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Ecological Stability Emerges at the Level of Strains in the
Human Gut Microbiome

Richard Wolff,a William Shoemaker,a Nandita Garuda,b

aDepartment of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, USA
bDepartment of Human Genetics, UCLA, Los Angeles, California, USA

ABSTRACT The human gut microbiome harbors substantial ecological diversity at the
species level as well as at the strain level within species. In healthy hosts, species abun-
dance fluctuations in the microbiome are thought to be stable, and these fluctuations
can be described by macroecological laws. However, it is less clear how strain abundan-
ces change over time. An open question is whether individual strains behave like species
themselves, exhibiting stability and following the macroecological relationships known to
hold at the species level, or whether strains have different dynamics, perhaps due to the
relatively close phylogenetic relatedness of cocolonizing lineages. Here, we analyze the
daily dynamics of intraspecific genetic variation in the gut microbiomes of four healthy,
densely longitudinally sampled hosts. First, we find that the overall genetic diversity of a
large majority of species is stationary over time despite short-term fluctuations. Next, we
show that fluctuations in abundances in approximately 80% of strains analyzed can be
predicted with a stochastic logistic model (SLM), an ecological model of a population
experiencing environmental fluctuations around a fixed carrying capacity, which has pre-
viously been shown to capture statistical properties of species abundance fluctuations.
The success of this model indicates that strain abundances typically fluctuate around a
fixed carrying capacity, suggesting that most strains are dynamically stable. Finally, we
find that the strain abundances follow several empirical macroecological laws known to
hold at the species level. Together, our results suggest that macroecological properties of
the human gut microbiome, including its stability, emerge at the level of strains.

IMPORTANCE To date, there has been an intense focus on the ecological dynamics of the
human gut microbiome at the species level. However, there is considerable genetic diver-
sity within species at the strain level, and these intraspecific differences can have important
phenotypic effects on the host, impacting the ability to digest certain foods and metabolize
drugs. Thus, to fully understand how the gut microbiome operates in times of health and
sickness, its ecological dynamics may need to be quantified at the level of strains. Here, we
show that a large majority of strains maintain stable abundances for periods of months to
years, exhibiting fluctuations in abundance that can be well described by macroecological
laws known to hold at the species level, while a smaller percentage of strains undergo
rapid, directional changes in abundance. Overall, our work indicates that strains are an im-
portant unit of ecological organization in the human gut microbiome.

KEYWORDS human gut microbiome, macroecology, ecology, metagenomics, strains

The human gut microbiome is a complex ecological community composed of tens
of trillions of cells that interact directly and indirectly with one another and the

host (1–3). Although the precise species compositions of the gut microbiome differ
among hosts, healthy adult guts tend to be both ecologically diverse and temporally
stable at the species level under normal circumstances (4–7). The ecological stability of
the gut community is critical for the preservation of its functional capacity over time,

Invited Editor Rachel Whitaker, University of
Illinois at Urbana-Champaign

Editor John W. Taylor, University of California,
Berkeley

Copyright © 2023 Wolff et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Nandita Garud,
ngarud@g.ucla.edu.

The authors declare no conflict of interest.

Received 10 November 2022
Accepted 13 January 2023
Published 21 February 2023

March/April 2023 Volume 14 Issue 2 10.1128/mbio.02502-22 1

RESEARCH ARTICLE

https://orcid.org/0000-0003-0111-4838
https://orcid.org/0000-0003-4217-4407
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/mbio.02502-22
https://crossmark.crossref.org/dialog/?doi=10.1128/mbio.02502-22&domain=pdf&date_stamp=2023-2-21


and periods of instability and heightened variability are often associated with environ-
mental perturbations or disease states (8–10).

Much as the gut community as a whole is made up of a diverse array of species,
within species, populations of gut microbes harbor many genetic variants (11). A grow-
ing body of literature highlights the importance of interhost differences in microbiome
genetic composition for various aspects of human health, with specific microbial geno-
types and strains being associated with the digestion of certain foods (12), a range of
host disease risk factors (13), bile and lipid composition (14), and antibiotic resistance
(15). Recent studies have begun to characterize how this genotypic diversity changes
over time within hosts (7, 11, 16, 17) and have linked longitudinal changes in genetic
composition to specific host phenotypes and metabolite levels (18).

