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Abstract 

Modeling Macromolecular Assemblies 

Michael F. Kim 

 

Macromolecular assemblies are fundamental to most biological processes and 

here we attempt to improve the structural characterization of assemblies in the hopes that 

with new and improved models will produce functional insights on assemblies. 

Modeling of macromolecular assemblies begins with an analysis of the 

computational and experimental data available on the entire assembly, subcomplexes, 

individual subunits and the interactions between subunits. Having collected the data on 

the assembly, the next challenge is to integrate the disparate data to produce a structural 

model. Hybrid approaches, which integrate multiple sources of data, provide a way to 

increase the coverage and accuracy of structure modeling for macromolecular complexes. 

Fitting in with the theme of hybrid methods, Chapters 2 and 3 describe methods 

for modeling macromolecular assemblies, combining overall shape information (e.g., 

from cryo-electron microscopy) with interaction data (e.g., tandem affinity purification 

assays); and protein structures (or models) with NMR spectroscopy, respectively. 

Chapter 4 proposes an assessment strategy for structure modeling methods that 

provides a way to measure how much improvement is left to be made, instead of the 

traditional approach of measuring how much improvement was already made. This 

assessment strategy provides more information on the specific limitations of the method 

and provides specific insight into how to best improve the method. The strategy also 
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presents a more fair method of comparing competing methods that are assessed with 

different benchmark sets. 

Chapter 5 describes the representation of subunits and assemblies by systems of 

points and restraints, explores the assumptions that underlie using points and restraints to 

model macromolecular structures, describes the properties of binary and multiple docking, 

and models the structure modeling framework.  

The main contributions of this dissertation are two practical approaches for 

macromolecular assemblies; an assessment strategy that provides a more explicit 

description of the accuracy and limitation of assessed methods, improving the confidence 

with which the resulting models are used; and lastly, a deeper theoretical understanding 

of modeling macromolecular assemblies, including a path towards a more principled 

approach for integrating multiple sources of data.  
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1. Introduction 

While there are still many challenges in protein structure problem, this thesis 

focuses primarily on modeling macromolecular assemblies. Macromolecular assemblies 

are fundamental to most biological processes and here we attempt to improve the 

structural characterization of assemblies in the hopes that with new and improved models 

we will also provide functional insights on assemblies [1-3]. 

Modeling of macromolecular assemblies begins with an analysis of the 

experimental data available on the entire assembly, subcomplexes, individual subunits 

and the interactions between subunits. At the level of entire assemblies and subcomplexes, 

a number of large macromolecular structures are being solved at atomic resolution 

primarily by x-ray crystallography [4-7], and at lower resolution by electron cryo-

microscopy [8-10] and tomography [11, 12]. Interaction data can come from 

experimental methods, such as chemical cross-linking [13-15]; footprinting [16]; 

immuno-electron microscopy [17]; fluorescence resonance energy transfer (FRET) [18]; 

site-directed mutagenesis [19]; protein arrays  [20]; and yeast two hybrid [21, 22] as well 

as theoretical and bioinformatics methods [23-26]. Although the atomic structures are 

more informative, even a low-resolution configuration of subunits in an assembly is 

useful in biology and provides a starting point for a refinement by higher resolution 
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methods [27-33]. And lower resolution experimental methods, such as small-angle x-ray 

and neutron scattering [34] can also provide restraints to help refine higher resolution 

models. 

Having collected the data on the assembly, the next challenge is to integrate the 

disparate data to produce a structural model [1, 35]. Hybrid approaches, which integrate 

multiple sources of data provide a way to increase the coverage and accuracy of structure 

modeling for macromolecular complexes [1]. Throughout this work, we represent 

structures using points and the data on structures as spatial restraints as a unifying 

framework for representing heterogeneous sources of data. In this framework, subunits 

are represented by sets of points and possible assembly configurations are represented by 

configurations of these sets of points. Available data on structural features and 

relationships are then encoded by spatial restraints. These spatial restraints are then 

combined into a scoring function, which is then optimized to find the configuration (or 

ensemble of configurations) that is in least violation of these restraints and therefore in 

greatest agreement with the input data. 

Fitting in with the theme of hybrid methods, Chapter 2 takes a closer look at 

combining of overall shape information and interaction data to produce assembly models 

[36]. We use simplified models of assemblies and simulated experiments to describe the 

properties of the individual contributing experimental sources as well as their 

combination. We also demonstrate the extraction of spatial restraints from non-spatial 

data. Specifically, we take simulated tandem affinity purification data and translate the 

resulting lists of interacting subunits into spatial restraints on the listed subunits. 
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Continuing on the theme of hybrid methods, Chapter 3 describes the combination 

of protein structures (or models) with NMR fast-mapping data [37, 38]. As in the work 

on combining overall shape information with interaction data, we sought to use the 

available experimental data efficiently. We describe a method for mapping binding sites 

on to two subunits and then perform a restrained docking on the subunits to produce 

protein-protein docking results. We also demonstrate the utility of employing orthogonal 

information gathered by experimental means on the selection of more accurate models. 

Specifically, we employ the residue count data from the NMR experiments to help score 

the resulting docking configurations. 

Chapter 4 proposes a different way to assess modeling methods. For all structural 

modeling methods, the current methodology of measuring and reporting the accuracy of a 

method against a particular benchmark set could be improved to provide more 

information on the specific limitations of the method and the provide insight into how to 

best improve the method. Also, when competing methods are assessed with different 

benchmarks, it becomes difficult to fairly compare the two methods. For users of these 

modeling methods, having a more explicit description of the accuracy and limitation of 

the methods available will improve the confidence with which the resulting models are 

used. This new assessment strategy provides a way to measure how much improvement is 

left to be made, instead of the traditional approach of measuring how much improvement 

was already made. 

Chapter 5 details the assumptions that underlie using points and restraints to 

model macromolecular structures, describing the representation of subunits and 

assemblies by systems of points and restraints. This work also describes the properties of 
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binary and multiple docking systems modeled by this framework. Finally, this work aims 

to provide a path towards a more principled approach for integrating multiple sources of 

data. While abstract in nature, this chapter describes the theory behind much of the other 

work in this thesis and in so doing serves to relate the various themes together. 
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2. Assembly Structure 
Characterization from Shape and 
Subcomplex Data 

Electron tomography and cryo-microscopy are indispensable tools for the 

structural characterization of macromolecular assemblies. However, if the resolution of 

the assembly density map is lower than ~3 nm or the subunit shapes are unknown, the 

subunit configuration is difficult to determine. For such situations, we propose an 

approach that relies on affinity purification data (pulldowns) as well as the assembly 

density map. While affinity purification is commonly used for identifying protein 

interactions, we apply it here to extract spatial restraints on protein interactions. To do so, 

we rely on structure characterization by satisfaction of spatial restraints that (i) represents 

subunits as spheres, (ii) encodes information about the assembly shape, subunit excluded 

volume, pulldowns, and symmetry in a scoring function, and (iii) finds subunit 

configurations that satisfy the input restraints by an optimization of the scoring function. 

To assess the approach, the accuracy of the optimized configurations was mapped as a 

function of the variety of simulated restraints for two model assemblies. We find that it is 

generally possible to determine the packing of subunits in an assembly, given a relatively 
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modest number of pulldowns, the assembly shape, and the subunit excluded volumes. 

Thus, we suggest that complementing electron cryo-microscopy and tomography with 

pulldowns provides a way to bridge the resolution gap between the assembly shape and 

the subunit configuration.  

We are grateful to Maya Topf, Dmitry Korkin, Fred Davis, Damien Devos, Min-

yi Shen, and Ben Webb for many discussions about structure characterization by 

satisfaction of spatial restraints. We also acknowledge our collaborators, Brian Chait and 

Mike Rout, for providing biological context that inspired this study. 

2.1. Introduction 

The structures of a number of large assemblies are being solved at atomic 

resolution primarily by x-ray crystallography [4-7] or at lower-resolution by electron 

cryo-microscopy [8-10] and tomography [11, 12]. Although the atomic structures are 

more informative, even a low-resolution configuration of subunits in an assembly is 

useful in biology and provides a starting point for a refinement by higher-resolution 

methods [27-33].  

If the resolution of the assembly density map is lower than ~3 nm or the subunit 

shapes are unknown, the subunit configuration is difficult to determine without additional 

experiments. In particular, this problem frequently applies to electron tomography, which 

is especially suitable for studying macromolecular assemblies in their native cellular 

context [39] but whose resolution is currently limited to less than ~4 nm. To bridge the 

resolution gap between the assembly shape and the subunit configuration, the assembly 

density map can be integrated with several additional types of structural information [40, 
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41]. This information includes data from experimental methods, such as chemical cross-

linking [13-15]; footprinting [16]; immuno-electron microscopy [17]; fluorescence 

resonance energy transfer (FRET) [18]; small-angle x-ray and neutron scattering [34]; 

site-directed mutagenesis [19]; protein arrays  [20]; and yeast two hybrid [21, 22] as well 

as theoretical and bioinformatics methods [23-26] .  

In this paper, we focus on characterizing the subunit configuration by combining 

an assembly density map with one particular source of supplementary information, 

affinity purification assays. These pulldown experiments depend on a tagged protein 

subunit (the bait) of a complex. The bait and its non-covalently associated partners (the 

subcomplex) are first purified by affinity chromatography against the tag and then 

identified by gel electrophoresis and mass spectroscopy [17, 42]. Such affinity 

purification has been used to identify interacting proteins on large scale in yeast [43, 44]. 

In contrast to identification of protein interactions, here we exploit the pulldowns for 

structural characterization. Each affinity purification experiment, in principle, provides 

some information about spatial relationships among the subunits in the subcomplex. 

Specifically, all of the proteins identified in a single affinity purification experiment must 

be located within the expected volume of the subcomplex. Furthermore, each subunit in a 

subcomplex must interact directly with at least one other subunit in the same subcomplex. 

For a given assembly, many different subcomplexes can generally be generated by 

selecting each of the subunits within the assembly as the bait and by varying conditions 

under which the subcomplexes are purified.  

To integrate varied information about the structure of an assembly, we express the 

structure determination as an optimization approach. In this approach, we need to specify 
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a protein representation, a scoring function, and an optimization method. We use a 

simplified model with a protein subunit represented by a single sphere. This model can 

only reveal the configurations of and interactions between subunits, but not their 

individual conformations nor their relative orientations. Despite these limitations, the 

proposed representation allows us to encode the affinity purification data and low-

resolution assembly density maps as spatial restraints on the subunit configuration, which 

are then combined into a single scoring function (Figure  2.1). Next, the scoring function 

is optimized to find all subunit configurations that satisfy the input restraints. To assess 

the utility of the combination of the affinity purification data and the assembly density 

map, the accuracy of the optimized configurations was mapped as a function of the 

variety of simulated restraints for two model assemblies. 

Next, we describe in detail an approach to structural characterization by 

satisfaction of spatial restraints, as well as two model systems and analysis methods used 

in our calculations (Approach). We then compare the information content of different 

combinations of spatial restraints by assessing their predictive power for determining the 

native assembly structure (Results). We end by summarizing the main conclusions 

(Discussion). 
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Figure  2.1. Five Information Types 

Schematic representation of the five types of information that are assessed with respect to their utility for 

assembly structure characterization. First, the subunits and their excluded volume are indicated by yellow 

circles. Second, the assembly shape is indicated by a thick outline. Third, the shapes of two individual 

subcomplexes, each with four subunits, are shown in red and blue, and the largest diameter of the blue 

subcomplex is indicated by an arrow (proximity restraint). Fourth, the subunit interactions (connectivity 

restraint) in the red subcomplex are indicated by dotted lines. Fifth, the symmetry between two parts of the 

assembly is indicated by a vertical dashed line. 
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2.2. Approach 

2.2.1. Structure Characterization by Satisfaction of Spatial 

Restraints 

We express structure characterization as an optimization problem that calculates 

3D models consistent with the input information. The three components of this approach 

are (i) a representation of the modeled assembly, (ii) a scoring function consisting of the 

individual spatial restraints, and (iii) an optimization of the scoring function to obtain all 

possible models that satisfy the input restraints. We describe all three components next. 

2.2.2. Representation 

Each protein subunit is represented as a point. The subunit excluded volume is 

encoded as a restraint and is described in the next section. The two specific model 

assemblies used in this paper are described below. 

2.2.3. Scoring Function 

The most important aspect of structure characterization by satisfaction of spatial 

restraint is to accurately capture all available input information about the structure of the 

assembly. We approach this problem by translating all structural information into spatial 

restraints. We distinguish restraints on five different spatial features (Figure  2.1): (i) the 

subunit excluded volume, (ii) the assembly shape, (iii) the subunit proximity in the 

subcomplex (the proximity restraint), (iv) the subunit connectivity in the subcomplex (the 

connectivity restraint), and (v) the symmetry. The scoring function is defined as the sum 
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of all individual restraints, described in detail below. In summary, (i) subunit excluded 

volume restraints are expressed as lower bounds on all pairwise subunit distances; (ii) the 

proximity and (iii) connectivity restraints are expressed as pairwise upper distance 

bounds on the subunits within the subcomplex; (iv) the assembly shape restraints are 

expressed as lower and upper bounds on the absolute subunit coordinates; and (v) the 

symmetry restraints are expressed as distance restraints on two equivalent parts of the 

assembly.  

In the case of assemblies with multiple copies of the same subunit type (such as 

the proteasome), there is an ambiguity in the calculation of the proximity and 

connectivity restraints. For example, there are two copies of each subunit type in the 

proteasome and four distances between pairs of distinct types. In principle, a restraint on 

two distinct subunit types could apply to any one of these four pairs. We consider all 

assignments and only restrain the pair of subunits that leads to the smallest restraint 

violation. 

Subunit excluded volume restraint. The excluded volume restraint imposes a 

harmonic penalty if the distance between any two subunits is smaller then the sum of 

their radii (Table  2.1, row 1). 

Assembly shape restraint. Subunits can be localized only within a restricted 

volume in the shape of the target assembly. A harmonic penalty is imposed if the absolute 

subunit coordinates are below or above the corresponding lower or upper bounds, 

respectively (Table  2.1, row 2).  
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Subunit excluded 

volume restraint 

Violated for f < fo,, f is the distance between two subunits, fo is the sum of the 

subunit radii, and σ is 0.01 nm. 

Assembly shape 

restraint 

Lower bound: violated for f < fo, f is the subunit Cartesian coordinate, fo is the lower 

bound on this particular subunit coordinate, and σ is 0.1 nm.  

Upper bound: violated for f > fo, f is the subunit Cartesian coordinate, fo is the upper 

bound on this particular subunit coordinate, and σ is 0.1 nm. 

Subcomplex 

proximity 

restraint 

Violated for f > fo, f is the distance between two subunits in a pulldown complex, fo 

is the maximal subcomplex dimension, and σ is 0.1 nm. 

Subcomplex 

connectivity 

restraint 

Violated for f > fo, f is the distance between two subunits, fo is the sum of their radii, 

and σ is 0.1 nm. 

Table  2.1. Definition of First Four Restraint Types 

Each restraint term is equal to (f - fo)2 / �2, where f is the restrained feature, and � is the parameter that 

regulates the strength of the term. For upper feature bounds, the score is 0 for f > fo; for lower feature 

bounds, the score is 0 for f < fo. 

Subcomplex proximity restraint. We impose upper distance bounds on all pairs of 

subunits in a pulldown subcomplex (Table  2.1, row 3). The upper bound is the largest 

possible distance between two subunits in a subcomplex and is equal to the maximal 

diameter of the subcomplex minus the subunit radii. The same subunit pair may appear in 

multiple subcomplexes and therefore lead to several upper distance bounds. We keep 

only the smallest of all pairwise upper bounds. 

Subcomplex connectivity restraint. Each subunit in a subcomplex must contact at 

least one other subunit in the subcomplex. For example, in a subcomplex with n 

components, at least n-1 direct interactions must connect all of its subunits. We refer to 
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this condition as the connectivity restraint of a subcomplex. While the actual subunit 

contacts are unknown, all valid structural solutions must satisfy this restraint. For a given 

subcomplex, the restraint is applied with the aid of a minimal spanning tree as follows. 

We define a fully connected graph with the nodes corresponding to the individual 

subunits and edges with weights equal to the violation of the hypothetical contact (Table 

 2.1, row 4). We then find the minimal spanning tree such that the sum of the edge 

weights is minimal and all subunits are connected to at least one other subunit [45]. For 

each edge in the minimal spanning tree, we impose harmonic distance restraints 

enforcing the direct subunit contacts (Table  2.1, row 4). At each step of the optimization, 

we recalculate the fully connected graph and the minimal spanning tree for each 

subcomplex.  

Symmetry restraints. The similarity between the subunit configurations in each 

symmetry unit is enforced by imposing a term similar to the distance-root-mean-square 

(DRMS), Σij ωab (dij
a – dij

b)2 , where dij
a and dij

b are the equivalent distances between two 

subunits i and j in two symmetry related subunit configurations a and b, and ωab is the 

restraint weight set to 0.2. 

2.2.4. Optimization 

We generate subunit configurations by simultaneously minimizing violations of 

all restraints in Cartesian space. The aim is to obtain as many structures as possible that 

satisfy all input restraints. The generation of these models is stochastic. For each restraint 

set, we start from at least 10,000 completely randomized subunit configurations. We use 

an adapted version of the program MODELLERv7 [46]. 
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An optimized structure is obtained from a single optimization run in a series of 

steps: The initial Cartesian coordinates of all subunits are randomly distributed from -50 

to 50 nm, followed by conjugate gradients minimization of up to 500 steps and 

subsequent molecular dynamics with simulated annealing. The temperature of the system 

is increased from 100 to 1000 K within 50 time steps, kept constant for further 100 times 

steps, and gradually decreased to a temperature of 10 K in 300 time steps. This 

temperature is kept constant for another 50 time steps, followed by a final optimization 

by conjugate gradients of up to 1,000 steps.  

2.2.5. Model Systems 

We use two simple model systems. First, we study a compact assembly consisting 

of subunits packed in a cube (Figure  2.2). Second, we expand our calculations to a more 

realistic example, a low-resolution model of the proteasome (Figure  2.4).  

Cube model system. The cube assembly consists of 27 different subunits located 

at the grid points of a 6 nm x 6 nm x 6 nm lattice (Figure  2.2). All subunits are 

represented as hard spheres with radii of 1 nm. The assembly contains 54 distinct binary 

contacts shown as a contact map in Figure  2.3. For the assembly shape restraint, the 

shape is a cube with side lengths of 6 nm. For the subcomplex proximity restraint, the 

maximal distances between subunit centers in subcomplexes with 3 to 8 subunits are 4, 

4.47, 5.66, 6.00, 6.93, and 6.93 nm, respectively.  
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Figure  2.2. Cube Model System Native Structure 

The native cube assembly consisting of 27 different subunits each one represented by a single sphere with a 

radius of 1 nm. The subunits are located at the grid points of a 3x3x3 lattice. 

 

Figure  2.3. Cube Model System Native Contact Map 

The corresponding native contact map with 54 binary subunit contacts.  

Proteasome model system. The proteasome consists of 28 globular proteins of 14 

different types that are arranged in two identical pairs of rings (Figure  2.4). We 

approximate each protein by a single sphere with its radius (in nm) estimated from the 

total protein mass: r = 0.0726 M1/3, where M is the protein mass in Da and the coefficient 
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is determined based on masses and sizes of known protein structures. The sphere center is 

located at the center of mass of the corresponding protein in the x-ray structure of the 

proteasome [47]. For the assembly shape restraint, the shape is a cylinder with a height of 

16.2 nm and a radius of 3.3 nm. For the subcomplex proximity restraint, the upper bound 

is 1.35 times the estimated maximal subcomplex diameter (in nm) from the empirical 

relationship between the maximal diameter of a subcomplex and its total number of 

residues: D = 0.495 n1/3, where n is the total number of residues in the subcomplex. The 

parameter value of 0.495 was derived by fitting the function to the structurally defined 

protein assemblies in PIBASE [48], such that 95% of all complexes have predicted 

maximal diameters that are larger or equal to the actual diameters. 

 

Figure  2.4. Proteasome Model System Native Structure 

A low-resolution model of the proteasome with 28 protein subunits. There are 14 different protein types, 

each occurring twice. Each subunit is represented as a single sphere located at the gravity center of the 

corresponding protein in the crystal structure of the assembly [47]. The sphere radii are estimated from the 

number of residues in each protein (Approach). 
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Figure  2.5. Proteasome Model System Native Contact Map 

The corresponding native contact map with binary subunit contacts in the low-resolution proteasome 

structure. 

Simulation of pulldown subcomplexes. Subcomplexes are generated by an 

iterative random selection of subunits that are in direct contact with each other in the 

native structure. A starting point is a subunit that is selected as the bait of the subcomplex. 

