• for each FD σ of the form X → A in ∆ ∪ {f} a relation SXA of arity |XA|,

a relation SσXA1A2
of arity |XA|+ 1, and a proposition violσ.

Next, let R be defined as follows. The input option rule for I defines the cross-

product of the active domain given by the database relation R. The state rules

consist of the following:

S(x̄) ← I(x̄) ∧ ¬stop1

stop1 ← done

stop2 ← stop1

for each ID σ of the form [X] ⊆ [Y] in ∆, the following rules (where πX(S) denotes

80

the projection of S on X):

SX ← πX(S)

SY ← πY (S)

SσX(x̄) ← SX(x̄) ∧ ¬SY (x̄) ∧ stop2

violσ ← ∃x̄ SσX(x̄)

for each FD σ of the form X → A in ∆ ∪ {f}, the rules:

SXA ← πXA(S)

SσXA1A2
(x̄, a1, a2) ← SXA(x̄a1) ∧ SXA(x̄a2) ∧ a1 6= a2 ∧ stop2

violσ ← ∃x̄∃a1∃a2S
σ
XA1A2

(x̄, a1, a2)

Intuitively, the state relation S is populated by repeated inputs, until done is set

to true, which is remembered in the state propositions stop1 and stop2 (stop2 is

needed for timing reasons, to ensure that violations are not tested too early). The

rules check for violations of the dependencies in ∆, so that violσ is set to true iff

S violates σ.

Note that all rules are input bounded, except those consisting of projections of

state relations. Next, let ξ be the input-bounded LTL-FO sentence

G(¬done) ∨ [F (done) ∧ (F (
∨

σ∈∆

violσ) ∨G(ψf))]

where ψf is the formula ¬SfXA1A2
(x̄, a1, a2) whose universal closure states that the

FD f = X → A is satisfied. Finally, let ϕ be the universal closure of ξ. Intuitively,

ϕ states that either done is never set to true, or it is set to true and at least one

of the constraints of ∆ is violated, or f is satisfied. Thus, A |= ϕ iff ∆ |= f .

Lossless Input

We now deal with extension (iii). We say that an ASM+ transducer has lossless

input if the prevI relations record all previous inputs to I in the current run.

Theorem 4.11. It is undecidable, given an input-bounded ASM+ transducer A

with lossless input and an input-bounded LTL-FO formula ϕ, whether A |= ϕ.

81

Proof. Using lossless input, one can easily simulate first-order quantification by

considering runs that provide values for the quantified variables as inputs. This

allows to use a reduction of finite validity of FO sentences to the above verification

problem. We illustrate the reduction for FO sentences of the form ∀x∀yα(x, y)

where α is a quantifier free formula over relational vocabulary {R}. Let A =

〈D,S, I,A,R〉 be an ASM+ transducer where D = {R}, I = {X, Y } (X, Y are

unary relations), A = ∅, S = {SX , SY , donex, trueα} (SX , SY are unary and the

other states are propositional). The input option rules are:

OptionsX(x) ← (ψdom(x) ∧ ¬donex)

∨(donex ∧ SX(x))

OptionsY (y) ← donex ∧ ψdom(y)

where ψdom(x) defines the active domain provided by R. The state rules are the

following:

SX(x) ← X(x)

donex ← ∃xX(x) ∧ (¬donex)

trueα ← ∃x∀y(PrevX(x) ∧ PrevY (y) ∧ α(x, y))

Note that a path in TA starts at root, then proceeds to the start configuration

of a run on some database D. The first input provided is a value of x, which is

remembered in the state relation SX . In the next configuration, donex is true, the

same value of x as previously chosen is provided again via input X, and an arbitrary

value is provided for y by the input relation Y . In the following configuration trueα

is true if α(x, y) is satisfied for the chosen values of x, y. Let ϕ be the LTL-FO

sentence ∀yG(Y (y) → X(G(trueα))). Clearly, A |= ϕ iff ∃x∀yα(x, y) is valid.

Note that A and ϕ are input bounded.

Clearly, A |= ϕ iff ∀x∀yα(x, y) is valid since if A |= ϕ, all run of A must

satisfies ϕ no matter what x value are picked, thus ∀x∀yα(x, y) is valid. On the

other hand, if ∀x∀yα(x, y) is valid, for every run of A, no matter what y’s value

being picked, trueα will always be set on the next configuration, thus A |= ϕ.

82

Database with Functional Dependencies

We show the undecidability of extension (iv) next, proving that in the pres-

ence of FDs the verification problem becomes undecidable even for strictly input-

bounded specifications and properties. Given property ϕ and transducer A with

set F of functional dependencies on its database schema, we say that A satisfies

ϕ under F , denoted A |=F ϕ, iff for every database D which satisfies F , all runs

of A over D satisfy ϕ.

Theorem 4.12. It is undecidable, given an input-bounded ASM+ transducer A

with functional dependencies F on its database schema, and an input-bounded

LTL-FO formula ϕ, whether A |=F ϕ.

Proof. By reduction from the Post Correspondence Problem (PCP). Consider a

PCP instance, i.e. two sequences of length n: {ui}1≤i≤n, {vi}1≤i≤n, where all ui, vj

are non-empty words over the alphabet {0, 1}. A solution to P is a finite non-

empty sequence σ ∈ [1, . . . , n]∗ such that the two strings obtained by concatenating

uσ(1)uσ(2) . . . uσ(k) and vσ(1)vσ(2) . . . vσ(k) are identical (σ(i) is the element at position

i in σ). We say that these strings are generated by the solution σ. We construct

ASM+ transducer A, set F of FDs, and property ϕ such that P has a solution iff

A 6|=F ϕ.

A simulates the search for a PCP solution as follows. The database encodes a

finite string θ intended to correspond to the string generated by a solution of P.

A non-deterministically picks a sequence of indexes from [1, . . . , n] (by repeatedly

asking an external user to pick an input among the options [1, . . . , n]). Upon

receiving the index i, A tries to match the corresponding words ui and vi in parallel

against θ, by maintaining two cursors U and V on θ, as well as a cursor on ui and

a cursor on vi. The cursors advance in lock-step, being incremented only if they

point to the same character. Initially, U and V start from the first position in θ.

The property ϕ is satisfied only if for all j, upon finishing to fully match uj and vj,

U and V never meet on θ. It is easy to see that, if the database encodes a string

83

θ, a run of A violates ϕ if and only if the sequence of indexes picked by the user

is a solution to P, which generates a prefix of θ.

θ is encoded using two binary database relations, chain(s, t) (intended to contain

as a subgraph a chain of directed s → t edges) and char(i, c) (intended to label

each node i in the chain with a character c ∈ {0, 1}). We pick F to enforce that

chain(s, t) satisfies the functional dependencies (FDs) s → t and t → s and char

satisfies the FD i → c. The FDs on chain ensure that nodes have in-degree and

out-degree one, so chain is a union of disjoint cycles and chains. The FD on char

will ensure that indexes are labeled uniquely, and the rules ensure that the labels

are in {0, 1} (the fact that 0 and 1 are distinct constants is stated in the property).

To ensure that the cursors U and V progress along the same path without revisiting

any node, we enforce that they start from the same position, a special node ’$’,

and never return to ’$’.

In detail, the schema of A consists of

• D = {chain(s, t), char(i, c), ′$′, 0, 1} as described above (’$’, 0, and 1 are

constants);

• I = {I(i),U(x),V(x)}. Intuitively, the user provides his pick of a word index

in I, and U and V are the cursors on θ. The options provided to the user

contain the immediate successors in chain of the cursors at the previous input

prevU, prevV. Of course, there is at most one successor due to the FDs on

chain.

• S contains the following propositional states:

– for each 1 ≤ i ≤ n, each 1 ≤ j ≤ |ui| and each 1 ≤ k ≤ |vi|, state Uj
i

and state Vk
i (these play the role of cursors in the ui and vi words);

– state doneu, set to true only when a full ui word is matched; begunu

which, when set to false, signals that the matching of ui words has not

yet begun; similarly, states donev and begunv.

84

• A = ∅;

A contains

• the input rules

OptionsI(i) ← (i = 1 ∨ i = 2 ∨ . . . ∨ i = n)

∧ (¬begunu ∧ ¬begunv ∨ doneu ∧ donev)

OptionsU(t) ← (¬begunu ∧ t =′ $′)

∨ begunu ∧ ¬doneu ∧

∃s∃c prevU(s) ∧ chain(s, t) ∧ t 6=′ $′ ∧ char(t, c)

∧(
∨

i,j

prev I(i) ∧ c = ui(j) ∧ Uj
i)

OptionsV(t) ← (¬begunv ∧ t =′ $′)

∨ begunv ∧ ¬donev ∧

∃s∃c prevV(s) ∧ chain(s, t) ∧ t 6=′ $′ ∧ char(t, c)

∧(
∨

i,k

prev I(i) ∧ c = vi(k) ∧ Vk
i))

• the state rules

begunu ← ¬begunu ∧ ∃t U(t)

begunv ← ¬begunv ∧ ∃t V(t)

doneu ← ∃t U(t) ∧ (

n∨

i=1

U
|ui|−1
i)

¬doneu ← doneu ∧ ∃x I(x)

donev ← ∃t V(t) ∧ (
n∨

i=1

V
|vi|−1
i)

¬donev ← donev ∧ ∃x I(x)

85

Moreover, for 1 ≤ i ≤ n,

U1
i ← I(i)

Uj
i ← Uj−1

i ∧ ∃t U(t) for 1 < j ≤ |ui|

¬Uj
i ← Uj

i ∧ ∃t U(t) for 1 ≤ j ≤ |ui|

V1
i ← I(i)

Vj
i ← Vj−1

i ∧ ∃t V(t) for 1 < j ≤ |vi|

¬Vj
i ← Vj

i ∧ ∃t V(t) for 1 ≤ j ≤ |vi|

F consists of FDs t→ s, s→ t on chain and i→ c on char.

The (input-bounded) property ϕ is

∀t 0 6= 1 ∧G¬(prevU(t) ∧ prevV(t) ∧ doneu ∧ donev)

Extending LTL-FO Formulas with Path Quantification

Finally, we address the undecidability of extension (v).

Theorem 4.13. It is undecidable, given an input-bounded ASM+ transducer A

and input-bounded CTL-FO sentence ϕ, whether A |= ϕ.

Proof. Using path quantifiers, one can easily simulate first-order quantification

by considering runs that provide values for the quantified variables as inputs.

This allows to use a reduction of finite validity of FO sentences to the above

verification problem. We illustrate the reduction for FO sentences of the form

∃x∀yα(x, y) where α is a quantifier free formula over relational vocabulary {R}.

Let A = 〈D,S, I,A,R〉 be an ASM+ transducer where D = {R}, I = {X, Y }

(X, Y are unary relations), A = ∅, S = {SX , SY , donex, trueα} (SX , SY are unary

and the other states are propositional). The input option rules are:

OptionsX(x) ← (ψdom(x) ∧ ¬donex) ∨ (donex ∧ SX(x))

OptionsY (y) ← donex ∧ ψdom(y)

86

where ψdom(x) defines the active domain provided by R. The state rules are the

following:

SX(x) ← X(x)

donex ← ¬donex

trueα ← ∃x∃y(X(x) ∧ Y (y) ∧ α(x, y))

Note that a path in TA starts at root, then proceeds to the start configuration

of a run on some database D. The first input provided is a value of x, which is

remembered in the state relation SX . In the next configuration, donex is true, the

same value of x as previously chosen is provided again via input X, and an arbitrary

value is provided for y by the input relation Y . In the following configuration trueα

is true if α(x, y) is satisfied for the chosen values of x, y. Let ϕ be the CTL-FO

sentence EXAXAX(trueα). Clearly, A |= ϕ iff ∃x∀yα(x, y) is valid. Note that A

and ϕ are input bounded (in fact ϕ is propositional, so in CTL). This proof is

easily extended along the same lines to the general case.

The proof further shows that a single alternation of path quantifiers is sufficient

to yield undecidability, since one alternation is enough to express validity of FO

sentences in the prefix class ∃∗∀∗FO, known to be undecidable [8].

4.1.3 Verification of branching-time properties

In this section we consider the verification of branching-time temporal proper-

ties of ASM+ transducers. As noted in the previous section, the decidability results

for input-bounded ASM+ transducers do not extend to CTL(∗)-FO sentences, even

if they are restricted to be input bounded (by requiring every FO subformula to

be input bounded). We next consider several restrictions leading to decidability of

the verification problem for CTL(∗)-FO sentences.