Broadly, dynamic changes in genetic variation in the gut microbiome occur at two dis-
tinct levels. First, there are changes in the frequencies of lineages that have clonally diverged
since their common ancestor colonized the host due to the evolutionary forces of mutation,
drift, selection, and recombination. Typically, such lineages differ from one another at a small
number [Oð1Þ to Oð102Þ] of single nucleotide variants (SNVs) (16, 17). Second, there are
fluctuations in the relative abundances of conspecific strains that do not share an ancestor
within the host. When levels of recombination between such strains are sufficiently low, clo-
nal descendants of the initial colonizers may persist within the host as genetically distin-
guishable populations differing from one another at a number of sites in their shared, core
genome [Oð103Þ to Oð104Þ] similar to those of strains drawn from unrelated hosts (11, 16,
19–21). Multiple colonization by conspecific strains is evidently under some degree of eco-
logical constraint as only a few strains (typically between one and four) are ever observed
within a host at any one time, a phenomenon dubbed “oligocolonization” (16, 22–24). The
mechanisms enabling a small number of strains to colonize a host and increase to a high
frequency, but preventing a large number of exogenous strains from doing the same, are
not yet known. Interestingly, similar colonization patterns have been observed for a number
of other host-associated members of the microbiota, both at different human body sites
(25) and in other organisms (26, 27).

In healthy, adult hosts, a large majority of strains persist over periods of months to years
(7, 11, 16, 18, 28, 29). Moreover, strains within the gut can remain resilient in the face of large
perturbations such as antibiotics (23) and fecal microbiome transplants (30). However, little is
known about the magnitude of daily fluctuations in genetic composition at either the strain
or the lineage level under ordinary conditions, or how such fluctuations ultimately affect the
stability properties of the gut community, as longitudinal studies of genetic diversity in the
gut have tended to focus on samples collected at multimonth intervals.

In this work, we seek to understand how the genetic composition of the gut changes
over time, from daily to multiyear timescales, in four healthy, adult hosts sampled over the
course of 6 to 18 months (31). To do so, we leverage concepts from macroecology to
examine the dynamics of strains in these four hosts. Macroecology focuses on characteriz-
ing statistical regularities in patterns of abundance and diversity within and between eco-
logical communities. A growing body of work has demonstrated that species-level patterns
of diversity in a variety of natural microbial communities are well described by macroeco-
logical laws (32–35). Many of these macroecological laws can be recapitulated through in-
tuitive ecological models containing few, if any, free parameters (32, 33, 36). Among these
successful models is the stochastic logistic model (SLM), which describes the dynamics of a
population experiencing rapid stochastic fluctuations induced by environmental noise
around a fixed carrying capacity (37). Whether the populations making up a community
exhibit regular, statistically quantifiable dynamics and, if so, whether these dynamics can
be explained using simple models are fundamentally macroecological questions. In this
work, we find not only that the large majority of strains in these healthy hosts exhibit
abundance dynamics consistent with an SLM but also that strain abundance fluctuations
follow several macroecological laws known to hold among species (32, 33, 35, 36).

Together, our results indicate that daily fluctuations in overall genetic composition
within the gut microbiome are largely stationary and that these fluctuations follow broad
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macroecological patterns. Thus, several macroecological properties of the human gut
known to hold at higher levels of taxonomic organization, including its stability, appear to
emerge at the level of strains.

RESULTS

To explore how daily fluctuations in nucleotide diversity and strain abundances
translate into stability over periods of months to years, we used high-resolution tem-
poral data from four hosts sampled in the BIO-ML project (31) (see Materials and
Methods for further details on sampling).

Temporal stability of intraspecific genetic variation.Within hosts, allele frequen-
cies change over time in gut microbial populations due to mutation, drift, selection,
and fluctuations in the relative abundances of strains. While studies examining broad
cohorts of sparsely longitudinally sampled individuals indicate that the magnitude of
intrahost fluctuations only infrequently approaches that of interhost differences over
timescales of months to years (7, 11, 16), more finely resolved temporal trends are less
well characterized. To evaluate the stability of the gut community, it is crucial to deter-
mine whether temporal fluctuations are stationary or directional.

To assess the stability of intraspecific genetic variation over time, we examined tem-
poral trends in the patterns of nucleotide diversity within our four hosts using FST, a
standard measure of genetic differentiation between populations (see Materials and
Methods for further details on FST calculations). If the genetic composition of a species
changes directionally, we expect that samples drawn later in the time course will have
a higher FST value relative to the initial time point than earlier samples. If, in contrast,
fluctuations are stationary, then later time points should on average be no more
diverged from the initial sample than earlier time points.

To contextualize the magnitude of the variation in the genetic composition over
time, we normalized our longitudinal measurements of FST within hosts by the mean
FST value of the species across hosts. We calculated this species-wide mean FST using
shotgun metagenomic data from 250 North American hosts sampled in the Human
Microbiome Project (6, 38), allowing us to better capture the extent of interhost diver-
sity. We refer to the resulting normalized FST statistic, obtained by dividing each intra-
host FST measurement by the mean FST across hosts, as FST9 . FST9 will approach or exceed
a value of 1 when intrahost fluctuations are of the same magnitude as those of inter-
host differences and will remain close to a value of 0 when the genetic composition of
the population is constant over time.