The acceptance of a newly selected subunit is probabilistic; the probability for accepting 

a subunit is proportional to the inverse cube of the contact shell number, which is the 

smallest number of subunits that connect the selected subunit with the bait. A uniform 

selection probability would lead to artificially elongated subcomplexes, as the number of 

neighbors in higher contact shells grows rapidly.  

Generation of additional models. For some restraint sets (eg, derived from 

subcomplex sets 7 and 8 in Table  2.2c), the optimization protocol was unable to generate 

a sufficient number of structures that satisfied all the input restraints even in 500,000 

independent runs. In such cases, we increased the sample size needed for estimating the 

utility of various restraint sets for structure characterization as follows. We generated 
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3,000 additional structures from the native structure by swapping subunits between one 

and ten randomly selected subunit pairs in the assembly. For the proteasome model, each 

swap involved two pairs of subunits, one in each symmetry unit. If a structure satisfied all 

input restraints, it was added to the ensemble of good scoring structures generated in the 

optimization process. 

Subcomplex set 3 4 5 6 7 8 

 

a) Subcomplex proximity restraints 

Models satisfying 

input restraints [%] 

100.0 100.0 100.0 100.0 100.0 100.0 

Sensitivity* 22.2 16.6 18.5 20.3 37.0 37.0 

False positive rate* 52.2 35.7 41.2 50.0 54.4 71.0 

Fraction of 

correctly predicted 

models [%] 

0.0 0.0 0.0 0.0 0.0 0.0 

DRMS [nm]: 

Smallest, average, 

largest 

1.6, 1.9, 2.2 1.3, 1.6, 1.7 1.7, 1.8, 2.0 1.7, 1.7, 2.2 1.7, 1.9,2.2 1.6, 1.8, 2.0 

 

b) Subcomplex proximity and assembly shape restraints 

Models satisfying 

input restraints [%] 

3.4 1.3 16.0 25.4 36.0 20.7 

Sensitivity*^ [%] 48.0 61.0 40.7 57.0 62.9 46.3 

False positive 

rate*$ [%] 

18.8 23.3 46.3 57.5 75.0 77.7 

Fraction of 

correctly predicted 

models [%] 

0.0 1.0 0.0 0.0 0.0 0.0 

DRMS [nm]: 

Smallest, average, 

largest 

0.6, 1.2, 1.5 0.0, 1.1, 1.4 1.1, 1.4, 1.6 1.3, 1.5, 1.7 1.4, 1.6, 1.8 1.4, 1.7, 1.8 
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c) Subcomplex proximity, subcomplex connectivity, and assembly shape restraints 

 

Models satisfying 

input restraints [%] 

0.04 0.1 <0.1 <0.1 <0.1 <0.1 

Sensitivity*^ [%] 100.0 100.0 100.0 100.0 100.0 100.0 

False positive 

rate*$ [%] 

0.0 0.0 0.0 0.0 0.0 0.0 

Fraction of 

correctly predicted 

models [%] 

75.0 50.0 100.0 25 33.0 75.0 

DRMS 

[nm]:Smallest, 

average, largest 

0.0, 0.1, 0.5 0.0, 0.2, 0.5 0.0, 0.0, 0.0 0.0, 0.3, 0.4 0.0, 0.2, 0.7 0.0, 0.0, 0.0 

Table  2.2. Properties of Cube Models Satisfying All Input Restraints 

Properties of models satisfying all input restraints that are derived from the 6 subcomplex sets 3-8 (“Cube 

model system” in Results). Models are calculated using subunit excluded volume restraints and (a) 

subcomplex proximity restraints, (b) subcomplex proximity and the assembly shape restraints, and (c) 

subcomplex proximity, subcomplex connectivity, and the assembly shape restraints. 

* calculated using the reference frequency cutoff (Approach). 

^ sensititvity defined as TP/(TP+FN), where TP is the number of true positive contacts and FN is the 

number of false negative contacts. 

# specificity defined as TN/(FN+FP), where TN is the number of true negative contacts and FP is the 

number of false positive contacts. 

$ false positive rate defined as FP/(FP+TP), where FP is the number of false positive contacts and TP is the 

number of true postive contacts. 
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Subcomplex set 14 28 

Sensitivity^ 96.3 100.0 

False positive rate$ 0.0 0.0 

DRMS [nm]: 

Smallest, average, largest 
0.0, 0.8, 1.7 0.0, 0.0, 0.0 

Table  2.3. Properties of Proteasome Models Satisfying All Input Restraints 

Properties of models satisfying all input restraints that are derived from subcomplex sets containing 14 and 

28 subcomplexes (“Proteasome model system” in Results). Subunit excluded volume, assembly shape, 

subcomplex proximity, subcomplex connectivity, as well as symmetry restraints are applied (Approach). 

See the legend of Table  2.2 for the definitions of sensitivity and false positive rate. 

2.2.6. Analysis 

Analysis is performed only on models that completely satisfy all input restraints 

(good scoring models).  

Contact frequencies. A subunit contact is defined if the distance between the two 

subunits is smaller then the sum of their radii multiplied by a tolerance factor of 1.05. The 

contact frequency is defined as the ratio of the number of models with the contact and the 

number of all models.  

Receiver Operating Characteristic (ROC) analysis. The ability of different 

restraint sets to predict the native subunit interactions is ranked with the aid of the ROC 

curves [49]. For an ensemble of models calculated by a given restraint set, a subunit 

interaction is predicted if the corresponding contact frequency is sufficiently high (below). 

The accuracy of the predicted subunit interactions is quantified by calculating the true 
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positive rate (sensitivity) as well as the false positive rate (1-specificity) and plotting 

them against each other at 16 different cutoff values (the ROC curve). The area under the 

ROC curve represents the probability of correct classification over the whole range of 

cutoffs; it can range from 0.5 to 1. An area of 0.5 indicates that the structure calculation 

could not discriminate between the native and false contacts. If the area under the ROC 

curve equals 1, the method is able to predict the contact map of the native structure. The 

closer the ROC curve is to the upper left corner and the closer the integrated area under 

the curve is to 1, the higher is the overall accuracy of the calculations and the more 

informative the restraints are about the native contact map of the assembly. 

Reference frequency cutoff. This cutoff is defined as 56% of the largest contact 

frequency value present in a contact frequency map. This value was obtained by 

maximizing the sum of true positives and true negatives for the restraint set derived from 

subcomplex set 4 (Table  2.2a) and was adopted as a reference value for the analysis of all 

the restraint sets. Varying the reference cutoff value in a wide range from 30 to 90% does 

not change the ranking of the restraint sets by their utility in structure characterization. 

For convenience, the false positive rates and the number of correctly predicted contacts 

for each restraint set are determined using the reference frequency cutoff value. 

2.3. Results 

We rely on two simple model systems with globular protein subunits represented 

as single spheres (Approach). Our aim is to enumerate all subunit interaction networks 

and configurations that are consistent with subunit excluded volume, protein affinity 
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purification experiments, mass density maps determined by electron cryo-microscopy or 

tomography, and potentially symmetry (Approach) (Figure  2.1). 

We focus on the utility of affinity chromatography purification for structure 

characterization. In principle, each pulldown subcomplex contains some information 

about spatial relationships between its subunits (Approach). One such spatial restraint is 

the upper distance bound on any two subunits in a subcomplex, which we refer to as the 

“proximity restraint.” The dimension of a subcomplex may be derived from 

hydrodynamic experiments [50], small angle x-ray scattering [34], and negative-stain or 

electron cryo-microscopy images [8]. Another spatial restraint, the “connectivity 

restraint,” specifies that every subunit in a subcomplex must interact with at least one 

other subunit in the subcomplex. While the actual subunit interaction network is 

unknown, all valid structural solutions must satisfy this connectivity restraint.  

2.3.1. Cube Model System 

Our first model system is an assembly of 27 different subunits, represented as 

single hard spheres of identical radii in a cubic close-packed lattice (Figure  2.2). For each 

number of subunits per subcomplex from 3 to 8, we independently simulate 27 pulldown 

experiments with each subunit selected as the bait. The corresponding 6 sets of 27 

subcomplexes are labeled subcomplex sets 3 to 8 (columns 3 to 8, Table  2.2). These 

subcomplex sets allow us to investigate which subcomplex size is most informative about 

the structure of the assembly. 

We consider three combinations of restraint types: First, we use a combination of 

the excluded volume restraints for each subunit and the proximity restraints for each of 
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the 27 subcomplexes as the only information for structure characterization (Table  2.2a); 

second, we add the assembly shape restraint (Table  2.2b); and third, we also add 

subcomplex connectivity restraints (Table  2.2c). This sequential buildup of the scoring 

function allows us to isolate the individual contributions to the structural characterization 

of assemblies. 

Subcomplex proximity restraints 

We begin by considering only subunit excluded volume restraints and 

subcomplex proximity restraints calculated from 6 sets of subcomplexes with 3 to 8 

subunits per subcomplex (Approach). For each of the 6 restraint sets, at least 10,000 

random subunit configurations were optimized in an attempt to find those configurations 

that satisfy all input restraints (good scoring models). We then predict a subunit 

interaction if it occurs frequently in the ensemble of good scoring models. Finally, we 

rely on the Receiver Operating Characteristic (ROC) curves to rank the different restraint 

sets by their ability to correctly predict the native contacts. 
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Figure  2.6. ROC Curve for Proximity Restraints 

 

Figure  2.7. Average ROC Curve and Contact Map for Proximity Restraints 

The ROC curves for subcomplex sets 3 - 7 are similar to each other (Figure  2.6). 

The overall performance is poor, as indicated by the small integrated area under the ROC 
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curves that ranges from 0.7 to 0.8 for all subcomplex sets (Figure  2.12). Even for the two 

best performing subcomplex sets, 3 and 4, only respectively 12 and 14 out of the total of 

54 native interactions are predicted correctly (the corresponding false positive rates are 

~50% and 36%). This poor performance is also revealed by the 3D structural analysis of 

the models. The average DRMS deviation between models and the native structure 

ranges from 1.6 to 1.9 nm (Table  2.2). Therefore, it is not possible to correctly determine 

the assembly structure only by the subunit excluded volume and subcomplex proximity 

restraints.  

Subcomplex proximity and assembly shape restraints 

Next, we investigate the effect of adding the assembly shape restraint on the 

accuracy of our predictions. We use the same subcomplex sets 3-8, but now restrict the 

positions of the subunits to be within the assembly shape (a cube with side length of 6 

nm) (Approach). 

With the addition of the assembly shape restraint, the models are generally more 

compact. For some of the restraint sets, a substantial fraction of the native contacts can 

now be predicted correctly. For example, 26 of the 54 native contacts occur in 60% of all 

models calculated from the restraint set 3, with the false positive rate of 18.8%  (Table 

 2.3b; Figure  2.9). The number of subunits per subcomplex makes a significant difference 

in the utility of the corresponding restraints, as indicated by the spread of the ROC curves 

in Figure  2.8.  
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Figure  2.8. ROC Curve for Proximity and Shape Restraints 

 

Figure  2.9. Average ROC Curve and Contact Map for Proximity and Shape Restraints 

Subcomplex sets with a large number of subunits (eg, sets 7 and 8) perform worse 

with the assembly shape restraint than without it (cf, Figure  2.12a and Figure  2.11b). For 
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example, for subcomplex set 7, the integrated ROC area for subcomplex sets 7 and 8 

decreases from 0.78 to 0.71 and the false positive rate for subunit interaction prediction 

rises from 57% to 75% (subcomplex set 7 in Table  2.2). This finding is not surprising as 

the estimated diameter of subcomplexes with 7 and 8 subunits is similar to the maximum 

diameter of the assembly. Therefore, subcomplex sets 7 and 8 do not provide any 

additional structural information if the assembly shape is already specified. However, the 

increased number of contacts (both native and non-native) resulting from the reduced 

accessible volume increases the false positive rate and therefore decreases the prediction 

accuracy as quantified by a measure that depends on the subunit contacts. While it may 

be surprising that the accuracy of contact prediction from subcomplex sets 7 and 8 is 

decreased upon addition of the assembly shape restraint, other aspects of the predicted 

structures are improved; for example, the accuracy of the shape prediction (data not 

shown). 

In contrast, for subcomplex sets with a smaller number of subunits (eg, 

subcomplex sets 3 and 4), the prediction accuracy is strongly improved upon adding the 

assembly shape restraint. The highest accuracy is found for subcomplex set 4 (Figure 

 2.11), with 33 out of the 54 native contacts correctly determined, in comparison to the 

prediction of 12 native contacts without the assembly shape restraints. Also, the false 

positive rate drops from 36% to 23% and the integrated ROC area increases from 0.8 to 

0.96 (subcomplex set 4 in Table  2.2b). Correspondingly, the structural similarity among 

the models that satisfy the input restraints increases and their average DRMS deviation to 

the native structure is ~1.1 nm (Table  2.2). Approximately 1% of all models in 

subcomplex set 4 have all native contacts predicted correctly. 



 28

Subcomplex proximity, assembly shape, and subcomplex connectivity restraints 

Finally, we investigate the effect of adding the connectivity restraint on the 

accuracy of our predictions. Using the same subcomplex sets, we now enforce that each 

subunit in a subcomplex is connected to the rest of the subcomplex subunits via at least 

one direct contact (subcomplex connectivity restraints in Approach). For the subcomplex 

sets with a small number of subunits (3 and 4 components), the current optimization 

scheme provides a sufficient number of models for subsequent analysis. However, for 

larger subcomplex sets (between 5 and 8 subunits), we supplement the structures 

provided by the optimization scheme with additional structures (Approach) to improve 

the reliability of the results. 

 

Figure  2.10. ROC Curve for Proximity, Connectivity and Shape Restraints 
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Figure  2.11. Average ROC Curve and Contact Map for All Restraints 

 

Adding subunit connectivity restraints leads to a dramatic improvement in the 

accuracy of structure determination. The contact frequency maps for all subcomplex sets 

are almost identical to the contact map of the native structure (eg, Figure  2.3 and 6c). 

Indeed, for subcomplex set 3, all native contacts are reproduced in the good scoring 

models with a frequency of at least 75% (50 contacts with frequency 100% and 4 

contacts with frequency 75%). Hence, the integrated ROC area is ~1 for all subcomplex 

sets (Figure  2.11). Using the reference frequency cutoff value (Approach), we are able to 

determine the complete subunit interaction network of the native structure with a false 

positive rate of 0 (Figure  2.11 and Table  2.2c). Structural comparison between the native 

structure and all models that satisfied the input restraints revealed an average DRMS 

deviation ranging from 0.1 to 0.3 nm (Table  2.2c). Indeed, for all of the subcomplex sets, 

some of the predicted structures differed only by a single interchange of neighboring 
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subunits. Moreover, for the reference frequency cutoff, only models identical to the 

native structure have the contacts represented in the contact map. Therefore, the native 

structure can be identified reliably as the most frequently occurring predicted model. 

 

Figure  2.12. Integrated Area Under ROC Curves 

Integrated area under ROC curves for calculations with restraints derived from 6 different subcomplex sets 

3 to 8 (“Cube model system” in Results). Models are calculated using subunit excluded volume restraints 

and (A) subcomplex proximity restraints; (B) subcomplex proximity and assembly shape restraints; and (C) 

subcomplex proximity, subcomplex connectivity, and assembly shape restraints. 

2.3.2. Proteasome Model System 

Having demonstrated that it is possible to determine the 3D configuration of a 

simple model assembly, we turn our attention to the more realistic case of the proteasome.  
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Given the shape of the proteasome, a soft sphere representation of each of the 

proteins (one sphere per protein), and a new symmetry restraint (Approach), we assessed 

the information content of a relatively modest set of subcomplexes (with 14 and 28 

subcomplexes per subcomplex set) (Table  2.3). Each of these subcomplexes contained 

between 3 to 5 subunits, with an average of 4 subunits in each subcomplex set. Instead of 

calculating models by the optimization of the scoring function, we constructed 3000 

structures that differed from the native proteasome by a DRMS of 0.0 to 4.1 nm (Figure 

 2.13) (Approach). These structures were evaluated by the scoring function. All models 

with scores less than five times the score of the native structure were included in the 

analysis (Figure  2.13). 
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Figure  2.13. Structural Similarity vs. Sampling 

The structural similarity between the proteasome models and the native structure plotted against the 

corresponding model score derived from an input dataset containing 28 subcomplexes. All models with 

scores (au, arbitrary units) less than five times the score of the native structure were included in the analysis. 

The native structure is indicated in the lower left corner. 
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Figure  2.14. ROC Curve and Contact Map for 14 Subunits 

 

Figure  2.15. ROC Curve and Contact Map for 28 Subunits 
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With 14 subcomplexes, we were able to predict 55 out of the 57 native contacts 

with an error rate of 0, using the reference frequency cutoff (Table  2.3, Figure  2.14) 

(Approach). As expected, the subcomplex set with 28 subcomplexes performed even 

better, predicting the complete subunit interaction network (Table  2.3, Figure  2.15). For 

both cases, the integrated ROC area is ~1, indicating the highly discriminative power of 

the scoring functions (Figure  2.14 and Figure  2.15). The scoring function derived from 14 

subcomplexes allowed several models that differed only by a single interchange of 

neighboring spheres. These models differed on average by a DRMS of 0.8 nm from the 

native structure. Again, only the native structure contained all predicted direct 

interactions, which would allow us to determine the native structure without knowing the 

correct answer in advance. 

2.4. Discussion 

We showed that it is generally possible to determine the subunit packing in 

assemblies at low-resolution using as sources of spatial information an appropriate 

representation of the individual subunits, the assembly shape, and only a modest number 

of subcomplexes (Table  2.2, Figure  2.6, Figure  2.8, Figure  2.10). This goal is achieved by 

the satisfaction of spatial restraints that depends on a subunit representation, a scoring 

function, and an optimization (Approach). 

Information about the coarse shape of the individual subunits can be provided by 

several methods, including hydrodynamic experiments [50], small angle x-ray scattering 

[34], negative-stain or electron cryo-microscopy images [8], and bioinformatics. If such 

analyses are unavailable, the upper bound on the size can be estimated from the mass of a 
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subcomplex. The shape of the assembly can be characterized by a variety of imaging 

techniques, such as electron cryo-microscopy and tomography. However, these imaging 

methods sometimes lack the resolution to provide the subunit configuration. We suggest 

that complementing these imaging techniques with protein affinity purification 

experiments may provide a way to bridge the resolution gap between assembly shape and 

subunit configuration.  

In our calculations, we used restraints on five different spatial features, including 

subunit excluded volume, assembly shape, subunit proximity in a subcomplex (proximity 

restraint), subunit connectivity in a subcomplex (connectivity restraint), and symmetry. 

None of these restraint types are sufficient on their own for the accurate determination of 

the native assembly structure. However, when all of them are integrated into a single 

scoring function, the correct subunit configuration can be determined. The subcomplex 

connectivity restraint in particular is especially useful for accurate structure determination 

(Table  2.2, Figure  2.2 and Figure  2.3). While the subcomplex proximity restraint is 

helpful, it is not as informative as the connectivity restraint (Table  2.2, Figure  2.2 and 

Figure  2.3). 

Our analysis depends on sufficiently thorough sampling of the subunit 

configurations that are consistent with all input restraints. However, once a sufficient 

sampling is achieved, the analysis is independent of the optimization method. The current 

optimization protocol provides from hundreds to thousands of configurations that satisfy 

all the restraints derived from most of the subcomplex sets, which we suggest is sufficient 

for a coarse ranking of the information content of the different restraint sets (Table 

 2.2a,b). The exceptions are the restraint sets that include subcomplex connectivity 
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restraints for large subcomplexes (subcomplex sets 5 to 8 in Table  2.2c), which result in a 

combinatorial explosion in the number of possible minimal spanning trees per 

subcomplex. In principle, this expansion of the search space requires more sampling to 

find good-scoring solutions. However, we circumvented this problem by constructing 

additional good scoring structures based on the native structure (Approach).  

In the future, testing of our approach could be expanded in a variety of ways. First, 

we have not exhaustively explored all combinations of different restraint types. For 

example, we could assess the information content of various combinations of pulldown 

sizes. Second, we have not yet mapped the accuracy of the structure determination as a 

function of the error in the simulated restraint sets. This objective can be achieved by 

using the same approach as described here, except that some error is introduced in the 

simulated restraints. Third, we did not study ways to minimize the impact of errors in the 

input restraints. When the fraction of incorrect restraints is small, we expect that it will be 

possible to identify incorrect restraints by the inability to find models that are consistent 

with all of the restraints. We could also employ jack-knifing to identify incorrect 

restraints. Fifth, we will apply our approach to real assemblies with real data. Large scale 

tandem affinity purification experiments may provide a way to do so. 

This study is part of our effort to develop and apply a computational system for 

enumerating structures of protein assemblies that are consistent with all available 

information from experimental methods, physical theories, and statistical preferences 

extracted from biological databases [40, 41]. We are currently introducing structural 

representations at multiple levels of resolution. This extension will allow us to use 

pulldown information together with other sources of spatial information, such as density 
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fitting, computational docking, and cross-linking. The resulting integrated system will 

maximize efficiency, accuracy, resolution, and completeness of the structural coverage of 

protein assemblies. 