Propositional input-bounded ASM+ transducers The first restriction fur-

ther limits input-bounded ASM+ transducers by requiring all states to be propo-

sitional. Furthermore, no rules can use PrevI atoms. We call such ASM+ trans-

87

ducers propositional. In a propositional ASM+ transducer, inputs can still be

parameterized. The CTL∗ formulas we consider are propositional and use only

state symbols. For a given ASM+ transducer A = 〈D,S, I,A,R〉, we denote by

ΣA the propositional vocabulary S. We first show the following:

Theorem 4.14. Given a propositional, input-bounded ASM+ transducer A and

a CTL∗ formula ϕ over ΣA, it is decidable whether A |= ϕ. The complexity of the

decision procedure is co-nexptime if ϕ is in CTL, and expspace if ϕ is in CTL∗.

Proof. The proof has two stages. First, we show that there is a bound on the

size of databases that need to be considered when checking for violations of ϕ (or

equivalently, satisfaction of ¬ϕ). Second, we prove that for a given database D

there exists a Kripke structure KA,D over alphabet ΣA, of size exponential in ΣA,

such that TA,D |= ¬ϕ iff KA,D |= ¬ϕ. This allows us to use known model-checking

techniques for CTL(∗) on Kripke structures to verify whether TA,D |= ¬ϕ.

We start with the following:

Lemma 4.15. Let A be a propositional, input bounded ASM+ transducer, and ϕ

a CTL∗ formula over ΣA. Then A 6|= ϕ iff there exists a database instance D of

size exponential in A, such that TA,D |= ¬ϕ.

Proof. Let A = 〈D,S, I,A,R〉 be a propositional, input-bounded ASM+ trans-

ducer and ϕ a CTL∗ formula over ΣA. For each configuration ρ of A, we denote by

λ(ρ) the set of states true in ρ. We also denote by λ the extension of this mapping to

trees of configurations TA,D, where λ(root) = ∅. Obviously, if λ(TA,D1
) = λ(TA,D2

)

then TA,D1
and TA,D2

satisfy the same CTL∗ formulas over ΣA. Now suppose that

A 6|= ϕ, so there is some D such that TA,D |= ¬ϕ. We show that there exists a data-

base D0 of size exponential in A, such that λ(TA,D) = λ(TA,D0
), so TA,D0

|= ¬ϕ.

This is done by showing that λ(TA,D) = λ(TA,D0
) iff D0 satisfies a particular FO

sentence ξ in the prefix class ∃∗∀∗FO with a number of variables exponential in A.

Since ξ is satisfied by D, it is satisfiable. But this implies that ξ has a model D0

88

whose domain has a number of elements equal to the number of existential vari-

ables of ξ, so exponential in A (see [8]). Thus, the size of D0 is also exponential

in A (for bounded database schema arity).

We next describe ξ. Note that, because states are propositional, the sets of

propositions true in successors of a configuration ρ of a run of A on D depend

only on D and λ(ρ). Thus, λ(ρ) uniquely determines the set {λ(ρ̄) | 〈ρ, ρ̄〉 ∈ TA,D}

Consider a pair 〈Σ, Σ̄〉 = 〈λ(ρ), λ(ρ̄)〉 ∈ λ(TA,D). Let I1, . . . , Ik be the input

predicates in I, and let ϕ1 . . . , ϕk be the ∃∗FO formulas defining the input options

for I1 . . . , Ik. We construct a quantifier-free FO sentence ϕ〈Σ,Σ̄〉(x̄1, . . . , x̄k) on D

such that λ(ρ̄) = Σ̄ whenever ρ̄ is the next configuration from ρ resulting from the

choice of inputs x̄1, . . . , x̄k from the options available for I1, . . . , Ik. For simplicity,

we show the construction for the case when all user inputs are non-empty. The

construction can be easily adapted to account for empty inputs.

Thus, 〈Σ, Σ̄〉 ∈ λ(TA,D0
) iffD0 |= ∃x̄1 . . .∃x̄k[ϕ1(x̄1)∧. . .∧ϕk(x̄k)∧ϕ〈Σ,Σ̄〉(x̄1, . . . , x̄k)].

To ensure that only valid pairs 〈Σ, Σ̄〉 occur in λ(TA,D0
), it must also be the case

that D0 |= ∀x̄1 . . .∀x̄k[(ϕ1(x̄1) ∧ . . . ∧ ϕk(x̄k))→
∨

Σ̄ ϕ〈Σ,Σ̄〉(x̄1, . . . , x̄k)].

Then ξ is the conjunction of all such formulas for all pairs in λ(TA,D), yielding

a formula in the prefix class ∃∗∀∗FO. Since there can be exponentially many such

pairs, ξ is exponential in A.

In order to define the sentence ϕ〈Σ,Σ̄〉 we need the following notation. For each

FO sentence ψ let ψΣ be the sentence obtained by replacing in ψ every proposition

p ∈ Σ by true and p 6∈ Σ by false. Further, for each input-bounded formula ψ let

the quantifier-free version of ψ , denoted ψqf , be defined as follows. Intuitively,

ψqf eliminates the quantifiers by taking advantage of the fact that each input I

consists, after the user’s choice, of at most a single tuple x̄I (x̄I is a sequence of

m distinct variables, where m is the arity of I). The formula ψqf reformulates ψ

using these tuples. Specifically, let ψ′ be obtained by replacing each input-bounded

quantification ∃x̄(α ∧ β) and ∀x̄(α→ β) by α ∧ β.

Next, let ψqf be obtained by first bringing ψ′ to DNF (disjunctions of conjunc-

tions), then applying to each disjunct δ the following procedure yielding δ ′. Let eq

89

(neq) be the (in)equalities occurring in δ. For each input relation I occurring in δ

and each i, 1 ≤ i ≤ m, let θ(I, i) be the set of terms occurring in the i-th position

of I in a positive occurrence I(z̄) in δ. Let ≡ be the reflexive, transitive closure of

the following relation on the terms of δ: {(x, y) | x = y ∈ eq } ∪ {(x, y) | x, y ∈

θ(I, i) for some I and i}. If for some x, y it is the case that x ≡ y and x 6= y is in

neq, then δ′ = false. Otherwise, define the following equivalence relation on the

pairs (I, i) of input atoms I and positions i of I: (I, i) ≡ (J, j) iff there exist terms

x, y so that x ≡ y, x ∈ θ(I, i), and y ∈ θ(J, j). For each variable y in δ, let ν(y)

be one arbitrarily chosen (xI)i for which y ∈ θ(I, i). Let δ′ be obtained as follows:

1. add to δ the conjunction of all equalities (xI)i = (yJ)j where (I, i) ≡ (J, j),

c = c′ where c, c′ are constants and c ≡ c′, and (xI)i = c for some arbitrarily

chosen c ∈ θ(I, i), if such exists.

2. for each negative occurrence ¬I(z1, . . . , zm) of an input atom, add the con-

junct consisting of the disjunction
∨m

i=1(ν(zi) 6= (xI)i);

3. delete all input atoms;

4. replace each variable y by ν(y) in the remaining atoms.

Finally, ψqf is the disjunction of all resulting δ′.

We can now define ϕ〈Σ,Σ̄〉. This is constructed using the rules of A. Consider

a proposition p in S. We associate to p and ¬p formulas βp and β¬p defined using

the rules for (¬)p. If p ← γ and ¬p ← δ are in R then βp is τ qfΣ , where τ =

(γ ∧ ¬δ) ∨ (p ∧ ¬δ), and β¬p is πqfΣ where π = (¬p ∧ ¬γ) ∨ (¬p ∧ γ ∧ δ) ∨ (δ ∧ ¬γ).

Finally, ϕ〈Σ,Σ̄〉 is the quantifier-free formula
∧
p∈Σ̄ βp ∧

∧
p∈(ΣV −Σ̄) β¬p.

The next stage towards the proof of Theorem 4.14 is to reduce the verification

problem for a fixed database to a model checking problem of a CTL(∗) formula on

a Kripke structure. We therefore show the following.

Lemma 4.16. For each ASM+ transducer A over database schema D, each data-

base instance D over D, and each CTL(∗) formula ϕ over ΣA, one can construct,

90

in time polynomial in D and exponential in A, a Kripke structure KA,D over ΣA,

of size exponential in ΣA, such that TA,D |= ϕ iff KA,D |= ϕ.

Proof. The Kripke structure KA,D has one node labeled for each set of propositions

Σ ⊆ ΣA labeling a node in λ(TA,D). There is an edge 〈Σ, Σ̄〉 iff there is a node

labeled Σ with a child labeled Σ̄ in λ(TA,D). Clearly, KA,D can be obtained by

expanding λ(TA,D) until no new labels are found. Each edge involves evaluating

the formulas of A on Σ and D, which is polynomial in Σ and D and exponential

in A. The maximum number of edges is exponential in ΣA.

Lemmas 4.15 and 4.16 provide the proof of Theorem 4.14: to check that A 6|= ϕ,

first guess a database D of size exponential in A, then construct from D and

A, in time exponential in A, the Kripke structure KA,D. Finally, checking that

KA,D |= ¬ϕ is in polynomial time with respect to KA,D and ¬ϕ if ϕ is in CTL, and

in polynomial space if ϕ is in CTL∗. Overall, checking A |= ϕ is in co-nexptime

if ϕ is in CTL, and in expspace if ϕ is in CTL∗.

A special case of interest involves ASM+ transducers that are entirely propo-

sitional. Thus, the database plays no role in the specification: inputs, states, and

actions are all propositional, and the rules do not use the database. Let us call

such a transducer fully propositional. We can show the following:

Theorem 4.17. Given a fully propositional ASM+ transducer A and a CTL∗

formula ϕ over ΣA, it is decidable in pspace whether A |= ϕ.

Proof. In the case of a fully propositional ASM+ transducer A, the Kripke struc-

ture KA,D is independent of D (let us denote it by KA). However, KA is expo-

nential with respect to A so cannot be constructed in pspace. We therefore need

a more subtle approach, that circumvents the explicit construction of KA. To do

so, we adopt techniques developed in the context of model checking for concurrent

programs (modeled by propositional transition systems). Specifically, the model

checking algorithm developed by Kupferman, Vardi and Wolper in [37] can be

91

adapted to fully propositional transducers. The algorithm uses a special kind of

tree automaton, called hesitant alternating tree automaton (HAA) (see [37] for the

definition). As shown in [37], for each CTL∗ formula ϕ one can construct an HAA

Aϕ accepting precisely the trees (with degrees in a specified finite set) that satisfy

ϕ. In particular, for a given Kripke structure K, one can construct a product

HAA K×Aϕ that is nonempty iff K |= ϕ. The nonemptiness test can be rendered

efficient using the crucial observation that nonemptiness of K×Aϕ can be reduced

to the nonemptiness of a corresponding word HAA over a 1-letter alphabet, which

is shown to be decidable in linear time, unlike the general nonemptiness problem

for alternating tree automata. Finally, it is shown that K × Aϕ need not be con-

structed explicitly. Instead, its transitions can be generated on-the-fly from K and

ϕ, as needed in the nonemptiness test for the 1-letter word HAA corresponding to

K × Aϕ. This yields a model checking algorithm of space complexity polynomial

in ϕ and polylogarithmic in K. We refer to [37] for details.

In our case, K is KA, and the input consists of ϕ and A instead of ϕ and

KA. The previous approach can be adapted by pushing further the on-the-fly

generation of KA×Aϕ by also generating on-the-fly the relevant edges of KA from

A when needed. This yields a polynomial space algorithm for checking whether

A |= ϕ, similar to the algorithm with the same complexity obtained in [37] for

model checking of concurrent programs.

4.2 Verification of Web Applications

We finally present our verification results for Web applications. Most of the

results are shown by reducing the verification problem for Web applications to

corresponding verification problems for ASM+ transducers. We begin with linear-

time properties.

92

4.2.1 Linear-time properties of Web applications

As for ASM+ transducers, the decidability results for verification of linear-time

properties of Web applications require the input-boundedness restriction. This

extends naturally from ASM+ transducers to Web applications.

Definition 4.18. A Web application is input-bounded if all formulas used in state,

action, and target rules are input bounded, and formulas used in input option rules

are ∃∗FO formulas in which all state atoms are ground.

Example 4.19 All rules on pages HP,LSP in Example 3.2 are input-bounded.