In line with previous work (7, 11), we observe that changes in the genetic composi-
tion within the hosts that we examine (am, ao, an, and ae) rarely approach the magni-
tude of interhost differences, as FST9 remained well below 1 at all time points for all but
one species examined (see Fig. S5 in Text S1 in the supplemental material). For the one
aberrant species, Faecalibacterium prausnitzii in host ao, F

9

ST increases steadily before a
rapid increase to above 1 at around the time point of 60 days (Fig. 1B). More typical,
however, is the example of Phocaeicola vulgatus in host am, for which F

9

ST fluctuates
but appears to remain near a long-term steady state (Fig. 1A).

To determine quantitatively whether the fluctuations in genetic composition were sta-
tionary or directional, we implemented an augmented Dickey-Fuller (ADF) test for each F

9

ST

time series (39). The ADF test tests the null hypothesis that a time series is nonstationary
against the alternate hypothesis that the time series is stationary. Rejecting the null hy-
pothesis with the ADF test is thus evidence that the mean and variance in a temporally
varying quantity are time invariant. For 34 of the 45 species (76%) considered, we rejected
the null hypothesis at a significance level of a P value of 0.05, indicating that the majority
of species exhibit stationary F

9

ST trends.
Our results suggest that fluctuations in allele frequencies are typically stable, at

least when coarse-grained across the whole genome, in these hosts. However, large-
scale, rapid changes in allele frequency, as observed for F. prausnitzii, also occur.

Strain frequencies. Recent empirical studies using isolate, single-cell, and shotgun
sequencing data have demonstrated that at any one time, the human gut microbiome
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is colonized by at most a few distinct conspecific strains (between 1 and 4), which do
not share a clonal ancestor within the host (16, 20, 24, 29, 31). Much less is known,
however, about the dynamics of strains once they have colonized the host.

To investigate these dynamics, we infer strain genotypes and frequencies using an algo-
rithm adapted from the one described previously by Roodgar et al. (23). This algorithm iden-
tifies large clusters of SNVs with tightly correlated frequency trajectories (23), indicative of
linkage on a common genomic background. By identifying large clusters, we expect to dis-
tinguish the trajectories of deeply diverged strains (for further information on our strain
phasing, see Text S1, section 3.2). When no large cluster of tightly linked SNVs was detected
within a species, we inferred that only a single strain was present.

Of the 45 species-host pairs examined, 15 (33.3%) harbored multiple strains. Of these
15 pairs, 13 were colonized by two strains, while in 2 separate hosts (am and an), the spe-
cies P. vulgatus was composed of three strains. The number of fixed differences between
strains varied between Oð103Þ and Oð104Þ, although due to our conservative filters for
both calling SNVs from reads and assigning SNVs to strains, these likely represent underes-
timates of the true divergence between these strains. For further discussion of interstrain
genetic divergence, see Text S1, section 3.1.

As may be expected given our F
9

ST results, most strains, by visual inspection, exhibit fre-
quency dynamics that are heuristically consistent with stationarity (see Texts S2 to S5 for
the strain trajectories of all species). The relative frequencies of most strains appear to fluc-
tuate around a constant value throughout the sampling period. In a typical example of this
kind of behavior, the dominant strain of P. vulgatus in host am fluctuates at around a 60%
frequency for more than 500 days (Fig. 1C). However, in a minority of cases, the strain fre-
quencies shifted dramatically throughout the sampling period. The most striking example
of this is F. prausnitzii in host ao, which we have already seen underwent fluctuations in
F
9

ST (Fig. 1B) of the magnitude of interhost differences in genetic composition. In this spe-
cies, an initially rare strain almost fully supplants the initially dominant strain within the
span of 60 days before a partial reversion later in the time course (Fig. 1D). In another case,
Parabacteroides distasonis in host ao, a single strain that initially falls below the detection
threshold increases to a detectable abundance midway through the sampling time course
(Text S3). Similarly, the minor strain of P. vulgatus in host am is initially very rare before rap-
idly increasing in frequency at around day 300 and subsequently reverting to an intermedi-
ate steady state below its maximum frequency. This subtle shift in strain frequencies is not,
interestingly, detected by our ADF test of F

9

ST as a departure from stationarity, likely due to

FIG 1 (A and B) FST
9 trajectories for P. vulgatus (host am) (A) and F. prausnitzii (host ao) (B). (C and D) SNV frequencies of three inferred strains for P.

vulgatus (C) and two inferred strains for F. prausnitzii (D). In black are the inferred strain trajectories. Highlighted in blue are example strains featured
further in panels E and F. (E and F) Frequencies of the example strains in blue, with simulations of the corresponding SLM overlaid in red. At the right, the
empirical distribution of strain abundances is plotted in blue, and the stationary gamma distribution of abundances (see equation 2) predicted by the SLM
is in red. (G and H) Sampling time points. Blue lines indicate that a sample was taken on that day.
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the fact that the absolute magnitude of the shift in allele frequencies between the begin-
ning and the end of the time course is small (less than 5%).