2.5. Future Directions 

Two of the future directions for this study would be the application of the ideas in 

this study to more realistic model systems, and to integrate these spatial restraints into a 

larger context. The both of these directions are already being pursued in Andrej Sali’s lab 

with continued work on the structure of the nuclear pore complex (NPC) and the 

development of the Integrated Modeling Platform (IMP). 

Another future direction would be to develop a practical, systematic procedure 

that takes as an input an underdetermined system of restraints and iteratively specifies the 

next most informative experiment. In principle, this could be done by performing a 

greedy optimization over the information content of the data from each proposed 

experiment. 

 



 38

3. Protein-Protein Docking using 
Residue Content Data from NMR 
Spectroscopy 

Macromolecular complexes are fundamental to most biological processes, but 

their structures are difficult to determine experimentally or predict computationally. 

Previously, we reported a methodology for using NMR spectroscopy to identify protein 

binding sites by the combinatorial labeling of selective amino acid residue types.  Here, 

we extend this approach by developing a computational method for determining 

heterodimeric configurations, given the amino acid residue content of the binding sites 

and the known or modeled subunit structures. First, we identify the interacting binding 

sites based on the labeled amino acid residue types by exhaustively sampling each 

subunit surface. Second, we dock the subunits, restraining the identified binding sites to 

form an interface. Third, we score each of the resulting configurations by geometric 

complementarity as well as the difference between the modeled and experimental residue 

content. Lastly, we obtain the final configuration by a clustering analysis. Our 

benchmarking demonstrates that (i) a binding site may be successfully identified with as 

few as 3 labeled residue types, (ii) certain combinations of residue types yield a more 
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accurate and precise configuration of the complex than others, and (iii) the final 

configuration is generally within 3.5Å rmsd from the native complex. Therefore, the 

residue content of binding sites can provide sufficient information to determine an 

accurate configuration of a heterodimeric complex. In addition to improving the 

structural coverage of complexes, our method also allows us to incorporate other sources 

of spatial information to model higher-order complexes, and to form hypotheses for 

further experimental and computational inquiry. 

We are grateful to Vincent Voelz and John Chodera for their many suggestions. 

3.1. Introduction 

Macromolecular complexes perform many important biological functions and 

provide layers of complexity in biological systems. Elucidating the structure of these 

complexes might provide a mechanistic picture of their function and a more holistic view 

of their relationships within a larger systems context.  To date, approximately 15% of the 

protein structures deposited in the Protein Data Bank (PDB) [51] are heteromultimers, 

and, of these, a large portion are proteins that are not transient in their associations (e.g., 

antibodies, multi-chain enzymes).  This highlights an opportunity for the determination of 

protein complexes starting from the solved structures of individual domains involved in 

protein complexes or those that can be accurately modeled from closely related structures 

[52-54]. It would therefore be useful to have a method that can quickly combine available 

knowledge of subunit structures with new, easily collectible, experimental data to provide 

models of macromolecular complexes that can be used to assist in the design of further 

biological experiments. 
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Existing approaches for the structural characterization of macromolecular 

complexes include experimental and computational approaches [55]. While high 

resolution experimental techniques (i.e., X-ray crystallography, NMR spectroscopy) 

provide the most accurate characterization of complexes and are being used to solve 

increasingly larger complexes, they can be very difficult and expensive and are still 

limited in the sizes of complexes that they can address (especially for NMR). Approaches 

such as electron microscopy and electron tomography can provide data on larger 

complexes, but often lack the atomic level of detail of the higher resolution approaches 

[11, 56]. While purely computational approaches for protein-protein docking [57, 58] do 

provide atomic level models, they generally lack the accuracy to be reliably used to direct 

further inquiry.  

Hybrid approaches, which integrate multiple sources of data provide a way to 

increase the coverage and accuracy of structure determination for macromolecular 

complexes [1]. These approaches range from combining two techniques (e.g., fitting 

structures or models into density maps from cryo-electron microscopy [59, 60]) to 

combining many different sources of data (e.g., as used to determine the arrangement of 

subunits in the nuclear pore complex [35, 61]). 

The hybrid method described in this study efficiently determines heterodimeric 

complexes, using data from NMR spectroscopy and the known or modeled structures of 

subunits. Previously, we developed a methodology that combines specific isotopic 

labeling strategies with heteronuclear NMR chemical shift changes to quickly map the 

binding sites of a protein-protein complex [38]. This NMR method enables the efficient 

identification of binding sites without prior backbone assignment of the protein of interest.  
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This goal is achieved by comparing spectra of samples selectively labeled by amino acid 

residue type in free and complexed forms. Our hybrid method combines the residue 

content data resulting from the NMR method with the solved or modeled structures of the 

subunits to inform a docking procedure for heterodimeric configurations. The 

configurations produced by our method for our benchmark set are within 3.5Ǻ rmsd of 

the native structures, which is sufficient to inform future experimental studies, for 

example, to generate further biophysical data that may further improve the structural 

model, or to predict mutations that may have a specific affect on function. 

3.2. Results 

Our method consists of four stages (Figure  3.1): first, identifying the interacting 

binding sites; second, docking the subunits by restraining the identified binding sites; 

third, scoring each of the resulting configurations; and lastly, selecting the final 

configuration by a clustering analysis.  



 42

 

Figure  3.1. Method Flowchart 

The inputs to the method are structures (or models) of the two subunits (in red and blue) and chemical shift 

data for each subunit. After identifying the binding sites on each subunit (region in yellow), we perform 

restrained docking, generating an ensemble of models. Then, we score each of the models (here using color 

intensity to represent the hypothetical scores) by their consistency with the geometric restraints and their 

ability to predict the chemical shift data. Lastly, we cluster the solutions and select the final configuration. 
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3.2.1. Binding Site Identification 

The first goal of our method is to determine as quickly and unambiguously as 

possible which sites on the protein surfaces are the binding sites. Because the acquisition 

of NMR experimental data is the most time-consuming part of such work, we sought to 

maximize the information contained in a given number of labeling experiments, allowing 

the experimental design to be streamlined. Specifically, we sought the set of residue types 

that minimizes the uncertainty about the binding site locations. This aim is achieved by 

searching over the space of possible sets of labeling experiments. 
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Figure  3.2. Automated Identification of Interfaces 

A) The vast majority of the highest-scoring interfaces as determined by our method share >50% identity 

with the actual interface, and 46% sharing >70% identity.  In part, this is due to the robustness of the input 

information, as the average identity (plotted on the x-axis) of an interface composed of a random 

combination of residues is often greater than 50%.  However, our method usually exceeds what could be 

expected from simple chance. 
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B) In many cases, data from three residue-types can yield sufficient restraints to correctly identify an 

interface.  In such cases, optimizing the labeling strategy for potential information content is important, 

however, the data of a combination of any four or more residues yields remarkably similar results. 

 

Using a database of 500 heterodimeric structures deposited in the PDB, we tested 

the information content of hypothetical labeling experiments for each of the 9 residue 

types we previously used in our fast-mapping method (Arg, His, Ile, Leu, Lys, Met, Phe, 

Tyr, and Val). Once residue content data for 4-5 residue types has been collected, 

additional experiments yield almost no non-redundant information. Furthermore, any 

combination of 4-5 residue types generally provides an equivalent reduction in 

uncertainty, which indicates the robustness of this type of information. 

Having theoretically demonstrated that the binding site residue content data 

should be able to identify binding sites, we sought to develop a method for localizing a 

binding site using this data. Our binding site localization method exhaustively searches a 

protein surface for regions that contain the exact number of each residue type given as 

input and outputs a scored clustering of possible binding sites (Figure  3.1, Figure  3.12). 

While a simple conceptual problem, identifying clusters of given residue types on an 

irregular protein surface represents a complex topological problem. We overcame this 

problem by projecting a given protein’s surface to a continuous two-dimensional 

coordinate system (i.e., a fixed-radius spherical coordinate system).  All combinations of 

residues in a given structure corresponding to the input residue content are searched 

exhaustively and scored as described in Materials and Methods. 

To test our binding site identification method, we created a non-redundant 

database of the surface information of heterodimeric complexes whose structures have 
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been deposited into the PDB. We then used our binding site localization method on each 

of 500 interfaces of heterodimeric complexes from our database, and checked the 

identities of the top-scored binding sites by clustering the solutions from our method and 

comparing the clusters to the correct binding site (Figure  3.2A). In 75% of the test cases, 

the top scored cluster of binding sites shared a minimum of 50% identity with the correct 

binding site, which we took as the minimum value to identify the correct binding site.  

The average accuracy was 63%, and 46% of the clusters had an accuracy greater than 

70%.  If the top three scored clusters were examined, the success rate jumped to 90%. 

In examining the performance of our binding site-searching algorithm, two 

special cases are of interest. First, it is possible that the majority of the potential binding 

sites with a given residue content will share significant identity with the actual binding 

site. Under these conditions, it becomes impossible to pick an incorrect solution; i.e., the 

location of the site is completely determined by the residue content. This case is more 

likely to occur in smaller proteins (<200 residues) which tend to have few (or none) of 

the more rare residues. However, we see such cases even in larger proteins. For instance, 

in the interaction of β-lactamase with a protein inhibitor (262 and 273 residues, 

respectively; PDB: 1JTD), the residue content of the inhibitor’s binding site limited the 

potential sites to 5.5x105, 100% of which shared a minimum 50% identity with the 

correct site. Not surprisingly, the top predicted cluster shared 90% identity with the 

correct site. However, the residue content of the β-lactamase chain was much more 

limiting, with 4.7x109 potential sites, only 1.9% of which shared a minimum 50% 

identity with the correct site. The top scored cluster predicted by our method shared 63% 

identity with the correct site (the second scored cluster shared 70% identity). 
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The second case is the failure of our method to identify a binding site with any 

overlap with the correct site. While our method successfully identified the correct site in 

90% of the tested cases, rarely the residue content did not allow the differentiation of a 

decoy site from the correct site. For instance, in the structure of cell-cycle dependent 

kinase 6 with cell-cycle inhibitor p19INK4d (PDB: 1BLX), the top-scored clusters 

identified a surface of the kinase uninvolved in its interaction with p19INK4d (Figure 

 3.3). This decoy region of the surface is similar in area and residue content to the correct 

binding site and thus cannot be distinguished from the correct site by our scoring metric. 

To differentiate the two sites, we need additional experimental data. Here, our method 

can guide the design of these additional experiments (e.g., the assignment of one of the 

residues in the putative site). 

To measure the information an individual residue type is providing to our method, 

we repeated our search on 120 high-scoring test cases, testing the accuracy of the sites 

predicted with incremental amounts of data, adding the content of each residue-type 

incrementally, in the order predicted to yield the best solution by our information 

theoretic model.  Consistent with our theoretical model little marginal improvement is 

realized after the addition of data for 5 or more residue types (Figure  3.2B). Together, 

these data gave us confidence in our method’s ability to predict binary protein interfaces. 
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Figure  3.3. cyclin-dependent kinase 6 and p19INK4d 

The residue content and surface area of the correct interface (green spheres) between cyclin dependent 

kinase 6 (grey) and p19INK4d (pink) is similar to the decoy (yellow spheres), making it difficult for our 

method to determine between the two without additional data. 

3.2.2. Restrained Docking 

We wished to test whether the top scoring binding sites generated by our surface 

search could be used as restraints in the docking of two subunit structures. While labeling 

only a few residue types is an efficient way of identifying the site of an interface, docking 

two subunits using restraints derived from such sparse data can result in biased 
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configurations, depending on the specific distribution of labeled residues in the binding 

sites. To solve the problem of docking subunits using restraints derived from 

incompletely defined binding sites, we restrained models using the geometric centroid of 

a predicted interface (Figure  3.4). This centroid-driven approach creates a set of restraints 

evenly distributed over a predicted binding site, minimizing biases that might be 

introduced by sparse data. 

 

Figure  3.4. Ambiguous Binding Sites and Restrained Docking 
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A) Because of the sparse labeling data (circles), we necessarily define ambiguous binding sites on each of 

the subunits (shapes, binding sites in blue and red shading). Here we also label the unweighted geometric 

centroid of the labeled residues with a filled square. 

B) Were we to use only the labeled residues to generate restraints for restrained docking, we would bias the 

resulting configurations.  

C) By including restraints on the centroid of the interface and restraining all of the residues around that 

centroid, we avoid biasing the final configuration. 

Our restraint-based docking method consists of three steps: defining spatial 

restraints on the two subunits and their binding sites, randomizing the initial positions of 

the two subunits, and optimizing the relative orientation of the two subunits using the 

defined spatial restraints (Materials and Methods). Our restraint-based docking method is 

independent of the particular restraint definition, optimization and scoring program. We 

implemented our method as a part of IMP (http://salilab.org/imp/). 

To avoid compounding errors due to our initial ambiguous identification of the 

binding sites, for each binding site, rather than using the calculated centroid directly, we 

use it to search for an optimal centroid.  For each subunit, we create an initial set of seed 

centroids based on the calculated centroid by translating it 1-6Å along the protein surface 

in various directions, which covers an approximate 36 π Å2 surface area. For each 

combination of two initial seed centroids (one for each subunit), we generate 50 

independent configurations of the complex and score them by the difference between the 

modeled and experimental residue content. From the top 500 scoring models, we select 

the seed centroid with the highest number of top scores and generate 2000 independent 

configurations for further analysis.  
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Figure  3.5. 3EZA Centroid-Driven Docking Summary 

A) Superposition of the representative native-like solution (light blue) and the native structure (dark blue). 

The final solution is less than 3.5Å rmsd from the native structure. 

B) Superposition of the representative decoy solution (pink) and the native structure (dark blue). The decoy 

solution is rotated almost 180º from the native structure. 

C) Enrichment plot of the three scoring functions. 
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3.2.3. Model Scoring 

To evaluate the configurations generated by docking, we define three scoring 

functions. The geometric score is determined by the violations of the spatial restraints 

used to optimize the model. The residue-content score was calculated as the sum of the 

differences between the experimental and modeled numbers of residues in the complex 

interfaces (defined here as within 5Å of the opposite subunit, as a conservative estimate 

of those residues that would undergo chemical shift changes). We combine these two 

scores into a hybrid score by linearly scaling each score between zero and one, and taking 

the arithmetic average of the two scores. 

PDB 3EZA 1GGR 1BRS 1A0O 1UGH 

Yield <3.5Ǻ rmsd 13% 19% 3% 4% 37% 

Geometric Score (top 200) 28.5% (2.2) 58.5% (3.0) 0.0% (0.0) 1.5% (0.4) 73.5% (2.0)

Residue Content Score (top 200) 36.5% (2.8) 38.5% (2.0) 17.5% (5.9) 16.0% (4.1) 46.5% (1.2)

Hybrid Score (top 200) 54.5% (4.1) 42.0% (2.2) 14.0% (4.7) 14.5% (3.7) 58.0% (1.6)

Table  3.1. Summary of Test Cases 

For each of the five test cases, we summarize the efficiency of the restrained docking method by the yield 

of configurations <3.5Ǻ rmsd. For each scoring function, we list the percentage of native-like 

configurations found and the enrichment for native-like configurations, in parentheses.  

 

To validate our approach, we tested our restrained docking on the complex of 

Enzyme I with HPr (PDB: 3EZA), which could not be accurately modeled directly using 

the sparse interface restraints (Figure  3.6).  Using the structures of the unbound subunits 

(PDBs: 1ZYM, 1POH), we simulated the collection of fast-mapping data by filtering 

available chemical shift perturbation data (refs) for the above nine residue types to define 
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the residue content. We used this simulated residue content data with our method as 

previously described. Then, we scored the configurations with the restraint-based 

geometric score, and calculated the enrichment of configurations with main chain atoms 

<3.5Å rmsd of the native structure (Figure  3.5C). Approximately 13% of the 

configurations produced were within this cutoff, but we achieved only a 2.2-fold 

enrichment, resulting in 57 native-like configurations (28.5%) among the top 200 

configurations using the geometric scoring (Table  3.1). Having demonstrated that the 

residue content provides sufficient information to localize a binding site, we asked 

whether a simple scoring function that compared the residue content of a given 

configuration’s interface to the experimental data could differentiate between native and 

decoy configurations. 
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Figure  3.6. 3EZA HADDOCK Docking Summary 

A) Running HADDOCK with restraints generated by “ambiguous interfaces” produces only a decoy model 

(pink), rotated ~90° from the native structure (blue).  B) The same decoy, (view rotated 180°) with the 

residues used as ambiguous restraints highlighted in pink and blue-grey.  Residues that were ignored as 

ambiguous restraints due to a theoretical lack of data (i.e. that could not have been specifically isotopically 

labeled and measured by fast-mapping) are highlighted in yellow. 

 

Using the residue content score, we were able to achieve a 2.8-fold enrichment, 

resulting in 73 native-like configurations (36.5%) among the top 200 configurations in 

the 3EZA case, which was higher than the enrichment found by the geometric score. We 

then measured the effect of combining the two orthogonal scoring methods. For the 

3EZA case, using the hybrid score, we achieved synergistic results, yielding a 4.1-fold 

enrichment, resulting in 109 (54.5%) among the top 200 configurations. We repeated our 

method with four other cases (Table  3.1, Figure  3.7, Figure  3.8, Figure  3.9, Figure  3.10). 

In each case, our centroid-driven docking method was able to produce configurations that 

closely resembled the native structure. 
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Figure  3.7. 1GGR Centrod-Driven Docking Summary 

A) Superposition of the representative native-like solution (light blue) and the native structure (dark blue). 

The final solution is less than 3.5Å rmsd from the native structure. 

B) Superposition of the representative decoy solution (pink) and the native structure (dark blue). The decoy 

solution is rotated almost 180º from the native structure. 

C) Enrichment plot of the three scoring functions. 
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Figure  3.8. 1A0O Centroid-Driven Docking Summary 

A) Superposition of the representative native-like solution (light blue) and the native structure (dark blue). 

The final solution is less than 3.5Å rmsd from the native structure. 

B) Superposition of the representative decoy solution (pink) and the native structure (dark blue). The decoy 

solution is rotated almost 180º from the native structure. 

C) Enrichment plot of the three scoring functions. 
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Figure  3.9. 1BRS Centroid-Driven Docking Summary 

A) Superposition of the representative native-like solution (light blue) and the native structure (dark blue). 

The final solution is less than 3.5Å rmsd from the native structure. 

B) Superposition of the representative decoy solution (pink) and the native structure (dark blue). The decoy 

solution is rotated almost 180º from the native structure. 

C) Enrichment plot of the three scoring functions. 
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Figure  3.10. 1UGH Centroid-Driven Docking Summary 

A) Superposition of the representative native-like solution (light blue) and the native structure (dark blue). 

The final solution is less than 3.5Å rmsd from the native structure. 

B) Superposition of the representative decoy solution (pink) and the native structure (dark blue). The decoy 

solution is rotated almost 180º from the native structure. 

C) Enrichment plot of the three scoring functions. 
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3.2.4. Clustering Analysis 

We also verified that our method produces a sufficiently high concentration of 

native-like solutions by a clustering analysis (detailed in Materials and Methods). For 

each test case, we reported the number of native-like configurations and the number of 

significant clusters (i.e., clusters containing at least 10% of the models) found by 

clustering the models at four levels: the top-scoring 200, 500, 1000 and all 2000 models 

(Table  3.2). For the 3EZA case, we see that at each of the levels we have no more than 

four significant clusters of solutions, and for the top 200 scoring configurations, 124 of 

them (62.0%) are native-like. 

PDB top 200 top 500 top 1000 top 2000 

3EZA 124 (2) 219 (4) 381 (4) 812 (3) 

1GGR 135 (2) 281 (2) 506 (2) 878 (2) 

1BRS 32 (3) 73 (4) 152 (4) 379 (6) 

1A0O 36 (3) 106 (3) 182 (3) 356 (4) 

1UGH (raw) 70 (3) 197 (4) 422 (4) 501 (4) 

1UGH (corrected) 123(2) 297 (3) 605 (3) 790 (4) 

Table  3.2. Summary of Clustering Analysis 

For each of the five test cases, we summarize the clustering analysis by reporting the number of native-like 

models and the number of clusters with at least 10% of models, in parentheses. 

 

3.2.5. Integrating Additional Experimental Data 

While subsequent refinement of the rigidly docked configurations in explicit 

solvent allows physics-based methods to better differentiate between native and decoy 
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configurations, even without this more expensive computational step, the set of 

configurations can suggest future experimental steps for conclusively identifying the 

correct model. For example, in the 3EZA test case, clustering the top 10% of the models 

reveals 4 clusters, of which only the top two are significantly populated (the native-like 

cluster and a decoy cluster with 62% and 25% of the models, respectively). By measuring 

the distance between the side-chain hydroxyl atoms of S210 of chain A and T30 of chain 

B, we could decisively distinguish which of the two clusters was the correct solution 

(Figure  3.11A). Measuring this distance in the native structure yielded a distance of 51Å. 