Property (3.1) in Example 3.5 is trivially input-bounded, as it contains no quanti-

fiers. Property (3.2) in Example 3.6, however, is not input-bounded because pname

appears in no input atom. We turn this into an input-bounded property by mod-

eling the catalog database relation with two relations prod prices(pid, price) and

prod names(pid, pname). We can now rewrite Property (3.2) to the input-bounded

sentence

∀pid, price [ξ′(pid, price) B¬(conf(name, price) ∧ ship(name, pid)] (4.5)

where ξ′(pid, price) is short for

PP ∧ pay(price) ∧ button(“authorize payment”)

∧pick(pid, price) ∧ prod prices(pid, price) (4.6)

2

We show the following result on the verification of linear-time properties. Recall

from Section 3.3 that a Web application is error-free if no run ever leads to the

special error page.

Theorem 4.20. The following are decidable:

(i) given an input-bounded Web application W, whether it is error free;

93

(ii) given an error-free Web application W with input-bounded rules and an

input-bounded LTL-FO sentence ϕ over the schema of W, whether W satis-

fies ϕ.

Furthermore, both problems are pspace-complete for schemas with fixed bound

on the arity, and in expspace for schemas with no fixed bound on the arity.

The lower bound follows immediately from the pspace lower bound for ASM+

transducers. The upper bound is more involved, and requires a reduction to the

verification problem for ASM+ transducers. To begin, we note that part (i) of

Theorem 4.20 can be reduced to part (ii).

Lemma 4.21. For each Web applicationW with input-bounded rules there exists

an error-free Web application W ′ with input-bounded rules, of size quadratic in

W, such that W is error free iff W ′ |= ϕ, for some fixed input-bounded LTL-FO

sentence ϕ.

Proof. Let W = 〈D,S, I,A,W,W0,Wε〉 be a Web application with input-

bounded rules. Intuitively, we wish to construct a Web application W ′ with a new

Web page schema W ′
ε that is reached according to the rules of the application (and

without generating an error), exactly when the error page Wε would be reached in

the original Web application. Then it is enough to verify that W ′
ε is never reached

in any run ofW ′. To this end, we defineW ′ = 〈D,S′, I,A,W′,W ′
0,Wε〉 as follows.

For each input constant c of W, let pc be a new propositional symbol, and S′ =

S ∪ {pc | c is an input constant of W}. W′ contains a new Web page schema W ′
ε

defined identically to Wε, and for each Web page schema W = 〈IW ,AW ,TW ,RW 〉

of W different from W0 and Wε, a Web page schema W ′ = 〈IW ,AW ,T
′
W ,R

′
W 〉,

where T′
W = TW ∪ {W

′
ε}. R

′
W consists of the following rules. The state, input,

and action rules of RW remain unchanged, except for the addition of one state

rule pc ← true for each input constant c ∈ IW . Before defining the target rules, let

ψW be ψ1 ∨ ψ2 ∨ ψ3, where:

94

• ψ1 is the disjunction of all formulas ϕV,W ∧ ϕV ′,W where V 6= V ′ and V ←

ϕV,W , V ′ ← ϕV ′,W are target rules in RW ,

• ψ2 is the disjunction of all formulas ϕV,W ∧ ¬pc where V ← ϕV,W is a target

rule in RW and c is an input constant occurring in some input rule in V but

not in IW , or occurring in some other rule of V , but not in IW ∪ IV , and

• ψ3 is the disjunction of the formulas ϕV,W ∧ pc where V ← ϕV,W is a target

rule in RW and c occurs in IV − IW , and ϕV,W if c ∈ IW ∩ IV .

Intuitively, ψW states that the original target rules of W are ambiguous (stated by

ψ1) or the next Web page uses some input constant not yet provided (formula ψ2),

or the next Web page requires as input some constant already provided (stated by

ψ3). The target rules of W ′ make use of ψW :

• each target rule V ← ϕV,W , where V ∈ TW , is replaced by V ← ϕV,W ∧¬ψW ,

• W ′
ε ← ψW is a new target rule.

Finally, W ′
0 is a special case. It is defined as above if input rules of W0 contain

no input constants, and the other formulas contain only input constants in IW0
;

otherwise, it is defined as 〈∅, ∅, {W ′
ε}, {W

′
ε ← true}〉.

It is easily verified that W ′ is error free and W ′ is input bounded if W is input

bounded. Also, W is error free iff the page W ′
ε is never reached in any run of W ′,

i.e. W ′ satisfies the input-bounded LTL-FO sentence G ¬W ′
ε.

The following shows that checking that a Web application is error-free is already

pspace-hard.

Lemma 4.22. Checking whether an input-bounded Web application is error free

is pspace-hard.

Proof. The proof is by reduction from Quantified Boolean Formula (QBF), known

to be pspace-complete [27]. Let ϕ be a quantified Boolean formula (we can assume

ϕ uses just ∨,¬, ∃). Consider the Web application Wϕ = 〈D,S, I,A,W,W0,Wε〉

where:

95

• D = {R : 1, 0, 1}, S = ∅, I = {I0 : 1, I1 : 1}, A = ∅, W = {W0,W1,W2};

• W0 = 〈{I0, I1}, ∅, {W1,W2},RW0
〉 where RW0

consists of the input rules

OptionsIi(x) ← R(x),

for i ∈ {0, 1} and the target rules

Wi ← I0(0) ∧ I1(1) ∧ 0 6= 1 ∧ ϕ′, i ∈ {1, 2},

where ϕ′ is defined from ϕ as follows:

– each propositional variable x is replaced by (x = 1);

– disjunction and negation remain unchanged;

– ∃xψ becomes ∃x((I0(x) ∨ I1(x)) ∧ ψ).

• {W1,W2} are arbitrary.

Clearly, Wϕ is input-bounded and of size polynomial in ϕ, and it is error free iff

there is no run for which I0 = {0}, I1 = {1}, and ϕ′ is true. Obviously, there

exists a run for which I0 = {0} and I1 = {1}. But then ϕ′ has the same value as

ϕ. Therefore, W is error-free iff ϕ is false.

We next reduce the verification of error-free Web applications to verification of

ASM+ transducers.

Lemma 4.23. Let W = 〈D,S, I,A,W,W0,Wε〉 be an error-free, input-bounded

Web application and ϕ an LTL-FO or CTL(∗)-FO sentence over the schema of W.

There exists an ASM+ transducer A, of size linear in W, such that W |= ϕ iff

A |= ϕ.

Proof. In brief, the reduction has to overcome two obstacles: (i) simulating the

multiple Web schemas of W, and (ii) eliminating the constants from the input

schema ofW. It is easy to deal with (i): we just simulate the behavior of different

Web pages and transitions using new propositional state variables corresponding

96

to the Web pages. Overcoming (ii) makes essential use of the assumption that W

is error free. Indeed, this guarantees that the value of each input constant is only

provided once, and that no formula makes use of such constants before they are

provided. This allows to assume that the input constants are provided prior to the

run, as part of the database.

More precisely, let A = 〈D′,S′, I′,A′,R〉 where:

• D′ = D ∪ const(I), where const(I) denotes the set of input constant

symbols in I

• S′ = S ∪ W, where each W ∈W is taken to be a propositional symbol;

• I′ = I − const(I);

• A′ = A;

The set of rules R of A is defined as follows. For each relational input I of I we

add to R the input rule OptionsI(x̄)← ξ, where ξ is the disjunction of all formulas

ϕI,W (x̄) ∧W for which OptionsI(x̄) ← ϕI,W (x̄) is an input rule of the page W in

W. We define the state rules next. For each state rule (¬)S(x̄)← ϕεS,W (x̄) of W,

we add a state rule (¬)S(x̄) ← ϕεS,W (x̄) ∧ W to R. In addition, for each target

rule V ← ϕV,W of W we add to R the state rules V ← ϕV,W ∧W and, if V 6= W ,

¬W ← ϕV,W ∧W . The action rules of R consist of all rules A(x̄)← ϕ(x̄) ∧W for

which A(x̄)← ϕ(x̄) is an action rule of Web page schema W in W.

Theorem 4.20 (ii) and the pspace upper bound (expspace with no fixed bound

on arities) now follow from Lemma 4.23 and Theorem 4.8.

The undecidability results developed in Section 4.1.2 carry over to verification

of Web applications due to the reduction provided by Lemma 4.23. The following

is a corollary of Lemma 4.23 and Theorems 4.9, 4.10, 4.11, and 4.12.

Corollary 4.24.

97

1. There exists a fixed input-bounded LTL-FO sentence ϕ for which it is unde-

cidable, given an error-free, input-bounded Web application W with input

options defined by quantifier-free FO formulas over database and state rela-

tions, whether W |= ϕ.

2. It is undecidable, given an error-free, input-bounded Web applicationW with

state projections and input-bounded LTL-FO sentence ϕ, whether W |= ϕ.

3. It is undecidable, given an error-free, input-bounded Web applicationW with

lossless input and an input-bounded LTL-FO sentence ϕ, whether W |= ϕ.

4. It is undecidable, given an error-free, input-bounded Web applicationW with

functional dependencies F on its database schema, and an input-bounded

LTL-FO sentence ϕ, whether W |=F ϕ.

4.2.2 Branching-time properties of Web applications

Lemma 4.23 and Theorem 4.13 imply the following undecidability result:

Corollary 4.25. It is undecidable, given an error-free, input-bounded Web appli-

cation W and input-bounded CTL-FO sentence ϕ, whether W |= ϕ.

We therefore consider next several restrictions leading to decidability of the

verification problem for CTL(∗)-FO sentences. Some of the results mirror directly

those obtained for ASM+ transducers in Section 4.1.3, while others require some

development specific to the Web application formalism.

Propositional input-bounded Web applications The first restriction we

consider for Web applications is an extension of propositional input-bounded ASM+

transducers. The restriction limits input-bounded Web applications by requiring

all states and actions to be propositional. Furthermore, no rules can use PrevI

atoms. We also call such Web applications propositional. As for ASM+ transduc-

ers, in a propositional Web application, inputs can still be parameterized in the

98

Web application specification. The CTL∗ formulas we consider are propositional

and use input, action, state, and Web page symbols, viewed as propositions (re-

call that the CTL∗ formulas used for propositional ASM+ transducers used only

the states). Satisfaction of such a CTL∗ formula by a Web application is defined

as for CTL∗-FO, where truth of propositional symbols in a given configuration

〈V, S, I, A〉 is defined as follows: a Web page symbol is true iff it equals V , a state

symbol s is true iff s ∈ S, an input symbol J is true iff J ∈ IV , and an action

symbol a is true iff a ∈ A.

Example 4.26 CTL(∗)-FO is particularly useful for specifying navigational prop-

erties of Web applications. Note that these applications do not necessarily have

to be propositional; we could abstract their predicates to propositional symbols,

thus concentrating only on reachability properties. This is in the spirit of program

verification, where program variables are first abstracted to booleans [16, 29], in

order to check CTL∗ properties such as liveness. For our running example, ab-

stracting all non-input atoms to propositions, we could ask whether from any page

it is possible to navigate to the home page HP using the following CTL sentence:

AGEF(HP)

The following CTL property states that, after login, the user can reach a page

where he can authorize payment for a product:5

AG((HP ∧ button(“login”))→ EF(button(“authorize payment”)))

where button(“login”), button(“authorize payment”) denote the corresponding propo-

sitions. In the specification of the abstracted application, we can still allow in the

home page HP a state rule that checks successful login:

logged in← users(name, password) ∧ button(“login”).

2

5The most important property in electronic commerce
..

^

99

For a given Web application W = 〈D,S, I,A,W,W0,Wε〉, we denote by ΣW

the propositional vocabulary consisting in all symbols in S∪ I∪A∪W. By abuse

of notation, we use the same symbol for a relation R in the vocabulary of W and

for the corresponding propositional symbol in ΣW .

Theorem 4.27. Given a propositional, input-bounded, error-free Web application

W and a CTL∗ formula ϕ over ΣW , it is decidable whetherW |= ϕ. The complexity

of the decision procedure is co-nexptime if ϕ is in CTL, and expspace if ϕ is in

CTL∗.

Theorem 4.27 is a consequence of Theorem 4.14 on ASM+ transducers together

with the following.

Lemma 4.28. For each propositional, input-bounded, error-free Web application

W and CTL∗ formula ϕ over ΣW , one can construcrt in linear time a propositional,

input-bounded ASM+ transducer A such that ΣA ⊇ ΣW and W |= ϕ iff A |= ϕ.