We further note the striking visual correspondence between the F
9

ST and strain frequency
trajectories, as is evident in Fig. 1 for both P. vulgatus and F. prausnitzii. Because fluctuations
in the relative frequencies of cocolonizing strains with respect to one another determine al-
lele frequencies at a very large fraction of all polymorphic sites, genome-wide average diver-
sity statistics like F

9

ST will reflect strain dynamics. This correspondence is therefore supporting
evidence that the overwhelming majority of genetic variation in these species is due to fixed
differences between strains rather than among lineages belonging to strains. However, as is
evident from the example of the minor strain of P. vulgatus in host am, subtle but important
strain dynamics can also be obscured when considering only genome-wide average pat-
terns of diversity.

Stochastic logistic model. In the sections above, we have seen that the genetic
compositions of most species examined exhibit stationary dynamics over the timescale
of observation. We hypothesized that this behavior might result from the underlying
strains fluctuating around fixed absolute carrying capacities.

To test this hypothesis, we assessed the fit and predictive capacity of the stochastic
logistic model (SLM), a model of a population experiencing stochastic fluctuations around
a fixed abundance. Recent work in microbial ecology has demonstrated the power of mini-
mal models like the SLM, requiring the fit of no free parameters, to reproduce qualitative
and quantitative features of natural microbial community dynamics (32, 33, 36, 37, 40).
Here, we tested the capacity of the SLM to forecast future strain behavior when trained on
an initial subset of time points. By training on only a subset of initial points, we can assess
whether strain dynamics are consistent over time.

Under the assumptions of the SLM, each population, i, has a long-term carrying
capacity, Ki, and temporal fluctuations in abundance around this value are driven by
environmental noise with amplitude s i. The dynamics of a population governed by an
SLM can be expressed with the following stochastic differential equation:

dxi
dt

¼ xi
t i

12
xi
Ki

� �
1

ffiffiffiffiffiffiffi
s i

t i

r
xihðtÞ (1)

where t21
i is the growth rate and h (t) is a Brownian noise term.

Populations following an SLM may experience large fluctuations in abundance over
short timescales and may even be temporarily found far from their long-term average
value, but these deviations will be transient. Over long timescales, the observed distri-
bution of abundances will converge to a stationary gamma distribution (32):

rðxiÞ ¼ 1
Cð2s21

i 21Þ
2

Kis i

� �2s21
i 21

x2s
21
i 22exp 2

2
Kis i

x
� �

(2)

To determine whether strain trajectories could be described by an SLM, we first obtained
time series of strain abundances by multiplying the relative frequencies of the strains inferred
in the previous section by the relative abundance of the species to which they belong.

Next, we estimated Ki and s i from the first one-third of time points for each strain. Ki
and s i are not free parameters but rather are functions of the mean and variance of the
observed abundances (for details, see Text S1, section 4). To assess quantitatively whether
the time series of strains in our cohort could be adequately described by an SLM, we devel-
oped and implemented a goodness-of-fit test. This test determines whether the transitions
between subsequent time points are consistent with an SLM (for further details, see Text
S1, section 5). Qualitatively, if a strain follows an SLM, its average and variance in abun-
dance in the latter two-thirds of the time series should match those of the former one-
third, and the strain should have a tendency to revert to its carrying capacity, Ki.

Returning to our case studies, we see that the dominant strain of P. vulgatus is well
described by the SLM (Fig. 1E). The true abundance trajectory (in blue) explores largely the
same space as that of the SLM simulations (in red). Moreover, the empirical distribution of
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abundances across the entire time course appears to approach the stationary gamma dis-
tribution (equation 2) predicted by the SLM (Fig. 1E, right). In contrast, the dynamics of the
invasive strain of F. prausnitzii deviate strongly from the SLM (Fig. 1F).