We repeated our docking with this single additional distance restraint, together with a 5% 

error, to simulate its measurement by a technique such as fluorescent resonance energy 

transfer. The resulting solutions find that only the first, native-like, cluster remains 

significantly populated (Figure  3.11B). This result is consistent with our experience in 

modeling the interface between PSD-95 and microtubule associated protein 1a, in which 

our fast-mapping data, combined with 2 upper-bound distance restraints derived from 

paramagnetic relaxation enhancement data provided sufficient restraints to generate 

models populating only a single structure [37]. 
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Figure  3.11. Adding One Unambiguous Distance Restraint 

A) By adding a single long-range distance restraint between two atoms to our centroid-driven docking we 

were able to test whether this could discern between the decoy (pink) and native-like (blue) solutions.  Here 

we show the value of the native-like distance (between green and blue spheres) and the decoy distance 

(between the green and pink spheres). 

B) Such a docking strategy yields a single dominant cluster of native-like solutions. Where the standard (in 

blue) docking procedure has four significantly populated clusters and the augmented (in red) docking 

procedure only has the native-like cluster remaining. 

 

3.3. Discussion 

Our benchmarking of binding site identification demonstrated that our method can 

successfully identify a binding site with as few as 3 labeled residue types, and that certain 

combinations of residue types yield a more accurate and precise configuration of the 

complex than others. As expected, the predicted information content of the labeling of a 
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specific amino acid correlates with its surface distribution on the molecule. Those 

residues that are more common but unevenly distributed yield greater potential 

information about the location of an interface on the surface of the protein. This 

observation suggests that residues that are common, likely to be surface exposed, but less 

likely to pack in protein-protein interfaces would be the ideal candidates for our mapping 

experiments. However, while the interface-content of such residues as serine, threonine, 

asparagine, and glutamine potentially may provide the most information, these residues 

are difficult to isotopically label using conventional methods due to metabolic 

“scrambling” of the label. However, such difficulties are circumvented by cell-free 

protein synthesis methods [62], greatly increasing the number of potential residue-

specific isotopic labeling strategies. Still, as we have demonstrated that any three to six 

experiments can positively identify an interface (Figure  3.2B), choosing a labeling 

strategy that yields the greatest amount of information becomes less important.  

Our benchmarking of the restrained docking demonstrated that our method can 

efficiently produce a final configuration within 3.5Å rmsd from the native complex. We 

also demonstrated that the residue content of an interface not only may be used to 

identify binding sites, but provides a useful scoring metric in the evaluation of 

computational docking of protein-protein complexes. Also, as this residue content data is 

available in most experimentally restrained docking, but is currently discarded, 

incorporating residue content data can provide an additional potential crosscheck between 

a model and the experimental data. Finally, we demonstrated that the results from our 

method are of sufficient accuracy to serve as the starting point for future experiments that 

can completely differentiate between native and decoy configurations.  
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As the experimental fast-mapping data may be collected very quickly, and require 

very little analysis (i.e., no assignments), our method provides an attractive path to 

structure-based experimental design. While most methods are applied to stable 

complexes, our method can also be used to address the more difficult case of transient 

associations of macromolecules. Also with recent advances in NMR, such as methyl-

TROSY [63], the molecular weight limit of the models that may be studied has 

drastically increased, further extending the coverage of our method. In practice, the major 

issue often becomes spectral dispersion, which our specific labeling strategy avoids. We 

estimate that our methodology may be useful in characterizing complexes whose subunits 

are under 100kDa. Examining of PIBASE [64], a database of the complexes represented 

in the PDB, we find that 897 complexes, or 98.7% of the non-redundant protein-protein 

complexes catalogued, meet these criteria.  

As structural biology proceeds further into the post-genomic era, approaches to 

quickly provide structural details of macromolecular complexes are becoming 

increasingly necessary in the study of complex biological systems. While crystallography 

yields a picture of a structure in an all-or-nothing manner, NMR can provide incremental 

information that can be integrated with other structural data. It is this hybrid approach 

that allows us to efficiently and accurately combine available knowledge of subunit 

structures with new, easily collectible, experimental data to provide models of 

macromolecular complexes that allows us to improve the structural coverage of 

complexes, to model higher-order complexes, and to form hypotheses for further 

experimental and computational inquiry.  
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3.4. Materials and Methods 

3.4.1. Binding Site Localization from Residue Content Data 

The initial input is a file to our binding site localization method contains the 

coordinates of an unbound protein structure in PDB format. Using XPLOR [65] to parse 

the structure, we created a list of those residues that are both in close proximity to one 

another (<3.5Å) and surface exposed. The graph of contacts is then searched breadth-

wise to create a table of pairwise “paths” along the surface between residue combinations, 

with the length of each path considered as the integral number of separating neighbor 

residues. 

The surface exposed residues in the structure are projected onto a sphere of radius 

pmax/2π (where pmax is the maximum path length in the above table), using rays from the 

protein’s center of mass. The residues’ positions on the sphere are then minimized, using 

the lengths of the paths in the pairwise table as restraints. This procedure creates a 

simplified representation of the surface while preserving the relative positions of residues 

on the protein surface. 

A list of potential interfaces is created by merging single-residue combinations 

based on the experimental data. For instance, given an initial dataset indicating the 

presence of 1 of 4 Lys, 2 of 4 Tyr, 2 of 6 Phe, and 4 of 12 Leu in the interface, every 

possible combination of surface-exposed residues containing the correct residue content 

will be created. That is, merging the potential 4 Lys, 6 Tyr, 15 Phe, and 495 Leu 

interfaces results in 178,200 potential interfaces. Each of these potential interfaces is 

scored by the likelihood that it contains the binding surface that yielded the initial 
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chemical shift perturbation data. We consider the most likely binding surface to contain 

the correct residue content in the smallest area on the surface of the protein. In our 

spherical representation of the surface, this smallest found area corresponds to the 

“interface” circumscribed by a polygon with the smallest surface area.  The score is 

further refined by penalizing those potential interfaces whose circumscribed polygon 

contains additional residues (i.e., areas of the surface whose residue content does not 

match the experimental input). The potential interfaces are then hierarchically clustered 

so that a given cluster’s members all share a minimum of 75% identity of residues. Lastly, 

the clusters are scored as the average of their members. 
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Figure  3.12. Binding Site Identification 

For each subunit (in blue), we project the surface residues onto a sphere and then use the chemical shift 

data along with this spherical projection to identify the smallest cluster of amino acids on the surface 

(shaded region) which allows us to identify the binding site residues. 
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3.4.2. Restrained Docking 

We employ the restraint definition and optimization capabilities of IMP and 

MODELLER to perform the generation and geometric scoring of docking solutions. As 

inputs we take the atomic coordinates for all of the heavy atoms of both subunits, and the 

list of residues types used for the scan. Then for each interface centroid seed, we 

determine the set of residues surrounding the centroid seed to define as interface residues 

for use in our docking calculations. In the modeling step, we determine the surface 

accessible residues using the PSA method with a cutoff of 8.0 [66, 67]. We define rmin 

and rmax as the respective distances between the center of mass and the interface centroid 

of the smaller and larger proteins. 

To determine the interface residues we take all of the residues within a sphere of 

radius r around the centroid coordinate that are defined as surface accessible. We 

determine r by this formula: ⎟
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Then we define our restraints. First, we define each protein to be a rigid body. 

Second, we restrain the mass centers to have an upper bound at rmin+rmax+10.0Å with a 

standard deviation of 1/10 of this value. We also restrain the centroids with a Gaussian 

upper distance restraint of 10.0Å with a standard deviation of 1 Å. To restrain the 

putative interfaces together, we employ a minimal distance restraint between the two 

interfaces using a Gaussian distance restraint with a mean of 5Å, and a standard deviation 

of 0.1Å. To enforce excluded volume, we impose a harmonic penalty if the distance 

between any two atoms is smaller than the sum of their radii scaled by 90%. 
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For each independently generated model, we allow the two proteins to relax from 

the solved position by performing 50 steps of minimization by conjugate gradients, a 50 

K molecular dynamics run for 50 iterations and then 50 more steps of minimization by 

conjugate gradients. After this initial relaxation, we fix the backbone of the two subunits 

and allow the sidechains to relax further by performing 100 steps of minimization by 

conjugate gradients, a 100 K molecular dynamics run for 100 iterations and then 100 

more steps of minimization by conjugate gradients. Then, we randomize the positions and 

orientations of the two proteins within a cubic volume of 200x200x200Å3. For the initial 

optimization, we employ only the restraints above using 50 steps of minimization by 

conjugate gradients, followed by 50 iterations of molecular dynamics at 100 K, followed 

by 50 more steps of minimization by conjugate gradients. This initial optimization brings 

the two subunits together and roughly places them into the correct orientation (i.e., 

interfaces facing each other). Then, we do three rounds of simulated annealing. Each 

annealing round consists of a 10000 K molecular dynamics run for 200 iterations, a 6000 

K molecular dynamics run for 200 iterations, and a 2000 K molecular dynamics run for 

200 iterations, with 100 steps of minimization by conjugate gradients following each 

molecular dynamics run. We finish the annealing step with the same minimization 

protocol used to bring the subunits together. At the conclusion of this step, we have the 

final relative orientation for the two subunits. 

3.4.3. Model Scoring 

For the final scoring step, we redefine the set of residues defined as interface 

residues as follows: we use a less stringent surface accessibility criterion (cutoff = 2.0) 
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for the PSA method, and include the same radius around the centroid coordinates. Using 

this modified definition of the interface, we calculate the violations to the minimal 

distance restraint and the excluded volume penalty and report this as the geometric score 

of the model. We also calculate the residue content of the interface, and define a residue 

content score as the difference between the observed residue content and the actual 

residue content. 

∑ −=
esresidueTyp
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Finally we output the model with these two scores. 

Using this procedure, we first perform a broad sampling over all of the interface 

centroid seeds from the seeding step. We then identify the best scoring seeds based on the 

normalized residue content score, and perform a more thorough sampling over this 

smaller set of seeds. 

After generating this final ensemble of models, we calculate the enrichment of 

native-like hits (as defined by 3.5Å rmsd after least-squares superposition) for three 

scoring functions: the geometric score alone (soft-sphere overlap and minimal distance 

restraints), the residue content score alone (an orthogonal experimentally derived 

measure of interface quality), and the hybrid score, defined as the average of the two 

normalized scores. Enrichment, for a given level k, is defined by the number of true hits 

within the top k scoring models divided by the number of hits expected at random within 

k models. 
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For each scoring function, we can generate an enrichment curve by calculating the 

enrichment for native-like hits at multiple levels. 

3.4.4. Clustering Analysis 

From the final ensemble of models generated by independent optimizations, we 

perform a clustering analysis on the top scoring 10%, 25%, 50% and the entire set of 

models (top 200, top 500, top 1000, and all 2000) as scored by the hybrid score. We 

employ an adaptive distance cutoff covering algorithm for clustering for its efficiency 

and because we are only interested in the identifying the dominant populations of models 

within the ensemble and do not know a priori the number of clusters to expect. 

As inputs to the covering algorithm, we start with a list of models sorted by 

hybrid score and an all-by-all rmsd table. We initialize the procedure by placing the first 

model (top-scoring model) into its own cluster. We calculate the threshold distance for 

that cluster as the one standard deviation less than the mean distance from the first model 

and all the other models. For the all of the remaining models, we determine the closest 

model which already-considered model the current model is closest to. If the distance 

from the current model to the nearest already-considered model is within the distance 

cutoff for the cluster containing that model, we add the current model to that cluster and 

update the distance cluster for that cluster by calculating the average distance cutoff for 

the models in the cluster. If the current model does not fall within the distance cutoff for 

the cluster containing the model it is closest to, we form a new cluster, using the current 

model to calculate the distance cutoff for that new cluster. 
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3.4.5. Information Content of Residue Content of a Binding Site 

The first goal of our method is to determine as quickly and unambiguously as 

possible which of the possible binding sites on the protein surface is the true binding site.  

As the acquisition of experimental data is the most time-consuming part of such work, we 

sought to define the amount of information a series of labeling experiments gives about a 

binding site, allowing the experimental design to be streamlined.   This can be posed as 

an information theoretic question: We are seeking the set of experiments that minimizes 

the uncertainty over the possible binding sites, by selecting the set of labeling 

experiments that has the lowest mutual information between them, i.e., each experiment 

should give us as much non-redundant information as possible.  

Let n be the total number of possible sites on the surface.  The total uncertainty on the 

surface, H(N), is a function of the number of possible sites: 

 2( ) logH N n=  (3.1) 

For a given set of labeling experiments, R, the uncertainty over the surface is a 

function of the distribution of residue count signatures.  

 2( | ) logi i
i

H N R p p= −∑  (3.2) 

Where we can determine the probability of a particular signature, pi, by scanning 

over all possible sites, counting the number of times that particular signature occurs and 

dividing by the total number of sites. 

The mutual information between the total uncertainty and the uncertainty given a 

particular set of labeling experiments is given by:  

 ( : ) ( ) ( | )I N R H N H N R= −  (3.3) 
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And this is the quantity that we seek to minimize, with the selection of an optimal 

set of labeling experiments.  The size of the search space is given by 2r, where r is the 

number of residues that might be labeled by experiment. 

Given the structure of a protein, we perform the information theoretic calculation 

as follows. First for each residue on the surface of the subunit, we define a binding site 

centered on that residue by including the first four contact shells of residues on the 

surface. This yields a set of possible binding sites, from which we extract the possible 

labeling experiment data. The result is a set of vectors representing the possible binding 

sites on the surface. We determine the order of labeling experiments by a greedy 

optimization, selecting the experiment that minimizes the uncertainty by the greatest 

amount at each step. We also verified that this greedy optimization corresponds well to 

the global optimal solution. 

3.5. Future Directions 

The future directions for this study would be the continued application of the 

ideas in this study to other systems, and to integrate these spatial restraints into a larger 

context. The latter direction is already being pursued in Andrej Sali’s lab with the 

continued development of the Integrated Modeling Platform (IMP). 
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4. Modular Assessment of Protein 
Structure Modeling Methods 

Assessing a protein structure modeling method by reporting its accuracy over a 

benchmark set has at least two limitations: (i) the reported accuracy does not, by itself, 

provide insight into how a method could be improved and (ii) the reported accuracy often 

depends on the specific benchmark set, making a fair comparison between methods that 

do not share a benchmark set difficult. To address these two limitations, we propose a 

three step framework for assessing structure modeling methods. First, we decompose the 

method into modules corresponding to possible improvement areas. Second, for each 

module, we build a set of enhanced modules (i.e., oracles) that can provide as much 

accuracy as we desire. Third, we test the method by substituting oracles for the various 

modules, and measuring the differences in accuracy between the current method and the 

various oracle-assisted methods. We demonstrate this framework on a method for 

hierarchical docking (i.e., modeling protein assemblies by combining interacting, 

pairwise dockings). Where a traditional assessment might only report the current 

accuracy of the method, our framework also revealed that the method’s primary 
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bottleneck is the accuracy of the pairwise dockings, and not other factors (e.g., the 

amount of sampling). Moreover, our framework also shows how the accuracy of the 

pairwise dockings is related to the overall accuracy of the method, demonstrating 

potential synergy among the pairwise dockings. Thus, by providing a more detailed 

description of a method’s limitations, our framework facilitates further development and 

improves the confidence with which we use the generated models. 

We are grateful to David Eramian, Libusha Kelly, Daniel Russel, Keren Lasker, 

Eswar Narayanan, Javier Velazquez-Muriel, Min-yi Shen, and Jeremy Phillips for many 

discussions about hierarchical docking and assessment methods for computational 

structural biology. 

4.1. Introduction 

Structural characterization of proteins and their assemblies provides insights into 

their function. As a result, increasing numbers of protein structures are being determined 

experimentally [51, 68]. In addition, there is a proliferation of computational protein 

structure prediction methods, aiming to be more general, faster, and cheaper than 

experimental methods. These computational methods include ab initio [69, 70] and 

comparative approaches [52, 54] as well as hybrid methods that integrate multiple types 

of data for modeling proteins and their assemblies [2, 35]. Several of these hybrid 

methods rely on experimentally observed data from X-ray crystallography, NMR 

spectroscopy, and electron microscopy [35, 55, 56, 71]. In particular, hybrid methods 

increase the coverage and accuracy of structure determination for macromolecular 

complexes [1]. While these methods span different resolutions, sizes, and types of targets, 
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all of them require a quantitative assessment of modeling accuracy and an unbiased basis 

for comparison against competing methods.  

The methods for modeling of protein structures and protein-protein interaction 

modes are prominently assessed at the Critical Assessment of Techniques for Protein 

Structure Prediction (CASP) [72] and the Critical Assessment of Prediction of 

Interactions (CAPRI) [58] meetings, respectively. These meetings highlight the 

improvements made and challenges remaining, They have also have provided detailed 

comparative assessments of various approaches and motivated the development of 

methods for predicting errors in models [73-75]. Automated protein structure prediction 

servers are also assessed both biennially as a part of the CASP effort [76] and in an 

automatic and continuous fashion by assessment servers such as EVA [77].   

While these approaches provide a quantitative measure of the prediction accuracy 

and the relative strengths of competing methods, they also reveal two opportunities for 

providing more detailed and informative assessments. First, the accuracy reported by 

these techniques does not, by itself, provide insight into how a method could be improved 

nor does it specifically identify why the performance of competing methods differ. 

Second, by using the same benchmark set of newly determined structures, these 

assessment techniques avoid the problem of using different benchmarks for different 

methods, which is frequently the case in publications. In the case of differing benchmark 

sets, it becomes difficult to provide an unbiased view of the relative strengths of 

competing methods. While reporting the accuracy of a method against a favorable 

benchmark set will provide an optimistic view of the improvements made, it will also 
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obscure opportunities for improvements and any underlying reasons for poorer accuracy 

against another method’s benchmark set.  

By addressing these two opportunities, we will gain a better appreciation of a 

method’s limitations, in turn facilitating further development and improving the 

confidence with which we use the resulting models [78, 79]. To do so, we propose a 

framework for assessing modeling methods that we call modular assessment. Next, we 

provide an overview of the framework, describe an example modeling method, and 

demonstrate modular assessment on the example method (Results). Then, we discuss our 

findings, expanding on the implications of and possible extensions to our framework 

(Discussion). Lastly, we present the specific details of the example modeling method and 

assessment framework (Materials and Methods). 

4.2. Results 

While our assessment framework is generally applicable to any modeling problem, 

for clarity and as a demonstration of feasibility, we describe the three steps of modular 

assessment by applying them to a method for hierarchical protein docking (i.e., the 

modeling of protein assemblies by combining pairwise docking results [55, 80, 81]).  

4.3. Hierarchical Docking 

With the increasing number of experimentally determined single domain 

structures and with the improvements in comparative modeling, many more protein 

subunit structures are available for use as starting points for protein-protein docking. 

Protein-protein docking methods aim to predict the configuration (i.e., the relative 
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orientation) of two protein subunit structures. While accurate computational protein-

protein docking of two subunits is still an unsolved problem, we can, in principle, model 

the assembly of more than two protein subunits by hierarchical docking. Hierarchical 

docking methods combine docking results for interacting pairs of proteins into 

progressively larger “subcomplexes”, and eventually, into configurations of the entire 

assembly. By combining the pairwise docking results in a hierarchical fashion, the space 

of possible configurations is reduced. This hierarchical approach may also create a 

synergistic effect between the pairwise docking results, where the selection of a particular 

configuration of one subcomplex influences the configuration of other subcomplexes 

within the assembly. 

For hierarchical docking methods, we must describe the representation of the 

subunits, the inputs to the method, the sampling or optimization procedure used to 

produce models, and the scoring process used to rank the resulting models. In general, we 

choose a representation of the subunits that corresponds to the resolution of the results of 

the underlying pairwise docking methods. We summarize the inputs to any hierarchical 

docking method (i.e., the outputs from the underlying pairwise dockings) as a ranked and 

scored set of relative orientations for each of the interacting pairs of subunits. With these 

sets of relative orientations, there are many possible strategies for combining them into 

higher order complexes, but all of these strategies share the common goal of selecting the 

most native-like pairwise relative orientation for each interacting pair. Finally, the 

scoring of models is usually the combination of terms for individual pairwise interactions 

and higher-order terms for complexes. 
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From this description of hierarchical docking, we reduce methods for hierarchical 

docking into the following three modules (Figure 1).  First, a data module encapsulates 

the inputs to the hierarchical docking method. Within this data module, we can represent 

pairwise dockings consisting of varying degrees of completeness (i.e. whether the 

pairwise dockings are sufficient to determine a unique best scoring solution), accuracy 

(i.e. whether the unique solution is the native structure), and precision (i.e. whether the 

accurate pairwise dockings are selected with sufficient probability to determine the native 

structure). Second, an integration module specifies how the inputs from the data module 

are combined to produce an ensemble of scored models. Third, a ranking module ranks 

the resulting models from the integration module. Paired with an integration module that 

generates models by the optimization of a scoring function, the ranking module sorts the 

ensemble of models by their score. 