Proof. The proof is similar to that of Lemma 4.23. In order for the states of A

to contain all propositions in ΣW , one has to introduce, in addition to the states

for Web pages introduced in the proof of Lemma 4.23, new states for all actions

and inputs, that are true precisely when the corresponding propositional symbol in

ΣW evaluates to true in the semantics of CTL∗ formulas over ΣW described above.

This is straightforward and details are omitted.

The complexity of the decision problem of Theorem 4.14 can be decreased under

additional assumptions. The following result focuses on verification of navigational

properties of Web sites, expressed by CTL∗ formulas over alphabet W.

Corollary 4.29. Let S be a fixed set of state propositions and D a fixed database

schema. Given a propositional, input-bounded, error-free Web applicationW with

states S and database schema D, and a CTL∗ formula ϕ over W, it is decidable

in pspace whether W |= ϕ.

100

Proof. The decision procedure is similar to that for Theorem 4.14. Since S is

fixed and ϕ refers only to W, it is enough to retain, in labels of λ(TW ,D) only the

states and Web page names. Since W is error free, there is exactly one Web page

name per label. It follows that the number of pairs 〈Σ, Σ̄〉 occurring in λ(TW ,D) is

quadratic in W, so the formula ξ has polynomially many variables, and the size

of the database D0 is polynomial in W. The Kripke structure KW ,D0
can now be

constructed in pspace with respect to W, and checking ϕ can be done in pspace

with respect to KW ,D0
and ϕ. Altogether, checking thatW |= ϕ is done in pspace

with respect to W and ϕ.

Another special case of interest, as for ASM+ transducers, involves Web ap-

plications that are entirely propositional. Thus, the database plays no role in the

specification: inputs, states, and actions are all propositional, and the rules do

not use the database. Such Web application are called fully propositional. We can

show the following, which is a direct consequence of Lemma 4.23 and Theorem

4.17.

Theorem 4.30. Given a fully propositional, error-free Web application W and a

CTL∗ formula ϕ over ΣW , it is decidable in pspace whether W |= ϕ.

One may wonder if the restrictions of Theorem 4.27 can be relaxed without

compromising the decidability of verification. In particular, it would be of interest

if one could lift some of the restrictions on the propositional nature of states and

actions. Unfortunately, we have shown that allowing parameterized actions leads

to undecidability of verification, even for CTL formulas whose only use of action

predicates is to check emptiness. The proof is by reduction of the implication

problem for functional and inclusion dependencies. We omit the details.

Web applications with input-driven search The restrictions considered so

far require states of a Web application to be propositional, and do not allow the use

of PrevI atoms. Although adequate for some verification tasks, this is a serious

limitation in many situations, since no values can be passed on from one Web page

101

to another. We next alleviate some of this limitation by considering Web appli-

cations that allow limited use of PrevI atoms. This can model commonly arising

applications involving a user-driven search, going through consecutive stages of

refinement. More formally:

Definition 4.31. A Web application with input-driven search is an input-bounded

Web application W = 〈D,S, I,A,W,W0,Wε〉 where:

• I consists of a single unary relation I

• S consists of propositional states including not-start

• A is propositional

• D includes a constant symbol i0 and a designated binary relation RI

• the state rule for not-start is not-start← ¬not-start

• the input option rule for I is in all Web pages of the form

OptionsI(y)← (¬not-start ∧ y = i0)

∨(not-start ∧ ∃x(prevI(x) ∧ RI(x, y)) ∧ ϕ(y))

where ϕ(y) is a quantifier-free formula over D ∪ S with free variable y.

Note that not-start is false at the start of the computation and true thereafter.

To initialize the search, the first input option is the constant i0. Subsequently

(when not-start is true), if x was the previously chosen input, the allowed next

inputs are the y’s for which RI(x, y) ∧ ϕ(y) holds, where RI is the special input

search relation and ϕ places some additional condition on y involving the database

and the propositional states.

Example 4.32 Consider a variation of a computer-selling Web site which doesn’t

just partition its products into desktops and laptops, but rather uses the more

complex classification depicted in Figure 4.1. The user can search the hierarchy

102

products

new used

desktops laptops

Figure 4.1 Fragment of RI for Example 4.32

of categories, and will only see a certain category if it is currently in stock, as

reflected by the database. The propositional state new is set on the page which

offers the choice between new and used products. The page schemas for new and old

computers are reused, so when generating the options, the Web site must consult

state new to distinguish among new and old products. We can abstract this Web

site as a Web application with input-driven search, in which the binary database

relation RI is a graph which contains as a subgraph the one in Figure 4.1, and

in which the unary database relations such as newDesktop,usedDesktop,usedLaptop

contain the in-stock products. Here is the input rule corresponding to the desktop

search page:

OptionsI(y)← (¬not-start ∧ y = i0) ∨

not-start ∧ ∃x(prevI(x) ∧RI(x, y)) ∧

(new ∧ newDesktop(y) ∨ ¬new ∧ usedDesktop(y)) (4.7)

2

We can show the following.

Theorem 4.33. Given a Web application with input-driven searchW and a CTL∗

formula ϕ, it is decidable whether W |= ϕ in exptime if ϕ is in CTL, and 2-

exptime if ϕ is in CTL∗.

Proof. We reduce the problem of checking whether W |= ϕ to the satisfiability

problem for CTL(∗) formulas. As mentioned in Section 2.1.3, this is known to

be exptime-complete for CTL, and 2-exptime complete for CTL∗. We consider

Kripke structures over the alphabet ΣW ∪ D. Intuitively, each node of the

103

Kripke structure represents a configuration, and its label represents the relevant

information about the configuration: the set of propositions in ΣW that hold, and

the type of the current input with respect to the database, i.e. the set of relations

Q in D − {RI} for which yk ∈ Q, where k is the arity of Q and y the current input.

Note that the types of different inputs are independent of each other because inputs

are unary, so every Kripke structure can be viewed as representing an input choice

relation RI together with type assignments for the elements of RI . In addition, in

order for a Kripke structure to represent an actual run of of W, the assignments

of literals of ΣW to nodes has to be consistent with the rules of W. However, this

can be easily expressed by a CTL formula ρ computable in polynomial time from

W. It follows thatW |= ϕ iff ρ∧¬ϕ is unsatisfiable. The latter is a CTL formula,

if ϕ is in CTL, and a CTL∗ formula if ϕ is in CTL∗.

Chapter 5

WAVE: A Verifier for Interactive,

Data-driven Web Applications

In the last chapter, we identified a practically appealing and fairly tight class

of Web applications and linear-time temporal formulas for which verification is

decidable. The complexity of verification is pspace-complete (for fixed database

arity). This is quite reasonable as static analysis goes. However, the pspace upper

bound provides no indication of whether verification is practically feasible.

In this chapter, we present wave, a verifier for input-bounded LTL-FO proper-

ties and interactive, data-driven Web applications specified using high-level model-

ing tools, such as the specification language we provide in Section 3.1 and WebML.

wave is complete for a broad class of applications and temporal properties. By

coupling the pseudorun technique, described in Section 4.1.1, with various database

heuristics, our experiments on four representative data-driven applications and a

battery of common properties yielded surprisingly good verification times, on the

order of seconds. It suggests that interactive applications controlled by database

queries may be unusually well suited to automatic verification. The experimental

results also show that the coupling of model checking with database optimization

techniques used in the implementation of wave can be extremely effective, which

is significant both to the database area and to automatic verification in general.

104

105

WebML
Import sub-

Module

Verification
Module Code Generation

Module

Explanation
module

...

Web Application
(JSP/JDBC Code)

Specification
Module

WAVE
Specification

Design
Property

WebML
Specification

HTML Style
Sheet

DB Server
Info

WAVE Hilda
Import sub-

Module

Hilda
Specification

Figure 5.1 System architecture

Section 5.1 presents the architecture of our system with detailed descriptions for

individual modules. Our verification algorithm is presented in Section 5.2. In par-

ticular, Section 5.2.2 addresses optimizations exploiting the structure of the data-

base and specification rules. Section 5.3 details how our implementation exploits

the capabilities of a main-memory database management system while Section 5.4

reports on the experimental evaluations of wave.

5.1 System Architecture

The architecture of WAVE is illustrated in Figure 5.1, which covers many as-

pects ranging from easy-to-understand specification of Web applications to infor-

mative explanation of verification results, which requires no background on formal

verification. We next describe each module in some detail.

106

Specification module The specification module reads a text file conforming

to the grammar of the specification language and processes it. The text file is

the specification of a Web application consisting of two sections as specified in

Definition 3.11. The first section is known as the global declaration, which con-

tains signatures of all relations, categorized into database, state, input and action

relations, as well as identifiers for all Web pages. The second section contains the

schema for each Web page, an example of which is shown in Example 3.2. Once

the file conforms to the grammar, the parser generates an internal representation

of the specification, which is consumed by the verification module and the code

generation module.

It is also possible to create the specification file using a graphical interface.

Indeed, we are currently collaborating with the WebML group to implement a

WebML import sub-module which reads in WebML specifications (in XML) and

translates them into our specifications. Consequently, the completion of this sub-

module will enable wave to be applicable to any Web application specifiable by

WebML, which is highly desirable. The dots to the right of the WebML import

sub-module indicate that similar sub-modules can be added for other specification

languages as well.

Verification module The verification module is essentially the core of wave.

It takes the specification and a property as input, and computes the information

needed for simulating runs of the Web application. A true or false result is produced

at the end of the simulation along with useful verification information.

For details of the algorithm and implementation of the verification modual,

please refer to Section 5.2 and Section 5.3.

Explanation module The explanation module helps the user understand

the output from the verification module better by reproducing counter-examples

and/or Web application configurations in a more intuitive and informative way.

The counter example will show the precise sequence of user inputs, the con-

1The complete grammar is available at http://sashimi.ucsd.edu:8080/wave/README.txt

107

tents of the database, and the sequence of configurations through which the Web

application evolves, as well as the exact point where the property is violated. The

developer can fast-forward and fast-backward through the run, inspect the contents

of the state and the database at will.

Code generation module The code generation module is orthogonal to the

verification module and can be regarded as an interpreter for the specification

language. It reads in the specification file and automatically generates JSP pages

that correspond to the specified Web application. Assuming the availability of a

configured Tomcat server, the set of generated JSP pages are ready to be viewed

in a browser. The code implementing the connection to the underlying database

is generated in JDBC. We are currently enhancing this module to allow the Web

developer to supply HTML style sheet information to specify the layouts on the

generated pages.

Now that we know how wave works, let’s drill down into the essential module

of wave verifier—the verification module.

5.2 Web application Verification Algorithm and

Optimization

Given the pseudorun technique presented in Section 4.1.1, we get a pspace

algorithm for the verification problem. It shows that it is not necessary to explicitly

construct the entire underlying database in order to generate runs. Instead, at

each step of the run it suffices to construct only those portions of the database,

state and actions that can affect the page rules and property. As we have already

defined in Definition 4.5, the resulting sequence of partially specified configurations

(pseudoconfigurations) is called pseudorun. The key advantage of pseudoruns is

that their partially specified configurations have polynomial size in the application

specification and property, thus yielding a pspace verification algorithm.

However, the algorithm we demonstrated in Section 4.1.1 is for ASM+ trans-

108

ducer which is isomorphic to a Web application with a single Web page schema

and no input constants. Section 5.2.1 takes a crucial step in extending and refining

the algorithm towards a practical algorithm for the general Web application, which

might contains multiple pages and some input constants.

Although the algorithm is quite reasonable as static analysis goes, it is still

insufficient in practice. The pseudorun-based search achieves practical relevance

only with the aid of two heuristics (presented in Section 5.2.2) which dramatically

improve the verification time without giving up soundness and completeness. The

heuristics rely on a dataflow analysis to prune the partial configurations with tuples

that are irrelevant to the rules and property. In our experimental evaluation, the

new running times are of the order of a few seconds.

The roadmap of our verification approach is the following. Given Web appli-

cation W and property ϕ0 ∈ LTL-FO, we guarantee that all runs of W satisfy ϕ0

by checking that no run satisfies ϕ := ¬ϕ0. This involves the following steps.

1. Construct ϕaux ∈ LTL by replacing the FO components of ϕ with new propo-

sitional symbols.

2. Construct Aϕaux, the Büchi automaton accepting precisely the runs which sat-

isfy ϕaux (using well-known domain tools such as ltl2ba).