Overall, 79% (49/62) of strains passed our goodness-of-fit test, with 83% passing in
host am, 86% passing in ao, 73% passing in an, and 69% passing in ae (Fig. 2). While
the dominant strain of P. vulgatus passes, both strains of F. prausnitzii in host ao, as
well as the minor strain in host am, fail the SLM. Thus, the SLM recapitulates the quali-
tative behavior of a large majority of strains even when trained on only a subset of ini-
tial points while also having the power to discriminate instances in which the dynamics
of strains are evidently quite nonstationary.

Moreover, the likelihood of exhibiting SLM dynamics is independent of the pres-
ence of other strains. Of the 32 strains for which another conspecific strain was present,
24 (75%) passed the SLM test, while among the 30 singly colonizing strains, 25 (83%)
passed the test. Thus, while singly colonizing strains tend to be moderately more likely
to exhibit stable dynamics, the difference in pass rates is not statistically significant
(x 2 = 0.24; P value = 0.62), indicating that the presence of conspecific strains is not
prima facie destabilizing for a focal strain.

Next, we conducted an identical test of the SLM at the species level. Overall, 86% (39/
45) of species exhibited dynamics consistent with an SLM. In the case of F. prausnitzii, for
instance, the abundance of the species overall fluctuated stably, obeying the SLM. Thus,
despite a partial replacement event, the total abundance of the species remained roughly
constant. One interpretation of this observation is that these strains strongly compete with
one another for the same species’ niche. Interestingly, F. prausnitzii is known to experience
higher rates of replacement over multiyear timescales than other gut commensals, and
these replacements are associated with alterations in the levels of plasma metabolites that
affect host immunity (18). However, we emphasize that the replacement was only partial,
and the “displaced” strain recovered temporarily to an intermediate abundance. This exam-
ple highlights the complexity of strain dynamics as well as their potential relevance for
host phenotypes.

FIG 2 Results of the SLM goodness-of-fit test, by host. Totals of 79% (49/62) of strains and 86.6% (39/45) of species exhibit stochastic logistic dynamics
across the sampling interval. The percentage of strains passing the test varied among hosts, with 83% passing in host am, 87% passing in ao, 75% passing
in an, and 69% passing in ae. The P value associated with each strain or species is shown in white within each cell.
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Interestingly, none of the six species that exhibited non-SLM dynamics also failed our
ADF test of intraspecific genetic stationarity. Of these six species, five harbored only a single
strain, and in such cases, changes in the abundance of the strain do not imply changes in
the levels of intraspecific genetic diversity, as they do in the multistrain case. The only spe-
cies that exhibited non-SLM dynamics and harbored multiple strains was P. vulgatus in host
am. As noted above, although the minor strain of this species exhibits highly non-SLM dy-
namics, contributing to the species as a whole failing the SLM test as well, the genome-
wide average levels of genetic diversity as measured by F

9

ST change relatively little. Overall,
examining changes in intraspecific genetic diversity and species abundance yields orthogo-
nal information about population dynamics. For instance, the genetic composition of a spe-
cies may change dramatically while the total abundance of the species fluctuates stably, as
with F. prausnitzii. Conversely, a species’ abundance may change directionally while the
genetic composition of the population remains roughly constant, as might occur during a
rapid demographic expansion of a population with low initial diversity.

Macroecology of strains. Much as the dynamics of individual strains can largely be
recapitulated with a single relatively simple model, we can also attempt to parsimoniously
characterize patterns of variability across strains collectively. Such low-dimensional represen-
tations of complex community dynamics are the natural purview of macroecology, which
attempts to characterize variation within and among communities by observing the statisti-
cal patterns of abundance, distribution, and diversity across their constituent members. In
many kinds of microbial ecosystems, including the human gut, patterns of species abun-
dance and distribution have been shown to broadly follow a number of macroecological
laws, including Taylor’s law and a gamma distribution of abundance fluctuations (32, 33, 35).
We show here that these macroecological relationships also characterize patterns of variation
in the abundance of strains across our cohort.

The first pattern examined is power-law scaling between the mean and variance in
abundance, known in ecology as Taylor’s law, which can be stated as:

s 2
xi / hxiia (3)

where hxii and s2
xi are the mean and variance of xi, respectively, and a is the scaling

exponent of the power law.
Many mechanisms can give rise to Taylor’s law. For instance, when the only source of

variability between communities (or, in our case, longitudinal samples) is due to sampling
noise, Taylor’s law exponent a will equal 1. In contrast, in communities where the scale of
fluctuations is independent of abundance, that is, where all populations have identical per-
capita fluctuations, a will equal 2 (32, 35) (for further details, see Text S1, section 6). We
observed Taylor’s law scaling with an exponent of an a of 1.8 among all strains (Fig. 3A),
mirroring previous findings at the species level (35). This Taylor’s law exponent indicates
that higher-abundance strains are proportionally less variable than lower-abundance strains
(a , 2) and that variation in strain abundance is not driven solely by sampling noise (a .