Hierarchical docking is performed by the satisfaction of spatial restraints derived 

from pairwise dockings (Materials and Methods). The data module consists of the top 20 

scoring pairwise dockings from PATCHDOCK [82, 83], for each pair of interacting 

subunits within the complex, which are transformed into a uniformly weighted list of 

spatial restraints. The integration module, implemented in MODELLER [46, 84], 

generates an ensemble of assembly models by optimizing the spatial restraints from the 

data module. Finally, the ranking module ranks the models by a sum of the pairwise 

scores. 

Having decomposed hierarchical docking methods into three modules, we 

introduce the key idea of our assessment approach: substituting enhanced modules (i.e., 

oracles) for each of the modules to improve the accuracy of the method using perfect 
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information. This perfect information is derived directly from the native structure of the 

targets being modeled. By swapping in oracles for each module and comparing the 

oracle-assisted performances against the unassisted (i.e., baseline) performance, we can 

measure the specific contribution each module makes towards the overall accuracy of the 

method. Also, each oracle-assisted method determines the accuracy ceiling (i.e., the best 

possible accuracy) of the method if improvements were made to the particular module 

being studied. Next, we describe the various oracles for hierarchical docking and the 

associated tests we can perform. 

 

 

Figure  4.1. Modules for Hierarchical Docking Methods 

Overview of modules for hierarchical docking methods. The inputs to the data module are the outputs from 

the pairwise docking methods. The lists of pairwise configurations are then integrated together by the 

integration module to produce ensembles of models. This ensemble of models is than ranked by the ranking 

module, usually by some scoring function, to produce the final list of ranked models. 
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4.3.1. Data Oracles 

Many methods are hampered by incomplete, erroneous or imprecise inputs. A 

data oracle could provide, in the limit, a complete set of error-free, precise input data. We 

can also vary the power of the data oracle by limiting the amount of error-free data it 

provides, or by limiting the amount of noise it reduces. By varying the power of the data 

oracle, we can determine if the method has sufficient information in the underlying data 

(i.e. the completeness of the data), and the robustness of the method with respect to 

erroneous or noisy data. 

For the assessed method, we created the following three data oracles that we can 

apply per pairwise interaction. The “native-added” data oracle increases the accuracy of 

the input data without improving the precision by adding the native pairwise 

configuration to the list of 20 top-scoring configurations generated by PATCHDOCK. 

The “perfectly-ranked” data oracle increases the accuracy and precision of the input data 

by sorting all of the configurations generated by PATCHDOCK by their distance to the 

native pairwise configuration and choosing the 20 closest configurations. The “perfectly-

weighted” data oracle increases the precision even further by replacing the uniform 

weighting of the pairwise configurations by a weighting based on the distance from the 

native pairwise configuration.  

4.3.2. Integration Oracle 

Depending on the quality of the underlying data, it may not be possible to 

uniquely determine the correct native structure (i.e. recapitulate the structure as 

determined by x-ray crystallography). However, any method should generate as near-to-



 81

native structures as possible with the data at hand. Given any level of completeness and 

noisiness of the underlying data, an integration oracle employs the data as optimally as 

possible, generating models that are closest to native. By employing an integration oracle, 

with and without a data oracle, we can determine the accuracy ceiling and separation for 

the method with respect to any level of data completeness, accuracy and precision. For 

the assessed method, the integration oracle generates models by performing an exhaustive 

combinatorial search over the possible pairwise configurations. 

4.3.3. Ranking Oracle 

Given an ensemble of models generated by the method, a ranking oracle will 

correctly rank the models. The use of a ranking oracle alone provides a ceiling on a 

method’s unassisted accuracy. The separation between the unassisted method and the 

ranking oracle-assisted method can be reported by enrichment of top hits, or more 

stringently by the sum-square difference between the outputted rankings. For the assessed 

method, the ranking oracle sorts all of the models by their distance to the target. 

4.4. Modular Assessment  

We performed our assessment on a test benchmark set of 6 assemblies (Table  4.1). 

For each of the test cases, we started by reporting the accuracy of the unassisted method 

against the benchmark set.  We determined the unassisted accuracy of the method by 

generating 10,000 models from independent initial conditions, reporting the average 

percent-overlap (%-overlap) of mainchain atoms at 3.5Å, best-found %-overlap, and top-

scoring %-overlap. We report %-overlap, because other measures (e.g. root-mean-square-
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deviation or distance-root-mean-square) are more affected by the different sizes of the 

benchmark complexes, making comparisons across the benchmark set difficult. While 

exhaustive sampling of these systems of restraints is computational infeasible, we 

demonstrate that the level of sampling that we used here is sufficient, as the accuracy of 

the best sampled model does not significantly increase with more sampling (Figure 2). 

For the unassisted method, we generated 50,000 models and found an asymptotic 

relationship between the accuracy of the best sampled model and the number of 

independent optimizations. In particular, 80% of the final improvement was achieved 

using ~2,000 independently generated models and 93.5% of the final improvement was 

achieved by 10,000 models.   

PDB code Name 

Number of 

subunits 

Number of  

interactions 

Number of  

residues 

1bz0 HEMOGLOBIN A 4 4 574 

1h4l CDK5-P25 (NCK5A) COMPLEX 4 3 850 

1ikn I-KAPPA-B-ALPHA / NF-KAPPA-B COMPLEX 3 2 612 

1ivo HUMAN EFG / EFGR COMPLEX 4 3 1116 

1ss8 GROEL 7 7 3668 

1vcb VHL-ELONGIN C-ELONGIN B 3 2 328 

Table  4.1. List of Target Complexes 
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Figure  4.2. Sampling Sufficiency 

We plot the quality of best-sampled model, as measured by percent-overlap with the native structure, with 

respect to the number of independent optimizations. 

For hierarchical docking by the satisfaction of spatial restraints generated by a 

pairwise docking, we found an unassisted average accuracy across our benchmark set of 

37.0% average %-overlap and 52.2% best-found %-overlap. Because of the high degree 

of degeneracy in the scoring function, we report the average %-overlap for all of the 

models with the same top score. For the unassisted case, we found 39.4% top-scoring %-

overlap (Table  4.2). From this baseline, we used the above described oracles, alone and in 

combinations, and compared the results with the unassisted method. 
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Test Case Average Best-Found Best-Scoring 

unassisted 37.0 52.2 39.4 

native-added (partial) 37.0 52.5 39.1 

native-added (complete) 37.4 80.2 47.6 

perfectly-ranked 36.8 66.9 48.5 

perfectly-ranked 

+ native-added (partial) 36.8 66.3 46.2 

perfectly-ranked 

+ native-added (complete) 37.1 85.5 43.7 

perfectly-ranked 

+ perfectly-weighted (partial) 36.8 67.1 46.9 

perfectly-ranked 

+ perfectly-weighted (complete) 52.6 71.1 54.5 

perfectly-ranked 

+ perfectly-weighted (complete)

+ native-added (partial) 52.6 74.3 54.4 

perfectly-ranked 

+ perfectly-weighted (partial)

+ native-added (complete) 37.2 87.0 43.9 

perfectly-ranked 

+ perfectly-weighted (complete)

+ native-added (complete) 99.7 100.0 100.0 

Table  4.2. Data Oracle Results 

Summary of assessment by data oracles (alone and in combinations). For each test case, we report the 

average percent overlap between the target structure and the average, best-found and best-scoring models 

over the benchmark set. 



 85

4.4.1. Data Oracles 

To improve the accuracy of the data module, we used the “native-added” data 

oracle in two ways: partial assistance (up to 50% of the interactions) and complete 

assistance (100% of the interactions). For the partial assistance cases, we performed 

multiple random selections for the interactions chosen for use with the more powerful 

oracle. Under partial assistance, we found no improvement from the unassisted case with 

an average accuracy across our benchmark set of 37.0% average %-overlap, 52.5% best-

found %-overlap, and 39.1% top-scoring %-overlap (Table  4.2). With complete 

assistance, the best-found and top-scoring accuracy improved: we found an average 

accuracy across our benchmark set of 37.4% average %-overlap, 80.2% best-found %-

overlap, and 47.6% top-scoring %-overlap (Table  4.2). 

To improve the precision of the data module, we used the “perfectly-ranked” data 

oracle for all of the pairwise interactions and found an average accuracy across our 

benchmark set of 36.8% average %-overlap, 66.9% best-found %-overlap, and 48.5% 

top-scoring %-overlap (Table  4.2). Without the native interaction, the assistance of the 

“perfectly-ranked” data oracle failed to improve the average accuracy over the unassisted 

method, but did improve the best-found and top-scoring accuracy of the method.  

To improve the accuracy of the “perfectly-ranked” data oracle, we tested the 

combination of the “perfectly-ranked” and “native-added” data oracles. As before, we 

used the “native-added” data oracle under partial and complete assistance. Under partial 

assistance, we did not find any improvement accuracy over the “perfectly-ranked” data 

oracle, specifically we found across our benchmark set a 36.8% average %-overlap, 

66.3% best-found %-overlap, and 46.2% top-scoring %-overlap (Table  4.2). Under 
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complete assistance, the average accuracy across our benchmark set still did not improve 

at 37.1% average %-overlap, nor did the top-scoring accuracy improve at 43.7% top-

scoring %-overlap, but we did find an improvement for the best-found %-overlap at 

85.5% (Table  4.2). 

To further increase the precision of the input data, we used the “perfectly-

weighted” data oracle in combination with the “perfectly-ranked” data oracle under 

partial and complete assistance. Without the native orientation, with partial assistance 

from the “perfectly-weighted” data oracle, we found no improvement over the “perfectly-

ranked” data oracle alone, with an average accuracy across our benchmark set of 36.8% 

average %-overlap, 67.1% best-found %-overlap, and 46.9% top-scoring %-overlap 

(Table  4.2). With complete assistance, the accuracy improved: we found an average 

accuracy across our benchmark set of 52.6% average %-overlap, 71.1% best-found %-

overlap, and 54.5% top-scoring %-overlap (Table  4.2). 

To improve the accuracy of the “perfectly-weighted” data oracle, we tested the 

combination of the “perfectly-weighted” and “native-added” data oracles under partial 

and complete assistance. When we included the native orientation for half of the 

interactions (selected at random), we found an average accuracy across our benchmark 

set of 52.6% average %-overlap, 74.3% best-found %-overlap, and 54.4% top-scoring %-

overlap (Table  4.2). With complete assistance, we found an average accuracy across our 

benchmark set of 99.7% average %-overlap, 100.0% best-found %-overlap, and 100.0% 

top-scoring %-overlap (Table  4.2).  

To compare the relative strengths of the “perfectly-weighted” and “native-added” 

oracles, we tested the combination of using the “native-added” oracle under complete 
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assistance and the “perfectly-weighted” oracle under partial assistance and found an 

average accuracy across our benchmark set of 37.2% average %-overlap, 87.0% best-

found %-overlap, and 43.9% top-scoring %-overlap (Table  4.2). 

4.4.2. Integration Oracle 

We tested the integration oracle with the unassisted data module and the 

“perfectly-ranked” data oracle (Table  4.3). Unfortunately, because of the exponential 

nature of exhaustive combinatorial search, we were only able to test the top 10 hits for 

both data modules for 5 of the test cases, and only the top 3 hits for 1ss8. The best 

possible model found with the unassisted data module had an average %-overlap of 

52.0%. With the “perfectly-ranked” data oracle the best possible model found had an 

average %-overlap of 71.7%. In order to make an appropriate comparison, we generated 

10,000 independent models for the test cases using the same amount of input data (top 3 

hits for 1ss8, top 10 hits for the other five test cases) with the unassisted and the 

“perfectly-ranked” data oracles. We found an average unassisted %-overlap of 51.9%, 

and with the “perfectly-ranked”, an average %-overlap of 70.4% (Table  4.3). Using the 

same protocol, we tested the combination of “perfectly-ranked” and “perfectly-weighted” 

data oracles and found an average %-overlap of 71.6% (Table  4.3). 

4.4.3. Ranking Oracle 

Finally, the best found percent-overlap, reported above, also corresponds to the 

accuracy of the method (assisted or unassisted) with the use of the ranking oracle (Table 

 4.2). 
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Test Cases Using Integration Oracle Best-found model 

unassisted data module Yes 52.0 

unassisted data module No 51.9 

perfectly-ranked data oracle Yes 71.7 

perfectly-ranked data oracle No 70.4 

perfectly-ranked + perfectly-weighted data oracle No 71.6 

Table  4.3. Integration Oracle Results 

For each test case, with and without the integration oracle, we report the average percent overlap between 

the target structure and the best-found models over the benchmark set. 

4.5. Assessment Interpretation 

Having measured the accuracy of the method assisted by oracles, alone and in 

combinations, we determined the limiting aspects to hierarchical docking by the 

satisfaction of spatial restraints generated by a pairwise docking. 

4.5.1. Evaluation of the Data Module by the Data Oracles 

For the average model, we failed to see any improvement without the complete 

assistance of both the “perfectly-ranked” and the “perfectly-weighted” data oracles. By 

adding both of these oracles, we found an improvement of 42.7%. By adding the 

complete assistance of the “native-added” data oracle to the other two data oracles, we 

found an average %-overlap of 99.7%. 

For the best-found model, we found an average improvement of 37.0% with the 

addition of the complete assistance of the “native-added” data oracle. For the “perfectly-

ranked” data oracle, we found an average improvement of 18.3%. We found an additional 
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12.2% improvement by the addition of the complete assistance of the “perfectly-

weighted” oracle. 

For the best-scoring model, we did not find a distinct pattern of improvement. The 

addition of the complete assistance of the “native-added” data oracle alone, or any other 

combination of oracles without the complete assistance of the “perfectly-weighted” data 

oracle, improved the accuracy by an average of 20.2%. With the complete assistance of 

the “perfectly-weighted” data oracle, without the complete assistance of the “native-

added” data oracle, we found an additional 23.0% improvement. With the complete 

assistance of all of the data oracles, we found an average %-overlap of 100%. 

As the power of the data oracles increased, the separation between the average 

model and the best-scoring model decreased, and the separation between the best-scoring 

and the best-found model also decreased. Also, the increased power of the data oracles 

decreased the degeneracy of the scoring function. With just the addition of the “native-

added” data oracle for just over half of the interactions, we found best-found %-overlap 

of 80.2%, but we were unable to identify these models with our scoring function.  

4.5.2. Evaluation of the Optimization Method by the Integration 

Oracle 

The integration oracle established an upper bound on the accuracy of any 

optimizer. In our experiments, we found for the unassisted scoring function that the 

optimization method found solutions that were on average within 0.19% of the best %-

overlap found by the integration oracle. For the scoring function assisted by the 

“perfectly-ranked” data oracle, the optimization method found solutions that were on 
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average within 1.8% of the best %-overlap found by the integration oracle. If we used the 

“perfectly-ranked” data oracle with the “perfectly-weighted” data oracle, the optimization 

method found solutions that were on average within 0.14% of the best %-overlap found 

by the integration oracle. 

4.5.3. Evaluation of the Scoring Function by the Ranking Oracle 

As the best-found model represents the performance of a method assisted by the 

ranking oracle, the difference in accuracy between the top-scoring model and the best-

found model represents the improvement to be gained by improving the ranking module. 

4.5.4. Implications and Recommendations 

We found that the accuracy of this method is almost totally data driven. The 

limiting factor was the presence of a sufficiently native-like orientation for a sufficiently 

high percentage of the interactions. Even the degeneracy of the scoring function was 

dependent on the quality of the data module.  

While more sophisticated optimization techniques might yield more efficient 

usage of computing resources, this method is computationally tractable (on ~300 2.3 GHz 

64-bit cores it takes ~6 hours to generate 10,000 models for all six targets in the 

benchmark set). And while the degeneracy of the scoring function is problematic, the 

improvement in the input data quality drives improvements in both the quality of the 

output models as well as the scoring function. We found that by increasing the amount of 

assistance provided by each of the oracles to at least 50% of the interactions (c.f., up to 

50% of the interactions) we achieved the same accuracy found under complete assistance 
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(see Supporting Information (SI) Table T1). Therefore, further resources should be 

devoted to improving the input data accuracy. 

4.6. Discussion 

First, to provide a specific example for the modular assessment framework, we 

described the hierarchical docking problem and a method for addressing the problem. 

Second, we decomposed the problem into three modules and described oracles for each 

of the modules. Third, we performed modular assessment by applying the oracles (alone 

and in combinations) to our method and reported the results. Specifically, we showed that 

the accuracy bottleneck for this particular approach lies in the quality of the underlying 

input data. Further, we determined the improvement needed to achieve varying levels of 

accuracy. Finally, based on these findings, we made recommendations for future 

development. 

The standard assessment strategy of reporting the accuracy of a method over a 

benchmark set has at least two limitations: the reported accuracy (i) does not, by itself, 

provide insight into how a method could be improved and (ii) often depends on the 

specific benchmark set, making a fair comparison between methods that do not share a 

benchmark set difficult. Modular assessment is a completely general strategy for 

assessing methods for structure modeling that addresses both of the limitations of the 

standard assessment strategy. 

First, modular assessment provides specific data on how various modules of the 

method impact the overall accuracy of the method and measures the accuracy ceilings for 
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each of module. These data on the limitations of the method can guide future 

development along more efficient avenues.  

Second, modular assessment can be used to compare two different methods in 

much greater detail. By using modular assessment on a second method with a different 

benchmark, we could compare the accuracy of each aspect of the two methods separately. 

Then by using modular assessment on both methods using the other method’s benchmark 

set, we could further highlighting the reason for each method’s comparative advantage 

over its respective benchmark set. Finally, by construct a new benchmark set by 

combining the two benchmark sets, we could provide a summary of the accuracy 

differences between the two methods.  

The cost for this additional data comes in additional time and effort. The modular 

assessment framework requires methods developers to decompose their methods into 

modules, construct oracles, and assess their methods multiple times over. For example, 

the assessed method for hierarchical docking was run over the benchmark set 16 times: 

once unassisted, 10 times for analysis using data oracles, and 5 more times for analysis 

using integration oracles. 

But with this additional data comes a better understanding of the errors and 

limitations in our methods, and this improves the confidence with which we use the 

models generated by these methods. While we demonstrated our method on a particular 

structure modeling problem, this approach can be adapted to any problem that can be 

broken into modules representing possible areas of improvement. Any structure modeling 

problem that can be expressed as an optimization of a scoring function can benefit from 
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our assessment strategy. Ultimately, this framework provides a higher resolution of 

assessment whether used to assess a single method or compare multiple methods. 

4.7. Materials and Methods 

4.7.1. Pairwise Docking Results to Spatial Restraints 

To demonstrate the modular assessment framework for hierarchical docking on a 

specific method, we describe a method for hierarchical docking that generates models by 

the satisfaction of spatial restraints generated by pairwise docking. In particular, we use 

lists of PATCHDOCK hits, ranked by the provided score, as our input data. For each test 

case, we take the top 20 hits as ranked by the PATCHDOCK scoring function and 

represent them using a specialized spatial restraint. To express relative orientation data, 

we use a three-tiered combination of restraint types (see SI Figure S1).  

For each possible configuration, we extract the representative distances, translate 

these distances into distance restraints, and merge these distance restraints into a single 

multidimensional Gaussian (MDG) restraint. We further combine each of these 

multidimensional Gaussian restraints into a weighted exclusive-OR (XOR) restraint. This 

weighted XOR restraint determines which of the possible configurations is most satisfied 

and current configuration of the model, and then enforces the corresponding underlying 

MDG restraint. 

For each configuration of a pair of subunits, we extract all sixteen distances, 

between the references points for the two subunits, i.e. the complete bipartite graph of 
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distances between the two sets of reference points. The sixteen representative distances 

are expressed as Gaussian distance restraints with a standard deviation of si = di / 10. 

For each relative orientation, the sixteen distance restraints are then combined into 

a single MDG restraint, which has a violation of: ∑
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This allows us to express each configuration with a single restraint. 
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This XOR restraint is a runtime restraint that evaluates the current state of the 

model, and selects the least-violated alternative of its constituent restraints. In this case, 

the XOR restraint evaluates which configuration of a pair of subunits is most consistent 

(creates the least violation) and enforces the weighted multiple Gaussian restraints 

representing that configuration. We can assign the weights for each relative orientation to 

represent a selection probability for a particular underlying configuration of a pair of 

subunits. For this experiment, we assign a uniform weight and selection probability to 

each relative orientation from the underlying pairwise docking method.  

The integration module (i.e. the satisfaction of these spatial restraints by 

optimization) will be done using MODELLER. To assign acceptance probabilities, we 

use a delta-function accepting and denying configurations based solely on excluded 

volume, defined by 0.8*atomic radii for main-chain, C-alpha atoms only.  