3. Execute a nested depth-first search which constructs the pseudoruns of W,

simultaneously navigating in Aϕaux by evaluating the FO components of ϕ

to obtain the truth values of the propositional symbols in ϕaux. If the search

finds no lollipop path in Aϕaux, then it returns yes, otherwise it returns no and

reports the counterexample pseudorun. Pseudoruns are pruned according

to the heuristics exploiting the dataflow analysis of the specification and

property.

The first two steps of the approach are demonstrated in Section 4.1.1 while

step 3 is covered in Sections 5.2.1 and 5.2.2.

109

5.2.1 Searching for Pseudoruns

Section 4.1.1 presents a pspace verification algorithm which circumvents the

explicit enumeration of representative databases. However, recall that the original

algorithm is for the ASM+ transducer which is isomorphic to a Web application

with a single Web page schema and no input constants. In this section we extend

and refine that algorithm to handle the general case Web applications, by actually

generating pseudo-runs that involve multiple web pages and some input constants,

rather than reducing it to an ASM+ transducer, since this is more natural and less

complex.

Remember that the original algorithm is based on the key insight that it is

not necessary to first materialize a full database in order to generate runs. In-

stead, it is sufficient to generate sequences of partially specified configurations by

lazily making, at each step, just the right assumptions needed to obtain the next

partially specified configuration. In Definition 4.5, we call the partially config-

urations pseudoconfiguration and the resulting sequences of pseudoconfigurations

pseudoruns. Pseudoruns have two important properties for input-bounded W and

ϕ:

(i) ϕ is satisfied by some genuine run of W if and only if it is satisfied by some

pseudorun on W. Hence the search for a satisfying run can be confined to

pseudoruns only.

(ii) Pseudoconfigurations can be constructed using a fixed domain of size polyno-

mial to the size of the specification and property, yielding a pspace ver-

ification algorithm (as opposed to the first cut algorithm, which works in

exponential space).

At each step, we construct pseudoconfigurations by picking an input, and as-

suming the presence of certain database tuples, and then computing the corre-

sponding successor page, states and actions according to the page schema rules.

States and actions are only partially specified, in the sense that we only consider

110

their tuples over a fixed domain, as shown in Section 4.1.1. Recall that the property

ϕ has general form ∃x̄ ϕ1(x̄). To check that some run ρ of W satisfies ϕ, we need

to check that we can assign to the existentially quantified variables x̄ a vector of

values C∃, such that ρ satisfies ϕ1(C∃). We denote by CW the set of constants

occurring in W. Since ϕ is input-bounded, all state and action atoms in ϕ1(C∃)

must be ground, i.e. they cannot contain variables, but only constants from CW

or from C∃. We denote C := CW ∪ C∃ and construct only pseudoconfigurations

whose state and action relations contain only ground tuples over C, since any other

tuples cannot affect ϕ1(C∃).

As in the case when constructing genuine runs, at every step we pick an input.

For genuine runs, this input was drawn from the active domain of the underlying

database (augmented with finitely many additional values accounting for the text

input from users). In contrast, for pseudoruns in the ASM+ transducer, we can pick

the input from a fixed domain Ck(please refer to Definition 4.5 for details) with

witnesses in Ckm, since the ASM+ transducer is isomorphic to a Web application

with only one page and no input constants. It turns out (see Lemma 4.6) that we

do not lose completeness by restricting our picks this way.

We now extend it into the general case(the Web applications with multiple

pages and input constants): whenever we reach a page V , we pick the input from

a fixed domain C∪CV where CV depends only on V , and is disjoint from C∪CV ′

for all V ′ 6= V . In other word, we replace Ckm-C in the SWA one page case

with CV , Similiar to the Ckm-C, the size of CV is bounded by the total number of

variables used in the input option rules of V (assuming the rules use disjoint sets of

variables). Intuitively, this allows to represent one choice of input tuple from each

input relation, together with witnesses to the existentially quantified variables in

the input option rule satisfied by the tuple.

At step k of the pseudorun, we pick database tuples as follows. Since ϕ1(C∃) is

a sentence, all of its database atoms contain either constants from C or quantified

variables. The input-boundedness restriction requires these variables to appear in

some positive input or previous-input atom. Therefore, denoting with Vk the page

111

at step k, we consider only database tuples over C ∪ CVk
∪ CVk−1

as these are

the only ones that may affect ϕ1(C∃). Similarly, when the Web application is a

SWA which contains only one web page V, we consider only database tuples over

C ∪CV , which is consistent with Definition 4.5.

Furthermore, there is an important difference between C and the sets CV . The

choice of database tuples using values in C must be consistent across pseudocon-

figurations. Specifically, if at step k we assume that some tuples over C is present

(or absent) in the database, we cannot assume the contrary at some other step.

Intuitively, this is because the property ϕ can talk about such tuples and may

therefore detect such inconsistencies. We therefore must fix the fragment of the

database using values in C once and for all before the pseudorun is generated. We

call this fragment the core, and denote by cores(C) the set of all instances using

only constants in C.

In contrast, it turns out that the assumptions we make about tuples outside

the core that use constants in C∪CVk
∪CVk−1

do not have to be consistent across

configurations. We call a sub instance containing only such tuples an extension to

the core. The set ext(Vk) of possible extensions at page Vk is finite due to the finite

domain. Extensions affect the property and rule atoms containing variables which

also appear in input atoms (as in the case for input-boundedly quantified variables).

Since extensions do not have to be consistent across pseudoconfigurations, the

extension used at step k can be forgotten at step k + 1, when a new extension is

picked. This non-obvious result is based on the following intuition. If for all k

we replace the input values from CVk
∪ CVk−1

with fresh values, the union of all

database extensions and of the unique core yields some consistent, exponential-

sized database D. Pseudoruns never explicitly materialize D. Instead, at every

step they “slide” a polynomial-sized “window” over D.

Let Ds, Vs, Is, Ps, Ss, As be respectively the database, page, input, previous in-

put, state and action of the current pseudoconfiguration Cs, and Dt the database

of Ct, one of the successor pseudoconfigurations of Cs. To construct Dt, we keep

the core of Ds, discard the extension of Ds, and pick an extension to complete Dt.

112

The construction is detailed in procedure succP below.

procedure succP

input: pseudoconfiguration Cs = 〈Ds, Vs, Is, Ps, Ss, As〉

output: set of successor pseudoconfigurations of Cs

result := ∅

compute Vt by applying Vs’s target rules on Cs

compute St by applying Vs’s state rules on Cs

and keeping only the tuples over C

Pt := Is

// pick successor’s partial database Dt :

let DBcore be the core of Ds

for each DBext ∈ ext(Vt)

let Dt := DBcore ∪DBext

// this is the generalization of what we defined in Definition 4.5:

compute the input options by running

Vt’s input rules on Dt, Pt, St

for each input choice It

compute At by applying Vt’s action rules on It, Dt, Pt, St

and keeping only the tuples over C

result := result ∪{〈Dt, Vt, Pt, It, St, At〉}

return result

Lemma 4.6 shows that it suffices to restrict the search for a run satisfying an

input-bounded property to pseudoruns only.

Intuitively, we can think of a pseudorun as a concise representation of a large

class of genuine runs. Working on pseudoruns speeds up the search, since it

amounts to inspecting the entire corresponding class at once, rather than one

run at a time.

Together with the ndfs algorithm in Section 2.2.1, we now generalize the al-

gorithm presented in Section 4.1.1 and derive the Algorithm ndfs-pseudo below,

113

which conducts a nested depth-first search for pseudoruns ofW which determine a

lollipop path in Aϕaux. The algorithm enumerates all database cores and initiates

an independent search for a satisfying pseudorun over each core.

At each step of the search, both stick and candy attempt to extend the current

pseudorun prefix and the current path prefix. In pseudoconfiguration Cs, the

lollipop path prefix can be extended from state s to t, only along a transition

in Aϕaux i.e. only if there exists some propositional formula δ such that (s, δ, t)

belongs to the transition relation Tϕaux of Aϕaux, and the truth values on Cs of ϕ’s

FO components satisfy δ.

Recall that since ϕ has the general form ∃x̄ ϕ1(x̄), these FO components may

have free variables. Also recall that the domain of the cores and extensions depends

on C∃, the set of values assigned to the existentially quantified variables x̄. These

values need not necessarily be distinct from each other or from the ones in CW .

The ndfs-pseudo algorithm therefore considers all choices for C∃, ranging from a

subset of CW to a disjoint set of arbitrarily picked fresh constants.

algorithm ndfs-pseudo

// pick assignments for free variables in ϕ’s FO components:

for each choice of C∃

instantiate the free variables of ϕ’s FO components with C∃

C := CW ∪C∃

// construct the start pseudoconfigurations:

let V0 be the home page of W

P0 := ∅; S0 := ∅

for each DBcore ∈ cores(C)

for each DBext ∈ ext(V0)

D0 := DBcore ∪DBext

compute the input options by running

the input rules of V0 on D0, P0, S0.

for each input choice I0

compute A0 by running V0’s action rules on D0, I0,

114

P0, S0 and keeping only the tuples over C

C0 := 〈D0, V0, I0, P0, S0, A0〉

let s0 be the start state of Aϕaux

// search for pseudorun determining lollipop path:

stick(s0, C0)

procedure stick(s, Cs)

record 〈(s, Cs), 0〉 as visited

evaluate ϕ’s instantiated FO components on Cs

to get truth values of auxiliary propositions P aux

for each (s, δ, t) ∈ Tϕaux such that P aux satisfies δ

for each Ct ∈ succP (Cs)

if 〈(t, Ct), 0〉 not yet visited then stick(t, Ct)

if t is final then

base := (t, Ct); candy(t, Ct)

procedure candy(s, Cs)

record 〈(s, Cs), 1〉 as visited

evaluate ϕ’s instantiated FO components on Cs

to get truth values of auxiliary propositions P aux

for each (s, δ, t) ∈ Tϕaux such that P aux satisfies δ

for each Ct ∈ succP (Cs)

if 〈(t, Ct), 1〉 not yet visited then candy(t, Ct)

else if (t, Ct) =base then report pseudorun

Theorem 5.1. IfW and ϕ are input-bounded, then algorithm ndfs-pseudo reports

a pseudorun satisfying ϕ if and only if some run of W satisfies ϕ.

The bound on the domains of the database cores and extensions picked by

algorithm ndfs-pseudo enables the enumeration of pseudoruns in pspace. However,

the resulting search space is exponential, and still too large in practice.

115

Example 5.2 In the online computer shopping example, the database schema

contains 4 tables with arities 2, 3, 5 and 7. Even if the property had no prefix of

universal quantifiers, thus yielding C∃ = ∅, C would contain 29 constants (page

schema LSP from Example 3.2 alone features 7 constants). Algorithm ndfs-pseudo

must therefore construct at least 2292+293+295+297

= 217,270,412,688 cores. A similar

analysis yields 29,046,208,721 possible extensions.

Algorithm ndfs-pseudo achieves practical relevance only in conjunction with

the heuristics presented in Section 5.2.2.

5.2.2 Optimizations

As illustrated by Example 5.2, a major bottleneck in algorithm ndfs-pseudo

is the construction of the numerous database cores and extensions. It turns out,

however, that most of these are not needed. We have developed heuristics for prun-

ing the sets of cores and extensions constructed by algorithm ndfs-pseudo. These

heuristics slash the verification times to seconds while preserving the soundness

and completeness of the algorithm.

The key intuitions behind our heuristics are the following. Database cores keep

track of the ground tuples whose presence or absence are checked by page rules and

by the property. Ground tuples consist of exclusively constants and are detected by

comparing all their attributes with constants. For instance, the home page schema

HP of the online computer shopping example[1] authenticates users by testing

for the presence of ground tuple user(name,password) in the database, where name

and password are input constants provided by the user at login. However, the

user attribute is never compared to other constants from the spec, such as “login”,

“cancel”, “logout”, etc. which play the role of button names. We developed a

dataflow analysis which provides an upper bound on the potential comparisons

to constants that may be performed throughout any run, explicitly or implicitly.

Ground tuples which do not satisfy any potential comparison can satisfy neither

membership tests nor absence tests. Therefore, they remain undetected and can be

116

pruned from the core in the first place, thus leading to fewer cores to be inspected.

Similar observations apply to tuples in the extensions. The only way for rules

or properties to check the presence/absence of these tuples is by comparing their

attributes to constants or input values. Again, by means of dataflow analysis we

identify all potential comparisons that may be performed during any run, and

tuples which satisfy none of these comparisons can be safely dropped from the

extension. This in turn restricts the number of extensions we need to construct in

the first place. We detail our techniques next.