1) but rather reflects true, underlying biological variability. However, the existence of power-
law scaling between mean and variance cannot, by itself, conclusively prove that any spe-
cific ecological model governs community dynamics. Indeed, the fit of the SLM does not
depend on the existence of Taylor’s law scaling, or vice versa, as the SLM can hold with arbi-
trary mean and variance values.

The next pattern considered is the abundance fluctuation distribution (AFD), the overall
distribution of abundances of a population over time. It is known that in a variety of micro-
bial ecosystems, the AFD of many species tends to approach a gamma distribution (32). As
discussed above, a population governed by stochastic logistic dynamics will tend toward a
gamma distribution of abundances over long timescales (see, for instance, the histogram
of abundances for the dominant strain of P. vulgatus in Fig. 1E, right). Given the generally
excellent fit of the SLM to the population time series, the abundances of strains might
generically be expected to each individually follow a gamma distribution. In Fig. 3B, we see
that the distributions of strain abundances are indeed, on average, well described by a
gamma distribution (black dots and blue line), although some individual strains (gray lines)
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deviate somewhat from the gamma stationary distribution. Recalling that the SLM of a
given strain is uniquely determined by its mean and variance, it is apparent that the col-
lapse of the AFDs to a single gamma distribution is in fact a consequence of the strong
constraint that Taylor’s law places on these quantities across strains.

DISCUSSION

In this study, we sought to characterize the within-species population dynamics of
the human gut microbiomes of four healthy hosts. Previous efforts have shown that
within-host changes in the genetic composition of gut microbial populations over
time tend to be small compared to interhost differences (7, 11). We build on this result
by demonstrating that at a daily temporal resolution, intraspecific diversity tends to
fluctuate around a long-term average value within the hosts examined over periods of
years. We show, crucially, that the abundance fluctuations of a large majority of strains
that we detect can be predicted by the stochastic logistic model (SLM) of growth, a
model that also recapitulates fluctuations at the species level (32, 33, 37). Finally, we
find that empirical patterns of strain abundance variation in these hosts follow macro-
ecological laws, which have also previously been demonstrated to hold at the species
level, including Taylor’s law and a gamma abundance fluctuation distribution (32, 33,
35). Together, our results indicate that many of the broad properties of the gut
observed at higher taxonomic levels of organization, such as its ecological and func-
tional stability, may in fact emerge at the level of strains.

While the SLM was able to sufficiently describe strain dynamics for the majority of
strains across species, its success was not universal, and deviations from this typical pattern
were also informative. In one host, for instance, two strains of F. prausnitzii appear to
undergo rapid strain replacement and fail the test. Whether this replacement was due to
shifting environmental conditions or direct interstrain competition is unclear. Regardless,
our work indicates that any successful description of gut microbial dynamics must incorpo-
rate the possibilities of both coexistence and rapid replacement. Over very long timescales,
in fact, strain replacement may dominate the stable dynamics that we observe here.
Previous work (16, 28) suggests that over the course of decades, a large fraction of strains
are ultimately replaced. One hypothesis is that this timescale reflects a waiting time for
large environmental perturbations such as antibiotics (23, 41) or bowel cleanses (42), but
this is just one of many hypotheses. Indeed, this hypothesis is partially challenged by
Roodgar et al. (23), where the strain content of an adult gut was perturbed during a course
of antibiotics but ultimately largely recovered to its pretreatment state. This antibiotic study

FIG 3 (A) Scaling of the variance in strain abundance with the mean abundance obeys Taylor’s law with an exponent of 1.8. Black dots are
strains passing the SLM, while red dots are strains failing the SLM. (B) Strain abundances approximately follow a gamma distribution, which
is the stationary distribution of the SLM. Black circles are the average probability densities of the rescaled abundances across all strains, and
the blue line is the gamma fit of the bin means of the rescaled distributions. Light-gray lines are the individual rescaled abundance
distributions for each strain individually (62 in total).
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is a powerful demonstration of the stability of strains even in the face of large perturba-
tions. Investigating the possible explanations for the discrepancy between years-long and
decades-long population dynamics at the strain level is an important problem that can be
addressed with more extended timescales of observation.

While, in this work, we characterize the population dynamics of strains as ecological
units, strains are by no means internally genetically homogeneous. The deep divergen-
ces that we detect between conspecific strains [Oð103Þ to Oð104Þ SNVs] are in fact
genetic backgrounds, representing timescales of divergence likely far preceding the
colonization of the host. However, individual lineages bearing these backgrounds can
differ from one another both at sites in the core genome and in gene content, and the
relative frequencies of these different lineages with respect to one another can change
due to evolution. Previous studies have shown that at the level of lineages belonging
to a strain, populations of gut microbes can experience both rapid selective sweeps
(16, 31) and diversification into stably coexisting lineages (17).