As in the generalized solution, the scoring function is a combination of the 

underlying scores for the pairwise relative orientations and optionally, a physics-based 
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score (e.g. DOPE score). For this experiment, we complete the ranking module by using 

this scoring function, without a physics-based score contribution, to sort the models 

generated by the independent optimization from 10,000 randomized initial configurations.  

4.7.2. Oracle Descriptions 

Here we describe the specific oracles for the assessment of hierarchical docking 

by the satisfaction of spatial restraints generated by a pairwise docking. We define the 

correct native structure in these trials as the X-ray crystallographic structures of the 

complexes. 

We tested our data module using four different data oracles, described here in 

increasing power. The “native-added” data oracle takes the raw output from the 

underlying docking method and adds the native orientation to the top 20 hits.  The 

“perfect-ranking” data oracle, takes the raw output from the underlying docking method, 

ranks each of the relative orientations by the distance from the relative orientation in the 

native structure, and then returns the true top 20 hits. The “perfect-ranking” data oracle 

can then be further augmented by applying the “native-augmenting” data oracle, which 

adds the native orientation to the true top 20 hits. In each of these cases, the list of 

relative orientations, nodes in the partitions of G’) are weighted uniformly (i.e. selection 

probabilities are equal). The “perfect-weighting” data oracle modifies the data module by 

weighting the selection probabilities by distance from the native orientation. 

The integration oracle exhaustively searches all possible combinations of pairwise 

interactions to find the complex configuration with highest similarity to the native 

complex, guaranteeing the best possible configuration from the underlying data. The 
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ranking oracle sorts the ensemble of resulting models by the distance from the native 

structure. 

We used the %-overlap of mainchain atoms at 3.5Å as the distance function, after 

a least-square superposition, for each of the oracles. 

4.8. Future Directions 

The future directions for this study would be to push for continued adoption of 

this assessment strategy, and to use the framework to assess more methods. One possible 

avenue to lower the barrier for adoption could be by developing software tools to help 

automate the process of developing, managing and running modular assessment and to 

help perform the associated comparisons and analysis. 
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5. Theoretical Models 

Given an assembly, we can perform many analyses, both experimental and 

computational to elucidate structural features and relationships of the subunits within an 

assembly.  With multiple sources of structural data, the challenge of assembly structure 

modeling becomes one of data integration. Throughout this work, we have explicitly and 

implicitly presented the use of points and spatial restraints as a unifying framework for 

representing heterogeneous sources of data. In this framework, subunits are represented 

by sets of points and possible assembly configurations are represented by configurations 

of these sets of points. Available data on structural features and relationships are then 

encoded by spatial restraints. These spatial restraints are then combined into a scoring 

function, which is then optimized to find the configuration (or ensemble of 

configurations) that is in least violation of these restraints and therefore in greatest 

agreement with the input data. 

This chapter details the assumptions that underlie using points and restraints to 

model macromolecular structures, describes properties of systems modeled by this 

framework, and aims to provide a path towards a more principled approach for 

integrating multiple sources of data. Graph-theoretic and geometric models are used to 
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represent structures of subunits and assemblies. Graph theory and Bayesian networks are 

used to describe modeling methods. Information theory is used throughout this chapter to 

describe the properties of assemblies and modeling methods. 

5.1. Representing Assemblies by Sets of Points 

To represent assemblies as sets of subunits, we begin by describing the sets of 

points we use to describe subunits. Let 1( , , )nC p p= … , d
ip ∈R  be a configuration of n 

points in d-space, which can be collectively represented as a point in dnR , where for 

structure modeling d is most commonly taken to be three with notable exceptions (e.g., 

one-dimensional spin glass models and two-dimensional lattice models). Describing the 

representation of subunits is now equivalent to choosing n and how to partition these n 

points into subsets representing subunits. In particular, for an assembly consisting of m 

subunits, we begin the modeling process by deciding how many points in space we will 

need to represent each subunit. Assuming that each of the m subunits are spatially distinct, 

we need a minimum of one point per subunit, yielding m points. This case arises when 

subunits are modeled as spheres without respect to any specific orientations; each subunit 

can be represented by the center of the sphere and a radius r for the size of the sphere. 

However, in cases when the specific orientation of the subunit is important to the 

modeling problem, we need more points per subunit to describe each subunit. 

Specifically, to represent subunits with orientations in d-space, we need to represent each 

subunit as a d-simplex. By labeling each of the d+1 points of the d-simplex, we can 

describe the relative orientation of the subunit. 
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5.1.1. Internal Distance Restraints for Subunit Representations 

We now examine the specific case of using distances to represent a configuration 

C in three-dimensions. Let ( )f n , for 3n > represent the number of distances between 

points in C that are necessary and sufficient to completely specify the configuration of 

points. Because we are using distance to represent configurations, a complete 

specification of a configuration of points can only be complete with respect to translation 

and rotation, but not to symmetry – a set of chirally related points are indistinguishable 

by internal distances. The total number of distances is 
2
n⎛ ⎞

⎜ ⎟
⎝ ⎠  

representing an upper bound 

on f (n). For 5n > , we will show that 
4

2
n −⎛ ⎞

⎜ ⎟
⎝ ⎠  

of the 
2
n⎛ ⎞

⎜ ⎟
⎝ ⎠  

distances are redundant. 

 
Figure  5.1. Four points forming a 3-simplex 

For three dimensions, a 3-simplex, which consisting of 4 points, will be selected 

as a reference object (Figure  5.1). For this reference object, every internal distance is 

required to specify the configuration of points, 
4

6
2

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 distances. All additional points, 

must be specified by 4 distances, by construction, we select them to be distances to the 

vertices of our reference 3-simplex. Intuitively, this is because each additional point must 

also form a 3-simplex (requiring 3 more distances) and additionally requires one more 
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distance to disambiguate the two possible positions relative to the plane specified by the 

other three points in the 3-simplex. The fifth point is a special case as it adds every 

possible distance to the reference 3-simplex, requiring a set of 
5
2 2

10 4
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specifying distances. But for each subsequent point, there are redundant distances. From 
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Therefore, for more than five points, 
4

2
n −⎛ ⎞

⎜ ⎟
⎝ ⎠  

of the 
2
n⎛ ⎞

⎜ ⎟
⎝ ⎠  

distances are redundant. 

It is worth noting that in two dimensions, ( ) 3 6f n n= −  for 2n >  by a similar 

argument and that by subtracting the two expressions, we find that n – 4 distances encode 

for the additional dimension. These arguments can, by analogy, be applied to higher 

dimensions, but we omit this discussion for lack of relevance to structures or simplified 

models of structures. 

5.1.2. Distance Restraints for Assembly Modeling 

When, in three dimensions, we model each subunit of an assembly using a 3-

simplex, the function above also specifies the minimum number of additional distance 

restraints between the two subunits required to specify the relative orientations of the two 

subunits. In an assembly with two subunits, there are 8 points (two 3-simplexes of 4 

points) and 12 internal distances (6 internal distances for each 3-simplex). To completely 
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specify a configuration of 8 points requires (8) 22f =  points, yielding the requirement of 

10 additional non-redundant distances between the two subunits (Figure  5.2). By 

extension, to specify any assembly of m subunits, where the subunits are represented by 

3-simplexes, requires 10( 1)m −  additional non-redundant distances between subunits. 

The selection of non-redundant distances is guided by rigidity theory and can be 

summarized as adding the distances to prevent any deformation or ambiguity of the 

resulting structure. 

 

Figure  5.2. Ten Non-Redundant Distance Restraints 

For models with atomic level of detail, we can use a point for every atom (or 

some subset of atoms, such as all heavy atoms, main-chain atoms, alpha-carbons, etc.). 

Here, we note that distance restraints are defined at the level of chemical bonds and 

physical forces, and that the requirements for rigidity (i.e., complete specification of a 
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configuration of points) are the same and that large-scale flexibility in a structure 

corresponds either to having an insufficient number of distance restraints or having 

distance restraints with higher uncertainty. 

It is also worth noting that this work on distance restraints is closely related to 

ideas in distance geometry [85-87] and rigidity theory [88]. 

5.2. Configurational Entropy of Binary Docking 

Binary docking is the pairwise docking of two subunits, also known as protein-

protein docking. Here, we present an information theoretic analysis of binary docking and 

sample calculations.  

5.2.1. Center-Center Distance Restraints 

We begin by examining the information content of a single distance restraint 

between the centers of two subunits for different possible combination of geometries for 

the subunits. 

Sphere-Sphere Docking 

Given an assembly of two subunits represented as spheres using one point per 

subunit, we assert that docking results cannot be additionally informative. Let Z be data 

representative of the subunit descriptions (e.g., the excluded volume of each subunit). 

Given Z and the contact criterion (i.e., the subunits in question are in contact) which we 

represent by C, the docking results X, encoded by a single distance restraint rd, yields no 
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reduction of uncertainty over the model, represented by θ . Let d be the distance between 

the centers of the two spheres restrained by the distance restraint rd. 

 | , ) ( | ,( ), dZ C H Z C rH θ θ=  (5.1) 

Let ( | , )Z CθΨ =  be the distribution of models consistent with Z (subunit 

descriptions) and C (contact criterion). Equation (5.1) simplifies to: 

 ( () | )dH rHΨ = Ψ  (5.2) 

We can express the information, or reduction of uncertainty, introduced by rd: 

 |( : (( )) )d dI Hr H rΨ Ψ − Ψ=  (5.3) 

Rearranging: 

 ( :(| ( )) )d dHH r I rΨ Ψ − Ψ=  (5.4) 

But for the case that Z defines spherical subunits, with radii 1r  and 2r , and C is 

enforced, d is a function of Ψ . 

 1 2)(d f rrΨ == +  (5.5) 

Since we can express d deterministically and completely as a function of Ψ , 

( ) 0: drI =Ψ , verifying the assertion. 

Sphere-Rod Docking 

If either of the two subunits is not spherical in representation, then docking results 

can be informative. Using the same formalism from the previous section: 

 ) (( )| dH H rΨ ≥ Ψ  (5.6) 

 : 0( )drI∴ Ψ ≥  (5.7) 
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As d is no longer a function of Ψ , this suggests that docking information could 

reduce the uncertainty over possible models. In this situation, given Ψ , a distribution of 

possible values for d arises. The degree to which X, as encoded by a single distance 

restraint reduces the uncertainty over the center of mass of distances is the information 

content of X. 

The range of the distributions for d is bounded by the minimum and maximum 

center of mass distances. The anisotrophism present in the representation of the subunits 

is the only determinant of this distance. This relates to the first assertion, the case where 

there was only one possible value for d. In this simplified model, we will consider two 

possible forms of anisotrophism (Figure of sphere, rod, disc). In the limit, these two 

forms can be summarized as stretching a sphere along one (resulting in a rod) or two 

(resulting in a disc) of the three dimensions. However, if represent subunits as a 

collection of spheres of various sizes connected together we only need to consider the 

“rod” case of stretching a sphere along one dimension (Figure of spheres to rod).  

We begin by considering the interaction between a sphere of radius 1r  and a rod 

of radius 2r  and length l. 

 Without any additional data, other than the contact criterion, we can 

determine a prior distribution for d that we will denote 0S . To get an intuition for 0S , we 

examine an assembly on a two-dimensional lattice for 1 2r r r= =  and 3l r=  (Figure  5.3).  
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Figure  5.3. Rod and Possible Sphere Positions 

 
Figure  5.4. Histogram of Rod-Sphere Center-Center Distances 

 From the histogram (Figure  5.4), we can normalize the distribution and 

calculate the entropy of 0S  for 1 2r r r= =  and 3l r=  on a two-dimensional lattice. In 

general, we can determine the entropy of 0S  computationally by running many 

independent simulations of such a system, calculating the center-center distances from 

the resulting models, discretizing the distances, normalizing the resulting distribution of 

distances and calculating 0( )H S . 

As a general note, the degree to which the spherical representation is an over-

simplification may play a role in the amount of information that is actually present. But 
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this effect is likely to be cancelled by excluded volume effects (for observed distances 

less than r) and by the contact criterion (for observed distances greater than r). At a 

higher resolution (i.e., using more points per subunit) a more realistic center of mass 

definition is likely to make the center-center distance more informative. This is in 

agreement with the assertion that the degree of anisotrophism in a representation is 

proportional to the total amount of potential information. 

For binary docking between a sphere of radius 1r  and a rod of radius 2r  and 

length l the relationship between 1 2/r r , l and ( )dH r  can be summarized by these two 

statements: first, for a given 1 2/r r  as l increases, ( )dH r  increases; and second, for a 

given l as 1 2/r r  diverges from 1 (towards 0 and ∞ ), ( )dH r  increases. Below, we 

analytically demonstrate both of these relationships. 

In the first statement, for a fixed 1 2/r r  as l increases the total surface area of 

potential contact for the sphere increases. Now, without any additional data, we solve for 

0( )H S , beginning with the surface area of the rod: 

 2
2 2 2 22 2 2 ( )rod r r rSA l r lπ π π= + = +  (5.8) 

Because we are calculating a distribution of center-center distances, we can 

consider only a quarter of a maximal longitudinal slice, without loss of generality (Figure 

 5.5). 2
2

l  
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Figure  5.5. Quarter of a Maximal Longitudnal Slice of a Rod 

Independent of 1r , on this quarter of a slice, the number of potential points of 

contact is proportional to 2( )k r l+ . As the number of potential points of contacts 

increases, the uncertainty over the possible center-center distances also rises. Applying 

the continuous form of the entropy equation yields: 

 2

20 2 20 0
(( ( ) () ) ( ) )

l r

l c c r c cp x log p x dx p y log p y dyH S k k= − −∫ ∫  (5.9) 

Here cp  is the probability of contact. Equation (5.9) can also be expressed as a 

surface integral: 

 2

0 20 0
( ) ( , ) log ( , )

l r

c cH S k p x y p x y dxdy= − ∫ ∫  (5.10) 

In the second statement, for a given l as 1 2/r r  diverges from 1 (towards 0 and ∞ ), 

( )dH r  increases, Equation (5.9) is a better fit than Equation (5.10). The entropy of the 

background distance distribution can be expressed by: 

 2

20 2 20 0
( ) ( ( ) log ( ) ( ) log ( ) )

l r

m l c c r c cH S k k p x p x dx k p y p y dy= − +∫ ∫  (5.11) 

Here mk  represents the symmetry multiplier and is equal to 4 rπ , and 
2

1l rk k≅ ≅ . 

This can be thought of as a path. 
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The interaction of the rod and sphere at the corner of the rod is not account for in 

Equations (5.9), (5.10) and (5.11). For completeness, we can address this by adding a 

term: 

 
/2

20
( ) log ( )

r

a c ck p z p z dz
π

∫  (5.12) 

However, as we are interested in the difference in entropy under a fixed 1 2/r r  this 

term drops out. 

Returning to the first case, the total possible information gain would then be the 

value of 0( )H S  as calculated by Equation (5.11) with the additional corner term, 

Equation (5.12). The relative information gain provided by some data would be expressed 

by the difference in information theoretic entropy. In either case, it is clear from Equation 

(5.11) that 0( )H S  is dominated by l as 1 2/r r  is fixed and the corner terms are also fixed. 

Therefore, as l increases, so does 0( )H S . 

Finishing the second case, from Equation (5.11), having a fixed l allows the 2r  

term and corner term in Equation (5.12) to dominate. Note that 1r  does not factor into 

0( )H S , therefore as 1 2/r r  diverges from 1 (towards 0 and ∞ ), 0( )H S  increases. 

Rod-Rod Docking 

For two anisotropic subunits (here, two rods) there are four variables, two for 

each subunit: 1 1( , )r l  and 2 2( , )r l  defining the radii and lengths of the two rods. This 

allows us to observe two ratios: 1 2/r r  and 1 2/l l . In this system, the center-center distance 

is bounded below by 1 2d r r= +  for the two rods aligned by centers with primary axes 
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parallel (Figure  5.6A) and bounded above by 1 2
2 2

l ld = +  for the two rods aligned end 

to end (Figure  5.6B). 

 

Figure  5.6. Bounding Cases for Rod-Rod, Center-Center Distance 

Using an analogous derivation as the previous section, we calculate 0( )H S  for 

this system as follows: without loss of generality, we fix the position of rod 1 and allow 

rod 2 to move around the surface of rod 1 changing its point of contact. Again, we 

consider only a quarter of a maximal longitudinal slice for both rods. With this 

simplification, we derive the possible space for valid center-center distances (Figure  5.7).  

 
Figure  5.7. Valid Rod-Rod, Center-Center Distances 
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This area can be calculated piecewise, and using scaling factors, we determine 

0( )H S  as follows: 

 

1 2 2

1 2 2

2 2

20 0
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∫ ∫
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∫ ∫

 (5.13) 

0( )H S  increases as the integrated area increases. As 1 2l l+  increases and as 1 2r r+  

increases, 0( )H S  increases. 

Another consideration we need to make for this case involves the density of 

solutions for a given point of contact along rod 1 with respect to the position of the center 

of rod 2. Aside from the extremes, there are multiple solutions for any give point of 

contact with rod 1 and the center of rod 2. Fortunately, this behavior is the same for all 

such pairs of points and can be factored out as a constant. Using this formulation, we can 

revisit the result for one rod and one sphere and state that anything increasing the length 

of the path of contact along the quarter of a maximal longitudinal slice increases 0( )H S . 

For emphasis: the reason that the contact path dominates in the case of one rod and one 

sphere is because a sphere only as a single point of contact which uniquely determines 

the position of the center of the sphere, changing the radius of the sphere will increase the 

center-center distance but it does not change the distribution of distances. This is different 

in the case of two rods, where the anisotrophism of both subunits changes the distribution 

of center-center distances. 
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5.2.2. Orientation-Dependent, Center-Center Distance Restraints 

For the previous section, we assumed that we had no data to orient or even 

specifically identify the point of contact. Here, we return to spherical representations for 

both subunits and we address orientation dependence and contact points (i.e., patches) in 

reduced models. As determined in the previous section, the minimum number of points 

required to be able to specify the orientation of an object in three dimensions is a 3-

simplex, defined by 4 points and 6 internal distances. If we include the center of mass as 

an additional reference point, this yields five points. For computational ease, we consider 

six points for orientation-dependence and a seventh point to specify the center of mass (a 

point in the center, and two points in each of three orthogonal directions).  

Patch-Patch Contact Restraints for Sphere-Sphere Docking 

For patch-patch contacts, we take the representation for subunits and add a point 

per patch defined relative to the seven points that define the subunit. The excluded 

volume per subunit is defined by a convex hull around the points.  

So Z, the description of the subunits, is now defined by the seven points and the 

excluded volume. We enforce C, the contact criterion, and Q the patch-patch location. 

Now the degrees of freedom in a docking result are around the axis of contact (defined by 

the mass centers and patches). 

 | , )( , ) ( |Z C Q H QH θ = Ψ  (5.14) 

 (( : ) ) ( | )Q HI H QΨ = Ψ − Ψ  (5.15) 

Here ( | , )Z CθΨ =  is the distribution of models consistent with Z (subunit 

descriptions) and C (contact criterion). The background distribution entropy )(H Ψ  can 
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be calculated analytically or estimated from simulation using a similar construction as in 

the center-center distance restraints without orientation dependence. 

Using the expression from the previous section, we find that specifying the seven 

points requires 18 internal distances and four additional points per patch. Minimally, 

using the 3-simplex representation, we require many more points to define the subunits in 

question two points (one point per subunit) for orientation-independent subunits vs. 20 

points (ten points per subunit) for orientation-dependent subunits. 

In the orientation-independent case, the two distances that we extract are the 

center-center distance and the zero-length distance that is enforced by the contact 

criterion (Figure  5.8). 

 
Figure  5.8. Center-Center Distance and Zero-Length Distance 

Without loss of generality, we fix the first subunit and allow the second to rotate 

around the axis defined by the distance between the mass centers. The contact point (i.e., 

patch) is collinear to this axis. Let 1S  be the prior distribution of distances for this system. 

The uncertainty is then given by: 

 
2

1 20
( ) ( ) log ( )H S p r p r dr

π
= −∫  (5.16) 

A priori, we cannot define a greater probability to any particular relative 

orientation, thus the uniform distribution formulation of entropy applies, giving: 

 1 2( ) log ( ) 2.65 bits2H S π ≈=  (5.17) 
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Ignoring the non-uniform distribution of information over the distance restraints, 

we can consider the average information content per distance restraint. 