Heuristic 1 (Core Pruning) Consider only core tuples for which each attribute

A contains constants to which A is compared by the page rules or property.

Example 5.3 Assume we want to verify Property (4.1) on the computer shop-

ping application of Example 3.2. It turns out that among the underlying four

database tables, two have at least one attribute which is compared to no constant

whatsoever. For example, the third attribute of criteria, used on page LSP. By

Heuristic 1, there are no tuples to consider for the cores of these tables, leaving

only one choice, namely the empty core. Table products compares the attributes

to the constants in C∃. Since there are no other comparisons in the specification,

Heuristic 1 allows only at most one tuple for the core of products, yielding two

cores: the empty core and the single-tuple core. Further analysis yields only four

possible user cores, which together with the two products cores results in a total of

8 database cores, as opposed to the 217,270,412,688 cores obtained without Heuristic

1.

Dataflow Analysis for Potential Comparisons. We overestimate all poten-

tial comparisons of the A attribute of R-tuples to a constant c by performing the

following straightforward dataflow analysis. Comparisons can be explicit, i.e. due

to the occurrence in some rules, or in the property of an R-atom containing c in

117

the column corresponding to A. Comparisons can also be implicit. On one hand,

they are due to the occurrence in an R-atom of a variable x in the A column, such

that the equality x = c follows by transitivity from the equality atoms in the rule

or property. On the other hand, they are due to the A column of an R-tuple being

copied to the B column of an S-tuple (S is a state table), such that the B attribute

is itself (recursively) compared to c, explicitly or implicitly. This analysis is easily

implemented by a recursive function which runs in linear time to the size of the

property and specification.

Example 5.4 For an explicit comparison, see the second input rule of page LSP

which compares the attributes of tuples in criteria to constants like “laptop”, “ram”,

etc. To illustrate an implicit comparison, assume that the property contains the

state atom userchoice(“1GB”, “60GB”, “21in”). This results in a potential implicit

comparison of the third attribute of criteria tuples to the constants “1GB”,“60GB”

and “21in”. This is because, by the input rule of page LSP, the laptopsearch input

corresponds to the third attribute of several criteria tuples. These values are then

copied by the state rule of page LSP into state userchoice, where they are finally

compared by the property to the three constants.

Example 5.2 also shows that, even if we reduce the set of cores to a manage-

able size, we still face a huge number of database extensions at each page schema.

Fortunately, extensions can be pruned as well, using the following heuristic.

Heuristic 2 (Extension Pruning) At page W , consider only extension tuples

for which each attribute A contains constants or values of input tuple attributes to

which A is compared by W ’s rules and by the property.

Notice that by Heuristic 2, extensions are always empty for database tables not

mentioned by the rules of page W .

Example 5.5 We consider the extensions at page LSP from Example 3.2. By

Heuristic 2, for a database tuple to be in some extension, one of its attributes must

118

be compared to the attribute of the button or laptopsearch input relation. This is

not the case for any of the four database tables (three are not even mentioned by

the rules of LSP, while criteria is not involved in comparisons to input variables).

Heuristic 2 therefore leaves only one possible extension, namely the empty instance.

Contrast this with the 29,046,208,721 extensions obtained in Example 5.2 without

Heuristic 2.

We refer to our pruning strategies as “heuristics” because in the worst case

they may not prune any cores or extensions. This would happen if all database

attributes were compared to all constants and input attributes. However, we have

observed that in practice, the opposite scenario prevails: each database attribute

is compared to only a handful of constants, if any, and the impact of the heuristics

is spectacular, indeed crucial in rendering algorithm ndfs-pseudo practical. By

Theorem 5.6 below, this comes at no sacrifice of completeness.

Theorem 5.6. If we prune the database cores and extensions according to Heuris-

tics 1 and 2, algorithm ndfs-pseudo remains sound and complete for input-bounded

Web applications and properties.

5.3 Implementation Details

We designed our implementation to satisfy the following desiderata.

• Enumerate cores and extensions on demand, reusing space, to avoid exponential

space consumption.

• Avoid to first enumerate a core or extension and to only afterwards check that

it satisfies the pruning heuristics. Instead, directly generate only cores and

extensions which are allowable under Heuristics 1 and 2.

• The representation of cores and extensions should be compatible with efficient

checks of whether the search has previously visited a pseudoconfiguration.

119

• The page rules and property FO components should be efficiently evaluated

over the pseudoconfigurations.

As detailed shortly below, we decided to simultaneously use two distinct pseudo-

configuration representations in order to satisfy all requirements. We achieved the

first three goals by representing pseudoconfigurations as bitmaps. For the fourth

goal, we inserted pseudoconfigurations in a database management system and im-

plemented the FO rules as SQL queries. This approach required extra attention

to the efficient translation between representations.

Core and extension enumeration. We address the first two requirements as

follows. Consider database cores first. For each k-ary table R, each attribute Ai

can take a finite set of ni constant values, as provided by the dataflow analysis.

There are therefore nR := Πk
i=1ni possible tuples (nR = 0 if some attribute Aj is

compared to no constants, i.e. nj = 0). We represent each tuple subset by a bitmap

of nR entries. For the entire database, we concatenate the individual table bitmaps.

To enumerate all cores, we start with the all-zero bitmap and, treating the bitmap

as the binary representation of an integer counter, we increment the bitmap at

each call until we reach the all-one bitmap. We use an analogous encoding scheme

for database extensions.

Detecting visited pseudoconfigurations. To address the third requirement,

we extend the bitmap encoding scheme to pseudoconfigurations. The visited con-

figurations are then stored in a trie data structure[36] which allows updates and

membership tests in time linear to the size of the bitmap.

The bitmap scheme is extended to configurations as follows. For the current

page schema, we use a bitmap with as many entries as page schema names in the

specification. For states, previous inputs and actions, we use our dataflow analysis

to associate to each of their attributes the set of constants to which they may be

compared. We then employ the same bitmap encoding scheme as used for cores

120

and extensions. All bitmaps are concatenated to yield a bitmap representation of

pseudorun configurations.

Recall that the trie data structure represents keys as sequences of symbols, not

as a whole, like conventional structures do. Assume we have a finite alphabet Σ.

We put |Σ| = m. Trie is an m-ary tree, its nodes are m-ary vectors indexed by

the Σ alphabet. A node in depth l represents a set of keys starting with a prefix

of length l. The node represents an m-way branch driven by (l + 1)-st character

of the searched word.

When searching for a key in the trie, it starts at the root node branching by

the first character. In a general case we progress as follows. We take the next

symbol of the word, let it be k. Then the field of the current node indexed by the

character k keeps the pointer to the subtrie, that corresponds to the search in the

unread part of the key. Note that if the key is not in the trie, we find at least its

longest prefix. The time complexity is linear wrt. the length of the key.

Translation between representations. As described shortly, the efficient eval-

uation of page schema rules requires pseudoconfigurations to be stored as tables in a

database management system (DBMS). We encode database tables into bitmaps as

follows. Consider relation R(A1, . . . , Ak) and let ni be the number of constants as-

signed by our dataflow analysis to attribute Ai. Given an R-tuple t = (c1, . . . , ck),

let ri be the rank of constant ci in the list of constants assigned to Ai by the

dataflow analysis (0 ≤ ri ≤ ni − 1). Ranks are found efficiently by maintaining

a hash table for each list. The index j of the bitmap bit corresponding to t is

computed as j = rk + nk × (rk−1 + nk−1 × (. . . n2 × r1)). The translation from

bitmaps to database tables relies on the following decoding of a bitmap bit index

j into an R-tuple. We first obtain a tuple of ranks (r1, . . . , rk) according to rk = j

mod nk, rk−1 = (j div nk) mod nk−1, etc. The tuple of ranks is then translated

into a tuple of constants by looking up constants by rank, in their list. This is a

constant time operation, as lists are implemented as vectors.

121

Evaluation of page schema rules. Page schema rules are expressed as FO

queries, also known as relational calculus, for which there is a standard translation

to SQL [3]. The presence of universal quantifiers in the FO queries can lead

to deeply nested SQL queries, which are notoriously hard to be optimized and

inefficiently to be evaluated. We obtain more efficient queries translating away

all input-bounded quantifiers by exploiting the fact that, at any step in the run

input, table I can contain at most one tuple t. Assume that the emptyI flag is

set to 1 if I is empty and to 0 otherwise. Then we can simplify rules of form

∀x̄ I(x̄) → ϕ(x̄, ȳ) to (emptyI = 1) ∨ {t/x̄}ϕ(ȳ). Similarly, ∃x̄ I(x̄) ∧ ϕ(x̄, ȳ)

simplifies to (emptyI = 0)∧{t/x̄}ϕ(ȳ). Here, {t/x̄}ϕ(ȳ) is obtained by substituting

the constants from t for the variables x̄, leaving only the free variables ȳ. Applying

the simplifications recursively in {t/x̄}ϕ(ȳ), we obtain FO formulae with no input-

bounded quantifiers. These are translated to SQL queries without nesting. A

beneficial side-effect of this simplification is the elimination of joins with input

tables.

At verification time, we need to re-evaluate the obtained SQL queries for each

distinct value of t and emptyI assumed during the ndfs-pseudo search. To con-

sistently achieve optimal query running time, we would need to let the DBMS

optimizer re-optimize the query every time, especially when the underlying data-

bases are updated frequently (due to state and action updates) leading to frequent

changes of the optimizer’s statistics. However, it turns out that each individual

configuration typically corresponds to tables with very few tuples. The query

workload generated by the ndfs-pseudo algorithm consists of a very large num-

ber of queries and updates, running over toy-sized databases. In this setting, the

impact of optimization becomes negligible, subordinating the goal of ideal opti-

mization to that of avoiding to repeatedly incur the overhead of sending a query

to the database server and having it parsed, optimized, and compiled to a query

plan. The solution is to treat t and emptyI as parameters and to translate the FO

queries to parameterized SQL queries implemented as JDBC prepared statements.

At verification time, we only need to repeatedly fill in the actual parameter values.

122

Evaluation of FO property components. Recall that algorithm ndfs-pseudo

tries all assignments to the free variables of the FO components of the property ϕ, in

search for a satisfying one. An alternative, and more focused strategy is to compute

the satisfying assignments, by treating FO components as non-boolean queries.

Now, suppose we attempt at step k to extend the lollipop path along a transition

labeled with δ. For all FO components mentioned by δ we run the corresponding

queries, obtaining individually satisfying assignments. The results are then joined

to obtain satisfying assignments for δ. Moreover, we enforce consistency with the

assignments computed at step k − 1 by joining with them as well. Whenever the

join result becomes empty, we prune the lollipop path search, as the current prefix

is inconsistent with any assignment to the free variables.

Picking the right DBMS. One advantage of our architecture is that the verifier

can work on top of any DBMS with a JDBC driver. The particular system we use

is the open-source HSQLDB tool (http://hsqldb.sourceforge.net), which is a

light-weight main-memory DBMS implemented in Java. We picked this tool to save

the performance overhead imposed by disk-based persistence, a functionality which

is irrelevant to the verifier. Our decision was based on an experiment measuring the

time for inserting and deleting database cores into the DBMS. We used a schema

of 4 tables of arities 2, 3, 5 and 7. We generated tables by picking all subsets

of 6 tuples for each table, yielding 224 distinct cores. We measured the average

time to insert and delete a core, obtaining a speedup of two orders of magnitude

by using HSQLDB (500 microseconds versus 50 milliseconds for Oracle). Another

advantage of HSQLDB is the so-called “embedded” mode, which allows direct

calls to HSQLDB’s JDBC API by the application, without requiring a client-server

architecture. Since HSQLDB is fully implemented in Java, we can simply package

our verifier code with the HSQLDB module into a single Java archive file.

123

5.4 Experiments

We considered four experimental setups, E1 through E4 covering common

types of Web applications. Their specifications were provided by the authors of

[21] as proof of the expressivity of input-bounded specifications and are all available

from [1]. We use them to evaluate our verifier.

E1: The online computer shopping application(our running example) offers

functionality similar to that of the Dell Web site. It is demonstrated in [1]. The

specification uses 19 page schemas, 4 database relations of arities between 2 and

7, 10 state relations of arities between 0 and 5, 6 input relations of arities between

1 and 5, 5 action relations of arities between 0 and 5, and 29 constants.