How evolution impacts the ecological dynamics of strains and how, in turn, these
ecological dynamics constrain and channel evolution are active areas of research (43).
In the context of the SLM, these ecoevolutionary feedbacks can be viewed as tuning a
strain’s carrying capacity, Ki; growth rate, t21

i ; and sensitivity of the growth rate to
environmental perturbation, s i. Naively, it is expected that evolution would tend to
increase the carrying capacity while minimizing the sensitivity of growth to abiotic fluc-
tuations, but evolutionary modifications driving changes in one quantity may affect
the other. The observed power-law scaling between the mean and variance in abun-
dance (Taylor’s law) is, in essence, a constraint on Ki given s i, and vice versa. The SLM
thus not only describes ecological dynamics but also, in conjunction with the empirical
observation of macroecological laws, provides a useful framework for investigating the
ecological effects of adaptation.

The SLM is ultimately a phenomenological model, not a mechanistic one, and its success
at the strain level does not explain why strains coexist. How and why closely related strains
coexist in the human gut are two of the central biological questions raised by our results.
Spatial segregation between strains, perhaps occupying different colonic crypts, or partition-
ing luminal and mucosal niches, could contribute to the observed pattern of strain coexis-
tence (44–46), much as it does among Cutibacterium acnes strains inhabiting different pores
on the facial microbiome (25). However, the spatial structure is far from the only mechanism
that can foster coexistence between strains. For instance, differences in genetic content at
polysaccharide utilization loci may contribute to intrahost metabolic niche differentiation,
potentially favoring the coexistence of closely related strains (47). Moreover, stably coexisting
strains have been reported under laboratory conditions as well (26, 48). In these experiments,
strains may coexist by finely partitioning some aspect of the abiotic environment, by engag-
ing in ecological interactions (e.g., cross-feeding), or by some combination of both. Indeed,
recent theoretical work suggests that even subtle differences in resource uptake rates under
high- and low-nutrient conditions may, in the presence of a temporally variable environment,
lead to the coexistence of small numbers of closely related strains (49). Investigating which
of these mechanisms promotes strain coexistence in the human gut microbiome and identi-
fying the relevant genomic architectures are important avenues for future research.

We note that the four hosts examined here are not a representative sample of the
full diversity of human lifestyles. For instance, all hosts were between the ages of 21
and 37 years and resided in the United States at the time of sampling. The proportion
of strains exhibiting stable or unstable dynamics may vary in different cohorts, but the
tests that we developed here will nonetheless be useful in identifying such differences.
A future avenue of work will be to assess the generality of these findings in different
cohorts, using new time series, which are at least as long and densely temporally
sampled as the BIO-ML data analyzed here and are of a similar quality, including dis-
eased or perturbed cohorts, which may exhibit quite different dynamics.

Finally, our work highlights the importance of strains in understanding community
structure and dynamics in the human gut microbiome (26, 49). The ambiguity
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surrounding the bacterial species concept is well known (50), and reasonable alterna-
tives have been proposed (51), but operationally, species are nonetheless the predomi-
nant focus of attention in gut microbiome ecology. This focus is reasonable, as within-
host strain structure is a comparatively recent discovery (16, 24, 29), and 16S rRNA
gene sequencing provides an inexpensive, high-throughput means to examine com-
munity dynamics. However, it is reasonable to propose that for the human gut, and
perhaps other microbial ecosystems, many higher-level macroecological patterns of
abundance and diversity may originate at the level of strains.

MATERIALS ANDMETHODS
Longitudinal data. To investigate the temporal dynamics of the human gut microbiome, we analyzed

densely sampled shotgun metagenomic time series data from four hosts from the BIO-ML project (acces-
sion number: PRJNA544527) (31). By analyzing shotgun metagenomic sequences, we capture longitudinal
patterns of intraspecific genetic variation for many bacterial species in these communities simultaneously.
A total of 402 samples were drawn from these four individuals (hosts am, ao, an, and ae), with 206 samples
coming from host am, 74 from ao, 63 from an, and 59 from ae (see Table S1 and Fig. S2 in Text S1 in the
supplemental material for further details on sampling). All four hosts were healthy adults between the
ages of 21 and 37 years, three of whom were male and one of whom was female, and all were residing in
the United States at the time of sampling (see Data Set S1 for further details). Crucially, for our purposes,
these hosts were sampled at a very fine temporal resolution, with a median interval between successive
samples of either 1 or 2 days in each host, over a period of 5 months (host ao) to 18 months (host am).