 0 1 0 1( : ) ( ) ( )I S S H S H S= −  (5.18) 

 0 0( ) ( | , )ZH S H Cθ=  (5.19) 

 1 1( ) ( | , , )ZH S H C Qθ=  (5.20) 

Substituting Equations (5.19) and (5.20) into Equation (5.18) yields: 

 0 1 0 1( : ) ( , ) , )| ( ,|I S S H C H CZ QZθ θ= −  (5.21) 

By factoring 1Z  into components: 0Z  and points added for orientation 

dependence ( Z ′ ) and substituting 1 0Z ZZ′ = −  into Equation (5.21) gives: 

 0 0( , ) (| | ), ,Z ZH C H C Zθ θ− ′  (5.22) 

Let 0( | , )Z CθΨ =  be the distribution of models consistent with 0Z  (subunit 

descriptions) and C (contact criterion). Substituting Ψ  into Equation (5.22) yields: 

 : , ) ( ) ( | ,( )Q Z HI H Q ZΨ ′ = Ψ − Ψ ′  (5.23) 

Specifically, the contribution from orientation dependence can be expressed by 

( ),Q Z ′  which we call T. Substituting T into Equation (5.23) gives: 

 (( : ) ) ( | )T HI H TΨ = Ψ − Ψ  (5.24) 

The distance restraint from the center-center result is contained within the Q term. 

We can factor the Q term into dr  and the zero length distance 0r , yielding: 0( , )dQ r r= . 

 0: ) ( |( , ) ( , ,| )d d dr H r rI T H r Z′ Ψ −Ψ = Ψ ′  (5.25) 

 )( | drΨ′ = Ψ  (5.26) 

 0: ) ( ) | )( ,(T H HI ZrΨ′ ′ = Ψ′ − Ψ′ ′  (5.27) 
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Here T ′  is the marginal contribution from the patch-patch restraint adjusted for 

the information content from the center-center distance restraint. So returning to the 

average contribution per additional restraint, we take this information content and divide 

by the number of additional restraints. For the system represented by 3-simplexes, we go 

from three distance restraint to 20 distance restraints and two additional distances (center-

center distance and zero-length distance). Thus Equation (5.27) must be divided by 18 

(20+2-3) to obtain the average contribution per additional distance restraint. 

Sample Calculations for Sphere-Sphere Docking 

Here, we present a sample calculation for sphere-sphere docking based on the 

derivations above. 

 2 2
0 1 2 0 2 0(4 )(4 ) ,   ( ) logN H S Nr rπ π= =  (5.28) 

 1 1 2 ,   2 ) log (2( )H SN π π= =  (5.29) 

 
2 2 2

2 1 2 2( (: ) lo 16 ) log (2g )I rT rπ π−Ψ ′ =  (5.30) 

 
2 2 2

2 21 2
2 2 1 2

16 )log log (8 )
2

r r r rπ π
π

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 (5.31) 

For 1 2 1r r= = , Equation (5.31) yields 2 ) 4.6log ( 5 8 bitsπ ≈  for the 18 additional 

distance restraints. We can separate the contribution of the distance restraints into three 

classes: (1) simplex enforcing, (2) center-center, and (3) patch-patch. 

It should also be noted that if a method for binary docking is producing data with 

greater information theoretic entropy than the prior background distribution for a given 

representation, then conditioning the background with this data is not informative. 
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Patch-Patch Contact Restraints for Anisotropic Subunit Docking 

For rod-sphere docking, the orientation-dependent rod will be considered fixed. 

Note that in this case, unlike the sphere-sphere docking case, the patch-patch contact 

point is not necessarily collinear. In this type of docking, the only degrees of freedom in 

the system are around the axis defined by the sphere center and the patch-patch contact 

point.  

For rod-rod docking, we fix the first rod and consider the second rod free. If 

possible, we choose the larger of the two rods to fix. Similarly to the rod-sphere docking 

case, we can define the free axis of rotation from the center of the second rod to the 

patch-patch contact point. 

The differences between the anisotropic docking cases and the sphere-sphere 

docking come in the form of different surface area calculations based on potential steric 

clashes (i.e., violating excluded volume). In the rod-sphere docking case, we find that we 

do not need to make any special considerations as no rotation of the sphere along the free 

axis can cause a steric clash. However, in the rod-rod docking case, we must define the 

free axis of rotation to be normal to both surfaces. If we modify the rod-shaped subunits 

such that the ends of the rods become half-spheres that cap a cylinder, this simplifies the 

calculation for co-normal axes. This resolves the issue of excluded volume by preventing 

steric clashes. This formulation for the anisotropic cases simplifies the calculations for 

1( )H S  such that all of the cases have the same for that follows from Equation (5.16), and 

yielding the same a priori value as in Equation (5.17). 

The resolution that should be applied scales the factors for the integrals. For the 

same geometric object, as the discretization of space becomes finer, the uncertainty 
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increases. Said another way, to resolve a structure to a higher resolution, more 

information is required. 

Patch-Patch Contact Restraints with Relative Orientations 

We now add the relative orientation information to the orientation-dependent 

subunits, requiring 4 10n −  total distance restraints to completely specify the relative 

orientation of the subunits (i.e., to reduce the configurational entropy to zero). Using a 3-

simplex, a mass-center and a patch contact point, we have six points that we use to 

specify a subunit. To internally restrain an individual subunit requires 14 distance 

restraints. To restrain two subunits and their relative orientations requires 28 distance 

restraints (14 internal restraints per subunit), and the number required to enforce patch-

patch contact and fully specify the specific relative orientation. From the previous section, 

we find that 38 total distance restraints are required, leaving 10 distance restraints for the 

relative orientation of the two subunits. 

Now we calculate the average information content of the 38 total distance 

restraints, ( , ): ,dI Qr EΨ , where Ψ  is the distribution of models consistent with our 

definition of the subunits and the contact criterion, dr  is the center-center distance 

restraint, Q is the patch-patch contact restraint, and E is the relative orientation restraint. 

The total a priori uncertainty for the distribution, 2S , for the states of the system is given 

by: 

 
02 2 1 2( ) log ( ))( ) (2p rH S k SA SA k π=  (5.1) 
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Here, pk  is the patch-patch contact resolution scaling factor and 
0r

k  is the relative 

orientation scaling factor. For example, for two spheres 1 2( 1)r r= = , and all scaling 

factors equal to 1, we find the a priori uncertainty to be: 

 3
2 2 24 )2 ) log( ) log ((4 (32 ) 9.95 bitsH S π π π π== ≈  (5.2) 

Then for 38 distance restraints, for this system, with the specified scaling factors, 

we find the average information content per distance restraint to be ~0.26 bits. Further 

dissection could be carried out by systematically adding degrees of freedom (i.e., 

removing distance restraints) and comparing the resulting increase of entropy. 

5.2.3. Generalized Binary Docking 

Here, we generalize the results above to cover arbitrary shapes, any number of 

patches, any shape of patches, and over any resolution scale. Without knowing where the 

patches are, the uncertainty over some granularity of surface mesh is determined by the 

resolution of the representation. In the all-atom case, the molecular surface binned at 

some resolution might be appropriate. 

In the event that several possible patches are known and are distinguishable, the 

support set for the uncertainty calculation becomes the product of both sets of patches on 

the two subunits. This notion of distinguishable patches needs to encapsulate the 

possibility of overlapping, disjoint or otherwise irregular patches. Finally, given a pair of 

patches, the uncertainty is similar to some resolution dependent scaling of 2π , but must 

now also account for gapped fits, tilting or skewing in three dimensions and imperfect 

overlaps. 
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The methodology set forth above for the simplified subunit descriptions still 

applies to this generalized definition of subunits. Here, as before, subunits are defined by 

a set of points and a set of distance restraints fixing the relative positions of these points. 

For docking, we are now concerned with the surfaces of the subunits. To study the 

interaction patches, we further specify as many points as necessary to define the patches 

and add as many distance restraints as required to fix the relative position of each patch-

defining point with respect the points that define the respective subunit. In the most 

general case, we distribute a set of surface mesh points evenly distributed at a density 

sufficient to capture differences in configurations at the desired resolution. Patches are 

then defined as subsets of points on this surface mesh. For all-atom models, surface 

residues (or atoms there of) can be thought of as generating such a surface mesh. 

Now, we consider the total configuration entropy of a system with two such 

subunits. The number of patch-patch interactions is governed by the surface area of the 

two subunits and their respective shapes and excluded volumes. In general, for each 

surface point on one subunit there are some fraction of all the surface points on the other 

that are accessible to it and the sum over all possible sets of mutually accessible points 

between the two surfaces represents the total a priori patch-patch configurational entropy, 

ppH . Assuming a uniform probability distribution over the support set, we find: 

 2log ( , )
j

pp a
i

H i jδ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∑∑  (5.3) 

Here, i and j are the support set representing the surface points of the two subunits, 

and ( , )a i jδ  is a delta function that has value 1 if i and j are mutually accessible and 0 if 

not. 



 119

Then, for all possible patch-patch interactions, we consider the configurational 

entropy from the relative orientation between the two subunits. Again, we apply a 

resolution dependent discretization. For the case of strict point-point contact (i.e., 

neglecting any skewing, tilting), the relative orientation can be expressed as a rotation 

about the co-normal axis. Generalizing the definition of contact beyond a point-point 

contact by allowing for fuzzy contacts will also account for “off-axis” skewing or tilting 

along different axes of rotation. So for a given patch-patch contact, we represent this 

generalized off-axis configurational entropy, oaH , as proportional to the surface area of a 

sphere, less the excluded volume arising from steric clashes. 

 2log ( )oa s
s

H sδ⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  (5.4) 

Here, s is the support set representing the discretization of a sphere around a 

contact, and sδ  is a delta function that has value 1 if allowed by steric considerations and 

0 otherwise. 

Now, for each co-normal or off-axis contact, we consider the rotational degree of 

freedom in the system. Again, we apply a resolution dependent discretization, arbitrarily 

fix one of the subunits, and rotate the other subunit one full revolution. The total a priori 

rotational configurational entropy, rotH  can be expressed by: 

 2log ( )rot r
r

H rδ⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  (5.5) 

Here, r is the support set representing the discretization of a sphere around a 

contact, and rδ  is a delta function that has value 1 if allowed by steric considerations and 

0 otherwise. 
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Finally, we combine all of these terms to express the total a priori configurational 

entropy in the system. 

 2
)(

log ( , ) ( ( )
ij ij ij

c a s i
i j

j r
A B R Ss S r

H i j s rδ δ δ
∈ ∈ ∈ ∈

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
∑∑ ∑ ∑  (5.6) 

The multiplicity of solutions, W, is inside of the log expression and expresses all 

of the possible valid binary docking results for the subunits A and B. Now abstracting, 

we can think of ppH , from Equation (5.3), as proportional to the product of the surface 

areas of the two subunits, giving: 

 2log ( )pp A B pp ppH SA SA d v=  (5.7) 

Here ppd  is the discretization constant for patch-patch contact and ppv  is the 

fraction of the total number of possible contacts that is valid. 

We can think of oaH , from Equation (5.4), as being proportional to the surface 

area of possible off-axis contacts with the two subunits, yielding: 

 2log (4 )oa oa oadH vπ=  (5.8) 

Here oad  is the discretization constant for off-axis contacts and encapsulates the 

fuzzy area of contact, and oav  is the fraction of the total number of possible contacts that 

is valid. 

We can think of rotH , from Equation (5.5), as being proportional to the 

circumference of a circle represent possible rotations, giving: 

 2log (2 )rot rot rotH vdπ=  (5.9) 
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Here rotd  is the discretization constant for rotation and encapsulates the radius of 

rotation, and ppv  is the fraction of the total number of possible rotation that is valid. 

Finally, this allows us to express cH , from Equation (5.6) as: 

 2log ( 4 2 )c A B pp pp oa oa rot rotH SA S v dd v dA vπ π=  (5.10) 

Folding all of the constants together into, K, yields: 

 2 2 2 2log ( ) log ( ) log ( ) log ( )c A B A BH SA SA K SA SA K= = + +  (5.11) 

Now, we could attempt to estimate K and its constituent constants, but all we 

really need is an estimate of the relative size in bits of 2log ( )K  and 2log ( )A BSA SA . We 

can determine an upper-bound for K as follows: 

 4 2pp pp oa oa rot rotK d v vd d vπ π=  (5.12) 

We make the simplifying assumption, for the purposes of calculating an upper-

bound that all possible degrees of freedom are valid, (i.e., 1pp oa rotv v v= = = ). This 

simplifies Equation (5.12) to: 

 24 2 8pp oa rot pp oa rotK d dd d d dπ π π= =  (5.13) 

Now, all of the remaining factors in K are resolution dependent scaling factors. 

One approach to dealing with these scaling factors is to express them in terms of the 

surface area of the two subunits. If we decompose the three remaining constants in terms 

of the contributions from each subunit, we can calculate scaled surface area terms, by 

some function which scales the multiplicity based on the surface area of each subunit. 

Using this scaling function, denoted by the hat symbol above the term, upper-bound for 

the total configurational entropy, *
cH , can be expressed as: 
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 m m*
2 2log ( ) log ( )A BcH SA SA= +  (5.14) 

Extending this idea of a scaling function, we also define a scaled radius of off-

axis contact and scaled radius of rotation, also denoted by a hat above the term. From this, 

we can give the upper-bound expressions for the patch-patch, off-axis, rotation and total 

configurational entropies. 

 m m*
2log ( )A BppH SA SA=  (5.15) 

 * 2
2log ( ˆ4 )oa oarH π=  (5.16) 

 *
2log (2 )ˆro tt roH rπ=  (5.17) 

 * * * *
c rotpp oaH H H H= + +  (5.18) 

Here we apply these expressions for generalized binary docking to the case of 

spheres. We can determine the scaled surface area of a sphere by: 

 m 24 ˆA ASA rπ=  (5.19) 

We can also derive a radius scaling expression that is a function of both of the 

subunit radii: 

 ˆ A B

A B

rr
r

r
r+

=  (5.20) 

 

So with two spheres, with A Br r≥ , we have an upper bound on the total 

configurational entropy of: 

 *
2 2ˆ7 )log ( log (4 ) 7cH r π+ +=  (5.21) 

This reveals an inherent, constant uncertainty of 24 ) 7 13log ( .6 bitsπ + ≈ and 

leaves only the first term that is dependent on the size of the spheres.  
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Now we briefly address the scaling factor. For two spheres, with A Br r≥ , we 

calculate an effective tiling factor, x, required to achieve an error in measurement of y. 

We can also use this to account for thermal noise or any other source of imprecision. 

 sin 1
2 A B

y
r r

α
⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ +⎝ ⎠ ⎠

 (5.22) 

 
2

A

A B

ry
r

x
r

=
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ +⎝ ⎠ ⎠

 (5.23) 

Then the effective radius (the scaled radius) of Ar  becomes /Ar x . For a sample 

calculation, taking A Br r r= = , y = 1Å, and x = y/4 = ¼ Å, yields ˆ 4 /1r r= Å. If we 

assume that globular proteins are approximately sphere, then for an average radius of a 

globular protein of 16Å, with 1Å tolerance, we can calculate an estimate of the total 

configuration entropy for two average interacting proteins. With this scaling factor, we 

find that ˆ 64r = . Substituting this result into Equation (5.21) yields ~55.6 bits of 

uncertainty. 

5.3. Analysis of Restraints for Multiple Docking 

In the previous section, we performed an information theoretic analysis of the 

configurational entropy of binary docking based on the geometry of the subunits. Here, 

we will analyze the restraints used for binary docking. Specifically, we will be analyzing 

the Multidimensional Gaussian (MDG) / exclusive-OR (XOR) restraints, described in the 

Materials and Methods of the work on modular assessment.  
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5.3.1. Restraint Definition 

This spatial restraint is used to encode several possible configurations for two 

subunits. For each possible configuration, we extract the representative distances, 

translate these distances into distance restraints, and merge these distance restraints into a 

single MDG restraint. We further combine each of these MDG restraints into a weighted 

XOR restraint. This weighted XOR restraint determines which of the possible 

configurations is most satisfied and current configuration of the model, and then enforces 

the corresponding underlying MDG restraint (Figure  5.9). 

 
Figure  5.9. Multidimensional Gaussian, Exclusive OR Restraint 

5.3.2. Analysis of Single MDG/XOR Restraint 

For a single MDG/XOR restraint x, let n be the total number of possible 

configurations, let w be the relative weight of the target configuration and let all other 
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configurations have weight 1, and let ( 1)t w n= + − . The entropy contained in the 

restraint is given by: 

 2 2
1 1( ) log logw

n w wH x
t t t t
−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (5.24) 

This expression simplifies to: 

 ( )2 2( ) log logw
wH x t wt= −  (5.25) 

Let wΔ be some positive increment to the target weight. 

Let *w ww= + Δ and *t wt= + Δ . Substituting *w and *t into Equation (5.24) yields: 

 
* *

*
2 2* * * *

1 1( ) log logw
n w wH x
t t t t

⎛ ⎞ ⎛ ⎞−⎛ ⎞ ⎛ ⎞= − − ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (5.26) 

This expression simplifies to: 

 ( )** * *
*2 2( ) log logw

wH x t wt= −  (5.27) 

Subtracting Equation (5.24) from Equation (5.26) gives us the information content 

of increasing the weight of the target configuration: 

 * *( : ) ( ) ( )w w w wHI x x H xx −=  (5.28) 

 ( ) ( )** * *
*2 2 2( : ) log ( / ) log logw w

w wI x x t t w wtt= + −  (5.29) 

From Equation (5.28) we can show that improving the weight of the target 

configuration always has a strictly positive affect on *( : )w wI x x .  

5.3.3. Analysis of Multiple MDG/XOR Restraint 

For two independent MDG/XOR restraints with 1 2w w w= = , 1 2n n n= = , and 

therefore, 1 2t t t= = . We can write the total information theoretic entropy by: 
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 2

2 2 2

2 2 22 2 2 2 2 2

( 1) 1 2 ( 1)( ) log log log
w

n w n w w wH x
t t t t t t

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (5.30) 

This can be rewritten as: 

 ( ) ( )( )2
2 2

2 2 2 2( ) log log 2 log log
w

w wH x t w t wt t= − = −  (5.31) 

  (5.32) 

For m independent MDG/XOR restraints, under the same conditions, we can 

write:  

 ( )( )2 2( ) log logmw
wH x m t wt= −  (5.33) 

Now, we consider two independent MDG/XOR restraints with different number 

of choices (n, m), weights (w, v). Let 1t w n= + −  as before, and let 1u v m= + − . Now 

the configurational entropy of this system is given by: 

 ( ) ( )2 2 2( ) log log logvw
w vH x tu w vt u= − −  (5.34) 

For m independent MDG/XOR restraints with arbitrary number of choices and 

weights, we can write: 

 2 2
11

( ) log log
m m

i
w i i

iii

wH x t wt
==

⎛ ⎞
⎜ ⎟

⎛ ⎞= −
⎝

⎜
⎠⎠
⎟

⎝∑∏G  (5.35) 

5.3.4. Correlated Restraints 

Thus far, we have only considered independent restraints and independent choices 

within restraints. However, any correlations either within a restraint or between restraints 

can only decrease the entropy. Within a restraint, any correlations between choices can 

not change the probability distribution over the choices to increase the entropy. Likewise, 
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between restraints, any correlations will deviate from the sum of the underlying, more 

uniform, entropies, always towards decreased overall entropy. Thus, the calculations in 

this section provide an upper bound on the total entropy of this restraint type. 

 

 

 

5.4. Graph-theoretic Analysis of Multiple Docking 

We use a simplified model of assemblies and binary docking to study the effect of 

the accuracy of the underlying restraints on multiple docking. We assume the knowledge 

of the assembly subunit stoichiometry and connectivity (ie interaction topology). 

5.4.1. Graph Representation 

We define a graph G, where each of the n subunits is represented as nodes, and 

each of the contact interactions define the m edges (Figure  5.10b). Then we define a 

complete, m-partite graph G’, where each partition represents an edge (eg, edge e, 

spanning nodes u and v) in G and contains nodes representing possible relative 

orientations of the subunits connected by that edge (eg, relative orientations between 

subunits u and v) (Figure  5.10c). Each edge in G’ now represents a choice of two relative 

orientations between three connected subunits. On each edge in G’, we assign edge 

weights as the acceptance probability of that particular choice of relative orientations. 

Within each partition in G’, we can assign a selection probability of a particular relative 

orientation. We further augment each partition with an additional “failure” node, 
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representing situations where the presumed contact is either not made or the excluded 

volume of the two subunits is violated. This failure node has a selection probability of 

zero, and any edges to or from a failure node has an acceptance probability of zero. 

To fully specify the interaction topology, we need to capture all of the interactions 

presumed to exist, which is done in G’, but we also need to capture all of the interactions 

which are thereby forbidden. The inverse contact interaction topology, H, is given by the 

complement of G (Figure  5.10d). Using the edges in H, we can now create a set of 

partitions that represent interactions that should not exist. Each of these partitions 

contains only two nodes: valid (with selection probability of one) and invalid (with 

selection probability of zero). In this case, the valid nodes represent a non-contact, and 

the invalid nodes represent either a contact or a collision and have the same properties as 

the failure nodes in G’. We define a new graph G’’, which is a complete ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
n

-partite 

graph over both contacting interactions and non-contacting interactions (Figure  5.10e). 