E2: A specification of a sport Web site modeled after the Motorcycle Grand

Prix Web site www.motogp.com. The application allows users to browse the teams,

pilots, motorcycle details, racing news, etc. It contains 15 page schemas, 7 data-

base relations, no state or action relations. This example is representative for

applications whose functionality is restricted to browsing, without internal state

changes.

E3: An airline reservation site similar to part of the Expedia Web site. The

specification models 22 pages using 12 database tables (arities up to 10), 11 state

tables (arities up to 5), one action table (arity 1) and 31 constants.

E4: A specification of a book shopping application similar to the Barnes&Noble

Web site. This specification was provided by the project members of the WebML

Web building suite [11]. It models 35 pages, using 22 database tables (arities up

to 14) 7 state tables (arities up to 6) and 22 constants.

Classes of Properties. In all experimental setups, the properties we verified

were chosen to cover property types whose frequent occurrence in verification tasks

earned them standard names (e.g., see [34]). They are included in Table 5.1.

For example, the sequence type states that p must hold before (B) q. Recur-

rence means that at each step in the run (G), property p will finally (F) hold at

some subsequent step. Weak non-progress requires that at every step (G), if p

124

Table 5.1 Property types and its syntactic shapes

Property type Abbreviation Syntactic shape

Sequence T1 pBq
Session T2 Gp→ Gq

Correlation T3 Fp→ Fq
Response T4 p→ Fq

Reachability T5 Gp ∨ Fq
Progress (recurrence) T6 G(Fp)
Strong non-progress T7 F(Gp)
Weak non-progress T8 G(p→ Xp)

Guarantee T9 Fp
Invariance T10 Gp

holds, it also holds at the successor step (X). In [34], p and q stand for propo-

sitional formulae, but in our experiments we made them more complex, allowing

them to be in LTL-FO.

The measurements. We chose lists of properties which both hold and fail

on our specifications because the verifier behaves differently in the two cases. If a

property is violated, the verifier exits the search upon finding the first offending

pseudorun. Satisfied properties force the verifier to explore the entire search space.

For each property, we measured the running time of the verifier, and the maximal

length of generated pseudoruns. To shed light on the memory consumption of the

verifier, we counted the maximum number of visited pseudoconfigurations stored

at any given time in the trie data structure. The experiments were performed on

an Intel Pentium 4 (2.4 GHz) laptop with 256 MB RAM, running JDK 1.4.2 under

Windows XP Home Edition.

Verification results for E1. Table 5.2 summarizes the results of verifying 17

properties P1, . . . , P17. Due to space constraints, we only detail a few properties.

P1: page HP is eventually reached in all runs: F HP. This is clearly true as

HP is the start page. We picked this property as a minimum yardstick since it

requires the generation of pseudoruns of length 1 only, thus measuring mainly the

125

Table 5.2 Verification result for 17 properties.

Type Property Time Max run2 Max.
name [seconds] length trie size

T1 P5 (true) 4 11 268
P7 (false) 2 6 168

T2 P9 (true) 1 10 70
T3 P10 (true) .23 3 5

P11 (false) .29 11 12
P12 (true) .6 6 23
P13 (false) .44 13 21

T4 P14 (false) .19 7 5
T5 P2 (true) .9 8 45

P3 (false) .37 14 19
T6 P17 (false) .15 5 5
T7 P15 (false) .26 11 11
T8 P6 (false) .49 15 30
T9 P1 (true) .02 1 0

P8 (false) .11 6 4
T10 P16 (false) .14 7 6

P4 (true) 1 6 213

time needed to generate all starting pseudoconfigurations.

P4: At each step, there can be no two distinct successor pages. This property

holds, and is expressed by a formula which lists for each page all pairs of its

successor pages. We chose this property because of its size (12 G and 12 X

operators), to study the impact of the size of the property automaton (30 states)

on the running time.

P5: Any confirmed product was previously paid for. This is Property (4.1) from

Example 4.3, and it requires more running time because the search space is larger,

as the universally quantified variables lead to 7 values in C∃ and, therefore, to

more cores. Also, since the property holds, the entire search space is explored.

P7: An order must have status “ordered” before it can be cancelled:

∀oid, uname, pid, price, status(orders-db(oid, uname, pid, price, “ordered”)B(CCP∧

2Max length of run (if true) or of counterexample (if false).

126

userorderpick(oid, pid, price, status))). The order status is read from the orders-db

database table. The order being cancelable corresponds to the user being on the

customer cancel page CCP, and the internal state recording the customer’s pick

of that order.

P9: If the user always clicks on a link at page EP, then whenever EP is

reached, HP will eventually be reached as well: G(EP → ∃xclicklink(x)) →

G(G(¬ EP) ∨ F(EP ∧ F HP)). This turns out to be true since the only link

on page EP leads to HP, and since the page transition is not affected by the

internal state of the application.

P12: If a product is eventually added into the cart, then the user must eventually

view the details of this product: ∀pid, price(Fcart(pid, price)→ Fpick(pid, price)).

The event of viewing the product details is detected by that product being picked

by the user from a pull-down list modeled by the input relation pick.

P15: Every run must reach the error page EP and be trapped there forever:

F(G EP). Fortunately, this is false.

Verification results for E2. We verified 13 properties on this specification,

again covering all types. We do not list the measurements in detail, as the results

are similar to those for configuration E1. The measured times ranged from 20

milliseconds to 1 second. We measured maximum pseudorun lengths from 12 to

68. The maximum number of pseudoconfigurations coexisting in the trie ranged

from 35 to 102. We illustrate only one property here.

If the circuit detail page (CDP) is reached, then either the grand prix page

(GP) must have been reached and the user must have clicked the “circuits” button,

or the grand prix detail page (GDP) must have been reached and the user must

have picked some circuit from a menu: ((GP∧ clickbutton(“circuits”))∨ (GDP∧

∃cid pick circuit(cid)))B(CDP).

Verification results for E3. We verified 14 properties on this specification,

again covering all types. The measured times ranged from 680 milliseconds to 4

seconds for 13 of them. We measured maximum pseudorun lengths from 12 to 51.

The maximum number of pseudoconfigurations coexisting in the trie ranged from

127

32 to 302.

Verification results for E4: the results obtained were similar, and omitted

due to space limitations.

Failure of Classical Tools

SPIN. Recall that the first cut algorithm sketched in Section 5.2 relies on ver-

ifying runs over a fixed domain, thus reducing the problem to verification of Web

applications with a finite set of configurations. This raises the natural question

whether our verification problem can be solved using standard finite-state model

checkers such as SPIN [34]. To answer this question, we investigated whether,

given the Web application specification, the property and the size of the fixed do-

main, SPIN’s built-in optimizations can prune the doubly exponential search space

obtaining reasonable verification times. To this end, we modeled a SPIN process

which generates tuples from the domain, introduces them into a database, and

nondeterministically decides whether to repeat this activity or to stop and initiate

runs over the constructed database, at each step nondeterministically making an

input choice. The specification was written in SPIN’s input language, Promela.

We observed no pruning of the search space, whose explosion leads to a timeout of

the experiment, even for the simplest properties. We conclude that the pseudorun

search combined with our heuristics are crucial for a feasible implementation.

PVS. We also attacked experimental setup E1 using the PVS theorem prover

for higher-order logic (http://pvs.csl.sri.com/). Its expressivity allowed us

to easily express such temporal operators as U and F. This approach required

frequent interaction at verification time with a highly expert user, as the prover

would ask for advice on how to prove complex lemmas whose connection to the

original specification was non-obvious.

128

5.5 Discussion

Our experience with the wave tool in the context of data-driven Web sites

demonstrates that complete verification is practically feasible for a reasonably

broad class of applications. The verification times we achieved, on the order of

seconds, are surprisingly good. To put this in perspective, incomplete verification

of software and digital circuits often takes days, even after abstraction. This is

considered acceptable for off-line verification of systems or circuits that will be

deployed for months, perhaps years. Our surprisingly good performance results

suggest that interactive applications controlled by database queries may be unusu-

ally well suited to automatic verification. They also suggest that the marriage of

classical model checking and database optimization techniques can be extremely

effective. This is significant both to the database area and to automatic verification

in general.

While both soundness and completeness is lost for non-input-bounded appli-

cations or properties, we can still obtain soundness but not completeness for the

input-bounded specifications with arithmetic other predicates with restricted se-

mantics abstracted out as black-box relations. wave can be easily adapted for

use as an incomplete verifier for such applications. What we know in this case

is that if there exists a real counterexample then there exists a pseudorun coun-

terxample. So wave can search for pseudorun counterxamples, and say “YES” if

none is found. However, if a pseudorun counterexample is found, wave can only

say “NO” (it can not check “if this is a real counterexample”, because even if

the pseudorun does not satisfy the arithmetic semantics, it could “come” from a

genuine run that does, and there is no way to check this). So in summary, if wave

says “YES”, then the property is satisfied. If it says “NO”, the property may or

may not be satisfied. So wave can give false negatives but never false positives

in this situation; as expected, this yields a sound but incomplete verification tool.

This approach can be coupled with various abstraction techniques, as commonly

done in software verification.

129

One practical obstacle to the use of tools such as wave is that LTL-FO prop-

erties can be difficult to specify by non-expert users. Therefore, user-friendly in-

terfaces for the specification of properties to be verified are desirable. For specific

classes of temporal properties, such as safety or liveness properties, such inter-

faces can be easily devised. A more intricate but very common type of tempo-

ral property is implicit in workflow specifications, for which user-friendly, visual

specification tools already exist. For instance, the BPMN constraints imposed

on WebML workflow specifications can be automatically translated to temporal

logic (see http://www.webml.org/LTLverification/). Furthermore, workflows

are quite expressive: they can simulate all temporal operators except X (intu-

itively, X is a problem in general because the concurrency allowed by workflows

leads to interleaving of activities, making “next state” constraints unenforceable).

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation studies the formal modeling of data-driven Web applications

provided by Web sites interacting with users or applications, and develops a range

of analyses and verification approaches which help designers to enhance flexibility

and reliability, and ensure the implementation of web applications that will satisfy

some mission-critical properties.

In the scenario we consider, the Web applications can access an underlying

database, as well as state information updated as the interaction progresses, and

receive user input. The structure and contents of Web pages, and the actions to

be taken, are determined dynamically by querying the underlying database as well

as the state and the input.

To describe and reason about Web applications, we start from the formal speci-

fication language of Web applications, where each Web application can be specified

using databases, states, inputs, actions, web page set and page schemas. The struc-

ture of the Web page the user sees, at any given point, is described by a Web page

schema. The content of a Web page is determined dynamically by querying the

underlying database as well as the state. The actions taken by the Web site, and

transitions from one Web page to another, are determined by the input, state, and

130

131

database.

The semantics of the specification language is declarative, and thus, easier to

explain to the participants. We are able to reason about the Web application

and prove whether it satisfies some business requirements, which are expressed in

properties.

The properties to be verified concern the sequences of events (inputs, states, and

actions) resulting from the interaction, and are expressed in linear or branching-

time temporal logics. For example, in an e-commerce application, it may be desir-

able to verify that no product is delivered before payment of the right amount is

received. We have identified a practically appealing and fairly tight class of Web

applications and linear-time temporal formulas for which verification is decidable.

The complexity of verification is pspace-complete (for fixed database arity). This

is quite reasonable as static analysis goes1. Moreover, the class is shown to be tight,

since even slight relaxation leads to undecidability. For branching-time properties,

we identify decidable restrictions for which the complexity of verification ranges

from pspace to 2-exptime. To obtain these results, we use a mix of techniques

from logic and automatic verification.

While the PSPACE algorithm guarantees decidability, it does not demonstrate

the practical feasibility of verification, since a naive implementation would im-

mediately be intractable. To explore the practical feasibility of verification, we

implemented WAVE–a verifier for input-bounded LTL-FO properties and Web ap-

plications, via a series of successive refinements to an initial implementation, whose

performance improved from ”decidable but impractical” to ”feasible, with running

times within seconds”.

The contributions of this dissertation are:

• it identifies classes of Web applications for which temporal properties can be

checked, and establishes their complexity.

• it shows that even slight relaxation of our restrictions leads to undecidability

1Recall that even testing inclusion of two conjunctive queries is np-complete!

132

of verification. Thus, our decidability results are quite tight.

• it extends the finite-state model checking techniques to data-aware reactive

systems in general, and data-driven interactive Web applications in particu-

lar.