Aligning reads. To call single nucleotide variants (SNVs) and gene content, we aligned shotgun
metagenomic reads to a panel of species that were prevalent and abundant within each host using
MIDAS (52) (see Text S1, section 2, for further details on the bioinformatic pipeline employed). In total,
we detected 45 species across the four hosts that met our coverage and prevalence criteria. To reflect a
more recently published taxonomy (53), the names of three species (Phocaeicola vulgatus, Phocaeicola
massiliensis, and Lachnospira eligens) were amended from the names of these species native to MIDAS
(Bacteroides vulgatus, Bacteroides massiliensis, and Eubacterium eligens).

Stationarity of intraspecific genetic variation. To calculate FST, a measure of subpopulation differ-
entiation, we used the estimator:

FST ¼ pBT 2 p
pBT

(4)

where p is the nucleotide diversity within a population and p BT is the level of diversity between populations.
The nucleotide diversity, p , is a classical population genetic measure of polymorphism, representing

the average number of pairwise SNV differences between randomly chosen members of a population.
To determine p for a given species within a sample, we used the estimator:

p ¼ 1
jGj

XjGj
i¼1

ri
di

ai
di21

1
ai
di

ri
di21

(5)

where ri is the count of the reference allele at site i, ai is the count of the alternate allele, di is the depth
of coverage, and jGj is the total number of sites in the genome. This quantity was calculated after first
excluding sites with low read depths (,5�), as reliable estimates of true allele frequency cannot be
made for such sites. Our p calculations follow the same methodology as the one described previously
by Schloissnig et al. (11) in an early, foundational work characterizing patterns of genetic diversity in gut
microbial populations within and across hosts and are meant to be directly comparable.

Similarly, p BT, the diversity between time points, was calculated as:

pBT ¼ 1
jGj

XjGj
i¼1

rt1 i
dt1 i

at2 i
dt2 i

1
at1 i
dt1 i

rt2 i
dt2 i

� �
(6)

where rji, aji, and dji are the reference allele count, alternate allele count, and depth of coverage of site i
in sample j, respectively, and jGj is the total number of sites in the genome.

We calculated p for each species in each sample in each host and p BT for each sample relative to
the initial time point.

To calculate the FST between the initial time point (sample i) and sample j, we used the formula:

FðijÞST ¼
pBT 2

ðpi 1 pjÞ
2

pBT

(7)

Finally, we obtained our normalized statistic F
9

ST by dividing FðijÞST by the species mean interhost FST,
estimated from a panel of 250 North American subjects sequenced in the Human Microbiome Project (6,
38). To determine this species mean FST, we first calculated the pairwise FST for each pair of samples in
which a species appeared and then took the mean of these values.
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To implement the augmented Dickey-Fuller test on each time series of F
9

ST values, we used the adful-
ler function from the python statsmodels library (54).

Strain inference. To phase strains, we use a modified version of the allele frequency trajectory clustering
algorithm developed by Roodgar et al. (23). While the approach of Roodgar et al. was appropriate for their pur-
poses, namely, detecting selective sweeps of linked variants that deviated substantially from the overall back-
ground, our clustering scheme is designed to detect only large clusters of SNVs (minimally.1,000 SNVs within
a cluster) whose linkage patterns are consistent with perfect linkage on a single haplotype background. Our
choice of 1,000 SNVs as a cutoff was informed by previous work estimating the typical scale of genetic diver-
gence between strains found in different hosts (see Text S1, section 3.1, for further information). While lineages
can and do diverge as a result of diversifying evolution within hosts (17, 31), by imposing a minimum cluster
size of 1,000 core-genome SNVs, we expect largely to exclude cases of within-host diversification. When no clus-
ter of.1,000 SNVs was detected, only a single strain was inferred to be present.

Macroecology. To fit Taylor’s law (Fig. 3A), we used the polyfit function from the python numpy library
to fit a power-law regression between the mean and the variance of each strain’s abundance distribution. To
obtain the log-rescaled gamma AFD (Fig. 3B), each strain’s abundance distribution was first log rescaled and
then normalized to have zero mean and unit variance. We then binned each strain’s rescaled abundance dis-
tribution into 20 evenly spaced bins and fit the gamma AFD to the bin-wise mean across strains. To perform
the gamma AFD fit, we adapted code from J. Grilli (32).

Data availability. All necessary metadata, as well as the source code for the MIDAS metagenomic pipe-
line, downstream analyses, and figures, are available on GitHub at https://github.com/garudlab/StrainStability.
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