Edge weights are defined the same way as in G’, with the addition that edge weights 

between valid nodes and all other nodes that are not failure nodes or invalid nodes are 

defined as one.  
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Figure  5.10. Graph-theoretic Model for Multiple Docking 

5.4.2. Calculation of Configuration Probabilities 

After defining the specific parameters of our model, we can write an expression 

for the probability of finding any structure. In either G’ or G’’, we calculate the raw 

probability of a configuration, by taking the product of the selected selection probabilities 
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and the product of the associated acceptance probabilities. The normalized probability is 

given by the raw probability divided by the sum over all possible raw probabilities. 

5.4.3. Analysis of Contributions to Configurational Entropy Loss 

With G’ and G’’, we can calculate the contributions that excluded volume, 

topological enforcement and the various weights of the selection and acceptance 

probabilities have on the difficulty of finding the native structure by comparing the 

normalized probabilities of the native structure, pnative, under various regimes. The 

difference in pnative between G’ and G’’, represents the added information gained from 

negative interaction data. And by varying the selection and acceptance probabilities, we 

can survey regimes for synergistic multiple docking. Finally, we can vary the underlying 

interaction topology, G, by adding or removing edges and the resulting differences in 

pnative represents the information from a particular topology. 

For example, if we take a complex formed of three subunits (A, B and C) that are 

arranged in a linear chain, such that A and B are in contact and B and C are in contact, we 

can use this graph theoretic model to describe the relationship between the various 

selection probabilities and their effect on the overall probability of finding the native 

structure. For the binary interaction between A and B, let j represent the total number 

possibilities and a represent the probability of selecting the native configuration. For the 

binary interaction between B and C, let k represent the total number possibilities and b 

represent the probability of selecting the native configuration. The probabilities for 

selecting a non-native configuration are: ( )
( )

1
1

a
j

−
−  and ( )

( )
1

1
b

k
−

−  for the AB and 



 131

BC binary interactions, respectively. We can express the probability of selecting the 

native structure, nativep , in this graph theoretic model by the following expression: 

 (1 ) (1 ) (1 )(1 )
1 1 ( 1)( 1)

native
abp na b mb a c a bab

k j j k

=
− − − −

+ + +
− − − −

 (5.36) 

Here n is the number of interactions between the native configuration for AB and 

a non-native configuration for BC, m is the number of interactions between the native 

configuration for BC and a non-native configuration for AB, and c is the number of 

interactions between non-native interactions for both AB and BC. To simplify our 

notation, let 1jβ = −  and let 1kγ = − . Solving for 1
2nativep > : 

 1
2(1 ) (1 ) (1 )(1 )native

abp na b mb a c a bab
β γ βγ

= >
− − − −

+ + +
 (5.37) 

If we consider the case where a b w= =  and  ,  1k kj β= = − , we can solve a 

particular instance of the problem for w. After substituting for the redundant variables, 

we rewrite Equation (5.37) as: 

 
( )

2

2
2

2

1
2(1 )(1 )

native
wp

n m c ww w w
β β

= >
⎛ ⎞+ −

+ − +⎜ ⎟
⎝ ⎠

 (5.38) 

Solving for w, the native probability required to have 1
2nativep > , we arrive at the 

expression: 

 
2 2

2

( ) 2 ) ( ) 2 ) ( ) )( ( 4 (
(( )2 )

cn m c n m c n m c
w

n m c
β β β β

β β
+ + ± + + + +

+ +
−
+

+
>  (5.39) 

If we allow ( ) 2n cX mβ + +=  and 2 ( )n m cY β β += + , Equation (5.39) 

simplifies to: 
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2 4

2
X X cYw

Y
± −

>  (5.40) 

Solving for w, we only keep the positive root. This allows us, for this simplified 

model, to analytically determine the relative weight need on the native configuration to 

be able to definitely select the native structure of the complex using multiple docking. It 

also describes the relationship between the number of choices, the required accuracy of 

the underlying restraints and the overall accuracy of the method. 

5.4.4. Assessment Metrics 

In assessing the accuracy of underlying binary docking methods for multiple 

docking, the metric of choice may not be the configuration entropy of the resulting 

distributions, but rather a quantity related to nativep  or expected rank of the native (which 

in unweighted context are equivalent). 

Given underlying binary docking data represented in partitions with selection 

probabilities (and negative interactions also represented exclusion probabilities), we can 

generate all possible valid solution states (those with non-zero probabilities). Here, the 

raw and normalized values of nativep  can be calculated and also the entropy of the 

distribution can be calculated. If we rank order the valid configuration by probability, we 

can also find thresholds for the expected rank of the native solution. 

This third measure is of greater practical value as the expected number of follow-

up experiments is the applicable metric of interest. Here, the entropy of the distribution 

conditioned by the knowledge of nativep  or of the rank ordering might be of theoretical 

value, but from a practical standpoint, since every valid solution is an alternative that 
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needs to be eliminated, an unweighted “count” based measure is entirely sufficient. 

Another potential metric might be the entropy over the support set of candidate solutions 

or candidate experiments (i.e., the number of actual experiments needed to determine the 

correct structure). 

5.5. Revealing Synergistic Regimes for Multiple 

Docking 

Here we use simplified models for multiple docking to describe the relationship 

between the overall accuracy of multiple docking and the synergistic combinations of 

binary docking results. By describing the effect of one binary docking prediction on 

another, we will be able to describe a lower limit on the accuracy and precision required 

from binary docking methods to be useful for multiple docking. 

5.5.1. Representation of Assemblies 

We use a simplified model of assemblies and binary docking to study the effect of 

the accuracy and precision of the underlying restraints on multiple docking. We represent 

the n subunits of the assembly as hard spheres of the same size.  

5.5.2. Representation of Binary Docking 

Docking results are expressed as probability distributions over the possible 

adjacencies (i.e., contacts or dockings) for two subunits. We can vary k, the number of 

alternative positions for each docking result, as well as pnative, the probability of the native 
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position. We define a uniform probability distribution over the non-native, ie decoy, 

positions. The probability for a decoy, pdecoy, is given by
1

1
−

−
=

k
p

p native
decoy . 

5.5.3. Calculation of Native Structure Probability 

After defining the specific parameters of our model, we can write an expression 

for the probability of finding any structure, accounting for exclude volume. For n=3 

subunits, with subunits A and B, and B and C interacting, we can define p(AB) and p(BC) 

as either pnative or pdecoy for the respective interactions. Then the probability of the 

structure is given by: 

 2 2 2

( ) ( )
2( 2) ( 3 3)native native decoy dec

structure
oy

p AB p BCp
p k p p k k p

=
+ − + − +

 (5.41) 

5.5.4. One-Dimensional Model System 

As a proof of concept, we describe a simple model system of three subunits in a 

one-dimensional system. We describe a native structure as having the structure ABC and 

the decoy structure as having the structure CBA. We can encode the rules for this one-

dimensional system using probabilities. 

 
Figure  5.11. One-Dimensional Model, Native Structure 
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Figure  5.12. One-Dimensional Model, Decoy Structure 

 
( ) 1 ( )
( ) 1 ( )
( ) ( ) 0

p AB p BA
p BC p CB
p AC p CA

= −
= −
= =

 (5.42) 

Building on these rules, we can write a simplified version of Equation (5.41) for 

the pnative of this particular system (Figure  5.13): 

 ( ) ( )( )
( ) ( ) ( ) ( )native

p AB p BCp p ABC
p AB p BC p CB p BA

= =
+

 (5.43) 
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Figure  5.13. Synergistic Behavior 

 

We can compare this to the probability of finding a native solution if we 

considered the two underlying probabilities independent (Figure  5.14): 

 ( ) ( ) ( )independentp ABC p AB p BC=  (5.44) 
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Figure  5.14. Independent Behavior 

 

Now, we plot pnative with respect to the underlying binary probabilities (Figure 

 5.15). As we can see, the model displays synergistic properties. 
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Figure  5.15. Synergistic and Independent Model Comparison 

5.5.5. Dimensions and Adjacencies are Equivalent 

To extend the basic idea of this model to higher dimensions, only requires 

increasing the possible number of adjacencies. Here we extended the one-dimensional 

model to a two-dimensional square lattice by fixing the position of subunit B to the center 

of a 3x3 lattice. Now, we can write the pnative of this particular system: 

 

1 1

( ) ( )( )
(1 ) ( ) ( )

native native
native n n

i j
ij

p A A p B Bp p ABC
p A i p B jδ

= =

= =
= =

− = =∑∑
 (5.45) 

Note that this expression has no dimensional dependence; the only parameter is 

the number of possible adjacencies. In general, the maximum possible number of 

adjacencies for any number of subunits is governed by the closest possible packing of 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p(model)

p(no synergy)



 139

those subunits. For hard spheres of identical size: in one dimension, the maximum 

possible number of adjacencies is 2 subunits; in two dimensions, the maximum possible 

number of adjacencies is 6 subunits; and in three dimensions, the maximum possible 

number of adjacencies is 12 subunits.  

Using such an expression, we can describe the relationship between number of 

possible adjacencies and pnative for a particular topology and probability for the 

underlying binary docking results to find the native positions or configurations. 

5.5.6. Excluded Volume and Synergy in Multiple Docking 

Using the extension of the model described above, we described the effect of 

increasing the number of adjacencies on the synergy in multiple docking. As the number 

of possible adjacencies rises, the synergy found in combining multiple binary docking 

results decreases. This can also be interpreted in terms of excluded volume: as the 

number of possible positions for each subunit rises, there are fewer possible ways for 

excluded volume to be violated. 

5.6. Sampling and Scoring in Underdetermined 

Systems 

In structure modeling by representing systems as points and restraints, and 

optimizing the configurations with respect to input data, it can be observed that in 

underdetermined systems, multiple global optima exist. Selecting the largest clustering 

set of optima may be representative of the native state, but this is not always certain. This 

is observed, when dealing with restraints that are not physical in nature or without 
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sufficient sampling. Furthermore there is the complication of having correlated restraints 

and biased sampling. Optimization methods generally perform biased sampling. Here 

using simple model systems, we describe the relationship between underdetermined 

systems, and sampling and scoring. In particular, we focus on correlated restraints and 

optimization bias. 

5.6.1. Preliminary Demonstration of Underdetermined Systems 

The multiplicity of solutions in an underdetermined system is a consequence of 

multi-body interactions where some solutions (not necessarily native) are favored in the 

subsequent optimization. For example, in a system with n points and less than 4n – 10 

non-redundant distance restraints, there are multiple satisfying solutions to the 

configuration of points. 

We can also construct an underdetermined system with a subset of points that is 

fully specified in such a way as to make particular classes of solutions easier to find and 

others more difficult. 

5.6.2. Scoring and Information Sufficiency 

Given a particular representation of a system, we translate the available data as 

restraints which are then encapsulated into a scoring function. The support set for this 

scoring function is the space of all possible configurations of the system. In a completely, 

uniquely determined system, over this support set, the scoring function defines a single 

optimal solution. However, in an underdetermined system, multiple solutions satisfy the 

input restraints and receive the same optimum score by the scoring function. Therefore, 
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the scoring function is incomplete in the sense that there was insufficient information 

encoded in the restraints to completely determine a unique solution.  

5.6.3. Ranking Solutions in Underdetermined Systems 

For underdetermined systems, with incomplete scoring functions, we have 

multiple solutions and a need to be able to distinguish a representative solution from the 

ensemble of models with optimum score. 

For the case of satisfiable restraints, without additional qualification, all of the 

models of optimum score (i.e., without violation) are equally likely and satisfy all of the 

input restraints. We have no guarantee of completeness of sampling over model space, 

nor can we declare a particular model or representative model to be correct. The largest 

basin of models represents the solutions that satisfy all input restraints and are most often 

found by the optimization protocol used. 

5.7. Bayesian Network Framework for Structure 

Modeling 

Here we seek to describe the integration of multiple sources of structural data for 

modeling macromolecular structures by the use of a Bayesian network. This model of 

data integration is general enough to be applied to any problem in structure modeling, 

and aims to express in a unified probabilistic framework all the information that we can 

collect about macromolecular structure. For this work, we use the protein structure 

prediction problem as an example. 
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5.7.1. Joint Probability Density Function 

Prediction of the native structure of a protein would be enabled by expressing our 

knowledge of any kind as a scoring function whose global optimum corresponds to the 

native structure. One such function is a joint probability density function of the 

coordinates of the n protein atoms, R, given available information I about the system.  

 1 2 3( | ) ( , , , , | )np I p R R R R IR = …
G

 (5.46) 

We have chosen to approach the problem of building the joint probability density 

using a Bayesian network. Here we describe the construction of a Bayesian network 

representing the structure modeling problem, and describe the conditional independences 

that arise from the network. This description will allow us to calculate the joint 

probability density by multiplying (or adding in log space) the conditionally independent 

features together. 

First, we enumerate all of the variables, which are represented as nodes in the 

network. As described above, we have the variable R, representing the coordinates of the 

atoms in the model. We represent the sequence of the protein being modeled by the 

variable S, which contains the sequence of residues forming the protein, information 

about the atom and residue types. We represent the environment of the protein by the 

variable W, which encapsulates quantities like temperature, pressure, pH, etc. We use the 

variable C to encapsulate the data from a set of sample structures that are already known. 

This set of structures might provide us with homology information or serve as the basis 

for a statistical potential. A typical source for C might be the PDB. We represent 

experimental evidence with the variable X. Each independent experiment gives us direct 

or indirect data on the coordinates. We represent all scoring functions on the positions of 
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the model, such as molecular dynamics force fields, using the variable E. For this reason, 

E also encapsulates the value of the “energy” of the system (i.e., the value that we 

observe after applying the force field function to the coordinates).  For any given force 

field, in E, we represent the parameters to that force field with the variable P. Finally, we 

have the variable Q, representing the acceptance or rejection criteria for the models (e.g., 

only accepting models without any steric clashes). 

5.7.2. Bayesian Network Construction 

With the nodes described above, we construct a Bayesian network to describe the 

protein structure modeling problem (Figure  5.16).  

 

 

Figure  5.16. Bayesian Network for Protein Structure Modeling 
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The nodes S, W, C, X, P, and Q are observed variables and hence, evidence nodes. 

The coordinates, R, and consequently the value of the scoring function, E, are not 

observed. Now we list and justify the arcs connecting three nodes. 

W → X → R. We have a chain. If we observe the results of an experiment, then 

the environment of the experiment and the resulting coordinates are independent.  

W → P → E. We have a chain. If we observe the parameters to an energy 

function, then the environmental factors influencing the choice of parameters and the 

resulting energy function are independent. 

 S → R ← X. We have a collider. If we observe the coordinates of the model, then 

the sequence and the experiments are dependent. Both the sequence and the experiments 

have effects on our model coordinates.  

S → R → E. We have a chain. If we observe the coordinates of the model, then 

the sequence and the resulting value of the energy function are independent.  

X → R → E. We have a chain. If we observe the coordinates of the model, then 

the experimental evidence and the resulting value of the energy function are independent.  

C → E ← R. We have a collider. If we observe the value of the energy function, 

then homology information and the coordinates of the model are dependent. Both the 

homology information and the coordinates of the model have effects on the value of the 

energy function (assuming it uses homology derived terms).  

C → E ← P. We have a collider. If we observe the value of the energy function, 

then homology information and the parameters to the energy function are dependent. 

Both the homology information and the parameters to the energy function have effects on 

the value of the energy function (assuming it uses homology derived terms).   
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C → E → Q. We have a chain. If we observe the value of the energy function, 

then the homology information and the value acceptance criteria are independent.  

R → E ← P. We have a collider. If we observe the value of the energy function, 

then the coordinates of the model and the parameters to the energy function are 

dependent. Both the coordinates of the model and the parameters to the energy function 

have effects on the value of the energy function.  

R → E → Q. We have a chain. If we observe the value of the energy function, 

then the coordinates of the model and the acceptance criteria are independent.  

P → E → Q. We have a chain. If we observe the value of the energy function, 

then the parameters to the energy function and the acceptance criteria are independent.  

5.7.3. Calculating Joint Probability Density Functions 

The joint probability density function of a Bayesian network is given by: 

 1 2
1

( , , , ) ( / ( ))
n

n i i
i

p X X X p X parents X
=

= ∏…  (5.47) 

According to the graph (Figure  5.16) we constructed above, the joint probability 

density function is: 

 ( | ) ( | ) ( ) ( | ) ( | ) ( ) ( | ) ( )jointp p Q E p E CRP p C p R SX p P W p S p X W p W=  (5.48) 

Now if we apply the chain rule to solve for ( | )p R WSXCPEQ , we get: 

 ( | )
( )

jointp
p R WSXCPEQ

p WSXCPEQ
=  (5.49) 

Removing R from the original Bayesian network and redirecting the arc directly 

from S → E and X → E, we can calculate ( )p WSXCPEQ : 
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 ( ) ( | ) ( | ) ( ) ( | ) ( ) ( | ) ( )p WSXCPEQ p Q E p E CPSX p C p P W p S p X W p W=  (5.50) 

Substituting Equation (5.50) into Equation (5.49) and simplifying, we arrive at:  

 ( | ) ( | )( | )
( | )

p E CRP p R SXp R WSXCPEQ
p E CPSX

=  (5.51) 

The formula seems to be in agreement with our intuition of the problem, as the 

energy depends on the information derived from homology, the parameters, and the 

coordinates of the model, and the coordinates of the model depend on sequence and 

experimental data. The denominator only includes evidence nodes, which are observed, 

and becomes a normalization term. 

5.7.4. Implications of the Bayesian Network Analysis 

Above we explicitly stated the conditional dependencies and independencies of 

the various factors in protein structure modeling by representing them in a Bayesian 

network. Now we extend this analysis to describe the correlations between coordinates in 

the model. If the coordinates of the model were conditionally independent of each other, 

given the observed variables, then all of the probabilities for the individual coordinates 

could be multiplied together to solve for the probability of the entire model. 

 Unfortunately, because we observe the acceptance criteria, represented by the 

variable Q, if we were to separate the coordinates of the model into individual nodes, 

they would all be conditionally dependent on each other. Given the conditional 

dependence of the coordinates of the models, the most principled integration of data 

would need to account for the correlations between positions. 
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5.8. Future Directions 

This chapter represents work of various levels of completeness and abstractness. 

The future directions for this work are to address both of these issues: first, to improve 

the completeness and accuracy of the models; and second, to adapt and apply these 

models to different applied to different systems with more concrete applications.  

While many different simplified representations were presented in this chapter, 

the practical question of choosing the optimal representation with respect to the amount 

data (and information contained in the data) and the completeness sampling was not 

address. Also along this line of inquiry is the use of multiple granularities simultaneously. 

This chapter also presented derivations and calculations for several upper bounds, 

notably on the configurational entropy of binary and multiple docking. As with any work 

establishing upper bounds, further work can be done to tighten this bound. Also making 

increasingly realistic assumptions and recalculating the bounds might be able to explain 

why some assemblies are more difficult than others to solve. Another interesting question 

would be to explore the possible thermodynamic implications of such entropy bounds. 

Along these lines, having described the information theoretic entropy, we could also 

define a corresponding “free energy” quantity, perhaps by translating the defined 

entropies into relative entropies with priors weighted by a scoring function. 

The work on multiple docking presumes the existence of a unique solution rather 

than perhaps a more general inferential approach. Expanding on this theme: the output of 

the analytical model for subunit assembly given topological restraints, respecting 

excluded volume and interaction data generates a probability distribution over the space 

of allowed configurations (i.e., the support set). Evaluating the underlying method from 



 148

an inferential framework would yield nativep  as the only metric of relevance. Another line 

of inquiry could describe the relationship between adding more data (decreasing 

precision) and accuracy. Also, the models in this work assumed independences between 

the various restraints, examining the possible correlations within these restraints could 

also lower the bounds on the entropy of multiple docking. Using more realistic models, 

we could also demonstrate that multiple docking indeed follows the same behavior as the 

simplified models.  

Another limitation in this chapter is that the simplified models used were 

generally of a fixed topology and composition. Describing the effect of different 

topologies on the models presented in this work would provide another variable with 

which we could calculate entropies and information contents. 

For underdetermined systems, describing the specific conditions under which the 

largest cluster is also the native cluster would be of practical use. Another approach to 

pursue would be to employ active learning strategies; attempting to determine which 

restraint or experiment would be most informative. 

Also, while underdetermined systems were addressed, the opposite case of over-

constrained systems was not. These frustrated systems are important because with 

multiple sources of structural data, it becomes more and more likely that there will be 

conflicting restraints. Describing the properties of over-constrained systems and creating 

principled strategies for resolving conflicting data could also prove useful. 

Finally, with the work started on the Bayesian network description of protein 

structure modeling, we could build more-principled statistical potentials and scoring 

functions, perhaps ultimately improving the accuracy of protein structure modeling. 
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