• it presents a technique to reduce infinite data value to finite symbolic data.

• it exploits and extends the techniques for automatical verification of Web

applications, under certain assumptions.

6.2 Future Work

Other interesting aspects of Web application verification could not be addressed

in this dissertation and are left for future work. We are especially interested in

pursuing the following research topics.

6.2.1 Specifying and verifying sessions and multiple users

In practice, it is not always realistic to assume that verification applies to all

possible runs of the Web application. This may be due to various reasons: there

may be a need to verify properties of complex applications in a modular fashion,

the restrictions needed for decidability may only hold for certain portions of runs,

etc. Let us call portions of runs to be verified sessions. Some sessions can be

specified implicitly within the temporal formula to be verified, while others may

require explicit definition by other means. It is of interest to understand what types

of sessions can be verified by our approach. For instance, in our running example,

the default assumption is that sessions consist of single-user runs beginning at

login and ending at logout. However, other types of sessions can be fit to our

restrictions, including multi-user sessions (as long as no database updates occur

within the session, and only a bounded number of new users register).

133

6.2.2 Verification of Web Service Compositions

Web applications can be regarded as Web services communicating only with

external users via a web browser interface. Many settings, however, require services

to interact with each other, typically by exchanging messages. For instance, even

seemingly self-contained e-commerce Web sites place calls to an external Web

service to charge a credit card. The interaction might be a source of error; we are

interested in extending our verification work on Web applications to compositions

of Web services interacting through asynchronous messages.

We already obtained preliminary theoretical results[19], in which we considered

two formalisms for property specification, namely Linear Temporal First-Order

Logic and Conversation Protocols. Classical conversation protocols are concerned

only with the sequence of message names observed during the interaction. We

extended them with awareness of the message contents. For both property for-

malisms, we mapped the boundaries of verification decidability. In particular,

we explored various semantics for message-based communication (singleton ver-

sus set messages, lossy versus perfect communication channels, bounded versus

unbounded received message queues). We also identify syntactic restrictions on

the peer and property specifications which, under appropriate communication se-

mantics, guarantee decidability of verification in PSPACE. This complexity is the

best one can hope for. We show that our restrictions are quite tight: even slight

relaxations thereof lead to undecidability. The favorable experimental results ob-

tained in[20, 18] for verification of individual input-bounded services suggest that

similarly good performance can be expected for compositions. We plan to pursue

this in future research.

6.2.3 Web Services Discovery

A fundamental problem related to web services concerns service discovery. For

example, service composition may start with locating appropriate existing services

that can be used and integrated. Requirements used to select services may fo-

134

cus on different aspects of web services, varying from service categories to service

semantics, from service interfaces(that is, input, output, messages), to service be-

haviors(properties that need to be satisfied). Current work on service discovery

focuses on functional description, which is expressed in terms of the transforma-

tion produced by the service. Specifically, it specifies the inputs required by the

service and the outputs generated. In my view, functional description should be

augmented with operational descriptions such as specifications of conversations

(sequences of messages exchanged by the service), of the events and activities

performed by the service, and of semantics of services (e.g., input, output, precon-

ditions and postconditions).

Operational descriptions of Web services are gaining more and more interests.

For example, WSCL and WSCDL attempt to capture conversations between in-

teracting services, WSMO works on semantic web services, and OWL-S introduces

preconditions and results to each activity in the flow of a service. With the devel-

opment of these standards, we envision that more services could become available

with their operational descriptions exported.

For the operational description, we can use temporal properties to describe the

service. Assume that both the existing web services and the target service are

described by a set of properties against some global schema; web service discovery

tries to find an existing service that is equivalent to the target service. How to

define the equivalence of two web services is an interesting problem in itself, and

might be based on property inference. But the most challenging and interesting

problem is how to index the existing web services, in order to make discovery more

natural and efficient in a huge number of services, since checking whether a web

service satisfies a property may be too expensive. Furthermore, we need to have

a query language for the users to specify the target web service, which is easy to

understand and captures the properties we want to express.

135

6.2.4 Synthesis of Web Service Compositions

Composition addresses the situation when a target service query cannot be

realized by any single available service, but instead requires suitably combining

“parts of” available services. Composition involves two different aspects: compo-

sition synthesis and orchestration. We are interested in exploring the problem of

automatic composition synthesis of web services, which consists of synthesizing a

specification of how to coordinate the component services, in order to realize the

target service. Specifically, I wish to investigate how to specify existing services as

well as target services; since the synthesis problem is usually undecidable, we wish

to understand under what restrictions the synthesis problem becomes decidable,

establish its complexity, and explore its practical feasibility.

Bibliography

[1] 2004. http://www.cs.ucsd.edu/˜lsui/project/index.html.

[2] S. Abiteboul, L. Herr, and Jan Van den Bussche. Temporal versus first-order
logic to query temporal databases. In Proc. ACM PODS, pages 49–57, 1996.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[4] S. Abiteboul, V. Vianu, B.S. Fordham, and Y. Yesha. Relational transducers
for electronic commerce. JCSS, 61(2):236–269, 2000. Extended abstract in
PODS 98.

[5] D. Berardi, D. Calvanese, G.De Giacomo, R. Hull, and M. Mecella. Automatic
composition of transition-based semantic web services with messaging. In
Proc. of the 31st Int. Conf. on Very Large Data Bases (VLDB 2005), pages
613–624, 2005.

[6] D. Berardi, D. Calvanese, G.De Giacomo, M. Lenzerini, and M. Mecella. Auto-
matic services composition based on behavioral descriptions. In International
Journal of Cooperative Information Systems (IJCIS), 2004, 2004.

[7] A. J. Bonner and M. Kifer. An overview of transaction logic. Theor. Comput.
Sci., 133(2):205–265, 1994.

[8] E. Borger, E. Gradel, and Y. Gurevich. The Classical Decision Problem.
Springer, 1997.

[9] BPML.org. Business process modeling language. http://www.bpmi.org.

[10] M. Brambilla, S. Ceri, S. Comai, P. Fraternali, and I. Manolescu. Specification
and design of workflow-driven hypertexts. Journal of Web Engineering, 1(1),
2002.

136

137

[11] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera.
Designing data-intensive Web applications. Morgan-Kaufmann, 2002.

[12] A. K. Chandra and M. Vardi. The implication problem for functional and
inclusion dependencies is undecidable. SIAM J. Comp., 14(3):671–677, 1985.

[13] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 2000.

[14] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithm for the verification of temporal properties. In Computer-Aided Ver-
ification, CAV ’90, 1990.

[15] DAML-S Coalition (A. Ankolekar et al). DAML-S: Web service description
for the semantic Web. In The Semantic Web - ISWC, pages 348–363, 2002.

[16] S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction. In
Computer Aided Verification (CAV), pages 160–171, 1999.

[17] H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V. Ramakrishnan. Logic
based modeling and analysis of workflows. In Proc. ACM PODS, pages 25–33,
1998.

[18] A. Deutsch, L.Sui, V.Vianu, and D.Zhou. A system for specification and
verification of interactive, data-driven web applications. In ACM SIGMOD
Int’l. Conf. on Management of Data, 2006. Demo.

[19] A. Deutsch, L.Sui, V.Vianu, and D.Zhou. Verification of communicating data-
driven web services. In ACM SIGMOD-SIGACT-SIGART Symp. on Princi-
ples of Database Systems (PODS), 2006.

[20] A. Deutsch, M.Marcus, L.Sui, V.Vianu, and D.Zhou. A verifier for interactive,
data-driven web applications. In ACM SIGMOD Int’l. Conf. on Management
of Data, 2005.

[21] A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-
intensive web services. In Proc. ACM PODS, pages 71–82, 2004.

[22] E. A. Emerson and A. P. Sistla. Deciding branching time logic. In STOC ’84:
Proceedings of the sixteenth annual ACM symposium on Theory of computing,
pages 14–24, New York, NY, USA, 1984. ACM Press.

[23] E. Allen Emerson. Temporal and modal logic. In J. Van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B: Formal Models and
Sematics, pages 995–1072. North-Holland Pub. Co./MIT Press, 1990.

138

[24] M. F. Fernández, D. Florescu, A. Y. Levy, and D. Suciu. Declarative specifi-
cation of web sites with Strudel. VLDB Journal, 9(1):38–55, 2000.

[25] D. Florescu, K. Yagoub, P. Valduriez, and V. Issarny. WEAVE: A data-
intensive web site management system(software demonstration). In Proc. of
the Conf. on Extending Database Technology (EDBT), 2000.

[26] P. Fraternali. Tools and approaches for developing data-intensive Web appli-
cations: a survey. ACM Computing Surveys, 31(3):227–263, 1999.

[27] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman,
1979.

[28] D. Georgakopoulos, M. F. Hornick, and A. P. Sheth. An overview of workflow
management: From process modeling to workflow automation infrastructure.
Distributed and Parallel Databases, 3(2):119–153, 1995.

[29] S. Graf and H. Saidi. Construction of abstract state graphs with pvs. In
Computer Aided Verification (CAV), pages 72–83, 1997.

[30] P. Graunke, R. Findler, S. Krishnamurthi, and M. Felleisen. Modeling web
interactions, 2003.

[31] Paul T. Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and
Matthias Felleisen. Modeling web interactions. In European Symposium on
Programming, 2003.

[32] Y. Gurevich. Sequential abstract-state machines capture sequential algo-
rithms. ACM Trans. Comput. Logic, 1(1):77–111, 2000.

[33] D. Harel. On the formal semantics of statecharts. In Proc. LICS, pages 54–64,
1987.

[34] G. Holzmann. The SPIN Model Checker - Primer and Reference (M)anual.
Addison-Wesley, 2003.

[35] R. Hull, M. Benedikt, V. Christophides, and J. Su. E-Services: a look behind
the curtain. In Proc. ACM PODS, pages 1–14, 2003.

[36] D. E. Knuth. The art of computer programming. Vol.3:(2nd ed.) Sorting and
searching. 1998.

[37] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach
to branching-time model checking. J. of ACM, 47(2):312–360, 2000.

139

[38] Daniel R. Licata and Shriram Krishnamurthi. Verifying interactive web pro-
grams. In IEEE International Symposium on Automated Software Engineer-
ing, 2004.

[39] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer Verlag, 1991.

[40] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer Verlag, 1995.

[41] G. Mecca, P. Merialdo, and P. Atzeni. Araneus in the era of XML. IEEE
Data Engineering Bulletin, 22(3):19–26, 1999.

[42] S. Merz. Model checking: a tutorial overview. 2001.

[43] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the weak
monadic theory of the tree, and its complexity. In International Colloquium
on Automata, Languages and Programming on Automata, languages and pro-
gramming, pages 275–283, New York, NY, USA, 1986. Springer-Verlag New
York, Inc.

[44] S. Nakajima. Verification of web service flows with model-checking techniques.
In International Symposium on Cyber Worlds (CW), pages 378–385, 2002.

[45] Srini Narayanan and Sheila A. McIlraith. Simulation, verification and auto-
mated composition of web services. In International World Wide Web Con-
ference (WWW), pages 77–88, 2002.

[46] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[47] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for
buechi automata with applications to temporal logic. Theoretical Computer
Science, 49:217–237, 1987.

[48] M. Spielmann. Abstract State Machines: Verification problems and complex-
ity. Ph.D. thesis, RWTH Aachen, 2000.

[49] M. Spielmann. Verification of relational transducers for electronic commerce.
JCSS., 66(1):40–65, 2003. Extended abstract in PODS 2000.

[50] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Symp. on Logic in Computer Science, 1986.

140

[51] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics
of programs. J. Comput. Syst. Sci., 32(2):183–221, 1986.

[52] D. Wodtke and G. Weikum. A formal foundation for distributed workflow
execution based on state charts. In Proc. ICDT, pages 231–246, 1997.

[53] P. Wolper. Constructing automata from temporal logic formulas: a tutorial.
pages 261–277, 2002.

[54] Workflow management coalition, 2001. http://www.wfmc.org.

[55] Web Services Description Language(WSDL 1.1), 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[56] Web Services Flow Language(WSFL 1.0), 2001. http://www-3.ibm.com/ soft-
ware/ solutions /webservices/pdf/WSFL.pdf.

[57] F. Yang, J. Shanmugasundaram, M. Riedewald, J. Gehrke, and A. Demers.
Hilda: A high-level language for data-driven web applications. In Proceed-
ings of the 22nd IEEE International Conference on Data Engineering (ICDE
2006), April 2006.

